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ABSTRACT
The evolution of the Internet of Things accelerated the de-

velopment of Cyber-Physical Systems. Among them, Net-

worked Control Systems (NCSes) gained notable attention

thanks to their application to industrial operations. Experi-

mental NCSes require expertise from control, computation

and communication disciplines. This requirement, together

with the fragmentation of hardware and software used for

the implementation of NCSes, represents a challenge for the

reproducibility of research results. In this paper, we present

the �rst reproducible experimental benchmarking platform

for NCSes. The proposed platform is open-source and de-

signed to be easily reproducible and extensible by anyone.

Additionally, we present an NCS benchmarking methodol-

ogy that aids the reproducibility of NCS experiments. To

this end, it de�nes the parameters of the experiment and the

relevant Key Performance Indicators (KPIs) that need to be

observed during its execution. Finally, we evaluate in details

the proposed KPIs and validate the benchmarking methodol-

ogy by reproducing the platform and comparing the KPIs in

di�erent scenarios. Results present the performances of the

two platforms and prove the validity of the proposed NCS

benchmarking methodology.

KEYWORDS
CPS, NCS, Implementation, Open-source, Benchmarking,

Reproducibility, Experiment, Key Performance Indicators,

Delay, Jitter, QoC.

1 INTRODUCTION
The advent and evolution of the Internet of Things, where

billions of devices have gained networked connectivity and

Internet access, contributed to the rapid development of

Cyber-Physical Systems (CPSes)[20]. A CPS consists of the

interconnection of sensors and actuators with a computation

logic, together interacting over the same physical system.

In fact, in CPSes, the information acquired by sensors is

processed and used to instruct actuators to perform speci�c

actions.

A speci�c class of CPSes, where networked sensors and

actuators logically belong to the same automatic control sys-

tem, is called Networked Control Systems (NCSes) [12]. Over

the last decade, NCSes gained popularity thanks to the capa-

bility of distributing control functions over a communication

network, thus enhancing the �exibility and functionalities

of existing control systems. Their application is particularly

relevant to industrial operations, where NCSes can be em-

ployed, for instance, in the closed loop regulatory control of

production machines [11]. For these reasons, a considerable

amount of work has been performed in the literature that

models the behavior of NCSes to understand their perfor-

mances in di�erent operating conditions [21].

Despite the large number of results achieved by the con-

trol, computation, and networking research communities,

the reproducibility and comparison of NCS experimental

results still represent an obstacle to overcome. This chal-

lenge arises for di�erent reasons. First, NCS theory requires

expertise belonging to control, computation, and network-

ing domains, where di�erent methodologies and procedures

have been developed to evaluate the performances of their

systems. Second, diverse hardware platforms and software

tools are available and have been used to implement NCSes.

The fragmentation of hardware, software, and expertise in-

creased the di�culty of reproducing and comparing NCS

research results.

The issue of reproducing results generated from digital

artifacts has already been addressed by the Association for

Computing Machinery (ACM). Following the International

Vocabulary of Metrology [1], experimental results are repro-
ducible if the results can be recreated by other researchers

using di�erent equipment. In the context of CPSes, the is-

sue of reproducibility was addressed in the 1
st
workshop on
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benchmarking CPSes (CPSBench18), part of the CPSweek

2018, a premier annual event on CPSes. Research work pre-

sented in the workshop proposed performance metrics and

benchmarking scenarios designed for reproducible experi-

mental results. However, most of the contributions describe

conceptual methods and do not tackle the insidious compli-

cations of reproducing CPS experiments.

This paper enables reproducible NCS research experi-

ments. It enables this by (i) presenting the implementation

details of the �rst open-source
1
NCS benchmarking platform

designed for reproducible results, (ii) proposing a novel NCS

benchmarking methodology based on the joint expertise of

control, computation, and communication, and (iii) evaluat-

ing the reproducibility of the platform and the validity of the

methodology with experiments in di�erent scenarios.

The remainder of this paper is structured as follows. In

Sec. 1.1, a review of the state-of-the-art is discussed. In Sec. 2,

the implementation details of the proposed NCS benchmark-

ing platform are presented. Sec. 3 de�nes a novel NCS bench-

marking methodology for reproducible experimental results.

Sec. 4 presents the results of the evaluation of the proposed

platform by applying the proposed methodology in di�er-

ent benchmarking scenarios. Finally, Sec. 5 summarizes the

achieved results and discusses improvements and future

work.

1.1 Related Work
NCSes have been extensively researched in the literature. A

vast majority of the existing research work follows a theoret-

ical approach. However, as stated by Lu et al. [16], conveying

full-scale practical research with a real implementation of a

CPS is a di�cult task due to the complexity and the replica-

bility of experimental platforms. Therefore, research work in

the �eld of NCSes conducting experimental studies is rather

limited. Chamaken et al. [6] implement a hybrid setup of an

NCS combining hardware in the loop, i.e. a simulation of

the plant dynamics, with a real network. On the contrary,

experimental results of Eker et al. [8] use the network in the

loop approach, i.e. a simulated network, with real hardware

as a control system. A di�erent research approach provides

prominent examples where the complete NCS consists of

real hardware [3, 4, 7]. Drew et al. [7] propose an NCS design

that takes into account network delays and packet dropouts,

and evaluate it in an experimental scenario. They show that,

by optimizing the network-aware control logic, their system

performs better than the conventional network-unaware con-

trollers. Bachhuber et al. [3] conduct an end-to-end latency

analysis of a vision-based NCS. On the other hand, Baumann

et al. [4] present measurement results from the case study of

balancing an inverted pendulum over a multi-hop wireless

1
https://github.com/tum-lkn/iccps-release.

network. However, in all these cases, authors do not address

the issue of repeating their experimental research results.

Although practical NCS implementations pose a major

challenge in reproducingNCS experiments, there has been an

attempt in the literature to de�ne conceptual CPS benchmark-

ing scenarios tackling reproducibility. In particular, Boano et

al. [5] and Gallenmüller et al. [9] elaborate on how to imple-

ment experimental benchmarks and de�ne key performance

indicators (KPIs) for the comparison of experimental results.

