DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Integration of Prior Knowledge for

Regression and Classification with Sparse
Grids

Lukas Krenz

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Integration of Prior Knowledge for
Regression and Classification with Sparse
Grids

Integration von Vorwissen fiir Regression
und Klassifikation mit diinnen Gittern

Author: Lukas Krenz
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Valeriy Khakhutskyy, M.Sc.

Submission Date: September 15, 2016

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, September , 2016 Lukas Krenz

Acknowledgments

‘Yes, it's pretty dark in here,’ said the professor. ‘But there are miracles that can only occur in the
dark.’

‘Where's the exit, please?’

‘You don’t want to try out my oracle?’

‘Er, to be honest: no. I'm not feeling too good and I've had it up to here with this fairground
hocus-pocus.’

Nightingale's eyes flashed and something inside his head crackled ominously. ‘Hocus-pocus?’ he hissed.
‘This isn't hocus-pocus, it's scientific exactitude!’

(Walter Moers - Rumo and His Miraculous Adventures)

Darkness is the natural space for even small scientific works. But next to darkness, just
around the corner, lingers the light of social interaction.

I want to thank Prof. Bungartz for the chance to work on this exciting topic. Special
thanks goes to my advisor Valeriy, who managed to steer me in the right direction
and always had time to answer any of my questions. His valuable feedback not only
improved the quality of this thesis, but also improved my knowledge of scientific
writing.

My gratitude extends to my friends and family, who always managed to motivate
me. A honorary mention goes to my friend William, who did the (mostly) thankless
task of proof-reading this thesis. Of course, only I am to blame for all errors left.

Without any of the mentioned people, this thesis might have been impossible. In any
case, it would have been a far less enjoyable experience.

1ii

Abstract

This thesis discusses different ways of imposing prior knowledge about datasets on
the sparse grid model for supervised learning. We introduce a Tikhonov regularization
method that uses information about the smoothness of the function we want to ap-
proximate. We also present the sparsity-inducing penalties lasso, elastic net, and group
lasso. The different regularization approaches are compared with the standard ridge
regularization. Because some regularization penalties are not differentiable, we discuss
the fast iterative shrinkage-thresholding algorithm and show how it can be used in
conjunction with our added regularization methods. Furthermore, we modify the grid
generation procedure. The first discussed method is generalized sparse grids, which
allows us to control the granularity of the grid. The second method is interaction-term
aware sparse grids, which are used to construct smaller and more efficient grids for
image recognition problems. All methods were implemented with the SG++ library
and showed promising results for both artificial and real-world datasets.

Zusammenfassung

Diese Bachelorarbeit diskutiert verschiedene Wege, vorheriges Wissen tiber Datensitze
auf das Lernen mit diinnen Gittern zu iibertragen. Wir fithren die Tikhonov Regular-
isierung ein, die Informationen tiber die Glattheit der Funktion, die wir approximieren
wollen, benutzt. Wir prédsentieren aufierdem die Regularisierungsmethoden Lasso,
Elastic Net und Group Lasso, die alle zu diinnbesetzten Losungsvektoren fithren. Die
verschiedenen Methoden werden mit der klassischen Ridge-Regularisierung verglichen.
Weil einige Funktionale nicht differenzierbar sind, diskutieren wir den “Fast Iterative
Shrinkage Thresholding” Algorithmus, und zeigen, wie er mit den neu hinzugefiigten
Regularisierungsmethoden benutzt werden kann. Desweiteren modifizieren wir den
Gittergenerierungsalgorithmus. Die erste Methode heifst verallgemeinerte diinne Git-
ter und erlaubt uns, die Granularitiat der Gitter zu verdndern. Die zweite diskutierte
Methode sind Gitter, die Wissen tiber Interaktionsterme benutzen, was niitzlich fiir
bildverstehende Verfahren ist. Alle Methoden wurden mit Hilfe der SG++ Bibliothek
implementiert und zeigten vielversprechende Ergebnisse fiir kiinstliche und echte
Datensitze.

v

Contents

Acknowledgments e iii
Abstract e iv

1 Introduction e 1

2 Sparse Grids & Learning o 3
2.1 SPARSE GRIDS e 3
2.1.1 Basis functions e 3
2.1.2 Full & Sparse Grids e 4
2.1.3 Adaptivity e 7
2.2 LEARNING WITH SPARSE GRIDS e 7
2.3 SOFTWARE e 9
3 Regularization Methods e 11
3.1 REGULARIZATION THEORY e 11
3.2 TIKHONOV REGULARIZATION e 12
3.2.1 Theory e 13
3.2.2 Implementation e 14
3.2.3 Results & Discussion e 15
3.3 SPARSITY-INDUCING PENALTIES e 21
3.3.1 Proximal Methods e 25
3.3.2 Implementation e 31
3.3.3 Results & Discussion e 32

4 Grid generation

4.1 GENERALIZED SPARSE GRIDS

4.1.1 Theory

4.1.2 Implementation

4.1.3 Results & Discussion

4.2 INTERACTION-TERM AWARE SPARSE GRIDS
4.2.1 Theory

4.2.2 Implementation

4.2.3 Results & Discussion

e 6 o6 o o o o o o
BN
N

5 Conclusion e 52

A Datasets o 54
Bibliography e 56

CHAPTER 1 -

Introduction

The importance of machine learning and statistics cannot be overstated. They both ~ Machine
supply techniques that are useful for data analysis and forecasting that power many Learning
scientific achievements. Data is becoming more and more important for companies
as well, for example to predict future business outcomes, to generate more efficient
advertisement, and so on. Many usage scenarios have one thing in common: They are
complicated problems with a vast supply of data.

Throughout this thesis we will discuss supervised learning methods that are based Sparse Grids
on the sparse grid methodology. Sparse grids is a family of closely-related discretization
techniques that originates from numerical partial differential equations. It approximates
functions with many simple basis functions. In comparison to a full grid, sparse grids
represent a rather economical approach. They scale far better for higher dimensions,
which is even more critical for machine learning than it is for other numerical problems.
This is because while a ten-dimensional differential equation might be called high-
dimensional, a ten-dimensional dataset is merely low-dimensional. In other words,
sparse grids break the curse of dimensionality to some degree [BGos]. For some
problems, this is not enough. Very-high dimensional problems still suffer from the same
malediction. Fortunately, modern sparse grids research is concerned with economic
solutions for challenging problems.

While techniques such as adaptive grids [’fl10] do not manage to turn the malediction
into a benediction, they still mitigate some of the torment. Sparse grids are ideally
suited for complicated problems, as they scale well with larger data and because they
can solve arbitrarily complex problems through a combination of their solid theoretical
foundation and the continuous development of new refinement strategies. This eclectic
approach leads to the effect that while they might not be the best strategy for a specific
problem, they are a very robust strategy, which can be used for a plethora of diverse
tasks.

Sparse grids have a long history consisting of a vast array of theoretical arguments.
While they are thoroughly studied from a functional theory background, discussions
about their statistical interpretation are rather new [Kha16]. In this thesis we will focus
on their statistical properties by trying to fit them into an intuitive and simple statistical
framework.

Chapter 1. Introduction

The goal of this thesis is to introduce and evaluate different ways of integrating
prior knowledge into our data mining procedure. In this context, prior information
corresponds to something akin to the standard Bayesian prior. This prior represents
assumptions, which can be either drawn from the dataset or from inherent properties
of the sparse grid methods. Following the dogma that more data is always better than
fewer data, more prior knowledge can always be helpful. This is only natural, because
it is always easier to create useful models by starting with more (correct) assumptions
about the true model.

The thesis starts with a chapter explaining the needed preliminary mathematical
techniques and especially the fundamentals of the sparse grid framework. We then look
at different ways of including prior information into this learning method. We make
the following contributions:

e In chapter 3 we evaluate different regularization methods that help us to impose
smoothness constraints on our model and allow us to simplify our models. We
begin with a discussion of regularization theory and then segue into an analysis of
two fundamental methods: Tikhonov regularization and sparsity-inducing penal-
ties. The regularization methods represent different assumptions. We present two
methods that show promising results under only mild conditions, and methods
that are better suited for problems where we can make stronger assumptions
about the data. The chapter also contains a discussion of an alternative state-
of-the-art solver for regularized linear systems that is able to handle the newly
added methods.

e In chapter 4 we evaluate different grid construction methods. In contrast to the
chapter before, we use our prior knowledge to modify the grid generation process,
which is more efficient than the regularization approach, but also requires stronger
assumptions than the regularization approach. We first discuss a generalized
form of sparse grids that we can use to modify the granularity of the generated
grid. Secondly, we introduce interaction-term-aware sparse grids that allow us to
construct grids that only include a subset of all possible interactions. The methods
discussed in that chapter enable us to tackle very-high dimensional problems that
are impossible or inefficient for regular sparse grids.

We will use multiple artificial and real-word datasets. To improve the performance
of our method, we used some pre-processing steps. They are all documented in
appendix A.

Prior
Knowledge

CHAPTER 2 -

Sparse Grids & Learning

2.1. Sparse Grids

Sparse grids is a discretization technique that originates from numerical partial differ-
ential equations. Even though they can be used for a diverse set of problems, we will
only build up the exact amount of theory that is useful for our further study.

This chapter starts with a short description of the adaptive sparse grid technique and
then progresses to our application of choice: supervised learning. The discussion of
sparse grids follows [BGoz; Pflio; Kha16].

2.1.1. Basis functions
As our first building stone we define the “mother hat” function
h(x) =max (1 —|x|,0).

We now define a one-dimensional linear basis function for a level 1 and an odd index
i<2t—1by
@(x); =h(2x—1). (2.1)

The basis function defined by the former equation are called the linear basis func-
tions [BGo4]. These basis functions assume that the function we want to approximate is
zero on the boundaries. This is why we use the similarly constructed “modified linear
basis functions”, as defined by Pfliiger in [Pfl10]:

1 ifl=1Ai=1,
22t if x € (0,217,
x o ifxel] Fl>1AL=1,
x) 0 otherwise,
PLilx) =
’ 2 —i4+1 ifxe[1=2""171],
xRl bl Vs A=,
0 otherwise,
h(2'x —1) otherwise.

They are identical to the linear basis functions (2.1), except on the boundaries, where
they use extrapolation. Note that the modified linear basis is constant for level one.

1_
Dimensional
Basis

Chapter 2. Sparse Grids & Learning

A visualization of all one dimensional basis functions for level three can be seen in
figure 2.1. Note that they are placed on a regular one-dimensional grid.

1.0 P3,1 93,3 935 93,7 20 P31 03,7
= 0.8 = 15
= 0.6 = 1.0 3,3 P35
o 0.4 o
S 02 S 05

0.0 L 0.0 |

0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 08 1.0
X X
(a) Linear basis (b) Modified linear basis

Figure 2.1.: One dimensional basis functions for level three.

We define the useful shorthand notation of multi-indices, which represent a collection
of indices. Arithmetical functions act on multi-indices element-wise, as does the relation

a<pB < Vi < Pi.
The 1; and the maximum-norm are defined for multi-indices by

ot =D o, [&loo = max a.
1<i<d 1sisd

We use 1 and 2 as a short-hand for (1,...,1) and (2,...,2) respectively.
We can then construct the d-dimensional basis functions with the tensor product d-
construction Dimensional

d Basis
eri(x) = [| euu.(x0),
k=1
where 1 corresponds to the levels and i to the indices used by the basis function [BGo4].
2.1.2. Full & Sparse Grids
Using the index-set [Kha16] Hierarchical
Subspaces

Gi={Li) e NxN |1<i <2%—1,i,0dd, 1 <t<d},
the d-dimensional basis functions span the hierarchical subspaces

Wy =span{dr; | (L,1) € Gy}

Chapter 2. Sparse Grids & Learning

—

——
=

%
T
R
e
.~.
—
=

A

x

‘\ J)
f\\}\' ‘\}; i\w“ "M\

\\\i

\\\é\\\

"u‘\\\ \ \\ :m }

Figure 2.2.: Hierarchical two-dimensional subspaces up to level three. With standard
linear basis functions.

Figure 2.2 shows all two-dimensional subspaces up to level three. Note that the basis
functions are placed on a regular grid.

Using those subspaces, we can create the set of grid points G;,* of the full grid for a
level n and its corresponding approximation space V, *

=JGu

Meo<n

=P w.

U<

The number of basis functions of the full grid approximation space [V;*| is in O(2™¢).

