
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Performance Model Derivation for
Cloud-based Microservices Applications

Anshul Jindal

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Performance Model Derivation for
Cloud-based Microservices Applications

Leistungsmodellableitung für
Cloud-basierte

Microservices-Anwendungen

Author: Anshul Jindal
Supervisor: Prof. Dr. Michael Gerndt
Advisor: Vladimir Podolskiy
Submission Date: 11th October 2018

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 11th October 2018 Anshul Jindal

Acknowledgments

First of all, I would like to express my deepest sense of gratitude to my advisor
Vladimir Podolskiy, who offered his continuous advice and encouragement throughout
the course of this thesis. I also thank him for the systematic guidance and great effort
he put into training me in the scientific field.

I would also like to express my very sincere gratitude to Prof. Dr. Michael Gerndt
for his support and guidance to make this thesis possible.

This work was carried on AWS cloud for which credits were provided by them for
conducting the research.

Abstract

Microservices application being a distributed system allows deployment of individual
services to physically separated different or same cloud virtual machine (VM) instances.
Each microservice is responsible for completing their part and communicate with others
through language and platform-agnostic application programming interfaces (APIs).
These microservices when deployed on a VM uses many system resources (e.g., CPU,
memory, disk I/O, and network I/O) to process user requests. The resource usage
varies according to the type of task (CPU intensive, memory intensive or Create Read
Update Delete (CRUD)) microservice’s is doing. The resources usage change with
the variation in the number of user requests or the user workload. Depending on the
type of work, particular resource usage will have a more significant effect than others.
As a result, at a certain stage, the response time of requests would go beyond the
desired time. The maximum number of requests that could be served within this time
is called as the Maximum Service Capacity (MSC) of the microservice. Performance of
a microservice is directly related to the MSC. Automatically detecting MSC for each
microservice can be challenging in practice as microservices applications are deployed
using multiple abstraction layers. These numerous abstraction layers result in additional
overhead for the indirect usage of hardware resources and also obscuring the run-time
details. This challenge grows more with the availability of the different deployment
configurations (e.g., Virtual machine type, Cloud service provider, deployment strategy,
etc.). MSC varies with varying configurations of deployment.
This thesis aims to address this problem of identifying the MSC for each microservice of
the application by building the performance model of it in all the possible deployment
configurations. A novel approach to microservice’s performance modeling and sand-
boxing microservices from an application is introduced in this research. This approach
is implemented in a tool called as Terminus. The proposed tool predicts the MSC of
the microservice on different deployment configurations by training a model from the
conducted tests. The derived results from the tool could also be used to find out the
bottleneck microservice along with the number of microservice replicas needed for
achieving adequate performance.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3
2.1 Multiple layers of cloud virtualization . 3
2.2 Cloud based microservice applications 4
2.3 Microservices deployment strategy . 5

2.3.1 Multiple services instances per host pattern 5
2.3.2 Service instance per host pattern 6
2.3.3 Serverless deployment . 7

2.4 Service Virtualization . 7

3 Literature Review 8

4 Performance Modeling of Microservices 10
4.1 Performance of microservices . 10

4.1.1 Quality-of-Service (QoS) . 10
4.1.2 Maximum Service Capacity (MSC) 10

4.2 Approach . 12
4.2.1 Sandboxing of microservices . 12
4.2.2 Modeling of microservices . 13

5 Use Case Discussion 16
5.1 Bottleneck microservice detection use case 16
5.2 Predictive autoscaling use case . 17
5.3 Reactive autoscaling scaling adjustment 17

6 Implementation 19
6.1 Overall architecture . 19

6.1.1 Input to Terminus . 20
6.1.2 Terminus components . 21

v

Contents

6.1.3 Output from Terminus . 27
6.2 Experimental settings . 27

6.2.1 Test application . 27
6.2.2 Deployment Configurations . 28
6.2.3 Load generation setting . 29
6.2.4 Performance modeling . 29

7 Results 31
7.1 Performance modeling hypothesis . 34

8 Conclusion & Future Scope 38
8.1 Conclusion . 38
8.2 Future Scope . 39

List of Figures 40

List of Tables 41

List of Code Snippets 42

Bibliography 43

vi

1 Introduction

Cloud computing is a type of Internet-based computing that provides shared computer
processing resources and data on demand. In recent times, it has rapidly become a
popular method for deploying applications [30]. This success is based on the virtu-
alization technology that considers hardware as an unlimited pool of resources for
the users [33]. The requested amount of CPU cores and memory are provided on
demand from this pool of resources, hence helping in to get on-demand resources
and cost efficiency for the applications [16]. Previously, the applications were used
to be packaged and deployed as a monolith. These applications architecture is called
monolithic architecture. Although, in the early stages of the business these applications
may work but once the business starts to grow the applications also grow, as a result,
the problems like scalability, redeployment, reliability etc. start to arise. With the
introduction of microservices architecture applications, where an application is split
into a set of smaller and interconnected services instead of building a single monolithic
application these problems are solved. Also, the introduction of new virtualization
layers such as containers and pods has turned the deployment and management of
cloud applications into a simple routine. These microservices architecture applications
are deployed using such virtualization layers to keep the structure scalable and man-
ageable. Microservices, when deployed using different types of virtualization layers,
perform differently. They use many system resources (e.g., CPU, memory, disk I/O,
and network I/O) to process user requests. The resources usage varies according to the
type of task (CPU intensive, memory intensive or Create Read Update Delete (CRUD))
a microservice is performing. The resources usage change with the variation in the
number of user requests or the user workload. As a result, at a certain stage, the
response time of requests would go beyond the desired time. The maximum number
of requests that could be served within this time is called as the Maximum Service
Capacity (MSC) of the microservice. Apart from having many advantages of such
applications, they also impose several important challenges:

• Microservices application being a distributed system adds more complexity to the
project as an inter-process communication mechanism based on either messaging
or Remote Procedure Call(RPC) needs to be handled.

• Testing of such an application.

1

1 Introduction

• Deployment of such an application is more complex as it typically consists of a
large number of services and each service can have multiple instances which can
be individually configured, deployed, and scaled.

• Performance of individual microservices and identifying the bottleneck microser-
vice.

The required first step to build a good microservice application is to determine and
understand the performance of each microservices when deployed on a particular type
of virtual machine. MSC is directly related to the performance of the microservice
and determining MSC means determining the performance of the microservice. The
measured performance would lead to understanding the major architectural drawbacks
both for individual microservices scaling and their combinations. Once the individual
microservice performance is determined then the overall application performance can
be improved by scaling the services that need scaling instead of scaling the whole appli-
cation. However, automatically detecting MSC for each microservice can be challenging
in practice as microservices applications are deployed using multiple virtualization
layers. These numerous virtualization layers result in additional overhead for the
indirect usage of hardware resources and also obscuring the run-time details. This
challenge grows more with the availability of the different deployment configurations
(e.g., Virtual machine type, Cloud service provider, deployment strategy, etc.). MSC
varies with varying configurations of the deployment. Also, microservices need to be
sandboxed from the application to determine the actual MSC for them.
The key contribution of this thesis is the approach and a tool to solve the problem of
deriving the performance model for a microservice. Also, an approach to sandbox mi-
croservices is presented and implemented in the tool. Understanding the performance
of microservices inside an application paves a path for understanding the structural
and scalability aspect of the application. Leaving aside pure research challenges, the
developed tool, namely Terminus, could also be used to predict the MSC of the mi-
croservice on different deployment configurations and also predicts the number of
replicas required to handle a given number of requests when deployed using a certain
deployment configuration. The derived results from the tool could also be used to find
out the bottleneck microservice along with the number of microservice replicas in an
application needed for achieving adequate performance.

