
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Implementation and Evaluation of MLEM
algorithm on Intel Xeon Phi Knights

Landing (KNL) Processors

Rami Al Rihawi

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Implementation and Evaluation of MLEM algorithm
on Intel Xeon Phi Knights Landing (KNL) Processors

Implementierung und Evaluierung von
MLEM-Algorithmus auf Intel Xeon Phi Knights

Landing (KNL) Prozessoren

Author: Rami Al Rihawi
Supervisor: Prof. Dr. rer. nat. Martin Schulz
Advisors: M.Sc. Dai Yang

Dipl.-Tech. Math. (Univ.) Tilman Küstner
Date: September 26th, 2018

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, September 26th, 2018 Rami Al Rihawi

Acknowledgments

I would like to take this opportunity to thank my thesis advisors, Dai Yang and Tilman
Küstner. Their constant support and mentorship has created an atmosphere where I
could accomplish whatever I set my mind on. I also would like to express my gratitude
to Prof. Dr. rer. nat. Martin Schulz for the opportunity to do this thesis as well as trusting
in my skills and commitment to execute it within schedule. Finally, I thank the people
who I have not mentioned but were there for me during the process of this thesis.

v

Abstract

With the rise of High Performance Computing Systems usage for computationally inten-
sive algorithms, it is necessary to examine these systems for the best configurations to
run those algorithms efficiently. This thesis presents a study of the various setups and
configurations of Intel Xeon Phi Knights Landing (KNL) for running Positron Emission
Tomography (PET) scan image reconstruction algorithm, Maximum Likelihood Expecta-
tion Maximization (MLEM). It focuses on analyzing the effect of KNL specific hardware
configurations, memory and cluster modes, as well as parallel programming models,
such as Message Passing and Shared Memory, and techniques on performance. This
yields 20 different setups to be compared to derive the best configuration to utilize KNL
for running MLEM. The results show that, on one node, OpenMP implementation with
affinity, implicit High Bandwidth Memory (HBM) usage model, and either All-to-all or
Quadrant cluster modes outperform MPI-only and Math Kernel Library (MKL) imple-
mentation with respect to all KNL configurations. The assessment criteria are average
runtime (performance), speedup (scalability), and bandwidth memory utilization. Nev-
ertheless, it is worth to point out that implicit HBM usage model is obtained through
linking Intel’s heap manager library, called memkind, for offloading to KNL’s HBM
without any code changes; proving that it is easy to run code on KNL chipset.

vii

Contents

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Image Reconstruction . 1
1.2 Positron Emission Tomography Scan . 1

1.2.1 MADPET-2 . 2
1.3 High Performance Computing Systems . 3

2 Parallel Computing 5
2.1 Parallel Programming Models . 5

2.1.1 Shared Memory . 6
2.1.2 Distributed Memory/Message Passing 8
2.1.3 Hybrid . 9

2.2 Math Kernel Library . 10
2.3 Advance concepts . 13

2.3.1 Affinity (Thread/Process Pinning) 13

3 Xeon Phi Knights Landing 15
3.1 Terminology . 15
3.2 Architecture . 18
3.3 Memory Mode . 19

3.3.1 Cache . 19
3.3.2 Flat . 19
3.3.3 Hybrid . 20

3.4 Cluster Mode . 20
3.4.1 All-to-all . 21
3.4.2 Quadrant . 21
3.4.3 Hemisphere . 21
3.4.4 Sub-NUMA-4 . 23
3.4.5 Sub-NUMA-2 . 23

4 MLEM Algorithm 25
4.1 Sparse Matrix Storage Format . 28

4.1.1 Compressed Sparse Row . 28
4.1.2 Compressed Sparse Column . 29

ix

Contents

4.2 Existing Implementation . 29
4.2.1 Matrix Representation . 29
4.2.2 OpenMP . 30
4.2.3 MPI-only . 31

4.3 Proposed Implementation . 31
4.3.1 Matrix Representation . 31
4.3.2 OpenMP . 32
4.3.3 MPI-only and Hybrid . 32
4.3.4 MKL . 34

5 Evaluation 41
5.1 Data . 41
5.2 Design . 41
5.3 Setup . 43
5.4 Results . 45
5.5 Discussion . 46

5.5.1 Affinity (Process/Thread Pinning) 62
5.5.2 Cluster Mode . 62
5.5.3 HBM Usage Model . 64
5.5.4 Parallelism Library . 64

5.6 Limitation . 65
5.6.1 CoolMUC3 . 65
5.6.2 MKL . 65

6 Related Work 67

7 Conclusion 71
7.1 Future Work . 72

8 Bibliography 75

9 Appendix 81

List of Figures 87

List of Tables 89

x

1 Introduction

High Performance Computing (HPC) Systems have seen an increase of complexity
in the past decade; consisting of improvements in increasing parallelism as well as
adoptions of heterogeneous and accelerator architectures [1]. The drive behind the
development in HPC is due to the demand for greater applications performance [2]
especially for application which use computationally intensive algorithms. Medical
image reconstruction from projections is an example of such algorithms, where reducing
the computation time is a vital for clinical diagnosis [3]. Thus, there is a need to find
the best systems and configuration to run those algorithms utilizing the computational
power those systems offer as efficiently as possible.

1.1 Image Reconstruction

The general problem of image reconstruction has repeatedly arisen over the last 50
years in a large number of scientific, medical, and technical fields with an immense
applicability range [4]. Image reconstruction refers to creating an image from a set of
data, as an input, describing the object. The object usually can not be directly measured;
thus, the object is observed indirectly. The reconstruction algorithm has to eliminate the
effects of the observation technique used for collecting the data; in addition to the fact
that this data is usually also poor and limited.

The goal of image reconstruction in medicine is to create images of cross section of
a human body, especially internal structure such as organs, soft tissues, and bones,
without invasive surgery and based on either transmission tomography or emission to-
mography. One of those applications in the medical diagnostic area is Positron Emission
Tomography (PET) scan, which provides valuable metabolic information that is needed
for diagnostics in fields like clinical oncology [5].

1.2 Positron Emission Tomography Scan

PET is a medical imaging modality with proven clinical value for the detection, staging,
and monitoring of a wide variety of diseases. It requires the injection of a radiotracer
to the subject. Then, the subject is placed within a ring to be monitored externally. "A
positron-emitting radioisotope can be detected indirectly, as positrons annihilate with
electrons, creating two 511 keV gamma photons traveling in opposite directions. When

1

1 Introduction

two detectors each record a photon within a certain time window, an annihilation event
is assumed somewhere along the line connecting the detectors. This line is called the
line of response (LOR). The number of detected events influences the quality of the
measurement, while the coverage of three-dimensional space of interest (field of view,
FOV) by LORs affects the achievable resolution. The resolution is usually better at the
center than at the edges of the field of view. The FOV is commonly divided into a
three-dimensional grid, where each grid cell is called a voxel" [6]. Figure 1 shows a PET
scanner called MADPET-2.

There are two commonly used iterative reconstruction algorithms which are Maximum
Likelihood Expectation Maximization (MLEM) [7] and Ordered Subset Expectation Max-
imization (OSEM) [8]. Both of these methods allow a detailed mathematical description
of the physical processes involved in tomography systems, such as the attenuation and
scatter of photons in the body under study [9]. MLEM is discussed in more details in
Chapter 4.

Figure 1: Illustration of PET Scanner MADPET-2 [10].

1.2.1 MADPET-2

It is a high-resolution 3D small animal PET scanner developed by Technical University of
Munich at Klinikum Rechts der Isar to meet the demands of modern molecular imaging

2

1.3 High Performance Computing Systems

research. The unique detector design and data acquisition system increase sensitivity
while preserving spatial resolution allowing new possibilities for data analysis [11]. As
shown in Figure 1, the scanner is formed of detectors distributed into modules each
consisting of two layers and 8 axial slices [12], which are all arranged in a shape of two
concentric rings.

1.3 High Performance Computing Systems

For the past decades, manufacturers of computer chips has focus on improving the
performance of chips by increasing number of transistors they contain in accordance to
Moore’s law. However, a limit has been reached in terms of making transistor smaller,
adding more in a chip, and thus increasing the performance, namely capping the power
usage and heat generation. The struggle is evident when examining chips’ performance
in the last decades: "Chip performance increased 60 percent per year in the 1990s but
slowed to 40 percent per year from 2000 to 2004, when performance increased by only
20 percent, according to Linley Group president Linley Gwennap" [13]. As a result,
manufacturers turned to building multicore chips instead of a powerful single core ones.
Even though the multicore chip does not contain the most powerful cores, its overall
performance is much better since it can exploits parallelism. Figure 2 shows analysis
based on Intel tests using benchmarks (SPECint2000 and SPECfp2000) which reports
that multicore processors perform much better than a single core processor and projects
that relative advantage of multicore system will enhance over the next couple of years
[14] as parallelism is exploited. Nevertheless, parallelism is discussed in more details in
Chapter 2.

Figure 2: Performance comparison between a single core and multicore processor.

3

1 Introduction

HPC Systems are found based on the same concept of increasing the processing cores
or unit count as discussed in the previous paragraph. Those systems are categorized
into either homogeneous or heterogeneous computing. Both differ on the kind of pro-
cessing power they add to gain better performance. Homogeneous computing refers to
using same or similar processing units; unlike heterogeneous computing which refers
to using more than one kind. The benefits of increasing the processing cores or units
in heterogeneous computing system is not limited to gains in performance only; but
it also can incorporate specialized processing units that are capable of handling spe-
cific tasks. However, having multiple kind of processing units increases the complexity
of the system. Thus, there are advantages and disadvantages for both HPC system types.

The new era of supercomputers was reshaped by Intel’s Many Integrated Core (MIC)
Architecture processors and Nvidia accelerators. Their computing capabilities and
integration allowed for faster HPC systems in comparison to the traditional CPUs [15],
[16]. According to June 2018 list of top500.org, most of the 10 fastest supercomputers
are either based on Intel Xeon MIC (e.g. Trinity and Cori) or GPU (e.g. Titan and
Summit). Based on Intel MIC architecture, Intel Xeon Phi product family targets HPC
[17] especially Knights Landing (KNL) providing a large number of cores to achieve
an aggregated performance with a relatively simple control of each core rather than
increasing the CPU clock frequency, and providing highly functional multiple cores to
save the total power consumption of the chip for a higher performance watt ratio [18] as
well as a high bandwidth memory (HBM) all in one chip, which is discussed in more
details in Chapter 3.

This thesis is only concerned with KNL, 2nd generation of Xeon Phi product family,
and MLEM. It focuses on analyzing the various configurations for KNL as well as several
optimizations and techniques of MLEM for best performance. The rest of it is organized
as follows: Chapter 2 covers an overview of parallel concepts, techniques and libraries
named in the work. Chapter 3 provides an overview of KNL architecture. Chapter
4 explains details and implementation of MLEM algorithms. Chapter 5 discusses the
setup and the results of running MLEM in various configurations as well as analysis
explaining the results. Chapter 6 reviews published work related to the presented work.
Finally, Chapter 7 summarizes the work and proposes possible future plans.

4

2 Parallel Computing

The concept of parallelism is quite old. It goes back to 1958; Gill discussed the need
for parallel programming with the concepts of branching and waiting [19] and IBM
researchers discussed the use of parallelism in numerical calculations for the first time
[20]. Few years later, in 1962, Burroughs Corporation introduced a four-processor com-
puter that accessed up to 16 memory modules [21]. During the American Federation of
Information Processing Societies Conference, in 1967, a debate established that Amdahl’s
law was coined to define the limit of speed-up due to parallelism [20].

In the meantime, IT industry has improved the cost-performance of sequential comput-
ing by about 100 billion times overall over the past 60 years. For most of the past 20 years,
architects have used the rapidly increasing transistor speed and budget made possible by
silicon. This led to innovations that were inefficient in terms of transistors and power but
that increased performance while preserving the sequential programming model. After
crashing into the power wall, architects were forced to find a new paradigm to sustain
ever-increasing performance demand. That is when the industry started replacing the
single power-inefficient core with many efficient cores on the same chip. This served as
a statement of the new future of parallel computing led by increasing the number of
processors and/or cores. Hence, the leap to multicore multiprocessor is not based on a
breakthrough in programming or architecture and is actually a retreat from the more
difficult task of building power-efficient, high-clock-rate, single-core chips [22].

The rest of this chapter is organized as follows: Section 2.1 covers a general overview
of different parallel programming models with examples of libraries that are used in
this work. Section 2.2 introduces Intel’s Math Kernel Library (MKL). Finally, Section
2.3 expands on advanced parallel programming concepts that are also discussed in this
work.

2.1 Parallel Programming Models

The variation among models are motivated by a couple of factors. First, there is a differ-
ent amount of effort invested in writing parallel programs. Second, various machines
and setups can support different parallelism approaches to exploit them. This section
discusses those two factors in more details.

Transforming serial code into parallel is not an easy task especially since debugging

5

2 Parallel Computing

becomes quite difficult. Thus, parallel programming models are categorized based
on that yielding implicit and explicit parallel programming models. Explicit models
requires a parallel algorithms to explicitly specify, with code, how the processors will
cooperate in order to solve a specific problem. That allows the programmer to be in more
control of the parallelization. While in implicit models, the compiler inserts constructs
necessary to run the program in parallel. That makes it the easier model to use for the
programmer since the majority of the burden of parallelization falls on the compiler
[23].

Parallel Programming models can also be categorized based on memory setup. As
illustrated in Figure 3, the models can be categorized into Shared Memory and Dis-
tributed Memory models. Both are explained in more details in the next section.

Figure 3: Illustration of the Parallel Programming Models based on their overlook on
and use of memory. a) Shared Memory model b) Distributed Memory model.

2.1.1 Shared Memory

In a Shared Memory programming model, programmers view their programs as a
collection of processes assessing a central pool of shared variables. Each processor can
write to and read from a shared variable. That allows information sharing and ability to
communicate at some level. It also introduces problems such as if two processes share a
loop variable which both of them increment; that could result in undesirable behavior
of misses loop executions. Shared Memory programming style is naturally suited to
computers with a pool of shared memory [23].

