
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Implementation and Optimization of the
Midpoint Method in ls1-mardyn

Sascha Sauermann

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Implementation and Optimization of the
Midpoint Method in ls1-mardyn

Implementierung und Optimierung der
Midpoint Methode in ls1-mardyn

Author: Sascha Sauermann
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisors: M.Sc. (Hons) Steffen Seckler

M.Sc. Nikola Tchipev
Submission Date: 15.09.2017

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.09.2017 Sascha Sauermann

Acknowledgments

I want to thank Steffen Seckler for answering all my questions, helping me to un-
derstand the code of MarDyn and providing valuable feedback and corrections. Addi-
tionally, I want to thank Nikola Tchipev for introducing me to the topic of Molecular
Dynamics in the course "PSE Molekulardynamik".

Abstract

Simulations are an important tool in Molecular Dynamics that often substitutes costly
physical experiments. Because of the high number of particles and the small time
resolution, a massive computational effort is required, which makes this also an inter-
esting topic in the area of high-performance computing. As standard methods for the
computation of particle interactions like the Full Shell method do not scale that well
with the large number of processors available in supercomputers today, new approaches
are needed. The Midpoint Method is such a highly scalable method that requires less
communication between processes, allows deeper parallelization and even improves
sequential performance for dense scenarios. It was implemented into MarDyn, a state of
the art framework for Molecular Dynamics simulations, and optimized for performance.
Benchmarks show that the Midpoint Method performs better than Full Shell and Half
Shell in many cases, especially in dense scenarios.

v

Contents

Acknowledgments iii

Abstract v

1. Introduction 1

2. Theory 3
2.1. Molecular Dynamics . 3

2.1.1. Lennard-Jones Potential . 3
2.1.2. Störmer-Verlet Method . 4
2.1.3. Linked Cells Method . 6
2.1.4. Boundary Conditions . 6
2.1.5. Simulation Loop . 7

2.2. Parallelization . 8
2.2.1. Domain Decomposition . 8
2.2.2. Import Volume . 10
2.2.3. Force Exchange . 11
2.2.4. Overlapping . 11

2.3. Full Shell . 11
2.4. Half Shell . 12

2.4.1. General Idea . 12
2.4.2. Advantages . 13

2.5. Midpoint Method . 14
2.5.1. General Idea . 14
2.5.2. Simplification to Cell Pairs . 14
2.5.3. Advantages . 16

2.6. Message Passing Interface . 18

3. Implementation 19
3.1. Traversals . 19

3.1.1. Half Shell . 19
3.1.2. Midpoint . 19

3.2. Force Exchange . 20
3.3. Shrinking the Import Volume . 20

vii

Contents

4. Performance Benchmarks 21
4.1. Cubes of Different Densities . 21

4.1.1. Without Overlapping . 21
4.1.2. With Overlapping . 25
4.1.3. Scaling . 26

4.2. Non Cubic Domains . 27
4.3. Deep Parallelization . 28

5. Conclusions and Outlook 31

A. Appendix 33

List of Figures 39

List of Tables 41

Bibliography 43

viii

1. Introduction

Molecular dynamics simulations are a valuable tool in many different areas, like biology,
physics, chemistry or material science, as they are a cost efficient replacement for
traditional experiments and allow computation of properties like pressure or temperature
which are difficult to measure on such a small scale.

The computational effort of such simulations is enormous, as the time resolution
typically lies in the range of femtoseconds while simulating times up to multiple
microseconds [4]. Particle numbers can reach as high as multiple trillions (1012) [6].
Molecular dynamics is therefore also an interesting topic for high-performance comput-
ing.

To have acceptable run times, massive parallelization is necessary, but classic methods
like the Full Shell method scale only up to a point. Hence, new methods that scale better
and allow computations with more processes are needed.

The Midpoint method, as described by J. Bowers [1], is such a highly scalable approach.
It requires less communication between processes and allows a parallelization with up
to eight times more processes than the classic methods.

To test the performance of this method it was implemented into MarDyn, a fast
and highly scalable framework for Molecular Dynamics simulations [6], and some
performance optimizations were performed. Benchmark comparisons with the Full
Shell and Half Shell methods were performed and showed that the Midpoint Method is
especially advantageous in dense scenarios with many particles per cell. Only in very
sparse domains, it is outperformed by the other two.

This paper starts with an introduction to Molecular Dynamics including an expla-
nation of the Full Shell method, Half Shell method and Midpoint Method. Then we
describe some details of the implementation and finish with the benchmark.

1

2. Theory

2.1. Molecular Dynamics

The simulation of particles is based on Newton’s equations of motion, second order
ODEs. Simulating single particles has the advantage that interactions between them like
collisions can be observed. Additionally, macroscopic values like energy, temperature or
pressure can be calculated and compared over time.

For a Molecular Dynamics simulation there are three core components [4]:

• Appropriate interaction potential
Depending on what particles should be simulated, a potential has to be found that
represents the real world. One could consider gravitation as a simple example.

• Time integration
To calculate a solution of the equations of motion, we discretize time and only
evaluate the equations at those discrete points. In every time step, the forces acting
on each particle have to be evaluated.

• Fast force evaluation
As the trivial approach to compute the forces between N particles – a particle
interacts with every other particle – has a complexity of O(N2), more advanced
methods are required.

We will delve into these three aspects in the subsequent sections.

2.1.1. Lennard-Jones Potential

The potential commonly used for short-range interactions is the 12-6 Lennard-Jones
potential. It models a repulsion based on the Pauli repulsion and an attraction based on
the Van der Waals forces. The potential is parameterized by two parameters:

(1) The depth of the potential well ε that defines the strength of the forces and (2) the
zero crossing σ which defines the distance between two particles where the attracting
force is equal to the repulsive one. Experimental data would be used to fit those param-
eters.

This LJ potential is defined [4] as

3

2. Theory

Distance rij

Po
te

nt
ia

lU

σ

ε

Figure 2.1.: The Lennard-Jones Potential for ε = σ = 1. The zero crossing is at x = σ

and the lowest point is inside the so called potential well at y = −ε.

