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Abstract

This thesis investigates the implementation of a new acoustic boundary condition in a simu-
lation environment - the Characteristic Based State-Space Boundary Condition (CBSBC).

The new boundary conditions were applied at the inlet and outlet of a 2D channel. The
influence of slip and no-slip wall boundary conditions to the reflection coefficient in a laminar
flow is validated.

For the slip simulation cases, defined reflection coefficients are proving the behavior of
the CBSBC. Possibilities to set a mean-flow in the new boundary conditions are discussed.
Resulting f and g waves are evaluated for different mean-flows.

For the investigation of the influence of no-slip boundary condition to the reflection coef-
ficient, the outlet was set to be non-reflecting in the CBSBC. A development of the reflection
coefficient perpendicular to the flow direction as well as in x-direction is observed. Addition-
ally, the influence of higher frequencies and the effect of different mean-flows to the CBSBC
are investigated.
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Nomenclature

Roman Symbols

p̄ Mean value of pressure [Pa]

ū Mean value of velocity
[m

s

]
~u Velocity vector

[m
s

]
~x Position vector [m]

c0 Speed of sound
[m

s

]
e Internal Energy [J]

F Frequency [Hz]

f f wave
[m

s

]
g g wave

[m
s

]
p Pressure [Pa]

p ′
A Acoustic fluctuation of pressure [Pa]

p ′
T Turbulent fluctuation of pressure [Pa]

Pr Prandtl number [-]

qi Heat flux
[

W
m2

]
Rc Reflection coefficient [-]

Rs Specific gas constant
[

J
kg ·K

]
T Temperature [K]

t Time [s]

u′
A Acoustic fluctuation of velocity

[m
s

]
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u′
T Turbulent fluctuation of velocity

[m
s

]
Greek Symbols

δ Stokes boundary layer thickness [m]

κ Thermal conductivity
[ W

m·K
]

λi Characteristic wave amplitude
[m

s

]
µ Dynamic viscosity

[
kg
m·s

]
ν Kinematic viscosity

[
m2

s

]
ω Angular frequency [rad]

ρ Density
[

kg
m3

]
Acronyms

CBSBC Characteristic Based State Space Boundary Condition

CFD Computational Fluid Dynamics

LODI Local One-Dimensional Inviscide

NSCBC Navier-Stokes Characteristic Boundary Condition

PVM Plane Wave Masking
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1 Introduction

When constructing a rocket combustion chamber, the extremely thermal and mechanic pres-
sure has to be calculated. The process of burning hydrogen creates acoustic noise, which can
be reflected off combustion walls. This reflections can be unstable and can causing mechan-
ical failures within the chamber, resulting in unsuccessful take-offs. Therefore, a reliable de-
sign for a rocket’s combustion chamber is crucial to avoid any problems.

A resonator acts as an acoustic dampener, which would help to reduce the reflection. How-
ever, due to the big dimension of the combustion chamber, a detailed numerical investigation
of the acoustic influence can not be performed. Instead, the simulation must concentrate on
the immediate surroundings of the resonator to gain accurate readings. Hence, in order to
obtain the full acoustic behavior within the combustion chamber, the environment above
and below the resonator is modeled using a state-space model. The pairing of numerical and
state-space data is achieved using the acoustic CBSBC - the Characteristic Based State-Space
Boundary Condition, see figure 1.1.

simulation domain

CBSBCCBSBC

Figure 1.1: Model of coupling between the CBSBC and the simulation domain with resonator.

The CBSBC boundary conditions are already implemented in the CFD software Open-
FOAM, but not fully validated. This thesis concentrates on the verification of the boundary
condition for a channel flow without a resonator, see figure 1.2.

The thesis is structured as follows. In chapter 2, the theoretical background of the acoustic
involved formula and the related equations concerning the new introduced boundary con-
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Introduction

simulation domain

CBSBCCBSBC

Figure 1.2: Model of coupling between the CBSBC and the simulation domain without res-
onator.

dition are explained. As acoustic waves are investigated, the wave equation and its solution
are introduced in the beginning. After that, the development to obtain the CBSBC boundary
condition is reproduced shortly. Figure 1.3 is showing the steps in a diagram. An assumption
is made by considering plane waves. Then Navier-Stokes Characteristic Boundary Conditions
NSCBC) are explained, to model the behavior of the acoustic at the boundaries and to obtain
a physical correct reflection. After applying the NSCBC for a two-dimensional case (LODI-
Relations), the plane wave masking is shown, which is a modifications for reflecting bound-
ary conditions. Finally, the Characteristic Based State Space Boundary Condition (CBSBC) is
introduced, which contains the related equations for the investigated simulations. The de-
scription of the used simulation software and the implementation of the CBSBC boundary
condition in OpenFOAM is done in the section 2.9.

NSCBC

LODI

NSCBC with PWM

CBSBC

Figure 1.3: Derivation of CBSBC displayed in a diagram.

Chapter 3 is dealing with the simulations for slip boundary conditions. In the beginning,
the general behavior of the CBSBC condition for slip wall boundary conditions is introduced.
Simulations with reflecting and non-reflecting boundary conditions are shown. Furthermore,
few options to set a mean-flow to the simulation are investigated. The chapter ends with a
discussion about the resulting reflection coefficient graphs for different mean-flows.

Simulations for no-slip wall boundary conditions are investigated in chapter 4. The reflec-
tion coefficient is set to zero in the CBSBC. Nevertheless, the wall has an high influence to the

2



reflection coefficient perpendicular to the flow direction. In the beginning of the chapter, the
procedure to calculate the reflection coefficient is demonstrated for five selected cells along
the y-axis. Figures of velocity and pressure for the selected cells are displayed. Furthermore,
the calculated f and g waves are presented to help understanding the resulting reflection co-
efficient graph. Additionally, the development of the reflection coefficient in flow direction
was investigated. After, different frequencies were applied to the setup, to investigate the in-
fluence of frequency to the reflection behavior of the CBSBC. Finally a mean-flow was applied
for the no-slip part. Again, figures of pressure and velocity for selected cells are demonstrated.
It ends with a discussion about the development of the reflection coefficient along the x-axis
for different mean-flow setups.
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2 Theoretical Background

The related equations for the propagation of acoustic waves are introduced in this chapter.
Furthermore, the development to obtain the CBSBC is reproduced here shortly. This chapter
is closing with basic information about OpenFOAM and the implementation of the CBSBC in
OpenFOAM.

2.1 Calculation of the Wave Equation

This thesis contains the propagation of acoustic waves and their reflection behavior for a new
introduced boundary condition type. For this reason, the wave equation is introduced here.
Starting point are the base equations of fluid mechanics, the Navier-Stokes Equations. They
are considering Newtonian, compressible fluid and consists of the continuity, the momentum
and the energy equation. The continuity (2.1) and the momentum (2.2) equations are written
in Einstein notation with the relation between the density ρ and the velocity of the fluid ui in
space xi and in time t .

• continuity
Dρ

Dt
+ρDui

Dxi
= 0, (2.1)

• momentum

ρ
Dui

Dt
=− ∂p

∂xi
+ ∂

∂x j

(
2µSi j − 2

3
µ
∂uk

∂xk
δi j

)
, (2.2)

• energy

ρ
De

Dt
=−p

∂ui

∂xi
+2µSi j Si j − 2

3
µSkk Si i + ∂

∂xi

(
κ
∂T

∂xi

)
, (2.3)

where

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
.

Here, D·
Dt = ∂·

∂t +ui
∂·
∂xi

is defined as the material derivative. For the transport equation for the
internal energy e (2.3), the variables T and κ are defined as the temperature and the thermal
conductivity.
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2.1 Calculation of the Wave Equation

In addition to the partial different equations (PDEs) above, two other equations are intro-
duced to obtain a complete description of the problem. The first equation treats the ideal gas
law, which is defined as

p = ρRsT, (2.4)

where Rs is the specific gas constant. As we assume an ideal gas, the internal energy e and the
temperature T are linked by the relation

e =
∫

cv dT =
∫

cp dT − p

ρ
. (2.5)

Here, cv and cp denote the heat capacities at constant specific volume and at constant pres-
sure. In the following, the viscous stress and the bulk viscosity are neglected for simplification
reasons. This results in the so called Euler equation for equation (2.2), which describes the
conservation of momentum for a friction-less fluid without volume forces to

ρ
Dui

Dt
+ ∂p

∂xi
= 0. (2.6)

As we are interested in the acoustic behavior, isotropic disturbances of flow variables are
considered. Ehrenfried [2] proposed to linearize and decompose the equations (2.1) and (2.6)
into its mean and fluctuation parts as

p = p0 +p ′, (2.7)

ρ = ρ0 +ρ′, (2.8)

~u =~u0 +~u′ ≡~u′. (2.9)

Following, every term with higher order in the fluctuation part is neglect. For (2.9), the assume
that the fluid is situated in a state of rest ~u0 = 0 and every movement is only caused by its
fluctuation [2].

Insert the linearization into the continuity equation (2.1) and assuming that ρ′ << ρ, the
linear continuity equation gets to

∂ρ′

∂t
+ρ0

∂u′
i

∂xi
= 0. (2.10)

Consequently, the Euler equation transforms to

ρ0
∂~u′

∂t
+ ∂p ′

∂xi
= 0, (2.11)

where ∂·
∂t describes the material derivative D·

Dt = ∂·
∂t +ui

∂·
∂xi

for a mean-flow~u0 = 0. Furthermore
the time derivation for ρ0 and p0 are zero, as the density and the pressure are a constant value.
For an isotropic compression, the relation between pressure and force is obtained to

p = p(ρ). (2.12)

5



Theoretical Background

As the definition of pressure force relation (2.12) is a function and therefore can not be sep-
arated into mean and fluctuation parts, equation (2.12) is developed with the Taylor series
as

p(ρ) = p(ρ0)+ (ρ−ρ0)
dp

dρ
(ρ0)+ ... (2.13)

Applying (2.13) into (2.12) and neglecting higher order terms, we get

p ′ = ρ′ dp

dρ

(
ρ0

)
. (2.14)

The derivation above is shortened with

dp

dρ

(
ρ0

)= c2
0 . (2.15)

Finally, the linearized pressure-force relation is

p ′ = c2
0ρ

′, (2.16)

where

c2
0 =

(
∂p

∂ρ

)
s

. (2.17)

The variable c0 is defined as speed of sound, where the index s indicates the isentropic relation.
As it can be seen in the gaining wave equation, the acoustic perturbations propagate in space
with the speed of sound. For an ideal gas, the speed of sound can be calculated using this
formula

c0 =
√
γRsT . (2.18)

It is to mention here that the linearized equations (2.11), (2.10) and (2.16) are only valid, if the
amplitudes of the disturbance are small in comparison to the mean part

|p ′|¿ p0 and |ρ′
0|¿ ρ0.

To obtain the wave equation for the sound pressure, the linearized continuity equation
(2.10) is derivated by time. After interchanging the time derivative with the divergence, the
following equation is produced as

∂2ρ′

∂t 2
+ρ0

∂

∂xi

(
∂~v ′

∂t

)
= 0 (2.19)

For the linearized Euler equation (2.11), its divergence will be calculated to

∂

∂xi

(
∂~v

∂t

)
+ ∂

∂xi

∂p ′

∂xi
= 0. (2.20)

After subtracting equation (2.20) from (2.19), the terms with~v ′ vanish and the equation below
is generated

∂2ρ′

∂t 2
+ ∂2p ′

∂x2
i

= 0. (2.21)
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2.2 Solution of the Wave Equation

After all, the fluctuation density ρ′ can be replaced by p ′ using the linearized force-pressure
relation (2.16). The wave equation for the sound pressure is finally calculated appearing

∂2p ′

∂t 2
− c2

0
∂2p ′

∂xi∂xi
= 0. (2.22)

The second order partial differential wave equation as seen in (2.22) describes the propaga-
tion of small disturbances, if the medium is at rest.

2.2 Solution of the Wave Equation

For a 1-D problem, the wave equation (2.22) can be factorized as follows, if the speed of sound
c0 is constant (

∂

∂t
+ c0

∂

∂x

)(
∂

∂t
− c0

∂

∂x

)
p ′ = 0. (2.23)

According to Ehrenfried [2], an easy solution of the wave equation is the one dimensional
wave development. It is assumed that the wave is only travelling in x-direction. This leads to

p ′ (x, t ) = f (x − ct )+ g (x + ct ) . (2.24)

The solution of the one-dimensional wave equation are sums of two waves. One right travel-
ing function f and one left traveling function g , both travelling with speed of sound c0 relative
to the mean fluid motion. These two characteristic waves, also known as Riemann invariants,
can be defined as [3]

f = 1

2

(
p ′

ρc
+u′

)
and g = 1

2

(
p ′

ρc
−u′

)
. (2.25)

Characteristic wave amplitudes f, g and acoustic fluctuations of pressure p’ and velocity u’ are
related to each other as follows

p ′

ρc
= f + g and u′ = f − g . (2.26)

A model of the f and g wave in a 2D channel can be seen in figure 2.1. The f wave is travelling
in x-direction, while the g wave is propagating in negative flow direction.

To avoid any further uncertainties between the common acronym for frequency and the
here introduced f wave, the shortcut for the frequency in this thesis is F .

The reflection coefficient Rc is a possibility to characterize acoustically the ratio of the
oncoming wave (g ) to the expatiate wave ( f ). It is defined as

Rc = ĝ

f̂
. (2.27)

Here, the variables are denoted in the frequency domain ·̂ . The reflection coefficient is a good
value to qualify the reflection behavior of a boundary.
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Theoretical Background

f

g

y

x

Figure 2.1: Model of f and g wave in a channel.