2

2 Background

2.1 Multiple layers of cloud virtualization

In general, there are two primary virtualized abstraction layers being used in the cloud.
The first type of layer allows servers to be broken up into virtual machines (VMs) that
can run same or different operating systems and a minimum amount of 1 CPU can be
provided to the end-user, therefore increasing the utilization potential of a physical
server for multiple users. On the other hand, a container which is a lightweight,
stand-alone, executable package of a piece of software that includes everything needed
to run it: code, run-time, system tools, system libraries, settings - offers an alternative
way of virtualization. Using containers CPU as little as 0.1 CPU can be provided to the
end-user, therefore increasing further the utilization potential of a physical server. CPU
shares are used, instead of reserving specific CPUs for such fractional CPU reservation.
This means that, if 0.1 CPU is reserved, then the process will be allowed to use a total
of 0.1 seconds of CPU time each second and if 2 CPUs are reserved, then the process
will be allowed to use a total of 2 seconds of CPU time each second by utilizing more
than one CPU per core. A Container that requests 0.1 CPU is guaranteed one-tenth as
much CPU as a Container that requests 1 CPU. Using container-based virtualization, a
single operating system on a host can run multiple cloud services [17]. Docker is a
widely adopted container-based virtualization [26]. Docker creates a set of namespaces
for a container to provide isolation. Each aspect of a container runs in a separate
namespace and its access is limited to that namespace only [10]. Docker also uses linux
control groups (cgroups) to enforce limits and constraints on an application to a specific
set of resources. To run containers in production at scale, a container orchestrator
such as Kubernetes is needed to efficiently schedule and orchestrate containers on
the underlying shared set of physical resources [24]. In Kubernetes, containers are
grouped into pods. A pod is a group of one or more containers that share storage and
network resources as well as the specification on how to run the containers.
However, there is no control over how much resources each pod can use. Some images
might be more resource heavy or have certain “minimum resource” requirements. Also,
if different teams are running different projects on the same cluster, there is no control
on how much resources each team can use. Within Kubernetes, by default, a pod
will run with no limits on CPU and memory in a default namespace causing several

3

2 Background

problems related to contention for resources.
This is where container resource limits and resource quotas come in which can control
the amount of CPU and memory resources per pod. The setting of resource requests
and limits can be done in the pod configuration file. Within the pod configuration
file, CPU and memory are each a resource type for which constraints can be set at the
container level. A resource type has a base unit. CPU is specified in units of cores,
and memory is specified in units of bytes. Two types of constraints can be set for
each resource type: requests and limits as shown in Fig. 2.1. CPU requests constraint

Figure 2.1: Resource requests and limits in Kubernetes.

provides minimum guaranteed CPU resource for a container and if the container
running process is able to utilize more than its share, and no other task would use
an otherwise idle CPU, the first task can potentially use more than its share till the
specified limits. The upper limit is usually achieved by throttling the process when
it fully consumes its allocated CPU time. As a result, the CPUs reserved provide a
guaranteed minimum of CPU time available to the container and if additional capacity
is available, it will be allowed to use more. Kubernetes uses request constraint to decide
on which node to place a pod [23, 2]. Setting request less than limits allows some
over-subscription of resources i.e temporarily use unused/idle resources as long as
there is spare capacity on the node. This allows the Kubernetes scheduler to make
better decisions on handling contention for resources on a node.

2.2 Cloud based microservice applications

Scalability has become the major selling point of modern cloud infrastructure and ser-
vices [34, 27]. This scalability allows enterprises to scale their applications on demand.
Microservice design for applications is a new basis for cloud application development
and has gained popularity due to its fine granular design and loosely coupled services
unlike monolithic design with a single code base. These microservice applications
result in better scaling and flexibility. Microservices application being a distributed
system allows deployment of individual services to physically separated different
or same cloud virtual machine (VM) instances. Each microservice is responsible for

4

2 Background

completing their part and communicate with others through language and platform-
agnostic Application Programming Interfaces (APIs). These APIs are typically exposed
as Representational State Transfer (ReST) endpoints. Each microservice behaves as an
independent, autonomous process with no dependency on other microservices. Mi-
croservices applications have an advantage that instead of launching multiple instances
of the whole application, it is possible to scale-in or scale-out a specific microservice
on-demand. This way it is a cost-efficient solution. For such type of applications, virtual
machines of Cloud Service Providers (CSPs) could become inconvenient either because
of coarse granularity of VMs or because of the inconvenience of microservices man-
agement on the levels of VMs and their groups. Therefore, the new cloud abstraction
layers, such as containers, pods, and clusters are used for deploying them. Such an
abstraction not only helps businesses and individuals to scale their applications in the
cloud fast but also makes management of cloud application components easy [21, 25].

2.3 Microservices deployment strategy

A microservices application consists of many services. Services are written in a
variety of languages and frameworks. Each one is a mini-application with its specific
deployment, resource, scaling, and monitoring requirements [32]. Following subsections
briefly describe some different microservices deployment strategies.

Figure 2.2: Multiple services instances per
host (without containers)

Figure 2.3: Multiple services instances per
host (with containers)

2.3.1 Multiple services instances per host pattern

Here one or more physical or virtual hosts are provisioned, and multiple services
instances are run on each one of them. This can be done in two ways:

5

2 Background

1. Without Containers: Services are directly deployed on the host as shown in
Fig. 2.2.

2. With Containers: Services are packaged into containers and then deployed on the
host as shown in Fig. 2.3.

This type of pattern is used to take advantage of the full utilization potential of the host
server by running multiple services. If any service is not using its share of resources to a
full extent then the others can use these idle resources. However, the Quality of Service
(QoS) is not guaranteed as there are no dedicated resources to the services. If used
without the container, scaling a microservice means the replication of the whole VM
and unnecessary scaling of the other services, in turn, wasting resources and money.
The packaging inside the containers allows the easy manageability and scalability of
the services.

2.3.2 Service instance per host pattern

Here each service instance is run in isolation on its own host. This also can be achieved
in two ways:

1. Without Containers: Each Service instance is packaged as the virtual machine
image, and then that image is used to start the host. Therefore each host represents
a service as shown in Fig. 2.4.

2. With Containers: Service instances are packaged into containers and then de-
ployed on different hosts as shown in Fig. 2.5.

This type of deployment allows the guaranteed QoS to the services at a cost of some
idle resources if the service’s is not using the complete dedicated resources. Further,
if deployed without using container scalability of each microservice is easier as the
instance needs to be replicated.

Figure 2.4: Service instance per host (with-
out containers)

Figure 2.5: Service instance per host (with
containers)

6

2 Background

2.3.3 Serverless deployment

In this deployment strategy, a microservice is packaged into a ZIP file or a container
image and uploaded to some framework like AWS lambda [6]. Along with it, some
metadata is also specified like the name of the function that is to be invoked to handle
a request. The framework automatically runs enough instances of the microservice to
process requests without user worrying about any aspect of servers, virtual machines,
or containers. The billing is done for each request based on the time taken and the
memory consumed by it.

2.4 Service Virtualization

Nowadays, to solve the complexities of businesses many interdependent microservices
based cloud applications are used. For developing such type of applications, developers
may face some common problems, e.g., all the services of the application may not
be developed at the same time or some of the services might be down, or one might
want to test each microservice independently. Such problems if not encountered could
impact the delivery time of the application. One solution could be service mocking
using some popular mocking frameworks. However, it has a drawback that mocks
are scenario specific and require a lot of effort to create a mocked response for those
services. Other solution could be to use stubbed services, where fake services are
developed with fixed responses – again here something needs to be developed to make
it work.

Since both mocking and stubbed service has few problems, so to solve the above
problems, a technique called service virtualization is used. Service virtualization is a
method to emulate the behavior of specific components by virtualizing the services.
This virtualization of services is done using capturing and simulation of actual services.
Hoverfly is one such tool developed in Golang [14].

