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Abstract

The simulation of complex molecular systems requires vastly different time and length
scales to be overcome. Multiscale modeling enables cost-effective investigations based on hi-
erarchical multi-level descriptions, e.g., quantum mechanics/molecular mechanics (QM/MM),
while advanced sampling eases the exploration of reaction paths in reasonable computing
times. Care has to be taken, however, that the use of such schemes does not result in
unphysical results.

In this thesis, we study the behaviour of an interesting prototype reaction, proton transfer
in water, under different simulation set-ups. The nature of an excess proton in water remains
a topic of debate in the literature, with both the Zundel and Eigen ions being proposed
as candidate structures. In this work, we initially proceed assuming a Zundel-to-Zundel
mechanism, but are ultimately unable to confirm the stability of a Zundel ion within our
simulation set-up. Methodologically, the diffusive liquid medium requires the multiscale
scheme to be adaptive, i.e., it needs to allow for water molecules entering and leaving the QM
zone. The majority of the presented work is thus concerned with the implementation of the
so-called adaptive buffered-force QM/MM (AdBF-QM/MM) method, which has previously
been shown to reproduce the structure of liquid water and been applied to calculate free
energy profiles of proton transfer reactions in water. We use Python’s Atomic Simulation
Environment to interface the FHI-aims package for density functional theory (DFT) with the
LAMMPS code for molecular dynamics (MD). Taking advantage of the method’s flexibility,
several simulations are run to test how the precise set-up influences the reaction. To monitor
proton transfer, an energy based reaction coordinate is implemented, which takes solvent
effects into account. This requires the parametrization of force fields, which is achieved using
Bayesian strategies. Finally, umbrella sampling is used to calculate free energy profiles of
the studied reaction.

In the AdBF-QM/MM framework, we note the critical role of the QM region, as its size
must be sufficient for quantum behaviour to emerge. Furthermore, the buffer size must
balance the cost of the extended QM/MM calculations while preventing close interactions
between the QM charge density and MM point charges. If the buffer is too small, the proton
is attracted to the edge of the QM zone. We also observe the sensitivity of the reaction
coordinate being severely exaggerated when the system drifts away from the intended range.
Finally, our results suggest the respective stability of the Zundel and Eigen ions to be very
sensitive to the precise QM/MM setup.
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1. Introduction

1.1. Motivation

In Chemistry, molecular simulations are nowadays often employed to elucidate the proper-
ties of interesting reactions. The outcomes of such computational studies promote faster
progress in science and technology, as they complement abstractly theoretical and exper-
imental approaches. Nonetheless, this research is highly non-trivial and many obstacles
must be overcome before obtaining useful insight. Two emblematic challenges can be iden-
tified when trying to capture the authentic behaviour of complex phenomena. The first
one is that — typically — essential processes can only be captured through a full quantum
mechanical (QM) treatment of the system. However, this is prohibitively expensive for
current computational resources. Therefore, we look at hierarchical simulation schemes. In
such, we perform a QM calculation only for the crucial part of the system, embedded inside
a more affordable, classical molecular mechanics (MM) simulation [3, 4]. These coupling
strategies involve a considerable amount of complexity, and even more so when dealing with
diffusive environments, in which the adaptivity of QM/MM descriptions becomes critical
[5, 7, 22, 29]. The second challenge we face is that, even when closely capturing the physics
of the system, the time necessary for the actual reaction to occur might be extremely long.
As a response to that, advanced — or rare event — sampling techniques have been de-
veloped [28]. In these methods, a reaction coordinate is defined as a key quantity that
describes the evolution of the system from a reactant to a product state. Then, by bias-
ing this reaction coordinate, specific stages of the reaction process can be observed and,
subsequently, techniques can be applied to recover the unbiased reaction properties [16].
Evidently, the exact definition of an adequate reaction coordinate is, by itself, a challenging
task [21].

The exact way in which we overcome the two challenges described above inherently
impacts the outcome of our simulations. The extension of the QM treatment in hybrid
QM/MM methods has been shown to affect structural properties [5], as well as potential of
mean force (PMF) and free energy profiles [22, 29]. The height of energy barriers and even
the location of stable states are significantly conditioned by the proceedings of the multi-
scale scheme. Similarly, the formulation of reaction coordinates also influences the range,
shape and sensitivity of the observed free energy profiles [22]. Pertinent questions then are:
How should multiscale methodologies be tuned in order to realistically reproduce chemi-
cal reactions? And how should the reaction coordinate be designed to sensibly distinguish
between relevant states?

In this thesis, we engage both questions for the particular case of the proton transfer
reaction in water. This reaction is not only a valid prototype for more complex systems,
but also an interesting process on its own. Protonation and deprotonation require in prin-
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1. Introduction

ciple a QM treatment, but covering numerous water molecules in such detail is expensive.
Furthermore, the aqueous environment allows particles to enter or leave the QM region,
making adaptivity indispensable. To address these challenges, we employ the adaptive
buffered-force QM/MM (AdBF-QM/MM) method [5, 22, 29], a scheme that has proven
highly successful in capturing both the correct structure of bulk water and the free energy
profiles of proton transfer reactions. Once the multiscale challenge is attended, we require
a reaction coordinate, along which umbrella sampling biasing and free energy profile recon-
struction can be applied [16, 27]. Since the effect of the surrounding solvent water during
the proton transfer is considerable, geometrically motivated formulations of the reaction
coordinate are not straightforward. On the other hand, energy based approaches enable
a more comprehensive description of the system. In particular, we select the energy gap
reaction coordinate [21], which has been previously employed for proton transfer reactions
in water. The formulation of the energy gap is based on the difference between the reactant
and product states potential energy functions, or force fields, which we parametrize using
Bayesian strategies. Establishing such initial and final states for the proton transfer in wa-
ter is not straightforward, as both the dominant structure of the proton in water [25], and
the transfer reaction mechanism[13, 17] are still not fully understood. There is an ongoing
discussion as to which are the stable and intermediate states of the reaction, with the Zundel
ion and Eigen ion as candidates. In our work, the Zundel-Eigen-Zundel process is assumed,
and considered in the implementations of the multiscale and sampling methodologies.

This thesis is structured as follows. Chapter 2 contains the essential theoretical back-
ground underpinning the independent QM and MM methods, as well as basic concepts
for a non-adaptive coupling strategy; Chapter 3 is concerned with the chosen description
of the proton in water and the corresponding transfer reaction; Chapter 4 focuses on the
workhorses of this project, with sections dedicated to the selected adaptive QM/MM method
(4.1), the energy gap reaction coordinate (4.2) and the advanced sampling technique (4.3);
Chapter 5 describes the specific simulation protocols taken in each step of our investiga-
tion; Chapter 6 exhibits the results of our simulations; and Chapter 7 portrays our final
conclusions, discussion and further proposed research. At the end of the thesis, Appendix
A contains further details about the Bayesian calibration and validation of MM force fields
for the energy gap reaction coordinate.

1.2. Objectives

The goals of this thesis project are:

• Implement the AdBF-QM/MM method [5, 22, 29] in Python’s Atomic Simulation
Environment (ASE) [2, 1], using the software packages FHI-aims [6, 10], for QM, and
LAMMPS [24, 8], for MM.

• Formulate an energy gap reaction coordinate [21] for the proton transfer reaction
mechanism in water, assuming the Zundel ion to be a stable state [25].

• Parametrize the initial and final state force fields required by the energy gap using
Bayesian strategies [20, 12, 26].
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1.2. Objectives

• Generate a framework and protocols to simulate the proton transfer using the AdBF-
QM/MM method as engine and the energy gap for monitoring and biasing.

• Perform umbrella sampling along the reaction path of the proton transfer and recon-
struct free energy profiles using Gaussian process regression (GPR) [16, 27].

• Extract conclusions about the effect of the chosen multiscale scheme, and reaction
coordinate, on the observed reaction mechanism. Motivate further research based on
this insight.
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2. Theoretical Background

2.1. Density functional theory

This section is based on textbooks by Cramer [9] and Jensen [14], as well as on the general
outline of closely related work [3].

On a fundamental level, all matter can be represented by electrons and atomic nuclei.
The behaviour of such particles is explained by quantum mechanics. In particular, for
systems with a description that does not change in time, we employ the time-independent
Schrödinger equation:

Ĥ |Φi〉 = Ei |Φi〉 (2.1)

In this eigenvalue equation, Ĥ is the Hamiltonian operator of the system and the wave
function |Φi〉 is a stationary state with energy Ei. We are interested in the eigenpairs of
Ĥ, as any state of the system can be expressed as a superposition of the stationary states.
However, such problem does not have an analytical solution for systems with more than
one electron. Furthermore, even for a small number of electrons, a numerical approach is
extremely computationally expensive. Hence, we look at alternative methods.

Density functional theory (DFT) is a method that works based on electronic density
rather than on wave functions. In order to properly illustrate it, some simplifications must
be made parting from the time-dependent Schrödinger equation. First, we write the many-
body Hamiltonian operator in a general full form:

Ĥ = T̂el + V̂ext + V̂int + T̂nuc + V̂nuc-nuc (2.2)

Where, from left to right, interactions correspond to the kinetic energy operator for
electrons T̂el, the Coulomb potential between electrons and nuclei V̂ext, the Coulomb po-
tential between electrons themselves V̂int, the kinetic energy operator for nuclei T̂nuc, and
the Coulomb potential between nuclei V̂nuc-nuc. The use of the subscripts ext and int will
become clear in the next paragraph.

The Hamiltonian can be simplified when considering the difference in time and mass scales
between electrons and nuclei, being the latter vastly slower and more massive. The Born-
Oppenheimer approximation allows us to neglect the interactions between nuclei V̂nuc-nuc

and their kinetic energy T̂nuc, as if they remained immobile. Then, while electron-electron
interactions are accounted for explicitly in the internal potential V̂int, the electron-nucleus
interactions are only considered as an external potential V̂ext. Furthermore, in the same
term we can also include other external contributions, such as electrostatic interactions due
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2. Theoretical Background

to embedding. This is a vital aspect for QM/MM calculations. We rewrite the electronic
Hamiltonian as:

Ĥ = T̂el + V̂ext + V̂int (2.3)

More explicitly:

Ĥ = − ~2

2m

∑
i

∇i +
∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj |
(2.4)

This provides a Hamiltonian that is easier to handle. However, when inserted back in the
Schrödinger equation, the complete form still involves many-body wave functions.

Ψi({ri}) = Ψi(r1, r2, ..., rN ) (2.5)

These wave functions are 3N -dimensional, where N is the number of electrons in the sys-
tem. The storage requirements for calculations quickly become unfeasible, as the number
of grid points is elevated to the 3N -th power. Moreover, the fermionic nature of the elec-
trons, ruled by Pauli’s exclusion principle prevents this representation to be simplified in an
extensive fashion. The Thomas-Fermi method provides an option that does not treat many
body wave functions, but electronic density. These two quantities can be easily related with
the following equation:

n(r) = N

∫
dr3

2...dr
3
N |Ψ(r1, r2, ..., rN )|2 (2.6)

This electronic density, together with the electronic Hamiltonian, yields a total energy
shown by Hohenberg and Kohn:

E[n] = FLL[n] +

∫
d3rVext(r)n(r) (2.7)

Where the new term FLL[n] corresponds to the minimum electronic kinetic energy and
electron-electron interaction potential, given the current density. This term is universally
valid for any electron system.

FLL[n] = min
Ψ→n(r)

[〈Ψ| T̂ |Ψ〉+ 〈Ψ| V̂int |Ψ〉] (2.8)

Having this expression, only a second minimization across electronic densities is required
to find the minimum energy of the system. That is, the ground state. For most chemical
applications, thermal fluctuations of a few hundred Kelvin can be neglected, such that the
ground state is a valid description for the system. Then, we are concerned with how to
solve the reformulated problem, in order to obtain the total energy and electronic density.
We do so by an iterative method known as self-consistent field (SCF) illustrated in Figure
2.1.
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2.1. Density functional theory

Figure 2.1.: Self-Consistent Cycle (SCF) corresponding to the first Hohenberg-Kohn theo-
rem. Edited from [3].

We start by inserting our external potential Vext(r) in the electronic Hamiltonian, then
we solve the Schrödinger equation to obtain every state of the system Ψi({r}), including
the ground state Ψ0({r}). This is simply related to the electronic density no(r), as shown
in Equation 2.6. Subsequently, the first Hohenberg-Kohn (HK) theorem, which states that
the ground state electronic density n0(r) uniquely determines the external potential Vext(r),
up to a constant. In this way, the SCF is closed.

An additional, game-changing, assumption can be done. The Hartree-Fock (HF) approxi-
mation neglects the interactions between electrons, and instead considers them as moving in
an averaged effective potential Veff, thus, removing the correlation between particles. When
plugging this into the many-body Hamiltonian, the internal potential Vint(r) is split in two
terms: the first one, known as Hartree term, contains all electron-electron interactions, even
spurious self-interactions; the second, known as exchange term, embodies the corrections
for the self-interaction and Pauli’s exclusion principle. This simplification, as applied to
DFT by Kohn and Sham, provides a remarkably cheap method for many-electron systems.

The ansatz of Kohn-Sham (KS) DFT resorts to the HF approximation and maps the HK
many-electron problem onto an auxiliary non-interacting electron system. Such connection
is enabled under the key assumption that the ground state densities of both systems are
equal. Before building the new SCF cycle, let us define the necessary expressions under the
new KS framework.

First, the non-interacting electron density can now be simply written as:

n(r) =
N∑
i

|Ψi(r)|2 (2.9)

Then, analogously to Equations 2.7 and 2.8, we express the KS total energy as:

EKS[n] = Ts[n] + EHartree[n] + Exc[n] +

∫
d3rVext(r)n(r) (2.10)

Where the kinetic energy for non-correlated particles is defined as:

Ts = −1

2

N∑
i

∫
d3r|∇Ψi(r)|2 (2.11)

9



2. Theoretical Background

While the HF approximation provides us with the Hartree EHartree[n] and exchange-
correlation Exc[n] terms. The Hartree term is defined as:

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
(2.12)

The exchange correlation term, on the other hand, can be related to the HK Equations
2.7 and 2.8 as:

Exc[n] = FLL[n]− (Ts[n] + EHartree[n]) (2.13)

However, there exists no analytic expression for the exchange-correlation functional. More
than acceptable approximations have been developed. We will explain their basic formula-
tion toward the end of this section.

