
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

The aim of this Bachelor’s thesis is to analyse the performance and the scalability
of the developing AutoPas library for molecular dynamics. A testing program which
supports pairwise intermolecular interactions for atoms and rigid molecules has therefore
been developed . The evaluation of the library is performed on thin nodes of the SuperMUC
phase 1 and on CoolMUC-3 at the LRZ Linux-cluster. The main aspects of this thesis where
OpenMP parallelisation on a single node and vectorisation by SIMD instructions.
It has been shown that the efficiency of the force calculations with the AutoPas library
improves with adequate vector instructions. At node-level, AutoPas scales well if few cores
are used, but the execution time does not decrease as rapidly as expected for a higher
number of threads. The overall performance remains below the performance of the highly
scalable program ls1-mardyn.
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Zusammenfassung

Das Ziel dieser Bachelorarbeit ist die Leistungs- und Skalierbarkeitsanalyse der Bibliothek
AutoPas im Bereich der Molekulardynamik. Zu diesem Zwecke wurde ein einfaches Programm
entwickelt, welches intermolekuläre Kräfte zwischen Atomen und Molekülen unterstüzt. Thin
nodes auf der Phase 1 des SuperMUC und der CoolMUC-3 des Linux-Clusters am LRZ
werden verwendet, um die Evaluierung von AutoPas durchzuführen. In erster Linie betreffen
die Untersuchungen OpenMP Parallelisierung auf Knoten-Ebene und SIMD Vektorisierung.
Die Effizienz der Kraftberechnungen mit der AutoPas Bibliothek kann dank einer angepassten
Vektorisierung deutlich verbessert werden. Bei der Verwendung von wenigen Prozessoren
skaliert AutoPas sehr gut, doch für eine höhere Anzahl an threads verbessert sich die Laufzeit
weniger als erwartet. Die allgemeine Leistung des Programms bleibt allgemein unter der des
stark skalierbaren Programms ls1-mardyn.
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1. Introduction and motivation

The investigation of chemical processes has historically been conducted through experiments.
However, the growing knowledge in chemistry, the motivation to analyse more complex
relations and the impossibility to directly observe events at a molecular scale increase the
importance of molecular dynamics (MD) simulation. The continuous increase in the precision
and the performance of computers and the increasing availability of HPC supercomputers
to run simulations at very large scales improve the results of MD simulations and their
popularity in chemical research. They fill the gap between nanoscale interactions at a
molecular level and macroscopic observations of chemical entities. Thus, they make the
verification of the accuracy of theoretical models and the prediction of the behaviour of
particular molecule configurations possible [BBB+14].
Molecular dynamics simulations can be considered as N-body problems in which each atom
is represented as a point mass which interacts with all other points. Therefore, in the general
case, the growth of the computational complexity is quadratic with respect to the number
of simulated elements. The main challenge of MD simulations is to provide an efficient and
scalable environment without any disproportionate loss of accuracy.
To that effect, a new C++ library for molecular dynamics named AutoPas is currently under
development at the chair for Scientific Computing in Computer Science at the Technical
University of Munich. It provides a flexible environment in order to support a broad range
of possible scenarios. The user has to specify the underlying particle type, the occurring
pairwise interactions between particles and the overall structure of the simulation tool. In
particular, AutoPas handles the particle traversals and the pariwise interactions which
are decisive for the overall performance of the simulation. Moreover, it includes OpenMP
parallelisation and SIMD vectorisation in order to maximise the use of the available hardware
resources on a single node.
In this thesis, the implementation of a molecular dynamics program, named MolSim, based
on the AutoPas library and a consequent node-performance analysis are provided. The
program supports single-site atoms as well as multi-site molecules which can move freely
in the simulation domain and may experience a uniform gravitation field. The pairwise
interactions between particles can be derived from a Lennard-Jones, an electrostatic, a
gravitational or a harmonic potential. After the explanation of the theoretical foundations of
a molecular dynamics simulation in Chapter 2, a brief overview of ls1-mardyn and AutoPas
is given in Chapter 3. Thereafter, the implemented program is drafted in Chapter 4 with
the comparison of different implementation alternatives to ensure a good performance of the
code. Finally, the results of node-level experiments to evaluate the performance and the
scalability of the program and of the integrated AutoPas library are presented in Chapter 5.

1



2. Theoretical background

2.1. Chemical background

As molecular dynamics simulations describe the behaviour of chemical entities, pairwise
interactions between particles are the basis of many simulation tools. The forces acting on
each particle are typically derived from potentials, such as the Lennard-Jones potential or
the electrostatic potential. Moreover, energy conservation and Brownian motion improve the
accuracy of the simulation. Since molecular dynamics occur at very small scales, meaningful
unit systems are necessary.

2.1.1. Lennard-Jones potential

The main interaction between molecules in a fluid or gas is represented by the Lennard-Jones
potential.

Spontaneous and inhomogeneous charge distributions in a single atom can cause a local
polarisation. Consequently, adjacent elements orient along the same axis, and an induced
dipole with weak attractive forces, which are called London dispersion forces, occurs [EL30].

According to the Pauli exclusion principle, two electrons with the same spin cannot occupy
the same quantum space. Therefore, if two identical electron orbitals overlap, repulsive
forces occur between the two electrons [Dys67], thus particles are kept apart when they get
too close.

These pairwise interactions can be combined to build up a simple mathematical model,
the Lennard-Jones potential [Jon24], which is given by:

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(2.1)

In this model, r is the distance between two particles, σ is the distance at which the
potential cancels out, and ε corresponds to the potential well, or the minimum reached
potential. The Figure 2.1 provides an example of the Lennard-Jones potential which indicates
the values of σ and ε. For diminishing intermolecular distances, the potential increases very
fast, while for increasing distances, the potential converges to zero. The potential well is
located at a distance of 6

√
2 · σ.

2



2.1. Chemical background

Figure 2.1.: Example of the Lennard-Jones potential of the carbon-hydrogen interaction.
Source: [KML13]

Nevertheless, this potential cannot be directly applied to any given two particles, since
the variables σ and ε are specific to each chemical entity. As a matter of fact, if two different
particles are considered, combining rules are needed to compute these parameters from
the particle data. A simple method to achieve this is given by the Lorentz-Berthelot rules
[Lor81][Ber98]. According to this rule, σ can be computed by an arithmetic mean and ε by
a geometric mean.

σ =
σ1 + σ2

2
(2.2)

ε =
√
ε1ε2 (2.3)

Here, σ1 and ε1 (resp. σ2 and ε2) correspond to the characteristics of the first (resp.
second) particle.

The effective force acting on each particle can be computed with the gradient of the
potential. Therefore, the Lennard-Jones interaction induces the following force with ~r being
the vector between both particles and |~r| its euclidean norm:

FLJ(~r) = ∇rULJ(r) (2.4)

FLJ(~r) =
24ε

|~r|2

[(
σ

|~r|

)6

− 2

(
σ

|~r|

)12
]
~r (2.5)
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2. Theoretical background

The force has the same direction as the distance vector for |~r| > 6
√

2 · σ, therefore the
particles attract each other. On the other hand, for |~r| < 6

√
2 · σ, the force is repulsive.

2.1.2. Electrostatic potential

Electrostatic potentials between two charged particles lead to another very important type
of intermolecular interactions. The charge distribution in an atom is neglected, and atoms
are represented as point charges. Then, the force between two atoms with respective charges
q1 and q2 can be approximated by Coulomb’s law [Cou85]:

FC(~r) = kC
q1q2
|~r|2
· ~r
|~r|

(2.6)

In a vacuum, the value of Coulomb’s constant is kC = 8.99 · 109Nm2C−2. If the assumption
of a vacuum does not hold, kC depends on the permittivity ε of the considered medium by
the relation kC = 1

4πε

A particle can be either charged itself, e.g. in the case of an ion, or it can possess partial
charges in its structure. One kind of partial charge has already been mentioned in connection
with the London dispersion in the Subsection 2.1.1. Nevertheless, they occur inside of an
atom, and as atoms are considered as point charges, they will be neglected in the context of
electrostatic potentials.

In the case of molecules composed of elements with different electronegativities, polarised
covalent bonds arise. The atom with the higher electronegativity has a stronger attraction
with the bonding electrons and gets a negative partial charge whereas the atom with the
lower electronegativity gets a positive partial charge. One can compute the partial charge
SX between two atoms X and Y if one knows the main group number GX , the number
NX of unbounded electrons, the number of electrons BX participating in the bond and the
values of the electronegativities χX and χY [Cla04].

SX = GX −NX −BX ·
χX

χX + χY
(2.7)

2.1.3. Harmonic Potential

A very basic simulation of large molecules such as membrane proteins could be a 2-dimensional
mesh of elastically bounded atoms. Each constituting atom is linked to its direct mesh
neighbours and its diagonal neighbours, as depicts Figure 2.2. Therefore, for each particle, a
total of eight interactions account for the calculation of the total exerted force on a molecule.
It can be combined with a repulsive Lennard-Jones potential, which only takes into account
interactions for distances inferior to 6

√
2 σ to prevent collisions of the membrane atoms.
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2.1. Chemical background

Figure 2.2.: Example of the set-up for a membrane. Blue bonds represent interactions
between direct neighbours and green bonds represent interactions between
diagonal neighbours.

The bond between two adjacent atoms can then be represented by a spring with stiffness
k and rest length r0[Hoo78]]. The common force in a spring is given by:

F (~r) = k · (~r − ~r0) (2.8)

Consequently, for given mesh length σ0 and stiffness k, the membrane forces between a
particle and a direct neighbour is given by:

F (~r) = k · (|~r|2 − ~σ0) (2.9)

and for a diagonal neighbour by:

F (~r) = k ·
(
|~r|2 −

√
2 ~σ0

)
(2.10)

2.1.4. Energy conservation

In an isolated system without any mass or energy transfer to and from the outside, the total
amount of energy remains constant over time. If only particle dynamics are considered, and
therefore chemical reactions are not simulated, the total energy of the system corresponds
to the thermal energy which is equal to the sum of the kinetic and rotational energies of all
molecules.

Etherm =
f ·N

2
kBT = Ekin + Erot (2.11)

Ekin =
N∑
i=1

mi|~vi|22
2

(2.12)

Erot =

N∑
i=1

1

2
~ωi
T Ii ~ωi (2.13)

The parameters are:

5



2. Theoretical background

• f is the number of degrees of freedom of the system particles

• N is the total number of particles

• T is the system temperature

• ~vi is the velocity of a particle i

• mi is the mass of a particle i

• ~ωi is the angular velocity of a particle i

• Ii is the inertia tensor of a particle i

• kB = 1.381 · 10−23J ·K−1 is the Boltzmann constant

To ensure the physical correctness of the simulation regarding energy conservation, the
actual total mechanical energy of the system shall be regularly computed, since it might
vary slightly due to numerical errors, and the velocities of the particles shall consequently be
adjusted so that the mechanical energy matches the set thermal energy of the system. The
factor β to scale the velocities and angular velocities is computed as following [GKZ07a].

β =

√
Einit

Ekin + Erot
(2.14)

These recurrent velocity adjustments can also be used to simulate cooling or heating processes
by a slow increase or decrease of the temperature in the computation of the total thermal
energy.