7

3 Literature Review

These days most of the applications are being hosted in the cloud; therefore perfor-
mance evaluation and monitoring of the applications play a crucial role. Rocco et
al. have introduced an agent-based monitoring system [3] for monitoring the cloud
applications. Also, the Cloud Service Providers (CSPs) provide services like Amazon
CloudWatch [1] from Amazon AWS, Azure monitor [28] from Microsoft for monitor-
ing cloud applications and cloud resources (e.g., virtual machines). However, these
monitoring solutions only monitor the resources and then let the user figure out if
there is any performance issue or not. For example, Joydeep et al. [29] have claimed
that the performance delivered by the AWS compute platform is quite unpredictable
when running web applications. The user deploys the application without considering
this variable performance; as a result, it might cost him some money. Therefore the
user must know before deploying approximately what performance will be achieved
if he or she deploys the application on a VM. There are some performance manage-
ment solutions like CloudMonix [8] which continuously monitors the utilization of the
various resources and send a notification once they are saturated, but these solutions
do not derive a general conclusion about what performance will be achieved when
the application uses different types of resources and deployment configurations. The
user has to test the application on different deployment configurations to find the
performance of the application on them. Our approach focuses on this problem and
derives the performance model of the application when deployed using different types
of resources and deployment configurations.
According to Google SRE book [7], there are four golden signals by which a problem
can be identified: latency, traffic, errors, and saturation. Latency is the time taken by
the deployed system to service a request. It’s important to distinguish between the
latency of successful requests and the latency of failed requests as failed requests may
have less latency due to errors. Also, a slow error is worse than a fast error. Traffic is a
measure of how much demand is being placed on the system, for a web service, this
measurement is usually HTTP requests per second. Understanding the errors and error
rate can help in identifying the real cause for the errors. For example, errors could
arise due to either some policy (any request taking time over one second is an error)
or explicitly (e.g., HTTP 500s) or implicitly (a success response, but coupled with the
wrong content). Saturation tells how full the service is. Identifying utilization target

8

3 Literature Review

is essential as systems degrade in performance before they achieve 100% utilization.
Latency increases are often a leading indicator of saturation. Identifying the traffic and
saturation point can be helpful with predictions of impending saturation i.e when the
service will get full. Our research focuses on latency to identify the saturation point
of the service and building the performance model to predict the saturation point for
different deployment configurations.

Along with the performance evaluation, detection of bottleneck component for the
deployed application is essential. Bhuvan et al. presented an analytical model [35]
for bottleneck detection and performance prediction of multi-tier applications. It pre-
dicts system performance based on burst workloads and then, determines how much
resources need to be allocated for each tier of the application for the target system
response time. On the other hand, method like [25] have used the capability profiling
to identify the potential resource bottlenecks and make recommendations regarding the
resources required for achieving adequate performance. Some systems detect the per-
formance anomalies in the deployed system like Jayathilaka et al. presented Root [18],
a system for automatically identifying the root cause of performance anomalies in
web applications deployed in Platform-as-a-Service (PaaS) clouds. However, all the
above methods do not give the user a beforehand insight of what approximately the
performance can be achieved if specific deployment configuration is used. Also, none of
them has considered the microservice applications and derived the performance model
for them in different deployment configurations. Our research focuses on microservice
applications and derives the performance model of it under different deployment
configurations. Also, the developed tool is not only limited to performance derivation
but can also detect the bottleneck microservice in the whole application.

9

4 Performance Modeling of Microservices

4.1 Performance of microservices

4.1.1 Quality-of-Service (QoS)

Quality-of-Service (QoS) management for any application deployed on the Cloud plays
an important role. QoS denotes the levels of performance, reliability, and availability
offered by an application and by the platform or infrastructure that hosts it. QoS is
fundamental for the cloud users as well as for the CSPs. As part of this research there
are two QoS parameters considered :

1. Request Success Rate (RSR): It is the degree to which the number of user requests
sent is successfully completed within a time period. It is calculated based on the
equation (4.1)

Request Success Rate (RSR) =
Number of Requests Successfully Completed

Total Number of Requests Sent
(4.1)

2. Mean Response Time (MRT): It is the mean for all the requests response time
within a time period. Some of the applications are highly interactive and clients
typically have strict expectations about response time. Therefore for such ap-
plications, MRT plays an important role in determining the performance of an
application.

4.1.2 Maximum Service Capacity (MSC)

Microservices of an application when deployed on VMs use their resources (e.g., CPU,
memory, disk I/O, and network I/O) to process user requests. The resources usage
change with the variation in the number of user requests or the user workload. A
resource gets fully used by a service when the number of user requests or the user
workload increases beyond a threshold number. At that point, some user requests
might take time beyond MRT specified by the user to get processed and are therefore
returned with an error. The maximal number of user requests per second that can be

10

4 Performance Modeling of Microservices

successfully processed by the service such that the requests response time stays below
the MRT is called as the Maximum Service Capacity (MSC). It should be noted that
it’s not always true that CPU utilization will be 100% when the RRT goes beyond the
specified MRT and vice versa. For example, consider a service with the number of

Figure 4.1: Maximum Service Capacity

requests per second completed vs Mean Response Time and number of CPU millicores
used per request, graphs in Fig. 4.1. Suppose the user has specified the QoS parameters
RSR as 100% and MRT to be 1 second. Also, the machine on which the service is
deployed has 1 core or 1000 millicores. From Fig. 4.1, we can see that at around 29 RPS,
the total CPU millicores used are around 1000 and the response time of requests is
going beyond 1 second. Therefore, in an ideal scenario if Requests Per Second(RPS)
remain below 29 then all the requests are successfully completed, hence achieving 100%
RSR with MRT less than 1 second. Therefore, MSC for this service is 29 RPS.

11

4 Performance Modeling of Microservices

4.2 Approach

4.2.1 Sandboxing of microservices

Sandboxing is a software management strategy that isolates applications from critical
system resources and other programs[31]. In this research, we want to separate each
microservices and add in place of each dependent service a virtualized service which
responds instantly. This is done in order to test individual microservice performance
independently without the performance impact of the other dependent services. In

Figure 4.2: Example original application structure

order to determine the request and response of each microservice, a proxy application
is attached to all the services. Attaching this application to all the services makes sure
that each request and response to and from the services is intercepted by it. After the
interception of the requests and responses, all the dependent services are replaced
by their virtualized services. The task of these virtualized services is to receive the
request from the main microservice at the same API endpoint on which dependent
services were receiving and respond back with the response intercepted by the proxy
application without any computation. This whole process will make sure that the main
service gets an instant reply to its requests from dependent virtualized services.

Figure 4.3: Example sandboxed microservices

12

4 Performance Modeling of Microservices

Fig. 4.2 shows an example application structure which is broken down into 6 sand-
boxed microservices as shown in Fig. 4.3. Now, the performance model of the microser-
vices can be derived.

4.2.2 Modeling of microservices

The basic idea behind the approach for deriving the performance model of the mi-
croservice is to test the deployed microservice with the linear increasing load pattern
until a point is reached where either the deployed system is not able to process any
request further or the QoS has gone down below the desired value. For building the
model, a method is proposed with the following steps :

1. Firstly, each microservice of the given application is sandboxed using the sand-
boxing approach.

2. Now the microservice for which the model is to be built and along with the other
virtualized microservices are deployed in a Kubernetes cluster on a Cloud Service
Provider using some deployment configuration on the main microservice pod
(resource requests, limits and replicas).

3. A linearly increasing load pattern, increasing at a certain rate T is generated on
the exposed API endpoint of the deployed microservice with the starting number
of requests per second equal to 1 to some requests per second corresponding to
N, where N is quite a large number.

4. During the load generation, the main microservice pod resources utilization (e.g.,
CPU, memory, disk I/O, and network I/O) data and the generated workload data
is collected. Table 4.1 shows one such example of the monitoring pod data based
upon the RPS obtained from the cluster.

Table 4.1: Monitoring data of the resources for the Pod

vCPU Memory RPS Initial CPU CPU Util. Initial Memory Memory Util.
1 2 1 0.08 0.1 0.02 0.0201
1 2 2 0.08 0.123 0.02 0.0202
1 2 3 0.08 0.145 0.02 0.020104
1 2 4 0.08 0.16 0.02 0.02024
1 2 5 0.08 0.181 0.02 0.020109

13

4 Performance Modeling of Microservices

5. After the load generation is finished, the collected data for each resource of
the cluster along with the number of requests served and the QoS parameters
specified by the user, MSC is determined.

6. The calculated MSC for the microservice along with all the other collected data is
saved.

7. The steps 2 - 6 are repeated for a sample of different deployment configurations
(resource requests, limits and replicas).

8. All the collected data: resources utilization, number of requests served and
deployment configuration is fitted to some mathematical function using regression.
As a result, a model is derived of the microservice. Currently, in this research
three models are derived :

a) Model trained for predicting MSC: This derived model is used to predict
the MSC at different deployment configurations by changing the parameters
like the number of CPU cores or memory. Such a model is built by training
with deployment configurations, resources utilization and QoS parameters
as input values, and the number of requests served as the output value using
regression.

b) Smart Model trained for determining actual MSC: This model is used to
find the actual MSC for a particular deployment configuration without
conducting the load generation test till the endpoint. The training data
here contains only some fixed sample values like 40 or 50. The actual MSC
could be predicted from this trained model by finding the value at the
100% utilization of resources. Such a model is also built by training with
deployment configurations, resources utilization and QoS parameters as
input values, and the number of requests served as the output value using
regression.

c) Model trained for predicting replicas: This derived model is used to find
the replicas required to handle the given number of user requests with
a particular deployment configuration. Such a model is built by training
with deployment configurations, resources utilization, QoS parameters and
number of requests served as input values, and the number of replicas as
the output value using regression.