2.3 Plane Acoustic Waves

For simplification reason and assuming that the frequency is lower than the cut-off frequency
of the first order, the waves are behaving in a plane characteristic way [6]. The assumption
allows an easy and fast separation of the acoustic fluctuation from the mean-flow. The flow
variables, p and u, can be separated as

p(t , x, y, z) = p̄(t , x, y, z)+p ′
T (t , x, y, z)+p ′

A(t , x), (2.28)

u(t , x, y, z) = ū(t , x, y, z)+u′
T (t , x, y, z)+u′

A(t , x). (2.29)

The temporal averaged fields denotes the bar (̄·), while the turbulent and acoustic fluctua-
tions are marked by the indexes ’T’ and ’A’. Pressure and velocity are propagating in time t
and in the spatial coordinates x, y, z. As plane waves are assumed, the acoustic fluctuation
only depends on time and on the x-direction.

Considering the perturbation amplitudes are small enough, acoustic signal components
can be described in terms of the linearized characteristic wave amplitudes f and g as

f = f (x − (ū + c̄)) , (2.30)

g = g (x − (ū − c̄)) , (2.31)

travelling in the positive and negative x-direction (see figure 2.1). Plane acoustic waves can
now be described by the characteristic wave amplitudes f and g , in which acoustic fluctua-
tions of pressure p ′

A and velocity u′
A are related to each other as

f = 1

2

(
p ′

A

ρ̄c̄
+u′

A

)
, (2.32)

g = 1

2

(
p ′

A

ρ̄c̄
−u′

A

)
. (2.33)

Here, ρ and c are the density and the speed of sound, respectively. f corresponds to the wave
traveling in downstream direction and g is travelling in upstream direction. The characteristic
wave amplitudes f and g are related to each other as

p ′
A

ρ̄c̄
= f + g , (2.34)

u′
A = f − g . (2.35)

8



2.4 Navier-Stokes Characteristic Boundary Conditions (NSCBC)

To identify the acoustic signal components f and g from the flow variables u and p, the acous-
tic fluctuation p ′

A and u′
A has to be separated from the flow field. According to Polifke [9], ”an

area average over sampling planes perpendicular to the duct axis” is applied to the turbulent
fluctuation. As the spatial correlation length of the turbulent fluctuation is very small, the tur-
bulent eddies vanish 〈p ′

T 〉 = 0 and 〈u′
T 〉 = 0 [9]. This leads to the correlation of the acoustic

fluctuation as

p ′
A = 〈p − p̄〉 , (2.36)

u′
A = 〈u − ū〉 . (2.37)

Here, 〈·〉 represents a spatial average of a plane perpendicular to the traveling direction of the
acoustic waves. Applying this new correlation to the general equations of f (2.32) and g (2.33)
results in

f = 1

2

(〈p − p̄〉
ρ̄c̄

+〈u − ū〉
)

(2.38)

g = 1

2

(〈p − p̄〉
ρ̄c̄

−〈u − ū〉
)

(2.39)

The new correlation can now be used to calculate the f and g waves, especially when a mean-
flow is applied, this formula helps to separate the acoustic fluctuation part from its mean part.

2.4 Navier-Stokes Characteristic Boundary Conditions (NSCBC)

As explained in the section 2.2, the solution of the wave equation consist of two waves, f
and g . The computational domain is considered with a determined sizes, where the bound-
ary conditions interact with the environment. An accurate determination of these boundary
condition is necessary for a good simulation result. Figure 2.2 is showing the f and g waves
leaving the simulation domain at the outlet (x = L).

f

g

y

x simulation domain

x = Lx = 0

Figure 2.2: Model of f and g wave at the outlet (x = L).
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Theoretical Background

In this thesis, the NSCBC approach by Poinsot and Lele [8] is used to determine the bound-
ary conditions. The method is explained as an ”appealing technique for specifying boundary
conditions for hyperbolic systems [..] to use relations based on characteristic lines” [8] and is
summarized here shortly. A detailed description of the mathematical background of bound-
ary conditions based on characteristic lines can be seen in the papers of Kreiss [7] or Engquist
and Majda [5].

To obtain the NSCBC, the Navier-Stokes Equations for a compressible flow in Cartesian
coordinates are shown [12]:

∂ρ

∂t
+ ∂

∂xi
(mi ) = 0, (2.40)

∂ρE

∂t
+ ∂

∂xi

[(
ρE +p

)
ui

]= ∂

∂u jτi j
− ∂qi

∂xi
, (2.41)

∂mi

∂t
+ ∂

∂x j

(
mi u j

)+ ∂p

∂xi
= ∂t aui j

∂x j
, (2.42)

where

ρE = 1

2
ρuk uk +

p

γ−1
, (2.43)

mi = ρui , (2.44)

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
. (2.45)

The thermodynamic pressure is given by the variable p, the total energy density (kinetic +
thermal) is defined as ρE , while mi shows the momentum density in the xi direction.
Additionally, the equations of the heat flux qi and of the thermal conductivity λ are

qi =−λ ∂t

∂xi
, (2.46)

λ= µCp

Pr
, (2.47)

where Pr is the Prandtl number, and µ is the viscosity coefficient.

As explained in the paper of Poinsot and Lele [8], the approach to apply the conservation
equations directly on the boundary is used to complement the set of physical boundary con-
ditions. To do so, a boundary located at x = L is considered and the characteristic analysis

10



2.4 Navier-Stokes Characteristic Boundary Conditions (NSCBC)

from Thompson [10] is applied at this patch. The equations (2.40) - (2.42) transform to:

∂ρ

∂t
+d1 + ∂

∂x2
(m2)+ ∂

∂x3
(m3) = 0, (2.48)

∂ρE

∂t
+ 1

2
(uk uk )d1 + d2

γ−1
+m1d3 +m2d4 +m3d5+

+ ∂

∂x2

[(
ρE +p

)
u2

]+ ∂

∂x3

[(
ρE +p

)]= ∂

∂xi

(
u jτi j

)− ∂qi

∂xi
, (2.49)

∂m1

∂t
+u1d1 +ρd3 + ∂

∂x2
(m1u2)+ ∂

∂x3
(m1u3) = ∂τ1 j

∂x j
, (2.50)

∂m2

∂t
+u2d1 +ρd4 + ∂

∂x2
(m2u2)+ ∂

∂x3
(m2u3)+ ∂p

∂x2
= ∂τ2 j

∂x j
, (2.51)

∂m3

∂t
+u3d1 +ρd5 + ∂

∂x2
(m3u2)+ ∂

∂x3
(m3u3)+ ∂p

∂x3
= ∂τ3 j

∂x j
. (2.52)

It can be observed that the equations above contain two types of derivatives. One derivative
normal to the x1 boundary, defined as (d1 to d6), and derivatives parallel to the x1 boundary
like (∂/∂x2)(m2u2) and local viscous terms.

The vector d is given by characteristic analysis (Thompson [10]) and can be expressed as

d =


d1

d2

d3

d4

d5

=


1
2

[
L2 + 1

2 (L5 +L1)
]

1
2 (L5 +L1)
1

2ρc (L5 −L1)

L3

L4

=



∂m1
∂x1

∂(c2m1)
∂x1

+ (
1−γ)

µ
∂p
∂x1

u1
∂u1
∂x1

+ 1
ρ
∂p
∂x1

u1
∂u2
∂x1

∂u3
∂x1

 . (2.53)

According to Poinsot and Lele, the L′
i s are the amplitudes of characteristic waves associated

with each characteristic velocity λi [8]. Each characteristic velocity is related to the flow ve-
locity ui and to the speed of sound c as [10]

λ1 = u1 − c, (2.54)

λ2 =λ2 =λ4 = u1, (2.55)

λ5 = u1 + c, (2.56)

where c is defined as

c2 = γp

ρ
. (2.57)

While λ1 is the velocity of wave propagating in the negative x-direction, λ5 is moving in pos-
itive direction, respectively. The convection velocity is related to λ2, and λ3 and λ4 are the
advection velocity for u2 and u3 into the x1 direction. The Li ’s are related to the characteristic

11
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waves λi as

L1 =λ1

(
∂p

∂x1
−ρc

∂u1]

∂x1

)
, (2.58)

L2 =λ2

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
, (2.59)

L3 =λ3
∂u2

∂x1
, (2.60)

L4 =λ4
∂u3

∂x1
, (2.61)

L5 =λ5

(
∂p

∂x1
+ρc

∂u1

∂x1

)
. (2.62)

2.5 The Local One-Dimensional Inviscide (LODI) Relations

For one-dimensional Euler equations, it is possible to specify the values of L′
i s for the waves,

crossing the boundary. A LODI [8] system can be generated from equations (2.48) to (2.52) by
neglecting viscous and transverse terms. As shown in figure 2.3, the procedure is done here
for the outlet, located at x = L. Considering a system depending on primitive variables, the

L 5

L 2

L 3

L 4

L 1

x

y

x = 0 x = L

outlet
simulation domain

Figure 2.3: Model of Li waves at the outlet.
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equations (2.48) to (2.52) simplify to

∂ρ

∂t
+ 1

c2

[
L2 + 1

2
(L5 +L1)

]
= 0, (2.63)

∂p

∂t
+ 1

2
(L5 +L1) = 0, (2.64)

∂u1

∂t
+ 1

2ρc
(L5 −L1) = 0, (2.65)

∂u2

∂t
+L3 = 0, (2.66)

∂u3

∂t
+L4 = 0. (2.67)

Poinsot [8] explained the gained relation as not of ”physical conditions but should be more
viewed as a compatibility relations made by the physical boundary conditions and the wave
amplitudes crossing the boundary”.

The relations above can also be combined to get a system of equation of the temperature
T , the flow rate m1 = ρu1, the entropy s, or the stagnation enthalpy h.

∂T

∂t
+ T

ρc2

[
−L2 + 1

2

(
γ−1

)
(L5 +L1)

]
= 0, (2.68)

∂m1

∂t
+ 1

c

[
ML2 + 1

2
{(M −1)L1 + (M +1)L5}

]
= 0, (2.69)

∂s

∂t
− 1(

γ−1
)
ρT

L2 = 0, (2.70)

∂h

∂t
+ 1(

γ−1
)
ρ

[
−L2 + γ−1

2
{(1−M)L1 + (1+M)L5}

]
= 0. (2.71)

Here, the enthalpy and the entropy are defined as h = (ρE+p)/ρ = 1
2 u2

i +Cp T and s =Cv logp/ργ+
const . Furthermore, Cp and Cv are the specific heat capacities at constant pressure and vol-
ume, respectively. M is the local Mach number: M = u1/c.

The system above shows the LODI relations in time derivatives. However, it is also possible
to set up such a system in terms of gradients. There, all gradient normal to the boundary x1

can be calculated with

∂ρ

∂x1
= 1

c2

[
L2

u1
+ 1

2

(
L5

u1 + c
+ L1

u1 − c

)]
, (2.72)

∂p

∂x1
= 1

2

(
L5

u1 + c
+ L1

u1 − c

)
, (2.73)

∂u1

∂x1
= 1

2ρc

(
L5

u1 + c
− L1

u1 − c

)
, (2.74)

∂T

∂x1
= T

ρc2

[
−L2

u1
+ 1

2

(
γ−1

)( L5

u1 + c
+ L1

u1 − c

)]
. (2.75)
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A quick example demonstrates the easy application and usage of the LODI system. Saying,
a constant pressure is applied at the inlet. The corresponding LODI relation (2.64) is rewritten
here again

∂p

∂t
+ 1

2
(L5 +L1) = 0,

it can be seen that the wave amplitudes have to be set in relation L5 = −L1, to guarantee the
constant pressure assumption.

∂p

∂t
= 0 → L5 =−L1.

2.6 NSCBC with Plane Wave Masking (PVW)

For a one-dimensional Euler equation system, the LODI relations allow to determine the val-
ues of L′

I s, as introduced in the previous section 2.5. One advantage of using the NSCBC ap-
proach is the identification of the waves crossing the boundary. According to figure 2.3, two
wave directions can be observed. At the outlet, L2 to L5 are leaving the simulation domain,
while L1 is entering it. For calculating the wave exiting the domain, the points inside the do-
main can be used to determine its further behavior. For waves, accessing the domain, the
behavior has to be specified by some approximations. A method to determine these waves is
now introduced.

Rewriting the LODI relations for pressure and velocity, we get

∂p

∂t
+ 1

2
(L5 +L1) = 0, (2.76)

∂u

∂t
+ 1

2ρc
(L5 −L1) = 0. (2.77)

Two types of reflecting boundary conditions are distinguish, a fully reflecting boundary con-
dition and a partially reflecting boundary condition.

Fully reflecting boundary conditions

Examples for a fully reflecting boundary condition are an open end or a closed end. Imposing
an open end at the outlet, the acoustic fluctuation of pressure is defined as p A = f + g = 0 [9],
which leads to a LODI relation (2.76) of L1 +L5 = 0. While for a closed end inflow boundary,
the acoustic fluctuation is obtained by the velocity to the formula of uA = f −g = 0 that results
in a LODI relation (2.77) of L1 = L5.

Partially reflecting boundary conditions

For the partially reflecting boundary condition, some specifications has to be done to use
them reasonable. Poinsot [8] constructed a low reflecting outflow boundary condition with
the help of a relaxation factor σ. Without the linear relaxation term, Poinsot investigated a
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2.6 NSCBC with Plane Wave Masking (PVW)

wrong reflection behavior, as the information propagating with the waves are lost, which leads
to a ill posed problem.