The KS cycle consist of two HK cycles, one for the original system and one for the
auxiliary system, which are connected by the KS ansatz at their ground state densities.
Then, the need to solve the interacting many-electron system is avoided.

Figure 2.2.: Self-Consistent Cycle (SCF) corresponding to the first Kohn-Sham (KS) ansatz.
Edited from [3].

In every iteration, the original system’s ground state density is inserted in the auxiliary
system cycle, where it uniquely determines the effective potential. In turn, the effective
potential allows to solve the Schrödinger equation and obtain each of the single-particle
stationary states, namely, the orbitals. Then, the ground state density can be recalculated
as in Equation 2.9. Once the auxiliary system SCF is done, we can continue with the original
system’s cycle. In practice, the total energy and the electronic density are monitored and
used as convergence criteria.

The scaling and accuracy of this method are remarkable, as its relatively straightforward
implementation and parallelization. In this thesis, we shall exploit it by the means of the
FHI-aims software package [6]. The features of this MPI parallelized FORTRAN based code
include: convergence criteria, van der Waals corrections, etc. Moreover, for our QM/MM
approach, FHI-AIMS enables electrostatic embedding by including additional interactions
inside the Vext term [10, 4]. This concept will be further clarified in Section 2.3. Additionally,
the code offers a selection of approximations for the exchange-correlation functional Exc[n]
[30]. In the following paragraphs, the formulation of such estimations will be explained.
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2.1. Density functional theory

An initial crude approximation of the exchange-correlation functional can based on the
homogeneous electron gas. Assuming the system is piecewise homogeneous, we integrate
and express the so called local density approximation (LDA):

ELDA
xc [n] =

∫
d3rn(r)[εhomo

x ([n(r)], r) + εhomo
c ([n(r)], r)] (2.14)

Where, for the homogeneous electron gas, the exchange energy density is known analyt-
ically and the correlation energy density can be calculated numerically.

Inhomogeneous systems can be modeled by extending the LDA and considering the
density gradient. The family of generalized-gradient approximation (GGA) functionals is
founded on this idea:

EGGA
xc [n] =

∫
d3rn(r)εhomo

x Fxc(n,∇n, ...) (2.15)

The exchange enhancement factor Fxc can be formulated in several ways. Among them,
PBE, BLYP and rPBE are popular examples. The specific forms include information about
the density gradient, up to a certain order that balances accuracy with computational cost,
as well as physically motivated constraints. In general, GGAs perform better than LDAs
when dealing with atoms and molecules. In this thesis, the PBE functional will be used in
the DFT calculations. However, further details about its formulation will not be discussed.

Both LDAs and GGAs contain the spurious self-interaction in the Hartree term. The
HF method provides an exact correction for this effect. It can be combined with DFT to
generate hybrid functionals:

Ehybrid
xc [n] = EDFT

xc + a(Eexact
x + EDFT

x ) (2.16)

As a is a free parameter, and the EDFT
xc functional can be chosen as any LDA or GGA

functional, the hybrid functionals present complete flexibility. In our work, we have used the
widely known PBE0, B3LYP and HSE06. We do not dive into the respective formulations.
All in all, hybrid functionals present a significant improvement, specially when studying
binding energies in molecules. However, they cannot be used in metals.

The construction of new functionals, as well as the general development of DFT, are active
research field nowadays. The ground-breaking KS method has settled as the standard for
solving many-electron systems and it is a central actor in modern research. The richness of
its possible implementations is far too wide to include in this section. The reader is referred
to further literature [3, 9, 14], if looking for a deeper understanding of the exact procedures
and proofs that sustain this method. The background finished here is sufficient to support
the QM/MM framework.
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2. Theoretical Background

2.2. Molecular dynamics

In many molecular processes, quantum effects can be neglected. Molecular mechanics (MM)
models atomic systems from a classical perspective. Consequently, molecular dynamics
(MD) provides a method to simulate such classically interacting systems as they evolve in
time. The N-body problem is solved repeatedly in order to generate the trajectories of the
particles as described by Newton’s equation of motion. The key ingredients to perform an
MD simulation include: an MM force field to calculate the potential energy of the system
and its derivatives, a method to integrate the equations of motion, and a set of constraints
and protocols. In the next paragraphs, while mainly focusing on the first, the fundamentals
of these three aspects will be explained. Textbooks by Cramer [9], Jensen [14] and Frenkel
and Smit [11] constitute the basis for this section.

An MM force field is a function that serves to calculate the potential energy of a system.
The form of such a function contains terms that correspond to relevant interatomic inter-
actions, each contributing to the total energy. These contributions come from both bonded
and non-bonded interactions. Bonded, also known as covalent interactions, include bond
lengths, angles and torsions, while non-bonded interactions correspond to Coulombic and
van der Waals effects. A typical force field can be presented as follows:

E(r) =
Nm∑
m

EMorse,m +
Nb∑
b

Ebond,b +
Na∑
a

Eangle,a +
Nt∑
t

Etorsion,t +
Nnb∑
j 6=k

(ECou,jk + EvdW,jk)

(2.17)

Where the Morse potential term corresponds to atomic bonds that can be formed or
broken; the harmonic bonds term, to covalently connected atom pairs; the harmonic angles
term, to the angles formed by groups of three atoms; and the harmonic torsions term, to
rotations defined by groups of four longitudinally bonded atoms, in which two different
planes are defined by the first and last three atoms, and the angle between the planes is
measured. At the end of the equation, the unbonded terms correspond to the Coulombic
(electrostatic) and van der Waals (Lennard-Jones) pair-wise interactions.

In order to keep consistency with our simulations, the specific definition for each potential
energy contribution is taken from the LAMMPS molecular dynamics package [24, 8]:

EMorse,m = Dm[1− e−αm(rm−r0,m)]2 (2.18)

Ebond,b = Kb(rb − r0,b)
2 (2.19)

Eangle,a = Ka(θa − θ0,a)
2 (2.20)

Etorsion,t = Kt(1 + cos(ntφt))
2 (2.21)

ECou,jk =
C

ε

qjqk
rjk

(2.22)

EvdW,jk = 4εjk

ñÇ
σjk
rjk

å12

−
Ç
σjk
rjk

å6ô
(2.23)
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In these equations, we can see that each term presents its own set of parameters: the
Morse potential has an equilibrium bond distance, identified by sub-index 0, as well as
two potential well related constants, Dm for the depth and αm for the width; all of the
harmonic potentials, bonds, angles and torsions, present a harmonic constant Kb,a,t, that
sets the strength of the interaction; the harmonic bonds and angles have an equilibrium
value, identified with sub-index 0; the harmonic torsion has an integer parameter nt, that
multiplies the torsion angle; both of the non-bonded interactions depend on the interatomic
distance rjk; the Coulombic contribution presents the typical form of a electrostatic pair-
wise potential, with the Coulomb’s constant C and the dielectric constant ε; and finally,
the van der Waals contribution has the form of the widely used Lennard-Jones pair-wise
potential, with σjk and εjk corresponding to the width and depth of the potential well.

Many considerations can be taken when calculating the potential energy of a system.
Cut-off distances can be set in order to neglect non-bonded interactions beyond a certain
points, switching can be done to make such cut-offs less abrupt, special summations can
be done for periodic settings, multipole approximations and coarse graining can represent
several particles as one, indirect neighbours of the same molecule can present weighted non-
bonded interactions, and so on. If interested in further details, the reader is encouraged to
consult the references [9, 11, 14, 24]. In this thesis, the focus will be on aspects that can be
exploited either in QM/MM calculations, or in advanced sampling techniques. For example,
when doing QM/MM embedding, the interactions with certain atoms can be removed from
the force field and instead taken from an external reference, i.e., the DFT charge density.
This complements the V̂ext term of DFT and allows for a two-way communication between
QM calculations and MM calculations. In Section 4.1, we describe how to implement this
exchange as a combination of forces during the integration of the equations of motion. Fur-
thermore, when doing rare-event sampling, MD simulations can also be biased by external
potentials. Section 4.3 presents an example of this.

Once the potential energy of the system at a certain configuration is known, the forces on
each atom can be calculated simply as the negative of the gradient. These forces can then be
used to obtain the accelerations, velocities and new positions of the particles. The numerical
integration required for this process is not trivial, as it must ensure energy conservation.
Typical choices like Euler or Runge-Kutta methods perform poorly in this respect. On
the other hand, symplectic integrators, like the Störmer-Verlet method, give much better
results.

In general, the set-up for the simulation should be defined. This includes decisions like
having fixed or periodic boundary conditions (PBC) or using explicit or implicit solvent.
Furthermore, restraints or constraints can be applied to respectively limit or fix a particular
degree of freedom of the system. The size of the system itself and the length of the simulation
must be chosen such that the statistics of the MD run return valid insight. After taking
all of these considerations, the simulations can be run while conserving certain quantities
in statistical ensembles. We distinguish: the microcanonical ensemble (NVE), conserving
number of particles N, volume V, and energy E; the canonical ensemble (NVT), conserving
number of particles N, volume V and temperature T; and the isothermal-isobaric ensemble
(NPT), conserving number of particles N, pressure P and temperature T. To this end,
different thermostats and barostats are implemented.
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2. Theoretical Background

2.3. QM/MM embedding

Even when using KS DFT, simulating large atomic systems under a QM approach is com-
putationally expensive. Still, there are effects that can only be captured by a QM method,
such as covalent bond forming/breaking or changes in charge states. For this reason, we
turn to coupling techniques in which a relevant part of the system is treated quantum me-
chanically, while the rest is done with MM [3, 4, 5, 22, 29, 7]. In such schemes, the respective
potentials for each domain are calculated according to its corresponding method. The in-
teraction between both regions involves a higher level of complexity. Two basic strategies
can be distinguished:

• Mechanical embedding: the QM region is resolved without considering the MM region
around it. The interactions are then included only at the MM level.

• Electrostatic embedding: the QM region is resolved considering the atoms in the MM
region as charges exerting an external potential. Therefore, the electronic density is
actively affected by the environment. Correspondingly, the forces due to the atoms
in the QM region are included in the MM region. In case molecules are crossing from
the QM to the MM regions, the bonded interactions are treated on the MM level.

How to bring adaptivity into electrostatic embedding will be one of the main topics in
Chapter 4.
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3. System

3.1. The excess proton in water

In general, protonated species cannot be well represented simply by a proton addition. Wa-
ter is not an exception, as hydrogen bonding must be considered to elucidate the structure
and dynamics of the system [25]. Up to current research, there is no consensus on the
stable state of an excess proton in water. Two opposite perspectives pose the Eigen ion,
or hydronium, H3O+ [13] and the Zundel ion H5O+

2 [25] as main candidates. Both states
occur under specific conditions of concentration and acidity. The respective configurations
are depicted in Figure 3.1.

Figure 3.1.: The Eigen ion (left) and the Zundel ion (right) states of an excess proton in
water

The Eigen ion provides a simple representation with a single protonated water molecule.
However, from the perspective of an energy based reaction coordinate, it behaves counter-
intuitively when used to identify stable configurations during the proton transfer. This is
explained in Section 3.2. On the other hand, the Zundel ion, which consists of two water
molecules with their oxygen atoms H-bonded to the proton, offers a better alternative. In
this thesis, the Zundel ion is assumed to be the stable state of the excess proton in water.
All further proceedings are based on this consideration. Accordingly, we elaborate on the
structure of the Zundel. Typically, the ion is surrounded by four water molecules composing
the first hydration shell, as shown in Figure 3.2. Then, we have the tetrasolvated structure
H5O+

2 + 4 H2O.
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3. System

Figure 3.2.: Zundel ion in water. According to our calculations, the approximate inter-
atomic distances are as follows: water covalent bonds (solid blue) of 1.0 Å,
H-bonds (dashed green) of 1.7 Å, and Zundel ion bonds to the proton of 1.2 Å.
Based on [25]. Not to scale.

This representation is still not perfect and forms only under selected conditions of water
concentration and strong acids. A H7O+

3 + 5 H2O representation enables more gener-
ality. However, it also increases the number of atoms involved in the protonation and
de-protonation. Accounting for the quantum behaviour of the species endorses the Zun-
del ion as a more attractive alternative. Further advantages of it, concerning the transfer
reaction, will be discussed in the next lines.

3.2. The proton transfer reaction in water

In the literature, the proton transfer has been represented as the proton traveling the
distance between the two oxygen atoms of an Eigen ion and a water molecule. The initial and
final states are defined as the proton being closer to either of the oxygen atoms and forming
hydronium ions. Nonetheless, this scheme poses a fundamental problem. Considering non-
bonded interactions, the intermediate state corresponding to the proton positioned exactly
at the same distance from both oxygen atoms is stable and minimizes the energy. This
problem is avoided when contemplating a Zundel ion, which corresponds to said stable
structure. Then, we rather represent the transfer as the hop of the proton from an initial
configuration as shown in Figure 3.2, to a final configuration as depicted in Figure 3.3. Note
that the transition also involves the rearrangement of the surrounding solvent water.
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3.2. The proton transfer reaction in water

Figure 3.3.: Zundel ion in water after a proton transfer to the top-right neightbor water
molecule starting from Figure 3.2. According to our calculations, the approxi-
mate interatomic distances are as follows: water covalent bonds (solid blue) of
1.0 Å, H-bonds (dashed green) of 1.7 Å, and Zundel ion bonds to the proton of
1.2 Å. Based on [25]. Not to scale.

We also wish to highlight the key actors in this transfer reaction: the two water molecules
that originally form the Zundel ion, the proton and the receptor water molecule that becomes
part of the Zundel ion after the hop. These actors are the essential part of the system for
which QM behaviour should be captured. Of course, symmetry allows any of the first
four neighbouring water molecules of the original Zundel ion to be a potential receptor.
However, the hop can be guided. We merely require means to monitor and drive the proton
transfer. This will be discussed in Sections 4.2 and 4.3, dedicated to the reaction coordinate
and sampling. Another important aspect is to establish which parts of the system have a
relevant quantum behaviour. We expect at least the three key actors to require a QM
treatment. The first and second hydrations shells around these three components might
also be of importance. We illustrate them in Figure 3.4.