Nonetheless, they do not conduct a practical study for the

veri�cation of the proposed methods in their own work. To

the best of our knowledge, none of the existing literature

tackles the problem of reproducibility and benchmarking in

a full-scale practical scenario. Therefore, in this paper, we

present the �rst experimental platform and practical bench-

marking methodology for NCSes.

2 NCS PLATFORM IMPLEMENTATION
In this section, the implementation details of the proposed

open-source
1
NCS benchmarking platform are presented.

Our platform aims at controlling, using a common IP com-

munication network, a so-called two-wheeled inverted pendu-
lum robot (TWIPR), which has a long tradition in literature

[13, 18] and industry [19].

The implementation was developed keeping in mind re-

producibility design principles, providing a platform that

can easily be reproduced and deployed for arbitrary research

purposes. Hence, all the software and hardware components

used in the proposed platform are low-cost and highly ac-

cessible. In fact, our TWIPR is built using the Lego Mind-

storms™ platform, communicates using standard Ethernet

and W-LAN network interfaces, is open-source
1
, and is pro-

grammed using the Python programming language that is

supported by the vast majority of the operating systems and

computing machines.

The description of the implementation is organized as fol-

lows. First, Sec. 2.1 describes the architecture of our NCS

together with the description of its components. Afterwards,

Sec. 2.2 describes the time and delay model used to anal-

yse the NCS and to design the control logic. The formal

description of the control problem of balancing the TWIPR

is discussed in Appx. A.

2.1 NCS Architecture
The proposed NCS has the architecture presented in Fig. 1

and is organized according to the three CPS domains [15]:

control systems, computing systems, and communication

networks.

The set of elements composing the control system is twofold.

On one side, the plant, i.e. the TWIPR or robot, mounts sen-

sors and actuators capable of sensing the physical system
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Figure 1: Architecture of the NCS platform. The con-
trol, computation, and communication domains of
CPS are represented. Every box is a di�erent compo-
nent of the architecture, boxes surrounded by thick
black contours represent hardware elements.

and executing the actuation commands respectively. On the

other side, the controller, which is detached from the plant,

receives the sensors readings, executes the control logic, and

transmits instructions to the actuator. Due to its complexity,

its logic is fully described in Appx. A.

Two di�erent computing systems provide computing power

and access to the network interfaces to both controller and

plant. The interconnection of the control application with

the network interface is achieved with the implementation

of the upper-layer protocols of the OSI communication stack.

The communication network physically interconnects the

computing system of the controller with the computing sys-

tem of the plant and enables the �ow of information between

them. In our architecture, it de�nes the lower-layers of the

OSI communication stack.

2.1.1 Control System. The plant is built by following the

default instructions of the Gyro Boy robot of the Lego Mind-

storms Education EV3 Core Set™ until step 61 [10].

As represented in Fig. 2, the robot’s body is supported by

two wheels, each one splined to an actuator, the DC brushed
EV3 Large Servo Motor™, capable of rotating it. The control

variables are the voltages applied to the left and right motors,

(a) Side view of the robot. (b) Top view of the robot.

Figure 2: Two-wheeled Inverted Pendulum Robot.

respectively, ul (t),ur (t) ∈ [−V̄ , V̄ ], where V̄ is the full-scale

voltage of the motor and equal to 8V .

An incremental encoder is mounted on each motor’s shaft

and measures the rotation angle of the corresponding wheel

with regards to the robot’s body. As in Fig. 2a, Φl (t) and Φr (t)
indicate the rotation of the left and rightswheels with regards

to z-axis. As in [13], Φ(t) describes the average rotation angle
of the two wheels with regards to the z-axis, i.e. Φ(t) =
1

2
[Φl (t) + Φr (t)]. The robot can move onto a 2D plane, i.e.

the plane formed by axes x and y in Fig. 2b. The position

of the body in the 2D plane at time t is (xM (t),yM (t)). The
system is inherently nonholonomic.

A one-dimensional gyroscope, the EV3 Gyro Sensor™, is

mounted on the body and measures the pitch rate ÛΘ(t). With

regards to Fig. 2a, Θ(t) is called pitch angle and denotes

the angle at time t between the z-axis and the axis pass-

ing through the robot’s body. Its derivative over time
Ûθ (t)

is referred to as the pitch rate. Due to the gravity force,

intuitively, the position Θ(t) = 0 exhibits an unstable equi-

librium. The control goal is, thus, to balance the robot, i.e.

to hold Θ(t) = 0, while tracking a desired position and ori-

entation in plane x − y, i.e. to hold (xM (t),yM (t),γ (t)) =(
x
r ef
M (t),y

ref
M (t),γ r ef (t)

)
. This task can be achieved by em-

ploying a closed-loop controller, that gets the sensors mea-

surements and computes the adequate control action to be

delivered to the two motors. The extensive derivation of the

control law can be found in Appx. A.

2.1.2 Computing Systems. Two computing systems are de-

ployed in our implementation; one for the controller and one

for the robot di�ering in requirements.

The robot should be mobile and battery powered, requir-

ing a computing system optimized for compact size and

low energy consumption. Any PC available to a researcher

should be able to run the controller, i.e. we assume a pow-

erful multi-purpose 64-bit computer and one of the widely

spread operating systems: Windows, macOS, or Linux. Such

a controller o�ers a �exible platform for implementing pow-

erful control algorithms that could not be processed on the

resource constrained robot.

Both computing systemsmust implement compatible higher-

layers communication protocols. For this reason, both com-

puting systems deploy the widely spread TPC/IP network

stack and the same application protocol. It consists of two

messages; the sensor value message, created by the robot and

sent to the controller, and the actuation command message,

created by the controller replying to the sensor value mes-

sage, containing the voltages to be applied at the motors. In

addition, sequence numbers and timestamps are transmitted

for packet loss, reordering detection, and delay measure-

ments.
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Figure 3: Two-hop network topology of the imple-
mented NCS benchmarking platform. The robot sup-
ports two network interfaces: wired via an Ethernet
adapter or wireless via a 2.4GHz W-LAN dongle.