For an outflow, the leaving wave L5 is determined with the inner points of the computa-
tional domain as

L5 = (u + c)

(
∂p

∂x
+ρc

∂u

∂x

)
, (2.78)

while L1 is the reflected wave entering into the domain and is therefore determined as [8]

L1 = σ

ρ̄c̄

(
p −p∞

)
. (2.79)

Polifke [9] observed that the proposed boundary type from Poinsot (2.79) can not obtain
a good reflection behavior for all frequencies. A plane wave masking is added to the NSCBC
to minimize the plane acoustic reflection. The idea was to ”identify outgoing plane waves
at the boundary, and then explicitly eliminate outgoing wave contributions form the linear
relaxation term” [9].

For the outflow boundary condition, L5 is defined as in equation (2.78), while the L1 wave
is calculating with the formula

L1 = σ

ρ̄c̄

(
p − ρ̄c̄

(
fd + gx

)−p∞
)+2

∂gx

∂t
. (2.80)

The term ρ̄c̄
(

f + gx
) = p ′

A express the acoustic part of the pressure fluctuation. This term
eliminates any plane wave acoustic fluctuation at the boundary condition. The variables gx is
the external excitation, where an amplitude of an imposed plane wave entering the domain
can be defined.

A non-reflective inflow boundary condition can be constructed, analogously. The wave L1

exits the computational domain, so it depends on the variables of the internal field. This leads
to following formula

L1 = (u − c)

(
∂p

∂x
−ρc

∂u

∂x

)
. (2.81)

According to PWM [9], the in-going wave L5 is given as

L5 =σ
(
u − (

fx − gu
)−uT

)+2
∂ fx

∂t
. (2.82)

Here fx is the amplitude of a plane wave imposed at the boundary entering the domain.
In this thesis, the LODI relations for the pressure, velocity and temperature at the inlet

and outlet are observed. The boundary conditions are implemented in an OpenFOAM envi-
ronment. A 2D wave is observed, so the LODI relations for L3 and L4 are set to zero, as no
advection velocity is assumed (λ3 = λ4 = 0). Figure 2.4 is giving a short overview of the waves
entering and leaving the simulation domain at the inlet and outlet. Table 2.1 is showing the
related formulas. The middle column demonstrates the LODI relations for pressure, velocity
and temperature, while the definitions of L1, L2 and L5 can be looked up in the first column
for the inlet and in the third column for the outlet.
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2.7 Characteristic Based State-Space Boundary Conditions (CBSBC)

2.7 Characteristic Based State-Space Boundary Conditions (CB-
SBC)

The simulation domain is only a small part of the whole combustion chamber. The remain-
ing fluid flow is modeled by one-dimensional state space systems. Therefore, a good coupling
between the CFD domain and the state space model is essential. It is realized by the Charac-
teristic Based State Space Boundary condition (CBSBC).

According to Polifke [9], CBSBC is a continuous-time state-space model to describe the
frequency dependent reflection of acoustic waves. As linearized Euler and Navier-Stokes equa-
tions are used, the state-space model can be determine with a set of linear partial differential
equations (PDE). An exhaust duct is used as a example to explain the usage of the CBSBC.
Figure (2.5) is showing the model of the CBSBC at the outlet of the simulation domain.

simulation domain

CBSBC

f d

g d

f 1 f 2

g 1 g 2 g N

∆ x

f N
f

g

R L

e x,d

outlet

0 L

x

y

Figure 2.5: Model of CBSBC located at the outlet of the simulation domain.

The fd wave is leaving the simulation domain and entering into the CBSBC model. It is then
propagating through the time-domain model till it reaches the distance x = L. At this point,
the reflection coefficient RL is multiplied to wave fn , an external source acoustic source ex,d

can be additionally added to obtain gN . The g wave is then propagating back till it leaving the
CBSBC domain at g1 and is reentering the simulation domain via the wave gd . The set up for
the matrices is showed now:

Considering the one dimensional Euler equation and neglecting mean-flow gradients, the
formulas are gained

∂ f

∂t
+ (ū − c̄)

∂ f

∂x
= 0, (2.83)

∂g

∂t
+ (ū − c̄)

∂g

∂x
= 0. (2.84)
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At the positions x = 0 and x = L of the CBSBC model, the boundaries are defined as

f (x = 0, t ) = f1 = fd , (2.85)

g (x = L, t ) = gN = RL f (x = L, t )+ex,d . (2.86)

The coupling between the acoustic model and the CFD domain is done via a Dirichlet bound-
ary condition at point x = 0. The reflection of an acoustic wave at the boundary is done with
a scalar reflection coefficient RL located at x = L. An acoustic source ex.d can be applied, if
wanted.

For the spatial discretisation, a linear upwind finite difference scheme is applied. We get

∂ fi

∂t
=− (ū + c̄)

fi − fi−1

∆x
, (2.87)

∂gi

∂t
=− (ū + c̄)

gi − fg−1

∆x
. (2.88)

The boundaries are expressed as

∂ f2

∂t
=− (ū + c̄)

f2 − fd

∆x
, (2.89)

∂gN−1

∂t
=− (ū + c̄)

RL fN −+ex.d − gN−1

∆x
. (2.90)

For the state-space model, the matrix vector form leads to

∂

∂t



f2

f3
...

fN

g1
...

gN−2

gN−1


︸ ︷︷ ︸

ẋ

=



−α+ 0
α+ −α+

. . . . . .
α+ −α+

α− −α−
. . . . . .

α− −α−
RLα− 0 α−


︸ ︷︷ ︸

A

×



f2

f3
...

fN

g1
...

gN−2

gN−1


︸ ︷︷ ︸

x

+


α+ 0
0 0
...

...
0 0
0 −α−


︸ ︷︷ ︸

B

[
fd

ex,d

]
︸ ︷︷ ︸

u

(2.91)
gd︸︷︷︸

y

= g1 =
[
0 · · · 0 1 0 · · · 0

]︸ ︷︷ ︸
C

x+ [
0 0

]︸ ︷︷ ︸
D

u (2.92)

with α+ = (ū + c̄)/∆x and α− = (ū − c̄)/∆x. In this form, the meaning of the parameters of the
state space model becomes evident.

The matrices A, B, C and D are the state space matrices and x is the state vector. The state
vector x contained the wave values of f and g at the knots in the mesh. Matrix A elements
are set by the discretisation scheme. The coupling between fn and gN−1 is described by the
off diagonal element and it also shows the reflection at the outlet of the resonator. Matrix B
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2.8 Stokes Boundary Layer

models, how the input signal u affects the temporal derivative of the state vector. As in Matrix
A and B are set by the discretisation scheme. The feed through is defined as a null vector (D).
In the matrix C, the element unlike zero, gives the output g1 by multiplying the matrix C with
the state vector x. g1 is equal to gd = y .

In this thesis, the CBSBC is mainly set to be non-reflecting. Possibilities to generate non-
reflection boundary condition is to set the matrices A, B or C equal to zero. By setting one of
the matrices equal to zero, the propagation of the waves through the CBSBC model is inter-
rupted, as the information can not be transported through the whole domain, see (2.91) and
2.92.

2.8 Stokes Boundary Layer

Considering an oscillation flow, a boundary layer close to the wall is generated. For a lami-
nar flow, a exact solution of the Navier-Stokes equations can be calculated. The equation is
introduced for the case with an oscillating wall and a viscous fluid in rest and will be then
extended to the case for oscillating flow and rigid wall. Considering an oscillating plate, the
Navier-Stokes equation simplify to [1]

∂u

∂t
= ν∂

2u

∂y
, (2.93)

describing the viscosity evolution away from the wall. The velocity is assumed to propagate
in the x-direction, parallel to the oscillation direction. y is showing the distance from the wall.
Following boundary conditions arise for this problem

t ≤ 0 : y ≥ 0 : u1(y, t ) = 0,

t > 0 : y = 0 : u1(0, t ) =U0 · cos(ωt ),

y →∞ : u1(∞, t ) = 0.

For a time t ≤ 0s, the wall is considered in rest. After that, the motion of the wall is U0 ·cos (ωt ).
After some transformation, the solution of the flow velocity is gained in the formula (see in [1]
for a detailed transformation)

u1(y, t ) =U0 ·exp

(
−

√
ω

2ν
y

)
· cos

(
ωt

√
ω

2ν
y

)
(2.94)

where

κ=
√

ω

2ν
, (2.95)

can be defined as the wave number in y-direction.ω is defined as the angular frequency of the
motion and can be calculated by using the relation between angular frequency and frequency
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Figure 2.6: Stokes Boundary Layer Thickness over frequency.

ω= 2πF , while ν is showing the viscosity. Furthermore, a stokes boundary thickness is defined
by

δ= 2π

κ
= 2π

√
2ν

ω
. (2.96)

The stokes boundary layer thickness was used in this thesis to identify a fully generated bound-
ary layer at the no-slip wall. Figure 2.6 is showing the stokes boundary layer thickness over the
frequency.

Considering an oscillating flow near a rigid wall, the solution of the flow velocity changes
to

u1(y, t ) =U0 ·
[

cos (ωt ) ·exp

(
−

√
ω

2 ·ν y

)
· cos

(
ωt

√
ω

2ν
y

)]
. (2.97)
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2.9 OpenFOAM

Basic

The investigation of the validation of the CBSBC were done using OpenFOAM Version 2.3.1.
OpenFOAM is an open source Computational Fluid Dynamic (CFD) software tool. CFD al-
lows to predict and analyze fluid flows by numerical simulation. It plays an important role,
as it allows a cheap method to investigate the flow dynamics in early states of a design pro-
cess. The open code allow to implement and modify models in a huge range, which is very
helpful and beneficial for academical research investigations. That’s also why the CBSBCs are
implemented in this.

The CBSBC were applied as a boundary condition for OpenFOAM and compiled. As a 2D
channel were investigated, the geometry and mesh were created using the blockMesh dict. To
read out pressure and velocity for the related cells, the swak4Foam [4] toolbox was embed into
the software. The rhoPimpleFoam solver was used, as compressible flow is considered. The
values from swak4Foam were read into Matlab, from where the f and g waves were calculated.

Implementation of CBSBC in OpenFOAM

The boundary conditions used for the simulations in OpenFOAM were created by the chair
”Professur für Thermofluiddynamik” of the TUM. It was integrated into the OpenFOAM en-
vironment. Following six boundary types were used: CBSBCInletPressure, CBSBCInletTem-
perature, CBSBCInletVelocity, CBSBCOutletPressure, CBSBCOutletTemperature, CBSBCOut-
letVelocity.

The implementation in OpenFOAM was done using a Transient Robin Boundary Con-
ditions according to Vilums [11]. In OpenFOAM, the boundary conditions of type Dirichlet
and Neumann respectively fixedValue and fixedGradient are pre-defined. With the help of the
swak4foam library from B. Gschnaider, a mixed boundary condition, called groovyBC can be
constructed [4]. This boundary condition allows also to define variables and functions on the
boundary calculated at every internal iteration. By looking into the source code of mixed BC
[4], the LODI relations equations has to look like:

P n+1
f ace = f · valueE xpr + (

1− f
)(

P n+1
centr e + g r adE xpr ·δ)

. (2.98)

Exemplary, the pressure is shown in (2.98). For the temperature, use T instead of P . Here, f is
defined as the fractionExpression and has to be obtained by user. The distance between the
cell centre and cell face is represented by δ.

To gain the form of equation as seen in (2.98), the LODI relations has to be linearized.
The linearization and the comparison with the implemented values in the .C file are shown in
the annex A - D. For the CBSBCInletPressure and CBSBCInletTemperature cases, the different
algebraic sign is because the normal patch vector is in the opposite direction than the flow
direction.

An extract of the velocity boundary condition, defined in the 0-folder of the simulation, is
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shown in the annex E and will be described here shortly. For the inlet boundary field, the type
of the CBSBC (here CBSBCInletVelocity) and some constant variables are defined in the be-
ginning. The sub-folder of the velocity allows to define a target value. Compare with section
2.6, where the formula for the inlet velocity is shown. This value will be changed to set up a
mean-flow, but it is considered in more detail in the section 3.5. The text-file of the incom-
ing f wave is determined in the sub-folder tableFileCoeffs. In the text-file inletf_700.txt , a
wave with a frequency of F = 700Hz and a sound pressure level of SPL = 75dB is selected. For
all simulation cases, no changes in SPL are made. Only the frequency is modified in section
4.4. The ssFileName defines the state-space model, named here as ”statespace.dat”. The state-
space model contains two patch numbers of CBSBC. Here, patch -1 is used for the inlet while
-2 is used for the outlet. Furthermore, a characteristic acoustic length scale and a initial value
can be defined.

The outlet definition has the similar beginning. But for this case, a target value for the
pressure is defined. Compare again with 2.6, where the LODI relation and the related formula
for the outlet pressure is defined. Furthermore, an excitation signal can be obtained. For the
outlet, the ssPatch with number -2 is used.
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3 Simulation Results for Slip Boundary
Conditions

Chapter 3 is beginning with the introduction of the geometry and its meshing. The next sec-
tion displays the general behavior of the CBSBC with a defined reflection coefficient. Figures
of velocity, pressure and the waves are demonstrated to get a first impression of the simu-
lation. Then, the CBSBC is set to be non-reflecting, the resulting reflection coefficient is cal-
culated. Furthermore, different options for setting a mean-flow to the simulation are investi-
gated. The chapter slip 3 is closing with investigations for the reflecting coefficient of different
mean-flows. If not mentioned explicit, a frequency of F = 700Hz is used for all setups.