Shared Memory programming model is classified into two types based on the shared
memory setup, access, and latency which are Uniform and Non-uniform Memory

6

2.1 Parallel Programming Models

Access shown in Figure 4. Uniform Memory Access (UMA) implies that all processes
share access to the physical memory uniformly; moreover, latency is the same for all
processors requesting the same information from the same memory chip. Meaning,
access time is independent of which processor makes the request as well as which
memory chip contains the data. While, Non-Uniform Memory Access (NUMA) implies
the opposite. A processor can access data from its own local memory faster than the
non-local shared memory.

Figure 4: Illustration of the Shared Memory types (a) Uniform Memory Access (UMA)
(b) Non-uniform Memory Access (NUMA).

The next section covers an overview of a popular library, called OpenMP, based on
Shared Memory programming model. The following information is summarized and
taken from [24], [25].

OpenMP

Pioneered by SGI and developed in collaboration with other parallel computer ven-
dors. OpenMP is fast becoming the de facto standard for parallelizing applications.
There is an independent OpenMP organization today with most of the major computer
manufacturers on its board, including Compaq, Hewlett-Packard, Intel, IBM, Kuck &
Associates (KAI), SGI, Sun, and the U.S. Department of Energy ASCI Program. The
OpenMP effort has also been endorsed by over 15 software vendors and application
developers, reflecting the broad industry support for the OpenMP standard.

OpenMP is a parallel programming model for shared memory and distributed shared
memory multiprocessors shown in Figure 4 (a) and (b) respectively. Nevertheless, it
is an Application Programming Interface (API) that provides an easy-to-use portable
scalable parallel programming model for developers. The API supports C/C++ and

7

2 Parallel Computing

Fortran on a wide variety of architectures. Moreover, it comprised of three primary API
components: compiler directives, runtime library routines, and environment variables as
shown in Figure 5. OpenMP API is independent of the underlying machine/operating
system; therefore, OpenMP compiler as well as standard implementation exists for all
the major operating systems. Compiler directives express shared memory parallelism
and are invoked using basic semantics, such as in C #pragma. Runtime routines allow
the interaction and inquiries to OpenMP specific variables.

Figure 5: The components of OpenMP [25].

2.1.2 Distributed Memory/Message Passing

In Message Passing programming model, programmers view their programs as a collec-
tion of processes with private local variables and the ability to send and receive data
between processes by passing messages; hence the Message Passing naming. There are
no shared variables among processors; each has its own locally preserved variables and
could send and receive data. Thus, this style is naturally suited to message-passing
computers [23]. Figure 6 shows an illustration of Message Passing Model.

Figure 6: Illustration of Message Passing Model.

There are two key attributes that characterize the message-passing programming

8

2.1 Parallel Programming Models

paradigm: 1) it assumes a partitioned address space, as shown in Figure 3 (b) 2) it
supports only explicit parallelization [23]. Message passing libraries allow efficient
parallel programs to be written for distributed memory systems; hence the Distributed
Memory naming. These libraries provide routines to initiate and configure the mes-
saging environment as well as sending and receiving packets of data. Currently, the
two most popular high-level message-passing systems for scientific and engineering
application are the Parallel Virtual Machine (PVM) from Oak Ridge National Laboratory
and Message Passing Interface (MPI) defined by the MPI Forum [26].

The next section covers an overview MPI which is summarized and taken from [27]–
[29].

MPI

It was designed by a group of researchers from academia and industry to function on a
wide variety of parallel computers. The process of creating it began at a workshop on
Message Passing Standardization in April 1992, and the MPI Forum organized itself at
the Supercomputing 1992 Conference. During the next eighteen months the MPI Forum
met regularly, and Version 1.0 of the MPI Standard was completed in May 1994. Since
its release, the MPI specification has become the leading standard for message-passing
libraries for parallel computers. More than a dozen implementations exist, on a wise
variety of platforms. Every vendor of high-performance parallel computers offer an
MPI implementation as part of the standard system software, and there are a number
of freely available implementations for heterogeneous networks of workstations and
symmetric multiprocessors. That is a result of the representation on the MPI Forum,
which designed MPI: all segments of the parallel computing community, vendors, library
writers, and application scientists.

MPI is a standardized and portable message passing standard that facilitates the
development of parallel applications and libraries. The standard defines the syntax
and semantics of a core library routines that can be used to specify the communication
among a set of processors forming a concurrent program. MPI includes point-to-point
message passing and collective (global) operations, all scoped to a user-specified group
of processes. Moreover, it provides three classes of services, environmental inquiry, basic
timing information for application performance measurement, and a profiling interface
for external performance monitoring.

2.1.3 Hybrid

Best of both worlds, Shared and Distributed Memory. It allows the utilization of both
models strengths. Having said that, it may not always be beneficial, since it depends
heavily on the problem statement’s computational and communication loads. However,

9

2 Parallel Computing

if it fits for a problem, it can give considerable speedup and better scaling [30].

Hybrid approach for parallelism is a trend in HPC for the current hybrid hardware
architectures. Lots of research look into using MPI-OpenMP; in the same time, new
parallel performance libraries are adapting both models. The next sections discuss an
overview on MPI-OpenMP.

MPI-OpenMP

HPC systems are nowadays exclusively of the distributed-memory type at the overall
system level but use shared-memory compute nodes as basic building blocks (Hybrid
Architecture) [31]. Hence, the rise of MPI-OpenMP programming model that allows
any MPI process to spawn a team of OpenMP threads to deal with the shared memory,
while communicating with other MPI processes on distributed memory level. Hager et.
al. in [31] defines two basic hybrid programming approaches based on MPI-OpenMP,
Vector and Task Mode. They differ in the degree of interaction between MPI calls and
OpenMP directives. [31] explains them in more details as follows:

Vector Mode. All MPI subroutines are called outside OpenMP parallel regions, i.e., in
the “serial” part of the OpenMP code. A major advantage is the ease of programming,
since an existing pure MPI code can be turned hybrid just by adding OpenMP work
sharing directives in front of the time-consuming loops and taking care of proper NUMA
placement.

Task Mode. It is most general and allows any kind of MPI communication within
OpenMP parallel regions. Based on the thread safety requirements for the Message
Passing library, the MPI standard defines several different levels of interference between
OpenMP and MPI. Before using task mode, the code must check which of these levels
is supported by the MPI library. Functional task decomposition and decoupling of
communication and computation are two areas where task mode can be useful.

To explain both modes in more depth, a 3D Jacobi solver algorithm is adapted to reflect
the modes. Algorithm 1 and 2 show pseudocode of a 3D Jacobi solver to demonstrate the
differences between Vector and Task mode respectively. Jacobi method is prototypical
for many stencil-based iterative methods in numerical analysis and simulation. In its
most straightforward form, it can be used for solving the diffusion equation for a scalar
function.

2.2 Math Kernel Library

MKL includes routines and functions optimized for Intel that take advantage of vector-
ization and shared memory multiprocessing capabilities as well as distributed memory

10

2.2 Math Kernel Library

Algorithm 1 Vector Mode hybrid implementation of a 3D Jacobi solver.
do iteration=1,MAXITER
...
!$OMP PARALLEL DO PRIVATE(..)

do k = 1,N
! Standard 3D Jacobi iteration here
! updating all cells
...

enddo
!$OMP END PARALLEL DO

! halo exchange
...
do dir=i,j,k

call MPI_Irecv(halo data from neighbor in -dir direction)
call MPI_Isend(data to neighbor in +dir direction)

call MPI_Irecv(halo data from neighbor in +dir direction)
call MPI_Isend(data to neighbor in -dir direction)

enddo
call MPI_Waitall()

enddo

11

2 Parallel Computing

Algorithm 2 Task Mode hybrid implementation of a 3D Jacobi solver.
!$OMP PARALLEL PRIVATE(iteration,threadID,k,j,i,...)

threadID = omp_get_thread_num()
do iteration=1,MAXITER
...
if(threadID .eq. 0) then
...
! Standard 3D Jacobi iteration
! updating BOUNDARY cells
...
! After updating BOUNDARY cells
! do halo exchange

do dir=i,j,k
call MPI_Irecv(halo data from neighbor in -dir direction)
call MPI_Send(data to neighbor in +dir direction)
call MPI_Irecv(halo data from neighbor in +dir direction)
call MPI_Send(data to neighbor in -dir direction)

enddo
call MPI_Waitall()

else ! not thread ID 0

! Remaining threads perform
! update of INNER cells 2,...,N-1
! Distribute outer loop iterations manually:

chunksize = (N-2) / (omp_get_num_threads()-1) + 1
my_k_start = 2 + (threadID-1)*chunksize
my_k_end = 2 + (threadID-1+1)*chunksize-1
my_k_end = min(my_k_end, (N-2))

! INNER cell updates
do k = my_k_start , my_k_end

do j = 2, (N-1)
do i = 2, (N-1)

...
enddo enddo enddo

endif ! thread ID

!$OMP BARRIER
enddo

!$OMP END PARALLEL

12

2.3 Advance concepts

parallelism using MPI. MKL includes several groups of routines which span across
various mathematical computational challenges; the following are some of the popular
group of routines [32] :

• Basic Linear Algebra Subprograms (BLAS):

– Level 1 BLAS: vector operations.

– Level 2 BLAS: matrix-vector operations.

– Level 3 BLAS: matrix-matrix operations.

• Super BLAS Level 1, 2, and 3 (basic operations on sparse vectors and matrices) .

• LAPACK routine for solving systems of linear equations, least squares problems,
eigenvalues and singular value problems, Sylvester’s equations, and auxiliary and
utility LAPACK routine.

• ScaLAPCK computational, driver, and auxiliary routines for solving systems of
linear equations across a computer cluster.

• PBLAS routines for distributed vector, matrix-vector, and matrix-matrix operation.

• MKL PARDISO, direct sparse solver routines implementing LU factorization and
Cholesky factorization for matrices stored in sparse data format.

MKL provides both static and dynamic libraries for KNL. Furthermore, it offers a
Single Dynamic Library interface to simplify linking [32].

2.3 Advance concepts

2.3.1 Affinity (Thread/Process Pinning)

Enables the binding of threads and/or processes to specific cores results in exploiting
data locality hence improving the performance. There are multiple strategies for affinity,
such as scatter, balanced, and compact. Figure 7 illustrates the differences between the
three affinity strategies. Compact strategy pins the threads as close as possible to main
thread. Balanced strategy distributes the threads equally on the cores. Scatter strategy
is similar to balanced, but it distributes threads such that threads with IDs in close
numerical proximity are pinned on different cores.

Since effects of affinity is a widely studied concept and programs can benefit from
it, several implementations/libraries tackled affinity. For example, Intel introduce an
environment variable, KMP AFFINITY, allowing Intel’s compliers to bind OpenMP threads
to cores [33]. Then, July 2013 OpenMP version 4.0 was released introducing affinity of
data (first touch policy, privatization, etc.), threads, and the mapping of work to threads
(e.g. work-sharing constructs) [34].

13

2 Parallel Computing

Figure 7: Illustration of affinity compact, balanced, and scatter pinning 6 threads applied
on three cores with four threads

14

3 Xeon Phi Knights Landing

Xeon Phi Knights Landing (KNL) is part of the Xeon Phi family processors which
is based on Intel MIC architecture. Xeon Phi family integrates many x86 Xeon Phi
processors which deliver massive parallelism and vectorization to support demanding
high-performance computing applications [35]. As a result, making Xeon Phi family
able to handle your most-demanding HPC applications [36].

Xeon Phi family starts with Knights Ferry, a prototype board that was never released
commercially. In 2011, Intel showed an early silicon version of its first commercial Xeon
Phi board from Xeon Phi family named Knights Corner (KNC), which offers 60 cores
per chip. In 2013, Intel revealed details of its second generation Intel Xeon Phi products.
Later Intel canceled the third generation named Knights Hill. However, eventually, it
re-released an updated verion of it based on the same architecture and specification
named Knights Mill in late 2017.

As mentioned previously in Chapter 1, KNL is the second generation. This generation
brings big changes from the previous generation, KNC [17]; namely, 2D mesh intercon-
nect instead of 1D ring interconnect, stand alone processors instead of coprocessors, 72
cores out-of-order cores instead of 60 in-order cores, and two 512 Vector Processing Units
(VPU) instead of one. The terms and hardware components mentioned are introduced
and covered in more details later in this chapter.

The rest of this chapter summarizes the KNL architecture based on [17], [32] and it
is organized as follows: Section 3.1 introduces hardware components and terminology.
Section 3.2 covers an overview of KNL architecture. Section 3.3 details memory specific
configuration and mode that is offered by KNL. Section 3.4 details cluster modes that
are offered by KNL.

3.1 Terminology

In order to discuss KNL architecture especially low level hardware specific component
in HPC systems, this section introduces hardware components and terminology that is
discussed in more details in this chapter.

• Core It is the electronic circuitry that performs instructions specified in a pro-
gram by performing the basic arithmetic, logical, control and input/output (I/O)
operations.

15

3 Xeon Phi Knights Landing

• Coprocessors. It is microprocessor designed to supplement the capabilities of the
primary processor.

• Central Processing Unit (CPU). It is a central processor where most of the opera-
tions and calculations happen. A single CPU contains at least one core.

• Vector Processing Unit (VPU). A functional unit designed with arithmetic pipelin-
ing for vector processing is attached to a base data processor from which it receives
vector instructions and operands for processing [37].

• Dynamic Random-Access Memory (DRAM). It is a type of random access semi-
conductor memory that stores each bit of data in a separate tiny capacitor within
an integrated circuit corresponding to charged or discharged which represents 0
and 1.

• Double Data Rate (DDR). It refers to transferring data on both the rising edge
and falling edge of the DRAM clock signal; as a result, doubling the peak data
rate [38].

• Multichannel DRAM (MCDRAM). It is a 3D stacked DRAM which has about
5 times bandwidth of the DDR4 memory (up to 475 GB per second) [39]. It is
considered as a High Bandwidth Memory (HBM) and can be used in different
modes with different usage models, which will be explained in details in Section
3.3.