2.1.3 Communication Network. Our network is designed to

be easily reproducible and �exible with respect to the possi-

ble communication technologies. It is structured according to

the OSI communication model and logically separated from

the computing system at the network layer, i.e. everything

below is part of the communication network.

The network topology de�nes the connectivity of di�erent

network nodes at the network and link layers. In our case,

a simple two-hop topology is implemented and shown in

Fig. 3. The �rst hop connects the controller to a W-LAN

Access Point (AP) via Ethernet. The second hop connects

the AP to the robot in two di�erent con�gurations: either

wired Ethernet or wireless W-LAN network interfaces. In

our architecture, the network interfaces de�ne the link-layer
medium access scheme. The robot has no native network

interface, wired and wireless connections are realized via the

USB 2.0 interface, which simpli�es the choice of the network

technology in use. For any given experiment in this paper,

only one of the two connections is used exclusively.

Finally, the physical environment describes the physical
characteristics of the communication and is particularly im-

portant in wireless. In our platform, the wireless communi-

cation between the robot and the AP takes place in a quiet

indoor o�ce environment, at an approximate distance of

1-2m, and it is subject to low external interference.

2.2 Timing and Delays Model
When all the components of the NCS architecture are inter-

connected, information regularly �ows between the plant

and the controller over the communication network. In par-

ticular, sensor readings from the plant are transmitted to the

controller, which uses this information to calculate and send

up-to-date actuation commands to the actuator. The plant

is responsible for the periodic operation of the control loop

and regularly triggers sensor readings every Ts .
The time evolution of the k-th sampling period is shown

in Fig. 4. At time tk
S,R
, the sensor values of the robot’s en-

coders and gyroscope are taken, handed over to the robot’s

operating system at tk
S,STX

and transmitted over the communi-

cation network at tk
S,NTX

. The controller’s network interface

receives the sensor data at tk
S,NRX

and its operating system

delivers the packet to the control application at time tk
S,SRX

.

Afterwards, the controller calculates the actuation values

for the motors and hands over the actuation message to the

operating system at tk
A,STX

, which sends the packet over the

network at tk
A,NTX

. Finally, at time tk
A,NRX

, the robot’s network

interface receives the actuation packet, and, at time tk
A,SRX

,

its operating system delivers it to the actuator application,

which applies the commands to the two motors at tk
A,W

.

Thanks to the timing diagram shown in Fig. 4, it is possible

to identify the delay components of the NCS and distinguish

the delays arising from the control system, computing sys-

tem, and communication network. Control system delays

arise from the processing time of the control algorithms. At

the robot during sensing dk
P,S

and actuation dk
P,A

, and at the

controller computing the control logic dk
P,C

. Computing sys-

tems delays arise while processing the packets from and to

the network interface at the robot dk
P,STX

, dk
P,ARX

and at the

controllerdk
P,SRX

,dk
P,ATX

. Finally, network delays can be classi-

�ed in uplink delay dk
N,S

, when sensor values are transmitted,

and downlink delays dk
N,A

, when actuation commands are

transmitted.

In an ideal operation, all the delays are bounded andwithin
the sampling period of the control loop. However, in a real

implementation, the delays vary according to the chosen

software and hardware of the control system, computing

system and communication network. While shorter delays

can be compensated via busy waiting, the event of higher
delays must be carefully taken into account using a proper

control strategy. Both cases are taken into account by the

control logic and that is described in Appx. A.

Moreover, packet loss additionally a�ects the operation of

our NCS. In general, packet loss can occur for several reasons,

such as bu�er over�ows in the operating systems and in

the network elements, or due to transmission errors arising

from the physical transmission of the packet. In our NCS, we

assume that packet loss is exclusively introduced by wireless

communication and that the event of packet loss additionally

arises whenever a packet experiences a delay larger than

a speci�c delay upper-bound. This model is a valid design

choice for NCSes. In fact, delay is an accepted performance

metric in control, computation, and communication domains,

and allows the separate optimization of the three systems.

3 BENCHMARKING METHODOLOGY
In this section, a novel NCS benchmarking methodology is

presented. The methodology relies on the experience gained

during the implementation of the proposed platform, and on

the combined knowledge of control, computation, and com-

munication domains. The purpose of the proposed method-

ology is to de�ne the necessary amount of information in

2018-10-26 13:27. Page 4 of 1–12.
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Figure 4: Model of the di�erent processing (P) and networking (N) delay components of the control, computation,
and communication CPS domains of the implemented NCS.

order to reproduce and evaluate experimental results using

the NCS platform. In accordance to ACM’s reproducibility

terminology [1], we �rst want to recreate our own results

thereby establishing repeatability. In a second step, we recre-

ate the NCS benchmark across the di�erent involved research

groups making our results replicable. We provide the entire

framework containing the source code, the plotting scripts,

and the measurements used for this paper as open-source
1
,

thereby encouraging others to recreate our results and fos-

tering the development towards a fully reproducible bench-

mark.

First, we de�ne benchmark as a series of experiments. An

experiment is a time-bounded execution of the NCS plat-

form. In order to reproduce experiments, the conditions of

the experimental evaluation must be detailed. In particular,

the duration Te of the experiment must be de�ned. In our

benchmark, experiments use a real-world setup and di�erent

setups are possible, e.g. obtaining values through simulation

or emulation. The result of each experiment is a set of val-

ues. From these results, we derive key performance indicators
(KPIs) describing the most relevant features of the system

during the experiment. The KPIs may depend on the settings

an experiment is performed in. These settings, relevant to

describe an experiment, we call scenario. A whole series of

di�erent experiments and scenarios might be necessary to

create a comprehensive report for the behavior of the NCS.

3.1 Scenario Description
The scenario description describes all the relevant parameters

of an experiment and it is based on the NCS architecture

presented in Sec. 2.1 and depicted in Fig. 1. In fact, it is struc-

tured according to the three di�erent CPS domains: control

systems, communication networks, and computational units.