2.1.5. Brownian motion

In 1827, Robert Brown observed spontaneous and random movements of particles in fluids,
without any exterior force effect [Bro28]. These movements change over time without any
explicable pattern and the excitement strengthens with an increase of the temperature. In
molecular dynamics, Brownian motion can be simulated by applying a Maxwell-Boltzmann
distribution to the velocity of the particle at the beginning of the simulation [GKZ07b]. The
velocity distribution for one component vi is given by:

f(vi) =

(
m

2πkBT

) 3
2

e
− mv2i

2kBT (2.15)

f(vi) =

(
b

π

) 3
2

e−bv
2
i (2.16)

The Brownian factor b can be arbitrarily chosen if a thermostat is used, since the velocity
will be scaled according to the system temperature.

2.2. Particle dynamics

2.2.1. Newton’s third law of motion

According to Newton’s third law of motion, for any force acting from one body to another,
there is an equal reaction in the exact opposite direction acting on the second body [New66].

6



2.2. Particle dynamics

Therefore, it is sufficient to consider each pair only once for the computation of pairwise
interactions in molecular dynamics, since the computed force can be added to the first
particle and be subtracted from the second particle.

Fij = −Fji (2.17)

2.2.2. Rigid-body moves

If the system is based on individual atoms, which can be considered as point masses, it
is sufficient to consider the forces acting on the particle. However, to simulate molecules,
which can be approximated as a rigid body of several point masses that represent each
one constitutive atom of the molecule, rotational movements cannot be neglected. Every
force acting on a molecule at a non-zero distance from its mass centre induces a torque and
consequently a rotation. The position xm of the mass centre is computed as the sum of the
weighted position xi of each site with mass mi.

xm =

Nparticles∑
i=1

mixi (2.18)

The torque τ is expressed as the sum of crossproducts of the force Fi and the distance from
the mass centre ri = xi − xm.

τ =

Nparticles∑
i=1

ri × Fi (2.19)

Moreover, the torque is the derivative of the angular momentum L, which is the linear
transformation of the angular velocity ω by the inertia tensor I. Thus, the angular velocity
of a molecule can be computed from the torque in two steps.

L =

∫
τ dt ω = I−1L (2.20)

The inertia tensor

The inertia tensor or moment of inertia describes the factor between the torque and the
angular acceleration of a rigid body, thus it is similar to the mass in the relation between
force and acceleration (F = ma). It depends on the mass distribution of the body and is, in
general, represented by a symmetric 3× 3 matrix. For a body of N point masses, its entries
can be easily determined from the distance [xi, yi, zi]

T of each site to the mass centre.
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2. Theoretical background

Ixx =
N∑
i=1

mi(y
2
i + z2i ) Ixy = Iyx = −

N∑
i=1

mixiyi

Iyy =

N∑
i=1

mi(x
2
i + z2i ) Ixz = Izx = −

N∑
i=1

mixizi

Ixx =

N∑
i=1

mi(x
2
i + y2i ) Iyz = Izy = −

N∑
i=1

miyizi

The formula for the angular velocity in [2.19] requires the inverse of the inertia tensor.
For a 3× 3, it can be be directly calculated.

I−1 =
1

det(I)

 IyyIzz − 2Iyz IxzIyz − IzzIxy IxyIyz − IxzIyy
IyzIxz − IxyIzz IxxIzz − 2Ixz IxzIxy − IxxIyz
IxyIyz − IxzIyy IxzIxy − IxxIyz IxxIyy − 2Ixy

 (2.21)

Principal axis theorem

In actual fact, the inertia tensor is not always invertible. For instance, H2 is composed of
two sites and has only two rotational degrees of freedom, since a torque in the direction of
the axis of the molecule would not affect its rotational behaviour. As a matter of fact, any
rigid body built of aligned particles will have an inertia tensor of rank 2, which is therefore
not invertible.
This issue can be solved by a transformation of the torque and the angular momentum into
the body frame, in which the coordinate system corresponds to the principal axis of the
body. A torque along a principal axis will only affect rotations along the same axis, hence
the inertia tensor in the body frame is a diagonal matrix [Syl52]. The inverse is then also
a diagonal matrix and its entries are equal to the inverses of all non-zero elements of the
inertia tensor. The columns of the rotation matrix from the current frame to the body frame
correspond to the normalised eigenvectors of the current inertia tensor and the entries of
the diagonal inertia tensor correspond to its eigenvalues. For a symmetric 3 × 3 matrix,
the eigenvalues and eigenvectors are always real and can be computed by an eigenvalue

8



2.2. Particle dynamics

algorithm, which is sketched below [Smi61].

Algorithm 1: The eigenvalue algorithm [Smi61]

Input: normal 3× 3 matrix A
Output: Eigenvalues λ1, λ2, λ3

1 Function getEigenvalues(A):
2 if A is diagonal then
3 return diag(A)
4 else
5 m← trace(A)/3
6 p1 ← A12A21 +A13A31 +A23A32

7 p2 ← (A11 −m)2 + (A22 −m)2 + (A33 −m)2 + 2p1
8 p←

√
p2/6

9 B ← p−1(A−mI)
10 r = det(B)/2

// Due to numerical errors, r may not be in the interval [-1,

1]

11 if r < −1 then
12 φ← π/3
13 else if r > 1 then
14 φ← 0
15 else
16 φ← arccos(r)/3
17 end

18 λ1 ← m+ 2p cos(φ)
19 λ2 ← m+ 2p cos(φ+ 2π/3)
20 λ3 ← 3m− λ1 − λ2
21 return λ1, λ2, λ3

An eigenvector associated to the eigenvalue λ is the crossproduct of two linearly indepen-
dent columns of (A− λI). If no such columns exist, any perpendicular vector to the column
space can be taken as eigenvector to λ.

2.2.3. Quaternion representation of rotations

In addition to the position, the orientation of a particle has to be considered in order to
correctly handle molecule rotations. There exist three widespread methods to represent
rotations of rigid bodies: rotation matrices, the axis-angle representation and quaternions.
Firstly, rotation matrices allow a very straightforward computation of coordinates from an
initial orientation. However, they require storage for nine entries for a three-dimensional
molecule, which would require large amounts of memory for simulations with a large amount
of molecules.
Secondly, the angle-axis is a very intuitive representation of a rotation and only needs four
values, divided in three for the axis and one for the rotated angle. However, computationally
intensive trigonometric functions are needed to retrieve a rotated point’s coordinates and

9



2. Theoretical background

the risk of a gimbal lock comes up. A gimbal lock appears if two rotation axes reach a
parallel orientation and the molecule loses one rotational degree of freedom.
Lastly, unit quaternions (or versors) provide a convenient and numerically stable representa-
tion of orientations with only four numbers. A quaternion q = a+ bi+ cj+dk is composed of
a real and three imaginary parts, where the complex units i, j, k represent a set of base units
of a three-dimensional vector space. If (~u, α) is the axis-angle representation of a rotation
with an angle α and a unitary rotation axis ~u, the rotation quaternion can be expressed by:

q = cos
α

2
+ u1 sin

α

2
i+ u2 sin

α

2
j + u3 sin

α

2
k (2.22)

Let ~p be the position of a point P and r the quaternion given by r = 0 + p1i+ p2j + p3k
The rotation of ~p by (~u, α) is then equal to r′ = qrq̄, where q̄ is the complex conjugate of q.

Thus, the rotation of any vector ~p by a unit quaternion q = a+ bi+ cj + dk is computed
explicitly by:

~p′ = R~p (2.23)p′1p′2
p′3

 =

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2ad+ 2bc a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2 − b2 − c2 + d2

p1p2
p3

 (2.24)

The inverse rotation is given by r = q−1r′q or, using the matrix-vector notation, ~p = RT ~p ′.

If an angular velocity ω is applied to a body oriented by the quaternion q, the rate of
change of its alignment is given by [Eck14]:

∂q

∂t
= Qω̂ (2.25)

with ω̂ =


0
ω1

ω2

ω3

 and Q =


a −b −c −d
b a −d c
c d a −b
d −c b a

. Again, we have q = a+ bi+ cj + dk.

2.2.4. Discrete time integration

Newton’s second law of motion [New66] describes forces as the product between the mass
and the acceleration. Thus, the acceleration, its first anti-derivative, the velocity, and its
second anti-derivative, the position, can be deduced from the forces acting on a particle.
Taylor expansions are used to represent the discrete time integration for a single particle
at time t with a time step ∆t. First, we will express the velocity in the next time step
in function of the force at t + ∆t, the force at t and the velocity at t using two Taylor
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2.3. Algorithms for N-body simulations

expansions of second order at t+ ∆t and t.

v(t+ ∆t) = v(t) + ∆t
∂

∂t
v(t) +O(∆t)2 (2.26)

v(t) = v(t+ ∆t)−∆t
∂

∂t
v(t+ ∆t) +O(∆t)2 (2.27)

v(t+ ∆t)− v(t) = v(t)− v(t+ ∆t) + ∆t

(
∂

∂t
v(t) +

∂

∂t
v(t+ ∆t)

)
+O(∆t)2 (2.28)

v(t+ ∆t) = v(t) +
∆t

2

(
∂

∂t
v(t) +

∂

∂t
v(t+ ∆t)

)
+O(∆t)2 (2.29)

Since F (t) = m · a(t) = m · ∂∂tv(t), we get:

v(t+ ∆t) = v(t) +
∆t

2m
(F (t) + F (t+ ∆t)) +O(∆t)2 (2.30)

Moreover, we can compute the position with one Taylor expansion of third order at t+ ∆t
and the law v(t) = ∂x(t)

∂t .

x(t+ ∆t) = x(t) + ∆t
∂

∂t
x(t) +

∆t2

2

∂2

∂2t
x(t) +O(∆t)3 (2.31)

x(t+ ∆t) = x(t) + ∆tv(t) +
∆t2

2m
F (t) +O(∆t)3 (2.32)

(2.33)

This numerical method to compute the position and the velocity of particles is called Verlet-
Störmer [Ver67] and is preferred to other integration schemes such as central differences
because of its time-reversibility and symplecticity, or its ability to integrate a Hamiltonian
system [GKZ07c].

In rigid-body dynamics, the angular momentum j can be computed from the torque τ
similarly to the velocity and the attitude q by a simple forward Euler scheme.

j(t+ ∆t) = j(t) +
∆t

2
(τ(t) + τ(t+ ∆t)) (2.34)

q(t+ ∆t) = q(t) + ∆t
∂q

∂t
(2.35)

2.3. Algorithms for N-body simulations

The computation of Lennard-Jones and electrostatic interactions requires the consideration
of every possible particle pair in the system. However, with the assumption that forces can
be neglected if two particles are distant enough, it is possible to considerably reduce the
computational effort as the number of relevant particle pairs diminishes.
As already discussed in Equation 2.5, the Lennard-Jones potential comprises a short-range
repulsive force, which decreases by a factor r−12, and a long-range attractive force, which
decreases by a factor r−6 for an increasing distance r between two particles. For instance, at a
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given σ, the Lennard-Jones force applied at a distance r = 5σ is only Fr=5σ = −1.28·10−4Fr=σ
of the resulting force at a distance r = σ and at r = 10σ we have: Fr=10σ = −2.00 ·10−6Fr=σ.
Thus, the Lennard-Jones force can be neglected for two particles with a relative distance r
exceeding a defined cut-off radius rc.
Nevertheless, this statement does not hold for Coulomb forces, which only decrease to the
second power of the distance. In fact, a cut-off radius can only be applied to the electrostatic
potential for uncharged, polarised particles. In this case, the Coulomb interaction determines
the orientation of adjacent molecules, and long-range forces between two particles vanish
since the sum of all partial charges in a molecule is zero.