• High Bandwidth Memory (HBM). The evolution of the DRAM has been driven
by ever-increasing speed requirements mainly dictated by the microprocessor
industry [40]. To keep up with that, a standard interface to interact with the new
generation of the DRAM, which represents High Bandwidth Memory devices, was
established.

• Peripheral Component Interconnect Express (PCIe). It is a high-speed serial
computer expansion bus standard for I/O.

• Direct Media Interface (DMI). It is a connection between the processor and the
Platform Controller Hub [41].

• Mesh. It refers to the network setup connecting multiple processors/computers to
facilitate their communication.

• Cache. High-speed buffer memory used in modern computer systems to hold
temporarily those portions of the contents of main memory which are (believed
to be) currently in use. Information located in cache memory may be accessed
in much less time than that located in main memory. Thus, CPU with a cache
memory needs to spend far less time waiting for instructions and operands to be
fetched and/or stored [42].

16

3.1 Terminology

• Cache Miss. It refers to the state of when data requested by a processor but it is
not found in the cache memory. As a result, it triggers a request for the memory
to be fetched from the next cache or main memory; causing execution delays.
Figure 8 illustrates the communication caused when a processor requests data in a
memory system with two levels of cache.

• Level-1/2 (L1/2) Cache. It is a cache that is usually built onto the microprocessor
chip itself. It is the closest to a core in the CPU, with the lowest latency, and it is
usually only few KB. While, L2 is a cache that is slower than L1 cache and could
be shared between multiple cores with a size of less than or equal to MB. Figure 8
illustrate a memory system with two level of cache and its communicate with the
processor when it requests data.

Figure 8: Illustration of a memory system with two levels of cache, L1 and L2 cache [43].

• Caching and Home Agent (CHA). It holds a portion of the Distributed Tag Di-
rectory, which is discussed and explained in more details in Section 3.3, and also
serves as a connection point between the tile and the mesh.

17

3 Xeon Phi Knights Landing

3.2 Architecture

In general, KNL chipset consists of tiles, MCDRAM, DRAM, and I/O, as shown in
Figure 9. Components are as follows:

Figure 9: Diagram demonstrating an overview of the KNL Architecture.

• Tile. Composed of two cores, four VPUs, L2 cache, and a CHA, as demonstrated
in Figure 10. The two cores share a 16 way associative, 1 MB unified L2 cache.
The cores are Intel Atom based codename Slivermont; each supports up to 4
threads running at 1.3 to 1.5 GHz with a 32 KB L1 cache and two 512 bit VPUs.
Nevertheless, CHA is a distributed cache directory to keep cache coherent.

• MCDRAM. Eight 2 GB of MCDRAM. All eight MCDRAM devices together pro-
vide an aggregate Stream triad benchmark bandwidth of more than 450 GB per
second.

• DDR4. The total DDR memory capacity supported is up to 384 GB.

18

3.3 Memory Mode

Figure 10: Diagram demonstrating an overview of a tile in KNL Architecture.

• I/O. Eight MCDRAM controllers (EDC), two DDR memory controllers that support
6 channels with a bandwidth up to 90 GB per second, 2x16 lanes and 4 lanes PCIe
Gen3 each at 15.75 GB per second, and 4 lanes of DMI.

To sum up, a KNL chipset consists of a 2D mesh interconnect of 36 tiles (comprise
of 72 cores and 144 VPUs), 8 MCDRAM (2G each; 16 GB in total), 2 DDR memory
controllers supporting up 384 GB DD4 RAM in total, 36 lanes PCIe Gen 3, and 4 lanes
DMI.

3.3 Memory Mode

As discussed before, MCDRAM is a HBM that offers three different ways to be used,
namely Cache, Flat and Hybrid.

3.3.1 Cache

HBM can be used as a cache and it is treated as a Last Level Cache. Meaning, it is
located between the L2 cache and addressable memory, in this case the DDR4 RAM.
Figure 11 illustrates the memory system of KNL where MCDRAM is cache.

3.3.2 Flat

The entire HBM memory is added to the address space extending the space of the
existing DDR4 Memory. In this mode, it is possible to allocate memory in the HBM
using one of the HBM usage models, Implicit and Explicit, which are supported through
memkind interface.

"Intel’s memkind library is a user extensible heap manager built on top of jemalloc
[44] which enables control of memory characteristics and a partitioning of the heap

19

3 Xeon Phi Knights Landing

Figure 11: Illustration of KNL’s memory system with MCDRAM as cache.

between kinds of memory. The kinds of memory are defined by operating system mem-
ory policies that have been applied to virtual address ranges. Memory characteristics
supported by memkind without user extension include control of NUMA and page size
features. The jemalloc non-standard interface has been extended to enable specialized
arenas to make requests for virtual memory from the operating system through the
memkind partition interface. Through the other memkind interfaces the user can control
and extend memory partition features and allocate memory while selecting enabled
features" [45].

Implicit. Memkind library manages memory allocations and offloads to the HBM
automatically depending on the declared preferences, such as minimum memory size,
as environment variables. As a result, it requires no changes to be made on the code to
use the HBM.

Explicit. Memory can be offloaded to the HBM by specifying it through code using
memkind Library. Hence, requiring code changes in thr program to declare which
memory allocations to be offloaded to the HBM, by using for example hbw_malloc
instead of malloc which allocates in the DDR4 RAM.

3.3.3 Hybrid

The best of both worlds. It allows the HBM to be partitioned to part cache and part flat
by specifying a ratio between the two, either 75% - 25%, 50% - 50%, or 25% - 75%.

3.4 Cluster Mode

There are three main cluster modes, All-to-all (a2a), Quadrant (quad), Hemisphere
(hemi), Sub-NUMA Clustering 4 (snc-4), and Sub-NUMA Clustering 2 (snc-2). In each

20

3.4 Cluster Mode

of these cluster modes, there are advantages and disadvantages based on the application
and the differences it introduces to memory and memory access in KNL. Before tackling
the differences between the modes, an explanation of Tag Directory (TD) and CHA is
needed.

• Tag Directory. It keeps track whether data is in L2 cache and which tile’s L2 cache
has that data.

• Distributed Tag Directory. Each tile has an equal portion of the address space
and tile’s CHA services queries about its portion of the tag directory.

A detailed description of the cluster modes can be found in [17], [32]. An abstract
view of the differences between the cluster modes is presented through the following
scenario:

A process running on a specific tile requesting data from the memory address, given
that it is not present in the local cache. The tile’s CHA queries the Distributed Tag
Directory resulting in the tile requesting the data. However, assuming it is not present in
the cache, it requests the data from the memory controller responsible for this address.
Figure 12 illustrates the example for each of the cluster modes.

3.4.1 All-to-all

In this cluster mode, memory addresses are uniformly distributed across all TDs plus
the memory (MCDRAM and DDR) is set to UMA. Any tile may request data at an
address that is tracked by a CHA in any part of the chip, and the memory location
may reside in any part of the chip. It can route physical addresses from any tile to any
CHA, to any memory controller. As a result, on average a L2 cache miss transaction will
traverse longer distance since locality is not targeted. To sum up, it lacks any affinity
between the tile, TD, and memory.

3.4.2 Quadrant

It is a virtual concept, not a hardware property, that divides the tiles into 4 virtual
quadrants. It is much like a2a, where memory is set to UMA, memory addresses are
distributed uniformly across all TDs, and it can route physical addresses from any tile
to any CHA, to any memory controller. But, having four quadrants introduces affinity
in CHA and memory. Meaning, data associated to a TD will be in the same quadrant
that the TD is located. To sum up, it introduces affinity between TD and memory.

3.4.3 Hemisphere

It is a variant of quad. The only difference is that instead of dividing the tiles into 4
groups, it divides the tiles into 2 virtual halves, called hemispheres.

21

3 Xeon Phi Knights Landing

Figure 12: Illustration of L2 cache miss scenario for each cluster mode.

22

3.4 Cluster Mode

3.4.4 Sub-NUMA-4

Unlike quad, snc-4 is not only based on software; it divides the tiles into 4 clusters
resulting in separate cache-coherent clusters. The memory addresses are distributed
such that a continuous region of memory is mapped into each cluster and the TD for
the memory addresses mapped in a cluster are in CHAs that are also within the same
cluster. Meaning, the memory access transactions are completed locally within the same
cluster. To sum up, it introduces affinity between tile, TD, and memory.

3.4.5 Sub-NUMA-2

It is a variant of snc-4. The only difference is that instead of dividing the tiles into 4
clusters, it divides the tiles into 2 clusters.

23

4 MLEM Algorithm

The most widely used iterative reconstruction methods for Emission Tomography is the
Maximum Likelihood (ML) Reconstruction using the Expectation Maximization (EM)
algorithm [46], which was proposed by Shepp et. al. [7] in 1982. The algorithm tries to
solve a system of linear equations in iterative manner, which is represented in Equation
1, where N: number of voxels, M: number of detector pairs, f : 3D image that has to
be reconstructed of size N, A: 2D system matrix of size N ×M which describes the
geometrical and physical properties of the scanner (aij represents the probability of a
gamma photon discharge from a voxel j being recorded by a given pair of detectors i), g:
measured data of size M.

f (q+1)
j =

f q
j

∑N
l=1 al j

N

∑
i=1

(
aij
(gi

∑M
k=1 aik f q

k

)
(1)

Figure 13: Flowchart of MLEM Algorithm.

Figure 13 is a flowchart of the algorithm [47], which is made of the following steps:

• Initial image estimate: sum elements of g, measured data, divided by sum of A,

25

4 MLEM Algorithm

geometry matrix, elements, attaining Equation 2.

f 0 =
∑N

i=1 gi

∑M
j=1 nj

where, nj =
N

∑
l=1

ajl

(2)

• Forward Projection: multiplication of A and the image vector f , attaining Equation
3.

wi =
M

∑
k=1

aik f q
k (3)

• Comparison: comparison based on the calculated correlation between the actual
measurement, g and forward projection, w, attaining Equation 4.

ci =
gi

wi
(4)

• Backward Projection: multiplication of transpose of A and correlation vector, c,
generating update vector, u, which used in the next step to continue to convergence,
attaining Equation 5.

uj =
N

∑
l=1

aijci (5)

• Update Image: image estimation updated based on update, u, and norm, n,
vectors, attaining Equation 6

f q+1
j =

f q
j

nj
uj (6)

Based on Figure 13 and Equation 1, 3, and 5, a general MLEM, forward projection,
and backward projection algorithms can be derived, shown in Algorithm 3, 4, and 5
respectively. The MLEM algorithm is considered expensive due to the sparse matrix
multiplication, which occur in forward and backward projection. Sparse matrix multi-
plication runtime is driven by the limitation of bandwidth, loading the matrix to the
memory. Chapter 5 discusses runtime, bandwidth, and scalability in more details.

The rest of this chapter is organized as follows: Section 4.1 provides a background
on sparse matrix storage format, since matrix A is a large sparse matrix. Section 4.2
specifies a previous implementation for MLEM, which is based on the figures and
equations presented. Finally, Section 4.3 discusses the new implementation of MLEM in
terms of the code changes and the reasoning behind it.

26

Algorithm 3 MLEM Algorithm

1: function mlem(A, g, nIterations)
2: initalizeImage(A, g, n, image)
3: for (iteration < nIterations) do
4: forwardProjection(A, image, w)
5: correlation(w, g, c)
6: backwardProjection(A, c, u)
7: updateImage(u, n, image)
8: end for
9: end function

Algorithm 4 Forward Projection Algorithm

1: function forwardProjection(A, image, w)
2: for

(
row in A.rows

)
do

3: start = A.rowIndexVector[row], end = A.rowIndexVector[row + 1]
4: for

(
rowIndex in [start, end)

)
do

5: temp+ = A.value[rowIndex]× image[A.column[rowIndex]]
6: end for
7: w[row] = temp
8: end for
9: end function

Algorithm 5 Backward Projection Algorithm

1: function backwardProjection(A, c, u)
2: for

(
row in A.rows

)
do

3: start = A.rowIndexVector[row], end = A.rowIndexVector[row + 1]
4: for

(
rowIndex in [start, end)

)
do

5: u[A.column[rowIndex]]+ = A.value[rowIndex]× c[row]

6: end for
7: end for
8: end function

27

4 MLEM Algorithm

4.1 Sparse Matrix Storage Format

Typically a matrix is stored as one continuous block of memory as an array of the
matrix’s dimensions. This representation allows fast access on costs of storage and space.
In the case of huge sparse matrices, there are techniques to address storage format
compressing these matrices. The technique can be applied on a 2D matrix generating a
sparse matrix; moreover, there are multiple formats to compress and store the sparse
matrix. Although this paper summarizes the several storage formats, a more detailed
and comprehensive explanation can be found in [48].

Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) are widely
used sparse matrix storage format. Both of these formats are based on translating a
2D sparse matrix into three vectors of Rows, Columns, and Values, storing the nonzero
elements of the matrix for compressed storage. Each of these formats have its own
strengths, which are explained below with an example based on Matrix M (7).

M =

12 −2 0 6 0
−3 11 0 0 0
0 0 −8 10 7
−9 0 3 5 0
0 2 0 0 −1

 (7)

4.1.1 Compressed Sparse Row

The format is based on row indices matrix compression, hence the name. Meaning,
compressing the row vector into indices indicating the columns and the nonzero values
appearing in the matrix in the order from left-to-right top-to-bottom. Since the storage
format is a data model, there are multiple interpretations and implementations that
could be derived. This paper presents two variants, Coupled Row Index Vectors and
Single Row Index Vector. Both consist of a Columns and a Value vectors of the nonzero
elements, which length is equal to the number of nonzero elements in the matrix;
however, their row index representation differ:

• Coupled Row Index Vectors: It consists of four vectors: Columns, Values, Row
Pointer Start, and Row Pointer End. The two vectors, Row Pointer Start and Row
Pointer End, are coupled to map each row starting and ending indices of Columns
and Values vectors. Meaning that, both vectors, Row Pointer Start and Row Pointer
End have the same length which is equal to the number of rows in the matrix.
In more depth, Row Pointer Start of row x represents the first element index in
the Columns and Values; while Row Pointer End of row x last element index in the
Columns and Values vectors. Table 1 is an example of Matrix M (7).