It is worth noting that the Zundel ion’s oxygen that is closest to the receptor water has a
symmetric point of view of the transfer reaction. Standing on this oxygen, the proton hop
from the initial to the final configuration is exactly symmetric to the transfer in the opposite
direction. We also wish to summarize the general structure of our system, composed by the
Zundel ion and the receptor water in the core, surrounded by five water molecules in the
first hydration shell, and ten in the second. Section 4.1, dedicated to the adaptive QM/MM
method, will further explain how to consider the quantum nature of the proton transfer in
our system.

19



3. System

Figure 3.4.: First (between bold dotted and dotted lines) and second (beyond dotted line)
hydration shells around the Zundel ion and the receptor water. According to
our calculations, the approximate interatomic distances are as follows: water
covalent bonds (solid blue) of 1.0 Å, H-bonds (dashed green) of 1.7 Å, and
Zundel ion bonds to the proton of 1.2 Å. Based on [25]. Not to scale.

It is important to emphasize that the Zundel-to-Zundel proton transfer is taken as model
for this thesis, with the Eigen ion as intermediate state [25, 17]. However, the exact reaction
mechanism is not fully known. Equally valid research documents the Eigen-Zundel-Eigen
proton transfer, with the hydronium as stable configuration and the Zundel ion as interme-
diate state [13]. It can be hypothesized that such differences depend on the particular QM
method, and even more of a coupled QM/MM. In particular, considering nuclear quantum
effects can favour the stability of the Zundel ion, as it enables the delocalization of the
proton [13]. While keeping this Zundel-Eigen dichotomy in mind, we still opt to proceed
assuming a Zundel-Eigen-Zundel transfer mechanism.
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4. Methodology

4.1. Adaptive buffered-force QM/MM

As explained in Chapter 2, QM/MM embedding enables a cost-effective two-level descrip-
tion of a system, in which a particularly interesting region is treated as QM, while the
surrounding environment is resolved with MM. This method is very powerful by itself in
solid-state settings [3, 4], where each region is calculated separately, and the major chal-
lenge is posed by managing the interactions between QM and MM atoms. However, when
dealing with diffusive media, further challenges appear as the system must be adaptively
repartitioned to maintain focus on the relevant QM zones [5, 7, 22, 29]. Implementing such
adaptivity is not trivial, as whenever a particle switches descriptions, it undergoes a change
in the potential energy surface (PES). If a proper adaptive method is not applied, artefacts
near the QM/MM boundary result in unphysical density variations.

Two approaches can be taken when building adaptive QM/MM methods: energy mixing
[7] or force mixing [5, 22, 29]. As the name suggests, energy mixing couples QM and MM
calculations in terms of energy. It allows to define a total energy for the system. However,
since the chemical potential is not the same in both regions, molecules are transported to
the region with lower potential, leading to the artifacts mentioned above. Efforts can be
made to reconcile the energies across descriptions, but any discrepancies still lead to the
same artificial forces. No general solution for this artifact of energy mixing has been yet
developed. On the other hand, force mixing, while not without its problems, appears to be a
more resilient alternative. In this approach, the coupling is achieved by calculating the forces
of each sub-system separately, and then combining them. The chemical potential mismatch
is avoided, at the cost of losing a definition for total energy and its conservation. Because
the forces are not obtained from a total energy gradient, momentum conservation is also
lost. Moreover, the use of non-conservative forces generates heat at the QM/MM boundary,
which calls for the use of massive adaptive thermostats. This can also be complemented
by constant force corrections. With these additions, a robust method is produced. Force
mixing adaptive QM/MM approaches are able to correctly sample canonical distributions
for molecular systems, therefore reproducing physical structures [5, 22] and free energy
profiles [22, 29].

Two more aspects must be determined for the adaptive QM/MM scheme. The first is to
decide if the descriptions of particles crossing the QM/MM boundary should be changed
continuously or abruptly. Opting for a continuous conversion requires a transition region
between QM and MM, in which forces or energies are gradually interpolated. Counterintu-
itively, at least in force mixing approaches, the use of a smooth transition does not improve
the accuracy of the method [22]. Therefore, most implementations use abrupt transitions.
The second aspect to determine has a significant effect on the quality of the method’s re-
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sults. It refers to the specific way in which errors near the QM/MM boundary are corrected.
This is handled in different ways for energy and force mixing. In the energetic approach,
the energy of the system can be defined as the sum of the QM energy, the MM energy and
an interaction energy. This last term is uniquely responsible of correcting all artifacts at
the boundary [22]. Adaptive schemes of this nature perform several QM/MM calculations,
each with a different interface, and combine them with a weighted sum in order to correct
the boundary errors. Since the energy is not an extensive property of the system, inter-
faces must be tried for all, or most, combinations of atoms in and out of the QM region.
Force mixing, on the other hand, is done with an extensive property. This allows for the
use of buffers, or extensions to the original delimited regions, as an alternative to multiple
interface calculations. In the next paragraphs, we will elaborate on the particulars of the
adaptive QM/MM method implemented in this thesis.

The adaptive buffered-force QM/MM (AdBF-QM/MM) method was developed by, among
others, Bernstein, Várnai, Mones and Csányi in 2011 [5, 22, 29]. In categories as defined
above, it is a force mixing approach with an abrupt transition and buffers. The first step
in its implementation is the definition of adequate domains for the calculations. We begin
by defining a core or center region, which is composed by the atoms for which it is essential
to capture quantum behaviour. In the proton transfer framework described in Chapter 3,
these crucial atoms would be the Zundel ion and the receptor water. This region is not
dynamically adapted and it is the reference around which all other regions are defined.
As it is always considered quantum mechanically, its MM force field parameters are not
required. Then, for atoms that are within a distance rQM from any core atom we define
the QM region. This region is dynamical as any atom that enters it is considered quantum
mechanically. Conceptually, we will treat the core region as included in the QM region.
The atoms that are within a distance rbuf from any QM atom, and not included already
in the QM region, are considered as the buffer region. This region is also dynamical. The
MM region is composed of the buffer region and all additional atoms that are further away
from the core. It is updated adaptively and treated classically. One additional feature is
implemented in the definition of the adaptive regions. In order to avoid particles oscillating
around a boundary to quickly change their descriptions, hysteresis is applied. The distance
rQM
− , in which a particle’s QM description is turned on, is closer to the core than the dis-

tance rQM
+ , in which its QM description is turned off. This allows for a recently changed

atom to maintain its description. The same principle holds for the buffer. Moreover, in
order to avoid covalent bonds crossing the QM/MM boundary, only entire molecules are
included or excluded from the dynamical regions. As a last remark, it is a sensible choice
to set the radii of the QM and buffer regions matching the hydrations shells of the core
region. Figure 4.1 shows the described regions schematically.
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4.1. Adaptive buffered-force QM/MM

Figure 4.1.: AdBF-QM/MM regions and hysteretic radii. Reproduced from [5].

The method is implemented as follows. We start by classifying the atoms into the four re-
gions described above. Then, we set up two completely separate and independent QM/MM
electrostatic embedding calculations to extract forces. The first calculation is done by ex-
tending the QM region by the size of the buffer. The entire QM+buffer region is treated
quantum mechanically, while the atoms in the rest of the MM region are included as point
charges contributing to the external potential. The second calculation is done by reducing
the QM region to its minimum, that is, to the core atoms. The core atoms are then treated
quantum mechanically, while keeping the rest of the QM and MM atoms as point charges.
In both calculations, the interactions between the atoms treated as external charges during
the embedding can be resolved by a classical MM computation. However, only the MM
forces in the reduced QM/MM calculation will be relevant. This is because of the way
in which the forces are mixed: from the extended calculation, we take the forces for the
original QM region and, from the reduced calculation, we take the forces for the original
MM region. This combination of forces violates momentum conservation, and therefore
a constant force correction is applied evenly to all atoms in the QM region. Figure 4.2
illustrates the flowchart for the AdBF-QM/MM.
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Figure 4.2.: AdBF-QM/MM flowchart. Reproduced from [22].

Once the forces are mixed, the dynamics are propagated using a massive adaptive ther-
mostat. Current AdBF-QM/MM implementations use the adaptive Langevin thermostat,
which can be understood as a Langevin thermostat coupled to a Nosé-Hoover thermostat
[15]. The dynamical equations are [5, 22, 29]:

q̇ =
p

m
(4.1)

ṗ = F (q)− (γ + χ)p+
√

2kBTγmẇ (4.2)

χ̇ =
2K − nkBT

Q
(4.3)

Q = kBTτ
2
NH (4.4)

Where q and p are the position and momentum, m is the atomic mass, F (q) is the force,
γ = 1/τL is the Langevin friction or inverse of the Langevin time constant, χ is the Nosé-
Hoover degree of freedom, Q is the Nosé-Hoover fictitious mass, τNH is the Nosé-Hoover
time constant, kB is Boltzmann’s constant, T is the temperature, K the kinetic energy and
ẇ is the derivative of a Wiener process.

The AdBF-QM/MM method, as described, has been successfully applied to a number of
molecular systems. Published applications include: tests for the structure of bulk water, as
well as water around a Cl− solvated ion [5]; free energy calculations for the nucleophylic-
substitution of methyl chloride with a chloride anion and the deprotonation of the tyrosine
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4.1. Adaptive buffered-force QM/MM

side chain [29]; and calculations of potential of mean force (PMF) profiles for water au-
toprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis [22]. The method
proves not only able to capture correct structures and transition barriers, but is also highly
efficient when compared against more expensive, energy based, QM/MM techniques.

Of course the performance of the AdBF-QM/MM method highly depends on the chosen
regions and radii and the subsequent extension of the QM calculations. By tuning certain
parameters, specific variations of the method can be identified, some of them equivalent to
previously developed techniques. First, it should be understood that, while in the extended
calculation the buffer acts as such for the QM region, in the reduced calculation it is the
difference between the core and the QM region that acts as a buffer. Then, if one choses
the QM region to be the same as the core (rQM

+ = 0, rQM
− = 0) and no buffer (rbuf

+ = 0,
rbuf
− = 0), the result is a completely unbuffered calculation, i.e. adaptive conventional

QM/MM (AdConv-QM/MM) [22]. Alternatively, only one of these considerations can be
taken, leading to calculations that are only buffered for QM or MM forces. If the extended
QM/MM calculation is avoided, the method becomes significantly cheaper, but also prone
to boundary effects. Finally, if there is a reactive force field available for the core atoms,
the reduced calculation can be done cheaply, entirely with MM.

In this thesis, three modifications have been applied to the original AdBF-QM/MM
method. The first and most simple is that the rbuffer distance is defined from the positions
of the core atoms rather that from the QM atoms. This makes the classification easier,
while a straightforward subtraction of the rQM distance serves to recover the approximate
original rbuffer definition. The second change is concerned with the momentum conservation
correction, done after the force mixing. Instead of applying the correction only in the QM
atoms, we do so in every atom of the system. Moreover, the correction is not done with a
constant force, but rather with a constant acceleration in order to avoid differences between
lighter and heavier atoms. The third modification consists in adding van der Waals forces
to the QM/MM embedding. This is done by performing an additional MM calculation with
Lennard-Jones interactions exclusively. Non-bonded interactions are then completed, since
the embedding already captures electrostatics. Of course, if the implemented QM/MM
embedding already includes van der Waals forces, this is not necessary.

Implementations of the AdBF-QM/MM method in the CP2K quantum chemistry package
and in the AMBER MD package have been published in recent years [22]. In both cases,
the software packages are able to execute the entire method independently . In this thesis,
we coupled two different packages. For DFT QM/MM embedding, we use FHI-aims [6,
10], an ab initio molecular simulation package developed by the Fritz-Haber Institute of
the Max Planck Society. For MM calculations, we use LAMMPS [24, 8], a classical MD
simulator developed by Sandia National Labs and Temple University. FHI-aims is written
in Fortran95, while LAMMPS is in C++. Both codes work in parallel with message passing
interface (MPI). LAMMPS can also use graphics processing units (GPUs). The interfacing
between both programs and all the code development was done with Python’s Atomic
Simulation Environment (ASE) module [2, 1]. ASE can call FHI-aims and LAMMPS, and
retrieve the corresponding results. This is done by implementing calculator objects, which
are used to update the forces, kinetic and potential energy of an atoms object that represents
our system. Several copies of the system are resolved by the different calculators. Then, the
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returned forces are mixed, corrected and used to propagate the dynamics according to the
thermostat, which can also be smoothly integrated into the ASE framework. A total of five
calculators are required: two FHI-aims calculators, one for the extended and one for the
reduced QM/MM embedding; two LAMMPS calculators to add the van der Waals forces
in each of the embedding calculations; and one LAMMPS calculator for the interactions of
the MM atoms.

One final aspect of our particular implementation should be considered. Unlike C2PK or
AMBER, FHI-aims currently does not support PBC when performing QM/MM embedding.
For this reason, we run our simulations in a finite box. In order to prevent the system from
diffusing, we set a spherical region delimited by a wall. The sphere is centered on a particular
point with symmetric significance. The wall exerts a harmonic force on any atom about to
leave the spherical region. This restriction is implemented in LAMMPS for the MM atoms.
It is important to remove these wall forces from the momentum conservation correction.