U
(
rij
)
= 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

(2.1)

where rij = ‖xj − xi‖2 is the distance between the positions xi and xj of two particles i
and j. The force Fij a particle j applies to a particle i is defined by the negative gradient
of the potential with respect to the position.

Fij = −∇xi U
(
rij
)
= −24ε

rij

[(
σ

rij

)6

− 2
(

σ

rij

)12
]

(2.2)

To now get all the forces acting on one particle i, we sum up all forces applied to i. This
sum excludes Fii, because a particle does not apply a force to itself.

Fi =
N

∑
j=1
j 6=i

Fij (2.3)

2.1.2. Störmer-Verlet Method

As Newton’s equations of motion are a second order ODE in the position, we discretize
them in time to calculate a solution. This results in multiple time steps of size δt which
we number with 0 to n. In each step, we calculate the new particle position xn+1

i and
velocity vn+1

i from the old position xn
i and velocity vn

i under consideration of the mass
mi and the current force Fn

i . See chapter 3.1 of reference [4] for a derivation of the
following formulas.

4

2.1. Molecular Dynamics

The Störmer-Verlet Method is defined as:

xn+1
i = 2xn

i − xn−1
i + (δt)2 Fn

i
mi

(2.4)

This method has some disadvantages though. As the force term of the sum is very
small because it depends on the square of the time step but the position may be large,
significant rounding errors might occur. The second problem is that we never calculated
the velocity which is needed for macroscopic values like the kinetic energy. However,
they can be approximated as the central difference of the positions:

vn
i =

xn+1
i − xn−1

i
2δt

(2.5)

Two variants of this method that are less susceptible to rounding errors exist:

• Leapfrog scheme
For the Leapfrog scheme, the velocities are calculated at t + δt/2 like

vn+1/2
i = vn−1/2

i +
δt
mi

Fn
i (2.6)

then the positions can be determined as such:

xn+1
i = xn

i + δt · vn+1/2
i (2.7)

As the velocities are calculated at another point in time as the positions, they have
to be averaged to get the values at time t.

vn
i =

vn+1/2
i + vn−1/2

i
2

(2.8)

• Velocity-Störmer-Verlet Method
Another variant is the Velocity-Störmer-Verlet Method that calculates the position
as

xn+1
i = xn

i + δt · vn
i +

Fn
i · (δt)2

2mi
(2.9)

and the velocities at the same point in time like:

vn+1
i = vn

i + δt
Fn

i + Fn+1
i

2mi
(2.10)

Both need about the same amount of memory and have an error of order two [4].

5

2. Theory

2.1.3. Linked Cells Method

The trivial approach to calculating the forces is to consider each particle pair. This
results in O(N2) calculations for N particles in the system.

As the LJ potential decays very fast with larger distances (see Figure 2.1), there is a
distance rc so that all forces from particles with a distance bigger than rc can be neglected
without a significant error.

We therefore only calculate forces with particles that are inside (or on) such a sphere
around a particle i. The distance rc is thus called cutoff radius and is typically chosen as
2.5σ for the LJ potential.

However, now we have to calculate the distances between all particle pairs to decide
which forces to compute. This still has a complexity of O(n2).

To reduce the number of pairs that have to be considered in each step, we subdivide
our simulation domain into small cells of size rc × rc × rc. This limits possible pairs to
the 26 neighboring cells — including diagonals, or 8 neighbors in 2D (see Figure 2.2).

This reduces the complexity to O(n) as we only have to check a small final number of
possible partners for each particle – all particles in the neighboring cells.

rc

Figure 2.2.: Linked Cells Method: Domain subdivided into cells; Cutoff radius around
a particle (red) and the 8 neighbor cells (gray) to the cell containing this
particle. We only have to check the gray cells to find all particles that possible
lie within the cutoff radius.

We can index all cells so that they can be stored in a 1D array. Each cell then contains
a list of the particles within it. As particles can move out of a cell, the particle list of
each cell has to be rebuilt every time step.

2.1.4. Boundary Conditions

The domain of our simulation is finite. This results in the question what to do if a
particle leaves this domain. There are three typical solutions to the problem:

1. Outflow: Delete particles that leave the domain

2. Reflection: Prevent particles from leaving by reflecting them

6

2.1. Molecular Dynamics

3. Periodic boundaries: Reinsert particles on the opposite side

We will focus on the periodic boundaries as they are the most commonly used ones.
We get those by sticking opposite sides of our domain together. In 2D this would
correspond to creating a torus from our plane, so that opposite sides of our domain are
adjacent.

To implement this with our Linked Cells method, we add another layer of cells around
our existing domain and call them the halo cells. The cells adjacent to the halo cells
are called boundary cells. When now a particle enters a halo cell – a so called Leaving
particle, it is shifted across the domain and inserted into the opposite boundary cell. If
the particle leaves the domain at a corner (or an edge in 3D) multiple shifts are necessary.

Figure 2.3.: Inner cells (yellow), boundary cells (blue) and a ring of halo cells (red)
around them. Leaving particles are shifted 3 or 5 cells to the opposite side
of the domain. The particle that moved into the corner halo cell requires one
shift per direction to be positioned in a boundary cell.

This solves the reinsertion of particles but as two opposite boundary cells should be
neighbors forces between particles in them have to be calculated. The simplest way to do
this is to copy all particles from boundary cells into the opposite halo cells (for corners
or edges multiple copies are required), interact boundary and halo cells and then delete
the particles in the halo cells again. We call those fake particles the Halo copies.

2.1.5. Simulation Loop

We can now combine all this into the main simulation loop. In each iteration the
following steps have to be executed:

1. Calculate new positions of all particles with some variant of the Störmer-Verlet
Method (see section 2.1.2).

2. Apply boundary conditions and shift the leaving particles to the opposite side of
the domain and create halo copies (see section 2.1.4)

7

2. Theory

3. Rebuild linked cells and insert particles into each cell (see section 2.1.3).

4. Calculate forces by using some cell iteration method to interact specific cells (See
section 2.1.3 for a simple approach or section 2.3, 2.4 and 2.5 for more sophisticated
ones). Use the LJ potential (see section 2.1.1) to compute forces between two
particles.