Full Grid

Chapter 2. Sparse Grids & Learning

We can represent every function f(x) in V;* by

f(x) = Z ‘Xg(Pg(x)/ (2.2)

geG

as a sum over all grid points that is weighted by the so called hierarchical coefficients
or surpluses o.

Let Q = [0,1]4 represent a d-dimensional interval. We now consider functions
f: O — R with bounded weak mixed second derivatives
olkh
D*f =

where k is a d-dimensional multi-index. In other words, we consider functions that are
sufficiently smooth. These functions form the Sobolev space [Kha16]

HPX(0Q) = {f: O = R | D*f < o0, [klso < 2, floa—o)-

For this function space sparse grids is a discretization method that represents a
reasonable trade-off between accuracy and efficiency. By exchanging the 1., with the
ly-norm we get

Gh= U o6
[y <n+d—1

VO = @ wy, (2.3)
i <ntd—1

which correspond to the grid point set and the approximation space of sparse grids
respectively [BGos]. Again, we can split every function f(x) V¢ into a weighted sum
over all basis functions. A sparse grid for a level n has only |G%| € O(2™n%1) grid
points. Figure 2.3 shows a visualization of both grid types for a two-dimensional grid
with level four.

(a) Full Grid (b) Sparse Grid

Figure 2.3.: Grid visualization for 2-dimensional grids with level four.

Function
Space

Sparse Grid

Chapter 2. Sparse Grids & Learning

2.1.3. Adaptivity

Sparse grids work best if the function adheres to our smoothness assumptions. Func-
tions that are not well behaved, such as functions that are not smooth in some parts
of their domain, are more difficult to handle. Pfltiger devised an adaptive technique
that helps us to approximate challenging functions in [Pfl10]. Instead of relying only
on the theoretically optimal results of sparse grids for functions in H2. , he described
an optimization process to refine grids so that they adapt to the circumstances of the
problem.

Because the ideal grid is computationally hard to calculate, a greedy algorithm that
approximates the optimal solution is used [Pfl10]. The idea is quite simple: we create
new grid points that are likely to capture additional information, close to existing
points. An example can be seen in figure 2.4. For a more elaborate discussion we refer
the interested reader to [Pfl10].

Figure 2.4.: We start with a small 2-dimensional grid with level 3. The first picture
shows the standard grid, the other two show one adaptivity step each. The
red points are the points created by the adaptivity step.

2.2. Learning with Sparse Grids

Let the set

T={x,y)} 0,1 xy
be a set of labelled examples with x = x1,x2,...,xq as predictors and y as the target
variable. Predictors that are not in [0, 1] need to be scaled. This set represents our dataset.
The goal is not interpolation, as we do not want to find a function that fits the examples
exactly. We rather want to find an approximation of our function that generalizes well,
i.e. a function that captures the structure of the training data and can be used to predict
the target variable for different, yet unseen data points.

Supervised
Learning

Chapter 2. Sparse Grids & Learning

We differentiate between

Regression if we want to predict a continuous vy,

Classification if we want to predict a discrete value, for example a class.

In this thesis we will mostly see examples of regression, the last chapter contains an

example for a high-dimensional classification problem.
Let ¢p(x): R¢ — R™*! denote a vector valued function consisting in all m d- Regression

dimensional basis functions evaluated at a point x with an associated weight vector

o € RT™. We can then express our prediction for y as

9(x) =) o5e;(x) = aTd(x),

j=1

which is a weighted sum of the basis functions, closely related to equation (2.2).

1.00

0.75

0.50

X2

0.25

0.00

ooOOOOoO
v O

OOOO

0000,

Q O
(® O
OOD :OO
OO0

Jaeee

O F*
00000

0.000.250.500.751.00
X1

(a) Original data.

$o(x)

$o(x)

0.2
0.15
0.1
0.05
0.0

0.2
0.15
0.1
0.05
0.0

| TP 4 ‘o. o

W
¢1(x) $2(x)

boo o | YA 4
%éQ %9@

00 02 0400 02 04
$3(x) $a(x)

(b) Sparse grid perspective of the data.

Figure 2.5.: Feature transformation for the circle dataset using a level two grid with
standard linear basis.

We can view the sparse grid model as a feature map that transforms the originally Feature
d-dimensional dataset into a new m-dimensional dataset, where one basis function Transforma-
represents one dimension of the sparse grid approximation space [Kha16]. A simple tion
example is shown in figure 2.5. We can see that the original dataset is not linearly
separable, while the sparse grid representation is. Usually we have more dimensions m

Chapter 2. Sparse Grids & Learning

than original dimensions n. We then define the model matrix ® € R™*™ as

dr(x1) dalx1) ... Pmlx1)

d1(x2) dalx2) ... dm(x2)
D(x) = ,

P1(xn) d2(xn) ... Pmlxn)

where each row corresponds to one datum of the dataset and each column is one of m
new features.

We can then perform linear regression using the matrix @ as our design matrix. This
perspective is useful, because it relates classical statistical methods with sparse grid
learning and thus allows us to share common results. The optimization goal is then
given by

mo%n||d)oc—y||§+n7\8(oc), (2.4)

where 8(«) is a regularization operator and A is a constant. The regularization parameter
A is scaled by the number of data points n. This least-square problem can be solved for
differentiable 8 by a gradient-based solver.

Adaptivity can be integrated into this process by performing a refinement step after
solving the optimization step, iterating until a satisfactory performance is achieved.
We select the points that should be refined by calculating the mean squared error
(msE) for the model and then refine the grid, starting with the points with the highest
contribution to the error.

A binary classification problem can be transformed into a regression problem by
relaxing the target y. We set y; = 0 for each data point when the datum belongs to the
first class and y; = 1 if it does not. The prediction of the model can then be interpreted
as a certainty that the datum is a member of the class.

To solve a multi-class-classification problem, one-vs-all classification is used, for
which we transform the problem into multiple binary classification problems. We
predict the target for an unseen data point by calculating the results for each binary
estimator and then report the class label of the learner that returned the largest certainty.

This implies that all methods that improve the performance of the regression pro-
cedure also very likely lead to better classification results because we are performing
classification via regression.

2.3. Software

Throughout this thesis we will use the following libraries:

Optimization

Classification

Chapter 2. Sparse Grids & Learning

SG++ is a sparse grid toolbox implemented in C++. This library was used for all
experiments and contains all needed methods to recreate our experiments. Every
method described in the following chapters was integrated into SG++ [Pfl10].

Scikit-Learn is a Python machine learning library. We used it to implement cross-

validation procedures and to perform grid-searches for hyper-parameter tun-
ing [Ped+11].

BayesOpt is an implementation of Bayesian optimization procedures. It was used for
hyper-parameter search as well [Mar14].

Matplotlib is a popular Python plotting library with which we created all graph-
ics [Huno7].

10

CHAPTER

Regularization Methods

During the discussion of equation (2.4) we neglected the regularization operator
§: R4 — R. In this chapter we focus on this operator exclusively. We start with a
short introduction to statistical regularization theory and then compare two groups of
regularization methods: Tikhonov regularization and sparsity-inducing penalties.

We will use the 1,-norms for vectors

Jedly = (5 aw);,

acx

lim |||l =maxa
p—ro0 acx

in this chapter.

3.1. Regularization Theory

Regularization helps us to train models that not only fit the data but also generalize
well. To understand how regularization works, it is helpful to decompose our error
functional. Our model assumes that there is a relation between the predictors x and the
target variable y that can be expressed as

y =f(a)+¢, e ~N(0,0%),

where f(«) is the function we want to approximate and ¢ is normally distributed noise.

Consider the expected prediction error at a point x [FHTo1]:
N2 . 12 .
Pred. error (x) = IE [(y — f(x))] = Bias [f(x)] + Var [f(x)] + 02 (3.1)

with

11

Bias-
Variance
trade-off

Chapter 3. Regularization Methods

where f(x) denotes our approximation of the real function f(x). We call equation (3.1)
the bias-variance trade-off. This equation splits the error into three different parts:

Bias is the error caused by assumptions the model makes,
Variance is the fluctuation of the model around the mean,

Irreducible Error (o) is the error caused by noise that is inherent to the relation between
the predictors and the target variable.

Following the principle of Occam’s razor—parsimonious models are better—all
regularization methods penalize complexity. Using regularization leads to smaller
and simpler models, which increases the bias. Of course, increasing this part of the
error term makes no sense, if we would not get a payoff. Regularization decreases the
variance, thus making our model more robust. In this chapter we consider regularization
methods that have both a scaling parameter, that controls the strength of our simplicity
assumptions, and (sometimes) parameters that we use to modify the kind of our
assumptions. We call the parameter that controls the regularization strength A.

The choice of this parameter is important: If we increase A, we exchange more bias
for variance. This is why equation (3.1) implies a trade-off—we cannot have the cake
and eat it too! We usually find the ideal A by a more-or-less intelligent trial and error
process. To do this, we train a predictor for each A we want to consider on a subset of
our data (called the training set), and test its performance using cross-validation (cv).

Another way to reason about regularization is as a method to encode our assumptions
directly into the training process. Many regularization methods—and all mentioned
in this chapter—can be viewed from a Bayesian perspective, which gives an intuitive
explanation of the effect of our assumptions.

The choice of the regularization functional is crucial. We do not know which one
performs best without training a model. Sometimes we can encode knowledge about
the dataset structure but this is often quite difficult. Each method encodes different
assumptions but all have in common that they decrease the model complexity.

3.2. Tikhonov Regularization

Tikhonov regularization is one of the most commonly used regularization methods
for ill-posed problems. It is also widely used to regularize regression, which leads to
solutions with a larger bias but with a smaller variance. We will show the general form
of this penalty first and then adapt the penalty to sparse grid learning.

12

Occam’s
razor

Finding A

Prior
Information

Chapter 3. Regularization Methods

3.2.1. Theory

We can use Tikhonov regularization by setting the regularization penalty § in equa-
tion (2.4) to
8 = |Tall3, (3-2)

where T is a linear operator. The overall optimization goal is then given by
min @ o — |3 +nA|Te3. (3-3)
We can also view this problem in the constraint minimization form

minimize |[®x—y ||§

subject to T3 <1, (3-4)

for a certain constant 1. We can see from this formulation that Tikhonov regularization
forces our scaled weights « to lie inside a d-dimensional sphere with a diameter of
length 1. There is an one-to-one correspondence between 1 in equation (3.4) and A
in equation (3.3). Both variables determine the constraints. Tikhonov regularization fits
into a Bayesian framework. We can interpret it as a multivariate-Gaussian prior on the
weights with zero mean and covariance matrix I'~! [KSo6]. The prior is thus distributed
as

o ~N(O, T). (3-5)

A common choice for T is the identity matrix as proposed in [Pfl10]. This corresponds
to a penalty on the summed squared values of the weights. It is a Gaussian prior with
the identity matrix as its covariance matrix. In statistics, this method is called ridge
regression [FHTo1].

The identity Tikhonov matrix assumes that all weights are distributed with the
same variance. Luckily, we can do better for the sparse grid method. Following the
assumption of equation (2.2), we can express every function f € HJ'X as a weighted sum
of basis functions. For these functions the following upper bound on the hierarchical
coefficients «y; holds:

o] < 2797200 D2flo € O (2721), (3.6)

where the differential operator norm only depends on the function f and neither on
the dimension nor the level of the basis functions [BGoy]. Because the dimension is
constant for a given grid we can safely exclude it.

This fact can be used to implement a regularization method that is better suited
for functions in HZ, . We impose an improved prior on the weights using Tikhonov
regularization with the matrix

Tii= clth—4d, (3.7)

13

Diagonal
Matrix

Chapter 3. Regularization Methods

for a constant ¢ [Kha16]. For ¢ = 4 this corresponds to a prior on the variance of the
weights that is identical to the upper bound given by equation (3.6) up to a multiplicative
constant. A different ¢ can be used as well, we can either treat ¢ as an inherent property
of the method or as an additional hyper-parameter. We use the dimension d as a
normalizing factor, this way the prior corresponds to the series (1,1/4,1/1s,...). The
resulting prior is depicted by figure 3.1 for a two dimensional grid.

1/64 1/16 1/64
1/64
1/64 1/16 1/64 1/4 1/64 1/16 1/64
1/64
1/64 1/16 1/64
1/64
1/641/161/641/41/641/161/64 1/641/161/641/41/641/161/64
1/64
1/64 1/16 1/64
1/64
1/64 1/16 1/64 1/4 1/64 1/16 1/64
1/64
1/64 1/16 1/64

Figure 3.1.: Prior generated by equation (3.7) for a two dimensional grid with level four.
Each number is centered on a grid point and corresponds to the prior for
that particular weight.