3.1 Simulation Setup of Slip Case

For the slip case, a 2D channel with dimensions of (600 mm x 20 mm x 1 mm) and a meshing
of (400 20 1) is used. The mesh of the geometry can be seen in figure 3.1, and a detailed view to
see the cell size is done in figure 3.2. This big size of geometry was set because the first simula-
tions does not need this many computational hours and the development of the longitudinal
waves (wave crest and wave trough) can be seen (fig. 3.3).

The CBSBC boundary condition is applied at the outlet and inlet patch, while top and
bottom wall are set as slip boundary conditions. Waves, with a frequency of F = 700Hz and a
sound pressure level of SPL = 75dB are propagating through the inlet into the channel and are
then interacting with the reflection coefficient at the outlet. As slip boundary conditions are
applied, no wall interfaces are expected. So a surface area expression was set in OpenFOAM,
to evaluate the values for pressure and velocity. Figure 3.2 is showing a detailed view on the

inlet

slip

slip

400 mm

20 mmoutlet

x

y

Figure 3.1: Mesh of geometry for the slip case.

mesh. The cell size in x-direction is given as∆x = 1.5mm, while in y-direction, it is∆y = 1mm.
The extract is showing 20 cells in y-direction and 12 cells in x-direction.
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Simulation Results for Slip Boundary Conditions

Δx

Δy

Figure 3.2: Detailed view of the mesh for the slip case.

Having a closer look to the velocity distribution for a time t = 1.9ms, displayed in figure
3.3, the longitudinal wave can be detected. As plane waves are treated, the red area is showing
the wave crest, while the blue area stands for the wave trough. This figure should manifest the

Figure 3.3: Velocity distribution for the time-step t = 1.9ms; showing wave crest (red) and
wave trough (blue).

choice of the selected geometry. A whole wave period can be seen along the x-axis, which was
a good help for understanding the results of the first simulations.

3.2 Generation of Results for Slip Case

The procedure for calculating the reflection coefficient for the slip case is shown in the dia-
gram below (figure 3.4).

From OpenFOAM, two vectors, one for velocity (uOF ) and one for pressure (pOF ), are eval-
uated for every time step with the help of the swak4Foam library. To ensure a good quality of
the wave propagation, a time step of t = 1 ·10−6 s is used. The velocity and pressure vectors
are then written into the MATLAB environment. Applying a mean-flow to the simulation re-
quires an elimination of it. To do so, a mean value over a period time is calculated and then
subtracted from the variables. This leads to the acoustic fluctuation of pressure and velocity
uA and p A. Applying no mean-flow does not need to eliminate the mean variable, however it
is done to ensure its quality. With the help of p A and uA, the f and g waves can be calculated.
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3.3 Applying Reflecting CBSBC

p
OF

u uA

p
A

OpenFOAM Rc

f

g

^

g^

fOF

Figure 3.4: Diagram for calculating R c for the slip case.

The equations are shown here again quickly.

f = 1

2

(
p A

ρ̄c̄
+uA

)
,

g = 1

2

(
p A

ρ̄c̄
−uA

)
.

Applying a Fourier transformation on the f and g waves leads to the corresponding ampli-
tudes ( f̂ and ĝ ) . By setting these in relation, the reflection coefficient Rc is generated with the
formula

Rc = ĝ

f̂
.

3.3 Applying Reflecting CBSBC

First, the behavior of the CBSBC boundary condition is introduced in a general case. The re-
flection coefficient is defined as Rc = 0.8 at the outlet and at the inlet. To evaluate the pressure
and velocity, surface averages at positions x = 0.005m and x = 0.595m are defined in Open-
FOAM. These values were written into the MATLAB environment, to generate the f and g
waves.

Inlet

Figure 3.5 is showing the pressure and velocity evolution over time at the inlet. After a time
of t = 0.004s, a little disturbance in the velocity graph can be detected, due to the interaction
with the new generated g wave, compare with figure 3.6. After passing this time, a smaller
amplitude of the velocity oscillation can be seen. The pressure graph does not have this dis-
turbance, however, it is changing its amplitude to a higher value after it passes t = 0.004s.

Figure 3.6 is showing the calculated f and g wave. The generation of g wave is beginning
at the time t = 0.004s. As explained, this leads to the disturbance seen in the velocity plot
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Figure 3.5: Velocity and pressure evolution at the inlet.

of figure 3.5. The f wave is continuing its behavior without any loose in its amplitude value.
Comparing both amplitudes a reflection coefficient of Rc = 0.80 is calculated.
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Figure 3.6: The f and g wave evolution at the inlet.

Outlet

Having now a look at the outlet, following velocity and pressure evolution is generated, see
fig. 3.7. It takes nearly 0.0017 s for the velocity and pressure waves to reach the position of
the surface average (x = 0.595m). After this, it takes one oscillation with a smaller amplitude
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Figure 3.7: Velocity and pressure evolution at the outlet.

for the velocity graph to reach its harmonious oscillation behavior. The pressure is raising
strongly after the f wave is reaching the outlet patch, then it has a little kink at the time of
t = 0.023s, and it is then oscillating till the end of simulation time.

The resulting f and g wave plots can be seen in figure 3.8. Similar to the velocity and
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Figure 3.8: The f and g wave evolution at the outlet.

pressure graphs, it took t = 0.0017s for the f wave to reach the outlet. Then it took additionally
0.007 s for the f wave to cross the state-space model. After 0.025 s the g wave is generated. The
beginning of the g wave and the kink in the pressure graph (fig. 3.7) are happening at the same
time-step, so the pressure kink is due to the generation of the g wave. Again, a comparison of

27



Simulation Results for Slip Boundary Conditions

the amplitude of f and g waves lead to a reflection coefficient of Rc = 0.80, same as for the
inlet observation.

3.4 Applying Non-Reflecting CBSBC

After the behavior of the CBSBC boundary condition in a general environment was intro-
duced, a non reflecting boundary condition is now applied at the outlet. As in the declaration
of the CBSBC (see sec. 2.7), the matrices A, B and C can be set to zero to obtain a non reflec-
tion. The comparison of all three cases leads to the decision to set the B matrix to zero, as it
prevents the reflection the best. In figure 3.9, the reflecting g wave is almost equal to zero. A

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
m

p
lit

u
d

e
 [

m
/s

]

10
-4

f

g

Figure 3.9: The f and g wave evolution at the outlet for B = 0.

detailed figure of the g wave (3.10) is showing an anti-cyclical behavior in comparison to the f
wave. The spikes can not be explained in detail. Comparing the amplitudes of f and g waves
leads to a reflection coefficient of Rc = 0.00155. This means, the reflecting g wave has an am-
plitude smaller than 0.1% in comparison to the f wave, which leads to the assumptions, that
the outlet CBSBC can be suppose to be non-reflective.
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Figure 3.10: Detailed view on the g wave for B = 0.

0-Folder Sub-item Option 1 Option 2 Option 3 Option 4

U uniform (0 0 0) (0.001 0 0) (0 0 0) (0.001 0 0)
targetValue (0.001 0 0) (0.001 0 0) (0.001 0 0) (0.001 0 0)

p targetValue (0 0 0) (0 0 0) (0.001 0 0) (0.001 0 0)
T targetValue (0 0 0) (0 0 0) (0.001 0 0) (0.001 0 0)

Table 3.1: Options to define a mean-flow in the boundary conditions.

3.5 Applying a Mean-Flow to the Slip Simulation Case

The previous chapter investigated the behavior of reflection and non-reflection without a
mean-flow. Now, a mean-flow is applied to the system. By looking at the CBSBC boundary
condition .H file, few options could be detected to generate a mean flow (see appendix E). In
the 0-folder, the velocity can be set to an uniform value for the internal field. Also, a target
velocity value can be defined at the inlet in the velocity, pressure and temperature file. This
section wants to point out the best apply to set a mean-flow. The investigation is done using a
mean-flow of ū = 0.001m/s, to see its behavior and not wasting much computational power.

Four cases, see table 3.1, are compared for setting a mean-flow to the boundary condi-
tions. Setting the mean-flow only as a targetValue for the velocity, leads to mean value not
equal to ū = 0.001m/s. Adding a uniform velocity to the first setup (Option 2) also does not
provide the defined mean-flow. So both Options are not suitable configurations. Option 3 and
Option 4 are a good choice to set up mean-flows, as the applied mean-flow is reached after
t = 0.0075s. Option 3 was selected, as a consistent evolution of the velocity and pressure graph
could be detected.

For a better understanding, the velocity and pressure evolution and the f and g waves for
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Figure 3.11: Velocity and pressure evolution for Option 3.

a mean-flow of u = 0.001m/s are displayed now for Option 3. Having a look at figure 3.11, it
is showing three velocities. The blue graph refers to the velocity evaluated from OpenFOAM
(uOF ). Starting from a value of u = 0m/s, a mean velocity ū = 0.001m/s of the velocity fluc-
tuation is reached after nearly t = 0.0075s. Variable umean is calculated for one time period
(∆T = 1428s ) to a value of umean = 0.001m/s. For calculating the f and g waves, the velocity
from OpenFOAM has to be subtracted by the calculated mean velocity. The yellow graph is
showing the resulting velocity, the acoustic fluctuation velocity (uA). For the evolution of the
three pressure variables, similar behavior is detected. The acoustic fluctuation pressure part
p A was generated by subtracting pmean = 0.4074Pa from pOF . Both yellow graphs (uA and p A)
are then used to calculate the f and g waves, see in fig. 3.12. The blue graph is showing the re-
sulting f wave, while the g wave is displayed in red. Due to the generation of the acoustic part
of velocity and pressure, the f wave is starting with a negative value of f = −0.001m/s. After
t = 0.01s, a stable oscillation around the x-axis can be detected. The maximum amplitude of
f wave is equal to f̂ = 3.08 ·10−4 , while g wave is reaching a maximum value of ĝ = 6.6 ·10−7.
Comparing both values leads to a reflection coefficient of Rc = 0.00155, which is assumed here
as non-reflective.
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Figure 3.12: The f and g wave evolution for Option 3.

3.6 Comparison of Rc for different Mean-Flows

This section investigates the behavior of the acoustic fluctuation for setups with different
mean-flows. Beginning with a mean-flow of ū = 0.001m/s the applied mean-flow is increased.
Setting a mean-flow leads to some beginning pressure and velocity fluctuations before veloc-
ity and pressure oscillate around a mean value. This is sometimes not this easy, as the velocity
and pressure are growing small over time. We set a special mean-flow, and therefore a three
time period is selected from velocity and pressure graph, where the difference between the
set mean-flow and the mean value, the acoustic parts are oscillating, having a small differ-
ence. Especially when the mean-flow is raised to a value ū > 1m/s, it needs more time to
oscillate around the mean value and therefore, more computational time has to be taken. The
investigations here are having a mean-flow range starting for a mean-flow of ū = 0.001m/s till
ū = 1m/s with a difference of ∆ū = 10. So four mean-flows are investigated. The mean-flow
are applied in behavior as Option 3 as investigated in the previous section (3.5).

First, the f wave is shown in figure 3.13. Generally, as the global y range of the f wave is this
big, a converged behavior can be seen after a time period of t = 0.01s for all mean-flow setups.
For a higher mean-flow, the beginning of the f wave is having a lower value. The beginning of
each graph is defined by the subtracted mean value and should not be considered in detail.
For example, a mean-flow of ū = 1m/s is beginning with a value of f =−1m/s.

Having now a closer look at the f waves for a selected amplitude range leads to figure
3.14. Comparing all four lines, it is taking longer for a higher mean-flow value to stabilize
around the zero value. For the lowest mean-flow ū = 0.001m/s, it takes nearly t = 0.006s to
reach a converged state. For the purple graph (ū = 1m/s), it nearly takes t = 0.013s to reach
its converged state. Also, the local maximum in the area t < 0.01s are behaving different for
every mean-flow. Small mean-flow are having a big local maximum amplitude, while higher
mean-flow only having a little hill till it starts to converge. A Fourier transformation over the
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Figure 3.13: Comparison of f waves for different mean-flows in a global range.
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Figure 3.14: Comparison of f waves for different mean-flows for selected amplitude range.
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Figure 3.15: Comparison of g waves for different mean-flows for selected amplitude range.

frequency for every line can be seen in table 3.2.
Having now a look at the reflecting g wave at figure 3.15. For a mean-flow of ū = 0.001m/s

and ū = 0.01m/s, a similar behavior for the g wave can be observed. Raising the mean value
to ū = 0.1m/s, a falling behavior for the g wave can be observed. Raising the mean-flow to
a value of ū = 1m/s results in no converged status in the investigated time, but a decreasing
behavior of the amplitude can be detected. The results of the Fourier transformation of the g
waves can be looked up in table 3.2.

3.7 Discussion about Slip Boundary Conditions

In the beginning, the general behavior of the CBSBC was introduced, figures of f and g wave
demonstrates its behavior at the inlet and outlet. The calculated reflection coefficient was
equal to the defined CBSBC one.

Then, the CBSBC was set to be non-reflecting at the outlet, by setting the B matrix to zero.
A reflection coefficient of Rc = 0.00155 was calculated, which is assumed as non-reflecting.

After this, the non-reflection is observed for different mean-flows. Firstly, different options
for setting the mean-flow are investigated. Option 3 is showing the best behavior for the in-
vestigated mean-flow, it is used for the further observations. Applying a mean-flow does not
change the reflection coefficient, as it was also calculated as Rc = 0.00155 for the mean-flow
observations.