For every component of the NCS architecture, software (al-

gorithms), and hardware parameters must be speci�ed to

replicate the experiments. To make the experiments and ul-

timately the benchmarks reproducible, it is key to document

all relevant information of a scenario in a scenario descrip-
tion. For this reason, in Tab. 1, we provide an exemplary

scenario description by summarizing all the components

of the proposed platform A of Sec. 2, and of a second re-

produced platform B. The scenario above only presents a

minimal description of the most basic setup for our TWIPR.

3.1.1 Control Parameters. The control application software
running on the computing systems and implementing the

control logic that drives the NCS. The physical system, de-

scribing the physical properties of the robot itself. The hard-
ware used on the robot, such as the used sensors and actua-

tors.

3.1.2 Network Parameters. The network topology, describing
the connectivity between the nodes of the network.

In the scenario description, all the network parameters are

part of the lower layers. This involves all functions being part
of the network layer, link layer, and physical layer, which

are implemented in the network stack and network drivers
included in Linux, and in the eventual �rmware executed by

the network interface cards (NICs).

The network hardware, i.e. the hardware models of the

network interfaces used by robot and controller.

The physical environment, de�ning the physical condi-

tions that the network operates in, such as the interference

with other wireless nodes. These properties strongly a�ect

wireless networks, making them inherently di�cult to repro-

duce without an echo chamber. For our benchmark, we try to

minimize the impact of the physical environment on the mea-

sured results. Our benchmark should be widely reproducible

across di�erent research groups, therefore, we decided to not

require access to special equipment such as echo chambers.

For this reason, we suggest to execute the benchmark in a

quiet wireless environment, thereby minimizing the impact

of external interference and moving objects on the measure-

ment results. For benchmarks using wired networks, such as

a full-duplex switched Ethernet, the physical environment

has no impact on the measurement results as long as the

network is not overloaded. Therefore, wired network mea-

surements are easier to reproduce and can even be used to

emulate the behavior of wireless networks on the network

layer.

2018-10-26 13:27. Page 5 of 1–12.
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Parameter Description

Control Application SW Python 3 open-source
1
code implementing the control logic of described in Appx. A.

Control Physical Sys. Gyro Boy robot of the Lego Mindstorms Education EV3 Core Set™.

Control HW DC brushed EV3 Large Servo Motors, EV3 Gyro Sensor.

Network TopologyA Two-hop network shown in Fig. 3 connected via the AP TP-Link TL841ND.

Network TopologyB Two-hop network shown in Fig. 3 connected via the AP Edimax BR6208AC.

Network Stack Controller Ubuntu 18.04 LTS (Kernel version 4.15).

Network Stack Robot Debian Jessie (Kernel version 4.4).

Network HW ControllerA Intel 82579LM 1GbE NIC.

Network HW ControllerB ASIX AX88179 1GgE.

Network HW RobotA Apple A1277 USB-to-Ethernet dongle, Edimax EW-7811Un W-LAN USB dongle.

Network HW RobotB Edimax EU-4306 USB-to-Ethernet dongle, Edimax EW-7811Un W-LAN USB dongle.

Network Physical Env. Quiet o�ce environment (low interference, no moving objects), indoor 1-2m.

Computing Sys. Higher layers UDP, application protocol described in Sec. 2.1.2.

Computing Sys. HW ControllerA Intel Core i2520M (2 cores, 2.5 GHz, 8 GiB RAM).

Computing Sys. HW ControllerB Intel Core i7-6700 (4 cores, 3.40GHz, 16GiB RAM).

Computing Sys. HW Robot 32-bit ARM9 SoC (1 core, 300MHz, 64MiB RAM).

Table 1: Summary of scenario description parameters for two NCS platforms. Platform A, developed during the
�rst implementation, and platform B, reproduced for benchmarking purposes.

KPI Description

dP,S Sensor readings on the robot.

dP,C Calc. of actuator commands on controller.

dP,A Execution of actuator commands on the robot.

dN Average one-way network delay including stack pro-

cessing on robot and controller.

∆̂T −dP,A Robot round-trip delay.

∆̂T Measured variable sampling period.

Table 2: Summary of time KPIs.

3.1.3 Computing System Parameters. The higher layers, i.e.
the transport layer and higher layer protocols, are part of

the computing system, connecting the control and the net-

working domains of the NCS. The transport protocol is im-

plemented in the OS, therefore the OS version is required

for describing the computing system parameters. The ap-
plication protocol, used for the logical exchange of sensor

values and actuation commands between the controller and

the plant.

The hardware, which provides computing power and ac-

cess to the communication facilities.

3.2 KPIs
The KPIs capture the most important metrics necessary to

analyze and understand the operation of the NCS platform

during the benchmarking experiment.

Sec. 2.2 and Appx. A describe the operation of the platform

during its execution. A fundamental aspect that has emerged

during the implementation and analysis of our platform is

the role of time and delays in the system. In fact, their precise

analysis enables the controller to operate even in presence

of a variable delays and packet loss. For this reason an im-

portant part of the proposed KPIs is relative to time and

delays.

On the other hand, the Quality of Control (QoC) is the

second dimension that needs to be evaluated in NCSes. In

general, QoC is a metric that describes the performance of a

control system. In our example, it can be used to determine

the ability of the control logic to compensate variable de-

lays and packet loss, and to compare it with other control

strategies.

3.2.1 Time KPIs. Delays, i.e. the time needed for informa-

tion exchange and processing on the robot and the controller,

in�uence the overall performance of the NCS. Delays can

arise from control, computation, or communication, with

lower delays o�ering a better service for the NCS. We as-

sess the performance by measuring the individual delays

presented in Fig. 4. To evaluate the in�uence of the network

stack of the controller, we recorded a packet trace on the

ingress/egress network interface via tcpdump.