• Singular Row Index Vector: It consists of three vectors, Values, Columns, and Row
Pointer. Both Values and Columns vectors are the same as described in Coupled

28

4.2 Existing Implementation

Values 12 -2 6 -3 11 -8 10 7 -9 3 5 2 -1
Columns 0 1 3 0 1 2 3 4 0 2 3 1 4

Row Pointer Start 0 3 5 8 11
Row Pointer End 3 5 8 11 13

Table 1: Coupled Row Index Vector CSR representation of Matrix (7).

Row Index Vectors, while Row Pointer is combining both Row Pointer Start and
Row Pointer End. Thus, the length of Row Pointer is equal to the number of rows in
the matrix + 1. Table 2 is an example of Matrix M (7).

Values 12 -2 6 -3 11 -8 10 7 -9 3 5 2 -1
Columns 0 1 3 0 1 2 3 4 0 2 3 1 4

Row Pointer 0 3 5 8 11 13

Table 2: Singular Row Index Vector CSR representation of Matrix (7).

4.1.2 Compressed Sparse Column

Similarly to CSR, CSC is based on compressing the column indices, hence the name.
The main differences are 1) it has vectors representing column indicies instead of row
indices 2) order of compressing the elements is top-to-bottom left-to-right instead of
left-to-right top-to-bottom. Table 3 and Table 4 are examples of CSC format Coupled
and Singular Column Index Vector respectively.

Values 12 -3 -9 -2 11 2 -8 3 6 10 5 7 -1
Rows 0 1 3 0 1 4 2 3 0 2 3 2 4

Column Pointer Start 0 3 6 8 11
Column Pointer End 3 6 8 11 13

Table 3: Coupled Column Index Vector CSC representation of Matrix (7).

4.2 Existing Implementation

4.2.1 Matrix Representation

The matrix representation in the original code is based on CSR format with few differ-
ence, namely:

• Row index representation: Based on Singular Row Index representation; however
without the first element of the vector, which is by default is a zero (0).

29

4 MLEM Algorithm

Values 12 -3 -9 -2 11 2 -8 3 6 10 5 7 -1
Rows 0 1 3 0 1 4 2 3 0 2 3 2 4

Column Pointer 0 3 6 8 11 13

Table 4: Singular Column Index Vector CSC representation of Matrix (7).

• Columns and values representation: Instead of having a vectors for each, it uses
one vector of tuples for both of them since the vector indices correspond to each
other.

(values,
columns)

(12,
0)

(-2,
1)

(6,
3)

(-3,
0)

(11,
1)

(-8,
2)

(10,
3)

(7,
4)

(-9,
0)

(3,
2)

(5,
3)

(2,
1)

(-1,
4)

Row Index 3 5 8 11 13

Table 5: Example of the existing code CSR matrix representation of Matrix (7).

The code corresponding to that representation is shown in Code Snippet 1.

1 template<typename T> class RowElement
2 {
3 uint32_t column;
4 T value;
5 }
6

7 class Csr4Matrix
8 {
9 uint32_t nRows;

10 uint32_t nColumns;
11

12 uint64_t* rowidx;
13 RowElement<float>* data;
14 }

Snippet 1: Existing code of CSR matrix implementation.

4.2.2 OpenMP

The code does not exactly support thread pinning, due to the matrix representation and
thread assignment, and certain KNL hardware configuration. Forward and backward

30

4.3 Proposed Implementation

projections code are shown in Code Snippet 3 (Left) and 4 (Left) respectively. The full
code is available online and can be found on LRZ GitLab1.

4.2.3 MPI-only

The code contains unnecessary complexity, does not support hybrid (MPI and OpenMP)
approach, and other minor issues. Forward and backward projections code are shown
in Code Snippet 5 (Left) and 6 (Left) respectively. The full code is available online and
can be found on LRZ GitLab1.

4.3 Proposed Implementation

4.3.1 Matrix Representation

The existing matrix implementation is good from a Software Engineering point of view.
Having said that, it is over-engineered and as a result it increases the complexity when
dealing with multiprocessing and multithreading. Therefore, we propose a simpler and
more straight-forward implementation based on CSR storage format that is:

• Support threading and multiprocessing.

• General; it could be used without any changes in different implementations.

The proposed OpenMP, MPI-only, and Hybrid (MPI-OpenMP) implementation use
the following matrix structure based on Singular Row Index:

1 struct CSR
2 {
3 uint32_t startRow, endRow;
4 int nRowIndex, nColumn;
5

6 uint32_t *columns;
7 uint64_t *rowIndex;
8 float *values;
9 }

On the other hand, the MKL offers routines for creating a handle for CSR matrix,
show in Code Snippet 2, as well as functions to perform operations such as matrix-vector
multiplication. Thus, MKL implementation uses the provided library, which is based on
Coupled Row Index.

1https://gitlab.lrz.de/lrr-tum/research/mlem/commit/f1b5d3827adb9bece7c12010c9c9934123868e0b

31

4 MLEM Algorithm

1 sparse_status_t mkl_sparse_s_create_csr (
2 sparse_matrix_t *A, sparse_index_base_t indexing,
3 MKL_INT rows, MKL_INT cols,
4 MKL_INT *rows_start, MKL_INT *rows_end,
5 MKL_INT *col_indx, float *values
6)

Snippet 2: MKL function to create handle for a CSR format matrix.

4.3.2 OpenMP

Given the matrix implementation change, it was necessary to change the OpenMP
implementation to:

• Be simpler, which makes it easier to read, understand and modify.

• Support thread pinning, which is affected by matrix partitioning.

• Support KNL hardware features, specifically HBM.

Matrix Partitioning

In the existing implementation, the main thread allocates the memory for the whole
matrix, then assigns ranges for each. Given KNL architecture, this implementation could
be problematic to certain cluster modes, such as snc-4. Moreover, it is not efficient since
the memory could be located rather far from the tile. Therefore, each thread should
allocate its own chunk of the matrix in the memory, which mostly would be the nearest
memory it can access, and store it in CSR format. Algorithm 6 highlights the logic
explained.

OpenMP Code

The change in the matrix representation effects the functions that takes it as an input,
which most importantly are forward projection and backward projection. Code Snippet
3 (Right) and 4 (Right) shows the proposed implementation for forward and backward
projection respectively; moreover, it also highlights the changes made in comparison to
the existing implementation in a side-by-side comparison style.

4.3.3 MPI-only and Hybrid

Similarly to OpenMP, it is necessary for the new MPI implementation to:

• Be simpler, which makes it easier to read, understand and modify.

• Support process pinning, which is affected by matrix partitioning.

32

4.3 Proposed Implementation

Algorithm 6 OpenMP Matrix Partitioning

1: function partition(A)
2: Allocate shared array storing all CSR struct the pointers . Master thread only
3: Allocate CSR struct, thread_CSR . Ran by each thread
4:

5: Calculate: average = total elements / number of threads
6: for

(
row in A.rows

)
do

7: sum += elements in row
8: if

(
sum >= average

)
then

9: Assign thread range . Starting and ending row
10: threadID++; sum=0;
11: end if
12: end for
13:

14: function build_CSR . Ran by each thread
15: for

(
row in [startRow, endRow)

)
do

16: Copy row index, values, columns from A to thread_A
17: end for
18: end function
19: end function

• Support Hybrid approach by design; hence, thread pinning.

• Support KNL hardware features, specifically HBM.

Matrix Partitioning

It is an adaptation of OpenMP matrix partitioning to be used for MPI-only and Hybrid.
Theoretically, there is not much difference other than some variables and memory
accesses are not shared. The code for matrix partitioning for MPI-only and Hybrid can
be derived from OpenMP partitioning algorithm, Algorithm 6.

MPI-only and Hybrid Code

Similarly to OpenMP implementation, forward and backward projection are affected by
the new matrix representation. Moreover, in the case of Hybrid, forward and backward
projection is a combination of MPI-only and OpenMp. Code Snippet 5 (Right) and
6 (Right) shows the proposed implementation for forward and backward projection
respectively; moreover, it also highlights the changes made in comparison to the existing
implementation in a side-by-side comparison style.

33

4 MLEM Algorithm

4.3.4 MKL

An implementation using MKL routines was crucial for comparison. Since MKL has its
own CSR structure and routines, forward and backward projection are based on MKL
matrix multiplication function provided by the library; making the code significantly
different than the other implementations, which is shown in Code Snippet 7.

34

4.3 Proposed Implementation

1 void
2 forwardProjection(A, image, w) {
3 # pragma omp parallel for
4

5

6

7

8 for (uint32_t row = 0;
9 row < A.rows();

10 ++row) {
11 float res = 0.0;
12

13 std::for_each(A.beginRow2(row),
14 A.endRow2(row),
15 [&](RowElement<float>& e) {
16 res += e.value() *
17 image[e.column()];
18 });
19 w[row] = res;
20

21 }
22 }

1 void
2 forwardProjection(image, w) {
3 # pragma omp parallel
4 {
5 int tidx = omp_get_thread_num();
6 A_thread = global_A[tidx];
7 uint32_t startRow, endRow;
8 for (row = startRow;
9 row < endRow;

10 ++row) {
11 float res = 0.0;
12 uint32_t startCVIndex, endCVIndex;
13 for (j = startCVIndex;
14 j < endCVIndex;
15 j++)
16 res += A_thread.value[j] *
17 image[A_thread.columns[j]]
18

19 w[row] = res;
20 }
21 }
22 }

Snippet 3: OpenMP forward projection implementation side-by-side comparison. Left
side shows the existing implementation; while, the right side shows the
proposed implementation. The grey highlights details the changes.

35

4 MLEM Algorithm

1 void
2 backwardProjection(A, c, u) {
3 # pragma omp parallel
4 {
5 Vector<float> temp(u.size(),0);
6

7

8 # pragma omp for schedule(dynamic)
9 for (uint32_t row = 0;

10 row < A.rows();
11 ++row) {
12

13 std::for_each(
14 A.beginRow2(row),
15 A.endRow2(row),
16 [&](RowElement<float>& e) {
17 temp[e.column()]
18 += e.value() * c[row];
19 });
20 }
21 # pragma omp critical
22 {
23 size_t i = 0;
24 for (; i < u.size(); ++i)
25 u[i] += temp[i];
26 }
27 }
28 }

1 void
2 backwardProjection(c, u) {
3 # pragma omp parallel
4 {
5 Vector<float> temp(u.size(),0);
6 int tidx = omp_get_thread_num();
7 A_thread = global_A[tidx];
8 uint32_t startRow, endRow;
9 for (row = startRow;

10 row < endRow;
11 ++row) {
12

13 uint32_t startCVIndex, endCVIndex;
14 for (j = startCVIndex;
15 j < endCVIndex;
16 j++)
17 temp[A_thread.columns[j]] +=
18 A_thread.value[j] * c[row]
19

20 }
21 # pragma omp critical
22 {
23 size_t i = 0;
24 for (; i < u.size(); ++i)
25 u[i] += temp[i];
26 }
27 }
28 }

Snippet 4: OpenMP backward projection implementation side-by-side comparison. Left
side shows the existing implementation; while, the right side shows the
proposed implementation. The grey highlights details the changes.

36

4.3 Proposed Implementation

1 void
2 forwardProjection(A, image, w) {
3 std::fill(w, w + w.size(), 0.0);
4

5 auto& myrange = ranges[mpi.rank];
6 matrix.mapRows(myrange.start,
7 myrange.end - myrange.start);
8

9

10 for (int row = myrange.start;
11 row < myrange.end;
12 ++row) {
13 float res = 0.0;
14

15 std::for_each(A.beginRow2(row),
16 A.endRow2(row),
17 [&](RowElement<float>& e) {
18 res += e.value() *
19 image[e.column()];
20 });
21 w[row] = res;
22 }
23

24 MPI_Allreduce(MPI_IN_PLACE, w,
25 w.size(), MPI_FLOAT, MPI_SUM,
26 MPI_COMM_WORLD);
27 }

1 void
2 forwardProjection(image, w) {
3 std::fill(w, w + w.size(), 0.0);
4

5 #pragma omp parallel
6 {
7 int tidx = omp_get_thread_num();
8 A_thread = global_A[mpi.rank][tidx];
9 uint32_t startRow, endRow;

10 for (row = startRow;
11 row < endRow;
12 ++row) {
13 float res = 0.0;
14 uint32_t startCVIndex, endCVIndex;
15 for (j = startCVIndex;
16 j < endCVIndex;
17 j++)
18 res += A_thread.value[j] *
19 image[A_thread.columns[j]]
20

21 w[row] = res;
22 }
23

24 MPI_Allreduce(MPI_IN_PLACE, w,
25 w.size(), MPI_FLOAT, MPI_SUM,
26 MPI_COMM_WORLD);
27 }

Snippet 5: MPI/Hybrid forward projection implementation side-by-side comparison.
Left side shows the existing implementation; while, the right side shows the
proposed implementation. The grey highlights details the changes.