Closing this chapter with the investigations of f and g waves for the mean-flow range of
ū = 0.001m/s− ū = 1m/s. The f wave evolution are behaving the same for different mean-
flows. Similar amplitudes around f̂ = 3.8 ·10−4 were calculated. However, the g wave investi-
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mean-flow ū [m/s]
0.001 0.01 0.1 1

f̂
[
10−4

]
3.7997 3.7998 3.800 3.800

ĝ
[
10−7

]
5.9783 5.976 5.9401 5.5241

R c
[
10−3

]
1.5733 1.5727 1.5632 1.4537

Table 3.2: Overview of amplitudes for f and g waves and the corresponding reflection coeffi-
cient for different mean-flows.

gations are leading to different evolution for the investigated mean-flows. A mean-flow lower
than ū < 0.01m/s generates g waves with similar oscillations. Increasing the mean-flow oc-
curs different graphs. The highest investigated mean-flow ū = 1m/s is generating a g wave,
which is producing a high oscillation in the beginning time, and then having a damped char-
acter. For a more detailed investigation, a longer time should be simulated. However, a con-
verged state can be assumed.

The resulting reflection coefficient for the mean-flows, investigated in section 3.6 can be
looked up at table 3.2. Here, f̂ corresponds to the calculated amplitude of the Fourier trans-
formation for the f wave belonging frequency of F = 700Hz, while ĝ corresponds to the g

wave amplitude. The reflection coefficient is then calculated as Rc = ĝ

f̂
. Comparing the reflec-

tion coefficient, no big difference can be detected. By increasing the mean velocity, a lower
reflection coefficient is calculated. However, the changes are in dimensions of 10−4.

Further investigations for higher mean-flows is proposed. This will probably help to un-
derstand more clearly, why the g wave is having the damping wave character for higher mean-
flows, while the f waves amplitudes are not changing this much.
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4 Simulation Results for No-Slip
Boundary Condition

In this chapter, the influence of a no-slip wall boundary condition to the reflection behavior
of the CBSBC is investigated. In all configurations, the reflection coefficient of the CBSBC at
the outlet is set to zero (see 3.4). Beginning with the introduction of a new geometry channel,
the generation of the reflection coefficient is explained again shortly. Afterwards, the devel-
opment of Rc in flow direction is observed, and the influence of higher frequencies is investi-
gated. It ends with a discussion of the reflection coefficient, while a mean-flow is applied.

4.1 Simulation Setup of No-Slip Case

The simulated domain is reduced to the dimensions of (30 mm x 5 mm x 1 mm) with a mesh-
ing of (200 70 1). The cell size in x-direction is ∆x = 0.15mm (fig. 4.1). A higher resolution
of cells at the close wall area is necessary, to investigate the influence of the no-slip wall
to the flow. Therefore, a grading of 0.01 in negative y-direction is applied in OpenFOAM.
This leads to a minimum cell size directly at the wall of ∆y1 = 3.25 ·10−3 mm and a cell size
of ∆y70 = 0.325mm at the symmetry patch. The cell-to-cell expansion rate is calculated as
e = 0.935.

The top wall is defined as a no-slip condition. To safe computational time, the bottom
patch is set as symmetry. The acoustic wave is entering the domain by the inlet, implemented
in the CBSBC. If not mentioned explicitly, a frequency of F = 700Hz with a sound pressure
level of SPL = 75dB is used for the incoming wave. At the outlet, a non-reflection is applied.

x

y

no-slip

symmetry

outletinlet

30 mm

5 mm

Figure 4.1: Mesh of geometry for the no-slip case.
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∆ x
∆ y 1

∆ y25

Figure 4.2: Detailed view of the mesh from figure 4.1 for the no-slip case.

Position [mm] Distance from Outlet Patch [mm] Cell Number in x-direction
Line 1 x = 15.075 ∆x = 14.925 100
Line 2 x = 22.575 ∆x = 7.425 150
Line 3 x = 28.575 ∆x = 1.425 190
Line 4 x = 29.325 ∆x = 0.675 195
Line 5 x = 29.925 ∆x = 0.075 200

Table 4.1: Overview of the probe locations in x-direction.

To see the grading at the wall more clearly, an extract from the top right corner of figure 4.1
(orange box) is shown in figure 4.2. Additionally, the cell size in y-direction for cell 25 is calcu-
lated as ∆y25 = 1.62 ·10−2 mm.

For a detailed investigation of the no-slip wall to the acoustic velocity, probes points are
evaluated for every cell in y-direction over the whole geometry. To allow a comparison of the
reflection coefficient in flow direction (x-axis), five planes are defined in OpenFOAM, which
evaluates the cell values. As a 2D geometry is considered, the planes are called in the following
lines. The line locations can be seen in table 4.1. Having a better understanding, where the
probes are located, a picture from the mesh with the marked locations as defined in table 4.1
is shown in figure 4.3. Line 5 is located directly on the cell centre at the outlet patch, while
Line 1 is located in the middle of the simulation domain.

1 2 3 4 5
x

y

Figure 4.3: Line locations defined in table 4.1 displayed in the mesh.
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4.2 Generation of Results for No-Slip Case

4.2 Generation of Results for No-Slip Case

The procedure of calculating the reflection coefficient is shown in the diagram below (figure
4.4). From OpenFOAM, a vector of velocity and pressure is written out for every cell along

p

uOF
uA

p
A

OpenFOAM

Af

Ag

Rc

Af
^

Ag
^

OF

Figure 4.4: Diagram for calculation of Rc for the no-slip case.

the line, named here as uOF and pOF . The acoustic fluctuation is then separated from the
mean part, resulting in vectors for the acoustic pressure p A and for the acoustic velocity uA

(sec. 2.3). With these, the f and g wave can be calculated and are saved in the A f and Ag

matrices. For every cell along the line, the variables are calculated. This results in a matrices
with a number of columns of 70. For these matrices, we want to get the maximal amplitude
of our related frequency. To do so, a fast Fourier transformation is applied for each row of
the matrices A f and Ag . The coefficient of the frequencies are saved in the matrices Â f and
Âg . The reflection coefficient is then calculated with the division of maximum amplitude of g
wave over maximum amplitude of f wave for the related frequency.

This procedure is now shown for five selected cells along Line 2. To have a better under-
standing how the calculation was done, figures are displayed for every step. The center of the
five cells are located with distances away from wall as shown in table 4.2.

Cells y-distance from wall [mm]
Cell 5 y = 0.012

Cell 10 y = 0.036
Cell 15 y = 0.069
Cell 20 y = 0.115
Cell 50 y = 1.155

Table 4.2: Five selected cells with the corresponding distance from the no-slip wall.

The graphs of velocity and pressure for the selected cells evaluated from OpenFOAM are
displayed in figure 4.5. As no mean-flow is applied, the velocity fluctuation is around ū =
0m/s. Cells located closer to the wall are having a lower amplitude of the velocity. Plus, a
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Figure 4.5: Velocity and pressure for selected cells along line 2.

phase displacement for the different cells in the velocity plot can be observed. The pressure
fluctuation is done around p̄ = 1·105 Pa, with same values independently of the cell locations.
The acoustic fluctuation of pressure and velocity is now subtracted from its mean value. Using
the formula uA = u − ū for velocity and p A = p − p̄ for pressure with the mean value for the
time starting at 0.05 s with a time length of three periods 3∆T = 0.04286s, results in figure
4.6. The acoustic fluctuation of velocity uA has no changes in comparison to figure 4.5, the

Figure 4.6: Acoustic velocity and pressure for selected cell along Line 2.

phase displacement stays. The amplitude range was adapted manually. The acoustic pressure
fluctuation is now oscillation around a zero mean value.
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4.2 Generation of Results for No-Slip Case

Figure 4.7: The f and g wave for selected cell along Line 2.

Figure 4.7 is showing the f and g wave evolution. It can be seen, that the f wave for Cell
5 has the smallest amplitude in comparison to the other cells, while it has the highest g wave
amplitude. Which means, the reflection coefficient for this cell is quite high. Cell 50 has a high
amplitude for f and a small amplitude for the g wave, which leads to a nearly zero reflection
coefficient.

Applying a fast Fourier transformation to the f and g waves for the selected cells of figure
4.7, results in the stem plot in figure 4.8, showing the frequency amplitudes of the f and g
waves. As expected, the highest peak arises for the applied frequency of F = 700Hz. The max-
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Figure 4.8: Â f and Âg for selected cell along Line 2.

imum amplitudes of the f and g waves for F = 700Hz, Â f and Âg , are now used to calculate
the reflection coefficient with the formula Rc = Âg /Â f . These three values for each cell can
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Simulation Results for No-Slip Boundary Condition

Cell number Â f
[
10−4

]
Âg

[
10−4

]
R c

Cell 5 2.300 1.555 0.677
Cell 10 2.847 1.141 0.401
Cell 15 3.400 0.7343 0.216
Cell 20 3.802 0.3959 0.104
Cell 50 3.817 0.0188 0.005

Table 4.3: Selected cells with the corresponding amplitudes for f and g wave and the resulting
reflection coefficient.

be looked up in table 4.3. Cells located close to the wall (Cell 5 and Cell 10) are having a small
amplitude of f wave, while the amplitude of the g wave is relatively high. For cells located fur-
ther away from the no-slip wall, the amplitude of f is getting higher and the amplitude of g
is reaching a value around zero. The resulting reflection coefficient has a decreasing behavior
over the wall distance.

Rerunning the procedure for every 70 cell along the y-axis, figure 4.9 is generated, which
shows the maximum amplitude of f and g wave over the distance away from wall for Line 2.
The f wave shown in blue, is raising from nearly 2 close to the wall to a value of Â f = 3.8 ·10−4
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Figure 4.9: Maximum amplitude of f (blue) and g (red) for every cell along the wall distance.

far away from the wall. Furthermore, a little hill can be detected at the distances around y =
0.2mm with a maximum of Â f = 3.9 · 10−4. Comparing both, one can already estimate the
behavior of the reflection coefficient. Starting with a value of nearly 1 close to the wall, the
reflection coefficient is then degrading to a smaller value around zero.

Having now a look at the reflection coefficient Rc along the wall distance, figure 4.10 is
generated. The graph starts with Rc = 0.96 at the closest cell near the wall, the reflection is
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Figure 4.10: Reflection coefficient along the wall distance.

falling to a value of nearly zero at a distance from wall of y = 0.5mm. The most interesting
part of figure 4.10 is the close wall area, therefore a new figure for a wall distance range of
x ∈ [0−0.6] [mm] with a limited y-axis coordinate is shown in figure 4.11. The graph of Rc is
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Figure 4.11: Reflection coefficient till 0.6 mm away from wall.

falling in an exponential behavior to a value of 0.005 till a wall distance of 0.55 mm. After this,
a constant value around 0.0048 is stabilized for the reflection coefficient. No influence of the
hill of the A f course in figure 4.9 can be seen in its resulting Rc figure in 4.11.
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Simulation Results for No-Slip Boundary Condition

4.3 Development of Rc in Flow Direction

The procedure for calculating the reflection coefficient was shown in detail in the previous
section (sec. 4.2). Now, only the resulting reflection coefficient graphs are investigated. This
section observes the development of the reflection coefficient over the x-axis for a frequency
of F = 700Hz. Reflection coefficient graphs for the five line locations, introduced in section
Geometry (4.1) are calculated and set in relation in one figure.

Figure 4.12 is showing the reflection coefficient over the whole wall distance. In general,
all lines are having a low reflection coefficient value of Rc < 0.01 from a wall distance of
y > 0.5mm. Line 5, located directly at the outlet is having the best non-reflection behavior
in comparison to the other lines. At the closest wall cell, a value of only Rc = 0.43 is calculated.
Line 5 is then directly falling to a reflection coefficient value lower than 0.001 at a wall dis-
tance y = 0.031mm. The other lines starting with values of Rc ≈ 0.96, are then decreasing with
a lower gradient, and are reaching reflection coefficient values lower than 0.01 at distances
y > 1mm away from the no-slip wall.
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Figure 4.12: Development of Rc along the x-axis.

In figure 4.13, the range of the reflection coefficient is limited by the values Rc ∈ [0−0.05],
to allow a more detailed investigation of the line evolution. Firstly, a remark of the gradients
at a close wall distance area lower than y < 0.5mm is made. As already indicated in figure
4.12, Line 5 is having the highest gradient of all compared lines. It is falling with a value of
∆Rc = 0.43 in a distance area of ∆y = 0.031. Looking now at Line 4, which is located the sec-
ond closest to the wall. It has the lowest descent value of all lines. Therefore, Line 4 and Line
5 are setting the limits of the gradients at a wall distance of 0.5 mm. Line 3 is having the sec-
ond lowest gradient, while Line 1 and Line 2 are falling with the same gradient, the second
highest in comparison to all observed. In figure 4.13, the black dotted line is showing the cor-
responding stokes boundary layer thickness for a frequency of F = 700Hz, which is calculated
as δ700Hz = 0.519mm. A relation between the development of stokes layer and the locations

42



4.3 Development of Rc in Flow Direction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Distance from wall [m] 10
-3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
R

c
 [

-]
Line 1

Line 2

Line 3

Line 4

Line 5

Figure 4.13: Development of Rc along the x-axis for a selected range.

of lines can be observed. Already for Line 4, the kink locates the end of the layer. Lines, lo-
cated further away from the outlet (Line 1 to Line 3) are having a more significant change in
its reflection coefficient graphs.