The AdBF-QM/MM, as implemented for this thesis, can be summarised by the following
pseudo-code:

Algorithm 1 AdBF-QM/MM in Python’s ASE with FHI-aims and LAMMPS

Initialize:
atoms object, core atoms indices, FHI-aims calculator object,
LAMMPS calculator object, hysteretic radii floats

for each timestep do:
classify atoms

according to distances and hysteretic radii
assign copies of atoms to calculators

FHI-aims extended QM/MM embedding ← QM+buffer atoms
LAMMPS LJ embedding interactions ← QM+buffer atoms
FHI-aims reduced QM/MM embedding ← core atoms
LAMMPS LJ embedding interactions ← core atoms
LAMMPS MM interactions (with wall) ← all non-core QM/MM

calculate forces
mix forces and apply on original atoms

QM atoms: extended QM/MM + LJ embedding interactions
MM atoms: reduced QM/MM + LJ embedding interactions + MM interactions

correct forces
constant acceleration for momentum conservation (no wall effect)

update atomic positions
adaptive Langevin thermostat

end for

4.2. Energy gap reaction coordinate

As mentioned in Chapter 3, in order to study the proton transfer reaction we require means
to monitor and bias it. A reaction coordinate is an abstraction that allows us to express the
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progress along a reaction pathway - from initial to final state - in a single coordinate [11]. In
general, reaction coordinates are geometrically motivated and involve tracking key atomic
positions, bond lengths, angles, torsions, etc. As using a single degree of freedom is often
not enough for a good description, it is possible to perform a linear combination of reaction
coordinates, or even use several of them simultaneously and explore the space spanned by
them. However, finding these important degrees of freedom is not easy and there is no
systematic way to do it. Furthermore, many reactions are driven by a cooperative motion
of the reactants and the solvent [21]. Our proton transfer model, as exposed in Section 3.2,
presents such challenges.

A very interesting and pragmatic option is to express the reaction progress in terms of
energy. This idea is based on Marcus theory for electron transfer and solvent reorganization.
It is possible to describe the reactant and product states with different potential energy
functions, corresponding to two different bonding topologies. Then, we can construct a
reaction coordinate known as energy gap, Egap [21]. We do this by calculating the difference
between the initial (1) and final (2) potential energy functions evaluated at any intermediate
configuration of the system. The general form is then written as:

Egap = ε1(r)− ε2(r) (4.5)

By definition, the minimum of each potential energy function is located at the configura-
tion for which it was formulated. Then, we can imagine a simplistic 1-D Egap representation
of our proton transfer reaction as the one illustrated in Figures 3.2 and 3.3:

Figure 4.3.: Energy Gap reaction coodinate. Edited from [21].

We would like to make a number of observations on Figure 4.3. First, unlike what is
shown in this mere exemplary depiction, both minima should have the same value given
the symmetry of our system. Second, these minima should be well-separated, in order to
have a selective energy gap that properly identifies the initial and final states. Third, as
was said in Chapter 3, any of the water molecules in the first hydration shell may become
the receptor for the proton. This simple form of the Egap cannot capture such multiplicity.
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To achieve that, more complete formulations have been made [21]. However, in our case
we will rely on the simple form, as we will restrict the transfer to occur towards a specific
water while performing the sampling. Finally, and most importantly, even if in the diagram
only the Zundel and the receptor water are included, we should clarify that the rest of the
surrounding water is also considered to calculate the potential energy of the system. In this
last point resides the power of the energy gap [21].

In order to evaluate the energy gap, adequate potential energy functions must be inserted
into the general form. For this, we look at classical MM force fields. As described in Chapter
2, force fields consist of a functional form and a set of parameters. Then, we face the two-
sided challenge of designing a proper force field for our system. First, we have to capture
the relevant atomic interactions contributing to the potential energy; and second, we have
to correctly parametrize the selected force field terms. Educated guesses of a suitable force
field form can be proposed based on similar, previously known, molecular systems. Common
practice is to parametrize these models according to experimental data or simulated data
from full QM calculations. Since our work is already in the context of an adaptive QM/MM
simulation, it is a sensible choice to use the second data source. To perform the actual
fitting, there are many techniques currently available. However, it is still critical to capture
the essential interactions of the system. Having some well-parametrized contributions, but
ignoring others, will not lead to physical results. In order to find an adequate model, test
runs with several force fields must ultimately be performed and benchmarked against the
experimental or QM reference.

In probabilistic language, the above is an inverse problem — where model parameters
are to be inferred from a data set — and it provides an interesting playground for Bayesian
strategies [20, 12, 26]. For a given force field form and data, Bayesian model calibration
can provide not only sets of optimal parameters, but also probability distributions and
associated uncertainties for their values. Complementarily, Bayesian model validation can
assign relative probabilities to different models. This comparison balances the complexity
and precision of the models, thus avoiding overfitting. In the Appendix A of this thesis, we
elaborate on the application of these strategies to the simplification of the system described
below.

Since the entire system composed by the Zundel ion, receptor water and surrounding
water is far too big to handle, we simplify the problem. We decide not to include the
surrounding water bonded and non-bonded parameters in the calibration, and rather let
them be defined by the widely recognized fTIP3P water model, as defined in the LAMMPS
documentation [8]. The same fTIP3P model is used for all Lennard-Jones parameters
of the system. After these considerations, only the bonded parameters and charges for
the receptor water and the Zundel ion are left to be resolved. For both molecules, DFT
(PBE) QM data is used as reference. Charges are simply averaged. The receptor water
bonded interactions, which comprise two harmonic bonds and one harmonic angle, are
parametrized by a weighted non-linear least squares fitting. We invest all the Bayesian
machinery exclusively in the Zundel ion’s bonded interactions.
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Figure 4.4.: Bonded interactions of the Zundel ion

In a first approach, we assume the Zundel ion to be structured as shown in Figure 4.4.
The ion is composed of a total of six bonds, four O-H water-like bonds, plus two additional
O-H+ bonds. The nature of these interactions, Morse or harmonic, is one of the main
aspects of the Bayesian analysis. Extra bonds, such as one between the oxygen atoms, are
also set for comparison. The angles of the Zundel ion are accounted for as two external
ones (H-O-H), four internal ones (H-O-H+) and a central one with the proton in the middle
(O-H+-O). Four torsions are considered, one on each of the O-H+-O-H references.

In Appendix A, Bayesian model calibration is employed to parametrize this model. Im-
provements are proposed based on the probability distributions of the parameters, the
precision of the potential energy fitting and the structure of the Zundel ion reproduced by
the MM parameters. The process is repeated to generate a broad set of models. Bayesian
model validation is then used to evaluate which of the calibrated force fields is best suited
to our system. The resulting force field form and parameters are included in Chapter 5.

4.3. Umbrella sampling and free energy profile
reconstruction

The simulation times required for reactions to take place are often exceedingly long. Ad-
vanced sampling techniques are motivated by this challenge. In general, these rare event
methods rely on biased MD simulations. That is, in driving the system into particular
desired states, which can be represented by points along the reaction coordinate u [11].
Typically, the goal is to calculate the change of free energy F along u, referred to as a
free energy profile. The free energy is directly related to the probability distribution of
the system’s states F (u) = −kBT lnP (u). High energy intervals, or barriers, are not easily
accessible and are responsible for the long simulation times. In umbrella sampling (US)
[28], we divide the reaction path into several windows, each identified by a particular value
of the reaction coordinate ui. Then, we apply a u-dependent bias (Equation 4.6) to restrain
the system, and sample around the given ui value in each window (Figure 4.5).

wi(u) =
1

2
ki(u− ui)2 (4.6)
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F (u)w(u)

Figure 4.5.: Umbrella sampling windows (red) along a free energy profile (black). Figure
by T. Stecher.

The strength of each umbrella biasing potential can be tuned by the ki parameter. In
general, areas with a negative curvature in the free energy, such as the maximum in Figure
4.5, will require a stronger bias to be effectively restrained. However, since the exact shape
of the profile is not known a priori, this choice requires further analysis. Moreover, the
energetic barriers that are represented by such maxima in the free energy profiles are of
great importance during our study of chemical reactions. The height of the barrier provides
key insight on the transition between the two adjacent stable states, for example, the initial
and final configurations of our proton transfer described in Chapter 3.

Once the umbrella sampling is completed, we require methods to recover the underly-
ing unbiased profile. A traditional approach is the weighted histogram analysis method
(WHAM), which poses limitations regarding window overlapping and requires the choice of
a certain bin width. A newer scheme available today is umbrella integration (UI) [16], an
approach inspired by thermodynamics integration. The main idea of UI is to work with the
derivative of the free energy with respect to the reaction coordinate. In each window, we
assume there is a point in u for which the biasing force is exactly cancelled by the under-
lying free energy derivative. Then, this equilibrium point corresponds to the mode of the
sampled distribution ûi. We write [27]:

∂F (u)

∂u

∣∣∣∣∣
ûi

= −∂w(u)

∂u

∣∣∣∣∣
ûi

= −ki(ûi − ui) (4.7)

This estimation can be further developed. The biased free energy power series, here
implicitly truncated after the first order terms, can be further expanded. In practice,
however, the second order terms already introduce a significant amount of noise into the
free energy. An additional note concerns statistics. Equation 4.7. is evaluated with the
mode ûi. Nonetheless, typically the mode is approximated by the mean ûi ≈ ūi, which is
easier to calculate with limited simulation times.

After obtaining the value of the free energy for each window, the data can be combined by
a weighted average [16] or by more elaborate techniques, such as Gaussian process regression
(GPR) [27]. This thesis will not dive into such methodologies. The provided references
contain both, the first proposed version of UI [16], and a state-of-the-art implementation
[27].
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5. Simulation Protocols

5.1. Set up and restraints

All simulations are set in a finite cubic box of 38 × 38 × 38 Å. Centered inside the box, a
spherical region with a radius of 18.5 Å contains all atoms. If an atom is at a distance of
1.0 Å or closer to the border of the sphere, a correcting harmonic force with a constant of

50 kcal/(molÅ
2
) is applied. We refer to this restraint as a harmonic wall. Inside the sphere,

we place 626 pre-equilibrated water molecules, accounting for a density similar to Reference
[5]. At the center of the sphere, we position the Zundel ion and the receptor water. The
Zundel ion’s oxygen atom closest to the receptor water is placed exactly at the center of the
spherical region. A Hookean restraint, as implemented in ASE [1], is set to keep this central
atom near that position. That is, if the atom is to be displaced beyond 1 Å from the center

of the sphere, a correcting harmonic force with a constant of 2.0 eV/Å
2

is applied. In the
same way, Hookean restraints are set to maintain the Zundel ion and the receptor water
in adequate configurations for the reaction. The O-H+-O-H–O chain interatomic distances

are controlled by Hookean restraints activated at 2 Å, with a constant of 2.0 eV/Å
2
.

5.2. Energy gap reaction coordinate models

From the seven models calibrated and validated in Appendix A, only the fittest are employed
for actual simulations. The parameters of the models are summarized in Table A.5. Models
4, 5, 6 and 7 are employed for evaluations. Only models 4 and 5 are actively used for
equilibration and production runs respectively.

5.3. Equilibration runs

The equilibration runs are done exclusively with MM. The initial configuration and re-
straints are taken as described in Section 5.1. The potential and forces are calculated with
a hybrid LAMMPS calculator, which comprises a linear combination of the initial state and
the final state energy gap force fields (Equation 5.1). Specifically, we employ force field
model 4, which only uses harmonic bonds and has proved the most structurally stable.

E = (1− λ)Einitial + λEfinal (5.1)

The goal of this equilibration protocol is to span the reaction path for the future sam-
pling, and to identify the approximate energy gap values for the initial and final states
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in an MM context. A total of five equilibrations runs are set, with mixing parameters λ
clustered near the Zundel configuration: [0.05, 0.11, 0.21, 0.34, 0.5]. In order to optimize
the equilibration, the runs are performed consecutively. The progressive equilibrations are
done from 0.5 to 0.05. The 0.0 value is omitted, as this run contains a considerable amount
of noise. The runs are 5 ps long, in steps of 0.5 fs. A Langevin thermostat with a friction
of γ = 1/τL = 0.02 fs−1 was set to maintain the system at 300 K. Equilibrations with
λ > 0.5 are performed, but not reported, as they only reflect the symmetry of the system.

5.4. Unbiased production runs

All production simulations are done with our implementation of the AdBF-QM/MM method.
The core atoms for all runs are the Zundel ion and the receptor water. Various sizes for the
QM and buffer regions are tested. Our goal is to locate stable states and recognize reaction
dynamics, as well as analyze the effects of the hysteretic radii on the system’s behaviour.
Additionally, the energy gap, evaluated with force field models 4, 5, 6 and 7, is monitored
during the runs. This is done with the purpose of determining which energy gap formula-
tion provides adequate sensitivity and selectivity for the relevant identified reaction states.
The initial configuration for all free runs, with one exception, is taken from the equilibrated
run with λ = 0.5. The restraints described in Section 5.1 still hold. Other than those
restrictions, the system is let free to evolve. The time constants for the adaptive Langevin
thermostat are τL = 370 fs and τNH = 74 fs [5]. The time step size is of 0.5 fs. Among the
many implemented AdBF-QM/MM protocols, the following selection is presented:

Protocols / Settings rQM
− rQM

+ rbuffer
− rbuffer

+ xc functional equilibration mix

AdConv 0.0 0.0 0.0 0.0 PBE 0.5

AdBF0 2.0 2.6 2.0 2.6 PBE 0.5
AdBF2 2.0 2.6 4.0 4.6 PBE 0.5
AdBF3 2.0 2.6 5.0 5.6 PBE 0.5
AdBF4 2.0 2.6 6.0 6.6 PBE 0.5

AdBF3* 2.0 2.6 5.0 5.6 PBE 0.05

AdBF3-PBE0 2.0 2.6 5.0 5.6 PBE0 0.5
AdBF3-B3LYP 2.0 2.6 5.0 5.6 B3LYP 0.5
AdBF3-HSE06 2.0 2.6 5.0 5.6 HSE06 0.5

Table 5.1.: Simulation protocols selection. Each protocol consists of: the four hysteretic
radii (in Å) for the AdBF-QM/MM method, the exchange correlation functional
for the QM/MM DFT calculations and the equilibration mix from which the
starting configuration is taken.

Table 5.1 summarizes the chosen simulation settings. The first protocol, AdConv, cor-
responds to a conventional unbuffered QM/MM simulation. It provides a simple approach
to benchmark against. The following settings, AdBF0, AdBF2, AdBF3 and AdBF4, corre-
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spond to calculations with the AdBF-QM/MM method. The QM radius is set to match the
first hydration shell of the core atoms, while the buffer size is increased in each simulation.
The effects of the buffer size are to be determined from these calculations. Protocol AdBF3*
is a sanity check for AdBF3, as it is exactly the same, except for its starting configuration,
which is taken from the initial state equilibration. The last three protocols are set to test
the effects of the hybrid functionals PBE0, B3LYP and HSE06. The rest of the settings are
kept as in the AdBF3 protocol. All FHI-aims calculations include a vander Waals correction
based on Hirshfeld’s partitioning [10].