3.2.2. Implementation

Each regularization method that can be used with the conjugated gradient solver is
implemented in the SG++ library by specializing the base class OperationMatrix that
offers a method called MULT, which accepts a weight vector and returns a scaled version
of the weights. The OperationMatrix for the standard ridge regularization returns its
input weights unchanged.

14

Chapter 3. Regularization Methods

For our implementation we created a class OperationDiagonal that inherits from
OperationMatrix. The constructor accepts an argument that allows the specification of
the exponent base c. Its implementation of MULT multiplies each input weight with
the corresponding inverse prior. We calculate the multiplier for each weight during
the first call of the multiplication method and cache it until the grid size changes. This
means that we only need to perform this calculation once per refinement step. We
determine the multiplier for each grid point by simple iterating over all existing grid
points and save the result of equation (3.7). The cost of this operation is in O(n) and is
thus negligible.

The class OperationDiagonal can then be used in the same way as the implementation
of the ridge regularization.

3.2.3. Results & Discussion

To prove the effectiveness of the diagonal method, we first show empirically that
equation (3.6) holds for a simple function in H2 . . We then present results that indicate
that our proposed regularization functional shows improved results for an artificial
dataset, for which the upper bound for the surpluses holds by construction. Finally we
show benchmark results for two real-world datasets, comparing the identity matrix

with the diagonal operator.

1.0
1.0 0.8
/;’;’l’l””""','w\\\\\\\\\\\\ 0.6 0.6
\ 04 o
TR N 8
: 04
0.0
1.0
0.2
0.0 04 0.4 ..*;1,
X, 06 og 0.2 0.0
! ‘ 10 00 0.0 0.2 0.4 0.6 0.8 1.0

X1
Figure 3.2.: Surface and contour plot of the inverse parabola function 3.8

We first consider the inverse parabola Inverse
Parabola

f(x1,%x2) = 16x71(1 —x71)%2(1 —x2). (3.8)

15

Chapter 3. Regularization Methods

We created a two dimensional grid with standard linear basis functions and level three
that had 17 grid points. The construction also works for a different choice of level.
The dataset was then created by setting the features x;,x, equal to the coordinates of
one grid point each, the target y was then calculated using equation (3.8). The sparse
grid regression model trained on this dataset and the aforementioned grid was able
to recover the target perfectly, with a mean squared error smaller than the machine
epsilon. More interestingly, the calculated weights were identical to our prior. Note that
we did not perform regression but rather interpolation. While this does not prove that
this prior holds, it is a simple example for this construction.

But does our prior improve the results for a function, when we include our prior
knowledge about the weights bound? To test this hypothesis, we constructed another
artificial dataset. We first created a two dimensional sparse grid learner with level 3 and
sampled its weights from the normal distribution o« ~ N(0, 1), which corresponds to
the prior 3.5. The operator T is our diagonal matrix from equation (3.7). Let X € R™*?
be our design matrix, where each row is drawn from a two-dimensional uniform
distribution. We then created our target vector y by predicting the result of X using the
constructed model. Right now, this gives a trivial regression problem and to show that
the diagonal matrix yields better results, we need to add some noise to y. Let o denote
the standard deviation of y. We then crafted different variants of our dataset by adding
normal noise to the target variable with mean zero and standard deviation so, for some
values of s. The signal-to-noise-ratio (SNR) of the modified target is then given by 1/s.

SNR Exponent Base A Weights-RMSE CV-RMSE Onoise
4.0 4.0 4.7149 x 10—> 0.062738 0.274558 0.262597
2.0 4.5 1.4563 x 10~* 0.080263 0.545097 0.525194
1.0 6.5 2.5595 x 10~* 0.095 696 1.083762 1.050387
0.5 4.5 24421 x 1073 0.109 284 2.159250 2.100775

Table 3.1.: Combinations of A and exponent base for different sNrs that achieved the
best root-mean-square-error (RMSE).

We performed a grid search® for sparse grid estimators, testing on a grid consisting
of different choices for A and the exponent bases in the interval [2, 10] with stepsize
0.5. The results for the best parameters can be seen in table 3.1. Note that we achieved
the best cross validations errors with exponent bases that are close to four. There is
one outlier, the SNR = 1 case, which can be explained by the very noisy data. The
regularization parameter A and the RMSE for the weights decrease for a higher sNg,

' We used a Monte-Carlo cross-validation method with ten iterations and a 9:1 train-validation split for
this experiment, in contrast to the usual 10-Fold method, to compare the different estimators.

16

Recovering
Weights

Chapter 3. Regularization Methods

as expected. All results are close to the theoretical optimal error, which is equivalent
to the variance of the noise. Those results indicate that our proposed regularization
method improves performance for a dataset, which can be approximated by a model
with surpluses that follow the upper bound.

So far we have only seen examples for artificial datasets, which adhered to our
assumptions by construction. We now introduce our first real-world dataset, the concrete
dataset. For this dataset our goal is to predict the compressive strength of concrete, using
the recipe of its mixture and its age in days. The recipe consists of seven quantitative
predictors, all given in the unit kilogram per thousand liters. Concrete consists of
the ingredients cement, blast furnace slag, fly ash, water, superplasticizer, coarse
aggregate, and fine aggregate. The dataset was donated to the uct machine learning
repository [Lic13] by Yeh and was first published in their paper [Yehg8]. It consists in
1030 instances altogether. We split the data and used 80% for training and the other
20% solely as testing data.

We performed a grid search using a learner with level four for the diagonal regular-
ization with fixed exponent bases ¢ =4, and ¢ = 1, which correspond to the diagonal
and the identity matrices respectively. Each learner performed five adaptivity steps,
each refining three grid points. The performance of the estimators was estimated using
a standard 10-fold cross validation procedure.

10

Diagonal

e |dentity

CV-RMSE
~

105 104 103 102 101

Figure 3.3.: Results for the concrete dataset obtained with estimators with level four for
two different Tikhonov matrices.

17

Concrete
Dataset

Chapter 3. Regularization Methods

The results are shown in figure 3.3. We can see that our method resulted in better re-
sults than the identity regularization, although the difference between the two methods
was small.

We also tested the performance for the power plant dataset, for which a visualization
is given by figure 3.5 on page 20. The target variable of this dataset is the hourly energy
output for a combined cycle power plant. To predict this target, we use the temperature,
the ambient pressure, the relative humidity, and the exhaust vacuum as predictors.
This dataset appeared first in [T1if14] and was donated to the uct machine learning
repository [Lic13] by Tiifekci. It consists in 9568 instances, which were split into a
training and testing dataset at a ratio of 8:2.

We then performed a grid search over an grid of lambdas in the interval [107'°,10]
for learners with level 5, again using ten-fold cross validation. The grids were refined
five times, refining three points for each adaptivity step. The results can be seen in
figure 3.4. Note that this figure only shows the results in a small interval, all values of A
that were larger than the values shown resulted in far larger errors. Again, we can see
that the diagonal regularization improved the RMSE by small margin of roughly 0.03.
Note that this improvement is larger than the overall-effect of the identity regularization,
which implies that, in contrast to the ridge regularization, the diagonal matrix achieved
significant improvements over the non-regularized regression.

3.84

—— Diagonal
—— ldentity
3.83

382 == mmm e e e mm e e m R - S mmmmmm e mm e mmm e M o - -

3.81

CV-RMSE

3.80

3.78
109 108 107 106 105 104

Lambda

Figure 3.4.: Identity vs. diagonal matrix, for the power plant dataset with learners of
level five.

18

Power Plant
Dataset

Chapter 3. Regularization Methods

We can conclude from these results that the diagonal regularization method is able to
result in better outcomes if the datasets adhere to the assumptions of the method. The
tests on real-world datasets showed that our proposed method is a solid alternative
to the standard ridge regularization penalty, increasing the performance by a small
margin for a negligible additional performance cost.

19

Chapter 3. Regularization Methods

Figure 3.5.:

424 432 440 448 456 464 472 480 488
Hourly Energy Output

2-dimensional visualization of the power plant dataset. This visualization
was generated using the t-Distributed Stochastic Neighbor Embedding (T-
sNE) algorithm [MHo8]. Data points close to each other in the original, multi-
dimensional dataset are also close in this two-dimensional representation.
The target values are not considered for this calculation, they are only used

to determine the color of the points. The axes contain no useful information
and are therefore omitted.

20

Chapter 3. Regularization Methods

3.3. Sparsity-Inducing Penalties

We have seen different variations of Tikhonov regularization. All regularization methods
so far have one thing in common: they used the squared Euclidean-norm. In this section
we will look at three different methods, which all use different norms that induce
sparsity. Sparsity in this context means that some entries of the weight vector « are
exactly zero.

A first simple method is the so called lasso?, first published by Tibshirani in [Tibg6].
We can represent this procedure in a form similar to equation (3.4) for a constant

minimize |®ax—y|3

subject to |||/ <1,
which we can also cast into the more convenient Lagrangian representation
8 = llaf1.

We can see from the constraint form that the lasso only accepts solutions that are inside
a d-dimensional hyper-cube centered on the origin. Figure 3.6 compares the constraint
regions of the ridge and lasso regularization. Let & denote the non-regularized least
squares solution. All values of 1 > ||&||; shrink the predictors, some weights can be
exactly zero [Tibg6].

We can also view this smoothness function from a Bayesian perspective. In this
context, lasso regularization can be seen as a Laplace prior on the weights with zero
mean. A visualization of the prior for ridge and lasso regularization can be seen in
tigure 3.7. We can see that the Laplace prior puts more of its weight at zero and on its
tails than the normal distribution, which implies that solutions are more likely to be
exactly zero or larger than for the ridge estimate [Tibg6].

The lasso is an instance of a large family of regularization functionals, where the
penalty is realized as the 1, norm of the weights. We define the “1,-norm” ||«|o =
{a € a|a # 0}| as the cardinality of the support of «, i.e. the number of entries of a
vector that are not zero. The name “1,-norm” reflects that it is similar to an 1, norm
but is not a proper norm itself. The 1,-penalty corresponds to the standard best-subset
feature-selection method. Because the 1, norms are only convex for p > 1, the lasso can
be interpreted as the best convex approximation of the best-subset method [HTW15;
Tibg6].

After we convinced ourselves that the lasso indeed leads to sparse solutions, we will
discuss its weaknesses. An important modification of the lasso is the elastic net penalty,

2In the original paper [Tibg6] the name lasso was introduced as an acronym for “least absolute shrinkage
and selection operator”. We use the term in a more metaphorical manner, where the lasso stands for
an actual rope used to catch cattle, or in our case predictors. See also [HTW15].

21

Lasso

Laplace Prior

Relation to
Best-Subset

Elastic Net

Chapter 3. Regularization Methods

X2
X2

N

Figure 3.6.: Constraint regions for lasso and ridge regularization respectively. The red
contours correspond to a 13 loss function with optimal solution «*. The
tigure is inspired by figure 3.11 of [FHTo1].

tirst introduced in [ZHo5] by Zou and Hastie. Let n denote the number of data points
and p the number of grid points. The lasso does not show good results in the following
situations [ZHo5]:

e In the (n < p)-case, the lasso selects at most n predictors.

e When the predictors are highly correlated, the lasso selects one of the predictors
at random or shows otherwise unstable behaviour. If two variables are identical,
the lasso solution is not unique [HTW15].

e The Tikhonov regression shows better practical results than the lasso in the
correlated case.

All those reasons indicate that the lasso is not a good choice for some problems. The
Tikhonov regression is no direct competitor, because it does not lead to sparse solutions.

The elastic net solves those problems by adding some ridge regularization to the
lasso penalty. It is a compromise between both methods and is given by

AS(ex) = Allx[|2 +vlx[1, (3.9)

where A and vy are two independent parameters [ZIHo5]. Although this form is more
convenient for some of the following calculations, it does not yield a nice interpretation.

22

Chapter 3. Regularization Methods

0.5

Lasso/Laplace
’, . .
7\ Ridge/Gaussian
04 / ‘\ = = Elastic Net
(i 0\
] \
0.3] \)
7 \
’ \
’ \
0.2 ’ \
{ \
”, \
b, \,
. / \
/ \
% \3
-~ N
- = 3 =~ -
00 == ==
4 3 2 1 0 1 2 3 4

Figure 3.7.: Plot of priors for ridge, lasso and elastic net.