Fig. 4.4 shows the summarized diagram of the performance modeling. Also, the
total resource utilization of the deployed microservice can maximally reach nearly
100%. Therefore, we can find the theoretical maximum number of requests the

14

4 Performance Modeling of Microservices

Figure 4.4: Performance modeling of microservices

microservice can serve using the above-trained model for predicting MSC and
compare it with the actual found MSC.

Afterward above all steps are repeated for all the other microservices in the given
application and performance model is derived for each one of them.

15

5 Use Case Discussion

Performance prediction derived from the performance modeling of microservices could
have many use cases, below sections describe a few of them.

5.1 Bottleneck microservice detection use case

Application microservices can be deployed directly on the VMs or inside the containers
as described in the Microservices deployment strategy subsection in the background
chapter 2.3. The deployed microservice uses many resources (e.g., CPU, memory,
disk I/O, and network I/O) of the VM to process user requests. The resources usage
change with the variation in the number of user requests or the user workload. The
microservice that is able to serve the least number of requests in the given interval
of time becomes the bottleneck microservice of the whole system. This could be
either because one of the resources allocated to that microservice has reached around
100% utilization or because of the limited bandwidth of memory or network. Possible
solution could be the upgrading of the VM to a better VM with the higher resources or
increasing the number of replicas of the microservice.

Figure 5.1: Bottleneck microservice detection use case

The microservice with the least MSC becomes the bottleneck microservice of that
application. Individual microservice’s scaling could be done to equalize the MSC of
the whole system. For example, in Fig. 5.1, 3 microservices and a mongo database are
shown along with their MSC. The microservice primeapp has the least MSC, therefore

16

5 Use Case Discussion

becomes the bottleneck microservice of the whole application. Now based upon MSC,
one can decide how many replicas are required for each microservice. Here 6 replicas
of primeapp, 2 of movieapp, 1 of serveapp makes the whole system’s MSC same. After
scaling microservices, the whole system can be scaled together as one unit.

5.2 Predictive autoscaling use case

Predictive autoscaling is an approach of autoscaling VMs where the autoscaling engine
predicts the user traffic, calculate the resources(VMs) required prior to the time of
need and provisions them based on those predictions [9]. Performance prediction of
microservices by Terminus helps to determine the individual MSC of each microservice
belonging to an application. Based upon the forecasting of user traffic and determina-
tion of MSC for each microservice, one can find out the number of resources required
to serve those forecasted user requests and finally provision those many resources in
advance to handle the traffic. The whole process is briefly shown in Fig. 5.2

Figure 5.2: Predictive autoscaling use case

5.3 Reactive autoscaling scaling adjustment

Reactive autoscaling dynamically adjusts resources(VMs) counts based on the cluster’s
current workload (most often the metric used is average CPU utilization)[9]. When
the chosen metric goes beyond a certain threshold, the reactive autoscaling engine will
either add or remove the resources from the cluster. The number by which scaling
is adjusted is referred to as the scaling adjustment number. Scaling adjustment can

17

5 Use Case Discussion

either be a constant number by which those many numbers of instances are added or
removed or can be an exact number of instances or increment or decrement the current
capacity of the group by the specified percentage [5]. However, determination of this
scaling adjustment number can be difficult. Performance prediction of microservices

Figure 5.3: Reactive autoscaling scaling adjustment use case

by Terminus helps to determine the number of replicas required to handle the given
number of user requests of each microservice belonging to an application. Based upon
the current number of user requests, one can determine the exact number of replicas
required to serve those requests using Terminus. Therefore, that predicted number of
replicas can be used as the scaling adjustment number. The whole process is briefly
shown in Fig. 5.3

y

18

6 Implementation

The first step towards building the performance model of a microservice is the collection
of the data of the microservice when deployed using different configurations on the
Cloud Service Provider. This deployment process requires the setting up of Kubernetes
Cluster, necessary monitoring services, and a load generator. Setting up all these
manually again and again for conducting different tests can be cumbersome. Therefore,
Terminus: a performance modeling tool for microservices is developed using the Golang
and Python to automate the whole process. It comprises of both the API and a user
interface with which a user can easily interact and perform various functions. In order
to provide a comprehensive overview of the tool, the section below presents an overall
architecture of the tool and then in next subsections, each individual components are
explained briefly.

6.1 Overall architecture

Terminus is a performance modeling tool for the microservices. Terminus is derived
from the word "terminal" which means end point of something. Terminus consists of
components implementing microservices architecture; these components can be scaled
up and down on demand. An overall architecture of the Terminus and communications
between components thereof in a typical use case is shown in Fig. 6.1. The process
starts with the user providing an application and its parameters either through the
user interface or API. If the application consists of multiple microservices, then each
microservice is sandboxed using the sandboxing approach. Afterward, performance
modeling approach is applied to each of the sandboxed microservice or a single
microservice application to analyze and build the performance model of it. Finally,
the analyzed data and performance model is presented back to the user in the form of
graphs or JSON data.
In further subsections, different components of Terminus along with the input to the
Terminus and output from the Terminus are presented.

19

6 Implementation

Figure 6.1: Overall architecture of the system.

6.1.1 Input to Terminus

• Application docker-compose file: Here the application for which performance
model is to be built is provided in the form of a docker-compose file. This
docker-compose file is used to build the structure of the application showcasing
interactions between microservices and is also used to sandbox each microservice.
For the deployment and building of the performance model, either this sandboxed
microservice YAML file can be used or the file can be converted into Kubernetes
configuration YAML file and then uploaded on the GitHub1 repository and
providing the name of the file as the input.

• Application category: It specifies the category to which the application belongs.
Currently, 4 types of application categories are supported: compute category
for compute-intensive applications, dbaccess category for the applications which
accesses a database to perform some operations, web category for simple web
applications and mix category for the applications consisting of the mixture of
different categories.

• Cloud Service Provider (CSP): The Cloud Service Provider on which the Kuber-
netes cluster is deployed. Currently, only Amazon Web Services is supported.

1https://github.com/ansjin/apps

20

6 Implementation

• Virtual Machine Type: This specifies the type of virtual machine instance to
be used as slave nodes in the Kubernetes cluster. AWS has different types of
instances for the different family of instances. According to AWS, T2 family of
instances is best suited for microservices, therefore currently only T2 family of
instances is supported [4].

• Limits and Replicas: Here the resources configuration of the pod on which the
microservice is deployed is done. CPU Limits are specified in the form of the
number of cores and memory limits in GBs to be allocated to each replica of the
microservice. Along with the limits, the number of replicas of the microservice is
also specified here. The number of replicas corresponds directly to the number of
pods.

6.1.2 Terminus components

Microservice Deployer and Load Generator

This component is responsible for the deployment of the microservice with the specified
resource limits on the Kubernetes cluster, generation of the load and collection of the
data for building performance model. For handling all these tasks an agent is created,
whose components are shown in the Fig. 6.2. The functions of agent’s components are
as follows:
Kubernetes cluster deployment. This sub-component of the agent is responsible for

Figure 6.2: Agent components.

the deployment of the Kubernetes cluster using KOPS - Kubernetes Operations [22].
KOPS can set up highly available and production-grade Kubernetes cluster. Along with
the deployment of the microservice, heapster is also deployed as part of the cluster
to monitor all the resources inside the Kubernetes cluster[13]. The data collected by
heapster is stored inside the InfluxDB [15].
Load generator. This sub-component generates a linearly increasing load to the ex-
posed external endpoint of the deployed microservice. K6 is used for generating the
load [19]. All the workload data is stored inside the InfluxDB. This data can be viewed

21

6 Implementation

in real time using the Grafana2 attached with this agent.
Elasticsearch and Kibana. The agent also generate logs for each step therefore, Elastic-
search is used to store them and with Kibana those can be viewed in real time[11, 20].