2.3.1. Direct sum

The most intuitive way to apply pairwise interactions is to iterate twice over all particles
in the system such that every particle pair is only considered once according to Newton’s
Third Law. An outline of such an algorithm is given in Listing 2.1.

1 for ( i =0; i<NumParticles ; ++i ) {
2 for ( j=i +1; j<NumParticles ; ++j ) {
3 // check cut−o f f r ad iu s
4 i f ( d i s t anc e ( Pa r t i c l e [ i ] , P a r t i c l e [ j ] ) <= r c u t o f f ) {
5 ApplyPa i rw i s e Inte rac t i on ( Pa r t i c l e [ i ] , P a r t i c l e [ j ] ) ;
6 }
7 }
8 }

Listing 2.1: Example of a direct sum iteration for pairwise interactions using Newton’s Third
Law

The complexity of this method is O(N2), which leads to very low performances for high
numbers of particles.

2.3.2. Linked cells

The simulation domain is subdivided in equally sized cells which contain the system particles
such that the edge length of the cells is equal to the cut-off radius of the pairwise interaction.
In this case, a particle only interacts with the particles located in the same cell and in the
adjacent cells. In two dimensions, nine neighbouring cells have to be considered and in three
dimensions, a cube of 27 cells contain relevant particles. Each cell contains Nparticles/Ncells,
and if the particle density is considered constant in the domain and if the number of cells is
constant, the complexity of this method is given by O(N). As depicted in Figure 2.3, it is
possible to use Newton’s third law and only consider half of the adjacent cells. For instance,
for a particle in the red cell, it is sufficient to compute the interactions with the particles in
the red and in the blue cells. Indeed, the interactions with the particles in the green cells
are computed when a green cell is considered in the centre of the traversal cube.
To better approximate the geometry of the cut-off sphere, it is possible to reduce the edge
length to any fraction of rcutoff . This increases the number of cells per particle, but reduces
the number of unused particles in the neighbouring cells and the consequent number of
superfluous cut-off radius checks.
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Figure 2.3.: Example of the relevant linked cells for a particle located in the central cell

2.3.3. Verlet lists

Loup Verlet [Ver67] proposed in 1967 to associate to each particle a neighbours list containing
references to all particles located within an arbitrary cut-off radius around the particle.
Therefore, for a given molecule, all relevant particles for a pairwise interaction can be easily
accessed through the neighbour’s list, and the complexity reduces to O(N). However, at
each iteration, particles move and might leave the region covered by the neighbour’s list
or other particles might enter the region without being added to the neighbour’s list. To
prevent such issues, an update of all Verlet lists is required at each iteration, which again
has a complexity of O(N2). If each Verlet list contained, additionally to the particles strictly
located inside the cut-off radius, particles in a given buffer zone from the neighbour’s region,
thus particles placed at a distance inferior to rcutoff + rbuffer from the original particle, the
update rate can be reduced to the theoretical minimal time a particle would need to cross
the buffer zone.

Cut-off radius
Buffer
zone

Figure 2.4.: Neighbour’s region of a Verlet list with buffer zone
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In a further extent, it is possible to combine Verlet neighbour’s lists and linked cells. The
particles are contained in a linked cells domain and every particle has a list of the references
of all Verlet neighbours. As two spatially close particles can be easily accessed by the linked
cells data layout, the complexity of the update of the Verlet neighbour’s list reduces to O(N)
as in the linked cells traversal. The particle pair iteration for the actual force computation
is still performed through Verlet neighbour’s list as they minimise the number of useless
cut-off distance checks.
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3.1. ls1-mardyn

The molecular dynamics simulation program ls1-MarDyn has been jointly developed by the
High Performance Computing Center Stuttgart (HLRS), the Laboratory of Engineering Ther-
modynamics at the University of Kaiserslautern (TLD), the Chair of Scientific Computing in
Computer Science at the Technical University of Munich (SCCS) and Thermodynamics and
Energy Technology at the University of Paderborn (ThEt). The name ls1-MarDyn stands
for Large Systems 1: MoleculAR DYNamics [BBB+14].
It supports simulations on large domains with up to twenty trillions particles [ST18], is
highly scalable and is adapted to run on several high-performance computing architectures.
Therefore, ls1-mardyn is particularly suitable for simulations that require the representation
of large numbers of particles such as nucleation in supersaturated vapours or fluid flow
through nanoporous membrane particles. However, it is limited to rigid molecules, only
supports simulations at a constant volume and cannot represent long-range electrostatic
interactions with ions. In the scope of this thesis, the implemented simulation code MolSim
with the AutoPas library is compared with ls1-mardyn with respect to performance and
scalability.

3.2. AutoPas

AutoPas is a developing tool which provides an environment to run molecular dynamics
simulations. It manages the memory, handles the particle traversals and includes tools for
vectorisation and parallelisation. The user has only to specify the particle type and its
properties such as pairwise functors to compute inter-molecular interactions.

3.2.1. The AutoPas interface

The instantiation of the AutoPas class acts as a particle container which handles the provided
data. It is initialized as a cuboidal domain of given size with an underlying data structure,
which can at the moment be either direct sums, Verlet neighbour’s lists or linked cells, and
a cut-off radius rcutoff , beyond which pairwise interactions between particles are neglected.
Additionally, it enables the addition and the deletion of halo particles, which are located
in a rcutoff -thick layer beyond the domain limits. It is equipped with a pairwise iterator,
which iterates through all particles pairs according to the specified container as described in
Section 2.3. and applies the provided functor to the particle pair. If the linked cells data
layout is used, the container must be updated before the pairwise iterator can be applied
if particles moved and changed their assigned cell. Finally, it includes a particle iterator
and a region particle iterator which iterates over all particles in the domain or in a desired
sub-domain.
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3.2.2. Vectorisation in AutoPas

Pairwise functors in AutoPas can be executed on two different ways, the first using arrays
of structures (AoS) and the other structure of arrays (SoA). AoS can be imagined as an
array of particles which contain the values of the properties as illustrated in Figure 3.1.
On the other hand, SoA contains all properties in separate arrays such that the values at
the same index return the properties of the identical particle as can be seen in Figure 3.2.
AoS functors take as input two instantiations of the particle class and directly adjust the
forces and eventually other properties of the provided particles according to the interaction
implemented in the functor. AoS functors take as input two instantiations of the particle
class and directly adjust the forces and eventually other properties of the provided particles
according to the interaction implemented in the functor.

Figure 3.1.: Model of an array of structures
(AoS) with particles contain-
inga position and a force vec-
tor.

Figure 3.2.: Model of a structure of arrays
(SoA) with six components and
N particles.

SoA functors rely on arrays which contain each the values of one characteristic of all
particles. For instance, a basic functor would require three arrays for the particle positions
and three arrays for the components of the force vector, and the length of each array is
equal to the number of considered particles. Therefore, the data is first extracted from the
particle cells or Verlet neighbour’s lists and then stored in the corresponding arrays. As all
operations in the vector are now directly performed on arrays, it is possible to vectorise the
force computations with SIMD for example.

3.2.3. Parallel cell traversals

The AutoPas class provides OpenMP parallelisation options for the simultaneous processing
of linked cells. If Newton’s third law is used, the computation of an interaction between two
particles affects the force vectors of both particles, and as interactions happen between adja-
cent cells, race conditions can appear if two threads write in the same cell. Synchronisation
cells, which will be handled last, are therefore needed to avoid such race conditions. Two
different parallel cell traversals have so far been implemented in AutoPas: the sliced and the
C08 traversal.
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Sliced traversal

A domain is subdivided in a mesh of n×m× l cells and a number of threads nthreads is given.
The dimension with the highest number of cells is taken and divided in nthreads equally sized
chunks of cells. Each chunk corresponds to a parallel region and is separated from the next
chunk by one row of synchronisation cells. A two-dimensional example of a sliced traversal
with three parallel threads is given in Figure 3.3. All cells connected by arrows of the same
colour represent one parallel task that can be simultaneously processed. The hatched cells
are synchronisation cells which are locked as long as the first column of the following thread
has not been finished. For instance, the blue hatched cells are unlocked when the red thread
begins with the second column. For a given cell mesh, the maximum number of threads is
thus given by nthreads = max(n,m, l)/2, since the smallest possible layout is composed of
alternating columns of parallel regions and synchronisation cells.

Figure 3.3.: Set up for a sliced traversal with three threads in blue, red and green with
hatched synchronisation cells

If the cell edge length is smaller than the cut-off radius, the number of necessary adjacent
cells for the force computation increases and the parallelisation gets more complex as more
synchronisation cells are required.

C08 traversal

In the C08 traversal, the cell mesh is subdivided in cubes with an edge length of two cells.
Starting from one cell, such as the yellow cell in Figure 3.4, all interactions between particles,
represented by black arrows, in the corresponding cube are calculated. Each cube can
be processed independently from the others, and after all forces in all cubes have been
computed, the subdivision is repeated starting from another cell, such as the green cell.
Thus, in 2D, four synchronisation steps and in 3D eight synchronisation steps are required.
The maximum number of threads in the C08 traversal is given by the maximal number of
cubes that can be built simultaneously in the domain, in 2D, it is thus possible to have
nthreads,2D = n ·m/4 and in 3D there are at most nthreads,3D = n ·m · l/8.
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Figure 3.4.: Set up for a C08 traversal.

The task assignment follows a dynamic scheduling, thus after the execution of all compu-
tations in one cube, the thread gets the next available cube and no overhead is produced
at the task barriers. This makes the C08 traversal particularly suitable for domains with
unevenly distributed particles.
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4. Implementation of the simulation tool

4.1. Stucture of the program

The first step in the execution of the simulation program is the input of the simulation
settings, such as the time step, the kind of boundary conditions or the thermostat parameters
which are provided in an XML-file. In a second step, particles are created by means of a
particle generator, which can create arbitrary meshes of equally-distanced particles, spheres
or single particles at defined positions. The chemical and physical characteristics such as the
σ and ε values and the number and relative position of sites in a molecule and the desired
particle generator are specified in an additional XML-file. The separation of the input data
in two separate files allows for higher flexibility in the choice of the simulation. For instance,
it is possible to easily change the simulation parameters on the same particle data, and
on the other hand, run the same simulation on different input data. An overview of the
detailed parameters of the input files can be found in the Appendix B.