This is why we re-parametrize the previous equation as
AS(e) = A (1 =A2) [Ix[[2 +Azlx[11),

where A; determines the overall regularization effect and A, controls the relative
influence of the lasso term. From this equation we can recover both the ridge and the
lasso regularization, by setting A, to 0 or 1 respectively. The advantage of the method
is then obvious. While the lasso part of the penalty enforces sparsity, the ridge part
shrinks correlated variables together, thus stabilizing the feature selection [ZHo5]. A
visualization of the corresponding prior, a mixture of an Gaussian and a Laplace prior,
can be seen in figure 3.7.

Another useful generalization of the lasso is the group lasso that shrinks groups
of weights at the same time. Either all members of a group are selected, or none at
all. It was first developed by Yuan and Lin in [YLo6], then extended to the logistic
regression method in [MVBo8]. Zhao, Rocha, and Yu discussed some generalizations of
the method in [ZRYo09] and a discussion of the statistical properties is offered by [H+10].
The discussion here follows [HTW15], unless otherwise noted.

Let P denote a partition of «, i.e. a set of disjoint subsets whose union is a. We can
then define the group lasso as

ste) = 3 (VIpl) Il

pe?P

23

Group Lasso

Chapter 3. Regularization Methods

where [p| denotes the size of a group p and is used as a weighting factor. We can choose

to weight the groups differently but the square root of the cardinality is a useful factor

that is simple to calculate and works well in practice. If we would not include this

factor larger groups would be more likely to be included in the final model [HTW15].
Let

order(p) = [{i | pi # 0.5}|

denote the cardinality of the support for a grid point with coordinates p. A modified
linear basis function with coordinate 0.5 for a dimension is constant with respect to this
dimension. For example, the bias term is constant for all dimensions and has therefore
order zero. The points of order one correspond to all basis functions that are constant
for all but one dimension, and so on. We call all grid points with order larger than one
interaction terms, because they model the interaction between different dimensions.

We then partition our weights into groups consisting of all terms of the same order.

This grouping corresponds to the original predictors, including the interactions between

them. Algorithm 1 shows a possible algorithm which results in our chosen partition.

We use the fact that all grid points have a unique sequence number, which we can use
to refer to a specific basis function. This way of grouping variables and its usefulness
for the group lasso is also discussed in [Kha16]. Note that we can recover the original
lasso penalty by choosing partitions of size one.

Algorithm 1 Group Lasso: Group

Input: gridStorage that contains all grid points, weight vector «.

1: function Grour(gridStorage, x)

2: curGroup + o

3: groups < HashMap<vector<bool>, int>()

4 group Vec « vector<bool>()

5: for point € grid do

6: usedDims <« vector<bool>(false,. .., false)

7 for curDim € {0,1,...,d} do

8: coordinate <— GETCOORDINATE(point, curDim)
9: usedDims[curDim] + coordinate # 0.5
10: if usedDims € groups then
11 group Vec[GETSEQNUMBER(point)] < groups[usedDims]
12 else
13 group Vec[GETSEQNUMBER(point)] < curGroup
14: curGroup < curGroup + 1
15: return groups, group Vec

24

Order of grid
points

Grouping
Grid Points

Chapter 3. Regularization Methods

It can be shown that the group lasso penalty performs better than the lasso regular-
ization if the group structure is evident in the data. If the structure is not contained in
the data, the lasso shows stronger theoretical results. For a more elaborate discussion
of these and more results of the group lasso, we refer to [H+10].

All discussed sparsity-inducing penalties are not differentiable at zero. We were able
to solve the Tikhonov regularization method using a standard conjugated gradient
scheme. This is not possible for the methods presented in this section, because we
cannot rely on gradient information any more. This is why we need to solve these
problems using a gradient-free optimization procedure. Because we can still profit
from the structure of our problem, we do not have to use a black-box-optimization
algorithm. We present a solver for least-squares problems with sparse regularization in
the following section.

3.3.1. Proximal Methods

There are many solvers for the lasso and related methods. In this section we present
the Fast Iterative Shrinkage Tresholding Algorithm (f1sTA), first introduced in [BTog].
This solver offers a good compromise between flexibility and performance and we can
use it to solve all presented sparse regularization methods. The discussion of F1sTA
follows [BTog], the description of the proximal operators follows [’B14]. F1sTA is able
solve problems of the form

min F(e) = f(ex) + g(ex), (3.10)

[0 4

i.e. minimizing functions that can be expressed as a sum of a convex, smooth function
f() and another convex, possibly non-smooth function g(«). It is required that f(«)
has a Lipschitz-continuous gradient. This means that the following condition holds for
all possible vectors x and y for some positive constant L:

IVE(x) = VE{y)[< Lix -yl (3.11)

We call the smallest possible value of L the Lipschitz constant.
For our goal given by equation (3.10) we set f(«) to

fla) = 5 [Py,
such that the gradient of f is given by

Vila) = DT (dax—vy).
The Lipschitz constant for the gradient of f is

Lyt = (Omax (®@))?, (3.12)

25

Non-
differentiable
Penalties

Lipschitz
constant

Chapter 3. Regularization Methods

where omax corresponds to the maximum singular value [BTog]. Additionally we set g
to
gla) =nAS (&) .

We now define the Moreau envelope of a function g(«), which is given for any
A € (0,400) by
Mg(a,A) = inf {g(x) + (1/(2A)x — o[3} . (3-13)

It is a regularized, smooth version of our function g(«) that has the same minimum as
g(«x). This implies that every point that minimizes Mg (e, A) also minimizes our original
function g(«) [PB14]. Finally, we are able to define the proximal operator that returns
the infimum point of equation (3.13) by

prox, (&, A) = argmin {g(x) + (1/(2))||x — o3} (3.14)

The proximal operator can be viewed as a gradient step with stepsize A on the Moreau
envelope Mg (o, A)
proxg((x,7\) = a—AVMg(o,A).

This identity follows by rewriting equation (3.13) in terms of the proximal operator and
calculating the gradient [’B14]. We can use equation (3.14) to minimize Mg(a&,A) and
thus also for optimizing g(«). In the most general case equation (3.14) would imply
the need to solve a convex optimization problem. Fortunately we can find closed form
solutions for many functions. Consider for example g(«) = 0. In this case, the Moreau
envelope and the proximal operator are trivial and given by

Mo(e,,A) = inf {0+1/(2\) | —x[13},

prox, (o, A) = .

It is obvious that the minimum of Mg(«, A) is equivalent to the minimum of g(«), the
proximal operator corresponds to a gradient step on M.

We are now going to develop a minimizer for our composite goal that resembles a
majorization-minimization algorithm. To do this, we first define an upper-bound of
F(x) (majorizing) that we are then going to minimize (minimization) [PB14].

We first give a regularized linearization of f(«) at an arbitrary but fixed point y for
an L > 0:

filoyy) = fly) + (a—y, Viy) + L/2l|c—yll3, (3.15)
where the angle brackets (x,y) = yTx represent the inner product. The first two terms

are given by the first order Taylor expansion of f(«x) at the point y, the last term
can be interpreted as a trust-region or regularization that punishes large deviations

26

Moreau
envelope

Proximal
Operator

Upper
Bound

Chapter 3. Regularization Methods

from y [’B14]. We then combine this linearization with our second function to archive
an upper-bound of F(«):

Qrle,y) = f(y) + (x—y, VF(y)) + L/2| c—y||3 + g(x). (3.16)

We can see from equation (3.11) that Qi (&, y) is an upper-bound of F(«) if L is equal to
or greater than the Lipschitz constant of Vf(«x).
The minimizer for this approximation is then given as the fixed-point equation

Ty () (o*,L) = argmin{Qr (x, &™)}

= proxg(oc* — L 'Vf(a*), L")
:proxg(oc*—l_q(I)T((I)oc*—y),l_”), (3.17)

where a* denotes the optimal solution and L is the Lipschitz constant of Vf given by
equation (3.12) [BTog]. In this equation L is used to determine the optimal stepsize. This
minimizer is called proximal gradient algorithm (or proximal-splitting) in the literature,
because we first perform a gradient step on f{ () given by equation (3.15) and then a
proximal step on g(«) [PB14]. Using equation (3.17) repeatedly on a point will result in
the fixed-point, i.e. the minimum of the upper bound, and thus also in the minimum of
our original goal [PB14].

Algorithm 2 Iterative Shrinkage Tresholding Algorithm (1sTA) [BTo9]

Input: Lipschitz constant L of Vf, regularization parameter A

1: function IsTA(L,) > o is an initial guess
2 while not converged do

3 o Tg(a) (0, 1)

4 return «

Equation (3.17) is all we need to define the simple iterative scheme called Iterative
Shrinkage Tresholding Algorithm (1sTA), which is presented by algorithm 2. Originally
the name 1sTA was only used for solving the lasso problem, but is now used for
the more general algorithm as well. This iterative scheme is identical to the standard
gradient descent algorithm for our trivial function g(«) = 0.

So far we have only seen the proximal operator of a very simple function. Of
course, this is not yet satisfactory. The goal of this chapter is to describe a solver for
non-differentiable penalties. Fortunately, closed form solutions for the other needed

27

Fixed-point
minimizer

Proximal
Operators for
Regulariza-
tion

Chapter 3. Regularization Methods

proximal operators exist as well:

for Lasso (prox)\H‘x”] (oc,t)). =l —tAl, =[x —tAl ., (3.18)
for Ridge (proxw“”%((x, t)). = (oi /(14 2tA)),
for Elastic Net PTOXy o, 1y a2 (0 1) = (1/(1+267)) (proxy o, (e, 1))

for Group Lasso (proxys_ igiipy,(o0t)) = [1= (v/Ipl) (pl2) '] o,

where (x), = max(x,0) denotes the positive part of x and t is a stepsize. The regu-
larization parameters depend on the function g(«). We omit the derivations for the
sake of brevity, the interested reader refers to the survey paper [’B14]. By setting the
regularization parameter A equal to zero we again recover the gradient minimization
method.

These proximal operators can be used to define a minimizer for a non-smooth
function g. For example, combining equation (3.17) with the proximal operator for the
lasso functional g(a) = nAl|«|; given by equation (3.18) results in the minimizer

Toaflaly (06, L) = proxy o, (o* — L7 Vf(a*), L)

= [(a* =L 'Vf(a*)) —mAL'] | — [(a* =L ' Vf(a*)) —mAL '],

again given as a fixed-point iteration. In this equation the function [x], is applied
element-wise on its input vector. We can then use this minimizer with algorithm 2 to
compute a solution to the lasso problem. The fixed-point equations for the lasso and
elastic net regularization are computed analogously.

IsTA always converges to the global maximum, but only does so linearly [BTog].
To overcome this problem, Beck and Teboulle combined the 1sTA algorithm with the
accelerated gradient descent algorithm discovered by Nesterov. Nesterov’s accelerated
gradient descent is closely related to the ordinary gradient descent algorithm. The first
step is identical, each following step carries some momentum of the step before, thus
stabilizing the procedure. It is an optimal first-order optimization schema, i.e. one that
cannot be improved asymptotically. It achieves quadratic convergence. This property is
retained when combined with the proximal-splitting procedure algorithm 2, the result
is called F1sTA [BT09]. Each step of FIsTA evaluates the gradient and the proximal
operator once, just as 1STA does. This means that the accelerated algorithm has a
comparable cost for each iteration.

Another problem with algorithm 2 is its dependence on the Lipschitz constant of
Vf to determine the optimal stepsize. For our choice of f, the best constant L is given
by equation (3.12). To avoid this expensive calculation, we use a backtracking line search
to determine a suitable stepsize. In this line search procedure we use equation (3.16) as

28

Minimizing
Lasso

Nesterov’s
accelerated
gradient
descent

Linesearch

Chapter 3. Regularization Methods

an upper bound for equation (3.10). We do this by iterating and finding the smallest
L for which equation (3.16) is an upper bound. This always results in the Lipschitz
constant [BTog]. It is then straightforward to derive algorithm 3.

Algorithm 3 Linesearch [BToo]

Input: L>0n>1,«

1: function LINESEARCH(«x, L)
2 i+0

3 do

4 L «n'L

5: prox < mu (e, L)

6 i i+1

7 while F(prox) < Qr (prox, «)

8 return prox and L > Also return prox to avoid duplicate calculations.

We need to evaluate the line search once for each iteration step. It is possible that
this procedure finds a non-optimal L, i.e. an L that is larger than the Lipschitz constant.
This leads to a smaller stepsize, which is not a problem in practice because our
optimization procedure still converges, although slower than possible. We have to take
that into consideration for our choice of linesearch parameters. Usual values are L = 0.5
and n = 2 [SGB14]. Using algorithm 3, we can finally present an optimal first order
optimization algorithm, shown by algorithm 4.