Recording network delays and performing clock synchro-

nization required a constant packet exchange and increased

processing, thus overloading the CPU of the robot and im-

pacting the control performance. Due to this limitation, we

did not record the speci�c delaysdP,STX,dN,S,dP,SRX, anddN,A
attributed to the network communication on the robot. For

this reason, we calculate the average one-way network delay

dN assuming symmetrical network delays, and including the

stack delays of controller and plant,

2018-10-26 13:27. Page 6 of 1–12.
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dN = 0.5 ·
[
tk
A,SRX − tk

S,STX

]
. (1)

As KPI, we report each delay listed in Tab. 2 as median

value. We measure the jitter as a property of the delay �uc-

tuation. Low jitter allows a constant stream of information,

supporting smooth control performance. To determine jitter,

we provide quartiles and 99.9th percentiles in addition to the

median delay.

3.2.2 Control KPIs. They indicate the quality-of control (QoC)
of the NCS and provide a baseline for the comparison of

experiments. First, we select the Integrated Absolute Errors
(IAE) of the states Θ and Φ, i.e. Σθ and ΣΦ. Additionally, we

calculate the total control e�ort over time, i.e., Σν .

ΣΘ = ‖Θ(kTs ) − Θr ef ‖ (2)

ΣΦ = ‖Φ(kTs ) − Φr ef ‖ (3)

Σν = 0.5 · (‖νl (kTs )‖ + ‖νr (kTs )‖) (4)

In our experiments the states’ reference is always set to zero,

indicating the initial wheels’ position and the z-axis of the

robot, i.e. Θr ef = Φr ef = ∅1xT e . ΣΘ and ΣΦ represent the

cumulative absolute deviation of Θ and Φ from their corre-

sponding reference values during the experiment. Smaller

values of ΣΘ and ΣΦ correspond to a higher QoC. Σν repre-

sents the total control e�ort spent to balance the robot. Also

in this case, a smaller Σν indicates better stability and hence

a higher control performance.

With respect to the implemented control logic, an addi-

tional metric shows the performance of the control system.

The number of predictions used by the robot to compensate

for packet loss and delays must be taken into account. As

described in Sec. 2.2 and in Appx. A, a prediction is applied

whenever a packet is not received within the delay upper-

bound.

4 PLATFORM EVALUATION
In this section, we provide a comprehensive evaluation of

the NCS platform and of the benchmarking methodology.

We achieve this by presenting the NCS benchmarking KPIs

in details and in di�erent scenarios. The evaluation captures

the essence of the proposed benchmarking methodology. In

fact, experiments were performed reproducing the platform

and testing it with di�erent computers and networks.

Every experiment of our evaluation is conducted as fol-

lows. Before the experiment starts, the robot lies on the

ground continuously sending sensor values to the controller.

The controller, however, does not send actuation commands

until the robot is manually lifted to the vertical position. For

this reason, the beginning of the experiment is the time at

which the robot manually reaches the vertical position for

the �rst time, and corresponds to 0 s in our evaluation.
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Figure 5: Time evolution and empirical distribution of
the delays of the controller, sensor, actuator, and net-
work.

Afterwards, continuous exchange of information between

the robot and the controller takes place and enables the

control loop to balance the TWIPR. The duration of the

experiment is determined by the control logic and is equal

to Te = 1400 sampling periods, i.e. 49 s with Ts = 35ms .
Consequently, we set a delay upper-bound equal to 29ms .
This value is smaller than the sampling period and takes into

account the additional time needed to instruct the actuators.

Whenever the experiment ends, the controller stops send-

ing actuation messages to the robot, opening the control

loop. In this way, for every experiment, an even number of

samples is collected, and the KPIs can be correctly calculated

and compared.

4.1 KPIs Evaluation
KPIs belonging to the control, computation, and commu-

nication domains need to be evaluated to understand the

dynamics of an NCS. The scenario selected for the detailed

evaluation of the KPIs is described by the parameters of

platform A in Tab. 1 communicating over W-LAN.

Fig. 5 shows the time evolution and the histogram of the

delays of the controller, sensor, actuator, and network de�ned

in Fig. 4. The sensor reading delay dP,S 2 demonstrates a sta-

ble behavior with occasional outliers reaching up to 5.5ms.

Similarly, the controller delay dP,C 1 is very stable, show-

ing almost no outliers. Overhead caused by the controller

network stack is constant and marginal (approx. 37 µs) over
the entire experiment. The actuator delay dP,A 4 shows an
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the round-trip delays and of the measured sampling
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Figure 7: Time evolution of the �ltered pitch angle Θ,
the �ltered avg. rotation angle Φ, and the avg. applied
voltage at the motors.

unstable behavior over the entire measurement period. Its

jitter, also expressed by the width of its distribution in the

histogram, is attributed to the control algorithm, which im-

plements busy waiting. Therefore dP,A 4 includes a waiting

period that directly depends on the previous steps and their

individual delays. In fact, in order to instruct the motors ev-

ery 35ms , actuation commands are only applied after a delay

upper-bound of 29ms from the beginning of the sampling

period. In our platform, approx. 6ms are required to actuate

the motors.

When analyzing the jitter given in the histograms, dP,C 1

shows the most stable behavior (0.9ms - 1.2ms), indicating

that the controller always has enough computing power to

handle the control process in a timely manner. The sensor

reading delay dP,S 2 shows a minimal time of 2.4ms for

sensor readings with a tail of up to 11.1ms. The network de-

lay dN,S 3 roughly resembles a normal distribution ranging

from 4.7ms up to 15ms, and it is originated by the CSMA/CA

mechanism of W-LAN in our physical environment.

Fig. 6 shows the time evolution and histogram of the cumu-

lative delays. The timestamp tASRX is collected by the robot

application after receiving the actuation message, resulting

in the delay ∆̂T −dP,A 5 .Where ∆̂T is themeasured sampling

period of the NCS during the experiment. The histogram of

5 shows a wide distribution, ranging from 13.2ms up to

35.1ms, employing the jitter of all the previous steps. How-

ever, ifdP,A is included in the plot (∆̂T 7 ), the jitter decreases,

as the actuator algorithm applies the actuation commands

only 29ms after the beginning of the sampling period. This

e�ect results in a rather constant measured sampling period

∆̂T 7 , and allows the compensation of the previous delays,

leading to a rather low jitter. Thus, the distribution of ∆̂T
7 is more compact and allows a constant delivery of the

actuation commands close to the ideal sampling period ∆T
6 . Its jitter is caused by the precision of the busy waiting

technique and by the time required to actuate the motors.