Now, the development of each line along the wall distance is observed in more detail. A
non-reflection behavior is assumed by a value lower than Rc < 0.005, to allow a compari-
son between every line. Line 5 is reaching a non reflection behavior for a wall distance of
y = 0.031mm with a value lower than Rc < 0.0001, which is the lowest Rc of all observed lines.
Related to the whole wall distance, 99.5% of the y-axis have a behavior of non reflection. Line
2, distant ∆x = 0.675mm away from outlet patch, is shown in the purple graph. It is falling
till a wall distance around y = 0.5mm, where a kink can be detected. After, it is falling again
with a lower gradient till its stabilized around Rc = 0.0012 for wall distances y > 3mm. The
assumed non-reflection value is reached for a distance of y = 1.35mm, which corresponds to
a non-reflection behavior over the whole wall distance for 73 %. Line 3 has a higher gradient
than Line 4, the kink is located at the same wall distance with a more distinct behavior. After,
it is falling till it reaches values of Rc = 0.002 at the end wall distances. Non-reflection is guar-
anteed for about 65 % over the whole wall distance. For Line 1 (∆x = 14.925mm) and Line 2
(∆x = 7.425mm), the behavior of the reflection coefficient over the wall distance are similar.
The graphs are falling with the second highest gradient till its ending in a kink for a wall dis-
tance around y = 0.5mm. After the kink, the reflection coefficient is stabilized over the whole
wall distance at a value of Rc = 0.0048. Non-reflection is ensured for 90 % of the whole wall
distance.

In the following, the effect of Line 5 having the lowest reflection coefficient for nearly the
whole wall distances is pointed out. With the help of paraView, the velocity solution fields
are demonstrated. Figure 4.14 is showing the velocity field in x-direction for a time t = 75ms,
while in figure 4.15, the velocity in y-direction can be detected. In both figures only the top
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Simulation Results for No-Slip Boundary Condition

right corner of the geometry are displayed, as the biggest changes are happening in this area.

Line 5
Cell 1
Cell 2

outlet

no-slipx

y

Figure 4.14: Velocity (x) at close wall outlet area for t=75 ms; Low velocity (ux ≈ 0m/s) shown
in blue and high velocity

(
ux = 4.4 ·10−4 m/s

)
shown in red.

Looking at the cells along Line 5, located the closest to the outlet, a homogeneous velocity
field till the last two top cells can be seen. Only the two top cells are having a different velocity
value. Comparing with the cells located further away from the outlet patch, a big difference
is detected. Especially the influence of the no-slip wall can not be seen this clear for the cells
along Line 5. It seems like the velocity are defined by the outlet boundary condition.

Line 5

Cell 10

Cell 20

outlet

x

y

no-slip

Figure 4.15: Velocity (y) at close wall outlet area for t=75 ms; Negative velocity(
uy =−4.4 ·10−5 m/s

)
shown in red and zero velocity (grey).

In figure 4.15, showing the solution field for the velocity in y-direction, velocities around
a value of uy = −4.4 · 10−5 m/s are marked as red, while the grey color represents a velocity
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4.4 Comparison of Rc for different Frequencies

of zero. Along Line 5, the cells between cell 10 and cell 20 are marked high red, which corre-
sponds to a velocity value in negative y-direction. Cells located further away from the outlet
patch are having a lower respectively no velocity component in y-direction. It seems like the
y-component of velocity reduces the influence of the no-slip wall (fig. 4.14) for the cells along
Line 5.

4.4 Comparison of Rc for different Frequencies

Simulations with frequencies of 300 Hz, 500 Hz, 700 Hz, 1000 Hz and 1500 Hz are now ob-
served. In particular, how the boundary layer is developing for every frequency. As seen in
the previous chapter 4.3, the reflection coefficient for Line 1 and Line 2 are behaving almost
equal. So only Line 2, Line 3, Line 4 and Line 5 are observed. Furthermore, all figures are shown
out in a determined range of Rc ∈ [0−0.05].

Line 2

Starting with Line 2, located at the position x = 22.575mm. The resulting reflection coefficient
along the wall distance is plotted in figure 4.16. Starting to observe the graph for a frequency
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Figure 4.16: Reflection coefficient for different frequencies in a certain distance range along
Line 2.

of F = 300Hz. It has the lowest gradient in comparison to the other one till it stabilized at a
value of nearly Rc = 0.009, meaning the highest reflection coefficient value of all observed fre-
quencies. The stabilization starts at a wall distance of y = 0.75mm, comparing with the stokes
boundary layer for this frequency δ300H z = 0.793mm, it is located in the same cell. The higher
the frequency gets, the closer the stabilization around a mean value is happening. So a rela-
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Simulation Results for No-Slip Boundary Condition

tion between stokes boundary layer and frequency can be observed for Line 2. Furthermore,
the local minimum before it stabilized is getting bigger marked, the higher the frequency gets.

Line 3

Having now a look at the x-distance x = 28.575mm, means closer to the outlet boundary
condition, figure 4.17 is created. In comparison to Line 2, the fall before reaching the related
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Figure 4.17: Reflection coefficient for different frequencies along Line 3.

stokes boundary layer is not this high. The local minimum is not this developed as for Line
2. After each graph is passing its turning point, it keeps falling with a lower gradient. No di-
rect stable coefficient is observed. Especially for the graph for a frequency of F = 1500Hz is to
mention, as it is intersecting with the purple and yellow graph and is increasing along the wall
distance.

Line 4

Reflection coefficient evolution along the wall distance for Line 4 is showing in figure 4.18. A
development of a boundary layer for a frequency of F = 300Hz can not be observed clearly,
moreover a stabilized state at a wall distance of y = 4.5mm can not be detected. For a fre-
quency of F = 700Hz, a kink in its fall can be assumed, however, higher frequencies are show-
ing a more clear difference in the graph when the boundary layer is finished. The green graph
is raising after passing a wall distance of y = 2mm and is intersecting with all other graphs,
leading to the highest reflection coefficient at the symmetry patch of the simulated domain.
Furthermore, the purple graph is also cutting line yellow and red.
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Figure 4.18: Reflection coefficient for different frequencies along Line 4.

Line 5

As a last investigation, the cells, located directly at the outlet are observed. The resulting re-
flection coefficient plot can be seen in figure 4.19. As the effect are this small, the y range of the
plot was adapted, which leads to a range of Rc ∈ [

0 − 5 ·10−3
]
. The gradient of the observed
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Figure 4.19: Reflection coefficient for different frequencies along Line 5.

frequencies are all falling in a similar behavior till a wall distance of 0.03 mm, the blue plot is
even falling to the lowest value. For a frequency F = 300Hz, the reflection coefficient is then
raising again to a value of Rc = 0.0012 for a wall distance of y = 0.12mm. After this, it is falling
again. It behaves like a damping wave. For the other frequencies, the damping of the first hill
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is getting smaller, the higher the frequency is. It then stabilized after 0.5 mm at a reflection
coefficient of Rc = 0.0005.

4.5 Discussion about Rc Evolution for No Mean-Flow

Firstly the development in flow direction is discussed here. Then the influence of different
frequencies are investigated more detailed.

Comparing to section 4.3, an evolution of the reflection coefficient perpendicular to the
flow direction can be observed. The Rc graph needs a certain distance away from the outlet
to generate a clear stokes boundary layer. Cells along Line 5, located directly at the outlet
are having the lowest reflection coefficient value. It seems like the CBSBC is influencing the
cells directly at the outlet (compare fig. 4.14), as the influence of the no-slip wall is reduced.
For a distance away from the outlet of ∆x = 0.675mm, a little kink can only assume a stokes
boundary layer, while for Line 3 and especially for Line 1 and Line 2, a clear generation of
the stokes boundary layer can be seen in the Rc plot. It would be interesting to investigate,
at which exact distance away from the outlet patch a fully generated boundary layer can be
detected.

For higher frequencies, a change in the graph while passing the stokes boundary layer can
be clearly detected for all lines. But for a frequency of F = 300Hz, a clear generation of the
stokes boundary layer can only be observed for distances higher than ∆x = 7.425mm away
from the outlet patch.

Polifke [9] added a plane wave masking to the LODI relation, as higher frequencies lead to
a bad construction of the reflection coefficient. For Line 2, this can be clearly seen. However,
an ascent in the Rc graphs for higher frequencies can be observed, which results in intersec-
tions of graphs with lower frequencies along the wall distance for the close outlet lines. This
leads to a higher and therefore worse reflection coefficient in the middle of the domain. Es-
pecially for Line 4, a frequency of F = 1500Hz leads to the highest reflection coefficient of all
observed frequencies in the middle of the domain. Table 4.4 is showing the calculated reflec-
tion coefficient to the corresponding frequencies for a wall distance of y = 4.5mm for Line 4.
The relatively high Rc value for F = 300Hz can be explained, as no converged status is reached
for this wall distance.

Lower frequencies leads to a higher amplitude of the damping wave along Line 5, lo-
cated directly at the outlet patch. However, the range of the damping is in dimensions of
Rc ∈ 0.0005−0.001.

Because of time constraints, the investigation could not be done more detailed. A modifi-
cation in the CBSBC boundary file could maybe help to understand the issue more clearly.

F [Hz] 300 500 700 1000 1500
Rc [-] 0.016 0.0001 0.0001 0.0014 0.0025

Table 4.4: Rc for different frequencies for Line 4 at wall distance y = 4.5mm.
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4.6 Applying a Mean-Flow to the No-Slip Simulation Case

Applying a mean-flow to the simulation requires also its elimination to calculate the f and g
waves. Additionally, the influence of the no-slip top wall leads to different velocity evolution
for every cell along the y-axis. For that reason, five cells are printed out to see the change of
amplitude and mean-value for every cell. Cell 66 is added, as it is located close to the sym-
metry patch wall and therefore receives low influence from the no-slip wall. Furthermore, to
obtain a converged state of the variables, the end time of simulation is extended to tend = 0.1s.
Firstly, the velocity and pressure evolution for the selected cells is shown in figure 4.20. Cell 66
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Figure 4.20: Velocity and pressure evolution over time for selected cells.

is having the highest mean value of velocity, as the influence of the no-slip wall is the lowest.
It is growing constantly to a mean value around ū = 0.0012m/s till a time of t = 0.1s. A stabi-
lized manner with a low gradient can be assumed for further time steps. Cell 50 is growing in
the same behavior as Cell 66 up to t = 0.01s, then it is falling till it stabilized around a mean
velocity of ū = 0.0008m/s. Looking at Cell 20, an incline in the first time steps is observed,
afterwards the graph is stabilized around ū ≈ 0m/s. The closer cells are oscillating around
ū = 0m/s, while Cell 10 has a higher amplitude than Cell 5. For the pressure graphs, every cell
behaves the same, the oscillations is made around p̄ = 100000.4Pa.

The mean velocity and pressure are calculated in the time interval from 0.095 s to 0.099286 s,
as a stable manner for all cells can be assumed. Subtracting the mean values from the vari-
ables, seen in figure 4.20, leads to the acoustic fluctuation of pressure and velocity. With the
help of these, the f and g waves can be calculated and are shown in figure 4.21. For Cell 66
and Cell 50, a similar amplitude for the f wave can be adopted. Cell 20 received a phase shift,
while Cell 5 and Cell 10 are oscillating with a smaller amplitude and a phase shift in compar-
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Figure 4.21: The f and g wave evolution over selected time.

ison to Cell 50. By observing the g waves, Cell 50 and Cell 66 are having approximately a zero
amplitude. Whereas Cell 5 is having the highest amplitude and phase shift.

Cell number Wall distance [mm] Â f
[
10−4

]
Âg

[
10−4

]
R c [-]

Cell 5 0.017 2.3010 1.5544 0.6756
Cell 10 0.042 2.8585 1.1419 0.3995
Cell 20 0.126 3.8192 0.4078 0.1068
Cell 50 1.238 3.8146 0.1712 0.0045
Cell 66 3.693 3.8201 0.1974 0.0052

Table 4.5: Selected cells with the corresponding amplitudes (F = 700Hz) for f and g waves
and the resulting reflection coefficient Rc .

Table 4.5 is showing the maximal amplitudes of f and g waves and the corresponding
reflection coefficient for the selected cells. By looking at the Rc value, a tendency can be de-
tected. The reflection coefficient is falling with a high gradient at the close wall area till Cell 50.
But for Cell 60, the reflection coefficient is increasing again. So the reflection coefficient is not
stable for cells located further away from the outlet. As the reflection coefficient is calculated
only for five cells, the point of Rc , changing from falling to increasing can not be located this
clearly. This will be investigated in more detail in the further section. Additionally, the figure
of reflection coefficient over the wall distance can be looked up in figure 4.22. Starting with a
value of Rc ≈ 1, the graph is falling strongly till it reaches a value Rc < 0.01 for wall distance of
y > 0.5mm. As a global range of Rc is shown, the growth of Rc can not be seen this clearly.
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Figure 4.22: Reflection coefficient over wall distance

The increasing behavior of Rc can be detected more clearly for higher mean-flows. The
reader is referred at this point to the next section 4.7, where a mean-flow of ū = 0.005m/s is
investigated.

4.7 Development of Rc in Flow Direction with Mean-Flow

As already mentioned in the last section, a growth of the reflection coefficient graph over the
wall distance was detected. This will now be observed in more detail for a limited Rc range.
The mean-flow is set to ū = 0.005m/s.

Figure 4.23 is showing the reflection coefficient for selected line locations along the x-
axis. The black dotted line is marking the end of the stokes boundary layer thickness for a
frequency F = 700Hz. Comparing figure 4.23 with the figure 4.13, displaying the reflection
coefficient along the lines with no mean-flow, two big differences can be detected. Firstly,
Line 1 and Line 2 are raising slowly after passing the stokes thickness to a wall distance of
y = 2.6mm, where the graph is receiving an inflection point. A reflection coefficient value of
Rc = 0.008 is calculated for the close symmetry area. In comparison to the no mean-flow case,
the reflection coefficient of Line 1 and Line 2 is staying stable after passing the stokes layer
thickness (Rc = 0.0048). The other big difference can be seen for the graph of line 5. It is also
not staying in an converged state along the wall distance as for the no mean-flow case. It is
behaving in an wave characteristic way, starting at a distance, lower than the stokes thickness.
Furthermore, for a wall distance higher than 1.6 mm, a zigzag behavior for Line 5 and Line 4
can be observed.
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Figure 4.23: Reflection coefficient detailed along the x-axis for mean flow ū = 0.005m/s.