It is of course possible to use a constant stepsize like in algorithm 2. To do this,
replace the line search with the minimal value of L and calculate m(«, L) directly. We
can also integrate the linesearch into the 1sTA algorithm, by replacing the fixed L with
a call to the linesearch subroutine. A comparison of the practical speed of 1sTa and
FISTA with constant stepsize can be seen in figure 3.8.

An alternative backtracking scheme for Fista is offered in [SGB14]. It offers the
same asymptotic convergence speed, but shows practical improvements for some
minimization problems. A discussion of F1sTA and other solvers for sparse grids with
sparsity-inducing penalties is contained in [Kha16].

29

Chapter 3. Regularization Methods

711.997698525

29.8186713792 | NN e

6.05476045565

Mean squared error

1 5 10 30 56 100 200 300 500
Number of Iterations

Figure 3.8.: Comparison of F1sTA and 1sTA, both with constant stepsize. The figure
shows the training MsE for 500 iterations with A = 0.1 for the training set of
the concrete data set. The dotted lines indicate the best value reached by
1STA. Note that F1sTA is able to return a better result after only 56 iterations
— compared to the 500 needed by 1sTA.

Algorithm 4 Fast Iterative Shrinkage Tresholding Algorithm (F1sTA) [BTo9]

Input: Initial guess for Lipschitz constant L of Vf, regularization parameter A

1: function F1sTA(L,) > o is an initial guess for o*.
2! Yy<—«x

3: t« 1

4 while not converged do

5: Kpefore <~ &

6: «,L + LINESEARCH(y,L) > Linesearch returns 7t (y) and the used L.
7 thefore < t

8: t < 1/2(1+ V1 +412)

9: Y < o+ (tpefore — 1) t! (& — Xpefore)

10: return «

30

Chapter 3. Regularization Methods

3.3.2. Implementation

RegularizationFunctions

GroupLassoFunction
RidgeFunction - lambda : double
- lambda : double - groups : map<coords, int>
- storage : gridStorage*
+ RidgeFunction(lambda : double) - groupMap : map<int, index>

- lastSize: int

+ GroupLassoFunction(lambda : double,

storage : GridStorage*)
- calculateNorm(weights : DataVector) : DataVector
- calculateIndices(weights : DataVector) : void

<abstact>
RegularizationFunction ZeroFunction
Q—
+ eval(weights : DataVector) : double + ZeroFunction()
+ prox(weights : DataVector, stepsize : double) : DataVector
ElasticNetFunction

LassoFunction -
- lassoFunc : LassoFunction

- lambda : double - - lambdazi : double
- lambda2 : double

+ LassoFunction(lambda : double)

+ ElasticNetFunction(lambda : double, 11Ratio : double)

Figure 3.9.: UML-class diagram of the implementation of the regularization functions.

As seen in figure 3.9 we define a base class RegularizationFunction that offers the two
methods EVAL and rProx, which calculate g(«) and its proximal operator respectively.
Every parameter that is needed for each functional is passed during construction,
this way we achieve a great amount of flexibility. Classes that use the regularization
functions do not have to be concerned about the definition or the parameters of the
functionals, they can treat them as a black box. We offer an implementation of the ridge,

31

Chapter 3. Regularization Methods

the lasso, the elastic net and the group lasso function, which resemble the definitions
outlined in this chapter. The group lasso function uses the following subroutines:

calculatelndices that partitions our weights into groups that share the same order. This
method is only called when the grid size changes, so only once during the first
solver iteration. When the grid size changes, e.g. due to an adaptivity process, the
groups are automatically recalculated. The results of this operation are stored in
the vector groups and the map groupMap.

calculateNorm is called once per evaluation of PRox and EVAL. It calculates the group
norms and the group size.

The ElasticNetFunction uses the LassoFunction to calculate the 1; part of its evaluation.

Additionally we implemented a ZeroFunction that can be used, when no regularization
is desired.

Our solver F1sTA is then implemented as a class with one template argument: the
proximal operator. We therefore have to first create a RegularizationFunction and then a
Fista class. Even though this might seem inconvenient, it allows the compiler to inline
all calls to both the function evaluation and the proximal operator, which get called
once per iteration. We defined a base class FistaBase that allows us to hold a pointer
not only to a specialized Fista object, but also to one where we do not know the used
RegularizationFunction.

FISTA itself is split into various subroutines, that allow a separation of concerns. This
leads to a very clean implementation that closely represents algorithm 4 in combination
with algorithm 3. All calls to the subroutines were inlined automatically, at least for
the used Gcc-compiler with the highest optimization settings. The Fista class has two
public methods. We use the first one, called sOLVE, to solve a specific problem instance
and the second one, called GETL, to get the last estimated Lipschitz constant. This
is useful to avoid a costly grid search after refining the grid, because the Lipschitz
constant is usually larger for a larger grid.

3.3.3. Results & Discussion

We begin this section by analyzing the implicit feature selection performed by all
discussed methods. To do this, it is helpful to use an artificial dataset. In our case we
use the Friedman1 dataset, first published in [Frig1]. Let x = (x1,...,%10) € R'° be a
uniformly distributed vector. We use x as our predictors, and define

y = 10sin(mx1x2) + 20(x3 — 0.5)% 4 10x4 + 5x5 + €, (3.19)

with ¢ ~ N(0,1) as additional Gaussian noise. Despite its simplicity, this dataset is
very useful for evaluating the regularization methods discussed in this section. Its
advantages are:

32

Friedmani
Dataset

Chapter 3. Regularization Methods

e The dataset is inherently sparse because five features are not correlated with the
response and are left entirely unused.

e It is completely additive with the exception of the x; x x, interaction term.

e The importance of each variable is directly visible from the definition, which
allows us to discuss the selection order. We can see that the contribution of the x4
term is the largest, followed by x5, x3, and finally x;,x, and their interaction.

e We know that the optimal RMSE is equal to the standard deviation of the noise
and is hence 1.0. The dataset can therefore be used as a sanity check.

Using a method discussed in [FHT10], we can calculate the value of A for which all
weights are exactly zero. The maximum A is given by

max; [(®@i,)]

)\max = }\ZTL

where the index i denotes the ith column of the matrix and A, is the amount of 14
regularization. For the group lasso penalty we have to consider the group structure as
well. In practice, the bias term is often the group with the largest weights, in which
case we can use the same formula. This is true for the Friedman1 dataset. We then
construct a logarithmic grid from Amax t0 Apin = €éAmax, Where ¢ is set to 0.001. It is more
efficient to start the path with all weights set to zero, see [FHT10] for a more advanced
discussion.

We calculated regularization paths for the lasso, the elastic net (with A, = 0.3) and
the group lasso using an estimator with level 2 for the Friedman1 dataset.

Weights

1 /

—a

0.0144088200251 0.0811813749718 0.456779297014

A

2.56695600853

Figure 3.10.: Regularization path for the lasso

33

14.4088200251

bias
x1
x2
x3
x4
x5
x6
X7
x8
x9
x10

Chapter 3. Regularization Methods

Figure 3.10 shows the path for the lasso, which first integrated the bias, then one x4
point, then one each of x,x;, and one x5 point. The only unneeded term included at
Amax Was a xg point with a very small weight. This agrees roughly with the importance
of the terms. Note that it did not select all grid points of a group at the same time. This
has the effect that the inclusion of the second term of the same group often leads to a
weight decrease of the first included term. In other words the magnitude of a weight
might decrease for a smaller regularization parameter.

R

Lasso path

bias

o

x2
x3
x4

x5

Weights

[—

X6
X7
x8
x9
x10

0.0144088200251 0.0811813749718 0.456779297014 256695600853
A

Figure 3.11.: Regularization path for the group lasso

The regularization path of the group lasso is depicted by figure 3.11. It performed a
more stable grid point selection and all grid points corresponding to the same group
were either in the model or not. There was no sparsity on a grid point level but rather
on the group level. As with the lasso, the x4 terms were chosen first, followed by the
x1,x2 terms at roughly the same time, the final chosen terms were the x5 and x3 ones. It
did not choose any unneeded point, even at the minimum A. Interestingly, the weights
at Amax for both the grouped and standard lasso were very similar.

The elastic net path, shown by figure 3.12, also selected the bias first. It then selected
one point of x1,x2,x4,and x5 each. One x3,x¢,x7,xs,xo and x1o terms were selected
next, which are all irrelevant features, with the exception of the x3 point. For the highest
chosen A all grid points were selected. We can see that the elastic net does not perform
proper feature selection when the ridge regularization dominates the lasso penalty. The
same reasons lead to the effect that the value of most weights were larger than in the
lasso estimate, which agrees with the weight prior. The result would look drastically
different if a value of A, close to one is chosen, which then approaches the lasso penalty.

Using the same method we calculated the regularization paths for the lasso and
the grouped lasso again for the Friedman1 dataset, but this time using a level three

34

14.4088200251

Group Lasso
Path

Elastic Net
Path

Chapter 3. Regularization Methods

bias

x3
— x4

x5
x6
X7

Weights

x9
x10

-2
0.0480294000835 0.27060458324 1.52259765671 8.55652002842 48.0294000835
A

Figure 3.12.: Regularization path for the elastic net with A; = 0.3

estimator. The results are depicted in figure 3.13 on the next page. We can see that
while the group norms were similar, the grid point selection of the group lasso was
more stable and selected points on a group level.

We saw some results that indicated that the feature selection works. The Friedman1 Concrete
dataset is not a good choice to discuss the real-world performance of our proposed Results
penalties, because it is too simplistic. This is why we return to the concrete dataset.

Results for the this dataset can be found in table 3.2. We performed a grid search over
A€ 10°1071,...,107% again using five refinement steps over three points each.

For the level four grid, the group lasso performed best, followed by the elastic net
with A, = 0.95 and the lasso penalty. We can see that we did not profit from a larger
amount of ridge shrinkage, even though a small ridge portion helped to stabilize the
result. The results indicate that sparsity on a group level was better than sparsity on a
basis-function level. Note that the testing-RMSE was best for the lasso. We have seen
that for a medium-sized grid all sparsity-inducing penalties showed solid results.

Does this situation change for a larger grid? The results for the level five grid showed
the same tendency. We can see that all methods achieved better results for the larger
grid, only the order of the methods is changed. For this experiment the lasso showed the
best results, followed by the elastic net with A, = 0.95 and the group lasso. This makes
intuitive sense: A larger grid needs more sparsity and sparsity on the group level is
not enough any more. The result for the elastic net is interesting, because we had more
grid points than data points. We would expect it to outperform the 1;-regularization,
because it should show a more stable feature selection in this case. All sparsity-inducing
penalties showed promising results for the larger grid as well.

Instead of comparing the average cross-validation error, we can also use the Akaike Akaike

information
criterion

35

Regularization A Regularization A Regularization A Regularization A

Fowrmroooooo Fowrmoooooo Fowrmroooooo Fowrmoooooo
B2 e W= o O LA =\ B - i R) B2 e W=D o O LA =\ B i R)
SERETZEZEE SERETZEZEE SERETZEZEE SERETZEZEE
bos - bos -
x1 x1
x1-x3 x1-x3
x1-x4 x1-x4
x1-x5 x1-x5 r
x1-x6 x1-x6
x1-x7 x1-x7
x1-x8 x1-x8
x1-x9 x1-x9
x1-x10 x1-x10
2 m 2 EEEEEE
x2-x3 x2-x3
x2-x4 x2-x4
x2-X5 x2-X5
X2-x6 X2-x6
X2-X7 Xx2-X7
x2-x8 x2-x8
x2-X9 x2-X9
x2-x10 x2-x10
x3-x4 x3-x4
x3-x5 x3-x5
X3-x6 X3-x6
§ X3-x7 § X3-x7
%—- x3-x8 %- x3-x8
= x3x9 = x3x9
2 x3-x10 2 x3-x10
— —
g x4-x5 g x4-x5
Ao x4-x6 Ao x4-x6
g' x4-x7 g x4-x7
> x4-x8 > x4-x8 .
x4-x9 x4-x9
x4-x10 x4-x10
x5-x6 x5-x6
X5-x7 x5-x7 .
x5-x8 x5-x8
X5-x9 X5-x9 .
x5-x10 x5-x10
X6 X6
x6-X7 x6-X7
X6-x8 X6-x8
X6-x9 X6-x9
x6-x10 x6-x10
X7 X7
X7-x8 X7-x8
X7-x9 X7-x9
x7-x10 x7-x10
x8 x8
x8-x9 x8-x9
x8-x10 x8-x10
x9 x9
x9-x10 x9-x10
x10 x10
- —] - —]
g z g : z = o = N W A G o g E g : ! o = N W A G o
o Number of Grid Points o Number of Grid Points
Group Norm Group Norm
(a) Lasso (b) Group Lasso

Figure 3.13.: Regularization paths for the Friedman1 dataset with level three. Each
figure shows two heatmaps. The first one shows the 1, norm of the group
terms, the second one presents the number of selected terms.