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗PREPROCESSING∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 SetSimulat ionParameters ( S e t t i n g s . xml ) ;
3 // i n i t i a l i s e the p a r t i c l e conta ine r
4 auto∗ Container = new AutoPas<MoleculeMS , Fu l lPa r t i c l eC e l l<MoleculeMS>>() ;
5 Container−> i n i t (BoxMin , BoxMax , r cu t o f f , ContainerType ) ;
6 Genera t ePar t i c l e s ( Pa r t i c l e s I npu t . xml , Container ) ;
7 applyBrownianMotion ( Container ) ;
8 applyThermostat ( Container ) ;
9 s i z e t i t e r a t i o n =0;

10 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗MAIN LOOP∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
11 for (double cur r en t t ime = 0 ; current t ime< end time ; cu r r en t t ime +=

t ime s t ep ) {
12 i f ( i t e r a t i o n==1) Timer . s t a r t ( ) ;
13 i f ( Container−>isContainerUpdateNeeded ( ) ) Container−>updateContainer ( ) ;
14 r e s e tFo r c e s ( ) ;
15 // apply s i n g l e f unc t o r s
16 for (auto p a r t i c l e i t e r a t o r = Container . begin ( ) ; p a r t i c l e i t e r a t o r . i sVa l i d ( ) ;

++p a r t i c l e i t e r a t o r ) {
17 for ( int i = 0 ; i < NumSingleFunctors ; ++i ) {
18 S ing l eFunctor s [ i ] (∗ p a r t i c l e i t e r a t o r ) ;
19 }
20 }
21 applyBoundaryConditions ( Container ) ;
22 // apply pa i rw i s e f unc t o r s
23 for ( int j = 0 ; j < NumPairwiseFunctors ; ++j ) {
24 Container−>i t e r a t ePa i rw i s e ( Pai rwiseFunctors [ i ] , DataLayout ) ;
25 }
26 Par t i a lT ime In t eg ra t i on s ( Container ) ;
27 applyThermostat ( Container ) ;
28 OutputWriter ( Container ) ;
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29 ++i t e r a t i o n ( ) ;
30 }
31
32 /∗ ∗∗∗∗∗∗∗∗∗∗POSTPROCESSING∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
33 double t o t a l t ime = Timer . end ( ) ;
34 WriteMUPS( to ta l t ime , NumParticles , i t e r a t i o n ) ;
35 WriteFLOPS( Container , Pa i rwiseFunctors ) ;

Listing 4.1: Main structure of the simulation tool

Once the simulation parameters have been set, Brownian motion is applied to the particles
and the resulting velocities are scaled by a thermostat. The main time loop is then started,
and at the beginning of each iteration, the forces are reset to zero, the eventual linked
cells container is updated, and single functors that only act on single particles, such as
gravitation and electric fields or membrane forces are applied to all particles. Optional
boundary conditions can then be applied to particles in proximity of the domain border.
Thereafter, the desired pairwise iterator, which can use either direct sums, linked cells or
Verlet’s neighbour lists, is executed with a variable number of bi-molecular functors. After
the computation of all occurring forces and consequent torques, partial time integrations as
described in Subsection 2.2.4 determine velocities, positions, and, in the case of molecules,
the angular velocity and the orientation. As the partial integrations consider each particle
on its own, they can be easily parallelised without the danger of the incidence of race
conditions. Finally, a thermostat can be applied to rescale the velocities, the particle data
can be plotted to a VTK-file for the visualisation or to a CSV-file to get velocity profiles,
and the iteration and time counters are incremented. A pseudo-code of the main program is
given in Listing 4.1.

After the completion of the time iterations, the molecule updates per second (MUPS), thus
the product of the total amount of particles and the number of iterations over the runtime
of the main loop, and the floating point operations per second (FLOPS) are computed
according to Equation 4.2 to provide data for the performance analysis.

MUPS =
Nparticles ·Niterations

texecution
(4.1)

FLOPS =
Noperations

texecution
(4.2)

4.2. Representation of the particle data

Each particle is instantiated by a molecule class, which comprises the specific physical
characteristics of the particle. They include variables such as the current position, velocity
and the experienced force of general particles, as well as the orientation, angular velocity
and resulting torques in rotating molecules. Moreover, the values of the forces and torques
from the previous time step are stored, since they are required by the partial integration
scheme presented in the Subsection 2.2.4. In addition to these variable parameters, a unique
index is assigned to the particle.
General properties of a particle type, such as the mass or the value of σ and ε, are not stored
in the molecule class to avoid redundant information but in a separate particle type class,
which associates all properties of a molecule type to a unique ID. Furthermore, the combined
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εmixed are preliminarily computed with the Berthelot mixing rule of Equation 2.3 for all
possible pairs of εparticle to avoid the repeated execution of the expensive calculation of a
square root in each call of the pairwise Lennard-Jones functor. The molecule class itself only
stores the unique type ID to retrieve the element properties from the particle type class.
Finally, the configuration of a molecule is provided in a molecule type class. It contains the
relative positions of the constituting atoms to the mass centre of the molecule as specified
in the input XML-file. Each site is also associated to a type ID, so the specific properties of
each constituting atom can be used. As described in Subsection 2.2.2, the molecule type
class holds the inertia tensor of the molecule in the initial frame, its inverse if it is defined, its
principal values in the body frame and the inverses of the non-zero principal values. These
specifications can be accessed from the molecule class by a pointer to the corresponding
instantiation of molecule type class.
The required memory space for one particle is resumed in Table 4.2. If a reasonable number
of different particle and molecule types is used, the memory needed by these classes can be
neglected compared to the particle data.

Element used datatype
required
memory
[Byte]

Position vector of 3 double 24

Velocity vector of 3 double 24

Force from the current iteration vector of 3 double 24

Force from the previous iteration vector of 3 double 24

Orientation quaternion of 4 double 32

Angular velocity vector of 3 double 24

Torque from the current iteration vector of 3 double 24

Torque from the previous iteration vector of 3 double 24

Unique index unsigned long integer 8

Particle Type integer 4

Reference to the molecule type pointer 8

Total: 220

Table 4.2.: Memory requirements of one particle

4.2.1. Computation of the inverse inertia tensor

According to Subsection 2.2.2, the angular velocity can be computed on two different
manners: either by a direct matrix-vector multiplication of the angular momentum by the
inverse inertia tensor or a prior rotation of the molecule into the body frame, and then a
component-wise division of the angular momentum vector by the respective principal values.
The first method can only be applied to molecules with three rotational degrees of freedom,
while the computation in the body frame can be applied to any kind of particles.
In both cases, the angular momentum is first rotated into the initial frame, as provided by
the input file. The inertia tensor and its inverse are then only computed once per molecule
type at the beginning of the execution. According to Equation 2.23, each rotation by a
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quaternion needs 21 additions and 25 multiplications. The so calculated angular velocity has
to be rotated back into the current orientation of the molecule. Therefore, he transformation
of the system into a frame where an inverse inertia tensor can directly be applied requires
42 additions and 50 multiplications forth and back. On the other hand, it is also possible
to get the inverse inertia tensor for the current layout of the particle. It is retrieved by
applying the quaternion rotation to the inverse inertia tensor of the initial frame using in
total 63 additions and 75 multiplications. In conclusion, the transformation of the angular
momentum and velocity requires less computational steps than the transformation of the
inverse inertia tensor.
The aim of the following paragraph is to compare the speed of the computation of the
angular velocity in the body frame and in the initial frame for a water molecule with three
rotational degrees of freedom as described in Subsection 5.6.1 . Both methods are tested
in a serial execution with a cuboid of 10000 molecules in a linked-cells container with a
Lennard-Jones functor for molecules and for ten time iteration steps. As the simulation in
the body frame induces a 7% longer runtime than in the initial frame, the second is the
preferred method for the computation of the angular velocity of a suitable molecule. This
can be explained by the number of required transformations: the direct computation in the
initial frame requires one matrix-vector multiplication, though two vector rotations, which
correspond each to a matrix-vector multiplication, are needed to reach the body frame in
addition to the cheap division of the components by the principal values of the inertia tensor.
Thus, if the input file does not specify anything else, the program automatically choses
the initial frame computation for a molecule with an invertible inertia tensor and the body
frame for any other type of molecule.

4.3. Boundary conditions

4.3.1. Reflective

Some simulations require particles to stay in the domain at the same position near the
boundary. For example, the simulation of a gravity-induced mixing process of two fluids
with different densities on a plate needs a support to prevent the particles from ”falling
down”. This can be achieved with a reflective boundary on the lower face of the domain.
The repulsive Lennard-Jones potential, or Pauli repulsion forces as stated in Subsection 2.1.1,
describes the force acting on particles in the neighbourhood of the domain delimitation. A
halo particle is generated at a symmetric position if a particle is located at less than 1

2
6
√

2 σ
from the boundary, as shown in Figure 4.1. A particle that reaches the boundary is then
reflected and stays in the simulation domain.
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Domain

Halo

Figure 4.1.: Example of the repulsion of a particle at a reflective boundary condition

4.3.2. Periodic

To represent a behaviour on very large domains, it can be convenient to run simulations on a
smaller domain and to extend it periodically. For instance, if one is interested in phenomena
within a liquid, which only interacts with itself and is not influenced by exterior factors, any
events or interactions at the domain boundary of the simulation would lead to undesired
results. One solution to this issue is periodic boundaries, which let the simulation represent
an infinite domain.
These boundary conditions enable particles next to the domain limit to interact with the
particles located on the opposite side of the domain. Additionally, the area around an
edge interacts with the area of the diagonally opposite edge and the same holds for the
corners of the domain. Since particles only interact if their relative distances are below the
given cut-off radius, it is sufficient to compute the forces transmitted through the domain
boundaries for particles located within this cut-off radius from the boundary. Moreover, if
a particle leaves the domain on one side, it reappears on the opposite side, i.e. two of its
coordinates remain constant and the third is incremented or decremented by the domain
length. To compute the transmitted forces, three different implementations have been tested.
The first function, named computePBC, directly calculates the forces between particles
on opposite sides after an iteration over all particles in proximity of the boundary. The
second, computeNeighboursPBC, is similar to the first but only iterates over the particles
at a distance less than rcutoff along the axis spanning the periodic faces of the domain
using the AutoPas region iterator. Lastly, the third function, called applyPBC, creates halo
particles placed behind the boundary, as explained in Figure 4.2.
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Figure 4.2.: Example of the creation of halo particles as implemented in applyPBC
The domain delimiter is the red line. The orange cells are the halo layer and
the yellow cells are the boundary layer of the domain, which are considered
when periodic interactions are computed. Every particle in a boundary cell
is copied into the corresponding halo cell on the opposite side of the domain.
For instance, the blue particles from the upper boundary layer are copied into
the lower halo layer and vice-versa for the green particles. A special attention
needs to be paid to corner cells, such as the lower-left boundary cell with two
green particles, which is copied three times: to the top, to the right, and to the
diagonally opposite cell

The last function requires the instantiation and the deletion of new particles at each
iteration, but benefits from the linked cells traversals and its possible parallel execution,
therefore, the complexity of this method is O(Nparticles). The second method only iterates
over an approximately constant number of particles on the opposite side, so its complexity
can be given by O(Nparticles), and it does not need the creation of halo particles. The first
should yield the worst results since it acts as a direct sum and has, therefore, a complexity
of O(N 2

particles).
To compare the three implementations, we consider a domain composed of 5832 cells (18
per dimension) and periodic boundary conditions in all three directions. Subsequently, 1740
cells are located next to a boundary and their particles are considered in the computation
of the transmitted forces. This domain is then uniformly filled with a variable number of
particles and the molecule update rates per second (MUPS) have been measured for each
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scenario and both methods. The simulation is run on a single core with one OpenMP thread
using the linked cells traversal. The results are shown in Figure 4.3.
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Figure 4.3.: Molecule updates per second for different particle densities using the three
methods to apply periodic boundary conditions The simulation is run on a
single thread with SoA arrays but without vectorisation in a domain of 5832
cells. Therefore, the total number of particles varies from 5.8 · 103 to 3.7 · 105