5.5. Biased production runs

A particular energy gap formulation - model 5 - and a particular AdBF-QM/MM setting
- protocol AdBF3 - are chosen to perform US. The motivation for this is explained in
Chapter 6. A total of 12 windows were set for energy gap values ranging from -2.2 to 0.0 eV
with steps of 0.2 eV. This increased number of windows with respect to the equilibrations
was established after noticing that the free energy profile demanded more sampling than
expected. The positive values of the energy gap are omitted, because of the symmetry of the
reaction. Each window of the US takes the equilibrated run with the closest average energy
gap value as initial configuration. The harmonic constant for all umbrellas is 0.4 eV−1.
Each simulation is run for at least 2.5 ps. The first 0.5 ps of each window are considered
equilibration, and omitted in the GPR reconstruction of the free energy profile [27].

5.6. Computational aspects

The equilibration runs are done on a local workstation with 8 cores available. However, the
LAMMPS calculators are used with a single core, as the input and output operations when
coupling with ASE cause significant overhead.

Protocols AdConv and AdBF0, as well as several unmentioned test runs, are done on
Arthur, the local cluster at the Chair of Theoretical Chemistry. A total of 16 cores are used
for this system during FHI-aims calculations. As before, the LAMMPS operations are done
with a single core.

The rest of the unbiased production runs are done on SuperMUC Phase 2 [23]. Protocols
AdBF2 and AdBF3 are run using two Haswell nodes, accounting for 56 cores. Protocols
AdBF3* and AdBF4 used four Haswell nodes, with 112 cores. The more expensive protocols,
AdBF3-PBE0, -B3LYP, and -HSE06, use eight Haswell nodes, accounting for 224 cores. In
all cases, the totality of cores is only used for the extended QM/MM embedding. The
reduced QM/MM embedding is done with 8 cores, which provides optimal scaling for the
smaller quantum system. Again, all LAMMPS operations use a single core. The computing
times are reported in Chapter 6. The biased production runs for US windows are also done
on SuperMUC Phase 2 [23] , using 112 cores. Again, the reduced QM/MM calculation is
done only with 8 cores, and the MM calculations only with one core. The time limit is of
96 hours per window.
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6.1. Equilibration runs

The quality of the equilibration runs is to be evaluated. We are concerned with the struc-
ture of the system and with the spanned energy gap values. Figures 6.1 to 6.5 show the
corresponding information about the runs. The left plots depict the oxygen-to-oxygen dis-
tance rOO, for both the initial and the final Zundel ions in each equilibration. On the other
hand, the right plots show the values of the energy gap during the run.

As expected, the O-O distances gradually evolve from the symmetric Eigen ion configu-
ration (with approximately 2.5 Å for both distances), to the expected Zundel ion structure
described in Chapter 3 (with approximately 2.4 Å for the Zundel O-O distance and 2.7
Å for the O-O distance to the receptor water). This confirms the structural correctness
of force field model 4, which was used for the hybrid MM calculator. The ASE-Graphic
User Interface (ASE-GUI), was employed to visualize and confirm the Eigen and Zundel
ion structures. With respect to the energy gap reaction coordinate, the intermediate con-
figuration is expectedly located at zero, while the Zundel ion states are found around ±1.8
eV. This indicates the energy gap range to be explored during the US production runs.

Figure 6.1.: Oxygen-to-oxygen distances rOO, for both the initial and the final Zundel ions
(left) and energy gap values (right) during the equilibration run with λ = 0.5
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Figure 6.2.: Oxygen-to-oxygen distances rOO, for both the initial and the final Zundel ions
(left) and energy gap values (right) during the equilibration run with λ = 0.34

Figure 6.3.: Oxygen-to-oxygen distances rOO, for both the initial and the final Zundel ions
(left) and energy gap values (right) during the equilibration run with λ = 0.21

Figure 6.4.: Oxygen-to-oxygen distances rOO, for both the initial and the final Zundel ions
(left) and energy gap values (right) during the equilibration run with λ = 0.11
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Figure 6.5.: Oxygen-to-oxygen distances rOO, for both the initial and the final Zundel ions
(left) and energy gap values (right) during the equilibration run with λ = 0.05

6.2. Unbiased production runs

The unbiased runs fulfil an exploratory purpose. They deliver information about the sys-
tem’s dynamics and stable states, before bias potentials are added. In the following Figures,
we show the sampled energy gap values, both in time series plots and histograms. We also
identify the Zundel and Eigen ion states with Z and E labels on the secondary axes.

Protocol AdConv

Figure 6.6.: Energy gap time series plot (left) and histogram (right) generated with protocol
AdConv.
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In this adaptive conventional QM/MM method, the system is visibly restricted near the
Eigen ion configuration. We hypothesize that having only the core atoms as QM region,
and no buffers, is the cause for this lack of mobility. Considering only this small part of
the system with QM, can reasonably explain the stability of the Eigen ion, which provides
symmetry. Additionally, in the histogram we observe that the system shows no preference
for the Zundel ion state located near the energy gap value of -1.8 eV. Finally, it should
also be noted that the energy gap formulation with force field model 5 is less sensitive
than model 4, specially for peaks away from the zero. This aspect is also noticeable in the
following protocols, and will be exploited to reduce the noise in the US windows.

Protocol AdBF0

This protocol, which sets the QM region to cover the first hydration shell of the core
atoms and no buffer, returns interesting results. In the time series, it is observable that,
after some equilibration due to the solvent effects, the system drifts far away from the
initial configuration. Proton transfer occurs, but not as expected. The system quickly
goes through the initial Zundel ion state defined in Chapter 3, and then continues for a
second proton transfer to one of the water molecules in the first hydration shell. The final
state of this transfer is not clearly identifiable as an Eigen or Zundel ion. This process
reflects one of the most critical aspects of QM/MM interactions. We are convinced that the
drifting of the proton toward the edge of the QM region is due to the Coulomb singularities
(point charges), that represent the MM atoms during the embedding. That is, the proton is
attracted by the nearby oxygen atoms outside the QM region. Fortunately, the implemented
buffered method provides a solution to this problem. In the following protocols, we increase
the size of the buffer, aiming to reduce the effect of the MM charges on the proton. It
should also be mentioned that, having the system so far away from the originally expected
configurations, pushes the limits of the parametrized energy gap reaction coordinate, which
becomes considerably noisy.

Figure 6.7.: Energy gap time series plot (left) and histogram (right) generated with protocol
AdBF0.
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Protocol AdBF2

In this short exploratory run, we set the QM region to match the first hydration shell, and
the buffer to match the second. After a brief equilibration, the system once again drifts
away to edge. However, not as fast as in the previous attempt with no buffer. The Eigen ion
is still the dominant state, as seen in the histogram. In the next protocols, we proceed to
increase the buffer size.

Figure 6.8.: Energy gap time series plot (left) and histogram (right) generated with protocol
AdBF2.

Protocol AdBF3

Figure 6.9.: Energy gap time series plot (left) and histogram (right) generated with protocol
AdBF3.

The QM region is kept for the first hydration shell, while the buffer covers 3.0 Å on top.
For approximately 2 ps, the system stays reasonably bounded, and later visits two other
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states further away from the expected interval. When analyzing the dynamics, these two
states were identified as Eigen ions. They formed on the core oxygen atoms on each side of
the central oxygen atom. That is, one Eigen ion formed at the receptor water, and one at
the opposite oxygen of the initial Zundel ion. At this point we recognize that, contrary to
our expectations, the Eigen ion is the stable state of an excess proton in water under these
simulation conditions. Protocol AdBF3* is set to confirm this outcome.

Protocol AdBF4

This protocol completes the buffer tests. It employs a buffer of 4.0 Å on top of the first
hydration shell QM region. The simulation behaves similarly to protocols AdBF3 and,
especially, AdBF3*. Stable Eigen ion configurations are now clearly identifiable in the
histogram at energy gap values of 0.0 and approximately 10.0 eV.

Even larger buffer sizes are not tested for two reasons. First, in the literature, this is the
maximum buffer size used for systems as or more complex than ours [22, 29]. Second, the
increasing computational cost of the extended QM/MM calculation does not appear to pay
off anymore, as the simulations results are not significantly affected. Of course, in order to
properly affirm this, a force convergence study is required.

Figure 6.10.: Energy gap time series plot (left) and histogram (right) generated with pro-
tocol AdBF4.
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Protocol AdBF3*

Figure 6.11.: Energy gap time series plot (left) and histogram (right) generated with pro-
tocol AdBF3*.

This protocol, equivalent to AdBF3, starts from the initial Zundel configuration, and pro-
vides very valuable insight about our system. Three Eigen ion configurations, formed on
each of the core oxygen atoms, are visited (Figure 6.12). The energy gap values for such
states are visible at 0.0 and approximately ± 10 eV in the histogram. The intermediate
Zundel ions are not stable. The buffer size is seemingly sufficient to prevent the proton
from drifting towards the edge of the QM zone, as it is never transferred to the oxygens in
the first hydration shell of the core region.

Figure 6.12.: Stable Eigen ion configurations at the three core oxygen atoms, corresponding
to energy gap values of -10 eV (left), 0 eV (center) and 10 eV (right).

We also seize this protocol to verify the proper functioning of some aspects of the AdBF-
QM/MM method. The first one is the adaptive Langevin thermostat. In Figure 6.13, the
running average kinetic energy per atom is shown. The thermostat keeps all atoms on the
same average value of 0.39 eV. The increased variance on QM and buffer atoms is simply
due to the smaller number of atoms in such regions.
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Figure 6.13.: Kinetic energy of atoms in different regions during the unbiased run with
protocol AdBF3*.

The second aspect that is revised is the hysteretic classification of the atoms. Figure 6.14
shows the number of atoms in the QM and buffer regions during the run. As designed, the
classification does not present quick changes.

Figure 6.14.: Time series of the number of QM and buffer atoms during the unbiased run
with protocol AdBF3*.

Two additional aspects that we wish to report are the orders of magnitude of both, the
momentum conservation correction, and the force exerted by the wall. The forces applied
for momentum conservation are of around 10−4 eV/Å on oxygen atoms, and 10−5 eV/Å on
hydrogen atoms. The total force exerted by the wall is of around 10−2 to 10−1 eV/Å.
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Protocol AdBF3-PBE0

After confirming that using a GGA functional for the QM DFT calculations does not return
a stable Zundel ion, we evaluate hybrid functionals. This protocol is the same as AdBF3,
but using the PBE0 exchange correlation functional. The result, however, is not different
from the previous ones. The system does not seem to have any stable state near the Zundel
ion, but rather in the vicinity of the Eigen ion. The computational cost of this hybrid
functional limited the extension of our exploratory runs.

Figure 6.15.: Energy gap time series plot (left) and histogram (right) generated with pro-
tocol AdBF3-PBE0.

Protocol AdBF3-B3LYP

Figure 6.16.: Energy gap time series plot (left) and histogram (right) generated with pro-
tocol AdBF3-B3LYP.
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As in the previous protocol, this run is designed to test the effect of a hybrid functional.
B3LYP is used, and the rest of the parameters are kept as in the AdBF3 protocol. The
resulting histogram still shows no stable state near the Zundel ion, but near the Eigen. As
before, the length of the run is limited by the cost of the hybrid functional.

Protocol AdBF3-HSE06

In this final protocol with the hybrid functional HSE06, we observe again a preference
for the Eigen ion state. The Zundel is never visited. As the run is rather short, further
exploration, with more computational investment, would be required. We postpone this for
further research.

Figure 6.17.: Energy gap time series plot (left) and histogram (right) generated with pro-
tocol AdBF3-HSE06.

6.3. Biased production runs

US is performed with the protocol AdBF3, which has already been identified to generate an
Eigen-Zundel-Eigen proton transfer. The UI (Figure 6.18) confirms the observations from
the unbiased runs. In our current QM/MM setting, the stable state of an excess proton
in water is the Eigen ion. We find the corresponding minimum free energy at the zero
energy gap value. However, a maximum is not observable around -1.8 eV, where the Zundel
ion configuration is located. This is certainly counterintuitive, as having the Eigen ion as
minimum energy state should also imply having the Zundel as maximum. This is the reason
for which the sampling was extended to -2.2 eV, but no clear maximum was detected. From
the unbiased runs, the minimum free energy corresponding to the next Eigen ion should
be around -10 eV. However, our hybrid calculator method for equilibration cannot produce
adequate initial configurations for such states far away from the original range. Therefore,
we do not set more windows closer to the next Eigen ion. Additionally, we note that the
scale of the free energy changes is quite small (around 0.04 eV), which explains the quick
transitions seen in the protocols above.
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Umbrella integration with protocol AdBF3

Figure 6.18.: Blue: free energy profile reconstructed after umbrella sampling and umbrella
integration with protocol AdBF3. Red: sampled derivative of the free energy
with respect to the energy gap reaction coordinate.

After confirming that the Eigen ion is the stable state in our QM/MM framework. We
decided to perform an additional US, with a new protocol not described in Section 5. In
this protocol, we set two water molecules and the proton between them as core atoms. The
initial and final states are assumed to be Eigen ions formed at each of the water molecules
and the intermediate state is a Zundel ion. The hysteretic radii and exchange correlation
functional are set as in protocol AdBF3. The energy gap force fields for the Eigen ion were
parametrized by weighted non-linear least squares fitting on DFT PBE data, considering
three Morse bonds and three harmonic angles. The results, with units as in the Appendix
A, are: Dm = 72.54, αm = 2.67, r0,m = 0.99, Ka = 36.02, θ0,a = 110.93. The force fields
were also used for MM equilibration, having the core atoms constrained near the center of
the spherical region. Five windows were run at energy gap values of [0.0, -0.75,-1.6,-2.8,-
4.95,-6.0] eV with ki = 0.2 eV−1. Each window was run for at least 1.5 ps, ignoring the
first 0.5 ps for equilibration. The computing time limit was of 48 h. The free energy profile
was reconstructed using GPR (Figure 6.19).
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Figure 6.19.: Blue: free energy profile reconstructed after umbrella sampling and umbrella
integration with new protocol assuming the Eigen ion as stable state. Red:
sampled derivative of the free energy with respect to the energy gap reaction
coordinate.