Chapter 3. Regularization Methods

Level Reg. Method A cv-RMSE Train-Grid Train-RMSE Test-RMSE
4 Group Lasso 1x1072 4.774 1385 3.133 4.032
4 Elastic Net (A, = 0.95) 1x 1072 4.868 1382 2.902 3.869
4 Lasso 1x1072 4.884 1382 2911 3.850
4 Elastic Net (A, = 0.5) 1x1072 4.927 1384 3.077 4.046
4 Ridge 2x1072 5.007 1470 3.120 4.198
4 Elastic Net (A, = 0.05) 1x1073 5.060 1367 2.483 3.813
5 Lasso 1x1072 4.582 6632 2.470 3.737
5 Elastic Net (A, = 0.95) 1x 1072 4.594 6632 2.460 3.742
5 Group Lasso 1x1072 4.650 6694 2.861 3.955
5 Elastic Net (A, = 0.5) 1x 1072 4.669 6633 2.400 3.844
5 Ridge 2x1072 4.709 6650 2.286 4.184
5 Elastic Net (A, = 0.05) 1x1072 4.730 6648 2.297 4.085

Table 3.2.: Results for the concrete dataset using different penalties. Entries are ordered
by cross validation error.

information criterion (A1c) [Akay4]. It is another way of comparing the relative quality
of various models. We can calculate it directly from the msE

A1c(pF,MSE) = 2df +nIn (MSE) + ¢, (3.20)

where DF corresponds to the degrees of freedom of the model and n to the number
of data points. The constant ¢ depends only on the data and can be safely omitted,
because we only compare models for a specific dataset [F-{To1]. Note that the Arc is
asymptotically equivalent to leave-one out cross-validation [Stoy7].

We use unbiased estimates of the true effective DFs for the identity matrix and the
lasso regularization. We start with the surprisingly simple solution for the lasso penalty

df(®, o) = rank(D 4(«))
with
Ala) ={a € ala#0},
where ® 44y denotes all columns of @ that are in the so-called active set A and
rank(®) corresponds to the rank of the model matrix ®@ [TT12]. If the model matrix ®

has full column rank the DFs are given by the cardinality of the active set [TT12]. The
solution for the identity matrix regularization is given by

2
o —A
2 7

df(@,0) =) =

i 1

37

Effective
Degrees of
Freedom

Chapter 3. Regularization Methods

where o; represents the ith singular value of ® [FHTo1]. For the sake of brevity, the
formulas for our other used penalties are omitted. Unbiased estimates for the elastic net
can be found in [TT12] and for the group lasso in [Vai+12]. The formula for the diagonal
Tikhonov regularization can be derived easily from the general formula presented for
example in [FHTo1].

Level Reg. Method A Train-Grid DpF Train-RMSE Alc Test-RMSE
5 Ridge 1.96 x 1072 6650 716.7 2.286 2796.22 4.184
4 Lasso 1.00 x 10—2 1382 518.0 2.911 2797.09 3.850
4 Ridge 1.84 x 1072 1470 558.0 3.120 2991.22 4.198
5 Lasso 1.00 x 10~2 6632 754.0 2.470 2997.94 3.737

Table 3.3.: Comparison of Aic for the concrete dataset. All results are ordered by Arc
in increasing order.

Table 3.3 shows the A1c for the best found ridge and lasso models for both level
four and five for the concrete data set. All estimators used five refinements on three
points each. We can see that the number of degrees of freedom did not increase linearly
with larger grid size. This is because we only used about one thousand training data
points, which was the limiting factor, rather than the number of grid points. While
the ridge penalty used more degrees of freedom for the grid with level four than the
lasso, the situation was reversed for the level five grid. The A1c for both methods was
comparable, it was smaller for both ridge models by a very small margin.

We can see that all regularization methods managed to perform well for a large grid
that has roughly six times more grid points than data points. The Cv-errors achieved
were better than the best results for both tested Tikhonov regularization methods.

CHAPTER

Grid generation

We will discuss methods in this chapter that allow us to impose our prior knowledge
directly on the grid generation process. This is a stark contrast to the methods in the
previous chapter, in which we applied our constraints during the learning process.
Even though these methods work well even with limited prior knowledge, they have
one major drawback: We always have to generate a complete sparse grid. This was
not a problem for low to mid-dimensional datasets, but is a limiting factor for higher
dimensional problems. To tackle very-high dimensional problems, we need to be able
to influence the grid generation.

We will discuss two modifications of the grid generation algorithm in this chapter. The
first one, generalized sparse grids, allows us to create grids with variable granularity.
The second method, interaction-term aware sparse grids, uses knowledge about the
importance of interaction-terms to create grids that are both smaller and more effective.

4.1. Generalized Sparse Grids

Generalized sparse grids allow us to create grids with a variable granularity. They can
be used to create smaller grids while retaining the approximation error, given some
additional smoothness constraints. They were first developed by Griebel and Knapek
in [GKoo]. A discussion about their usefulness for machine learning can be found
in [Gar+o4] and in [Kha16].

4.1.1. Theory

Despite the fact that the generalized sparse grid technique originates from an elaborate
functional analysis argument, they can be stated by two simple formulas. We only
need to change equation (2.3) to generalize our grid. The set of grid points for the
generalized sparse grid G| of level n and its corresponding approximation space V! is

39

High
dimensional
problems

Chapter 4. Grid generation

described by

=Gy (4.1)
Uy —Tlilo
<n+d—1-Tn

=Pwm.

U1 —Tlile
<nt+d—1-Tn
The constant T chosen in the interval (—oo, 1] governs our choice of sub-spaces and
thus also the granularity of the grid. Setting T to zero recovers the standard sparse
grid, higher values approaching one transform the grid to the form seen in figure 4.1d.
The limit T — —oo corresponds to a full grid. Note that even though the value of T is
continuous, it acts as a discrete operator. This is why the actual value of T does not
matter, different values can result in the same grid. An example for a two-dimensional
grid with level four can be seen in figure 4.1.

(@) T = —oo (b) T=0.0 () T=05 @ T=10

Figure 4.1.: Grid visualization for 2-dimensional grids with different Ts

The dimension of a generalized sparse grid space with level n and constant T can be
described by

dan T=1,
o@n Te(/n,1),

Vi< d O
Oo2™nd-1") Telo,1/n],
(

T—1

27T T <.

©)

We can see that the special cases T = 0 and T — oo are covered [GKoo]. While it is
possible to state a formula for the approximation error, it is quite hard to apply it to
machine learning problems, as the smoothness properties of real world datasets are
unknown. This means that it is hard to decide whether generalized sparse grids are
useful for a given problem without generating a model. We can view the generalized
sparse grids from a different perspective as well. A higher value of T decreases the

40

Chapter 4. Grid generation

number of higher-order interaction terms while the number of basis functions that only
model one feature is unchanged. The effect for a grid with dimension 4 and level 5
can be seen in figure 4.2. Note that the grid for T = 1 does not contain any interaction

10°
Order of terms
105 11
2
104 =3
iy I 4
>|.r>
103
102 i === === ===
10!
-inf 0.0 0.4 0.6 1.0

Figure 4.2.: Number of terms of each order for a grid with dimension 4 and level 5. The
bias term is not included in the graphic, it is contained in all grids.

terms. Smaller values of T increase the number of interaction terms until the full grid
is reached. Because the importance of feature interactions is hard to judge for most
problems, this heuristic is also difficult to apply.

4.1.2. Implementation

The implementation is quite simple. It was possible to modify the already existing
grid generation algorithm to include the changed inclusion criterion described by
equation (4.1). The resulting algorithm is given by algorithm 5, lines 11-15 correspond
to our changes. We used the functions CREATEPOINT, which generates a point for a
given level and index, and CREATEPOINTAT, which also generates a point, but this
time as a child of another point. The distinction between both methods is not important
here, because our algorithms do not rely on the hierarchical structure of the grid. Our
implementation is a direct translation of the pseudo-code.

41

Chapter 4. Grid generation

Algorithm 5 Generalized Sparse Grid Generation

Input: Number of dimensions, level n and granularity T

1: function GRIDGENERATION(dimensions, n, T)

2: for 0 < d < dimensions do

3 CreATEPOINT(d, 1, 1)

4 for (L) e{(Li) |[T<1<nAT<i<1? io0dd}do

5: CrEATEPOINT(0, |, i) > 1d-grid points for first dimension
6: for d < dimensions do

7: for p € GETALLGRIDPOINTS do

8: levelSum <+ P.GETLEVELSUM - 1

9: levelMax < P.GETLEVELMAX

10: I+ 1
11: while max(1, levelMax) < n do
12: left « (14 levelSum) — (T - max(l, levelMax))
13: right < (n+ dimensions —1) — (T -n)
14: if left > right then
15: BREAK
16: for 1 <i<2',1io0dd do
17: CreATEPOINTAT(d, L, i, p)
18: l1+1

4.1.3. Results & Discussion

Generalized grids work well in theory. To show their practical performance, we tested
two things that we will discuss in this section:

e In what way does the grid parameter T influence the regularization parameter A?

e Can we achieve a better performance with generalized sparse grids compared to
standard grids using a comparable number of grid points?

We performed 25 iterations of a Bayesian hyper-parameter search for A for the
Friedmani1 dataset with identity regularization and a generalized sparse grid for
different Ts and level four. Each learner performed five adaptivity steps refining three
points each. The results can be seen in table 4.1. In this case, the best results were

achieved for T = 1 and the smallest grid size, all other parameters overfit the data.

This happened because we used a small version of the Friedman1 dataset—it being
an artificially created dataset, it would be easy to create more samples and then fit an
arbitrarily large model. We can see from this example that generalized sparse grids

42

Friedman1

Chapter 4. Grid generation

T A cv-Grid cv-RMSE Train-Grid Train-RMSE Test-RMSE
—0.5 22762 x 1019 55413+ 18.5 1.246 5547 0.823 1.226

0 14539 x 104 2278.8+3.3 1.196 2277 0.845 1.179

0.5 7.7081 x 107> 640.8 £ 14.1 1.051 651 0.959 1.028

1 1.0432 x 104 391.2+7.2 1.031 395 0.976 1.015

Table 4.1.: Best results and used A for different Ts for the Friedmani1 dataset and an
estimator with level four. The cv-Grid sizes are reported with their standard

deviation.
T A cv-Grid cv-RMSE Train-Grid Train-RMSE Test-RMSE
—0.4 1.9276 x 1072 8468.7 +20.6 4.703 8470 2.275 4.215
0 1.9622 x 1072 6678.3 +27.1 4.709 6650 2.286 4.184
0.5 6.2935 x 103 1140.4 £ 23.9 4.771 1180 2.664 3.797
0.6 1.2700 x 102 712.7+£24.2 4.781 685 3.398 4.308
1 1.0149 x 102 517.9 +£23.3 4.929 516 3.628 4.508

Table 4.2.: Best results and used A for different Ts for the concrete dataset and an
estimator with level five. The optimal RMSE is 1.0.

allowed us to use a higher level, which corresponds to a larger amount of grid points
with order one than with standard sparse grids. Additionally the combination with
adaptivity allowed us to start with an estimator that only modelled few interaction
terms. Needed interaction terms were then created during refinement.

The parameter A describes the amount of regularization per grid point. We can see
no trend in the results for the Friedmani1 dataset for A. Only the value for T = —0.5
was smaller by some orders of magnitude. A possible reason for that might be the
same reason the sparse grid with T =1 showed the best result: Except for the (x; x x2)
interaction, the Friedmani1 dataset has no qualitative interactions, i.e. interactions
that are not inherently additive in effect. This implies that the additional interaction
points for larger grids would have a relatively low surplus, even for an estimator fit
without regularization. The higher-order grid points thus need a smaller amount of
regularization than the first-order terms, which explains the small A for the largest
grid. All other results had regularization parameters that were of similar order, the
differences were significant. The Friedmani results demonstrated that generalized grids
can help us to use grids with a level that would lead to severe overfitting for normal
sparse grids.