5. Calculate the new velocities depending on the method used for calculating the
positions.

6. Optional: Perform measurements, write output files, . . .

7. Increment current time by adding the time step

We can now compute everything necessary, but we are quite slow. The first step to
gain performance is to parallelize the computations by splitting the domain (see section
2.2). The next step is to improve the cell iteration method which will be described in the
sections 2.3, 2.4 and 2.5.

2.2. Parallelization

2.2.1. Domain Decomposition

To parallelize the Linked Cells method for n processes, at first the domain is split into
n smaller cuboids, and a shell of halo cells around each one is added. The outer-most
non-halo cells are the new boundary cells for this process. Figure 2.4 shows an example
how the domain is split for four processes.

The simplest form of splitting the domain is a regular grid of same sized cuboids.
However, this might result in a suboptimal load distribution as some cuboids may
contain many particles and others just a few. Other domain decomposition methods
solve this problem. When using a k-d tree to create cuboids, the unbalance between the
cuboids can be minimized.

Each cuboid is the part of the domain assigned to a single process. This process
is responsible for all particles in the cuboid – known as spatial decomposition – and
performs the normal simulation loop described in section 2.1.5 with some changes.

First of all the periodic boundary conditions have to be adapted as we now also have
boundaries between each process:

• Export/Import leaving particles
Particles that are outside of a process’ domain (moved into a halo cell) have to be
sent to the process that now owns this particle, and removed from the previous
process.

• Export/Import halo copies
To calculate interactions between neighboring cells that were separated into two

8

2.2. Parallelization

Figure 2.4.: Domain decomposition of a domain of 9× 9 cells with 4 processes. The
domain is split into four 3× 3 squares. The newly added halo cells are
colored red, and the cells that are now boundary cells are blue.

Figure 2.5.: Domain decomposition of a domain of 9× 9 cells with 4 processes. The
coloring is for the process in the bottom left corner. Boundary cells are blue,
and cells that are imported into the halo cells are red.

9

2. Theory

different cuboids, each process has to import the cells it is missing from its
neighbors.

Each process sends all particles from boundary cells to all neighbors that require
those cells and places received particles into the corresponding halo cells. Figure
2.5 shows the location of cells that have to be imported for a process.

Sending the boundary cells is sufficient, but we can send even fewer particles as
described in section 2.2.2.

Additionally, it might be required to export or import forces across different processes
as explained in section 2.2.3.

2.2.2. Import Volume

The reason we import particles is to interact them with particles within our domain.
As we only compute forces between particles with a distance smaller than rc, we do
not need to import the ones that are further away from the edges of our domain. This
results in an import region that is a (hollow) cuboid with rounded corners and edges
(see Figure 2.6 for a 2D example).

Figure 2.6.: Import region (red) of a process with the size 3rc × 2rc (yellow). The region
is everything with a distance of up to rc to the edge of the process’ domain.

We now want to calculate the volume of the import region around a process of size
bx × by × bz. We can split the import region into a sphere consisting of the 8 corners
with a radius of rc and a volume of

Vs = Vsphere =
4
3

πr3
c (2.11)

and three cylinders consisting of four edges each with a radius of rc and a height of bd
where d ∈ {x, y, z}. They have a volume of

Vd
c = Vcylinder,d = πr2

c · bd. (2.12)

10

2.3. Full Shell

The remaining parts are three cuboids where one side has the length 2rc and the other
two the length bu and bv where (u, v) ∈ {(x, y), (x, z), (y, z)}. They have a volume of

Vu,v
q = Vcuboid,u,v = 2rc · bu · bv. (2.13)

Thus, we get the import volume as

Vi = Vs + Vx
c + Vy

c + Vz
c + Vx,y

q + Vx,z
q + Vy,z

q (2.14)

=
1
3

rc(3by(πrc + 2bz) + 3bx(πrc + 2by + 2bz) + πrc(4rc + 3bz)) (2.15)

or if our process is cubic with b = bx = by = bz as

Vi = 6b2rc + 3bπr2
c +

4
3

πr3
c . (2.16)

We will assume that each process has a cubic domain from now on.

2.2.3. Force Exchange

As we will see in section 2.4 and 2.5, not all spatial decomposition methods have their
processes calculate every interaction for the particles they are responsible for. To combine
the forces from all those processes they have to be imported from the neighbors. This
means every process has to export the forces of some halo particles. These are the same
halo copies that were previously imported [1]. This means the import region of the halo
copies is the same region used for exporting the forces (e.g. the red area in Figure 2.6).

2.2.4. Overlapping

Instead of waiting until the communication is completed and then continuing the
calculations, both can be overlapped. As only the boundary cells depend on imported
particles, such as leaving particles and halo copies, the interactions between inner cells
can already be computed while waiting for the communication to finish. Do so can
improve the performance.

2.3. Full Shell

In section 2.1.3 we described the Linked Cells algorithm and stated that a cell has to
interact with all its 26 neighbor cells. This interaction scheme is known as Full Shell (FS)
because a cell interacts with all the adjacent cells – the shell.

By applying this method, we calculate the forces between two particles i and j twice
(or never). Once when processing the cell ci of particle i and calculating the interaction
i← j to get the force Fij of j acting on i, and once like j← i to get Fji when processing cj.

Based on Newton’s third law – Force equals counter force – those two interactions can
be combined to one interaction i ↔ j where Fji = −Fij. Hence, we can remove nearly

11

2. Theory

half of the computations – all except the multiple interactions between boundary and
halo cells (see section 2.4 on how to remove those).