While this calculation might not be fully converged, it is clear that, contrary to our
expectations, an Eigen-to-Eigen transfer with a barrier at the Zundel ion is not captured.
Modifying the size and shape of the QM region changes the stable states of the system.
Even with clear minima not detected, we observe a coexistence of both, Zundel and Eigen
states, in the free energy profile. This result reinforces one of the motivations of this thesis,
as it reflects how the selected methodologies affect the reaction mechanisms observed in
simulations. We are now also able to grasp the difficulty of fully understanding the nature
of the excess proton in water.

6.4. Computational aspects

Table 6.1 summarizes the computational resources employed for each protocol, as well as
an approximate lower bound for the computing time of each time step. It should be noted
that, depending on the convergence of the DFT SCF cycle, and on the number of particles
entering and exiting the buffer, these time steps can vary significantly. Calculations with
a bigger buffer, present larger increments during the runs, as more atoms are able to cross
the QM/MM boundary.
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Protocols / Resources System Number of cores Run time (h) Step time (s)

AdConv Arthur 16 120 60

AdBF0 Arthur 16 120 90
AdBF2 Supermuc Phase 2 56 48 40
AdBF3 Supermuc Phase 2 56 192 70
AdBF4 Supermuc Phase 2 112 144 80

AdBF3* Supermuc Phase 2 112 96 70

AdBF3-PBE0 Supermuc Phase 2 224 240 250
AdBF3-B3LYP Supermuc Phase 2 224 144 270
AdBF3-HSE06 Supermuc Phase 2 224 192 270

Table 6.1.: Computational resources invested in each protocol. The time step times are
approximated lower bounds in seconds.
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7.1. Discussion

First, we dive into the multiscale modeling. The robustness of the AdBF-QM/MM method,
which allows for clean and functional coding, is highly valuable. The method’s portability
was exploited in ASE, using FHI-aims and LAMMPS. Additionally, the several tunable
parameters of the method, as the definitions of the core atoms and the hysteretic radii,
allow for an important degree of flexibility when covering complex systems. This flexibility
builds up, as the respective QM/MM electrostatic embedding and MM methods also have
their own parameters. All in all, the AdBF-QM/MM performs resiliently and, as reported
in the literature [5, 22, 29], captures structures and free energy profiles. Nonetheless, the
method is not free of challenges. In our test runs, we have discovered how critical is it to
adequately set the QM and buffer regions. The QM region must be large enough to enable
the respective QM forces to drive the system. A too small QM zone will not allow for
quantum behaviour to emerge. The shape of the region is also critical, as it should capture
the key actors of the reaction, and account for relevant symmetry. Additionally, the buffer
must also be chosen sensibly. It should put enough distance between the QM region and
the external MM point charges during the embedding. Otherwise, the close interactions
with the Coulomb singularities pull the DFT charges toward the edge of the QM region.
However, this aspect should be carefully balanced, as big buffer sizes lead to increasingly
expensive QM/MM calculations. For this purpose, in the Section 7.2 we propose further
tests to optimize the method’s regions and parameters.

Regarding the reaction coordinate, we appreciate the ability of the energy based approach
to capture the effects of the surrounding solvent. While some effort is required for the force
field parametrization, the resulting description of the system is much more comprehensive
than a geometrically inspired formulation. Bayesian strategies provide a fit framework to
calibrate and validate MM force fields based on QM DFT data. This is discussed further
in Appendix A. Ultimately, force fields can be successfully designed and inserted into the
energy gap formulation.The reaction coordinate can then be monitored during unbiased
runs to verify its sensitivity, and eventually selected for biased simulations. One additional
advantage of this approach is that the generated force fields are useful for pre-equilibration.
However, the energy based reaction coordinate also has limitations. We observed how,
when the system drifts away form the intended initial and final configurations, the reaction
coordinate becomes highly sensitive. The energy gap is constructed to capture specific
processes. Evidently, more complex energy based reaction coordinates can be formulated
[21], but they still should be carefully calibrated in order to capture relevant reaction states.

Finally, concerning the investigated proton transfer in water, our understanding of the
system’s complexity was notably broadened. All of our proceedings were originally oriented
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to a Zundel-to-Zundel proton transfer. We set both the AdBF-QM/MM regions and the
reaction coordinate to match the Zundel ion as the stable state. However, during our
unbiased simulations, we had to conclude that, for our set-up, the stable state of the excess
proton in water was the Eigen ion. This was confirmed by the calculation of the free energy
profile. Moreover, under this original setting it was not clear if the now intermediate Zundel
corresponded to a maximum in the free energy profile, which compromises the symmetry
of the reaction. At the end of our work, the Zundel-Eigen dichotomy remains as an open
question [13, 25], inviting further investigation.

7.2. Outlook

One of the most enriching aspects of this thesis is the number of doors that it opens for
subsequent work. Below, we propose some interesting studies beyond ours.

An interesting extension would be to account for nuclear quantum effects, which might
conceivably favour the Zundel ion [13]. Additionally, this research could be complemented
by longer tests with different exchange correlation functionals. Then, we can also think
about implementing periodic boundary conditions on FHI-aims, so no wall is necessary to
keep the system together. Another aspect of QM/MM that can be explored is smearing
the external MM charges during the embedding, so a smaller buffer size might be sufficient.
Having a polarizable MM force field might also help. Ultimately, to optimize the buffer
size, a force convergence study must be performed. The size of the QM region itself can
also be subject to further testing. It would also be interesting to modify the force fields
calibrated for the energy gap, and substitute the reduced QM/MM embedding calculation
with a full MM calculation. For this purpose, a more elaborate model parametrization
would be necessary. Another development could introduce a new form of adaptiveness, by
allowing the core atoms and the respective QM and buffer regions to change according to
the position of the proton, thus, enabling the tracking of multiple consecutive transfers.
Finally, having a full QM run of the proton transfer would be expensive, but also useful for
benchmarking.

For the energy gap reaction coordinate, it would be engaging to attempt more complex
fittings for the parameters. For example, explicitly including hydration shells of the core
atoms can change the charges and bonded parameters of the force fields. More data would
be required for these calibrations, as well as a more robust use of the Bayesian strategies.
Additionally, the formulation of the coordinate itself can be changed, to account for multiple
reactant and product states, enabling for more freedom in the simulations.

Finally, the Zundel-to-Zundel proton transfer should also be investigated after modifying
the AdBF-QM/MM method. Fully understanding this system, would not only provide
valuable experience for more complex reactions, but would also shine some light on these
open questions: What is the nature of the excess proton in water? Which are the stable
and intermediate states of the transfer mechanism? And how can our simulation techniques
faithfully reproduce the physics of this chemical reaction?
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A. Appendix

This annex to the thesis also served as final report for the course Bayesian Strategies for
Inverse Problems, by Prof. Faidon-Stelios Koutsourelakis from the Research Group for
Continuum Mechanics. The version shown here is modified for consistency with the rest of
the writing. The work is based on course material [18] and References [20, 12, 26].

In order to provide an Egap reaction coordinate for the proton transfer in water described
in Chapter 3, it is necessary to correctly define and parametrize a force field for the Zundel
ion, the receptor water and the rest of the water. As posed at the end of Section 4.2, by using
the fTIP3P model for the surrounding water and an independent fitting for the receptor,
the problem can be reduced to designing a force field only for the bonded parameters of the
Zundel ion.

The objectives of this appendix are:

1. Calibrate multiple models for the Zundel ion force field, each accounting for a different
set of interactions.

2. Validate the calibrated models and identify the physically relevant interactions.

Our approach consists of:

• Data: using FHI-aims DFT package, run a full QM simulation of the Zundel ion to
produce a trajectory of 10,000 steps of 1 fs each. Use this trajectory as set of data
containing different configurations (atomic positions, bonds, angles and torsions) and
their associated potential energies.

• Units: energy contributions are expressed in kcal/mol; distances in Å; angles in de-
grees; harmonic constants in such units that return kcal/mol when multiplied with

their respective terms; the Morse parameters Dm in kcal/mol and αm in Å
−1

; electric

charges in elementary charge e; consistently, the Coulomb’s constant in kcal Å
mol e2

; and
Lennard-Jones parameters εjk in kcal/mol and σjk in Å. Finally, the torsion integer
parameter nt and the dielectric constant ε have no units.

• Model Calibration: obtain maximum likelihood estimates (MLE) for the force field
parameters assuming a uniform prior. Use the Laplace method to derive the pos-
terior distributions associated with the MLE. Then, for the simplest model, obtain
via Markov chain Monte Carlo (MCMC) sampling an actual posterior distribution in
order to evaluate the adequacy of the Laplace approximation..

• Model Validation: use the model evidence term and Bayes factor to compare the
different models parametrized by MLE and extract conclusions about the relevant
interactions.
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A.1. Bayesian model calibration

We engage the challenge of calibrating the bonded parameters for the Zundel ion force field.
Seven models will be parametrized. We will do so via MLE. For the simplest case, we will
also obtain a posterior via MCMC sampling to benchmark the MLE.

A.1.1. Formulation

We begin by inserting our current problem in the Bayes theorem:

p(θ | traj, ff)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(traj | θ, ff)

prior︷ ︸︸ ︷
p(θ | ff)

p(traj | ff)︸ ︷︷ ︸
evidence

(A.1)

Where θ is a parameter vector, traj is the full QM trajectory with our configuration and
potential energy data; and ff is our force field model. We are interested in the posterior
distribution p(θ | traj, ff) of a certain parameter set θ to reproduce our trajectory data
traj under a certain force field form ff . This posterior probability is equal to a likelihood
times a prior, normalized by a model evidence term. The likelihood quantifies how likely
is our trajectory data traj, given the parameters θ and the force field form ff . The prior
represents a preconceived idea of how should the parameters θ look like. The model evidence
p(traj | ff) acts as a normalization constant, and therefore can be neglected when trying
to determine the shape of the posterior.

p(θ | traj, ff) ∝ p(traj | θ, ff)p(θ | ff) (A.2)

The model evidence will regain importance when we go into model validation, and com-
pare different force field models ff . For now, only the likelihood and the prior should be
adequately defined for our problem. In order to express a likelihood, a stochastic behaviour
should be introduced. As presented in literature [26], this can be done by assuming Gaus-
sian noise in our data. Namely, to each potential energy ετ of a certain configuration rτ in
our full QM run traj, we add a random Gaussian distributed variable γτ centered at zero
with standard deviation στ . This returns a noisy potential energy ε′τ , that enables the use
of Bayesian strategies. This assumption is reasonable considering the time stepping nature
of the data generator. With all aspects considered, we have:

ε′τ = ε(rτ | θ) + γτ , γτ ∼ N (0, σ2
τ ) (A.3)

Inserting this Gaussian noise as likelihood in Equation A.2, we obtain:

p(θ | traj, ff) ∝ 1

(2πσ2
τ )N/2

exp

ñ
− 1

2

N∑
τ

Ç
ε′τ − ε(rτ | θ, ff)

στ

å2ô
p(θ | ff) (A.4)

If the prior is assumed to be uniform, then finding the maximum of the posterior (maxi-
mum a posteriori or MAP) is equivalent to finding the maximum of the likelihood, hence,
a maximum likelihood estimate.
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A.1.2. Maximum likelihood estimate (MLE)

Taking only the likelihood term, the equation above can be easily reduced to a weighted non-
linear least squares problem in which we have to minimize the argument of the exponential
function:

p(traj | θ, ff) =
1

(2πσ2
τ )N/2

exp

ñ
− 1

2

N∑
τ

Ç
ε′τ − ε(rτ | θ, ff)

στ

å2ô
(A.5)

This problem has been widely studied, meaning that currently there exist very stable and
fast solvers. We will make use of one solver implemented in Python’s Scipy library (version
0.17.1), inside the function curve fit(). This same resource was used for the fitting of the
receptor water.

As a last remark before diving into the fitting of the Zundel ion, one important detail
should be explained. Even though the MLE is a single-point estimate, it can be connected
to a Gaussian distribution by a formalism known as the Laplace method [12, 20]. First, we
Taylor-expand the log-posterior:

ln p(θ | traj, ff) ≈ ln p(θ0 | traj, ff)− 1

2
(θ − θ0)TΣ−1

θ (θ − θ0) (A.6)

Where, Σθ is the covariance matrix of the parameters, also known as standard error
matrix, and θ0 is the vector of optimal parameters. Both terms are provided by the
curve fit() Python function.

Σ−1
θ = − ∂2

∂θ2
ln p(θ | traj, ff)

∣∣∣∣∣
θ=θ0

(A.7)

This allows to approximate the posterior distribution as an unnormalized distribution:

p(θ | traj, ff) ≈ p(θ0 | traj, ff) exp

ñ
− 1

2
(θ − θ0)TΣ−1

θ (θ − θ0)

ô
(A.8)

Having such a Gaussian distribution function provides an indication of the level of un-
certainty associated with our MLE. We will use this notion in the immediate subsections
regarding the fitting of four different models. Additionally, the Gaussian distribution fa-
cilitates the calculation of the normalizing model evidence term. This will be done in the
latter sections, when performing model comparison.
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A.1.3. Model 1: Morse bonds

We start with the model shown in the Figure 4.4. In a first attempt, the bonds of the
water molecules are considered harmonic, while the ones to the proton are taken as Morse
bonds. The angles, two external ones (H-O-H), four internal ones (H-O-H+) and a central
one (O-H+-O), are all taken as harmonic. One torsion per hydrogen is considered along
each of the four O-H+-O-H references. All force field contributions are calculated as shown
in Section 2.2. In this Appendix, Morse bonds and harmonic bonds will be distinguished
in figures by red and blue coloring respectively.

Figure A.1.: Zundel ion interactions considered in model 1. Morse bonds are depicted in
red; harmonic bonds, in blue; harmonic angles, in cyan; and harmonic torsions,
in orange.