37

4 MLEM Algorithm

1 void
2 backwardProjection(A, c, u) {
3 std::fill(u, u + w.size(), 0.0);
4

5 auto& myrange = ranges[mpi.rank];
6 matrix.mapRows(myrange.start,
7 myrange.end - myrange.start);
8

9

10 for (int row = myrange.start;
11 row < myrange.end;
12 ++row) {
13

14

15 std::for_each(
16 A.beginRow2(row),
17 A.endRow2(row),
18 [&](RowElement<float>& e) {
19 u[e.column()] +=
20 e.value() * c[row];
21 });
22 }
23

24

25

26

27

28 MPI_Allreduce(MPI_IN_PLACE, ,
29 u.size(), MPI_FLOAT, MPI_SUM,
30 MPI_COMM_WORLD);
31 }

1 void
2 backwardProjection(c, u) {
3 std::fill(u, u + w.size(), 0.0);
4 #pragma omp parallel
5 {
6 Vector<float> temp(u.size(),0);
7 int tidx = omp_get_thread_num();
8 A_thread = global_A[mpi.rank][tidx];
9 uint32_t startRow, endRow;

10 for (row = startRow;
11 row < endRow;
12 ++row) {
13

14 uint32_t startCVIndex, endCVIndex;
15 for (j = startCVIndex;
16 j < endCVIndex;
17 j++)
18 temp[A_thread.columns[j]] +=
19 A_thread.value[j] * c[row]
20 }
21 #pragma omp critical
22 {
23 size_t i = 0;
24 for (; i < u.size(); ++i)
25 u[i] += temp[i];
26 }
27 }
28 MPI_Allreduce(MPI_IN_PLACE, ,
29 u.size(), MPI_FLOAT, MPI_SUM,
30 MPI_COMM_WORLD);
31 }

Snippet 6: MPI/Hybrid backward projection implementation side-by-side comparison.
Left side shows the existing implementation; while, the right side shows the
proposed implementation. The grey highlights details the changes.

38

4.3 Proposed Implementation

1 sparse_matrix_t A;
2 struct matrix_descr descr;
3

4 void forwardProjection(image, w)
5 {
6 mkl_sparse_s_mv(SPARSE_OPERATION_NON_TRANSPOSE, 1.0, A,
7 descr, image, 0.0, w);
8 }
9

10 void backwardProjection(c, u)
11 {
12 std::fill(u, u + u.size(), 0.0);
13

14 mkl_sparse_s_mv(SPARSE_OPERATION_TRANSPOSE, 1.0, A, descr, c, 0.0, u);
15 }

Snippet 7: MKL implementation for forward and backward projection.

39

5 Evaluation

This chapter is organized as follows: Section 5.1 describes the datasets and parameters
for running MLEM. Section 5.2 discusses the different approaches based on parallelism
concepts and hardware configurations to obtain the best performance. Section 5.3 details
20 different configurations to be compared yield from the previous section. Section 5.4
portrays and represents the results of the 20 different setups. Section 5.5 analyzes and
provides reasoning for the setup performance as well as highlights the best performing
setup. Finally, Section 5.6 discusses limitations in this work.

5.1 Data

As discussed previously in Chapter 4 and shown in Algorithm 3, MLEM requires four
parameters:

• nIteration: Number of iterations before it terminates. It is set to 50 iterations.

• image: Initial estimation, which is calculated using Equation 2.

• g: Measurement vector generated from the MADPET-2 scanner.

• A: System matrix, 2D matrix that describes the geometrical and physical properties
of the scanner. Since the measurement were taken by MADPET-2, A describes the
characteristics of MADPET-2, which consists of voxels divided into a 140× 140×
140 grid and 1152 detectors arranged in two concentric rings, as shown in Figure 1.
A more detailed characteristics of the A presented in Table 6.

5.2 Design

To utilize KNL as efficiently as possible, the effect of different approaches based on vari-
ous hardware configurations and parallelism concepts on performance are investigated:

• Affinity (Process/Thread Pinning). As mentioned previously, it enables the
binding of threads and/or processes to CPUs results in exploiting data locality
usually. Moreover, there are multiple strategies for affinity, such as scatter,
balanced, and compact.

41

5 Evaluation

Parameter Value
Total Size(Bytes) 12,838,607,884

Rows (Pair of detectors) 1,327,104
Columns (Voxels) 784,000

Total Non Zeros(NNZ) 1,603,498,863
Matrix Density(%) 0.1541

Max Value 8.90422e-05
Min Value 5.50416e-24

Max NNZ in a row 6537
Min NNZ in a row 0
Avg NNZ in a row 1208

Most repeating NNZ in row 0
Occurrence of Most repeating NNZ in row 822530

2nd Most repeating NNZ in row 3
Occurrence of 2nd Most repeating NNZ in row 2034

Max NNZ in a column 6404
Min NNZ in a column 0
Avg NNZ in a column 2045

Most repeating NNZ in column 0
Occurrence of Most repeating Mode NNZ in row 215488

2nd Most repeating NNZ in row 231
Occurrence of 2nd Most repeating NNZ in row 260

Table 6: MADPET-2 Matrix Characteristics [49].

42

5.3 Setup

Nevertheless, in all proposed implementations excluding MKL, each thread allo-
cates its own part of the matrix, which accentuates the pinning effect on exploiting
data locality as well as deals with NUMA memory configuration.

• Cluster Mode. As stated in Section 3.4, the modes are either based on NUMA or
UMA. Thus, this evaluates the possibility of data locality, introduced by the cluster
modes, influence on performance. There are certain type of applications where
NUMA results in better performance than UMA and visa versa. Nevertheless,
it is important to examine the effect of those modes with the influence of other
variables, such as Parallelism Library.

• HBM Configuration. As stated in section 3.3, there are three modes for HBM:
cache, flat, and hybrid. Considering the proposed implementations, flat mode is
better than cache mode since 1) matrix fits in the memory; hence, offloading the
matrix to HBM (flat) where the bandwidth is the same as to cache 2) flat mode
allows faster writes generated by MLEM matrix-vector multiplication. Given that
1) hybrid is cache and flat mode 2) flat is better than cache for MLEM, then we can
deduce that flat performance is better or the same as hybrid. Thus, we are only
concerned with flat mode in the evaluation.

• HBM Usage Model. As stated in section 3.3, there are two ways to use the HBM in
flat mode, Implicit and Explicit. In the Implicit, the matrix and all other variables
are allocated in the HBM. While in the Explicit, the implementations have only the
matrix to be allocated in the HBM.

• Parallelism Library. Performance of the two different parallel paradigms, Message
Passing and Shared Memory, and their mix, hybrid approach, is a constant question
that shows up in research. In Section 4.3, we presented implementations based
on different parallelism approaches and libraries, OpenMP, MPI-only, MKL, and
Hybrid (MPI-OpenMP).

5.3 Setup

The different approaches based on various hardware configurations and parallelism
concepts discussed in the previous section yield 20 different setups, as shown in Table 7.
More details concerning running the implementation spanning thread count to compiler
information is explained below:

• Thread Range: Since the maximum performance of KNL is achieved using one
thread per core (without hyperthreading), the maximum number of threads is 64.
The implementations are run over a range of thread numbers starting from 1 to 64
in an increasing order in powers of two, 2i. Note that the Hybrid implementation
runs on two nodes, hence in total the maximum number of threads is 128 and it
follows an increasing order of 2i+1. Nevertheless, it is ensured that there is no

43

5 Evaluation

Parallelism
Library

Cluster Mode HBM Usage Model Affinity Label

MKL snc-4 Implicit
Yes mkl_a2a_m_pinning
No mkl_a2a_m

Open MP

a2a
Implicit

Yes omp_a2a_m_pinning
No omp_a2a_m

Explicit
Yes omp_a2a_x_pinning
No omp_a2a_x

quad
Implicit

Yes omp_quad_m_pinning
No omp_quad_m

Explicit
Yes omp_quad_x_pinning
No omp_quad_x

snc-4
Implicit

Yes omp_snc4_m_pinning
No omp_snc4_m

Explicit
Yes omp_snc4_x_pinning
No omp_snc4_x

MPI-only
a2a Explicit Yes mpi_a2a_x_pinning

quad Explicit Yes mpi_quad_x_pinning
snc-4 Explicit Yes mpi_snc4_x_pinning

Hybrid
a2a Explicit Yes hyb_a2a_x_pinning

quad Explicit Yes hyb_quad_x_pinning
snc-4 Explicit Yes hyb_snc4_x_pinning

Table 7: All the different setups with their labels.

44

5.4 Results

imbalance; each node has the same number of threads.

To sum up, the OpenMP, MPI-only, and MKL implementation run with 1, 2, 4, 8,
16, 32, and 64 threads; While, Hybrid runs with 2, 4, 8, 16, 32, 64, and 128 threads.

• Affinity (Process/Thread Pinning): Considering that at maximum thread number
is 64, 1 thread per core, the environment variable for affinity set to bind each thread
to a core using a compact strategy, KMP_AFFINITY="granularity=core,compact".
On the other hand, in the case of no pinning, there is no strategy set.

• HBM Usage Model: In the case of Implicit, an environment vari-
able is set for the least size of allocation to be redirected to HBM,
AUTO_HBW_SIZE=1B plus adding memkind libraries to shared libraries path,
LD_PRELOAD=libautohbw.so:libmemkind.so.

• Compiler Flags: a comprehensive list of the compiler flags is in the Appendix,
Table 8.

• Run command. The OpenMP and MKL implementations run using numactl; while
Hybrid and MPI-only implementations run using mpirun Version 2017 Update
4 Build 20170817. As mentioned previously, in the case of Implicit, we prepend
LD_PRELOAD=libautohbw.so:libmemkind.so to link memkind for automatic HBM
allocation. A comprehensive list of the run commands as well as environment
variables are found in Snippet 8 in the appendix.

• KNL Cluster: The implementations run on CoolMUC cluster provided by Leib-
niz Supercomputing Center. An overview of CoolMUC3 characteristic is in the
Appendix, Table 9.

5.4 Results

Each setup runs 10 time. During each run, the algorithm records the iteration time
for forward projection and backward projection, and the total iteration time. In total
generating 500 data points, since the iteration number is set to 50.

To evaluate the all different setups, a measure for performance, scalability, and memory
bandwidth is required. From data collected, average runtime, speedup, and memory
bandwidth can be calculated as indicators for performance, scalability, and memory
bandwidth utilization respectively. Runtime indicates the performance of the algorithm
given all the variables and configuration associated with the setups. Speedup indicates
the improvement with increasing the number of processors/threads which in turn indi-
cates scalability. Memory bandwidth indicates the KNL’s HBM memory utilization as
well as indicates the existence of a bottleneck since MLEM is memory-bound algorithm.

45

5 Evaluation

Average Runtime

Let iteration_runtime denote the time for one iteration of MLEM algorithm loop and
runtime denote the total time for MLEM algorithm executed for 50 iterations. Then,
average_runtime is the total runtime of 10 runs over 10. Equation 8 defines average
runtime given a number of threads and setup, t and s respectively. Figure 14 provides a
full overview of all setups average runtime, but it is rather hard to read. While Figure
15 and 16 breaks down the average runtime into groups for easier reading. The error is
not presented in the graphs since the standard deviation for most of the measurements
is equal to or less than 1%.

average_runtime(t, s) =
∑10

i=1
(
runtimei(t, s)

)
10

(8)

Speed up

Speedup is the runtime using one thread/processor, sequential, over the runtime
using p processors/threads. Since there are different setups, a common sequential
implementation must be defined, sequential_baseline. Equation 9 defines speedup,
where s is setup, t number of threads, and sequential_baseline is the sequential code
runs with HBM in Implicit and cluster mode in a2a. Note, by definition, speedup is
upper bound by p which is considered the theoretical optimal value. Figure 17 provides
a full overview of all setups speedup curves, but it is rather hard to read. While Figure
18 and 19 breaks down the speedup into groups for easier reading.

speedup
(
t, s
)
=

sequential_baseline
average_runtime(t, s)

(9)

Memory Bandwidth

Memory bandwidth is the total amount of memory loaded over the time spent for the
operation. Equation 10 defines memory bandwidth, where memory_size is the memory
loaded for a given function. Based on that, forward and backward projection memory
bandwidth can be calculated. Figure 20 provides a full overview of all setups memory
bandwidth, but it is rather hard to read. While Figure 21 and 22 breaks down the
memory bandwidth into groups for easier reading.

bandwidth
(
t, s
)
=

average_runtime(1)
average_runtime(t, s)

(10)

5.5 Discussion

Figure 14, 17, and 20 indicate performance, scalability, and memory bandwidth uti-
lization of the setups according to the influence of the different approaches, based on
various hardware configurations and parallelism concepts, presented previously.

46

5.5 Discussion

Figure 14: Average runtime achieved by all setups.

47

5 Evaluation

(a)

(b)

48

5.5 Discussion

(c)

(d)

Figure 15: Average runtime achieved by OpenMP setups grouped in (a) Implicit (b)
Implicit + Pinning (c) Explicit (d) Explicit + Pinning

49

5 Evaluation

(a)

(b)

50

5.5 Discussion

(c)

Figure 16: Average runtime achieved by (a) MPI-only (b) Hybrid (c) MKL

51

5 Evaluation

Figure 17: Speedup achieved by all setups.

52

5.5 Discussion

(a)

(b)

53

5 Evaluation

(c)

(d)

Figure 18: Speedup achieved by OpenMP setups grouped in (a) Implicit (b) Implicit +
Pinning (c) Explicit (d) Explicit + Pinning.

54

5.5 Discussion

(a)

(b)

55

5 Evaluation

(c)

Figure 19: Speedup achieved by (a) MPI-only (b) Hybrid (c) MKL. Blue dotted line
shows the theoretical optimal speedup.

56

5.5 Discussion

Figure 20: Bandwidth achieved by all setups.

57

5 Evaluation

(a)

(b)

58

5.5 Discussion

(c)

(d)

Figure 21: Memory bandwidth achieved by OpenMP setups grouped in (a) Implicit (b)
Implicit + Pinning (c) Explicit (d) Explicit + Pinning.

59

5 Evaluation

(a)

(b)

60

5.5 Discussion

(c)

Figure 22: Memory bandwidth achieved by (a) MPI-only (b) Hybrid (c) MKL.

61

5 Evaluation

5.5.1 Affinity (Process/Thread Pinning)

There are 14 setups in total that can be compared to examine the effect of affinity, as
detailed in Table 7. These setups are tackled in the next paragraphs based on their
parallelism library breaking them into 12 and 2 setups corresponding to OpenMP and
MKL respectively.