The impact of the control logic is re�ected in Fig. 7, show-

ing the evolution of the control KPIs. The pitch angle Θ (kTs )
of the robot is highly varying, with occasional larger spikes

every few seconds. Despite this, we can observe that its dy-

namic remains bounded during the entire execution and that

its average value is equal to−0.0014 deg. The evolution of the
motors’ applied voltage strongly depends on the pitch angle.

In fact, higher voltages are correlated with higher values of

pitch angle. This e�ect is also shown in the position of the

robot Φ (kTs ), which presents faster and slower oscillations.

Faster oscillations, visible between 3-5 s , are caused by strong
and opposite actuations commands needed to compensate

high values of pitch angles and to balance the robot. Slower

oscillations arise whenever the control logic tries to bring

the robot to its initial position. This task has lower priority

2018-10-26 13:27. Page 8 of 1–12.



Reproducible Benchmarking Platform
for Networked Control Systems Submi�ed to ICCPS 2019, April 2019, Montreal, Canada

Delay [ms] Median ±95% C.I. Q1 Q3 99.9%

A-wired

dP,C 0.94± 0.002 0.91 0.97 1.07

dP,S 3.55± 0.038 3.04 4.24 5.41

dN 4.38± 0.041 4.08 5.03 6.66

dP,A 22.20± 0.087 20.86 23.16 24.98

∆̂T 35.77± 0.042 35.21 36.41 37.73

A-wireless

dP,C 0.95± 0.002 0.92 0.96 1.05

dP,S 3.64± 0.049 3.03 4.36 6.20

dN 8.09± 0.053 7.54 8.54 10.88

dP,A 15.19± 0.118 13.79 16.55 19.94

∆̂T 35.89± 0.057 35.22 36.62 38.97

B-wired

dP,C 0.39± 0.001 0.38 0.39 0.45

dP,S 3.89± 0.034 3.55 4.49 5.73

dN 4.61± 0.026 4.40 4.82 6.57

dP,A 22.38± 0.065 21.58 23.10 24.69

∆̂T 36.02± 0.036 35.55 36.54 37.61

B-wireless

dP,C 0.37± 0.001 0.37 0.38 0.43

dP,S 3.84± 0.040 3.49 4.45 6.39

dN 5.25± 0.055 4.85 6.29 8.74

dP,A 21.27± 0.126 19.49 22.38 24.84

∆̂T 36.32± 0.049 35.70 36.95 38.76

Table 3: Time KPIs of the four evaluation scenarios.

compared to balancing the robot, and it is performed on a

larger time scale.

4.2 Benchmarking
We prove the validity of the proposed benchmarking method-

ology and test the reproducibility of our platform by con-

ducting experiments in di�erent benchmarking scenarios.

For this, we have built a second LEGOMindstorms™ robot

and tested it in di�erent physical environments. Its compo-

nents are fully described by the scenario description of plat-

form B in Tab 1. It consists in a di�erent computing system

for the controller, and di�erent network hardware interfaces

for both controller and robot. This results in a total of four

scenarios for our benchmarking evaluation. We call A-wired

the scenario where platform A operates with Ethernet, and

A-wireless its operation with W-LAN. Two additional sce-

narios arise from the reproduced platform B; the B-wired

and B-wireless, representing, respectively, the reproduced

platform communicating over Ethernet and W-LAN.

Tab. 3 and 4 summarize the benchmark KPIs resulting

from the evaluation of the four scenarios. The time KPIs in

ΣΘ ΣΦ Σν Predictions

A-wired 762.91 152090 2066.9 0

A-wireless 938.30 217080 2637.4 10

B-wired 601.51 179590 2804.3 0

B-wireless 785.72 129440 2726.1 1

Table 4: Control KPIs of the four evaluation scenarios.

Tab. 2 are presented as median with 95% con�dence intervals,

1
st
and 3

rd
quartiles, and 99.9-th percentiles.

Tab. 3 shows di�erent performances of the deployed com-

puting systems and communication networks. In fact, the

median values of dP,C is lower for platform B than platform

A, despite showing similar jitter and worst-case values. A

minor di�erence is noticeable in the sensor processing delays

dP,S; platform A has smaller median delays but with a higher

jitter. Also the average network delays present di�erences.

The median of dN is always smaller in Ethernet than W-LAN.

In addition, W-LAN network delays have a higher variance

and worst case delays up to 10 ms. The scenario A-wireless

shows the worst network performance, with the highest me-

dian value and 99.9-th percentile. The actuator processing

delays dP,A directly depend on the busy waiting procedure.

Its quartiles re�ect the network delays, being wider and with

larger worst-case values for wireless communication in both

platforms. Finally, the measured sampling period ∆̂T is com-

parable in all four scenario and mainly depends on the busy

waiting performed by the actuator. However, it presents a

higher median in platform B, and a larger jitter when oper-

ating with W-LAN.

Tab. 4 shows comparable values of QoC, for the two NC-

Ses evaluated in the four scenarios. In general, ΣΘ and ΣΦ

are lower in wired than wireless scenarios thanks to smaller

median delays and jitter. However, platform A shows a high

value of ΣΦ caused by the high oscillations introduced by the

delays of its W-LAN network interface. The total controller

e�ort Σν is similar across the scenarios, showing a lower

value only in scenario A-wired. As expected, actuation pre-

dictions on the robot, triggered by packets arriving later than

29ms , were not observed in wired scenarios. However, in

the scenario A-wireless, 10 prediction events were observed,

and, in the more stable scenario B-wireless, only 1 event was

observed showing its superior QoC.