We can ensure that each particle pair is processed only once by splitting the neighbors
of each cell into 13 forward and 13 backward neighbors. Each cell c then processes only
particle pairs i↔ j where i is inside c and j is either also in c or in a forward neighbor
cell (see Figure 2.7). The missing calculations are done when the backward neighbor
cells are processed and c is a forward neighbor of them.

Figure 2.7.: The four forward neighbors (light green) and the four backward neighbors
(dark green) of the yellow cell in 2D. Only the four drawn cell interactions
with the forward neighbors are computed when processing the yellow cell.

This is sometimes already called Half Shell because most of the cells only process
interactions with 13 neighbors instead of 26, but we will call this cell processing method
Full Shell as we still have the complete shell as import region and therefore still the
same import volume VFS

i as defined in equation 2.16.

2.4. Half Shell

2.4.1. General Idea

In the previous section we reduced the number of cell interactions most cells have to
process from 26 to 13 by using Newton’s third law. This excluded interactions between
boundary and halo cells though.

The reasons for this are the halo copies i′ and j′ of the two boundary particles i and j
introduced in section 2.1.4. We calculate the interaction i ↔ j′ in the boundary cell ci
and j↔ i′ in cj. We can not simply remove one of both interactions.

12

2.4. Half Shell

The Half Shell (HS) method further improves Full Shell by removing one of both
interactions and replacing it by a force exchange where the force calculated on the halo
copy is sent to the original as described in section 2.2.3. Each cell only interacts with the
forward neighbors as shown in Figure 2.8.

Figure 2.8.: Half Shell interactions: The yellow (currently processed) center cell interacts
with each of the 13 red cell (forward neighbors), using Newton’s third law
to calculate the opposing forces. The interactions between the yellow and
the gray cells are calculated when those are processed as the yellow cell lies
within the forward neighbors of each of the gray ones.

Each particle interaction is therefore calculated in one of the two cells both particles
reside in, which is called traditional spatial decomposition [2].

2.4.2. Advantages

The Half Shell method presented here removes calculations in favor of a force exchange.
Depending on the scenario, the performance compared to Full Shell can vary. It is a
trade-off between the time computation and communication takes.

The computational effort between boundaries and halos is halved by removing one of
two interactions.

The communication is increased by not only having to send the halo copies but also
to receive the calculated forces for each of them. However, as we only interact with halo
cells that are forward neighbors, we can stop importing halo copies from neighboring
processes in the backward direction. This halves our import volume and reduces the
required communication effort. Figure 2.9 shows an example for the different import
regions of Full Shell and Half Shell.

VHS
i =

1
2

VFS
i = 3b2rc +

3
2

bπr2
c +

2
3

πr3
c (2.17)

13

2. Theory

rc

(a) (b)

Figure 2.9.: Import region (red) of 2D FS (a) and HS (b) for the minimal possible process
size of rc × rc.

We expect Half Shell to outperform Full Shell in most cases, but for deep parallelization
levels, the communication overhead can be too great.

2.5. Midpoint Method

2.5.1. General Idea

In the Midpoint Method, each cell is responsible for a set of particles regardless where
the interactions with these particles are computed. As the name suggests, the midpoint
of two or more particles is used to determine which cell interacts them [1]. We will
focus on interactions of two particles.

2.5.2. Simplification to Cell Pairs

The calculation of a midpoint xi+xj
2 is not a cheap operation, as it requires a vector

addition and a multiplication with a scalar. Additionally, the cell that actually contains
the calculated midpoint must be found.

A simpler method to find all particle pairs with a midpoint in some cell O is to process
the following 63 cell interactions while considering Newton’s third law [7]:

• All particle pairs inside O itself (1 pair)

• Forward neighbors, as used for Half Shell, with O (see Figure 2.8) (13 pairs)

• Opposite corners of the cube around O (see Figure 2.10) (4 pairs)

• The center cell of three sides with the opposite sides (see Figure 2.11) (3× 9 pairs)

• The middle cell of six edges with the opposite edge (see Figure 2.12) (6× 3 pairs)

14

2.5. Midpoint Method

Figure 2.10.: Midpoint interactions (1) - Opposite corners: While the green origin cell
is processed, the interactions between opposite corner cells are calculated.
This results in four cell pairs like the yellow and red one.

Figure 2.11.: Midpoint interactions (2) - Opposing side: The yellow cell is the center cell
of one of the cube’s sides and the red cells form the opposite side. The
yellow cell is interacted with each red cell while the green origin cell is
processed. This is done once per dimension so that no side is used multiple
times.

15

2. Theory

Figure 2.12.: Midpoint interactions (3) - Opposing edge: The yellow cell is the middle
cell of an edge and the red cells form the opposite edge. While the green
cell is processed the yellow cell is interacted with each red cell. This has to
be done for six different edge pairs so that no edge is used twice.

2.5.3. Advantages

Using the Midpoint Method allows to considerably reduce the import region for each
process compared to Full Shell or Half Shell as we only have to consider particles with
a distance of rc

2 into each direction. Particle pairs where one particle resides in the
boundary cells of the process and the other outside, more than rc

2 away, have their
midpoint by definition outside of the process’ domain [1]. Hence, the neighboring
process handles those.

The import region is like the one of Full Shell, a (hollow) rounded cuboid that only
depends on the dimensions of the process’ domain; but this time only with a distance of
rc
2 [1]. The volume can be calculated the same way as in section 2.2.2, just with half the
cutoff radius. This results in a volume of

VMP
i = 3b2rc +

3
4

bπr2
c +

1
6

πr3
c . (2.18)

We can now compare the import volume of the Midpoint Method with Half Shell and
Full Shell by calculating the quotient:

VMP
i

VHS
i

=
36b2 + 9πbrc + 2πr2

c
36b2 + 18πbrc + 8πr2

c
(2.19)

This shows that the Midpoint Method always has a smaller import region than Half
Shell, as the quotient is always smaller than one for reasonable values of b > 0 and
r > 0. Table 2.1 shows the relative differences for some cutoff radii as box size. As we

16

2.5. Midpoint Method

b 5rc 4rc 3rc 2rc rc rc/2

∼ VMP
i 87.3r3

c 57.9r3
c 34.6r3

c 17.2r3
c 5.9r3

c 2.5r3
c

1−VMP
i /VHS

i 13.26% 15.95% 19.98% 26.72% 40.04%

1−VMP
i /VFS

i 56.63% 57.97% 59.99% 63.36% 70.02%

Table 2.1.: Absolute volume of MP and relative difference between the import volume of
MP to HS, and MP to FS for different box sizes.

can see the smaller the box size the smaller is the import region of the Midpoint Method
relative to Half Shell. This is also the case for absolute values.