We can observe that for all methods, the performance decreases with the increase of the
particle density. This is mainly explained by the fact that at a higher density, more particles
lie within the cut-off radius of every single particle and more pairwise interactions have to
be computed. However, the speed of ApplyPBC is much higher than the two other methods.
ComputeNeighboursPBC is even slightly worse than ComputePBC, which reaches on average
96.7% the MUPS of ComputeNeighboursPBC. This is due to a loose implementation of the
region iterator, which checks all particles in the domain whether they lie in the requested
region or not. Thus, the expected computational speed of O(N) deteriorates to O(N2). For
an increasing particle density, the MUPS decrease faster using these two methods compared
to ApplyPBC, with a relation of 2% for the lowest density and 0.2% for the highest density.
This is mainly due to the O(N2) complexity of the two first methods.
In conclusion, only the ApplyPBC method yields a satisfying performance. It has been
further adapted to an OpenMP parallelisation. First, a list of all boundary particles is built
in a serial process. The instantiation of halo particles is then achieved in various parallel
threads by a static scheduling from the list elements.
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5.1. Simulation hardware

5.1.1. SuperMUC

SuperMUC1 is the name of the supercomputer at the Leibniz-Rechenzentrum (LRZ) in
Garching. It builds on more than 155000 cores and has a peak performance of 3 Petaflop/s
reached in June 2012 [NWA13]. It consists of two phases: the first comprises thin nodes
and fast nodes while the second phase builds on Haswell nodes. In the context of this thesis,
only thin nodes on SuperMUC phase 1 (SuperMUC-1-tn) are used to perform simulations
and will be presented in further detail.
The node islands build on the IBM System x iDataPlex dx360M4 with Sandy Bridge-EP
Xeon E5-2680 8C processors, which have a nominal frequency of 2.7 GHz. In total, there
are 18 islands containing 512 nodes each. Every node has two processors with eight cores
each. Therefore, all thin islands contain a total 147 456 cores. Intel hyper-threading allows
simultaneous computation of two threads on one core. As the scope of this thesis is at
node-level, maximal number of parallelisable tasks that can be simultaneously executed is
32.

5.1.2. CoolMUC

CoolMUC2 is part of the Linux-cluster at the LRZ dedicated for smaller projects. The
recent system CoolMUC-3 has been set up in September of 2017 and has been designed
for highly-vectorisable and parallel tasks. It builds on the ”Knights Landing” many-core
processor Xeon Phi 7210-F with a nominal core frequency of 1.7 GHz. Each node contains
64 cores and is capable to handle up to 4 hyper-threads per core, therefore the maximal
number of tasks executable in parallel is 256 per processor. CoolMUC-3 therefore offers a
good opportunity to strong-scale the parallelisation of the simulation at node level.

5.1.3. Comparison

The SuperMUC-1-tn has a better core performance than the CoolMUC-3. For example,
a simple, serial molecular dynamics simulation with approximately 2 · 106 molecules is
about 3.5 faster on the SuperMUC-1-tn than on the CoolMUC-3. However, the Knights
Landing architecture allows for a better scalability for multi-thread simulations at node-level.
Figure 5.1 depicts the speedup S(p), the ratio of the performance using p threads over
the performance of a serial execution for different values of p. Notwithstanding, the ideal
speedup S(p) = p is by far not reached for high numbers of threads because of remaining

1https://www.lrz.de/services/compute/supermuc/systemdescription/
2https://www.lrz.de/services/compute/linux-cluster/overview/
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5.2. Comparison to the 2017 world record

serial code that cannot be parallelised and large overheads when parallel tasks are assigned.
The performance drop on SuperMUC-1-tn between 16 and 32 threads is caused by hyper-
threading, as each node only comprises two processors that can handle up to 16 threads
each. All parallel threads perform similar computations and two hyper-threads require the
same resources of the common processor. Thus, additional overhead is produced by the
simultaneous use of one core for two tasks and the overall performance is affected.
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Figure 5.1.: Speedup on the CoolMUC-3 and the SuperMUC-1-tn Simulation of a cubic grid
with 2.1 · 106 Lennard-Jones atoms and rC/σ = 5.0. A native vectorisation and
a C08 traversal are applied.

5.2. Comparison to the 2017 world record

5.2.1. Description of the world record scenario

The aim of this section is to compare the performances of the implemented program to the
2017 world record by ls1-MarDyn at a single node, the simulation tool before including the
AutoPas library, referred to as MolSim, and the actual molecular dynamics tool using the
functionalities of the AutoPas library.
For the sake of the best comparability, the same input configuration is used as in the 2017
single-node world record simulation [ST18]. It is based on a cubic domain uniformly filled
with single-site particles configured in a cubic body-centred net. For the actual program,
this layout is obtained by creating two cuboids with the same mesh length l that are placed
with a relative offset of l/2 in all dimensions. In Figure 5.2 the construction of such a grid is
drafted. Two cuboids, which are represented in red and in blue, are organised such that
each particle lies in the middle of a cube formed by particles of the other cuboid. Figure 5.3
provides an example of such a cubic grid with 16000 particles. Three different scenarios are
compared in which the domain is split in linked cells with a respective dimensionless edge
length of rC/σ = 2.5, rC/σ = 3.5 and rC/σ = 5.0. Accordingly, each linked cells contains
12, 33 or 98 particles. A sliced traversal as described in Subsection 3.2.3 iterates over all
cells in the domain.
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5. Simulations results

Figure 5.2.: Construction of a two-
dimensional cubic grid.

 

Figure 5.3.: Example of a 3D cubic grid
configuration with 16 000 par-
ticles.

In the next experiments, cubic grids with 18.0 · 106 particles are generated in a domain
equipped with a mesh of 113, 81 or 56 linked cells per dimension. To maintain the uniformity
of the domain, a thermostat at very low temperatures (below 1 K) is applied to the system,
such that the particle movement is minimized and particles remain in their initial cell
throughout the run. The simulation is executed for eleven timesteps and the molecule
update rate per second (MUPS) is measured from the start of the second iteration to the
end of the last iteration and is computed according to Equation 4.2.

5.2.2. Comparison of the scalability

As the previous MolSim program does not support any vectorisation, the following graphs
in Figure 5.4, Figure 5.5 and Figure 5.6 depict the performance of SoA based simulations
without additional vectorisation for the three compared cut-off radii over the number of
parallel OpenMP threads. However, MarDyn and MolSim compiled with the remaining
autovectorisation while in AutoPas any kind of vectorisation has been disabled. Instead of a
double precision, ls1-mardyn used a single precision in the world record, which considerably
reduces the memory requirements and the computational effort of vectorised floating point
operation. Moreover, the particle data is not stored as single particles but in the reduced
memory mode (RMM), in which the SoA-structure is maintained throughout the program.
An extraction of the particle data before the execution of the pairwise functor is therefore
not required and the memory requirement of a particle is divided by 5.4 [ST18]. To get a
better comparison, two simulations with ls1-mardyn are provided. The first, referred in the
graph as MarDyn, is identical to the world record and stands as a reference. The second,
MarDynRed, has a reduced performance as it is compiled without the RMM-mode and with
a double precision, but it matches the parameters of AutoPas better.
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Figure 5.6.: rC
σ = 5.0

Comparison between the four molecular dynamics tools in the SoA mode without
vectorisation with a cubic grid of 18 · 106 particles for different numbers of parallel OpenMP

threads.

In the last scenario, there are 56 cells per dimension, The sliced traversal is therefore only
applicable up to 28 threads. ls1-mardyn and MolSim are not executable for a higher number
of threads and AutoPas falls back to a serial execution as can be seen in Figure 5.6 for 32
threads.
The integration of the AutoPas library increased the performance in average by 8% for
rC/σ = 2.5, by 24% for rC/σ = 3.5 and by 32% forrC/σ = 5.0. The higher increase for
large cells is due to a better implementation of the sliced traversal, since in the MolSim
program, the synchronisation cells are not locked by the neighbouring thread as presented
in 3.2.3, but are processed in a second step after the termination of the main parallel
region. The higher number of required operations for larger cells explains the lower relative
performance. Additionally, some some parts of the code which were previously serial, such
as the application of periodic boundary conditions have been parallelised.
However, the performance of AutoPas remains well below the performance of the reduced
MarDyn. Especially for higher parallelisation levels, the gap between both programs broadens.
Indeed, the MUPS in MarDyn almost double for a duplication of the number of threads. On
the other hand, AutoPas seems to converge towards a maximum performance for rC/σ = 2.5
and rC/σ = 3.5. Only cells with an edge length of rC/σ = 5.0 induce a quadratic scaling as
expected in the ideal growth though its gradient is smaller than in MarDyn.

5.2.3. Comparison of the vectorisation

In a second step, the impact of vectorisation on MarDyn and AutoPas is compared. The
floating point operations per second (in GFLOPS) for the three vector instructions are given
in the following graphs.
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σ = 5.0

Serial execution of the world record scenario of a cubic grid with 18 · 106 particles for
different vector instruction sets and cell sizes.

The simulation with the reduced version MarDynRed is again better than AutoPas, and
MarDyn as in the world record yields the best results with respect to the overall performance
and the performance gain through vectorisation. The measured computational speeds are
identical to the values in Figure 3(a) in [ST18]. The use of the AVX instruction set increases
the computational speed by a factor 1.7 for rC/σ = 2.5, a factor 2.7 for rC/σ = 3.5 and a
factor 4.0 for rC/σ = 5.0. On the other hand, the reduced MarDyn and AutoPas experience
a similar performance gain with an AVX vectorisation, which is however much smaller than
in MarDyn as it only increases by a factor 1.2 for rC/σ = 2.5, a factor 1.4 for rC/σ = 3.5
and a factor 1.8 for rC/σ = 5.0. This gain difference is caused by the single precision in
MarDyn as the four-byte data type can be more efficiently vectorised than the less flexible
eight-byte double type which is used in MarDynRed and in AutoPas. For all three simulation
tools, the GFLOPS performance is better for large cut-off radii. It explains why the MUPS
decrease between two distinct cut-off radii in Figure 5.4 is lower than expected. Indeed, the
number of force computations increases by

(
3.5
2.5

)3
= 2.7 respectively

(
5.0
3.5

)3
= 2.9 even though

the largest performance drop, experienced by MarDyn, yields MUPS2.5
MUPS3.5

= 2.1 respectively
MUPS3.5
MUPS5.0

= 2.7
A more detailed analysis of the AutoPas vectorisation is provided in 5.3.

5.3. Vectorisation

5.3.1. Explanation of the vectorisation in AutoPas

As already presented in 3.2.2, pairwise interactions can either be computed using arrays of
structures (AoS) or structures of arrays (SoA). The latter offers additionally the possibility
of vectorising the force calculations. In general, vectorisation makes it possible to perform
an operation between the elements of two vectors at the same time for all elements of the
vectors. SIMD exploits data-level parallelism by subdividing data structures like arrays or
vectors in registers holding multiple fields which depend on the compiler instructions. The
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5.3. Vectorisation

SSE vector instruction offers registers of 128-bits, which can then handle two double values,
and AVX works with 256-bits registers which can contain four double values. Natively,
SuperMUC-1-tn uses the AVX instruction sets.