OpenMP. Figure 15 (a-d), where average runtime data are compared from (a) and
(c) to (b) and (d) respectively as non-pinning vs pinning setups, shows a significant
performance increase for pinning setups spanning all the different cluster modes. Figure
18 (a-d), where average runtime data are compared from (a) and (c) to (b) and (d)
respectively as non-pinning vs pinning setups, shows a significant scalability increase
for pinning setups spanning all the different cluster modes. Figure 21 (a-d), where
memory bandwidth data are compared from (a) and (c) to (b) and (d) respectively as
non-pinning vs pinning setups, shows a significant memory bandwidth increase in for-
ward and backward projection in pinning setups spanning all the different cluster modes.

MKL. Figure 16 (c), non-pinning vs pinning average runtime, shows a significant
performance increase non-pinning setups. Figure 19 (c), non-pinning vs pinning
speedup, shows no observable difference in scalability between both setups. Figure
22 (c), non-pinning vs pinning memory bandwidth, shows an alternating behavior for
memory bandwidth for forward projection between pinning and non-pinning; while
no observable difference for backward projection. Despite the alternating behavior for
forward projection, at 64 threads both, pinning and non-pinning, have similar memory
bandwidth.

OpenMP pinning setups perform and scale better than non-pinning setups as expected.
Pinning setups allow threads to allocate their required data at the nearest memory
available to location where they are pinned. As a result, these setups can utilize the
memory bandwidth more effectively, which is evident in Figure 21 (a-d). In the case
of MKL, since MKL uses its own matrix format which does not allow the threads to
allocate their own required data, pinning could have either positive or negative affect
which is seen in its alternating bandwidth utilization in Figure 22 (c).

To conclude, this highlights the importance for developers to exploit data locality for its
possible huge effect on performance as it can be seen here.

5.5.2 Cluster Mode

There are 18 setups in total that can be compared to examine the effect of cluster modes,
as detailed in Table 7. These setups are tackled in the next paragraphs based on their
parallelism library breaking them into 12, 3, and 3 setups corresponding to OpenMP,
MPI-only, and Hybrid respectively.

62

5.5 Discussion

OpenMP. Figure 15 (a-d), where each figure shows the average runtime of the three
different cluster modes, reveals no significant difference in performance overall,
especially for setups with pinning. Furthermore, snc-4 performance is slightly less
than a2a and quad for setups with non-pinning and 64 threads. Figure 18 (a-d), where
each figure shows speedup of the three different cluster modes, reveals no observable
difference in scalability between the cluster modes in all setups with pinning; while
setups without pinning show snc-4 having lower speedup for 64 threads. Figure 21
(a-d), where each figure shows memory bandwidth of the three different cluster modes,
shows overall no observable difference in the performance between the three cluster
modes in pinning setups. While the non-pinning setups, snc-4 utilizes less memory
bandwidth in comparison to quad and a2a. It is noticeable for 64 threads.

MPI-only and Hybrid. Figure 16 (a-b), where each figure shows the average runtime
of the three different cluster modes, reveals no significant difference in performance
overall. Figure 19 (a-b), where each figure shows speedup of the three different cluster
modes, reveals no observable difference in scalability between the the cluster modes.
Figure 22 (a-d), where each figure shows memory bandwidth of the three different
cluster modes, shows that MPI-only setups have no observable difference between
the utilized memory bandwidth; while Hybrid setups have slight difference, namely
quad utilizes the most in forward projection and snc-4 utilizes the most in backward
projection. Having said that, this slight difference does not affect much the runtime and
speedup showing that it is rather insignificant. Overall the performance, scalability, and
memory bandwidth of MPI-only and Hybrid is similarly to OpenMP with pinning.

As mentioned previously in Section 3.4, the difference between the cluster modes
is what affinity it introduces and how. snc-4 introduces affinity between tile, TD,
and memory; quad introduces affinity between TD and memory; while, a2a is the
most general introducing no affinity between tile, TD, and memory. That explains
why snc-4 performs slightly better than quad and a2a as shown in Figure 15 (a-d)
and 16 (a-b). However, OpenMP non-pinning at 64 threads setups, it seems that
it performs slightly slower than a2a and quad, which is due conflicting affect of
non-pinning (threads moving around in the chipset while the data is allocated still
at the same place) and cluster modes. In other words, the affinity introduced by
the cluster modes is damaged by threads moving around (non-pinning). The small
difference in the performance affects scalability and reflects in memory bandwidth
utilization which is more noticeable in Figure 18 (a-d) and 21 respectively. While in
the case of OpeMP pinning, MPI-only, and Hybrid, cluster modes have more uniform
performance, scalability, and memory bandwidth utilization with insignificant difference.
That is because of the pinning implementation which allows each thread to allocate
its own chunk of memory; thus, it introduces data affinity regardless of the cluster mode.

63

5 Evaluation

To conclude, a2a and quad have overall similar performance; and even though a2a
and quad have the overall better performance and scalability in comparison to snc-4,
cluster modes do not affect performance significantly especially when data affinity is
introduced through pinning processes near to the data they require.

5.5.3 HBM Usage Model

There are 12 setups in total that can be compared to examine the effect of HBM Usage
model, as detailed in Table 7. Figure 15 (a-d), where average runtime data are compared
from (a) and (b) to (c) and (d) respectively as Implicit vs Explicit setups, shows no
significant difference for setups with non-pinning; while observable difference in setups
with pinning where Implicit performs better than Explicit. Figure 18 (a-d), where
speedup data are compared from (a) and (b) to (c) and (d) respectively as Implicit vs
Explicit setups, shows no significant difference for setups with non-pinning; while
observable difference in scalability in setups with pinning where Implicit scales better
than Explicit. Figure 21 , where memory bandwidth data are compared from (a) and (b)
to (c) and (d) respectively as Implicit vs Explicit setups, shows no significant difference
for setups with non-pinning; while an observable significant difference in setups with
pinning where Implicit utilizes better memory bandwidth in backward projection than
Explicit.

Implicit better performance, scaling, and memory bandwidth utilization than Explicit
is expected. Implicit offloads the matrix as well as all the vectors and variables to the
HBM; unlike Explicit which only offloads the matrix to the HBM. Even though the size
vectors and variables is not as large as the matrix size, however their effect us noticeable
as it is reflected on the memory bandwidth utilization shown in Figure 21.

To conclude, using the HBM has a great effect on performance. It is evident when
comparing the performance of Implicit and Explicit, where Implicit takes full advantage
of the HBM unlike the Explicit.

5.5.4 Parallelism Library

Figure 14 shows the average runtime of all the setups grouped by parallelism library.
Their overall performance ranking in a descending order as follows: OpenMP, Hybrid,
MPI-only and MKL. OpenMP pinning and Implicit, Hybrid, and MPI-only setups
having similar performance verifies the implementations. Even though MPI is based on
Message Passing paradigm, however the MPI-only setups uses MPI’s Shared Memory
Programming Model (SHM). As a result, it is expected to have a similar performance
to OpenMP. On the other hand, MKL performance is rather under our expectations.
Having said that, it is in agreement with other published work which is presented later
in Chapter 6.

64

5.6 Limitation

Figure 17 shows the speedup of all the setups grouped by parallelism library. Their
overall scalability ranking in a descending order is the same as their performance order.
That is because scalability is defined by average runtime, as shown in Equation 9. The
linear increasing curve of OpenMP pinning and Implicit, Hybrid, and MPI-only setups
is good when compared to the theoretical optimal speedup curve. While the other
setups seems to suffer from data shuffling since their required data is not placed nearest
(non-pinning setups).

Figure 20 shows the memory bandwidth of all the setups grouped by parallelism.
Their overall memory bandwidth utilization ranking in a descending order is the same
as speedup and average runtime. Average runtime and speedup is reflected in the
memory bandwidth utilized by the setups. Hence, all the top performing setups,
OpenMP pinning and Implicit, Hybrid, and MPI-only show high memory bandwidth
utilization. The highest memory bandwidth utilized on one KNL node is 90 GB per
second. Since this is a bit less than one third of the available memory bandwidth, it
indicates the possibility to improve the implementations even more to utilize the HBM
more effectively.

5.6 Limitation

5.6.1 CoolMUC3

There are two main limitations:

• Cluster Modes. There are two other cluster modes, hemi and snc-2, which are not
mentioned in the thesis since they are not supported.

• Runtime. Rarely, bizarre iteration times are recorded, which presumed are caused
by a malfunction. Those defected iterations are removed by replacing the full run
where they occur with a new full run.

5.6.2 MKL

Collecting results of MKL is difficult due to killed jobs. This is happens specially for
a2a and quad randomly for jobs of low thread number and to almost all jobs of high
thread number. We could not find a reason that would explain MKL processes running
successfully in snc-4 cluster mode but not in the others. Thus, we reached out to experts
to investigate the issue, but we have not heard back yet.

65

6 Related Work

Speeding up iterative emission tomography image reconstruction algorithms, such as
MLEM algorithm [7], [8], [50], [51], has been an important research topic with great
practical importance [52]. This thesis evaluates KNL for running MLEM and more
importantly approaches to speed up MLEM on KNL through utilizing various hardware
configurations it offers as well as different parallelism libraries and concepts.

Before discussing the different parallelism libraries and concepts, an introduction to
several mini applications and benchmarks used in the reviewed work is necessary:

• MiniFE [53]: It is a finite elements application which solves a nonlinear system of
equations using Conjugate-Gradient algorithm. It is a memory-bound application,
which makes it an optimal candidate to study the impact of the different cluster
modes introduced previously in Section 3.4 [54].

• MiniMD [53]: It is a "Molecular dynamics code. It implements spatial decompo-
sition, where each processor works on subsets of the simulation box. MiniMD
computes atoms movements in a 3D space using the Lennard-Jones pair interaction.
It follows a stencil communication pattern where neighbors exchange information
about atoms in boundary regions. Because of these characteristics, it provides
good weak scaling" [54].

• LBS3D [55]: It is a multiphase Lattice Boltzmann Code based on the Free Energy
method of Zheng et. al. [55]. This code simulates the flow of two immiscible,
isothermal, incompressible fluids with great spatial and temporal detail [54].

• XSBench [56]: It is a proxy app that models the most computationally intensive
part of a typical Monte Carlo transport algorithm - the calculation of macroscopic
neutron cross sections, which accounts for 85% of the total runtime of OpenMC
(Monte Carlo particle transport simulation code focused on neutron criticality
calculations). It is a memory-bound application and usually used for investigating
on node parallelism issues [57].

• Graph500 [58]: "It represents data-analytics workloads. The memory access pattern
is data-driven with poor temporal and spatial locality. Thus this application is
featured with random access pattern" [59].

• GUPS [60]: It is a "synthetic benchmark that measures the Giga-updates-per-second
(GUPS) by reading and updating uniformly distributed random addresses in a

67

6 Related Work

table. The memory access pattern is random with poor data locality. This synthetic
problem is often used for profiling the memory architecture" [59].

• DGEMM [60]: It is a benchmark that performs dense-matrix multiplication mea-
suring Giga floating point operation as its performance evaluation. The memory
access pattern is sequential and optimization in data locality is crucial [59].

• PARSEC [61]: Princeton Application Repository for Shared-Memory Computers
(PARSEC) "is a benchmark suite composed of multithreaded programs. The
suite focuses on emerging workloads and was designed to be representative of
next-generation shared-memory programs for chip-multiprocessors" [62].

• XGC1 [63]: It is a "full distribution function global 5D gyrokinetic Particle-In-
Cell (PIC) code for simulations of turbulent plasma phenomena in a magnetic
fusion device. It is particularly well-suited for plasma edge simulations due to an
unstructured mesh used in the Poisson equation solver that allows the simulation
volume to encompass the magnetic separatrix, the Scrape-Off-Layer (SOL) and the
edge pedestal. The main building blocks of the code are the particle pusher, the
collision operator and the Poisson solver" [64].

Cluster Modes. Rosales et. al. in [54] investigates the effect of cluster modes on
performance of HPC applications. The paper uses mini application (MiniFE [53],
MiniMD [53], and LBS3D [55]) to observe the performance differences in a2a and
quad cluster modes running given 1 to 256 threads (in powers of 2). The results from
MiniFE and MiniMD, using DRAM or MCDRAM, show that a2a scales better than
quad; however it performs either better or same as quad. On the other hand, the
results from LBS3D using MCDRAM show alternating behavior, where given certain
number of threads a2a performs better, worse, or the same, while using DRAM a2a
performs better or the same. Moreover, a2a scales slightly better than quad using
MCDRAM and significantly better using DRAM. Malhanov et. al. in [65] assess
the effect of cluster modes on the performance of couple of parallelism approaches.
The paper tests the performance of PARSEC [61] in quad and snc4 cluster modes
with parallelism approach as MPI only and Hybrid (MPI and OpenMP) as well
as with MCDRAM as flat or cache. The results show that quad outperforms snc-4
in all setups. Carrier et. al. in [64] examines the effect of clusters modes, quad
and snc4, on one node thread scaling of XGC1 [63]. The results display that quad
performs slightly better when using MCDRAM or DDR. Ultimately, the effect of the
cluster modes is dependent on the application as demonstrated in the work stated above.

Memory Mode. Smith et. al. [66] compares the effect of MCDRAM memory mode,
flat and cache, on the performance of MTTKRP using several databases. The results
reveal that both, cache and flat mode, perform identically when the database fit in
MCDRAM; while when the database is larger, flat mode performs better than cache
with significantly lower runtime. Peng et. al. in [59] inspects MCDRAM memory mode

68

effect thoroughly over several applications and benchmarks. The paper benchmarks
the performance of XSBench [56] over a range of problem sizes, Graph500 [58] over
a range of graph sizes, GUPS [60] over a range of table sizes, MiniFE over a range of
matrix sizes, and DGEMM [60] over a range of array sizes in flat and cache. The results
of XSBench and DGEMM shows similar performance, Graph500 and GPUs shows
alternating performance, and MiniFE shows flat outperforms cache. Rosales et. al. in
[54] also observe the effect of MCDRAM memory modes on the performance of HPC
application. In the same evaluation of MiniFE, MiniMD, and LBS3D performance in
a2a cluster mode, the effect of flat and cache memory modes is noted. The results
show insignificant difference in the performance of flat and cache. To conclude, the
best memory mode configuration is dependent on the application memory usage and
definitely on whether the dataset fits in the MCDRAM.