4.8 Comparison of Rc for different Mean-Flows

A change in the reflection coefficient graph for a simulation setup by applying a mean-flow
was observed in the previous chapter. Now, three mean-flows are set in comparison along
Line 2 and Line 5. These two lines were selected, as these are showing the most interesting
graph evolution. Additionally, the velocity profile for the different mean-flows are shown in
the annex G.

Line 2

For Line 2, figure 4.24 is created, showing the reflection coefficient graphs for three mean-
flows over the wall distance. In the stokes boundary layer thickness area, the three observed
mean-flows are behaving nearly the same. The lowest mean-flow is reaching its local mini-
mum at the stoke thickness of y = 0.52mm with a value of Rc = 0.0041, while the other mean-
flows keep falling and reaching their minimum at a wall distance of y = 0.57mm. The cor-
responding reflection coefficient relates to Rc,ū=0.005 = 0.0039 and to Rc,ū=0.01 = 0.0053. After
passing the stokes boundary layer, the blue line is raising slowly. The Rc value of the red graph
is raising more clearly, while a mean-flow of ū = 0.01m/s results in wavy Rc graph over the wall
distance. The calculated reflection coefficient of the mean-flows is shown for three wall dis-
tances in table 4.6. A wall distance of y=0.53 mm was selected, as it corresponds to the stokes
boundary layer thickness for a frequency of F = 700Hz. Furthermore, at a distance of 2.5 mm,
the reflection coefficient graphs receives a wave trough, while the distance 4.8 relates to the
closest cell at the symmetry patch.
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4.8 Comparison of Rc for different Mean-Flows
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Figure 4.24: Reflection coefficient for different mean-flows along Line 2

Wall Distance
Mean-Flow [m/s] 0.53mm 2.5mm 4.8mm

0.001 Rc = 0.0041 Rc = 0.0047 Rc = 0.0054
0.005 Rc = 0.0040 Rc = 0.0042 Rc = 0.0089
0.01 Rc = 0.0054 Rc = 0.0041 Rc = 0.0139

Table 4.6: Reflection coefficient for different mean-flows for selected wall distances at Line 2.
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Simulation Results for No-Slip Boundary Condition
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Figure 4.25: Reflection coefficient for different mean-flows along Line 5

Wall Distance
Mean-Flow [m/s] local minimum 0.53mm 4.8mm

0.001 Rc = 0.0018 Rc = 1.77 ·10−4 Rc = 3.47 ·10−4

0.005 Rc = 0.0061 Rc = 7.89 ·10−4 Rc = 5.45 ·10−4

0.01 Rc = 0.0114 Rc = 18.2 ·10−4 Rc = 8.34 ·10−4

Table 4.7: Reflection coefficient Rc for the different mean-flow for selected wall distances at
Line 5.

Line 5

Another investigation is made for Line 5 at figure 4.25. The graphs are reaching a local min-
imum of Rc (see table 4.7) at wall distances of 0.021 mm till 0.031 mm. Higher mean-flow is
reaching its minimum at a closer wall distance, while it has an higher Rc value. After a lit-
tle hill, all reflection coefficient graphs are falling to reflection coefficient value lower than
Rc < 1 ·10−4 at distance around y = 0.4mm. The red and blue graph are then raising again by
crossing the stokes boundary layer at Rc values see table 4.7. A local maximum is reached for
the blue and red graph by a wall distance of 0.73 mm. A wavy character for graphs of mean-
flow ū = 0.005m/s and ū = 0.01m/s is generated by ending for Rc values lower than 0.001.
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4.9 Influence of Mean-Flow to Rc

4.9 Influence of Mean-Flow to Rc

Applying a mean-flow to the no-slip cases requires to expand the end of simulation time,
as the velocity graphs for cells, located further away from the no-slip wall keeps increasing.
This leads to some problems by calculating the acoustic fluctuation of pressure and velocity.
As some waves have not reached their converged state, the calculation of the mean velocity
is not this exact. However, setting the range to a high time reduces the impact of the non
converged state. But this affect should be integrated in the discussion, as it could be possible,
that it influence the calculation of the f and g wave and therefore the reflection coefficient
Rc .

By looking at the resulting reflection coefficient figures for the mean-flow cases, a general
low reflection coefficient is calculated. However, investigations were made in small Rc range,
as differences to the cases without mean-flow could be observed.

Two areas were observed for the no-slip mean-flow case. One area, located far away from
the CBSBC outlet (Line 2), and one located directly at the close outlet cell (Line 5). For both
area, applying a mean-flow results in a wavy character of the reflection coefficient in the chan-
nel interior. The development of Rc in the stokes layer are almost similar, however higher
mean-flows results in higher reflection coefficient values.

Furthermore, for higher mean-flows, the mesh has to be adapted. The cell size in the inte-
rior of the geometry has to be smaller to avoid the zigzag behavior as seen in figure 4.25.

Because of time constraints, no further investigations could be done. Especially the result-
ing reflection coefficient graph for higher mean-flows would be an interesting investigation.
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5 Summary and Conclusion

This thesis concentrated on the validation of a new acoustic boundary condition, the CBSBC,
in OpenFOAM. In the beginning, the related equations and the CBSBC approach were intro-
duced. Furthermore, the implementation of the CBSBC in OpenFOAM is shown.

At the outset, a geometry with slip boundary condition at the wall was used. Test cases
demonstrated the behavior of the new boundary condition. In general, the CBSBC is working
good in a slip boundary environment. An applied reflection coefficient was proven. Applying
high mean-flow leads to damping character of the g wave. This effect could not be explained
in detail and should be investigated extensively in further projects.

For a no-slip boundary condition geometry, an evolution of the reflection coefficient in
flow direction was observed. The stokes boundary layer was fully generated for a distance of
about 7.5 mm away from the outlet CBSBC. Especially at the closest outlet cells, the no-slip
area of the wall was not this distinct, which could be traced back to the CBSBC. Observing dif-
ferent frequencies leads to an increase of the reflection coefficient over the wall distance. For
cells, located far away from the outlet, higher frequency leads to good Rc values. The closer
you get to the CBSBC outlet, the higher the reflection coefficient is increasing near the sym-
metry patch. Applying a mean-flow to the no-slip setup leads also to an increase of Rc . The
Rc evolution perpendicular to the flow direction has a damping wave character for a distance
higher than 7.5 mm away from the outlet. Further investigations are proposed in particular
for the mean-flow cases, as the damping character is not this clear.

By assuming a non-reflection behavior of the CBSBC for reflection coefficient value of
Rc < 1%, validations for slip boundary condition is proven. Furthermore, for the no-slip cases
without mean-flow, it is also correct for a wall distance higher than the stokes boundary layer
thickness. A validation of higher frequencies close to the outlet patch should be investigated
in more detail. Additionally, high mean-flows applied to the no-slip boundary condition case
can not be validated properly and should be examined in further projects.

The follows remark should give a short overview of some problems and difficulties, arises
during writing the thesis. Generally, profound background knowledge in acoustic and in the
used software tools would have been a benefit. Visiting fundamental acoustic lecture before
writing the thesis would have allow to understand the subject more clearly. Furthermore,
more practical experiences in OpenFOAM would have allow to set up a appropriate mesh
in less time.

Because of time constraint and a limited background knowledge especially in acoustic,
no detailed investigation of the concerning effects could be reached. Therefore, this thesis
gives good basic informations about the CBSBC and can be used for further reseaches and
discussions.
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A Inlet Pressure

A.1 Linearization of the Inlet Pressure
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A.2 CBSBC Implementation in OpenFOAM

A.2 CBSBC Implementation in OpenFOAM

A.2.1 FractionExpression

The implementation in OpenFOAM for the fractionExpression f is:

valueF r acti on() = 1.0/(1.0+d t ∗ thi s−> patch().del t aCoe f f s()∗ (aP + cP )/2.0)
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A.2.3 GradExpression

The implementation in OpenFOAM for the gradientExpression = refGrad() is:
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B Outlet Pressure

B.1 Linearization of the Outlet Pressure
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B.2 CBSBC Implementation in OpenFOAM

B.2 CBSBC Implementation in OpenFOAM

B.2.1 FractionExpression

The implementation in OpenFOAM for the fractionExpression f is :
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Outlet Pressure

B.2.3 GradExpression

The implementation in OpenFOAM for the gradientExpression = refGrad() is:

r e f Gr ad() =−r hoP ∗ cP ∗ thi s−> patch().n f () & Up.snGr ad()

⇒ r e f Gr ad() =−ρc
∂u

∂x
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C Inlet Temperature

C.1 Linearization of the Inlet Temperature
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Inlet Temperature

C.2 CBSBC Implementation in OpenFOAM

C.2.1 FractionExpression

The implementation in OpenFOAM for the fractionExpression f is:

thi s−>valueF r acti on() = 1.0

⇒ f = 1.0

C.2.2 ValueExpression

The implementation in OpenFOAM for the valueExpression = refValue() is:

r e f V alue() =
=[ f i eld .ol dT i me().bound ar yF i eld()[patchi ]

+et aT ∗ cP ∗d t/g amma/l In f ∗ t In f +
+(g amma −1)/g amma ∗ (cP/R ∗ ( f − f 0)−
−(aP + cP )/r hoP/R/2.0∗d t ∗ (pp.snGr ad()+
+r hop ∗ cP ∗ (thi s−> patch().n f () & Up − snGr ad()))+
+et a Ac ∗ sqr (cP )/R ∗ (1.0− sqr (aP/cP ))/2.0/l In f ∗
∗d t ∗ (thi s−> patch().n f () & (Up −uIn f ))

+sqr (cP )/R/l In f ∗d t ∗ (et aT /g amma +et a Ac ∗ (1.0− sqr (aP/cP ))/2.0)∗ f

+sqr (cP )/R/l In f ∗d t ∗et aT /g amma ∗ g

−sqr (cP )/R/l In f ∗d t ∗et a Ac ∗ (1.0− sqr (aP/cP )/2.0∗ g

]

/(1.0+et aT ∗ cP ∗d t/g amma/l In f )

=
[

T n
f ace + et aT ∗ cP ∗d t

γ∗ l In f
∗T t + γ−1

γ

[
cP

R
( f − f 0)− aP +cP

2ρR
d t

[
∂p

∂x
+ρc

∂u

∂x

]
+

+ et a Ac

(
1−

(
aP

cP

)2
)

cP

l In f

cP

2R
d t

(
u −ut

)+ cP2

l In f ∗R
d t

et aT

γ
( f + g )+

+ et a Ac

(
1−

(
aP

cP

)2
)

cP

l In f

cP

2R
d t ( f − g )

]]

/

[
1+ et aT cP d t

l In f γ

]

as K = et a Ac

(
1−

(
aP

cP

)2
)

cP

l In f
= σ5
ρc

and σ2 = ηt ρR
c

l

=
[

T n
f ace + ηt cd t

γl
T t + γ−1

γ

c

R
( f − f 0)− γ−1

γ

u +c

2ρR
d t

(
∂p

∂x
+ρc

∂u

∂x

)
+

+ γ−1

γ

c d t

2R
K

(
u −ut + ( f − g )

)+ γ−1

γ

c2d t

l R

ηt
γ

( f + g )

]
/

[
1+ et aT cP d t

l In f γ

]

=
[

T n
f ace + ηt cd t

γl
T t + γ−1

γ

(
c

R
( f − f 0)− u + c

2ρR
d t

(
∂p

∂x
+ρc

∂u

∂x

)
+

+ c d t

2R
K

(
u −ut + ( f − g )

)+ γ−1

γ

c2d t

lR

ηt
γ

( f + g )

)]
/

[
1+ et aT ∗ cP ∗d t

l In f ∗γ
]

⇒ r e f V alue() =
[

T n
f ace + σ2d t

γρR
T t + γ−1

γ

(
c

R
( f − f 0)− u +c

2ρR
d t

(
∂p

∂x
+ρc

∂u

∂x

)
+σ5

d t

2ρR

(
u −ut + ( f − g )

)+
+ σ2

cd t

γρRR
( f + g )

)]
/

[
1+σ2

d t

γρR

]
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C.2 CBSBC Implementation in OpenFOAM

C.2.3 GradExpression

The implementation in OpenFOAM for the gradientExpression = refGrad() is:

thi s−>r e f Gr ad() = 1.0

⇒ r e f Gr ad() = 1.0
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D Outlet Temperature

D.1 Linearization of the Outlet Temperature

∂T

∂t
+ T

ρc2

[
−L2 + 1

2
(γ−1)(L5 +L1)

]
= 0

with L2 = u

(
c2 ∂ρ

∂x
− ∂p

∂x

)
and L5 = (u + c)

(
∂p

∂x
+ρc

∂u

∂x

)
and L1 = σ

ρc

[
p −ρc( fd + gx )−p∞

]+2
∂gx
∂t

∂T

∂t
+ T

ρc2

[
−u

(
c2 ∂ρ

∂x
− ∂p

∂x

)
+ 1

2

(
γ−1

)(
L5 +L1

)]= 0

∂T

∂t
− uc2T

ρc2
∂ρ

∂x
+ uT

ρc2
∂p

∂x
+ T (γ−1)