(a) Agent Deployment (b) Start Kubernetes Cluster

(c) Load generation and data collection

Figure 6.3: Microservice Deployer and Load Generator Steps

The process of collecting the data involves three steps as described below:

1. Agent deployment: Firstly, the agent described above is deployed on a VM
instance. Terminus sends a command with necessary instructions to the CSP to
start a VM and deploy this agent on a VM as shown in Fig. 6.3a.

2. Start Kubernetes cluster and generate load: After the deployment of the agent,
Terminus sends another request to the agent to create a Kubernetes cluster and
deploy the microservice inside it. After the deployment, it starts to generate the
load as shown in Fig. 6.3b.

3. Data collection: During the load generation phase, agent continuously monitors
all the resources and stores all the data inside the InfluxDB along with the
workload data. Once the test is finished all the stored data is restored back to
InfluxDB inside the Terminus and the cluster, as well as the agent, are terminated.
This step is shown in Fig. 6.3c.

2https://grafana.com/docs

22

6 Implementation

Microservice sandboxing

This is one of the important components of the Terminus which comes into action when
an application consists of multiple microservices. This component sandboxes each
microservice and adds in place of each dependent microservice a pseudo virtualized
microservice. Such a process is carried out so that individual microservice can be
independently tested and a performance model is built for it. Following are the steps
performed:

1. docker-compose yaml file along with the main microservice name and api end
point is provided as input. For example in code 6.1, there are two services:
primeapp and serveapp, and serveapp is dependent on primeapp.

1 services:
2 primeapp:
3 image: "[..]/primeapp"
4 ports:
5 - "9001:9001"
6 serveapp:
7 image: "[..]/serveapp"
8 links:
9 - primeapp # links primeapp

10 ports:
11 - "8080:8080"
12 version: "2"

Code Snippet 6.1: Initial docker
compose file

1 services:
2 primeapp:
3 image: "[..]/primeapp"
4 ports:
5 - "9001:9001"
6 links:
7 - hoxy_app # new dependency
8 environment: # newly added
9 - HTTP_PROXY:

10 −"http://hoxy_app:8085"
11 serveapp:
12 image: "[..]/serveapp"
13 links:
14 - primeapp # links primeapp
15 - hoxy_app # new dependency
16 ports:
17 - "8080:8080"
18 [...]

Code Snippet 6.2: Intermediate docker
compose file

2. A dependency of hoxy_app service to all the services present inside the docker-
compose file is added. This application’s docker image can be found here3. It
ensures that every user request and response to and from any of the microservice

3https://hub.docker.com/r/terminusimages/hoxy_app/

23

6 Implementation

passes through it first. As a result, this application intercepts the requests sent to
the service and the responses from it. At the end of this step, a new intermediate
docker-compose file is formed as shown in code 6.2.

3. This new docker-compose file is deployed on a virtual machine as shown in
Fig. 6.4a. Once the deployment is completed, a request is sent to the externally
exposed endpoint. This request will flow through all the microservices and
the hoxy_app will intercept all the requests and responses to and from each
microservices respectively. After intercepting of requests and responses, it stores
back all these data inside the mongo database attached to the Terminus. This is
shown in Fig. 6.4b

(a)

(b)

Figure 6.4: Requests and response intercepting step of sandboxing microservices

4. For each microservice, dummy virtualized microservices replaces their dependent
microservices as shown in code 6.3. These dummy microservices will respond at
the same port and at the same endpoint with the response collected in the above
step. As a result, now the time taken by the dependent services to respond is next
to negligible.

1 services:
2 primeapp:
3 #dummy service
4 container_name: primeapp
5 environment:
6 - TEST_API=/api/test
7 - DUMMY_RESPONSE={"result":249995787104.9515}
8 - PORT=9001
9 image: [...]dummy_response_app:latest

24

6 Implementation

10 ports:
11 - "9001:9001"
12 serveapp:
13 depends_on:
14 - primeapp
15 image: [..]/serveapp
16 links:
17 - primeapp
18 ports:
19 - "8080:8080"
20 version: "2"

Code Snippet 6.3: Final docker compose file for sandboxed microservice

Now, each sandboxed microservice can be used to build the performance model for
them like other single microservice applications.

Performance Model Builder

This is another major component of Terminus. It is responsible for building the
performance model of a microservice from the collected data. This component is
written in python and uses a regression approach to train the model. Currently, there
are three models being trained as described below:

1. The first model that is trained is based upon the collection of different deployment
configurations combined together with the collected data to predict the MSC
for all the configurations. Theil–Sen estimator is used for training the model.
Theil–Sen method has been used to estimate trends in software aging[36]. It is
used due to its simplicity in computation, robustness to outliers and high precision
in the presence of skewed data"[12]. Here the training input is the deployment
configuration and total CPU utilization which is calculated by equation 6.1

CPU_Utiltotal =
N

∑
n=1

CPU_Utiln (6.1)

"N" being the number of pods

and the number of requests is the output value.
2. The second model trained is per deployment configuration which is also combined

together with the collected data to predict the MSC for that specific configuration.

25

6 Implementation

The training data here contains only some fixed sample values like 40 or 50. This
is done to prove the concept that, we don’t need to conduct the full test for finding
out MSC. It could be predicted from this regression trained model by finding
the value at the 100% utilization of resources. Here also, Theil–Sen estimator
is used for training the model. Here also the training input is the deployment
configuration and total CPU utilization and the number of requests is the output
value.

3. Third model trained is used to predict the number of replicas required to handle
a particular amount of requests on a specific deployment configuration. Here
the data from a sample of different deployment configurations along with the
collected data is taken and trained for prediction of replicas. Here the training
input is the number of requests and total CPU utilization and the number of pods
is the output value.

Performance Prediction

Trained models by the performance model builder are used by this component to
predict values.

Logs Generator

This component generates logs while Terminus tool is being used. This allows easy
debugging of the issues and detailed understanding of the flow path. All the logs are
saved in a file and are also shown on the user interface.

User Interface and API interface

User Interface (UI) and API interface components of Terminus interacts with the user
and provides him or her an opportunity to select or configure different tool parameters.
The user has the option to start various tests, view results in the form of table or
graphs, train the model and can also view ongoing tests and logs from the UI. The
APIs supported by Terminus are in standard REST API format as shown in the code 6.4.
Also, a swagger documentation YAML file is generated to understand the APIs input
and output.

1 /getPredictedRegressionReplicas/{apptype}/{appname}/{mainservicename}/{msc}/{
numcoresutil}/{numcoreslimit}/{nummemlimit}

Code Snippet 6.4: Example REST API

26

6 Implementation

6.1.3 Output from Terminus

Apart from the graphs and data consisting of the generalized performance model of
different microservices for different deployment configurations presented in the UI,
Terminus output :

• MSC: It provides the actual experimental MSC calculated based upon the deploy-
ment configuration and the QoS parameters specified.

• Predicted MSC: It outputs predicted MSC for a deployment configuration speci-
fied in the terms of CPU Utilization, CPU Limit, Memory Limit, Mean Request
Response Time and the number of replicas.

• Predicted Number Of Replicas: Predicts the number of replicas required to
handle the certain number of requests given the deployment configuration speci-
fied in the terms of CPU Utilization, CPU Limit, Memory Limit, Mean Request
Response Time and the number of requests.

• Sandbox Microservices from the Application: It provides the individual docker-
compose file for the sandboxed microservices.

6.2 Experimental settings

6.2.1 Test application

In our experiments, we took an application consisting of 4 microservices and a mongo
database connected to the movieapp as shown in Fig. 6.5.

Figure 6.5: Test Application Structure.

• primeapp: It computes the sum of prime numbers starting from 1 and up to
1000000 when called using a particular API call. This is categorized as the
compute intensive microservice.

27

6 Implementation

• movieapp: It queries mongo database for a fixed amount of movies information4

when called using a particular API call and returns the results as the response.
This is categorized as the database access microservice.

• webacapp: It is a simple web application which responds back with the "hello
world" when called using a particular API call. This is categorized as the web
microservice.

• serveapp: Its job is to receive the request from the user and send requests to
all the three dependent microservices. After receiving responses from all the
microservices it combines them into one and responds back.