Parallelism Library. Malhanov et. al. in [65], as mentioned previously, assess the effect
of cluster modes on the performance of couple of parallelism approaches, Hybrid and
MPI-only, on KNL. The results show that Hybrid performance has less imbalance;
however, MPI only scales better than Hybrid although Hybrid allows better memory
usage. Zhao et. al. in [67] examine the adaptation of Hybrid approach parallelism
in comparison to pure. The work compares Hybrid (MPI and OpenMP) and MPI
only on VASP [68], widely used materials science code. The results show that Hybrid
outperforms MPI-only by 2 to 3 times. Yan et. al. in [69] investigates the performance
several implementations of parallel matrix multiplcation algorithms. The paper presents
several OpenMP implementation of matrix multiplcaition based forward parallel
algorithms, Loop Chunking and Recursive Tiling, and advance parallel algorithms,
Hybrid Tiling and Strassen’s Algorithm [70]. It also includes MKL routine, cblas_dgemm,
to the comparison. The results show that MKL routine performance over a range of 1
to 48 threads (multiples of 2) worse than Hybrid Tiling and Strassen and alternating
to Recursive Tiling. Furthermore, it has rather bad L2 cache hit ratio in comparison
to the rest of the algorithms. Cramer et. al. in [71] evaluates the performance of
OpenMP running simple benchmarks and kernels. The work observes the scalability
and performance of the CG Kernel of OpenMP for loop of a sparse matrix-vector
multiplication in comparison to equivalent MKL routine, over a range of threads and
given the matrix is stored in CSR format. The results show better speedup accomplished
by OpenMP overall; however, MKL reaches the same speedup as OpenMP when all the
hardware threads are used. To sum up, the performance of the parallelism libraries
varies depending on the application, whether communication constant synchronization
is needed or not; meaning that some libraries are more suitable than others depending
on the problem characteristics.

Affinity. Jabbie et. al. in [72] observes the performance of the classical elliptic test
problem of the Poisson equation on KNL. The work tests two pinning techniques, scatter
and balanced, on the performance of the test over a range of processes and thread using

69

6 Related Work

a hybrid approach. The results show no observable difference in runtime behavior.
Cramer et. al. in [71], presented in the previous paragraph, also examine whether
affinity effects memory bandwidth over a range of threads. The results show that
balanced affinity memory bandwidth access curve grows faster than scatter; however it
normalizes and drops to the same bandwidth as scatter when all hardware threads are
used. To conclude, affinity matters since it is developer’s interest to maintain the locality
achieving the lowest latency and greatest bandwidth of communication with caches [73].

70

7 Conclusion

This thesis focused on evaluating High Performance Computing (HPC) System, Xeon
Phi Knights Landing (KNL), for running a medical image reconstruction algorithm,
Maximum Likelihood Expectation Maximization (MLEM), for Positron Emission
Topography (PET). Several implementations were provided based on parallelism
libraries, such as Message Passing. Furthermore, those implementations are assessed
in all the different configurations based on KNL hardware features such as High
Bandwidth Memory (HBM). To compare all these setups for best configuration and
implementation, runtime, speed up and bandwidth are collected and computed from
running them. These are the criteria used for determining the best hardware configu-
ration as well as best parallelism approach (implementation) for running MLEM on KNL.

The results’ findings are categorized based on the various hardware configurations as
well as parallelism concepts used and they are as follows:

• Parallelism Library. On one node, Open-MP and MPI-only had similar perfor-
mance, speedup, and memory bandwidth for equivalent setups; while MKL setups’
performance, speedup, and memory bandwidth were inadequate in comparison to
the rest, which might be related to the routine used in the implementation. MPI-
only setups uses MPI’s Shared Memory Model (SHM) based on Shared Memory
paradigm since it is running on one node, even though MPI is basically based
on Message Passing paradigm. This allows us to verify both implementations
correctness but more importantly shows that libraries based on Shared Memory
paradigm run MLEM the best on KNL. That is because Message Passing paradigm
on one KNL node would have overhead communication for synchronization in
MLEM implementation. That observation is based on Amdahl’s law [74]; the
limiting effect caused by inter-node communication becomes severe as the parallel
computation gets faster [52].

• Cluster Modes. As explained previously, the main difference between the cluster
modes is the affinity they introduce and how. Cluster modes has an observable
effect on non-pinning setups that results in a2a and quad performing, scaling, and
utilizing the memory bandwidth better than snc-4. On the other hand, pinning
setups are not affected by cluster modes. This is because pinning introduces the
affinity regardless of the cluster modes. This concludes that if a programmer wants
to run an optimized or a non-optimized implementation, quad or a2a would yield
the best configuration.

71

7 Conclusion

• HBM Usage Model. As explained previously, there are two usage models for
using the HBM as flat, implicit and explicit. Implicit setups outperform equivalent
explicit setups. This is expected since 1) the matrix fits in the HBM 2) in the
implicit setups the matrix and all other variables and vectors are allocated in the
HBM; while, in explicit setups the matrix only is allocated in the HBM. This reveals
the HBM effect on performance, speedup, and memory bandwidth utilization. It
also stresses the importance of using HBM wisely; for example, offloading large
frequently used data in the application to the HBM.

• Affinity. Introducing data affinity by pinning threads or processes close to the
data location is a known parallel programming technique. Affinity has a significant
observable affect on performance, speedup, and memory bandwidth utilization.
That is because in affinity setups each process/thread allocates its chunk of the
data as close as possible to itself. Thus, utilizing memory bandwidth effectively
and reducing wait time for processors. Furthermore, the compact pinning strategy
allows the exploitation of L2 Cache data locality.

It is worth to point out that Implicit HBM usage model is a useful feature. HPC need
and usage is spreading to various fields, such as astronomy and biology. More scientists
from different disciplines are interested in using HPC systems. Thus, there is a necessity
to equip HPC systems with features and functionality allowing those scientists use
with ease such as minimal code adaptation. In conclusion, the results show that the
best performing setup is OpenMP with implicit, pinning and either a2a or quad cluster
mode.

7.1 Future Work

The next steps is to evaluate the effect of different matrix storage format as well as HPC
systems and architectures on MLEM performance.

There are advantages and disadvantages of each matrix storage format as discussed in
Section 4.1. There has been research on the performance of Compressed Sparse Blocks
(CSB) in comparison to Compressed Sparse Row (CSR) and Compressed Sparse Column
(CSC) in certain applications; yielding certain storage format outperforming the others.
Thus, a more comprehensive study is essential.

The matrix size used in this work fits in HBM; while this is not necessary the case for
larger PET scanners. Moreover, there has been studies examining various configurations
and ways for optimizing the performance of KNL when the dataset does not fit in the
HBM. Extending this work to include matrices of various sizes specially ones that don’t
fit in the HBM is fundamental.

Although there has been research on optimizing MLEM performance and evaluating

72

7.1 Future Work

it on different architectures, there has not been a published paper comparing several
architectures and HPC system performance highlighting the differences. A survey study
that evaluates several different architectures running MLEM at their best configuration
is vital. The study could be used as reference for a range of algorithms that are memory
bound algorithms and applications.

73

8 Bibliography

[1] S. Salehian and Y. Yan, “Evaluation of Knight Landing High Bandwidth Memory
for HPC Workloads”, in Proceedings of the Seventh Workshop on Irregular Applications:
Architectures and Algorithms, ACM, 2017, p. 10.

[2] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a hardware/soft-
ware approach. Gulf Professional Publishing, 1999.

[3] J. Ramírez, J. M. Górriz, M. Gómez-Río, A. Romero, R. Chaves, A. Lassl, A.
Rodríguez, C. G. Puntonet, F. Theis, and E. Lang, “Effective Emission Tomography
Image Reconstruction Algorithms for SPECT Data”, in Computational Science –
ICCS 2008, Springer Berlin Heidelberg, 2008, pp. 741–748.

[4] G. T. Herman, Fundamentals of computerized tomography: image reconstruction from
projections. Springer Science & Business Media, 2009.

[5] P. Conti and L. Strauss, “The applications of PET in clinical oncology”, J Nucl Med,
vol. 32, pp. 623–648, 1991.

[6] T. Küstner, J. Weidendorfer, J. Schirmer, T. Klug, C. Trinitis, and S. Ziegler, “Parallel
MLEM on multicore architectures”, in International Conference on Computational
Science, Springer, 2009, pp. 491–500.

[7] L. A. Shepp and Y. Vardi, “Maximum Likelihood Reconstruction for Emission
Tomography”, IEEE Transactions on Medical Imaging, vol. 1, pp. 113–122, 1982.

[8] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered
subsets of projection data”, IEEE transactions on medical imaging, vol. 13, pp. 601–
609, 1994.

[9] C. Vazquez, M. Rodriguez-Alvarez, C. Correcher, A. González, F. Sánchez, P.
Conde, and J. Benlloch, “Parallelization of MLEM algorithm for PET reconstruction
based on GPUs”, in Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), 2014 IEEE, IEEE, 2014, pp. 1–4.

[10] D. McElroy, M. Hoose, W. Pimpl, V. Spanoudaki, T. Schüler, and S. Ziegler, “A
true singles list-mode data acquisition system for a small animal PET scanner with
independent crystal readout”, Physics in Medicine & Biology, vol. 50, p. 3323, 2005.

[11] D. P. McElroy, W. Pimpl, M. Djelassi, B. J. Pichler, M. Rafecas, T. Schuler, and
S. Ziegler, “First results from MADPET-II: a novel detector and readout system for
high resolution small animal PET”, in Nuclear Science Symposium Conference Record,
2003 IEEE, IEEE, vol. 3, 2003, pp. 2043–2047.

75

8 Bibliography

[12] M. Rafecas, B. Mosler, M. Dietz, M. Pogl, A. Stamatakis, D. P. McElroy, and
S. I. Ziegler, “Use of a Monte Carlo-based probability matrix for 3-D iterative
reconstruction of MADPET-II data”, IEEE Transactions on Nuclear Science, vol. 51,
pp. 2597–2605, 2004.

[13] D. Geer, “Chip Makers Turn to Multicore Processors”, Computer, vol. 38, pp. 11–13,
2005.

[14] A. Roy, J. Xu, and M. H. Chowdhury, “Multi-Core Processors: A New Way Forward
and Challenges”, in Microelectronics, 2008. ICM 2008. International Conference on,
IEEE, 2008, pp. 454–457.

[15] A. Heinecke, M. Klemm, and H.-J. Bungartz, “From gpgpu to many-core: Nvidia
fermi and intel many integrated core architecture”, Computing in Science & Engi-
neering, vol. 14, pp. 78–83, 2012.

[16] P. J. Ungaro, “The changing role of supercomputing”, in Proceedings of the 21st
international conference on Parallel architectures and compilation techniques, ACM, 2012,
pp. 1–2.

[17] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, and Y.-C. Liu, “Knights landing: Second-generation intel xeon phi
product”, Ieee micro, vol. 36, pp. 34–46, 2016.

[18] Y. Hirokawa, T. Boku, S. A. Sato, and K. Yabana, “Performance evaluation of large
scale electron dynamics simulation under many-core cluster based on knights
landing”, in Proceedings of the International Conference on High Performance Computing
in Asia-Pacific Region, ACM, 2018, pp. 183–191.

[19] S. Gill, “Parallel programming”, The Computer Journal, vol. 1, pp. 2–10, 1958.

[20] G. V. Wilson, “The history of the development of parallel computing”, URL:
http://ei.cs.vt.edu/history/Parallel.html, 1994.

[21] G. Anthes, “The power of parallelism”, Computerworld. Retrieved on, pp. 01–08,
2008.

[22] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Mor-
gan, D. Patterson, K. Sen, J. Wawrzynek, et al., “A view of the parallel computing
landscape”, Communications of the ACM, vol. 52, pp. 56–67, 2009.

[23] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel computing:
design and analysis of algorithms. Benjamin/Cummings Redwood City, 1994, vol. 400.

[24] M. Sato, “OpenMP: parallel programming API for shared memory multiprocessors
and on-chip multiprocessors”, in Proceedings of the 15th international symposium on
System Synthesis, ACM, 2002, pp. 109–111.

[25] R. Chandra, L. Dagum, D. Kohr, D. Maydan, R. Menon, and J. McDonald, Parallel
programming in OpenMP. Morgan kaufmann, 2001.

[26] L. M. Silva and R. Buyya, “Parallel programming models and paradigms”, High
Performance Cluster Computing: Architectures and Systems, vol. 2, pp. 4–27, 1999.

76

8 Bibliography

[27] M. Snir, S. Otto, S. Huss-Lederman, J. Dongarra, and D. Walker, MPI–the Complete
Reference: The MPI core. MIT press, 1998, vol. 1.

[28] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the MPI message passing interface standard”, Parallel computing,
vol. 22, pp. 789–828, 1996.

[29] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An introduction to the MPI
standard”, Communications of the ACM, p. 18, 1995.

[30] K. Kedia, “Hybrid programming with OpenMP and MPI”, Technical Report 18.337
J, Massachusetts Institute of Technology, Tech. Rep., 2009.

[31] G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists
and Engineers. CRC Press, 2010.

[32] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance
Programming: Knights Landing Edition. Morgan Kaufmann, 2016.

[33] A. E. Eichenberger, C. Terboven, M. Wong, and D. an Mey, “The design of OpenMP
thread affinity”, in International Workshop on OpenMP, Springer, 2012, pp. 15–28.

[34] S. Pophale and O. Hernandez, “Evaluating OpenMP Affinity on the POWER8
Architecture”, in International Workshop on OpenMP, Springer, 2016, pp. 35–46.

[35] Intel® Xeon Phi™ Processors, Accessed: 2018.

[36] Intel® Xeon Phi™ Product Family, Accessed: 2018.

[37] L. C. Garcia, D. C. Tjon-Pian-Gi, S. G. Tucker, and M. W. Zajac, Vector processing
unit, US Patent 4,791,555, 1988.