2ρc2

(
L5 +L1

)= 0

∂T

∂t
− uT

ρ

(
ρ

p

∂p

∂x
− ρ

T

∂T

∂x

)
+ uT

ρc2
∂p

∂x
+ T (γ−1)

2ρc2
(L5 +L1) = 0

∂T

∂t
− uT

p

∂p

∂x
+u

∂T

∂x
+ uT

ρc2
∂p

∂x
+ T (γ−1)

2ρc2
(L5 +L1) = 0

∂T

∂t
+u

∂T

∂x
+u

(
T

ρc2
− T

p

)
∂p

∂x
+ T (γ−1)

2ρc2
(L5 +L1) = 0

∂T

∂t
+u

∂T

∂x
+u

1−γ
ρRγ

∂p

∂x
+ γ−1

2ρRγ
(L5 +L1) = 0

T n+1
f ace

−T n
f ace

d t
+u

T n+1
f ace

−T n+1
centr e

d x
+u

1−γ
ρRγ

∂p

∂x
+ γ−1

2ρrγ
(L5 −L1) = 0

T n+1
f ace −T n

f ace + u d t

d x

(
T n+1

f ace −T n+1
centr e

)
+u d t

1−γ
ρRγ

∂p

∂x
+ (γ−1) d t

2ρRγ
(L5 +L1) = 0

→ T n+1
f ace

(
1− u d t

d x

)
= T n

f ace + u d t

d x
T n+1

centr e −u d t
1−γ
ρRγ

∂p

∂x
− (γ−1) d t

2ρRγ
(L5 +L1)

⇒ T n+1
f ace = 1

1− u d t
d x︸ ︷︷ ︸

f

[
T n

f ace − (γ−1) d t

2ρRγ
(L5 +L1)

]
︸ ︷︷ ︸

valueE xpr

+
u d t
d x

1− u d t
d x︸ ︷︷ ︸

1− f

T n+1
centr e + γ−1

ρRγ

∂p

∂x︸ ︷︷ ︸
g r adE xpr

d x


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D.2 CBSBC Implementation in OpenFOAM

D.2 CBSBC Implementation in OpenFOAM

L5

L5 = (aP + cP )∗ [
pp.snGr ad()+ r hop ∗ cp ∗ (thi s−> patch().n f () & Up.snGr ad())

]

→ L5 = (u + c)

[
∂p

∂x
+ρc

∂u

∂x

]

L1

L1 = et a Ac ∗ cP ∗ (1.0− sqr (aP/cP ))/l In f ∗ [
pp −pIn f − r hop ∗ cP ∗ g − r hop ∗ cP ∗ f

]
−2.0∗ r hop ∗ cP ∗ (g − g 0)/d t

= et a Ac ∗
(
1− sqr

aP

cP

]
cP

l In f
∗ [

pp −pIn f − r hop ∗ cP ∗ (g + f )
]−2∗ r hop ∗ cP ∗ g − g 0

d t

as K =σ
(
1−M2

) c

L
∼ et a Ac

(
1− sqr

aP

cP

)
cP

l In f
[Poinsot]

→ L1 = K
[
pp −pIn f −ρc(g + f )

]−2ρc
g − g 0

d t

as L1 = K
(
p −p∞

)∼ σ

ρc

(
p −p∞

)
[Poinsot]

→ L1 = σ

ρc

[
pp −pIn f −ρc(g + f )

]−2ρc
g − g 0

d t

⇒ L1 = σ

ρc

[
pp −p∞−ρc(g + f )

]−2ρc
g − g 0

d t

D.2.1 FractionExpression

Implementation in OpenFOAM for the fractionExpression f is:
f = 1.0/[1.0+aP ∗d t ∗ thi s−> patch().del t aCoe f f s()]

→ f = 1.0

1.0+aP ∗d t ∗ thi s−> patch().del t acoe f f s()

⇒ f = 1

1+ ud t
∆x

D.2.2 ValueExpression

Implementation in OpenFOAM for the valueExpression = refValue() is:
r e f V alue() = f i eld .ol dT i me().bound ar yF i eld()[patchi ]−d t ∗ (g amma −1.0)/g amma ∗0.5∗ (L5 +L1)/r hop/R

→ = f i eld .ol dT i me().bound ar yF i eld()[patchi ]−d t
γ−1

2 γ

L5 +L1
ρR

⇒ r e f V alue() = T n
f ace − (γ−1)d t

2γρR

(
L5 +L1

)
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Outlet Temperature

D.2.3 GradExpression

The implementation in OpenFOAM for the gradExpr = refGrad() is:

r e f Gr ad() = (g amma −1)/g amma ∗pp.snGr ad()/r ho/R

→ = γ−1

γ

∂p

∂x

1

ρR

⇒ r e f Gr ad() = γ−1

γρR

∂p

∂x
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E Extract of Velocity Boundary Condition
File

An extract of the velocity boundary condition file is shown here.

boundaryField
{

INLET
{

type CBSBCInletVelocity;
psi thermo:psi;
gamma 1.4; // Ratio of specific heats
velocity
{

targetValue uniform (0 0 0); // Stationary target value
eta 0.58; // Optional relaxation parameter, default value 0.58
excitation tableFile; // Acoustic excitation (f wave)

tableFileCoeffs
{

fileName "$FOAM_CASE/inletf_700.txt"; // Path to excitation signal file
// outOfBounds clamp; // Optional, default value "warn"

}
}
ssFileName "statespace.dat";
ssPatch -1; // Patch number of CBSBC
ssDT 5e-7; // maximum time step for state space
lInf 0.1; // Characteristic acoustic length scale
method converged; // Optional, default value "lowpass" (lowpass|adaptive|converged|off)
value uniform (0 0 0); // Optional, initial value

}

OUTLET
{

type CBSBCOutletVelocity;
psi thermo:psi; // Optional, default value "psi"
gamma 1.4; // ratio of specific heats
pressure
{
targetValue uniform 100000; // Stationary target value
eta 0.58; // Optional relaxation parameter, default value 0.58
excitation tableFile; // Acoustic excitation (f wave)
tableFileCoeffs
{

fileName "$FOAM_CASE/outletg.txt"; // Path to excitation signal file
}

}
ssFileName "statespace.dat";
ssPatch -2; // Patch number of CBSBC
ssDT 5e-7; // maximum time step for state space
lInf 0.1; // Characteristic acoustic length scale
method converged; // Optional, default value "lowpass" (lowpass|adaptive|converged|off)
value uniform (0 0 0);

}
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F Matlab Code

The matlab code for calculating the f and g waves and the corresponding Rc value for the
no-slip mean-flow case:

%Input of the wall distances vector
Probe_fid = fopen('~/postProcessing/probes0.022575/0/p', 'r');
Probe_dataRaw = textscan(Probe_fid, '%*s%*s%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f% \\
f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f' ,...

2);
Probe_data = cell2mat(Probe_dataRaw);
distance = Probe_data(2,:)';
distance = [0.005;distance(:,1)];
fclose(Probe_fid);

%Input of pressure vector for every cell
Probe_fid = fopen('~/postProcessing/probes0.029925/0/p', 'r');
Probe_dataRaw = textscan(Probe_fid, '%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f \\
%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f' ,...

'CommentStyle', '#');
Probe_data = cell2mat(Probe_dataRaw);
pWall = Probe_data;
fclose(Probe_fid);

%Input of velocity vector for every cell
Probe_fid = fopen('~/postProcessing/probes0.029925/0/U', 'r');
Probe_dataRaw = textscan(Probe_fid, '%f (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) \\
(%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) \\
(%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) \\
(%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) \\
(%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) \\
(%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) \\
(%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f) (%f %f %f)' , ...

'CommentStyle', '#');
Probe_data = cell2mat(Probe_dataRaw);
UWall = Probe_data;
fclose(Probe_fid);

%Declaration of the matrices/values
deltaT = 4286; %deltaT of the mean-value calculation; 3 time periods for F=700Hz
l = length(UWall);
s = size(pWall,2);
rhoc = 407.5321184;

A_f = zeros(l,s);
A_ff = zeros(deltaT+1,s);
A_ff(:,1) = UWall(meanValue:(meanValue+deltaT),1);
P2f = zeros(deltaT+1,s);
P1f = zeros((deltaT+2)/2,s);
A_g = zeros(l,s);
A_gg = zeros(deltaT+1,71);
A_gg(:,1) = UWall(meanValue:(meanValue+deltaT),1);
P2g = zeros(deltaT+1,s);
P1g = zeros((deltaT+2)/2,s);

%Declaration of matrices/values used for FFT
t = 0.02:1e-6:0.024286;
L = 4286;
Fs = 1e6; %sampling frequency
T = 1/Fs; %period of sample
f = Fs*(0:(L/2))/L; %frequency resolution
max_A = zeros(s,3);

%Declaration of the matrice for the acoustic part of velocity/pressure
%Start of the mean-value calculation
UA = zeros(l,71);
pA = zeros(l,71);
meanValue = 95000;

%Calculating the acoustic fluctuation of pressure and velocity for every cell
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%Time-steps written into the acoustic part of velocity/pressure in the first column
for i = 2:71

UA(:,1) = UWall(:,1);
UA(:,i) = UWall(:,(2+(i-2)*3)) - mean(UWall(meanValue:(meanValue+L),(2+(i-2)*3)));
pA(:,1) = pWall(:,1);
pA(:,i) = pWall(:,i) - mean(pWall(meanValue:(meanValue+L),i));

end

for i = 2:71
%Calculating the f and g wave for every cell

A_f(:,i) = 0.5* ((pWall(:,i) - mean(pWall(meanValue:(meanValue+L),i)) ) / rhoc + \\
(UWall(:,(2+(i-2)*3)) - mean(UWall(meanValue:(meanValue+L),(2+(i-2)*3))) ));
A_g(:,i) = 0.5* ((pWall(:,i) - mean(pWall(meanValue:(meanValue+L),i)) ) / rhoc - \\
(UWall(:,(2+(i-2)*3)) - mean(UWall(meanValue:(meanValue+L),(2+(i-2)*3))) ));

%Taking only the last time steps; nearly converged state
A_ff(:,i) = A_f(95000:99286,i);
A_gg(:,i) = A_g(95000:99286,i);

%Fast Fourier Transformation of f and g wave
Y_f(:,i) = fft(A_ff(:,i));
P2f(:,i) = abs(Y_f(:,i)/L);
P1f(:,i) = P2f(1:(L/2)+1,i);
P1f(2:end-1,i) = 2 * P1f(2:end-1,i);
Y_g(:,i) = fft(A_gg(:,i));
P2g(:,i) = abs(Y_g(:,i)/L);
P1g(:,i) = P2g(1:(L/2)+1,i);
P1g(2:end-1,i) = 2 * P1g(2:end-1,i);

%Calculating the wall distance for every cell
distance(i,2) = distance(1,1) - distance(i,1);

%Identifie the max amplitude value for the frequency F=700 Hz
max_temp_f = max(P1f(4,i));
max_A(i,1) = max_temp_f; %max f
max_temp_g = max(P1g(4,i));
max_A(i,2) = max_temp_g; %max g
max_A(i,3) = max_temp_g / max_temp_f; %Rc

end

%Safe the maximum amplitudes of f and g wave and the refered Rc
R = [distance(:,2),max_A];
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G Ux for selected Mean-Flows

Following figure G.1 is showing the velocity in x-direction along the wall distance for different
mean-flows.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Distance from wall [m] 10
-3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

u
x
 [
m

/s
]

0.001

0.005

0.01

meanflow [m/s]

Figure G.1: Velocity in x-direction for different mean-flows for t = 85 ms

72



Bibliography

[1] Franz Durst. Grundlagen der Strömungsmechanik: eine Einführung in die Theorie der
Strömung von Fluiden. Springer-Verlag, 2007.

[2] Klaus Ehrenfried. Strömungsakustik: Skript zur Vorlesung. Mensch-und-Buch-Verlag,
2004.

[3] Kilian Heinrich Förner. Nonlinear Aeroacoustic Characterization of Resonators. PhD the-
sis, Technische Universität München, 2017.

[4] B. Gschaider. Swak4foam [online: http:// openfoamwiki.net/index.php/contrib/swak4foam].

[5] Robert L Higdon. Absorbing boundary conditions for difference approximations to the
multidimensional wave equation. Mathematics of computation, 47(176):437–459, 1986.

[6] Stefan Jaensch, Carlo Sovardi, and Wolfgang Polifke. On the robust, flexible and consis-
tent implementation of time domain impedance boundary conditions for compressible
flow simulations. Journal of Computational Physics, 314:145–159, 2016.

[7] Heinz-Otto Kreiss. Initial boundary value problems for hyperbolic systems. Communi-
cations on Pure and Applied Mathematics, 23(3):277–298, 1970.

[8] T.J. Poinsot and S.K. Lele. Boundary conditions for direct simulations of compressible
viscous flows. Journal of computational physics, 101(1):104–129, 1992.

[9] Wolfgang Polifke, Clifton Wall, and Parviz Moin. Partially reflecting and non-reflecting
boundary conditions for simulation of compressible viscous flow. Journal of Computa-
tional Physics, 213(1):437–449, 2006.

[10] Kevin W. Thompson. Time dependent boundary conditions for hyperbolic systems. Jour-
nal of computational physics, 68(1):1–24, 1987.

[11] R Vilums. Implementation of transient robin boundary conditions in openfoam. In
Workshop Multiphysical Modelling in OpenFOAM, Riga, Latvia, pages 39–40, 2011.

[12] FA Williams. Combustion theory 2nd, 1985.

73