5.3.2. Experiments with different vector instruction sets

To compare the performances of different vector instruction sets, a standard simulation
environment is provided with a cubic grid of 2− 1 · 106 single-site particles in a linked cells
container which is processed by a 16-threads C08 cell traversal. Three different cut-off radii
rC and cell sizes are compared for a particle density, being rC/σ = 2.5, rC/σ = 3.5 and
rC/σ = 5.0. The explicit compilation with SSE, AVX and the native architecture, which
should yield similar results than the AVX vector instruction, is compared to the SoA layout
without any vectorisation and to the AoS layout. The performance is measured in millions
of molecule updates per second (MMUPS) and the results are shown in Figure 5.10.
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Figure 5.10.: Performance of the simulation with the AutoPas library for different vector
instruction sets and cell sizes
Simulation run with 2.1 · 106 particles and a 16-thread C08 parallelisation

In all cases, the worst performance is reached with AoS. A large number of function calls
is probably the reason for these bad results. Effectively, the AoS-functor is called at each
calculation of a pairwise interaction. Inside the functor method, the particle class is called
16 times to fetch the current physical properties of the two particles such as the position as
well as to add the computed force. On the other hand, the SoA-functor processes entire
cells at once and is, therefore, only called once per cell and once per pair of adjacent cells
in each iteration. The same holds true for the instantiations of the particle class, which
are each called to load the SoA-arrays from the particle data before the execution of the
SoA-functor and once after its execution to extract the forces from the arrays back to the
particle data. As each cell is considered fourteen times in one iteration in three dimensions,
if eight properties are loaded into the arrays and three extracted back, each particle is called
154 times independently of the chosen cell size. This constant number of calls is related
to the decrease of the performance ratio of AoS over SoA for increasing cell sizes, which
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5. Simulations results

goes from 85% to 60%, since the number of AoS-functor calls and consequent particle calls
increases in contrast to the SoA-method. Another important factor which explains the
superior performance of SoA is its cache-friendliness. All values of a given property are
included in the same array and thus occupy the same cache line. On the other hand, in the
AoS data layout, the properties are stored together with the instantiations of the particle
class, which can be located anywhere in the memory. Therefore, the memory access is much
cheaper if the SoA method is used instead of AoS.
SSE and AVX vector instructions yield very similar results which are, as expected, an
improvement over SoA calculations without any vectorisation. The speed-up is higher for
larger cells, reaching 4.4% for rC/σ = 2.5, 4.6% for rC/σ = 3.5 and 6.0% forrC/σ = 5.0 and
is due to larger vectorisation benefits if the underlying data arrays contain more elements.
In addition to the AVX instruction set, a native vectorisation includes tuning options. They
increase the efficiency of the AVX vectorisation but require large vectors to effectively
apply the tuned vectorisation. Therefore, in small cells with few vectorisable computations,
AVX and native vector instruction set yield similar performances while in larger cells, the
performance could be increased by up to one fourth.

5.4. Scalability

5.4.1. Multithreading with OpenMP on the CoolMUC3

The Knight’s Landing architecture in the CoolMUC3 makes running simulations with up to
256 parallel threads on one node possible. On this basis, the next section is dedicated to the
analysis of the behaviour of the program at large numbers of parallel threads. To that effect,
the worldrecord simulation of Section 5.2 is repeated on the CoolMUC3, however with a
C08 traversal instead of the sliced traversal to avoid the fallback to a serial execution after
reaching the maximum thread number. Next to the actual performance in Figure 5.11, the
speedup of the simulation is represented in Figure 5.12 to illustrate the relative benefits of
the parallelisation. The speedup S(p) of a given configuration is the ratio of the performance
with p parallel threads over the performance of a serial execution.
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Figure 5.11.: Strongscaling on CoolMUC-3
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Figure 5.12.: Speedup on the CoolMUC-3

Performance of the MD program with the integrated AutoPas library on the world record
scenario with 18 · 106 particles run on the CoolMUC-3 cluster with a native vectorisation for

different numbers of threads and cut-off radii.
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With a higher level of parallelisation, the overall performance increases and reaches its peak
for all three cell sizes at 0.45 MMUPS if 64 parallel tasks are executed. Beyond this point,
all cores in the node are used and hyper-threading begins, which induces a performance
drop for the last two measure points.
However, the performance increase depends strongly on the cell size. A simulation with
a cut-off radius of 5.0 reaches a speedup of 8.7, while a radius of 3.5 subjects at most a
speedup of 5.5 and the smallest radius can only expect an execution to be up to three times
as fast. Despite the lower number of required force computations, the performance of a
system with rC/σ = 2.5 is slower than a system with rC/σ = 3.5 after 16 threads and is
even outpaced by the simulation with the fewest cells at 64 threads.
One explanation of these different speedups is the more efficient vectorisation of larger cells
as discussed is Section 5.3. The main reason is nevertheless the high spinning time of the
C08 thread assignation. The higher cell number at small cut-off radii causes the number of
tasks to increase by a factor eight. Moreover, if the linked cells are smaller, each task has to
perform fewer force computations as in larger cells, and the relative spin time to assign a
thread is larger.
One possible solution would be to adapt the number of C08 tasks per assigned thread in the
dynamic scheduling to the total number of cells. If there are l linked cells in the domain
and p OpenMP threads, the maximum number of C08 tasks each thread could get at once
to exploit the parallel resources most efficiently and to reduce the spin time is l

8p . However,
this reduces the adaptiveness of the C08 traversal and may produce additional overhead in
the case of unbalanced particle distributions as it occurs in the sliced traversal. Nevertheless,
the overall scalability of this molecular dynamics simulation tool is not optimal yet. The
shape of the speedup curves does not match the ideal speedup of S(p) = p for p threads and
the MUPS seems to converge towards a maximum that does not depend on the cell size.
In contrast, the performance increase of ls1-mardyn for the same scenario approximately
resembles the ideal speed up curve as it can be seen in Figure 5.13. The only deviations for all
test cases from the ideal behaviour occur at 128 and 256 threads because of hyper-threading.
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Figure 5.13.: Speedup of ls1-mardyn on the CoolMUC-3
Performance of ls1-MarDyn on the world record scenario with 18 · 106 particles
run on the CoolMUC-3 cluster with a native vectorisation for different numbers
of threads and cut-off radii
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5.4.2. Analysis of the OpenMP parallelisation with VTune

The software performance analysis tool VTune Amplifier has been used to investigate why
the AutoPas program is not satisfyingly scalable for higher number of threads, as can be
seen in Figure 5.4 or Figure 5.12. It evaluates the execution time of each function and
compares the CPU-usage of each parallel thread. Figure 5.14 shows the CPU usage over
time of the AutoPas program for a world record simulation with two parallel threads. The
worker thread is only started at the end of the preprocessing, which is marked in red. The
MUPS measurement only begins after the completion of the first time iteration, marked in
orange, and excludes postprocessing at the end of the execution of the program.

Figure 5.14.: CPU-usage per thread for the total execution time of the AutoPas program
Simulation run on the SuperMUC-1-tn with the world record scenario with
18 · 106 particles with a native vectorisation and a cut-off radius of rC/σ = 3.5
for two parallel threads.

The large, dark-green section at each iteration in the worker thread corresponds to the
pairwise iterator which include the force calculations. The two small peaks right before
and after the cell traversal are produced by the SoA Extractor and Loader. The three
smaller peaks correspond to the partial integrations, the single functors and the application
of periodic boundaries.
After the pairwise iterator, ApplyPBC from Subsection 4.3.2 is the most time-consuming
functions as it requires 25% of the execution time of the main loop in the program. One
third of the time in this function is used to particles which are near the border, as the
coordinates of every particle in the domain has to be checked because the AutoPas library
lacks an efficient region iterator..

In Figure 5.15, the execution of a time iteration with two threads is compared to an
execution on 16 threads. For the sake of convenience, only one of 15 worker threads is shown
in the second graph.
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Figure 5.15.: CPU-usage per thread for a time iteration of the AutoPas program
Simulation run on the SuperMUC-1-tn with the world record scenario with
18 · 106 particles with a native vectorisation and a cut-off radius of rC/σ = 3.5
for two and sixteen parallel threads.

As expected, the second graph shows a faster simulation. The red vertical bars separate
two iterations and during the execution of one iteration with two threads, almost two and a
half iterations could be performed on 16 threads. The most notable speed increase occurred
in the sliced cell traversal, but the smaller parallel regions could also be executed faster.
The execution time of the serial parts of the code remained constant at 148s for the whole
program and at 96s for the performance measurement section, and their share of the total
execution time increased accordingly. As a matter of fact, the section in which the MUPS
measurement is performed comprises a share of 71% partial code of the execution time for
16 threads. With the assumption of a perfectly scalable code on an infinite number of cores,
the theoretical maximal MUPS would be 1.69 · 106 MUPS, which is one third above the
observed stagnation point of 1.20 · 106 MUPS in Figure 5.4. As the serial parts of the code
do not depend on the cell size or the cut-off radius, the maximal performance for the three
scenarios in Figure 5.11 is similar.
In a next step, most of the serial parts of the main loop have been removed to obtain a
reduced AutoPas program which only comprises the pairwise particle iteration and the
partial integrations. The overall performance is compared to the original AutoPas program
in Figure 5.16 and the relative speedup to the serial execution is given in Figure 5.17.
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Figure 5.17.: Speedup of AutoPas and the
reduced AutoPas.

Simulation run on the SuperMUC-1-tn with the world record scenario with 18 · 106 particles
with a native vectorisation and a cut-off radius of rC/σ = 3.5 for two and sixteen parallel

threads.

The removal of the serial parts increased the maximal performance by a factor two. The
reduced AutoPas has a higher scalability, even though the speedup also converges towards
a maximum and does not reach the ideal speedup for higher number of threads as is, for
instance, the case in ls1-mardyn.
Finally, the average CPU-usage per thread of the pairwise cell traversals as calculated by
VTune Amplifier is presented in Figure 5.18.

Figure 5.18.: CPU-usage per thread of the pairwise iterator in the AutoPas program
Simulation run on the SuperMUC-1-tn with the world record scenario with
18 · 106 particles with a native vectorisation and a cut-off radius of rC/σ = 3.5
for sixteen parallel threads.

On average, the sliced traversal uses 14.3 parallel threads instead of the available 16 threads.
During one third of the execution time, one thread did not perform any computations. This
is partially due to a load imbalance in the last thread which gets less cells from the sliced
traversal as the number of linked cells per dimension is not divisible by 16 without remainder.
Moreover, the existence of significant regions with less than four parallel threads degrades
the performance.
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5.5. Load balancing

5.4.3. Large systems

In this second part, the consistency of the performance of varying system sizes is evaluated.
The particle density and the cell size rC/σ = 3.5 remain constant throughout the simulations.
Between two simulations, the domain length is doubled in each dimension. Thus, the total
number of represented particles increases by a factor eight. All domains with 2n cells per
dimension and n ≤ 6 are simulated, whereas the first simulation has one cell with 16 particles.
As the available node memory does not allow particles in 27 cells, the performances for 80
and 96 cells per dimension, which correspond to a respective total of 17 · 106 and 29 · 106

particles, are provided.
The performances of the simulations is measured in millions of molecule updates per second
(MMUPS) and is represented in Figure 5.19. To obtain the best possible simulation results
on the SuperMUC-1-tn, a C08 cell traversal over 16 threads with a native vectorisation is
applied to the system.
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Figure 5.19.: Strongscaling of the system size
The simulation is run on SuperMUC-1-tn with a native vectorisation and 16
parallel threads. The domain is filled with a cubic grid in linked cells with a
constant edge length of rC/σ = 3.5. MarDyn is run in the RMM-mode with a
single precision, which is how it was run in the world record.