The results of this section prove the reproducibility of the

proposed NCS platform and the validity of the benchmarking

methodology. In fact, a new platform could be reproduced

and used for benchmarking. Furthermore, the proposed KPIs

are able to highlight the di�erent performances of the two

computing systems and network interfaces.
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5 CONCLUSIONS
In this paper, we presented a novel, reproducible, experi-

mental platform for NCSes. Our system is designed to be

easily reproducible due to low-cost, accessible hardware and

open-source software components. Additionally, thanks to

the experience acquired during the implementation of the

platform and the joint expertise of control, computation, and

communication domains, we propose a newNCS benchmark-

ing methodology that enables reproducible experiments. The

methodology de�nes the scenario, i.e. the experiment param-

eters, and the most relevant KPIs for the performance evalua-

tion of the NCS platform. We evaluate the proposed platform

and the validity of our benchmarking methodology repro-

ducing the platform and evaluating it in di�erent scenarios.

Evaluation results prove the e�ectiveness of the proposed

KPIs and the validity of the benchmarking methodology.
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A CONTROL DERIVATIONS
A.1 Dynamical Model of the Robot
The nonlinear continuous-time dynamical model of the plant,
i.e. of the TWIPR, which has been formally computed in [13]

and [17], is

∀t ∈ R≥0, Ûx(t) = f (x(t),u(t)) , (5)

where, f : R6 → R6, ∀t ∈ R≥0, the state variable vector x(t)
is

x(t) =
[
Θ(t), ÛΘ(t),Φ(t), ÛΦ(t),γ (t), Ûγ (t)

] >
, (6)

and the control variable vector u(t) is u(t) = [ul (t),ur (t)]
>
.

For our control purposes, however, since the controller

is executed on a microprocessor that makes use of sampled

data, a linear discrete-time model is required.

The desired equilibrium is de�ned by the pair (x̄ , ū), as-
suming that

x̄ =
[
0, 0, Φ̄, 0, γ̄ , 0

] >
, (7)

where Φ̄ ∈ R and γ̄ ∈ R are arbitrary, and ū = [0, 0]>. By
de�nition of equilibrium of a dynamical system, f (x̄ , ū) =
x̄ . By [14], if the function f is continuously di�erentiable

with respect to its arguments, if we let x(t) = x̄ + δx(t) and
u(t) = ū + δu(t), it is possible to linearize Eq. (5) around the

equilibrium, so that the linearized system becomes

δ Ûx(t) = Aδx(t) + Bδu(t), (8)

where

A =
∂ f

∂x

����
x=x̄,u=ū

, B =
∂ f

∂u

����
x=x̄,u=ū

. (9)

A discrete-time equivalent of Eq. (8) is then necessary,

since measurements and control inputs are in digital domain.

By [2], by applying the Forward Euler method with a dis-

cretization step Ts ∈ R>0, Eq. (8) can be discretized and the

resulting discrete-time linear system is

ξ (k + 1) = Adξ (k) + Bdν (k), (10)

where Ad ∈ R6×6, Bd ∈ R6×2,

ξ (k) := x(kTs ) =

=
[
Θ(kTs ), ÛΘ(kTs ),Φ(kTs ), ÛΦ(kTs ),γ (kTs ), Ûγ (kTs )

] >
,

(11)

∀k ∈ N, and

ν (k) = [ul (kTs ),ur (kTs )]
> , (12)

∀k ∈ N. In particular, Ad = I − ATs and Bd = BTs . These
matrices and all the used parameters can be found in the

public repository containing the open-source code of our

implementation and measurements
1
. For what concerning

sensors, measurements, and employed �lters, the interested

reader can refer to [17].

A.2 Theoretical Control Framework
With regards to the states in Eq. (11), ∀k ∈ N, ξr (k) ∈ R

6
is

the state reference. Formally, a control logic computes an

input ν (k) ∈ R2 at each sampling time k ∈ N, which drives

the quantity |ξr (k) − ξ (k)| as close to 0 as possible. In control

theory, a controller is said to be designed in closed loop if, at

every sampling time k , the control input is computed based

on the current state of the system, i.e.

ν (k) = fν (ξ (k)) , (13)

where fν : R6 7→ R2 is the so-called control law. However, as
highlighted in Section 2.2 and Fig. 4, �rst, the controller does

not have a real-time knowledge of the state of the system,

and, second, the computed control input is actuated with a

delay. Moreover, whenever packet loss occurs, the control

system gets technically in open-loop, since no updated in-

formation about the state is available. Another challenge

concerns the presence of a time-varying sampling period. In
fact, as discussed in Sec. 2.2, the total delay of the bench-

marking platform is not constant, i.e. in general, ∀k1,k2 ∈ N,
tk1
A,W

−tk1
S,R
, tk2

A,W
−tk2

S,R
. Given these considerations, a suitable

control strategy is designed as follows.

First, the eventuality of packet loss is initially neglected.

Since a time-varying sampling period adds unproductive

complexity to the control problem, a constant sampling pe-

riod framework is designed. After performing an extensive
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evaluation of the platform, it was possible to de�ne∆T ∈ R>0
as the overall delay upper-bound, i.e.

∀k ∈ N, tk
A,W

− tk
S,R

≤ ∆T . (14)

The employed idea is to force the sampling period to be

exactly ∆T , by dilating the actuation time dk
P,A

, so that, ∀k ∈

N, tk
A,W

−tk
S,R

≈ ∆T . The actuation timedk
P,A

is lower-bounded

to d
P,A

, i.e. ∀k ∈ N, dk
P,A

≥ d
P,A

, and can be forced to be

∀k ∈ N, dk
P,A
= ∆T −

(
tk
A,SRX

− tk
S,R

)
, (15)

thus guaranteeing a constant sampling period Ts = ∆T .
While applying Eq. (15), it is necessary to hold∀k ∈ N, dk

P,A
≥

d
P,A

. This ensures that employing Eq. (15) dilates the pro-

cessing time, thus resulting in a feasible approach.

According to the constant sampling period strategy,

∀k ∈ N, tk
A,W

− tk
S,R
= tk+1

S,R
− tk

S,R
= ∆T .