6.2.2 Deployment Configurations

In our experiments, we use T2 family of instances from AWS which comprised of
t2.nano, t2.micro, t2.small, t2.medium, t2.large and t2.xlarge instances. Additional
deployment configuration for each test is described in Table 6.1. It is to be noted that,
when the resource limits are given a value for example of "100", then it means that
CPU cores of 0.100 and memory of 100MB are allocated. Also, if the resource limit is
referred by an instance name for example "t2.nano", then it means that limits equivalent
to t2.nano instance are allocated. Depending on the number of replicas, slave nodes
inside the Kubernetes cluster are adjusted.

Table 6.1: Experimental deployment configurations
Instance type Resource Limits Replicas
t2.nano 100 and 200. 1, 2 and 3
t2.micro 100,200 and 500. 1, 2 and 3
t2.small 100,200 and 500 1, 2 and 3
t2.medium 100,200, 500, t2.nano, t2.micro and

t2.small
1, 2 and 3

t2.large 100,200, 500, t2.nano, t2.micro and
t2.small

1, 2 and 3

t2.xlarge 100,200, 500, t2.nano, t2.micro,
t2.small, t2.medium and t2.large

1, 2 and 3

4the database consists of dummy movies information

28

6 Implementation

6.2.3 Load generation setting

We have used the linearly increasing load pattern. The rate at which the requests are
increased differs from type to type of the application and is shown in Table 6.2.

Table 6.2: Load generation requests rate
Application type Request Rate
compute Starts with 1, increases by 4 every minute.
dbaccess Starts with 1, increases by 6 every minute.
web Starts with 1, increases by 50 every minute.
other Starts with 1, increases by 20 every minute.

6.2.4 Performance modeling

For training the models, data collected from the deployment configurations listed in
Table 6.1 were used except t2.xlarge one. Once the model is trained then they were
used to predict the values for the experiments listed in Table 6.3. These resource limits
were set on the t2.xlarge instance and also the number of nodes were adjusted based
upon the resource requirement and replicas. For predicting replicas, actual found
experimental MSC value was used instead of the replicas column. For calculating the
actual MSC, QoS parameters MRT equals to 1 second and 99% RSR are used.

Table 6.3: Deployment configurations for experiments
Experiment

Number
CPU
Limit

Memory
Limit

Replicas

1 0.1 0.1 1
2 0.1 0.1 2
3 0.1 0.1 3
4 0.2 0.2 1
5 0.2 0.2 2
6 0.2 0.2 3
7 0.5 0.5 1
8 0.5 0.5 2
9 0.5 0.5 3

10 1 1 1
11 1 1 2
12 1 1 3

29

6 Implementation

Table 6.3: Deployment configurations for experiments
Experiment

Number
CPU
Limit

Memory
Limit

Replicas

13 1 0.5 1
14 1 0.5 2
15 1 0.5 3
16 1 2 1
17 1 2 2
18 1 2 3
19 2 4 1
20 2 8 1

30

7 Results

Deploying same resource limits on different types of instances provides almost the
same performance with the condition that the host instance has enough resources
for the Kubernetes cluster to provide dedicated resources to a pod. Also, comparing
this limited resources pod with its equivalent instance also results in almost the same
performance. There will be a slight drop of performance towards the peak for the VM
instance due to the fact that VM is using some resources underneath for the OS and not
all resources are available as compared to the pod which has all the limited resources.
Fig. 7.1a shows the number of requests per minute vs the CPU utilization of pods with
"t2.nano" instance as limits when deployed on t2.xlarge, t2.large, and t2.medium. Also,
the performance of the actual instance is shown. Correspondingly, the mean request
response time compared with the number of requests is shown in Fig. 7.1b. We can see
that almost everyone has similar performance.

(a) Requests vs CPU Utilization (b) Requests vs MRT

Figure 7.1: Same resources limit pod on different types of VM.

Another important result derived is that the resources utilization by different pods
or replicas belonging to the same microservice on the same type of VM is almost the
same. This could be because for load balancing among replicas of a microservice the
Kubernetes scheduler uses the round-robin algorithm. As a result, the load gets equally
distributed among the replicas. Fig. 7.2a shows the CPU utilization and Fig. 7.2b
shows the memory utilization of three pods with the increasing number of requests per

31

7 Results

(a) Pods CPU utilization (b) Pods memory utilization

Figure 7.2: Different replicas of microservice resources utilization.

minute. We can see from both the figure that pods resources utilization is almost the
same.

The application used for testing consists of 4 microservices and for each sandboxed
microservice the number of CPU cores required to process user requests was found
to be linearly increasing with the number of requests as shown in Fig. 7.3. Memory
utilization did not have much effect on the change in the number of requests, it becomes
constant for all the microservices after a certain number of requests. For determining
the experimental actual MSC for the primeapp, movieapp and serveapp the load was
generated till the threshold point was reached and calculated afterwards from the data.
However, for finding the MSC of the webacapp the load could not be generated till its
threshold point because the machine which generated the load could not handle the
simulation of very high number of requests. Therefore either we need to use very high
end resource machine or use the smart model developed to determine the MSC for a
particular deployment configuration based upon the limited amount of load generation
data. This was first tested on the primeapp and found to be very close to the actual
MSC as shown in Fig. 7.4. Later on, this model smart approach was used to find the
actual MSC for the webacapp.

The predicted MSC gives an upper bound on how many requests different types
of VMs can handle based upon the fixed number of tests conducted. Trained model
was able to model the microservices quite well and predicted MSC as well as replicas
quite close to the actual found one. Fig. 7.5 shows the comparison of predicted vs the
actual MSC for all the microservices and similarly Fig. 7.6 shows the comparison of
predicted vs the actual replicas for all the microservices along with their RMS errors
as well. webacapp has highest RMS error for predicted MSC model because of the

32

7 Results

(a) primeapp (b) movieapp

(c) webacapp (d) serveapp

Figure 7.3: Number of requests vs CPU cores vary linearly for various types of mi-
croservices

range of number of requests per second it can handle. We can notice towards the end
of the MSC predicted values a big difference in Fig. 7.5 for all the microservices except
webacapp where the experiments has the number of cores is equal to 2. This is the
result of the microservice not being able to use more than 1 core even though it was
deployed on the pod which had the CPU core limit of 2. This could be possible because
the application is made in Node.js and it is single threaded therefore it could not use
more than one core. But the model takes into account the linearity of the variation and
predicted based upon 2 cores. For webacapp, the actual was also predicted using the
smart testing therefore it is more close to predicted one.

Also, from the Fig. 7.5 one can notice that rate at which the CPU utilization changes
with the number of requests is highest for primeapp and least for webacapp. It clearly
depicts that the primeapp is the bottleneck microservice of the whole application. Table

33

7 Results

Figure 7.4: Actual found MSC vs the Smart MSC calculated using Smart model for the
primeapp.

7.1 shows the predicted MSC for the combined application as well as for the sandboxed
individual microservices for some deployment configurations. One can now easily
decide by looking at the MSC for each microservice that how many replicas for each
is needed to make the performance of the whole application same. For example, if
deployed with the configuration of CPU and memory equal to 0.1 and replicas equal to
1 then we need approximately 37,14, 9 and 1 replicas for primeapp,movieapp, serveapp
and webacapp respectively to make the performance of the whole application one.

7.1 Performance modeling hypothesis

Based on the experimental results, the following major research hypotheses might be for-
mulated for future extensive proof on different microservices and on their combinations
thereof with the use of Terminus:

• Performance of pod with limited instance resources is equivalent to the VM
instance with similar resources. Therefore, one doesn’t need to conduct tests for
performance analysis on the smaller machines. A big VM instance can be selected
and tested with different types of limits.

• MSCs found for each sandboxed microservices could be used to determine the
potential candidates for the dependency of microservices on each other. As a
result, it could be used to pack and scale the dependent microservices together.

• A better load balancer scheduling algorithm can be added while distributing the
load to the pod replicas inside Kubernetes cluster.