The import volume of the Midpoint Method has the same size as the import volume
of the Eight Shell method but it is larger than the import of other Neutral Territory
methods for high processor counts [1].

It is a bad idea though to completely import all cells that intersect the region, as the
advantage of the smaller import volume would be lost again for a cell size of rc. The
same 26 neighbor cells as for Full Shell would be imported and even particles we do not
need would be transmitted. Because of this we have to make sure that we only import
particles within this region independently of the cell structure. For easier computation
if a particle lies within the region, sharp corners are used instead of the rounded ones
described above, which results in a minimal larger import volume.

However, we can further improve the minimal possible import volume by reducing
the cell size to rc

2 as this allows us to choose a box size of rc
2 . The import volume for a

box of this size can be found in table 2.1 and is even 58.30% smaller than the volume for
rc.

We could now simply import the 26 neighbor cells and still keep this benefit. We
increase the number of cell iterations though, as we now have 8 times more cells, and
lose some performance in this regard.

rc

(a) (b)

Figure 2.13.: Import region (red) for a minimal sized process of 2D Midpoint: (a) with a
cell size of rc and (b) a cell size of rc

2 .

17

2. Theory

By halving the cutoff radius rc, we additionally gain the following:

• Deeper parallelization possible
As we have 8 times more cells, we can utilize up to 8 times more processors and
therefore reach higher performance in high-density scenarios where the gain from
deeper parallelization outweighs the additionally communication.

• Reduced communication bandwidth
As described above we can get to one-eighth of the import volume of Full Shell
while still only having to import the neighbor cells directly (or diagonally) adjacent
to the process. Fewer particles imported reduce the required communication
bandwidth and therefore the time if the available bandwidth was exceeded.

• Fewer cutoff radius checks
As interacted cells still contain particles whose distance is larger than the cutoff
radius, each pair has to be checked if the forces should be calculated. Smaller
cells reduce the number of needlessly iterated and checked particle pairs. The
performance gain for this is small but especially visible at shallow parallelization
levels.

• Better vector register utilization
Another consequence of fewer needlessly checked particle pairs is that we have
fewer cache misses when performing vectorization within the force calculation. As
the transfer time of data to a register depends on the cache, cache misses are costly
and result in a bad utilization of the vector registers.

2.6. Message Passing Interface

MPI (Message Passing Interface) is a specification for a standardized message-passing
library, which was defined by the MPI Forum, made up by vendors, library writers and
application specialists [3].

Message-passing is one of several common parallel programming models. It is typi-
cally used for distributed memory but can also be used for shared memory architectures.
Each process uses the local memory for computations and exchange data with other
processes by sending and receiving messages.

As MPI is only a specification, there are many different implementations with varying
performance. Popular ones for C++ are OpenMPI, MPICH or IntelMPI.

18

3. Implementation

All implementations were added to large systems 1: molecular dynamics (ls1 mardyn), a
fast and scalable Molecular Dynamics simulation framework, written in C++[6] which is
ideal for testing new methods.

The goal was to implement the Half Shell and Midpoint Method as described in
section 2.4 and section 2.5 in Mardyn and optimize the performance.

3.1. Traversals

Mardyn already provides different methods for traversing cells and processing the cell
pair interactions. Those traversals are implemented via the strategy pattern which allows
choosing a traversal in the input file or even at runtime. Additional traversal methods
are easy to add.

However, none of the existing traversals utilized a force exchange. So the definition of
a traversal had to be extended to include if a force exchange is necessary.

3.1.1. Half Shell

As a Full Shell traversal which uses Newton’s third law for calculations between inner
cells was already present, this traversal was used as a base to implement the Half Shell
method. It was implemented by inheriting from Full Shell and removing half of the
calculations between boundary and halo cells – all interactions to backward neighbors
(see section 2.4). The Half Shell traversal was flagged to require a force exchange instead.

3.1.2. Midpoint

The Midpoint Method was implemented based on the 63 cell pair interactions for each
cell as described in 2.5.2. Those cell pairs are first of all stored as 3D offsets relative to
the center cell O (Origin), represented as an array of pairs of three tuples. To reduce the
possible mistakes when filling this array with 63 entries and to create more readable
code, the offset pairs are not created by hand.

For example, to create the pairs with the opposing side as shown in Figure 2.11, the
yellow cube was mirrored at O and then moved on the plane normal to the mirroring
direction to create each red cube. This is repeated for three different (not opposite) sides,
and all 27 pairs of this kind are created and stored.

Creating the 3D offsets is done exactly once when constructing the traversal so
essentially no performance is lost compared to listing all pairs in the source code.

19

3. Implementation

On each domain rebuild (at the start or when the decomposition does load balancing)
those 3D offsets are then converted to 1D offsets which represent the shift between two
cells in a linear ordering – equal to the index of a cell in the array.

In each time step, all non-halo cells are iterated. Both 1D offsets are added to the
index of the current cell separately to get the indices of the two cells that should be
interacted. Each index is used to get the cell from the array they are stored in.

3.2. Force Exchange

The force exchange is accomplished by sending force data via MPI to the neighboring
processes. The implementation extends the existing code for the particle exchange.

For the transmission, a new MPI data type ForceData was created analog to the existing
one that is used for transmitting halo copies and leaving particles – ParticleData. The new
type contains the particle id, the position, and all forces. The adaption of the particle
exchange for forces required an additional send and receive buffer as the ForceData type
and ParticleData type differ to much. To reuse the methods that handle send, probe,
receive, and so on, they got templated and the data type was used to get the correct
buffer.