For small domains up to 15 000 particles, the execution of constant parts of the program
and too few cells to make use of all available threads degrade the performance. For larger
systems, the molecule update rate reaches and remains at its maximum at around 1.15 · 106

updates per second. A similar behaviour can be observed with ls1-mardyn, even though the
maximal reached molecule update rate is ten times higher as in AutoPas.

5.5. Load balancing

5.5.1. Description of the load balancing scenarios

Until now, only simulations with perfectly uniformly loaded domain have been considered.
However, this is not always the case in reality. Therefore, this section analyses the behaviour
of the program for unequally distributed particles.
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Unbalanced load distributions mostly affect the parallel cell traversals since two threads
may handle cells with different numbers of particles and may cause additional overhead at
thread barriers due to unequal execution times. The main idea here is to investigate how
the two cell traversals, C08 and sliced, adapt to different particle distributions.
Two scenarios are proposed on a same cuboidal domain. The first fills up the whole domain
with a cubic grid containing 4.24 · 106 particles, the second one fills only one half of the
domain with particles at the same density, thus there are in total 2.12 · 106 particles, and
leaves the other half empty. Both traversals are then applied to test scenarios with, again,
three cut-off radii of rC/σ = 2.5, rC/σ = 3.5 and rC/σ = 5.0.

5.5.2. Scalability of the C08 and the sliced traversal

The three following graphs compare the ratio between the performances of the C08 traversal
and the sliced traversal on the two previous scenarios for an increasing number of threads.
A ratio inferior to one means a better performance of the C08 traversal.
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σ = 3.5
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Figure 5.22.: rC
σ = 5.0

Serial execution of the world record scenario of a cubic grid with 18 · 106 particles for
different vector instruction sets and cell sizes.

In the balanced scenario, bot traversals yield similar results as the ratio goes to one, with
a slightly better performance of the sliced traversal for a small number of threads and a
slightly better performance of the C08 traversal for many threads.
In the unbalanced scenario, the C08 traversal leads to similar performances as in the balanced
case, while the sliced traversal loses performance. Indeed, the latter splits the domain into
equally sized chunks of cells and starts one thread on each chunk. In the unbalanced scenario,
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5.6. Multi-site molecules

half of the threads exclusively handle empty cells and have to wait for the end of the
execution of the other threads, and therefore cause much more overhead time at thread
barriers. On the other hand, the C08 traversal follows a dynamic scheduling, so any task
that has finished its force computations gets a new task assigned, and no additional overhead
occurs after the processing of an empty cell.
The worst relative performance of the sliced traversal is reached for two threads. While the
C08 traversal almost doubles its performance, the sliced traversal has the same performance
as in the serial case, as all particles are handled by one single thread. For higher numbers
of threads, the difference between both methods also decreases, since the sliced traversal
simultaneously processes non-empty cells and the speedup of the C08-traversal decreases.
Finally, the performance ratio is more in favour of C08 for larger linked cells. Indeed, for
the minimum at two threads, the sliced traversal reaches 67% of the C08 performance for
rC/σ = 2.5, the ratio then decreases to 60% for rC/σ = 3.5 and to 54% for rC/σ = 5.0. A
higher number of particles per cell increases the required computational effort to process
full cells and the overhead in empty cells increases accordingly. Therefore, the performance
of the sliced traversal deteriorates even more for a greater cut-off radius.
A similar behaviour of both cell traversals can be observed in ls1-mardyn. Figure 4 and
5 in [ST18] compare different cell traversals, including the sliced and C08 traversal, for
two scenarios respectively with a balanced and an unbalanced load. In the first case, both
traversals yield equally high MUPS, even though for eight and 16 threads the relative
performance of the sliced traversal is better than in AutoPas as it reaches 1.15 times the
C08 performance. The decrease of the MUPS with the sliced traversal to less than 70% of
the C08 traversal also occurs in the scenario with an unbalanced load. However, it is only
measurable for more than four threads and not for two threads as in AutoPas because of a
different initial particle configuration with a dense central part, which is equally distributed
on two threads in the sliced traversal.
To conclude, the C08 traversal is, in general, to be preferred over the sliced traversal. For
a perfectly balanced particle distribution in the domain, both methods lead to a similar
performance, and for unevenly distributed systems, the C08 traversal yields an unambiguously
better performance.

5.6. Multi-site molecules

5.6.1. Description of the simulated molecules

The number of pairwise interactions increases and the overall performance decreases propor-
tionally to the number of sites per molecule. Indeed, if two molecules are represented, the
forces acting between all sites and the resultant torque on each molecule are computed. In
the next section, the performances of four molecules are compared, and a single site atom is
added to the simulation as a reference element for the performance.

• Argon (Ar) was chosen the reference particle. Its chemical stability and make it very
popular in molecular dynamics simulations. The Lennard-Jones parameters of argon
are taken from [GZ07]. As it is not a molecule, no partial charges are considered in
argon and does not form an electrostatic potential.
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5. Simulations results

• Carbon monoxide (CO) is composed of one carbon and one oxygen atom. The difference
in electronegativity between both elements leads this molecule to a polarise light, which
results in electrostatic forces between two molecules. As depicted in Figure 5.24 , it
has a strong triple bond between both constituting atoms [Bou92].

• The most common example of a three-site molecule is water (H2O). As the two H −O
bonds are not organised in a parallel configuration, but form a 104.45◦ angle as can
be seen in Figure 5.25, the water molecule is polarised with a negative partial charge
on the oxygen. This polarisation causes inter-molecular Coulomb interactions and
the orientation of water molecules in their liquid phase to form hydrogen bonds. The
Lennard-Jones parameters for water are provided in [ZZS10].

• Ammonia is a compound composed of one nitrogen and three hydrogen atoms, which
are, similarly to water, not located on a plane, but form a pyramid and, therefore, bear
partial charges on its different sites. The angle between two N −H bonds is 107.4◦

[MMM11] and therefore lies between the angles occurring in water and methane.

• Finally, methane is the most simple configuration for an alkane, a chain of hydrogenated
single-bond carbon atoms. Its special composition of a central carbon with four
neighbouring hydrogen atoms in a tetrahedral structure as can be seen in Figure 5.27
prevents any polarisation since the sum of all local dipoles at the C − H bonds is
zero [MMM11]. Therefore, no Coulomb forces appear between two adjacent methane
molecules.

Figure 5.23.: Argon (Ar) Figure 5.24.: Carbon
Monoxide
(CO)

Figure 5.25.: Water
(H2O)

Figure 5.26.: Ammonia (NH3)
Figure 5.27.: Methane (CH4)

40



5.6. Multi-site molecules

These molecules have been chosen for their similar chemical properties regarding the
Lennard-Jones potential and for their similar dimensions. Indeed, for all constituting
elements of these molecules, the values for σ range from 2.81 to 3.35 Å; and the total masses
of the molecules lie between 16.0 and 28.0 u. Therefore, the same simulation parameters
can be chosen to compare the performance of the simulation with different particles.
A cubic mesh of 100 particles per dimension and mesh length of 4.0 Å; is placed in a domain
with periodic boundaries and subdivided into 15 625 linked cells. The ratio

rcutoff
σ is 4.0 and

64 particles lie within one cell. The domain is traversed by a C08 traversal with 16 OpenMP
threads. A Lennard-Jones functor is applied to all five particles and is computed using a
native vectorisation on a SuperMUC phase 1 thin node. Additionally, for the three polarised
molecules carbon monoxide, water and methane, a Coulomb functor and the combination of
Coulomb and Lennard-Jones functors, which best describes actual molecular interactions,
are applied.

5.6.2. Performance of simulations with molecules

The following graph compares the molecule update rates per second (MMUPS) of the
simulations from Subsection 5.6.1.
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Figure 5.28.: Performance of the Lennard-Jones and the Coulomb functor with different
molecules

First of all, the performance drops for an increasing number of sites per particle. This is
explained by the higher number of required force calculations in the pairwise functor. Each
site in the first molecule interacts with each site of the second molecule, thus, if the first
molecule has n sites and the second m sites, the total number of force computations is given
by Nforces = n ·m. For two molecules with the same number of sites n, the addition of one
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5. Simulations results

site leads to a performance drop by a factor
(

n
n+1

)2
in the pairwise functor.

The large drop between argon and carbon monoxide is not only caused by the four-times
higher number of site-site interactions, but also to a higher complexity of processing the
molecules. As discussed in Subsection 2.2.2, the resultant force does not necessarily act
on the mass centre of the molecule, and torques may appear. Consequently, the angular
velocity and the orientation of the molecule have to be calculated at each iteration. Moreover,
the inertia tensor of carbon monoxide has rank 2, so the angular momentum has to be
calculated in the body frame, which is less efficient than in the general case, according to
Subsection 4.2.1, this applies to the three other molecules.
The electrostatic potential yields slightly better results than the Lennard-Jones potential
for the polarised molecules. Indeed, the computation of Lennard-Jones forces requires 13
additions and 15 multiplications while the computation of Coulomb forces only require 11
additions, 9 multiplications, and one square root operation.
The combination of the two functors leads to a better performance than expected if the
whole computation time was used to compute the pairwise interaction, which is calculated
as MUPScomb;theor = 1

1
MUPSLJ

+ 1
MUPSCoulomb

. For instance, in the case of water, the actual

performance MUPSCoulomb = 1.78 · 105 is 22% higher than the theoretical performance of
MUPScomb;theor = 1.46 · 105. This difference is due to a constant execution time at each
iteration in the computation of the partial integrations and in the application of periodic
boundary conditions, which does not depend on the number of pairwise functors. From the
measured performances, it is possible to deduce the share corresponding to the constant,
off-functor, part of the total performance. Let MLJ , MC and MT be the measured MUPS
of the respective simulations with the Lennard-Jones functor, the Coulomb functor and
the combination of both. Moreover, let ILJ , IC and IT be the share corresponding to the
pairwise iteration(s) and C the share of the constant execution from the overall performance.
Since the performance is measured in the inverse time dimension, the Equation 5.1 can be
stated.