34

7 Results

Table 7.1: MSC Predicted for the combined application and its microservices

No.
CPU
Cores

Mem-
ory

Replicas
Comb-
ined

prime-
app

movie-
app

webac-
app

serve-
app

1 0.10 0.10 1.00 5.25 9.59 25.90 364.53 40.11
2 0.10 0.10 2.00 6.55 17.18 48.90 674.29 79.84
3 0.10 0.10 3.00 7.77 24.77 71.90 984.05 119.58
4 0.20 0.20 1.00 13.67 17.18 48.90 674.29 79.84
5 0.20 0.20 2.00 25.87 32.36 94.91 1293.80 159.31
6 0.20 0.20 3.00 38.32 47.53 140.91 1913.32 226.45
7 0.50 0.50 1.00 32.80 39.95 117.91 1603.56 199.05
8 0.50 0.50 2.00 62.32 77.88 232.92 3152.36 397.72
9 0.50 0.50 3.00 105.48 97.65 347.94 4701.16 596.39
10 1.00 1.00 1.00 67.20 77.88 232.92 3152.36 397.72
11 1.00 1.00 2.00 126.55 153.76 462.95 6249.96 795.07
12 1.00 1.00 3.00 208.32 200.64 592.98 9347.56 1192.41
13 1.00 0.50 1.00 65.15 77.88 232.92 3152.36 397.72
14 1.00 0.50 2.00 126.73 153.76 462.95 6249.96 795.07
15 1.00 0.50 3.00 211.23 200.64 592.98 9347.56 1192.41
16 1.00 2.00 1.00 63.25 77.88 232.92 3152.36 397.72

• Most microservices application consume CPU resource more intensively than
other resources, that is why we can see most Autoscaling solutions provided by
Cloud Service providers use CPU utilization parameter for scaling.

• A brute-force testing for determination of actual threshold point could be avoided
by using the smart approach. This method is cost-efficient and save resources too.

• Sandboxing microservices allows to understand the real performance of them
and further modeled microservice can be used to improve the performance of the
whole application as well as efficient scaling and resources allocation.

• It is better to use microservice with multiple replicas of resource limits below or
equivalent to 1 CPU cores and 2GB of memory until unless the microservice has
higher minimum requirements.

35

7 Results

(a) primeapp with RMS error = 8.1 (b) movieapp with RMS error = 20.57

(c) webacapp actual MSC found using smart
model with RMS error = 100.66 (d) serveapp with RMS error = 40.57

Figure 7.5: MSC Actual vs Predicted for Microservices

36

7 Results

(a) primeapp with RMS error = 0.10 (b) movieapp with RMS error = 0.11

(c) webacapp with RMS error = 0.12 (d) serveapp with RMS error = 0.11

Figure 7.6: Replicas Actual vs Predicted for Microservices

37

8 Conclusion & Future Scope

8.1 Conclusion

Performance modeling of the cloud-based microservices application allows to find out
the resources that need to be allocated to it while deployment. Each microservice per-
forms differently when deployed using different deployment configurations, however,
they follow a common pattern in their performance. All the tested microservices in this
research has a higher CPU resource usage as compared to other resources usage and
the usage changed linearly with the change in the number of requests. Other different
types of applications like memory intensive applications will behave differently. In
cases where an application consists of multiple microservices, the overall performance
is limited by the least performing microservice, so scaling all the microservices of an
application without understanding their resource requirements is not a good idea. In
order to capture the performance and functionality issues and track down architectural
reasons for it, sandboxing of microservices from the application is required. However,
challenges in sandboxing and then deriving efficient model issues occur during the
building of performance model of the microservice. The approach and the tool pro-
posed in the research serve to solve the problem of finding the best-suited resources for
the microservice to be deployed on so that it gives the best performance based on the
need for the whole application.
The presented approach and the tool could be widely applied in the cloud-powered
industry for various use cases. A key example would be to use Terminus to allocate
resources efficiently to the deployed microservices. This could be done by building the
performance model of the microservices and then based upon the possible incoming
user workload finding out the resources required by them. Such an extension would
enable many real-world use cases which will help companies to decrease the cost
of cloud services and increase the manageability and scalability of the cloud-based
microservices applications. A correct identification of bottleneck microservices and
scaling replicas contributes to the possible solution of yet another research and practical
problem - structural analysis problem of the microservices application.

38

8 Conclusion & Future Scope

8.2 Future Scope

In the scope of the further research, a comprehensive performance modeling of existing
microservices applications using the developed approach and Terminus can be con-
ducted. As a result, a dataset of performance models of microservices can be created
and then the classification of microservices based upon their derived performance
model can be done. This dataset then could further be used to compare with a new
microservice and based upon the class to which it belongs to, the performance of the
microservice could be predicted. Furthermore, this tool could be extended for many
applications. Following are a few to point :

• Extension of Terminus to different cloud providers(Microsoft Azure, IBM Bluemix,
LRZ etc).

• Support for different types of applications and building performance models.

• Currently, regression is used for building the performance model, in future
support for different approaches like using Neural networks can be added.

• Sandboxing approach developed currently only supports homogenous GET re-
quests, it can be extended to include heterogeneous GET and POST requests.

39

List of Figures

2.1 Resource requests and limits in Kubernetes. 4
2.2 Multiple services instances per host (without containers) 5
2.3 Multiple services instances per host (with containers) 5
2.4 Service instance per host (without containers) 6
2.5 Service instance per host (with containers) 6

4.1 Maximum Service Capacity . 11
4.2 Example original application structure . 12
4.3 Example sandboxed microservices . 12
4.4 Performance modeling of microservices 15

5.1 Bottleneck microservice detection use case 16
5.2 Predictive autoscaling use case . 17
5.3 Reactive autoscaling scaling adjustment use case 18

6.1 Overall architecture of the system. 20
6.2 Agent components. 21
6.3 Microservice Deployer and Load Generator Steps 22
6.4 Requests and response intercepting step of sandboxing microservices . 24
6.5 Test Application Structure. 27

7.1 Same resources limit pod on different types of VM. 31
7.2 Different replicas of microservice resources utilization. 32
7.3 Number of requests vs CPU cores vary linearly for various types of

microservices . 33
7.4 Actual found MSC vs the Smart MSC calculated using Smart model for

the primeapp. 34
7.5 MSC Actual vs Predicted for Microservices 36
7.6 Replicas Actual vs Predicted for Microservices 37

40

List of Tables

4.1 Monitoring data of the resources for the Pod 13

6.1 Experimental deployment configurations 28
6.2 Load generation requests rate . 29
6.3 Deployment configurations for experiments 29
6.3 Deployment configurations for experiments 30

7.1 MSC Predicted for the combined application and its microservices . . . 35

41

List of Code Snippets

6.1 Initial docker compose file . 23
6.2 Intermediate docker compose file . 23
6.3 Final docker compose file for sandboxed microservice 24
6.4 Example REST API . 26

42

Bibliography

[1] Amazon cloud watch. [Online; Accessed: 7-May-2018]. url: https://aws.amazon.
com/cloudwatch.

[2] Peter Arijs. How to use resource requests and limits to manage resource usage of
your Kubernetes cluster. [Online; Accessed: 2-October-2018]. 2018. url: https:
//jaxenter.com/manage-container-resource-kubernetes-141977.html.

[3] R. Aversa, N. Panza, and L. Tasquier. “An Agent-Based Platform for Cloud
Applications Performance Monitoring.” In: 2015 Ninth International Conference
on Complex, Intelligent, and Software Intensive Systems. 2015, pp. 535–540. doi:
10.1109/CISIS.2015.79.

[4] AWS. Amazon EC2 Instance Types. [Online; Accessed: 25-September-2018]. Sept.
2018. url: https://aws.amazon.com/ec2/instance-types/.

[5] AWS. Simple and Step Scaling Policies for Amazon EC2 Auto Scaling. [Online; Ac-
cessed: 29-September-2018]. url: https://docs.aws.amazon.com/autoscaling/
ec2/userguide/as-scaling-simple-step.html.

[6] AWS Lambda. [Online; Accessed: 25-May-2018]. url: https://aws.amazon.com/
lambda/.

[7] Jennifer Petoff Betsy Beyer Chris Jones and Niall Richard Murphy, eds. Site
Reliability Engineering. [Online; Accessed: 9-October-2018]. 2016. url: https :
//landing.google.com/sre/book/index.html.

[8] CloudMonix. [Online; Accessed: 9-May-2018]. url: http://www.cloudmonix.com/.

[9] Danny Yuan Daniel Jacobson and Neeraj Joshi. Scryer: Netflix’s Predictive Auto
Scaling Engine. [Online; Accessed: 29-September-2018]. Nov. 2013. url: https://
medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-
engine-a3f8fc922270.