Only the receive method required additional changes as for ParticleData the received
molecules are added to the halo cells. For ForceData, we have to find the matching
molecule in the halo or boundary cells and add the received forces. To not rely on
iterating through all those cells we include the position in the transmission. This allows
us to easily find the cell the particle resides in.

3.3. Shrinking the Import Volume

Mardyn uses a Full Shell import region for exchanging leaving particles. The same
region is used to send halo copies and therefore forces. As the separation of those two
regions requires serious refactoring within the domain decomposition, it was not yet
implemented; only some preparations.

For the Midpoint Method, one could consider reducing the import region to rc
2 but

this requires that no particle moves faster than that in a single time step. Particles that
overshoot the leaving particle region get deleted. Hence, the time step size has to be
reduced but the smaller import volume probably does not outweigh the time loss in a
real simulation.

All benchmarks were performed with the same large import volume.

20

4. Performance Benchmarks

To compare the performance of the Midpoint Method to Half Shell and Full Shell,
benchmarks were conducted on the LRZ’s Linux Cluster CooLMUC2. It consists of two
14 core Haswell processors and 64 GB of ram per node, connected via FDR14 Infiniband
[5]. Hyper-Threading was disabled for every run, but AVX2 vectorization was used.

For testing, the domain bx × by × bz is filled with a cuboid of particles. The density ρ

of this cuboid is 2 Å
−3

for extra dense input, 1 Å
−3

for dense input, 0.4 Å
−3

for medium
input and 0.03 Å

−3
for sparse input. The parameters of the Lennard-Jones potential are

fixed to σ = ε = 1 and all particles have the same mass.
The number of particles in each simulation results in (bx · by · bz) · ρ and the number

of particles per cell in ρr3
c for Full Shell and Half Shell, or ρ r3

c
8 for MP.

We do strong scaling for 1 to 512 processes by doubling the process count each step.

4.1. Cubes of Different Densities

The first benchmark shows the influence of different densities on the performance.
The domain is a cube of 160 Å× 160 Å× 160 Å with a cutoff radius of 10 Å. This

results in 16× 16× 16 cells with 1000 · ρ particles each for FS and HS, or 32× 32× 32
cells with 125 · ρ particles for MP.

4.1.1. Without Overlapping

The first tests are done without enabling overlapping.

Extra Dense

For the extra dense scenario, we have 2000 particles per cell for FS and HS and 250 for
MP. Figure 4.1 shows the performance in molecule steps per second for different process
counts and Figure 4.2 the speedup of MP and HS compared to FS.

The Midpoint Method performs very well and is faster than HS and FS for all process
counts. For 1 to 16 processes about 1.3 times as fast as FS and for more processes even
up to 1.7 as fast. This is the direct consequence of the way smaller particle count per cell
as this results in fewer cutoff checks and a better vector register utilization as described
in section 2.5.3.

The Half Shell method performs not as well as expected compared to FS. Up to 8
processes, it is about 1.1 times as fast but for more than that no notable difference

21

4. Performance Benchmarks

Figure 4.1.: Extra dense cube: Performance of the different methods for the extra dense
scenario. MP clearly outperforms both HS and FS. No big difference between
those two can be seen except for 512 processes.

Figure 4.2.: Extra dense cube: Speedup of HS and MP compared to the performance of
FS. MP is about 1.5 times faster than FS but HS has no advantage in this
scenario.

22

4.1. Cubes of Different Densities

between FS and HS can be seen. For deep parallelization levels, it performs even worse
than FS. It seems that the communication overhead is too large for more than 8 processes.
The cause for that is probably that the import volume was not halved.

Dense

For the dense scenario, each cell contains 1000 or 125 particles. The results in Figure A.1
and Figure 4.3 are similar to those of the very dense scenario.

Figure 4.3.: Dense cube: Speedup of HS and MP compared to the performance of FS.
The advantage of MP is smaller than for the very dense scenario but still
quite large. HS performs better than FS for process counts up to 32.

The fastest method is again MP, but this time even HS is faster than FS for most
process counts. Up to 128 processes, HS is about 0.1 to 0.4 times faster than FS. Only for
256 and 512 processes, HS drops below the performance of FS and even the advantage
of MP shrinks to 0.1.

Midpoint seems to be a good choice for dense scenarios, and Half Shell performs
better than Full Shell as well for not extremely dense domains. When reducing the
import region, the speed drop for 256 and 512 processes could probably be removed for
both methods.

Medium Dense

We further reduce the particle amount per cell to 400 for FS / HS or 50 for MP (see
Figure A.2 and Figure 4.4).

23

4. Performance Benchmarks

Figure 4.4.: Medium dense cube: Speedup of HS and MP compared to the performance
of FS. MP has only a tiny advantage, and HS is even worse than FS for more
than 16 processes. For 256 and 512 processes, both drop noticeably below
FS.

Midpoint still has a small advantage of about 0.5 to 2 over FS up to 128 processes, but
after that, it is up to 0.3 times slower than FS. Half Shell drops below FS even earlier –
starting at 32 processes.

Somewhere around this particle count, the additional communication takes nearly as
much time as the extra computations of the Full Shell method.

Sparse

If we reduce the density even more to our sparse scenario, we are left with 30 particles
per cell for FS and HS and only an average of 3.75 particles per cell for MP.

Half Shell performs as the previous results suggest – it starts off slightly better than
FS but drops fast and ends a bit worse than FS.

As expected, MP performs way worse than the other methods for so few particles
per cell. At this point, no benefit of the method can outweigh the additional iterations
necessary for 8 times the cells. The deeper we parallelize, the closer MP gets to the
other two though. MP might even catch up for even more processes, but for such low
densities, another method is probably advantageous.

24

4.1. Cubes of Different Densities

Figure 4.5.: Sparse cube: Speedup of HS and MP compared to the performance of FS.
MP is 70% slower than FS for a sequential execution but scales quite good
to 30% slower for 512 processes. HS keeps getting worse for more processes.