It should be noted that symmetrically equivalent interactions share the same parameters.
This encloses the four harmonic bonds between themselves, the two Morse bonds between
themselves, the two externals angles between themselves, and so on. We use as first guesses:
the average value during the full QM run for Morse and harmonic equilibrium bond lengths,
as well as for harmonic equilibrium angles; the inverse of the respective data’s variance times

kBT/2 for harmonic constants; 100 kcal/mol and 0.01 Å
−1

for Morse potential parameters
Dm and αm respectively; and 1 for the torsion parameter nt. We introduce an additional
parameter, a constant negative offset with a first guess equivalent to the minimum energy.
This guarantees all energy contributions to be positive. Additionally, we bound the equilib-
rium parameters to be ± 10 % around the first guess. In the same fashion, we also bound
all harmonic constants and the Morse Dm to be positive and < 1000 kcal/mol, as well as
αm to be also positive and < 10 Å. The torsion integer parameter is kept between 0 and
1000.

The fitting resulted in the following parameters. The± values are defined as 2σθ, where σθ
represents the diagonal terms of Σθ, which indicate the standard deviation of each particular
parameter.

• Kb,water = 526.77± 9.91
r0,b,water = 0.98± 0.0003

• Dm,proton = 399.98± 1135.26
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αm,proton = 0.23± 0.34
r0,m,proton = 1.17± 0.008

• Ka,ext = 38.64± 1.23
θ0,a,ext = 108.30± 0.11

• Ka,int = 15.81± 0.35
θ0,a,int = 116.60± 0.13

• Ka,cen = 10.69± 1.10
θ0,a,cen = 181.65± 1.57

• Kt = 0.45± 0.02
nt = 0.99± 0.01

• co = −11.76± 0.13

We recovered the following potential energy for the trajectory data:

Figure A.2.: Left: Potential energies for the trajectory data given by the full QM run (green)
and by the model 1 force field (blue); Right: first 100 trajectory steps of the
left plot.

The root mean square error (RMSE) for the potential energy fitting is 0.75 kcal/mol, a
very reasonable value. The potential energy fitting also shows a close fit. However, there are
a few warning flags. First, the uncertainty for the Morse potential parameters is extremely
big. Moreover, when trying to reproduce the general dynamics and structure of the zundel
ion with these parameters in a full MM run, the O-O distance does not correspond to our
QM reference of 2.4 Å. We hypothesize that this occurs because the derivative of the Morse
potential depends on a Dm/αm ratio. This means we are trying to fit two parameters
when we only have information for one. Another reason could simply be the fact that we
are simulating very close to the equilibrium bond length. Perhaps higher temperatures are
needed to capture the right data. The rest of the bond lengths and angles are in accordance
with the QM simulation. The harmonic constants have all physical values, similar to those
of fTIP3P water.
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A.1.4. Model 2: all bonds harmonic

Motivated by the results of the previous fitting, we attempted a second one. For this
occasion, we have replaced the O-H+ Morse bonds with harmonic bonds. The rest of the
interactions are managed in the same way.

Figure A.3.: Zundel ion interactions considered in model 2. Morse bonds are depicted in
red; harmonic bonds, in blue; harmonic angles, in cyan; and harmonic torsions,
in orange.

We used the same policy as before for the initial guesses. The fitting resulted in the
following parameters:

• Kb,water = 526.46± 9.90
r0,b,water = 0.98± 0.0003

• Kb,proton = 19.98± 0.86
r0,b,proton = 1.17± 0.009

• Ka,ext = 38.61± 1.23
θ0,a,ext = 108.30± 0.11

• Ka,int = 15.81± 0.35
θ0,a,int = 116.59± 0.13

• Ka,cen = 10.71± 1.10
θ0,a,cen = 181.63± 1.56

• Kt = 0.45± 0.02
nt = 0.99± 0.01

• co = −11.75± 0.13

And the following potential energy for the trajectory data:
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Figure A.4.: Left: Potential energies for the trajectory data given by the full QM run (green)
and by the model 2 force field (blue); Right: first 100 trajectory steps of the
left plot.

The RMSE of this calibration was 0.75 kcal/mol. It is safe to affirm that the change
from Morse to harmonic bonds did not cause any harmful effects with respect to the energy
fitting. However, when looking at the average structure generated by a full MM run with
these parameters, we notice that the O-O distance is around 0.5 Å longer than expected,
still not correct.
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A.1.5. Model 3: extra O-O harmonic bond

The difficulty in capturing the correct O-O distance invited us to introduce an explicit bond
between these two atoms. Even if this bond is not strictly physical, there are many force
fields that take advantage of this sort of virtual interactions to better mimic a full QM
behaviour. Then, on top of the previous model, we introduced this extra harmonic bond
between the two oxygens:

Figure A.5.: Zundel ion interactions considered in model 3. Morse bonds are depicted in
red; harmonic bonds, in blue; harmonic angles, in cyan; and harmonic torsions,
in orange.

Keeping the same policy for initial guesses, the fitting results in:

• Kb,water = 513.82± 8.70
r0,b,water = 0.98± 0.0002

• Kb,proton = 8.72± 0.87
r0,b,proton = 1.10± 2.31

• Kb,oxygen = 70.68± 2.66
r0,b,oxygen = 2.44± 0.29

• Ka,ext = 38.29± 1.08
θ0,a,ext = 108.30± 0.10

• Ka,int = 15.81± 0.31
θ0,a,int = 116.38± 0.11

• Ka,cen = 10.53± 12.56
θ0,a,cen = 182.19± 3.12

• Kt = 0.45± 0.02
nt = 1.00± 0.01

• co = −11.98± 9.16

The potential energy for the trajectory data is:
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Figure A.6.: Left: Potential energies for the trajectory data given by the full QM run (green)
and by the model 3 force field (blue); Right: first 100 trajectory steps of the
left plot.

The RMSE of this set up, 0.66 kcal/mol, is significantly better than the ones of previous
trials. There is a side effect of the extra O-O bond: an increased variance for the O-H+ bond
equilibrium length and for the central angle harmonic constant, as well as for the constant
offset. We assume this comes from the redundancy that is introduced for such interactions.
In spite of this, the inclusion of the O-O bond appears to pay off. The general dynamics and
structure of the zundel ion are correct, except for one detail. In the QM run, the hydrogens
always point outwards of the zundel ion during their rotations. However, in the MM runs
reproduced with this force field, the hydrogens occasionally deviate from this orientation.
This may hint the need for electrostatic repulsion. Typically, such unbonded interactions
are neglected between atoms that belong to the same molecule, specially small ones like
the zundel ion. However, it is possible to include some degree of interaction, for example
LAMMPS allows to include weighted interactions with first, second or third neighbours by
means of the special bonds command [8].
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A.1.6. Model 4: weighted H-to-H electrostatic interactions

We maintain the same force field for all bonded parameters. We add an electrostatic
interaction only between the hydrogens on opposite sides of the zundel. Namely, they
only interact if they are not bonded to the same oxygen atom. The charges for the atoms
are extracted from the full QM simulation, while the dielectric constant is ε = 1 and the
Coulomb constant in adequate units is C = 332.06 kcal Å

mol e2
. This interaction will be weighted

by a parameter wCou, which will be added to our fitting.

Figure A.7.: Zundel ion interactions considered in model 4. Morse bonds are depicted in
red; harmonic bonds, in blue; harmonic angles, in cyan; harmonic torsions, in
orange; and electrostatics, in grey.

The initial guess for the new parameter wCou will be zero (no interaction) and the value
will be bounded in the [0,1] interval. The rest of the initial guesses are kept as in the
previous model. The fitting resulted in:

• Kb,water = 512.17± 8.09
r0,b,water = 0.98± 0.0003

• Kb,proton = 8.20± 0.81
r0,b,proton = 1.10± 2.29

• Kb,oxygen = 71.04± 2.47
r0,b,oxygen = 2.37± 0.27

• Ka,ext = 38.44± 1.00
θ0,a,ext = 108.53± 0.09

• Ka,int = 13.77± 0.30
θ0,a,int = 109.74± 0.43

• Ka,cen = 11.09± 11.68
θ0,a,cen = 181.64± 2.23

• Kt = 0.10± 0.03
nt = 1.03± 0.04

• wCou = 0.42± 0.02
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• co = −45.90± 6.34

Also, we obtained the potential energy for the trajectory data:

Figure A.8.: Left: Potential energies for the trajectory data given by the full QM run (green)
and by the model 4 force field (blue); Right: first 100 trajectory steps of the
left plot.

The RMSE of this fitting was 0.61 kcal/mol, the best one among our four calibrated
models so far. We appreciate that introducing the electrostatic interactions between the
hydrogens diminishes the torsion energy contribution. This hints a complementary mech-
anism for the hydrogen movement. We decide to neglect this interaction from now on. In
general, the structure and dynamics generated with this force field fairly resemble those of
the full QM run. Additionally, we see a better fitting for potential energy peaks that were
not well captured with the previous models.
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A.1.7. Model 5: Morse parameters for the water-like bond

During equilibration runs as described in Chapter 5, it was observed that the water-like
harmonic bonds of the Zundel ion were very sensitive. Oscillations appeared whenever this
bond was perturbed during the transfer. This motivated a change of this bond for a Morse
type. As mentioned above, the harmonic torsion is omitted from here on, as its constant
was heavily reduced in the previous model.

Figure A.9.: Zundel ion interactions considered in model 5. Morse bonds are depicted in
red; harmonic bonds, in blue; harmonic angles, in cyan; harmonic torsions, in
orange; and electrostatics, in grey.

The initial guess for the newly introduced Morse parameters is taken as in model 1. The
fitting results in:

• Dm,water = 80.9± 24.27
αm,water = 2.59± 0.40
r0,m,water = 0.98± 0.0004

• Kb,proton = 8.33± 0.81
r0,b,proton = 1.10± 2.24

• Kb,oxygen = 70.81± 2.46
r0,b,oxygen = 2.36± 0.27

• Ka,ext = 38.50± 1.00
θ0,a,ext = 108.54± 0.09

• Ka,int = 13.61± 0.30
θ0,a,int = 108.81± 0.37

• Ka,cen = 11.25± 11.60
θ0,a,cen = 181.21± 1.80

• wCou = 0.47± 0.02

• co = −50.13± 5.95

Also, we obtained the potential energy for the trajectory data:

66



A.1. Bayesian model calibration

Figure A.10.: Left: Potential energies for the trajectory data given by the full QM run
(green) and by the model 5 force field (blue); Right: first 100 trajectory steps
of the left plot.

The RMSE of this fitting was 0.61 kcal/mol, same as model 4. The Morse parameters
for the O-H bond show a reasonable degree of uncertainty. It should be remembered that
the Morse potential allows for larger deviations from the equilibrium bond distance. A
compromise is taken between the noise level of the energy gap and the structural stability
of the Zundel ion. The following last two models are motivated by the smooth energy gap
evolutions provided by Morse bonds.
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A.1.8. Model 6: Morse parameters for the water-like and the proton
bonds

We set up Zundel ion interactions with Morse types for both the O-H and the O-H+ bonds.

Figure A.11.: Zundel ion interactions considered in model 6. Morse bonds are depicted in
red; harmonic bonds, in blue; harmonic angles, in cyan; harmonic torsions, in
orange; and electrostatics, in grey.

The initial guess for the newly introduced Morse parameters is taken as in models 1 and
5. The fitting results in:

• Dm,water = 81.1± 22.65
αm,water = 2.59± 0.37
r0,m,water = 0.98± 0.0004

• Dm,proton = 4.39± 1.59
αm,proton = 5.27± 0.56
r0,m,proton = 1.10± 0.01

• Kb,oxygen = 86.1± 2.72
r0,b,oxygen = 2.42± 0.02

• Ka,ext = 39.02± 0.94
θ0,a,ext = 108.58± 0.08

• Ka,int = 13.27± 0.28
θ0,a,int = 108.75± 0.36

• Ka,cen = 8.92± 1.25
θ0,a,cen = 181.68± 1.45

• wCou = 0.47± 0.01

• co = −51.24± 1.43

Also, we obtained the potential energy for the trajectory data:
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Figure A.12.: Left: Potential energies for the trajectory data given by the full QM run
(green) and by the model 6 force field (blue); Right: first 100 trajectory steps
of the left plot.

The RMSE of this fitting was 0.57 kcal/mol, improving that of models 4 and 5. Its
noticeable that the O-O harmonic bond absorbs part of the O-H+ interaction. The uncer-
tainty for the central angle also improves. The certainty for the Morse parameters is fairly
acceptable. Still, it should be kept in mind that Morse bonds penalize the deviation from
the equilibrium distance less that harmonic bonds. Then, the atoms are allowed to drift
further away.
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A.1.9. Model 7: Morse parameters for all bonds

We set a Zundel ion with every bond set as a Morse type.

Figure A.13.: Zundel ion interactions considered in model 7. Morse bonds are depicted in
red; harmonic bonds, in blue; harmonic angles, in cyan; harmonic torsions, in
orange; and electrostatics, in grey.

The initial guess for the newly introduced Morse Dm and αm parameters is taken as in
models 1, 5 and 6. The fitting resulted in:

• Dm,water = 84.2± 23.44
αm,water = 2.54± 0.36
r0,m,water = 0.98± 0.0004

• Dm,proton = 4.28± 2.02
αm,proton = 5.0± 0.67
r0,m,proton = 1.10± 0.02

• Dm,oxygen = 23.3± 3.83
αm,oxygen = 2.24± 0.21
r0,m,oxygen = 2.41± 0.02

• Ka,ext = 39.01± 0.91
θ0,a,ext = 108.62± 0.08

• Ka,int = 13.41± 0.28
θ0,a,int = 108.89± 0.34

• Ka,cen = 9.19± 1.40
θ0,a,cen = 181.56± 1.37

• wCou = 0.47± 0.01

• co = −50.97± 1.45

Also, we obtained the potential energy for the trajectory data:
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Figure A.14.: Left: Potential energies for the trajectory data given by the full QM run
(green) and by the model 7 force field (blue); Right: first 100 trajectory steps
of the left plot.