[10] Docker overview. [Online; Accessed: 9-October-2018]. url: https://docs.docker.
com/engine/docker-overview/.

[11] Elasticsearch. [Online; Accessed: 25-September-2018]. url: https://www.elastic.
co/products/elasticsearch.

43

https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://jaxenter.com/manage-container-resource-kubernetes-141977.html
https://jaxenter.com/manage-container-resource-kubernetes-141977.html
https://doi.org/10.1109/CISIS.2015.79
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://landing.google.com/sre/book/index.html
https://landing.google.com/sre/book/index.html
http://www.cloudmonix.com/
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch

Bibliography

[12] R. Fernandes and S. G. Leblanc. “Parametric (modified least squares) and non-
parametric (Theil-Sen) linear regressions for predicting biophysical parameters in
the presence of measurement errors.” In: Remote Sensing of Environment 95 (Apr.
2005), pp. 303–316. doi: 10.1016/j.rse.2005.01.005.

[13] Heapster. [Online; Accessed: 25-September-2018]. url: https://github.com/
kubernetes/heapster.

[14] Howerfly. [Online; Accessed: 10-June-2018]. url: https://hoverfly.readthedocs.
io/en/latest/.

[15] InfluxDB. [Online; Accessed: 25-September-2018]. url: https://www.influxdata.
com/time-series-platform/influxdb/.

[16] N. Jain and S. Choudhary. “Overview of virtualization in cloud computing.” In:
2016 Symposium on Colossal Data Analysis and Networking (CDAN). 2016, pp. 1–4.
doi: 10.1109/CDAN.2016.7570950.

[17] D. Jaramillo, D. V. Nguyen, and R. Smart. “Leveraging microservices architecture
by using Docker technology.” In: SoutheastCon 2016. 2016, pp. 1–5. doi: 10.1109/
SECON.2016.7506647.

[18] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. “Performance Monitoring
and Root Cause Analysis for Cloud-hosted Web Applications.” In: Proceedings of
the 26th International Conference on World Wide Web. WWW ’17. Perth, Australia:
International World Wide Web Conferences Steering Committee, 2017, pp. 469–
478. isbn: 978-1-4503-4913-0. doi: 10.1145/3038912.3052649. url: https://doi.
org/10.1145/3038912.3052649.

[19] K6. [Online; Accessed: 25-September-2018]. url: https://docs.k6.io/docs.

[20] Kibana. [Online; Accessed: 25-September-2018]. url: https://www.elastic.co/
products/kibana.

[21] Nane Kratzke. “About Microservices, Containers and their Underestimated Im-
pact on Network Performance.” In: CoRR abs/1710.04049 (2017). arXiv: 1710.
04049. url: http://arxiv.org/abs/1710.04049.

[22] Kubernetes Operations. [Online; Accessed: 25-September-2018]. url: https://
github.com/kubernetes/kops.

[23] kubernetes.io. Managing Compute Resources for Containers. [Online; Accessed: 2-
October-2018]. url: https://kubernetes.io/docs/concepts/configuration/
manage-compute-resources-container/.

[24] kubernetes.io. What is Kubernetes. [Online; Accessed: 3-May-2018]. url: https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

44

https://doi.org/10.1016/j.rse.2005.01.005
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://hoverfly.readthedocs.io/en/latest/
https://hoverfly.readthedocs.io/en/latest/
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/influxdb/
https://doi.org/10.1109/CDAN.2016.7570950
https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3038912.3052649
https://docs.k6.io/docs
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
http://arxiv.org/abs/1710.04049
http://arxiv.org/abs/1710.04049
http://arxiv.org/abs/1710.04049
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Bibliography

[25] Frank Leymann et al. “Native Cloud Applications: Why Monolithic Virtualization
Is Not Their Foundation.” In: Cloud Computing and Services Science. Ed. by Markus
Helfert et al. Cham: Springer International Publishing, 2017, pp. 16–40. isbn:
978-3-319-62594-2.

[26] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent Development
and Deployment.” In: Linux J. 2014.239 (Mar. 2014). issn: 1075-3583. url: http:
//dl.acm.org/citation.cfm?id=2600239.2600241.

[27] D. Moldovan, H. L. Truong, and S. Dustdar. “Cost-Aware Scalability of Applica-
tions in Public Clouds.” In: 2016 IEEE International Conference on Cloud Engineering
(IC2E). 2016, pp. 79–88. doi: 10.1109/IC2E.2016.23.

[28] Monitoring Azure applications and resources. [Online; Accessed: 7-May-2018]. May
2018. url: https://docs.microsoft.com/en- us/azure/monitoring- and-
diagnostics/monitoring-overview.

[29] J. Mukherjee, M. Wang, and D. Krishnamurthy. “Performance Testing Web
Applications on the Cloud.” In: 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops. 2014, pp. 363–369. doi:
10.1109/ICSTW.2014.57.

[30] Pedro Pinheiro, Manuela Aparicio, and Carlos Costa. “Adoption of Cloud Com-
puting Systems.” In: Proceedings of the International Conference on Information
Systems and Design of Communication. ISDOC ’14. Lisbon, Portugal: ACM, 2014,
pp. 127–131. isbn: 978-1-4503-2713-8. doi: 10.1145/2618168.2618188. url: http:
//doi.acm.org/10.1145/2618168.2618188.

[31] Vassilis Prevelakis and Diomidis Spinellis. “Sandboxing Applications.” In: Pro-
ceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference. Berkeley,
CA, USA: USENIX Association, 2001, pp. 119–126. isbn: 1-880446-10-3. url:
http://dl.acm.org/citation.cfm?id=647054.715767.

[32] Chris Richardson. Introduction to Microservices. [Online; Accessed: 25-May-2018].
2015. url: https://www.nginx.com/blog/introduction-to-microservices/.

[33] John Rittinghouse and James Ransome. Cloud Computing: Implementation, Man-
agement, and Security. 1st. Boca Raton, FL, USA: CRC Press, Inc., 2009. isbn:
1439806802, 9781439806807.

[34] N. Serrano, G. Gallardo, and J. Hernantes. “Infrastructure as a Service and Cloud
Technologies.” In: IEEE Software 32.2 (2015), pp. 30–36. issn: 0740-7459. doi:
10.1109/MS.2015.43.

45

http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1109/IC2E.2016.23
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://doi.org/10.1109/ICSTW.2014.57
https://doi.org/10.1145/2618168.2618188
http://doi.acm.org/10.1145/2618168.2618188
http://doi.acm.org/10.1145/2618168.2618188
http://dl.acm.org/citation.cfm?id=647054.715767
https://www.nginx.com/blog/introduction-to-microservices/
https://doi.org/10.1109/MS.2015.43

Bibliography

[35] B. Urgaonkar et al. “Dynamic Provisioning of Multi-tier Internet Applications.” In:
Second International Conference on Autonomic Computing (ICAC’05). 2005, pp. 217–
228. doi: 10.1109/ICAC.2005.27.

[36] K. Vaidyanathan and K. S. Trivedi. “A comprehensive model for software reju-
venation.” In: IEEE Transactions on Dependable and Secure Computing 2.2 (2005),
pp. 124–137. issn: 1545-5971. doi: 10.1109/TDSC.2005.15.

46

https://doi.org/10.1109/ICAC.2005.27
https://doi.org/10.1109/TDSC.2005.15

	Acknowledgments
	Abstract
	Contents
	Contents
	Introduction
	Background
	Multiple layers of cloud virtualization
	Cloud based microservice applications
	Microservices deployment strategy
	Multiple services instances per host pattern
	Service instance per host pattern
	Serverless deployment

	Service Virtualization

	Literature Review
	Performance Modeling of Microservices
	Performance of microservices
	Quality-of-Service (QoS)
	Maximum Service Capacity (MSC)

	Approach
	Sandboxing of microservices
	Modeling of microservices

	Use Case Discussion
	Bottleneck microservice detection use case
	Predictive autoscaling use case
	Reactive autoscaling scaling adjustment

	Implementation
	Overall architecture
	Input to Terminus
	Terminus components
	Output from Terminus

	Experimental settings
	Test application
	Deployment Configurations
	Load generation setting
	Performance modeling

	Results
	Performance modeling hypothesis

	Conclusion & Future Scope
	Conclusion
	Future Scope

	List of Figures
	List of Tables
	List of Code Snippets
	Bibliography