4.1.2. With Overlapping

Midpoint and especially Half Shell perform badly when the amount of communication
increases as seen in the last section. The next step was to redo every benchmark
from the previous section with overlapping enabled to reduce the time waiting for the
communication to finish.

The results can be found in the Figures A.4 to A.10 and Figure 4.6. We want to
compare the performance relative to the previous results without overlapping and the
speedup between the different methods.

We chose the dense scenario for the comparison.

Speedup

See Figure 4.6 for the speedup with overlapping and 4.3 without.
Enabling overlapping reduces the differences between the methods. FS seems to profit

more from overlapping than HS and MP. Especially HS shows essentially no advantage
to FS for low process counts, but MP is still about 1.3 times as fast as FS. This even
improves for higher process counts.

The most noticeable difference with overlapping enabled is that the drop for the very
high process counts does not occur. For 512 processes, MP therefore stays above the
performance of FS, at about 1.5 times the speed, and HS only drops to 0.8 times the
speed of FS.

25

4. Performance Benchmarks

Figure 4.6.: Dense cube with overlapping: Speedup of HS and MP compared to the
performance of FS. The distance between MP/HS and FS has shrunken, but
the performance drop for 256 and 512 processes got removed.

As only the communication for leaving particles and halo copies is overlapped, it
seems reasonable that the overhead of the force exchange is still too large for HS to
outperform FS.

Relative to Previous Results

We now compare the molecule steps per seconds of the run with overlapping and the
run without it. As we can see in Table 4.1, the performance got worse most of the time
with overlapping or did not change at all.

There are some process counts, 32 for example in this table, where we see improve-
ments for FS and MP. Half Shell has no significant improvements in the dense scenario.
If we calculate these values for the runs of the other densities, we can see similar results
except that HS does improve too for some process counts.

It seems that overlapping does not improve the performance in general.

4.1.3. Scaling

One last property we want to observe is how well does each method scale with more
processes. We will use the dense scenario for this comparison. Figure 4.7 shows that each
of the three methods scales quite well. Half Shell and Midpoint have some problems
again for 256 and 512 processes as we already have seen.

26

4.2. Non Cubic Domains

processes 1 2 4 8 16 32 64 128 256 512
FS 1.00 1.00 1.12 1.02 1.03 1.25 0.79 1.15 0.67 0.76
HS 0.99 0.99 1.00 1.02 0.90 0.94 1.02 0.81 0.66 1.00
MP 1.00 1.00 1.01 0.96 0.84 1.20 0.81 0.92 0.81 1.00

Table 4.1.: Relative performance when enabling overlapping for the dense scenario.
Entries with differences of less than 4% are light gray, and the best positive
results are bold. Many entries have a value smaller than 1. This shows that
the runs with overlapping were often slower than without it. Only in some
cases, we have a significant improvement.

Midpoint scales the best in this case for all process counts up to 128 and with a
reduced import area probably even further.

Figure 4.7.: Scaling of the different methods over different process counts. The Midpoint
scales best but loses its lead for high process counts.

4.2. Non Cubic Domains

In this section, the influence of the domain shape on the performance is evaluated. The
domain has the size of 2560 Å× 40 Å× 40 Å with a cutoff radius of 10 Å and a density
of 1 Å

−3
. Hence, we have the same amount of particles in the simulation and per cell as

in the dense scenario of section 4.1.
The number of necessary computations stays the same, but the communication is

mostly done along the x axis. Figure 4.8 shows the results of this run and Figure A.1 the
previous run with the cubic domain.

27

4. Performance Benchmarks

As we can see, there are only minor differences between both graphs. Midpoint
and Half Shell seem to perform a bit worse though. This is probably caused by the
communication restriction mentioned above.

Figure 4.8.: Performance of the different methods for a dense, wide domain. For FS and
HS the domain decomposition unexpectedly failed for 256 and 512 processes,
but the results for the other values differ not so much from the dense cube.

4.3. Deep Parallelization

As a last test we chose a domain of 40 Å× 40 Å× 40 Å with a cutoff radius of 10 Å and a
density of 2 Å

−3
. This results in 64 cells for HS and FS and thus can only be parallelized

up to 64 processes. As midpoint has 8 times more cells, we can parallelize it up to 512
processes.

As we can see in Figure 4.9, MP drops a bit below FS for 64 processes. This is the same
drop caused by communication overhead we have already seen in section 4.1. For the
range of deep parallelization (128 to 512 processes), we then have a larger performance
gain. It is unexpectedly large though and it seems as the communication overhead is
suddenly gone.

If one would use deep parallelization with lower densities, the Midpoint Method
could outperform the other methods when using eight times more processes even if it is
slower for the same amount of processes.

28

4.3. Deep Parallelization

Figure 4.9.: Deep parallelization: Speedup of HS and MP compared to the performance
of FS. The decomposition of HS and FS fails for 128 and more processes
as we can only go as low as one cell per process which is reached for 64
processes. As MP has 8 times more cells, we can parallelize up to 512
processes and gain a better performance than FS with 64 processes.

29

5. Conclusions and Outlook

The Midpoint Method performs quite well in the tested cases compared to Half Shell and
Full Shell across all parallelization levels. Only for very sparse scenarios or small cutoff
radii, it dips below the performance of the other two, as the Midpoint Method delivers
the best results when we have many particles per cell. The Half Shell method performs
not as good as expected compared to Full Shell. The reason for this is probably that the
import region was not shrunken and therefore the communication overhead is way too
large for deeper parallelization levels. With overlapping the large performance drops for
very high process counts can be eliminated, but in general enabling overlapping results
in worse performance than without it.

The first step for improving the performance of the Midpoint Method and Half Shell
should be to reduce the region for halo copies and force exchange to reach the small
volumes described in the sections 2.4 and 2.5. This removes considerable amounts of
communication time.