We used a similar experiment for the concrete dataset, this time performing 45

43

Concrete

Chapter 4. Grid generation

Bayesian search iterations and using estimators with level five. For this dataset the
chosen level did not lead to overfitting even for the highest value of T and we can
therefore use it to discuss the trade-off between approximation accuracy and grid size
our proposed method makes. The results can be seen in table 4.2.

Again, the values of A did not change significantly for different Ts. Note that there
was a correlation between grid sizes and the errors: larger grids performed better, at
least for the cross validation and training error metrics. A further increase of the level
of the approximation space could soon lead to overfitting. Even for our chosen level,
we have more grid points than training examples in the T > 0.5 cases, which lead to
an underdetermined linear system. We can also see that the decrease in error between
the largest grid and the standard sparse grid was small, considering the amount of
additional grid points needed. Note that the estimator with T = 0 had a higher cv- and
train-RMSE than the learner with T = —0.5, but a lower testing error. This and the fact
that the differences are small lead to results for which it is hard to decide, which choice
of T performed best. It is therefore reasonable, to choose the simpler model. Because
of that we can see that the trade-off between error and discretization cost, which the
generalized sparse grids make, worked. They used fewer grid points to achieve similar
errors.

If we compare the performance of the generalized sparse grid with level five and
T = 0.5 with the standard sparse grid of level four with the same adaptivity settings,
we can see that the generalized grid performed better than the standard grid, even
though they both used a similar number of grid points. The standard grid with level
four needed 1470 grid points for a cv-RMSE of 5.007, which means that it needed more
grid points for a worse performance.

As an additional result, generalized sparse grids combined with the diagonal matrix
regularization penalty showed further potential. An example for this can be seen in
tigure 4.3, which depicts a grid search similar to the one in section 3.2.3, only using a
level five grid with T = 0.5 instead of a level four grid with T = 0.

We can conclude that our proposed method can improve the performance without
additional cost. Because the smoothness constraints for the generalized grids are
stronger than the assumptions of the standard grid, this result does not have to hold
for all datasets. Even though its performance depends on the relevance of the higher-
order-terms, it is hard to predict whether our proposed method will show good results.
The reason for this is that it is difficult to tell if interactions are relevant for a given
dataset in the general case. Therefore it seems useful and necessary to build multiple
models with different grid types and thus include the granularity of the grid into the
model selection process.

44

Diagonal
Regulariza-
tion

Chapter 4. Grid generation

10

Diagonal

e |dentity

CV-RMSE
~

105 104 103 102 101
Lambda

Figure 4.3.: Obtained results for the concrete dataset with estimators for level five and
T=0.5.

4.2. Interaction-Term Aware Sparse Grids

As previously noted, sparse grids not only include grid points, which model an original
feature, but also interaction points. We have seen that sparsity-inducing penalties per-
form automatic feature selection. In some cases we are able to make an educated guess,
which interactions are relevant, before actually training a model. We will introduce
a method in this section that allows us to create interaction-term aware sparse grids,
i.e. grids that only contain a subset of all possible interaction terms. We will also present
an application for this method: image recognition. A discussion of this method can be
found in [Kha16].

4.2.1. Theory
We can calculate the number of included terms for a d-dimensional dataset modelled
by an sparse grid of level 1 using simple combinatorics:

max(d,l1—1)

count-terms(d, 1) = Z <i) .

k=0

Because the number of grid points is directly related to the number of chosen interaction
terms, it is clear that the standard sparse grid technique is computationally expensive

45

No. of
Interaction
Terms

Chapter 4. Grid generation

or infeasible for very high dimensional problems. This means that we have to restrict
ourselves to a small level and are therefore limited to lower-order terms. If we only
include interactions between some variables we can use larger levels without increasing
the number of interaction terms to an intractable number.

An example where this technique is useful is image recognition. Assume we have
a 2-dimensional picture of which each pixel corresponds to a feature. We make the
following assumption: Interactions between pixels that are close to each other spatially
are more important than interactions between pixels that are further away from each
other.

0 0
1 f 1
2 ‘ 2
. - -
4 4
5 | 5
6 6
7 7
0 1 2 3 4 5 6 7 0o 1 2 3 4 5 6 7
X X
(a) d(a/b)u.”] <2 (b) d(a/b)”.nz <V2

Figure 4.4.: Nearest Neighbors for two different metrics. The darkest point is the center
of the neighborhood, the other colored points are its neighbors.

Let d be a metric that measures the distance between two pixels. Examples for
widely-used metrics are

d(a,b);, = /(a1 —b1)2 + (a2~ b2)?, (42)
d(a/b)”.”] =la; —by[+]az — b2,

which are called the Euclidean and the Manhattan distance respectively. A visualization
of both metrics can be seen in figure 4.4. We can then calculate the nearest neighbors
of each pixel by iterating over all other pixels and checking whether the metric is
below a certain threshold. To calculate all neighbors, we simply iterate over each pixel.
This is not an asymptotically optimal algorithm; we pay O(n?) for all features. Our
used method is given by algorithm 6. Even though more efficient algorithms exist, our
method is good enough, because we only have to calculate the neighbors once per

46

Nearest
Neighbors

Chapter 4. Grid generation

dataset, which is negligible compared to the cost of training the actual model. After
calculating the neighbors, we can generate the interactions from them. They are given
by all i < max(d,1—1) long combinations of all possible neighbors for each pixel, where
iis an arbitrarily chosen value. This means that it is possible to create grids with a high
level without some higher-order terms. For example, it is possible to create a grid with
level six, but only use the interactions up to order four. In fact, it can be useful to start
with a low-level grid but to use higher-order interaction terms during refinement. This
recovers the usual behavior of non-interaction-term aware sparse grids.

Algorithm 6 Nearest Neigbors

Input: Set of all pixels p, distance metric d: (R?,R?) — R, threshold t

: function NEARESTNEIGHBORS(p, d, t)
neighbors <+ vector<vector<int>>()
foracp do
curNeighbors <+ vector<int>()
for b € p do > Each pixel is its own neighbor in our case.
if d(a,b) < t then
APPEND(curNeighbors, b)

APPEND(neighbors, curNeighbors)

return neighbors

°

4.2.2. Implementation

Similar to the implementation of the generalized sparse grids we need to make some
small adjustments to the grid generation algorithm described in algorithm 5. We pass an
additional parameter to the function GRIDGENERATION that determines the interaction
terms we want to integrate into the model. This parameter is a list of interactions, each
interaction is modelled as a list of dimensions that should interact with each other. The
list is then converted to a hash set that stores one boolean vector for each interaction.
Each entry of this vector is true if the dimension should be used and false otherwise.
For example, a (x; X x;) interaction for a 3-dimensional dataset is modelled as the
vector (1,2) and the corresponding boolean vector is then given by (true, true, false).
We then only needed to modify the function CREATEPOINTAT (called in line 17).
Each possible new point is encoded in the same manner as the interactions: as a boolean
vector. Before creating the grid point, we check whether the new grid point models
a desired interaction. This was implemented by checking if the encoded coordinates
are contained in the hash set. Only after a successful check, the grid point is actually

47

Chapter 4. Grid generation

created.

We had to make the same adjustments to the adaptivity procedure. Our imple-
mentation is simple, because we leverage the existing adaptivity procedure of the
SG++ implementation. We implemented a class HashRefinementInteraction that inherits
from the base class HashRefinement. This base class implements the actual refinement
procedure, the subclass leaves all but one function unchanged. The function CREATE-
GRIDPOINT is in called in the base class to create the new grid points. We modified
this function in a straight forward way: Before each point is added to the model, we
perform the same check as in the method CREATEPOINTAT.

This implementation strategy is efficient due to the constant usage of optimized data
structures. It costs us O(1) operations to check if an element is contained in the set,
which is both asymptotically optimal and efficient in practice. The boolean vector in
the C++ standard library is implemented as a bitfield, which results in a lower space
overhead.

The neighborhood generation follows the description of this chapter. We implemented
a method CALCULATEINTERACTIONS, that first uses algorithm 6 and then returns all
resulting interactions. It accepts a set of points, a metric, a threshold and a maximum-
order as its arguments.

4.2.3. Results & Discussion

To check the validity of the interaction-term aware sparse grids and of the nearest
neighbor approach for images, we used a version of the classical MNIsT-dataset,
obtained from the uc1 machine learning repository [Lic13]. The goal of this dataset is
to use hand drawn pictures of single digits to classify the depicted digit. Our version of
the dataset is composed of 64-features, each one representing one gray-scale pixel in the
range 0-15. A visualization of the digits can be seen in figure 4.5 and a two-dimensional
representation of the dataset is depicted in figure 4.7 on page 51.

Trying to construct a sparse grid for such a highly dimensional dataset is possible
for small levels and becomes highly intractable for larger levels. This is why we need
to exclude most of the interaction terms. We used algorithm 6 to select the neighbors
for each pixel, and only included the resulting interactions in our grid. This was done
using the Euclidean distance, given by equation (4.2), with a threshold of v2, which
leads to 3 x 3 neighborhoods, as shown in figure 4.4b. A comparison of the resulting
grid sizes for the used grid and the standard sparse grid is shown in figure 4.6. Note
that we have more basis functions than training points for a level greater than two
for the standard grid. The usage of interaction-term aware grid generation delays that
development to level three.

Because we have to train one regression learner for each class it takes a rather
long time to generate a model, which in practice meant that a grid search for the

48

Optical
Digits

Subsampled
Dataset

Chapter 4. Grid generation
- =
n

Figure 4.5.: Some examples for digits

regularization parameter was infeasible. This is why we tried to find an approximation
by using only a three-class subset of the dataset for this purpose. We selected all entries
for the digits 2, 7 and 9. The smaller dataset comes with two advantages. Firstly, we only
had to use three regression models for each classification task and secondly, the training
of each model was considerably faster, because the sparse grid model scales linearly
with the number of training points. The downside is of course that the estimated best
A is only a crude approximation of the optimal one. Because our model assumes that
each binary sub-classification model uses the same hyper-parameters, there is some
variance of the best-parameter to consider. The discrete nature of the decision problem
also allows us some leeway. Altogether our approximation of the hyper-parameter
might not be entirely optimal, but it is sufficient.

Finally we performed a grid search for A using a ridge regularized model with
level three and the aforementioned choice of interaction terms. We used a three-fold
stratified cross validation metric to compare the models. The best learner achieved
an cv-accuracy of 100% on this subset with A = 0.1. Of course, this is not a good
estimate for the error on the complete dataset but still delivers a solid estimate for the
regularization parameter. The results also showed that the choice of A does not influence
the validation accuracy heavily, as a learner with A = 10~'? achieved a cv-accuracy of
about 99.91%. We got the same estimate for a larger (5 x 5) neighborhood.

We created models for level two and three, and compared different interaction-term
inclusion criteria. All of our models used A = 0.1 and no adaptivity. The results can be
seen in table 4.3. Because a sparse grid for level two does not contain any interaction
terms, it is not useful to apply our proposed modified grid generation algorithm here. A

standard sparse grid learner achieved an accuracy of 92.77% with only 129 grid points.

49

Estimating A

Models

Chapter 4. Grid generation

1016

standard grid
— d(a,b)), < V2

1014
10"2

1010

|

108

Vi

106
104

102

100

Level (n)

Figure 4.6.: Comparison of grid sizes with standard and interaction-term aware sparse
grids for the optical digits dataset.

Sparse Grid Method Level Neighbors Train-Grid Test-Accuracy[%]
Standard 2 all 129 92.77
Interaction-Aware 3 d(a,b)”_”2 <V2 1225 97.33
Adaptive [Pfl10] 2 all 1760 97.74
Interaction-Aware 3 d(a, b)), < 2V2 2569 97.83
Standard 3 all 8449 98.22

Table 4.3.: Accuracy of sparse grids models for the optical digits dataset.

Increasing the level to three and including all interactions in a 3 x 3 grid resulted in a
test accuracy of 97.33% percent and 1225 grid points. Pfliiger used a learner that started
with a level two grid and then performed aggressive refinement until a grid with 1760
grid points was reached [fl10]. This adaptive grid resulted in an accuracy of 97.74%.
Our final estimator used a grid with 2569 grid points with a level three interaction-term
aware grid, where we included all pair-wise interaction between pixels that are inside
a 5 x 5 grid. This model achieved an accuracy of 97.83%. Additionally, we trained a
standard sparse grid learner with level three, which used 8449 grid points and reached
an accuracy of 98.22%.