[38] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

[39] Z. Zhao and M. Marsman, “Estimating the performance impact of the MCDRAM
on KNL using dual-socket Ivy Bridge nodes on Cray XC30”, Proceedings of the Cray
User Group–2016, 2016.

[40] P. Gillingham and B. Millar, High Bandwidth Memory interface, US Patent 6,510,503,
2003.

[41] J. Turley, White Paper Introduction to Intel® Architecture: The basics, Accessed: 2018.

[42] A. J. Smith, “Cache memories”, ACM Computing Surveys (CSUR), vol. 14, pp. 473–
530, 1982.

[43] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal partitioning of cache memory”, IEEE
Transactions on computers, vol. 41, pp. 1054–1068, 1992.

[44] jemalloc, Accessed: 2018.

[45] Intel, memkind, Accessed: 2018.

77

8 Bibliography

[46] A. Szlávecz, G. Hesz, T. Bükki, B. Kári, and B. Benyó, “GPU-based acceleration
of the MLEM algorithm for SPECT parallel imaging with attenuation correction
and compensation for detector response”, in Proceedings of the 18th IFAC World
Congress. Milan, Italy, 2011, pp. 6195–6200.

[47] A. Słomski, Z. Rudy, T. Bednarski, P. Białas, E. Czerwiński, Ł. Kapłon, A.
Kochanowski, G. Korcyl, J. Kowal, P. Kowalski, et al., “3D PET image reconstruc-
tion based on the maximum likelihood estimation method (MLEM) algorithm”,
Bio-Algorithms and Med-Systems, vol. 10, pp. 1–7, 2014.

[48] Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix computations”, 1990.

[49] A. Gupta, “Implementation and Evaluation of MLEM-Algorithm on GPU using
CUDA”, Masterarbeit, Technische Universität München, 2018.

[50] A. J. Reader, K. Erlandsson, M. A. Flower, and R. J. Ott, “Fast accurate iterative
reconstruction for low-statistics positron volume imaging”, Physics in Medicine &
Biology, vol. 43, p. 835, 1998.

[51] R. M. Lewitt and S. Matej, “Overview of methods for image reconstruction from
projections in emission computed tomography”, Proceedings of the IEEE, vol. 91,
pp. 1588–1611, 2003.

[52] J. Cui, G. Pratx, B. Meng, and C. S. Levin, “Distributed MLEM: An iterative tomo-
graphic image reconstruction algorithm for distributed memory architectures”,
IEEE transactions on medical imaging, vol. 32, pp. 957–967, 2013.

[53] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich, “Im-
proving performance via mini-applications”, Sandia National Laboratories, Tech. Rep.
SAND2009-5574, vol. 3, 2009.

[54] C. Rosales, J. Cazes, K. Milfeld, A. Gómez-Iglesias, L. Koesterke, L. Huang, and
J. Vienne, “A comparative study of application performance and scalability on the
Intel Knights Landing processor”, in International Conference on High Performance
Computing, Springer, 2016, pp. 307–318.

[55] H. Zheng, C. Shu, and Y.-T. Chew, “A lattice Boltzmann model for multiphase
flows with large density ratio”, Journal of Computational Physics, vol. 218, pp. 353–
371, 2006.

[56] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench-the development and
verification of a performance abstraction for Monte Carlo reactor analysis”, The
Role of Reactor Physics toward a Sustainable Future (PHYSOR), 2014.

[57] J. Tramm, The XSBench Mini-App - A Discussion of Theory, Accessed: 2018.

[58] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the graph
500”, Cray User’s Group (CUG), vol. 19, pp. 45–74, 2010.

78

8 Bibliography

[59] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis, “Exploring
the Performance Benefit of Hybrid Memory System on HPC Environments”,
in Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE
International, IEEE, 2017, pp. 683–692.

[60] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner,
J. McCalpin, D. Bailey, and D. Takahashi, “Introduction to the HPC challenge
benchmark suite”, 2005.

[61] C. Bienia, “Benchmarking Modern Multiprocessors”, PhD thesis, Princeton Uni-
versity, 2011.

[62] Princeton University, The PARSEC Benchmark Suite, Accessed: 2018.

[63] S. Ku, C.-S. Chang, and P. Diamond, “Full-f gyrokinetic particle simulation of
centrally heated global ITG turbulence from magnetic axis to edge pedestal top in
a realistic tokamak geometry”, Nuclear Fusion, vol. 49, p. 115 021, 2009.

[64] T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Friesen, Y. He, T. Kurth, T. Koskela,
M. Lobet, T. Malas, et al., “Evaluating and optimizing the NERSC workload on
knights landing”, in Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), International Workshop on, IEEE, 2016, pp. 43–
53.

[65] A. Malhanov, A. J. Biller, and M. Chuvelev, “Optimizing PARSEC for Knights
Landing”, in Proceedings of the 23rd European MPI Users’ Group Meeting, ACM, 2016,
pp. 213–214.

[66] S. Smith, J. Park, and G. Karypis, “Sparse tensor factorization on many-core
processors with high-bandwidth memory”, in Parallel and Distributed Processing
Symposium (IPDPS), 2017 IEEE International, IEEE, 2017, pp. 1058–1067.

[67] Z. Zhao, M. Marsman, F. Wende, and J. Kim, “Performance of hybrid
MPI/OpenMP VASP on Cray XC40 based on Intel Knights landing many in-
tegrated core architecture”, CUG Proceedings, 2017.

[68] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set”, Computational materials
science, vol. 6, pp. 15–50, 1996.

[69] Y. Yan, J. Kemp, X. Tian, A. M. Malik, and B. Chapman, “Performance and power
characteristics of matrix multiplication algorithms on multicore and shared mem-
ory machines”, in High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, IEEE, 2012, pp. 626–632.

[70] V. Strassen, “Gaussian elimination is not optimal”, Numerische mathematik, vol. 13,
pp. 354–356, 1969.

[71] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey, “Openmp programming on
intel r xeon phi tm coprocessors: An early performance comparison”, in Proc.
Many Core Appl. Res. Community (MARC) Symp, 2012, pp. 38–44.

79

8 Bibliography

[72] I. A. Jabbie, G. Owen, and B. Whiteley, “Performance comparison of Intel Xeon
Phi Knights Landing”, SIAM Undergraduate Research Online (SIURO), vol. 10, 2017.

[73] V. Mironov, Y. Alexeev, K. Keipert, M. D’mello, A. Moskovsky, and M. S. Gordon,
“An efficient MPI/openMP parallelization of the Hartree-Fock method for the sec-
ond generation of Intel® Xeon Phi™ processor”, in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, ACM,
2017, p. 39.

[74] D. P. Rodgers, “Improvements in multiprocessor system design”, in ACM
SIGARCH Computer Architecture News, IEEE Computer Society Press, vol. 13,
1985, pp. 225–231.

80

9 Appendix

81

Evaluation

Setup

Parallelism Library Compiler Compiler Flags

MKL icpc
−DMKL_ILP64− I${MKLROOT}/include
−O3− std = c ++11− xMIC− AVX512
− f ma− align− f inline− f unctions

OpenMP icpc

−O3− std = c ++11
−I${BOOST_INCLUDE}

−D_MWAITXINTRIN_H_INCLUDED
−D_FORCE_INLINES
−D__STRICT_ANSI__

− f openmp

MPI-only & Hybrid mpiicpc

−O3− std = c ++11
−I${BOOST_INCLUDE}

−D_MWAITXINTRIN_H_INCLUDED
−D_FORCE_INLINES
−D__STRICT_ANSI__

− f openmp

Table 8: Compiler flags based on Parallelism Libraries

83

9 Appendix

Hardware
Number of nodes 148
Cores per node 64
Core nominal frequency 1.3 GHz
Memory (DDR4) per node 96 GB (Bandwidth 80.8 GB/s)
High Bandwidth Memory per node 16 GB (Bandwidth 460 GB/s)
Bandwidth to interconnect per node 25 GB/s (2 Links)
Number of Omnipath switches (100SWE48) 10 + 4 (each 48 Ports)
Bisection bandwidth of interconnect 1.6 TB/s
Latency of interconnect 2.3 µs
Peak performance of system 394 TFlop/s

Infrastructure
Electric power of fully loaded system 62kVA
Percentage of waste heat to warm water 97%
Inlet temperature range for water 30 ... 50◦C
Temperature difference between outlet and inlet 4 ... 6◦C

Software (OS and development environment)
Operating system SLES12 SP2 Linus
MPI Intel MPI 2017, OpenMPI
Comiplers Intel icc, icpc, ifort 2017
Performance libraries MKL, TBB, IPP
Tools for performance and correctness analysis Intel Cluster Tools

Table 9: An overview of CoolMUC3 characteristics

84

1 # Only for Implicit
2 export AUTO_HBW_LOG=0
3 export AUTO_HBW_SIZE=1B
4

5 # Only for Affinity
6 export KMP_AFFINITY=verbose,granularity=core,compact
7 export KMP_HW_SUBSET=64c,1t
8

9 # Extending Affinity only for MPI-only and Hybrid
10 export I_MPI_PIN=1
11 export I_MPI_PIN_MODE=lib
12 # only for MPI-Only
13 export I_MPI_PIN_DOMAIN=core
14 # only for Hybrid
15 export I_MPI_PIN_DOMAIN=node
16

17 # Run command for OpenMP Implicit
18 OpenMP_M_Command="LD_PRELOAD=libautohbw.so:libmemkind.so numactl --membind=$membind"
19 "./openmpcsr4mlem A g $outputFile nIterations"
20

21 # Run command for OpenMP Explicit
22 OpenMP_X_Command="numactl --membind=$membind
23 ./openmpcsr4mlem A g $outputFile nIterations"
24

25 # Run command for MKL Implicit
26 MKL_M_Command="LD_PRELOAD=libautohbw.so:libmemkind.so numactl --membind=$membind"
27 "./mklcsr4mlem A g $outputFile nIterations"
28

29 # Run command for MPI Explicit
30 MPI_X_Command="mpirun -n 64 ./mpicsr4mlem A g $outputFile nIterations 0"
31

32 # Run command for Hybrid Explicit (2 nodes
33 HYB_X_Command="mpirun -genvall -n 2 -ppn 1 numactl --membind=$membind"
34 "./mpicsr4mlem A g $outputFile nIterations 64"

Snippet 8: The environment variable declaration and run commands for all setups.

85

List of Figures

1 Illustration of PET Scanner MADPET-2 [10]. 2
2 Performance comparison between a single core and multicore processor. 3

3 Illustration of the Parallel Programming Models based on their overlook
on and use of memory. a) Shared Memory model b) Distributed Memory
model. 6

4 Illustration of the Shared Memory types (a) Uniform Memory Access
(UMA) (b) Non-uniform Memory Access (NUMA). 7

5 The components of OpenMP [25]. 8
6 Illustration of Message Passing Model. 8
7 Illustration of affinity compact, balanced, and scatter pinning 6 threads

applied on three cores with four threads 14

8 Illustration of a memory system with two levels of cache, L1 and L2 cache
[43]. 17

9 Diagram demonstrating an overview of the KNL Architecture. 18
10 Diagram demonstrating an overview of a tile in KNL Architecture. 19
11 Illustration of KNL’s memory system with MCDRAM as cache. 20
12 Illustration of L2 cache miss scenario for each cluster mode. 22

13 Flowchart of MLEM Algorithm. 25

14 Average runtime achieved by all setups. 47
15 Average runtime achieved by OpenMP setups grouped in (a) Implicit (b)

Implicit + Pinning (c) Explicit (d) Explicit + Pinning 49
16 Average runtime achieved by (a) MPI-only (b) Hybrid (c) MKL 51
17 Speedup achieved by all setups. 52
18 Speedup achieved by OpenMP setups grouped in (a) Implicit (b) Implicit

+ Pinning (c) Explicit (d) Explicit + Pinning. 54
19 Speedup achieved by (a) MPI-only (b) Hybrid (c) MKL. Blue dotted line

shows the theoretical optimal speedup. 56
20 Bandwidth achieved by all setups. 57
21 Memory bandwidth achieved by OpenMP setups grouped in (a) Implicit

(b) Implicit + Pinning (c) Explicit (d) Explicit + Pinning. 59
22 Memory bandwidth achieved by (a) MPI-only (b) Hybrid (c) MKL. . . . 61

87

List of Tables

1 Coupled Row Index Vector CSR representation of Matrix (7). 29
2 Singular Row Index Vector CSR representation of Matrix (7). 29
3 Coupled Column Index Vector CSC representation of Matrix (7). 29
4 Singular Column Index Vector CSC representation of Matrix (7). 30
5 Example of the existing code CSR matrix representation of Matrix (7). . . 30

6 MADPET-2 Matrix Characteristics [49]. 42
7 All the different setups with their labels. 44

8 Compiler flags based on Parallelism Libraries 83
9 An overview of CoolMUC3 characteristics 84

89

	Acknowledgments
	Abstract
	Contents
	Introduction
	Image Reconstruction
	Positron Emission Tomography Scan
	MADPET-2

	High Performance Computing Systems

	Parallel Computing
	Parallel Programming Models
	Shared Memory
	Distributed Memory/Message Passing
	Hybrid

	Math Kernel Library
	Advance concepts
	Affinity (Thread/Process Pinning)

	Xeon Phi Knights Landing
	Terminology
	Architecture
	Memory Mode
	Cache
	Flat
	Hybrid

	Cluster Mode
	All-to-all
	Quadrant
	Hemisphere
	Sub-NUMA-4
	Sub-NUMA-2

	MLEM Algorithm
	Sparse Matrix Storage Format
	Compressed Sparse Row
	Compressed Sparse Column

	Existing Implementation
	Matrix Representation
	OpenMP
	MPI-only

	Proposed Implementation
	Matrix Representation
	OpenMP
	MPI-only and Hybrid
	MKL

	Evaluation
	Data
	Design
	Setup
	Results
	Discussion
	Affinity (Process/Thread Pinning)
	Cluster Mode
	HBM Usage Model
	Parallelism Library

	Limitation
	CoolMUC3
	MKL

	Related Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	List of Figures
	List of Tables