Another possible improvement is to use a hybrid implementation that uses MPI for
distributed memory and OpenMP for shared memory. The current implementation only
uses MPI and when computations are executed on the same node, the processes still
have to communicate with message passing instead of writing into the same memory
area.

31

A. Appendix

Figure A.1.: Dense cube: Performance of the different methods for the dense scenario.

Figure A.2.: Medium dense cube: Performance of the different methods for the medium
dense scenario.

33

A. Appendix

Figure A.3.: Sparse cube: Performance of the different methods for the sparse scenario.

Figure A.4.: Extra dense cube with overlapping: Performance of the different methods
for the extra dense scenario.

34

Figure A.5.: Dense cube with overlapping: Performance of the different methods for
the dense scenario.

Figure A.6.: Medium dense cube with overlapping: Performance of the different meth-
ods for the medium dense scenario.

35

A. Appendix

Figure A.7.: Sparse cube with overlapping: Performance of the different methods for
the sparse scenario.

Figure A.8.: Extra dense cube with overlapping: Speedup of HS and MP compared to
the performance of FS.

36

Figure A.9.: Medium dense cube with overlapping: Speedup of HS and MP compared
to the performance of FS.

Figure A.10.: Sparse cube with overlapping: Speedup of HS and MP compared to the
performance of FS.

37

List of Figures

2.1. Lennard-Jones Potential . 4
2.2. Linked Cells Method . 6
2.3. Periodic boundaries . 7
2.4. Domain decomposition with 4 processes 9
2.5. Domain decomposition: Imported cells . 9
2.6. Import region general (2D) . 10
2.7. Forward and backward neighbors 2D . 12
2.8. Half Shell interactions . 13
2.9. Import region of 2D FS and HS . 14
2.10. Midpoint interactions (1) - Opposite corners 15
2.11. Midpoint interactions (2) - Opposing side 15
2.12. Midpoint interactions (3) - Opposing edge 16
2.13. Import region of 2D Midpoint . 17

4.1. Extra dense cube without overlapping – Benchmark result 22
4.2. Extra dense cube without overlapping – Speedup 22
4.3. Dense cube without overlapping – Speedup 23
4.4. Medium dense cube without overlapping – Speedup 24
4.5. Sparse cube without overlapping – Speedup 25
4.6. Dense cube with overlapping – Speedup 26
4.7. Scaling comparison . 27
4.8. Wide domain – Benchmark results . 28
4.9. Deep parallelization – Benchmark results 29

A.1. Dense cube without overlapping – Benchmark result 33
A.2. Medium dense cube without overlapping – Benchmark result 33
A.3. Sparse cube without overlapping – Benchmark result 34
A.4. Extra dense cube with overlapping – Benchmark result 34
A.5. Dense cube with overlapping – Benchmark result 35
A.6. Medium dense cube with overlapping – Benchmark result 35
A.7. Sparse cube with overlapping – Benchmark result 36
A.8. Extra dense cube with overlapping – Speedup 36
A.9. Medium dense cube with overlapping – Speedup 37
A.10.Sparse cube with overlapping – Speedup 37

39

List of Tables

2.1. Comparison of import volumina . 17

4.1. Relative performance of overlapping to non overlapping 27

41

Bibliography

[1] K. J. Bowers, R. O. Dror, and D. E. Shaw. “The midpoint method for paralleliza-
tion of particle simulations.” In: The Journal of chemical physics 124.18 (May 2006),
p. 184109.

[2] K. J. Bowers, R. O. Dror, and D. E. Shaw. “Zonal methods for the parallel execution
of range-limited N-body simulations.” In: Journal of Computational Physics 221.1
(2007), pp. 303–329. issn: 0021-9991. doi: http://dx.doi.org/10.1016/j.jcp.
2006.06.014.

[3] M. P. I. Forum. MPI: A Message-Passing Interface Standard Version 3.1. Ed. by T.
University of Tennessee Knoxville. http://www.mpi-forum.org/, June 2015.

[4] M. Griebel, S. Knapek, and G. Zumbusch. Numerical simulation in molecular dynamics.
Springer Berlin, 2007.

[5] Leibniz-Rechenzentrum. Overview of the Cluster Configuration. Aug. 28, 2017. url:
https://www.lrz.de/services/compute/linux-cluster/overview/.

[6] C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Heinecke,
S. Werth, H.-J. Bungartz, C. W. Glass, H. Hasse, J. Vrabec, and M. Horsch. “ls1
mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems.” In:
Journal of Chemical Theory and Computation 10.10 (2014). PMID: 26588142, pp. 4455–
4464. doi: 10.1021/ct500169q. eprint: http://dx.doi.org/10.1021/ct500169q.

[7] J. Spahl. “Evaluation of Zonal Methods for Small Molecular Systems.” Bachelor’s
thesis. Institut für Informatik, Technische Universität München, Nov. 2016.

43

https://doi.org/http://dx.doi.org/10.1016/j.jcp.2006.06.014
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2006.06.014
https://www.lrz.de/services/compute/linux-cluster/overview/
https://doi.org/10.1021/ct500169q
http://dx.doi.org/10.1021/ct500169q

	Acknowledgments
	Abstract
	Contents
	Introduction
	Theory
	Molecular Dynamics
	Lennard-Jones Potential
	Störmer-Verlet Method
	Linked Cells Method
	Boundary Conditions
	Simulation Loop

	Parallelization
	Domain Decomposition
	Import Volume
	Force Exchange
	Overlapping

	Full Shell
	Half Shell
	General Idea
	Advantages

	Midpoint Method
	General Idea
	Simplification to Cell Pairs
	Advantages

	Message Passing Interface

	Implementation
	Traversals
	Half Shell
	Midpoint

	Force Exchange
	Shrinking the Import Volume

	Performance Benchmarks
	Cubes of Different Densities
	Without Overlapping
	With Overlapping
	Scaling

	Non Cubic Domains
	Deep Parallelization

	Conclusions and Outlook
	Appendix
	List of Figures
	List of Tables
	Bibliography