This means that the actuated control input at t ∈ R>0 can be

computed based only on the measurements at t − ∆T . With

regards to Eqs. (11), (12), and (13), let ν̌ (k), ν̃ (k), and ν̂ (k) be
de�ned, respectively, as, ∀k ∈ N,

ν̌ (k) := fν (x (k∆T )) , (16)

ν̃ (k) := fν (x ((k − 1)∆T )) = ν̌ (k − 1), (17)

ν̂ (k) := fν (x̂ (k∆T |(k − 1)∆T )) . (18)

Here, ν̌ (k) is the ideal control input in the case the current

state is available at the controller. On the other hand, ν̃ (k)
is the control input computed based on the last available

state measurement. Finally, ν̂ (k) is the control input entail-
ing a state prediction based on the last available measure-

ment, i.e. x̂ (k∆T |(k − 1)∆T ). Let’s �rst assume that, ∀k ∈ N,
x̂ (k∆T |(k − 1)∆T ) is computed based on the numerical inte-

gration of the continuous-time dynamics Eq. (5), i.e.

x̂ (k∆T |(k − 1)∆T ) = x ((k − 1)∆T )+∫ k∆T

(k−1)∆T
f (x(t),u ((k − 1)∆T )) dt , (19)

performed at the remote controller during dk
P,C

, under the

following two assumptions:

Assumption 1. dkP,C needed to compute (19) guarantees
that

∆T − (tkA,SRX − tkS,R ) ≥ dP,A.

Assumption 2. (5) is an accurate model of the plant and
any measurement noise is negligible.

By Assumptions 1 and 2, the following trivially holds:

x̂(k∆T |(k − 1)∆T ) ≈ x(k∆T ). (20)

This clearly implies that, ∀k ∈ N,

δ
p
ν (k) := | |ν̌ (k) − ν̂ (k)| | � ||ν̌ (k) − ν̃ (k)| | := δ+ν (k). (21)

Under Assumption 1 and 2, ν̂ (k), computed as in (18) and

(19), will be employed.

Thanks to this technique, the eventuality of packet loss can
also be considered, in fact, it is possible to employ a similar

strategy to guarantee robustness against this nonideality. Let

P̄ be the maximum number of consecutive packet dropouts.

The controller does not know a priori whether a packet will

be dropped or not. A feasible solution considers the controller

to send, preventively and additionally to the current control

input, a list of P̄ inputs computed on the state predictions

based solely on the measurements at time (k−1)∆T . Formally,

∀k ∈ N, the controller sends to the robot the control input

vector

ν̂νν (k) =
[
ν̂ (k), ˆν̂ (k + 1), . . . , ˆν̂ (k + P̄)

]
∈ R2×P̄+1, (22)

where

∀k ∈ N, ∀l ∈ {1, . . . , P̄}, ˆν̂ (k + l) = fν
(
ˆx̂(k + l)

)
, (23)

with

∀k ∈ N, ∀l ∈ {1, . . . , P̄},

ˆx̂(k + l) = ˆx̂(k + l − 1) +

(k+l )∆T∫
(k+l−1)∆T

f
(
x(t), ˆν̂ (k + l − 1)

)
dt ,

(24)

and

∀k ∈ N, ˆx̂(k) = x̂(k). (25)

Formally, a packet is dropped at iteration k if

∃t ∈
(
tk
S,R
, tk
S,R
+ ∆T

)
: tk

S,R
+ tTO ≤ t < tk

A,NRX
, (26)

where tTO is a given timeout measure. In order to ease the

control formalism, a boolean variable is created, which stores

the result of a packet dropout check. Formally, let, ∀k ∈ N,
ϑ (k) ∈ {0, 1} be evaluated according to the following

∃t ∈ (tk
S,R
, tk
S,R
+ ∆T ) :

tk
S,R
+ tTO ≤ t < tk

A,NRX
=⇒ ϑ (k) = 1, (27)

else ϑ (k) = 0. Let ννν∗(k) = ν̂νν (k − l), l ∈ {1, . . . , P̄}, be the last
available received control input, resulting from the occur-

rence of l consecutive packet dropouts. Formally,

∀k ∈ N, ννν∗(k) =

{
ν̂νν (k) if ϑ (k) = 0

ννν∗(k − 1) else.

(28)

By these considerations, at every k ∈ R, the robot applies
the last available control input for that iteration, i.e.

ν (k) = [ννν∗(k)]ϖ(k) , (29)

where ∀k ∈ N,

ϖ(k) = 1 + min

l ∈{0, ..., P̄ }:
ϑ (k−l )=0

l . (30)
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Under Assumption 2, it is evident that the employed strategy

guarantees that

∀l ∈ {1, . . . , P̄}, | |ν̌ (k + l)− [ννν∗(k)]l+1 | | � ||ν̌ (k + l)− ν̌ (k)| |,
(31)

thus proving the state prediction of Eq. (22) is better than

using the last available measurement as is.

A.2.1 Practical Control Implementation. However, in a prac-

tical implementation, Assumption 1 cannot be guaranteed,

as solving a numerical integration problem requires a time

which is incompatible with the constraint ∆T . Instead of a

state prediction based on Eq. (5), a state prediction based on

the linear discrete-time model Eq. (11) is employed, which

requires, under a computational point of view, only a matrix

product. Thus, the following control input is computed and

sent to the plant at each iteration k :

∀k ∈ R, ˜ν̂νν (k) =
[
˜ν̂ (k), ˜ν̂ (k + 1), . . . , ˜ν̂ (k + P̄)

]
∈ R2×(P̄+1),

(32)

where

∀k ∈ N, ∀l ∈ {0, . . . , P̄}, ˜ν̂ (k + l) = fν
(
˜x̂(k + l)

)
, (33)

with

∀k ∈ N, ∀l ∈ {0, . . . , P̄},

˜x̂(k + l) = Ad ˜x̂(k + l − 1) + Bd ˜ν̂ (k + l − 1), (34)

and

∀k ∈ N, ˜x̂(k − 1) = x(∆T (k − 1)), (35)

which is the last available measurement at the controller at

iteration k .
For the purpose of the current development, the employed

control law is a discrete-time LQR, i.e. for an arbitrary s ∈ R6,

fv (s) = K′s, (36)

where K ∈ R6×2 is computed with the Riccati equation. Any
interested reader can �nd a valid tutorial in [14, p. 170].
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