The RMSE of this fitting was 0.56 kcal/mol, slightly better than model 6 and the best one
among all the calibrated models. The structural compromise of the Morse bonds, however,
should still be considered.
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A.2. Laplace approximation vs. MCMC sampling

In the previous section, seven models were calibrated by the means of MLE. As shown at
the end of the MLE’s formulation, the single-point estimate can be connected to a Gaus-
sian distribution. However, the question of how to test the validity of this approximation
remains. In particular, we wish to compare this Gaussian distribution to the actual shape
of the posterior. Markov chain Monte Carlo methods are powerful tools to sample the
posterior. In this section, we will perform MCMC sampling - in the form of a Metropolis
algorithm - on the simplest of our models (model 2) and compare the obtained distribution
with the one of the MLE.

First, we provide a quick reminder in the form of a Metropolis algorithm pseudo-code
(Algorithm 2). Then, attending the specifics of our MCMC algorithm, we will explain the
calculation of our likelihood, prior and posterior probabilities, as well as the definition of
our first guess and the random steps for proposals.

Algorithm 2 MCMC Metropolis sampling of a log-posterior probability distribution

Initialize:

Assign current parameters = initial guess
Calculate current loglikelihood
Calculate current logprior
Calculate current logposterior = ...

current loglikelihood + current logprior
Define random step

for 0 to chain length do:
Generate proposal parameters = ...

current parameters + random step
Calculate proposal loglikelihood
Calculate proposal logprior
Calculate proposal logposterior = ...

proposal loglikelihood + proposal logprior
Calculate acceptance probability = ...

exp(proposal logposterior- current logposterior)
if random number[0,1] < acceptance probability then:

. always true if acceptance > 1
Increment accepts = accepts + 1
Assign current parameters= proposal parameters
Assign current loglikelihood = proposal loglikelihood
Assign current logprior = proposal logprior
Assign current logposterior = proposal logposterior

end if
Append current parameters to sampled parameters

end for
return normalized histogram(sampled parameters)
return acceptance ratio = accepts / chain length
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The likelihood is calculated based on Equation A.5, with an additional consideration.
In order to avoid ill-conditioned operations associated with multiplying small numbers, we
take the logarithm of the likelihood:

log p(traj | θ, ff) = −1

2

N∑
τ

Ç
ε′τ − ε(rτ | θ, ff)

στ

å2

− N

2
log 2πσ2

τ (A.9)

In order to be consistent with the MLE methodology, we consider στ = 1, as does the
curve fit function by default.

The prior is calculated as uniform in the vicinity of ±3σθ around the center of the MLE
Gaussian distribution. Outside that interval it is considered as zero. In this way, we will
be able to compare the shape of the posterior at the location where the MLE assigns
the maximum probability. For consistency with the log-likelihood, the prior is also taken
with a logarithm. Moreover, when calculating the posterior, we use a sum rather than a
multiplication, as it is also a logarithm. In the same way, the acceptance ratio is calculated
with a subtraction and then recovered with an exponential function.

The initial guess for the Metropolis algorithm is taken as the center of the MLE Gaussian
distribution. With respect to the steps for our proposal, we consider a vector of random
perturbations for the parameters. The perturbations are random numbers taken from Gaus-
sian distributions, which satisfy the symmetric reversibility requirement of the Metropolis
algorithm. After several trials, we established an optimal set of standard deviations for the
steps. These are equal to 3σθ/10. Qualitatively, this means that our steps have a standard
deviation of one tenth of the 3σθ range that the prior allows us to explore in each direction.

The algorithm returned the following posterior probability shape near the MLE after
one million steps with an acceptance ratio of 23.5%. Again, units are as described in the
beginning of the Appendix:

Figure A.15.: Posterior probabilities for model 2 harmonic O-H bond parameters sampled
with a Metropolis algorithm (blue bars) compared to the Gaussian probability
derived from the MLE using the Laplace approximation (yellow line).
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Figure A.16.: Posterior probabilities for model 2 harmonic O-H+ bond parameters sampled
with a Metropolis algorithm (blue bars) compared to the Gaussian probability
derived from the MLE using the Laplace approximation (yellow line).

Figure A.17.: Posterior probabilities for model 2 harmonic external angle parameters sam-
pled with a Metropolis algorithm (blue bars) compared to the Gaussian prob-
ability derived from the MLE using the Laplace approximation (yellow line).
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A.2. Laplace approximation vs. MCMC sampling

Figure A.18.: Posterior probabilities for model 2 harmonic internal angle parameters sam-
pled with a Metropolis algorithm (blue bars) compared to the Gaussian prob-
ability derived from the MLE using the Laplace approximation (yellow line).

Figure A.19.: Posterior probabilities for model 2 harmonic central angle parameters sampled
with a Metropolis algorithm (blue bars) compared to the Gaussian probability
derived from the MLE using the Laplace approximation (yellow line).
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Figure A.20.: Posterior probabilities for model 2 harmonic torsion parameters sampled with
a Metropolis algorithm (blue bars) compared to the Gaussian probability
derived from the MLE using the Laplace approximation (yellow line).

Figure A.21.: Posterior probabilities for model 2 constant offset parameter sampled with
a Metropolis algorithm (blue bars) compared to the Gaussian probability
derived from the MLE using the Laplace approximation (yellow line).

The Laplace approximated posterior and the MCMC sampling show a fair degree of
resemblance. All of the parameters are very closely matched. The is some overestimation
of the probability peak, but the accordance between the MLE and the MAP is remarkable.
This result encourages us to base our model comparison on the Laplace approximated
posterior probabilities.
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A.3. Bayesian model comparison

A.3.1. Formulation

As mentioned during the formulation of the posterior probability for our Bayesian strategy
(Equation A.1), the model evidence or normalization term is neglected during calibration.
However, it is essential when performing model comparison. In the following paragraphs,
we will show how to perform calculations to compare our calibrated models.

We begin by expressing a new application of the Bayes theorem, this time for the posterior
probability of a given force field model to generate our trajectory data:

p(ff | traj) =
p(traj | ff)p(ff)

p(traj)
(A.10)

Then, we are interested in the ratio of two of these posterior probabilities, one for model
a and other for model b.

p(ffa | traj)
p(ffb | traj)

=
p(traj | ffa)p(ffa)
p(traj | ffb)p(ffb)

(A.11)

By the law of total probability, we can rewrite part of this ratio as the ratio between
the model evidence terms of the two models. This new quantity is referred to as the Bayes
Factor, while the remaining term is called the model prior:

p(ffa | traj)
p(ffb | traj)

=

∫
p(traj | θ, ffa)p(θ | ffa)dθ∫
p(traj | θ, ffb)p(θ | ffb)dθ︸ ︷︷ ︸

Bayes factor

p(ffa)

p(ffb)︸ ︷︷ ︸
model prior

=
p(traj | ffa)
p(traj | ffb)︸ ︷︷ ︸

Bayes factor

p(ffa)

p(ffb)︸ ︷︷ ︸
model prior

(A.12)

In the Bayesian model comparison context, the Bayes factor indicates how much more
likely is model a than model b to be the adequate for the trajectory data. The model prior
provides a preconceived idea of which model is the adequate one. In the next subsections, we
will obtain the terms to compare our four calibrated models. We will assume no preferred
model in the model prior.

Our model comparison relies on the simplicity of our Laplace-like approximation. As
explained during the Formulation subsection of the model calibration, we assume that the
posterior is similar to the Gaussian distribution associated with the MLE. The normalization
constant, or model evidence term, for such posterior approximation is [12, 20]:

p(traj | ff) = p(θ0 | traj, ff)
»

(2π)K det(Σθ) (A.13)

In order to avoid floating point errors, we take the logarithm of this expression. The
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log-posterior probability is expanded in log-likelihood (Equation 12) and log-prior.

log p(traj | ff) = −1

2

N∑
τ

Ç
ε′τ − ε(rτ | θ0, ff)

στ

å2

− N

2
log 2πσ2

τ︸ ︷︷ ︸
log-likelihood

+ log p(θ0)︸ ︷︷ ︸
log-prior

+
K

2
log 2π +

1

2
log det(Σθ)︸ ︷︷ ︸

log normalization constant

(A.14)

In this equation, the likelihood maximizes the probability according to the precision of
the model, while the covariance term favours broader models. In the same fashion, the prior
penalizes complexity, while the first them of the normalization favours it. The balance be-
tween these contributions builds the Occam’s Razor concept, as explained in the literature
[20].

For simplicity and numerical stability, we can express the logarithm of the Bayes factor
ratio simply as a difference log p(traj | ffa) − log p(traj | ffb). Then, for a more com-
pact representation, the models can be evaluated individually simply looking at the model
evidence term. The greater the value, the better the model will result for our data when
compared against the others.

A.3.2. Model 1

log p(traj | ff1) = −11992.42︸ ︷︷ ︸
log-likelihood

−64.28︸ ︷︷ ︸
log-prior

+12.86− 37.52︸ ︷︷ ︸
log norm. const.

= −12081.36
(A.15)

A.3.3. Model 2

log p(traj | ff2) = −11992.91︸ ︷︷ ︸
log-likelihood

−65.64︸ ︷︷ ︸
log-prior

+11.95− 38.67︸ ︷︷ ︸
log norm. const.

= −12085.29
(A.16)

A.3.4. Model 3

log p(traj | ff3) = −11350.52︸ ︷︷ ︸
log-likelihood

−76.23︸ ︷︷ ︸
log-prior

+13.78− 41.14︸ ︷︷ ︸
log norm. const.

= −11454.11
(A.17)

A.3.5. Model 4

log p(traj | ff4) = −11057.03︸ ︷︷ ︸
log-likelihood

−76.23︸ ︷︷ ︸
log-prior

+14.70− 45.09︸ ︷︷ ︸
log norm. const.

= −11163.65
(A.18)
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A.3.6. Model 5

log p(traj | ff4) = −11036.78︸ ︷︷ ︸
log-likelihood

−64.72︸ ︷︷ ︸
log-prior

+13.78− 40.53︸ ︷︷ ︸
log norm. const.

= −11128.25
(A.19)

A.3.7. Model 6

log p(traj | ff4) = −10815.61︸ ︷︷ ︸
log-likelihood

−63.36︸ ︷︷ ︸
log-prior

+14.70− 50.36︸ ︷︷ ︸
log norm. const.

= −10914.62
(A.20)

A.3.8. Model 7

log p(traj | ff4) = −10738.27︸ ︷︷ ︸
log-likelihood

−61.26︸ ︷︷ ︸
log-prior

+15.62− 54.18︸ ︷︷ ︸
log norm. const.

= −10838.09
(A.21)

79



A. Appendix

A.4. Outcomes

As expected from the RMSE values and the observed structure and dynamics, models 4
to 7 have the most favourable probabilities given our data. These probabilities are almost
entirely determined by the likelihoods, as the differences in the complexity of the models
are not enough to clearly penalize over-parametrization. However, the calibration of the
parameters alone allows for parameter relevance detection. We observe the vanishing of the
torsion interaction in model 4, as well as the close relationship between the O-H+ and O-O
bonds in model 3. Furthermore, the uncertainties associated with the individual parameter
distributions, allow to detect the lack of adequate data for the Morse bond of model 1, as
well as the effect of having redundant parameters or cooperative interactions.

In this thesis, models 4 and 5 are be actively employed. Model 4, because of its full
harmonic bonds, presents greater structural stability. We take advantage of this to perform
equilibration runs in water solvent. For production runs, model 5 is employed. Its Morse
O-H bond returns smoother energy gap evolutions. Models 6 and 7 are not used, as we
decide to maintain part of our original physical motivation. Of course, these force fields,
and new ones, could also be employed, as we motivate in the proposed outlook of Chapter
7. Published research has shown that different energy gap parametrizations return valid
and, when normalized, consistent free energy profiles [21].

At the termination of this Appendix we appreciate the power of probabilistic formulations.
Bayesian model calibration and comparison are able to support and quantify our beliefs
about the models. This provides valuable assistance and information when formulating the
force fields. While doing a simple weighted non-linear squares fitting would have sufficed to
provide a set of parameters, Bayesian strategies brought to our attention further knowledge
about the Physics of the system, which ultimately led to more comprehensive results.
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A.5. Summary

Parameters / Model 1 2 3 4 5 6 7

Kb,water 526.77 526.46 513.82 512.17 — — —
r0,b,water 0.98 0.98 0.98 0.98 — — —

Dm,water — — — — 80.9 81.1 84.2
αm,water — — — — 2.59 2.59 2.54
r0,m,water — — — — 0.98 0.98 0.98

Kb,proton — 19.98 8.72 8.20 8.33 — —
r0,b,proton — 1.17 1.10 1.10 1.10 — —

Dm,proton 399.98 — — — — 4.39 4.28
αm,proton 0.23 — — — — 5.27 5.0
r0,m,proton 1.17 — — — — 1.10 1.10

Kb,oxygen — — 70.68 71.04 70.81 86.1 —
r0,b,oxygen — — 2.44 2.37 2.36 2.42 —

Dm,oxygen — — — — — — 23.3
αm,oxygen — — — — — — 2.24
r0,m,oxygen — — — — — — 2.41

Ka,ext 38.64 38.61 38.29 38.44 38.50 39.02 39.01
θ0,a,ext 108.30 108.30 108.30 108.53 108.54 108.58 108.62

Ka,int 15.81 15.81 15.81 13.77 13.61 13.27 13.41
θ0,a,int 116.60 116.59 116.38 109.74 108.81 108.75 108.89

Ka,cen 10.69 10.71 10.53 11.09 11.25 8.92 9.19
θ0,a,cen 181.65 181.63 182.19 181.64 181.21 181.68 181.56

Kt 0.45 0.45 0.45 — — — —
nt 0.99 0.99 1.00 — — — —

wCou — — — 0.42 0.47 0.47 0.47

co −11.76 −11.75 −11.98 −45.90 −50.13 −51.24 −50.97

RMSE 0.75 0.75 0.66 0.61 0.61 0.57 0.56
log model evidence −12081 −12085 −11454 −11164 −11128 −10915 −10838

Table A.1.: Parameters, RMSE and log model evidence terms for all calibrated models.
Units are as described in the beginning of the Appendix.
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