We saw that our model improved Pfliiger’s result without using adaptivity. Because
we only used a small amount of training data for such a highly-dimensional datasets,

50

Chapter 4. Grid generation

0 1 2 3 4 5 6 7 8 9
Digit

Figure 4.7.: T-sNE [MHo8] plot of the optical digits dataset.

refinement steps starting from level three soon lead to severe overfitting. Nonetheless,
our method managed to reach promising results that were highly competitive with the
reference model and beat the level two model by a large margin. It can be expected that
our proposed method would be able to improve its performance further if we used more
training data or a stricter regularization method, such as one of the sparsity-inducing
penalties described in section 3.3. In comparison to the largest model, our learner is a
reasonable trade-off between accuracy and cost. We cannot use a standard sparse grid
for even higher dimensional datasets, this is why we need to use a simpler model such
as interaction-term aware sparse grids or adaptive grids.

51

CHAPTER

Conclusion

Over the course of this thesis we discussed many useful ways to use prior knowledge
to enhance the capabilities of the sparse grid model for machine learning. The main
results can be summarized as follows:

e We presented an improved Gaussian prior in section 3.2. The diagonal Tikhonov
functional used only information about the smoothness of the dataset, which
applies to many real world data sets and is therefore a rather mild assumption.
After we convinced ourselves that the prior indeed improved the performance for
data, which adhered to our assumptions, we tested the penalty on non-artificial
datasets.

We achieved solid results for the concrete and the power plant datasets. In case
of the power plant dataset, we have been able to double the effect regularization
had on the RMSE.

e In section 3.3 we presented three sparsity-inducing penalties: the lasso, the elastic
net and the group lasso. All methods used different prior knowledge. The lasso
resulted in a Laplace prior, which the elastic net combined with a Gaussian
prior to achieve better theoretical performance for correlated predictors. We also
showed an adaptation of the group lasso to sparse grids and presented a way to
group the grid points. This allowed us to impose sparsity on a original feature
level, and not on a grid point level.

We were able to improve upon the performance of the ridge regularization for
the concrete dataset using high levels. The resulting degrees of freedoms were
similar for both the lasso and the ridge regularization for the concrete dataset.

Finally we implemented and discussed an optimal first-order solver F1sTA that
was able to optimize the non-differentiable penalties.

e We showed in section 4.1 that generalized sparse grids can be applied to machine
learning problems. This method can be used to control the granularity of the grid
and thus helped us to use a larger level. More importantly, we presented intuition
why the method works for data mining problems: Generalized grids change the

52

Chapter 5. Conclusion

number of interaction points, while keeping the number of basis functions that
model only one feature constant. We were able to show that this method helped
us to avoid overfitting for the Friedman1 dataset.

The results for the concrete dataset were twice-fold useful. Firstly, we showed
that a grid that is closer to a full grid can achieve better results than an ordinary
sparse grid. Secondly, we showed that a generalized sparse grid can still retain
most of its accuracy while vastly reducing the number of grid points.

o The effectiveness of interaction-term aware sparse grids was shown in section 4.2.
This technique allowed us to specify which interactions we want to include in the
model. We showed how this can be used to decrease the number of grid points
and thus allowed us to cope with a 64-dimensional dataset.

The relevant interactions were chosen by a nearest-neighbor approach, where we
selected interactions only between pixels that were spatially close to each other.
The results for the optical digits dataset were competitive with an adaptive sparse
grid and presented an useful trade-off between error and cost.

We have seen that it is indeed useful to use information about datasets to improve
the performance of the sparse grids technique. In some cases, our prior knowledge only
consisted of very mild assumptions that should apply to most datasets. These methods
can therefore be used for all-purpose learning and are not limited to a certain problem
category. All methods lead to competitive results and were able to create more efficient
grids.

The methods contained in this thesis are only a small subset of possible ways how
prior knowledge can improve the performance of learners. Nevertheless, they represent
a useful selection of flexible methods.

53

APPENDIX A -

Datasets

In this appendix, we look at all used datasets and document the pre-processing steps.
We did not perform any pre-processing for datasets that were created “on the fly”, as
they were created with the sparse grid learner in mind.

Each feature of each dataset was scaled to the range [0, 1] with the so called min-max

scaler .
X —min(x)

scale(x) = o) — min(x)’

Because some features of some datasets are distributed in a non-optimal way, we
performed a Box—Cox transformation for them

In(x;) forA=0,

Box-Cox(x;) =
) {x{‘—] otherwise,

where A is a parameter that was estimated by maximizing the log-likelihood [BC64].
Note that we need to shift the data before applying this transformation by a small
positive number because In(0) is undefined.

We used the following datasets:

Name & Reference No. of predictors No. of instances Scaled Box—Cox

Friedmani [Frig1] 10 10000 X Table A.3

Concrete [Yeho8; Lic13] 8 1030 v Table A.2

Power Plant [Tiif14; Lic13] 4 9568 X Table A.4
Optical Digits [Lic13] 64 5620 v X

Table A.1.: Datasets used for this thesis.

The used parameters for the Box-Cox transformation can be found in the following
tables.

54

Appendix A. Datasets

Predictor A

Water 0.806 605

Fly Ash —1.994271

Fine Aggregate 1.605275

Blast Slag —2.718 958

Age —7.246132

Coarse Aggregate 1.000 000
Compressive Strength ~ 1.000 000
Cement —0.683939
Superplasticizer —1.491446

Table A.2.: Box-Cox parameters for the concrete dataset.
Predictor A
X1 0.737723
x2 0.806982
x3 0.738149
x4 0.659072 .
x5 0.886650 Predictor A
xe 0.781566 Ap 0.000000
x7 0.737074 V. —0.439 899
xg 0.775896 Rh 2460495
xo 0.803518 At 1335384
x10 0.817283 Pe 1.000000

Table A.3.: Box-Cox parameters Table A.4.: Box-Cox parameters
for the Friedmani for the power plant

dataset.

dataset.

55

[Aka74]

[BC64]

[BGo4]

[BTog]

[FHTo1]

[FHT10]

[Frig1]

[Gar+o4]

[GKoo]

[H+10]

[HTW15]

[Huno7]

Bibliography

H. Akaike. “A new look at the statistical model identification.” In: IEEE
transactions on automatic control 19.6 (1974), pp. 716—723 (see p. 37).

G. E. Box and D. R. Cox. “An analysis of transformations.” In: Journal of
the Royal Statistical Society. Series B (Methodological) (1964), pp. 211—-252 (see
p- 54)-

H.-]. Bungartz and M. Griebel. “Sparse grids.” In: Acta numerica 13.1 (2004),
pp- 147-269 (see pp. 1, 3, 4, 6, 13).

A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems.” In: SIAM journal on imaging sciences 2.1 (2009),

pp- 183—202 (see pp. 25-30).

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning.
Vol. 1. Springer series in statistics Springer, Berlin, 2001 (see pp. 11, 13, 22,
37, 39).

J. Friedman, T. Hastie, and R. Tibshirani. “Regularization paths for general-
ized linear models via coordinate descent.” In: Journal of statistical software
33.1 (2010), p. 1 (see p. 33).

J. H. Friedman. “Multivariate adaptive regression splines.” In: The annals of
statistics (1991), pp. 1-67 (see pp. 32, 54).

J. Garcke et al. “Maschinelles Lernen durch Funktionsrekonstruktion mit
verallgemeinerten diinnen Gittern.” PhD thesis. University of Bonn, 2004
(see p. 39).

M. Griebel and S. Knapek. “Optimized tensor-product approximation
spaces.” In: Constructive Approximation 16.4 (2000), pp. 525540 (see pp. 39,
40).

J. Huang, T. Zhang, et al. “The benefit of group sparsity.” In: The Annals of
Statistics 38.4 (2010), pp. 1978-2004 (see pp. 23, 25).

T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity:
the lasso and generalizations. CRC Press, 2015 (see pp. 21—24).

J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing In
Science & Engineering 9.3 (2007), pp. 90—95 (see p. 10).

56

Bibliography

[Kha16]

[KSo6]

[Lic13]
[Mar14]

[MHo8]

[MVBo8]

[PB14]

[Ped+11]

[Pfl10]

[SGB14]

[Stoy7]

[Tibg6]

[TT12]

V. Khakhutskyy. “Sparse Grids for Big Data: Exploiting Parsimony for Large-
Scale Learning.” unpublished thesis. PhD thesis. Technische Universitat
Miinchen, 2016 (see pp. 1, 3, 4, 6, 8, 14, 24, 29, 39, 45).

J. Kaipio and E. Somersalo. Statistical and computational inverse problems.
Vol. 160. Springer Science & Business Media, 2006 (see p. 13).

M. Lichman. UCI Machine Learning Repository. 2013 (see pp. 17, 18, 48, 54).

R. Martinez-Cantin. “BayesOpt: A Bayesian Optimization Library for Nonlin-
ear Optimization, Experimental Design and Bandits.” In: Journal of Machine
Learning Research 15 (2014), pp- 39153919 (see p. 10).

L. v. d. Maaten and G. Hinton. “Visualizing data using t-SNE.” In: Journal
of Machine Learning Research 9.Nov (2008), pp. 25792605 (see pp. 20, 51).

L. Meier, S. Van De Geer, and P. Bithlmann. “The group lasso for logis-
tic regression.” In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 70.1 (2008), pp. 53—71 (see p. 23).

N. Parikh and S. P. Boyd. “Proximal Algorithms.” In: Foundations and Trends
in optimization 1.3 (2014), pp. 127-239 (see pp. 25-28).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python.” In: Journal of Machine Learning Research 12
(2011), pp. 2825—2830 (see p. 10).

D. Pfliiger. “Spatially Adaptive Sparse Grids for High-Dimensional Prob-
lems.” PhD thesis. Aug. 2010. I1SBN: 9783868535556 (see pp. 1, 3, 7, 10, 13,
50)-

K. Scheinberg, D. Goldfarb, and X. Bai. “Fast first-order methods for compos-
ite convex optimization with backtracking.” In: Foundations of Computational
Mathematics 14.3 (2014), pp- 389—417 (see p. 29).

M. Stone. “An asymptotic equivalence of choice of model by cross-validation
and Akaike’s criterion.” In: Journal of the Royal Statistical Society. Series B
(Methodological) (1977), pp- 44-47 (see p. 37).

R. Tibshirani. “Regression shrinkage and selection via the lasso.” In: Journal
of the Royal Statistical Society. Series B (Methodological) (1996), pp. 267288
(see p. 21).

R. J. Tibshirani and J. Taylor. “Degrees of freedom in lasso problems.” In:
The Annals of Statistics (2012), pp. 1198-1232 (see pp. 37, 38).

57

Bibliography

[Tiif14]

[Vai+12]

[Yehg8]

[YLo6]

[ZHos]

[ZRYo9]

P. Tiifekci. “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods.” In:
International Journal of Electrical Power & Energy Systems 60 (2014), pp. 126—
140 (see pp. 18, 54).

S. Vaiter, C. Deledalle, G. Peyré, J. M. Fadili, and C. Dossal. “The Degrees
of Freedom of the Group Lasso.” In: International Conference on Machine
Learning Workshop (ICML). Edinburgh, United Kingdom, 2012 (see p. 38).

L-C. Yeh. “Modeling of strength of high-performance concrete using artifi-
cial neural networks.” In: Cement and Concrete research 28.12 (1998), pp. 1797-
1808 (see pp. 17, 54).

M. Yuan and Y. Lin. “Model selection and estimation in regression with
grouped variables.” In: Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 68.1 (2006), pp. 4967 (see p. 23).

H. Zou and T. Hastie. “Regularization and variable selection via the elastic
net.” In: Journal of the Royal Statistical Society: Series B (Statistical Methodol-
0gy) 67.2 (2005), pp. 301-320 (see pp. 22, 23).

P. Zhao, G. Rocha, and B. Yu. “The composite absolute penalties family
for grouped and hierarchical variable selection.” In: The Annals of Statistics
(2009), pp- 3468-3497 (see p. 23).

58

	Acknowledgments
	Abstract
	Introduction
	Sparse Grids & Learning
	Sparse Grids
	Basis functions
	Full & Sparse Grids
	Adaptivity

	Learning with Sparse Grids
	Software

	Regularization Methods
	Regularization Theory
	Tikhonov Regularization
	Theory
	Implementation
	Results & Discussion

	Sparsity-Inducing Penalties
	Proximal Methods
	Implementation
	Results & Discussion

	Grid generation
	Generalized Sparse Grids
	Theory
	Implementation
	Results & Discussion

	Interaction-Term Aware Sparse Grids
	Theory
	Implementation
	Results & Discussion

	Conclusion
	Datasets
	Bibliography