1

IT
=

1

ILJ
+

1

IC
and

1

M∗
=

1

C
+

1

I∗
(5.1)

Therefore, we have:
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1

C
=

1
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1

MC
− 1

MT
(5.5)

The share corresponding to the constant part of the total execution time in the main loop
can be calculated as M∗/C and is, for water, equal to 24% if the two functors are applied.
As the partial integrations and the application of the periodic boundary conditions do not
depend on the structure or the size of a molecule, simulations with carbon monoxide, water
or ammonia return similar values for C, varying between 1.22 · 10−6 and 2.20 · 106 seconds
per molecule per iteration (MUPS−1).
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6. Conclusion
The functions of the AutoPas library have been implemented in a molecular dynamics
simulation tool. An analysis of the performance and of the scalability at node-level has been
performed and compared to the highly scalable program ls1-mardyn.
Each particle contains data about the position, the velocity and the occurring forces in
the current and the previous time step. To represent rigid molecules, the orientation, the
current angular velocity and the applied torques are required in addition to the layout of the
constituting atoms. The partial time integrations follow the Verlet-Störmer approach. The
traversal of nearby particles pairs can either only be achieved through either direct sums or
linked cells as the AutoPas class does not support Verlet neigbours’ lists yet. To exploit the
available hardware resources on a node, which consist of 16 cores on the SuperMUC-1-tn
and 64 cores on the CoolMUC-3, an OpenMP parallelisation of the partial time integrations,
of the application of boundary conditions and of the pairwise linked cells traversal have
been provided. The latter is performed by autopas either through a C08 scheme or a
sliced traversal. Periodic boundary conditions are best represented by halo particles placed
in halo cells behind the domain delimitations which are integrated in the cell traversals.
The computation of the angular momentum of a molecule from the applied torque shall
be performed in the initial frame or in the body frame for particles with less than three
rotational degrees of freedom, so the computation of the inertia tensor is only required once
per molecule type at the beginning of the execution of the program. Lastly, pairwise functors
used to compute the intermolecular forces from the Lennard Jones, the electrostatic or the
gravitational potential support both the AoS and SoA data layout. SoA notably provides
the possibility of an efficient vectorisation using SIMD instructions.
The majority of the node-level experiments have been performed on thin nodes on SuperMUC
phase 1 with a uniform particle distribution over domain with different linked cell sizes and
cut-off radii. The program time performance scales linearly with the number of assigned
parallel threads up to eight threads. For more tasks, the performance increase slows up
to stagnation. The use of structures of arrays instead of arrays of structures reduces the
execution time of the main loop by up to 40% and the use of the native AVX vector
instruction set on SuperMUC-1-tn increases performance by an additional 25%. For systems
with a uniform particle distribution, the C08 and the sliced traversal yield similar time
performances, but for an unbalanced load, the C08 traversal is much more efficient. For
sufficiently large systems, the execution time per particle is not affected by the total system
size. Finally, the use of molecules instead of atoms strongly increases the execution time by
particle.
The developed simulation tool to test the AutoPas library might be improved with a better
OpenMP parallelisation of the sections of the code, that do not depend directly on the
AutoPas library, such as the partial integrations or the application of boundary conditions.
Moreover, this program can be extended to support and to evaluate future features of the
AutoPas library such as Verlet neighbour’s list, the Reduced Memory Mode (RMM) or a
multi-node parallelisation with the MPI protocol.
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A. Unit system

To get meaningful results, it is necessary to use coherent units. Since molecular dynamics
happen at nanoscale, SI-units will yield unwieldy results with very high exponents and
lead to numerical errors due to the floating point number representation. In this sense, the
following base units shown in Table A.2 will be used throughout the thesis.

Name Used unit SI-Unit conversion

distance Angström [A] meter [m]
1 A =

1.000 · 10−10m

time picoseconds [ps] seconds [s]
1 ps =

1.000 · 10−12s

mass atomic mass [u] kilograms [kg]
1 u =

1.661 · 10−27kg

charge
elementary charge

[e]
Coulomb [C]

1 e =
1.602 · 10−19J

temperature Kelvin [K] Kelvin [K]

Table A.2.: Used base units

Furthermore, several other units can be derived from these base units (Table A.4).
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A. Unit system

Name Used unit SI-Unit conversion

velocity A · ps−1 m · s−1 1 Aps−1 =
100m · s−1

Force u ·A · ps−2 N (Newton)
1 uAps−2 =
1.661 · 10−13N

Energy u ·A2 · ps−2 J (Joule)
1 uA2ps−2 =
1.661 · 10−23J

Table A.4.: Derived units

Physical constants shall be expressed with these units:

• Coulomb’s constant (cf. 2.6): kC = 1.389 · 105 uA3ps−2e−2

• Boltzmann constant (cf. 2.13): kB = 0.8314 uA2ps−2K−1
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B. XML files used as input

B.1. Global simulation settings

This section gives an overview of all options that can be used to run the AutoPas simulation
tool. Each item in Table B.1 corresponds to an element in the XML-file for the global
simulation settings. Some options will require complex types, which are defined in a separate
table below. The column ”Number” specifies how often the element can be declared in the
XML-file.

Name Type Number Description Options

inputfiles string any
Name of the particle input
files

outputname string 1 Base name of the output files

endfile string 1,
optional

Save the final status of the
simulation in a new XML-file
with the specified name

frequency int 1
Defines at which frequency a
VTK-file shall created

0 disables the out-
put writer

profileFile string 1,
optional

Plot y-velocity profile in a
CSV-file with the specified
name

profile
BucketsX

int 1,
optional

Number of divisions in
X-direction to profile the
y-velocity

delta t float 1
Time step between two
iterations

end t float 1 End time of the simulation

b factor float 1

Factor b in the
Maxwell-Boltzmann
distribution in
Subsection 2.1.5

0 disables brown-
ian motion

g grav x Gravitation field in x-direction
g grav y float 1 Gravitation field in y-direction
g grav z Gravitation field in z-direction

domainX Domain size in x-direction
domainY float 1 Domain size in y-direction
domainZ Domain size in z-direction
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B. XML files used as input

r cutoff float 1

Cut-off radius for the force
calculations. Linked cells will
automatically have it at least
as edge length

Container
Type

int 1,
optional

Method for the pairwise
particle traversal
default is 1

0 - direct sum
1 - linked cells
2 - Verlet lists

Force Com-
putation
Method

int any,
optional

Chose potential to calculate
intermolecular forces
default is 1

0 - no interactions
1 - Lennard-Jones
2 - Gravity
3 - LJ (molecules)
4 - Coulomb
(molecules)

Periodic
Computa-
tion Type

int 1,
optional

Define the method to compute
the forces at periodic
boundaries as defined in
Subsection 4.3.2
default is 2

0 - ComputePBC
1 - computeNeigh-
boursPBC
2 - ApplyPBC

Traversal int 1,
optional

Define the linked cells
traversal
default is 1

0 - sequential
1 - C08
2 - sliced

Vectorisa
tion

boolean 1,
optional

If true, uses SoA, if false, uses
AoS
default is true

bc left int 1
Set the boundary condition at
the negative X-axis

bc upper int 1
Set the boundary condition at
the positive Z-axis

0 - outflow

bc right int 1
Set the boundary condition at
the positive X-axis

1 - periodic

bc lower int 1
Set the boundary condition at
the negative Z-axis

2 - reflective

bc front int 1
Set the boundary condition at
the negative Y-axis

bc back int 1
Set the boundary condition at
the positive Y-axis

thermostat defined
in Ta-
ble B.3

1,
optional

Define whether a thermostat
should be applied to the
system or not
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B.2. Particle input

Table B.1.: Global settings

Name Type Number Description Options

initial float 1 Sets the initial temperature

timestep int 1
Number of timesteps after
which the thermostat shall be
applied

0 disables the ther-
mostat

heating defined
in Ta-
ble B.5

1,
optional

Define whether the system
shall be cooled or heated over
time

ignoreY boolean 1,
optional

Does not consider the
y-component of velocities

Table B.3.: Thermostat

Name Type Number Description Options

target float 1 Sets the target temperature

temperature
step

float 1
Defines the temperature
increment at each update

timestep int 1
Number of timesteps after
which the temperature shall
be updated

Table B.5.: Heating

B.2. Particle input

The particle data is specified in a separate XML file. The constituting atoms of molecules
are defined in an own particle type. The XML-file contains at least one definition of a
particle type as given in Table B.7 and any number of molecule types as given in Table B.9.
Moreover, at least one particle generator must be specified. It can either be a single particle
(Table B.13), a cuboid of particles (Table B.15) a two-dimensional membrane with a harmonic
potential between two adjacent particles (Table B.17) or a sphere of particles (Table B.19).
Single-site atoms and multi-sites molecules can be mixed in one simulation.
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B. XML files used as input

Name Type Number Description

id int 1 unique id of the type

mass float 1 mass (in u) of the particle

epsilon float 1 epsilon (in uÅ2ps−2) of the particle

sigma float 1 sigma (in Å) of the particle

charge float 1 charge (in e) of the particle

RtruncLJ float 1,
optional

Only to be specified if the cut-off
radius for this particle differs from
the global cut-off radius defined in
Table B.1

fixed boolean 1,
optional

True if the particle cannot move.
Default setting is false.

Table B.7.: Particle type

Name Type Number Description

type int 1 unique id of the type

usePA int 1,
optional

If true, use the body frame to
compute the angular momentum.
Else, the computations are performed
in the initial frame. If it is not
specified, the program choses on its
own the best variant

sites defined in Table B.11 at least
1

Define the constituting sites of the
molecule

Table B.9.: Molecule type

Name Type Number Description

typepart int 1
id of the atom type, as defined in
Table B.7

coord defined in Table B.21 1
coordinate of the site with respect to
the centre of mass of the molecule

partial
charge

float 1,
optional

partial charge of the atom in the case
of polarised molecule

Table B.11.: Sites
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B.2. Particle input

Name Type Number Description

type int 1
ID of the particle, it can either be the ID for an
atom (Table B.7) or a molecule (Table B.9)

coord defined
in Ta-
ble B.21

1 coordinate of particle

velocity defined
in Ta-
ble B.21

1 initial velocity

force defined
in Ta-
ble B.21

,1
optional

optional force acting on the particle throughout
the simulation

Table B.13.: Single particle input

Name Type Number Description

type int 1
ID of the particle, it can either be the
ID for an atom (Table B.7) or a
molecule (Table B.9)

coord defined in Table B.21 1
coordinate of the lower-left-front
particle of the cuboid

dimension defined in Table B.21 1
Number of particles in each
dimension of the cuboid

mesh float 1 mesh size of the cuboid

velocity defined in Table B.21 1 initial velocity

force defined in Table B.21 1,
optional

optional force acting on the particle
throughout the simulation

coord force defined in Table B.21 any,
optional

mesh coordinates of the particles, on
which the optional force should act

t end force float 1
time after which the optional force
should cease

Table B.15.: Cuboid input
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B. XML files used as input

Name Type Number Description

radius float 1 radius of the sphere

type int 1
ID of the particle, it can either be the
ID for an atom (Table B.7) or a
molecule (Table B.9)

coord defined in Table B.21 1 coordinate of the centre of the sphere

dimension defined in Table B.21 1
Number of particles in each
dimension of the cuboid

mesh float 1 mesh size of the cuboid

velocity defined in Table B.21 1 initial velocity

force defined in Table B.21 1,
optional

optional force acting on the particle
throughout the simulation

coord force defined in Table B.21 any,
optional

mesh coordinates of the particles, on
which the optional force should act

t end force float 1
time after which the optional force
should cease

Table B.17.: Membrane input

Name Type Number Description

stiffness float 1 Stiffness of the cuboid

r zero float 1 average bond length

type int 1
ID of the particle, it can either be the
ID for an atom (Table B.7) or a
molecule (Table B.9)

coord defined in Table B.21 1
coordinate of the lower-left-front
particle of the cuboid

dimension defined in Table B.21 1
Number of particles in each
dimension of the cuboid

mesh float 1 mesh size of the cuboid

velocity defined in Table B.21 1 initial velocity

force defined in Table B.21 1,
optional

optional force acting on the particle
throughout the simulation

coord force defined in Table B.21 any,
optional

mesh coordinates of the particles, on
which the optional force should act

t end force float 1
time after which the optional force
should cease

Table B.19.: Sphere input
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B.2. Particle input

Name Type Number Description

x int/float 1 x - component

y int/float 1 y - component

z int/float 1 z - component

Table B.21.: Vector of integers or floats
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