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Abstract

One of the keys to cloud computing has been the possibility to deliver consistent per-
formance for reduced costs compared to traditional static implementations. With more
and more autoscalers becoming available from different providers, it can be difficult to
determine which of the implementations best suits one’s needs. This raises the question
on how to reliably compare autoscalers, since ”[...] it is hard to distinguish [an overall]
winner [33, Chapter 6].”

This thesis will tackle this problem by providing customers with an addition to the
Auto-scaling Performance Measurement Tool (APMT [44]) that includes the ability to
measure various autoscalers using experimental metrics proposed by [33]. This offers
customers a wide range of generalised metrics that they can use to determine which
autoscaler best covers their Quality of Service (QoS) requirements.
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1 Introduction

1.1 Background

”Ability to horizontally scale IT resources up or down dynamically as per changes in
workload conditions, often termed as elasticity of cloud, is one of the key features of-
fered by clouds.”[66, Chapter 1]. Picking the right autoscaling solution for your ser-
vice can be a tricky task, since the type to pick relies heavily on the application being
scaled. The Autoscaling Performance Measurement Tool (APMT, now named ”ScaleX”)
introduced in [44] already offers some metrics that allow us to deduce the responsive-
ness and overall performance of an autoscaler. The extension of the APMT introduced
by this thesis will allow customers to monitor additional experimental metrics [33] al-
lowing them to better grasp the pros and cons of different cloud application config-
urations. This is particularly useful since it is usually not apparent which approach
(single-layered vs. multi-layered) will perform best.
Furthermore, we will provide comparison results of a mock performance test on the
multi-layered cluster autoscaler provided by Amazon Web Services. This test involves
a so-called ”auto scaling group” that runs a web application. This thesis extension
will then calculate additional metrics that then allow a user to determine the most
optimal settings for their auto scaling group. Later possible extensions to this tool
would be other cloud autoscalers supplied by other providers like Azure+Kubernetes,
GCE+Kubernetes & OpenStack+Kubernetes.
In order to cover most use cases we split the metrics into two categories:
Operation-Oriented Metrics and User-Oriented Metrics.
The Operation-Oriented Metrics are defined as metrics that can be witnessed from the
point of view of a cloud application. These metrics are particularly useful for HPC ap-
plications, since they do not rely on response times, response latency and error-rate.
Their main metrics are the total completion time of all tasks and the operating cost.
The User-Oriented Metrics are defined as metrics trackable from outside the application
by, for example, a separate diagnostics cluster or an application load balancer. These
metrics are oriented towards end user satisfaction. The error & successful response
rates are one of the distinguishing measurements of a cloud application built for han-
dling user requests.
As follow up research and since both the AWS cluster-autoscaler and Kubernetes’ HPA
algorithm [22, Algorithm 1] use an average CPU usage threshold, in the scope of this
thesis we also come up with a tuning algorithm [Algorithm 11] that simulates the cluster
scaling multiple times and then outputs the most ideal value for the scaling threshold.
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2 APMT Extension

2.1 Metrics

2.1.1 Operation-Oriented Metrics

1. Wrong-Provisioning Timeshare [33, Section 3.3]
Let demand be the ”[...] minimal amount of resources required for fulfilling a
given performance-related service level objective (SLO)” [33, Section 3.1]. ”Ac-
cordingly, the supply is the monitored number of provisioned resources that are
either idle, booting or processing tasks” [33, Section 3.1]. Whilst the under- and
over-provisioning accuracy metric deals with the amount of resources available,
the wrong-provisioning timeshare deals with the ”[...] overall timeshare spent
in under- or over-provisioned states [...]”[33, Section 3.3]. Since the accuracy met-
ric does not provide a proper per time fraction observation, and it is therefore
hard to determine the actual cause of demand and supply fluctuations, the wrong-
provisioning timeshare metric (tU & tO) is introduced by [33, Section 3.3].

tU :=
1

T

T∑
t=1

(sign(dt − st))
+∆t, (2.1)

tO :=
1

T

T∑
t=1

(sign(st − dt))
+∆t, (2.2)

where

t is the time

dt is the resource demand

st is the resource supply

tU is the total time spent under-provisioned [Figure 2.12.1, U]

tO is the total time spent over-provisioned [Figure 2.12.1, O]

∆t is the time elapsed between two subsequent measurements

T is the time horizon of experiment in time steps
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2 APMT Extension

Figure 2.1: ”The supply and demand curves illustrating the under- and over-
provisioning periods ([U] and [O]) [...]” [33, Figure 2]

2. Resource Allocation Bounds
Since some users are limited by the maximum number of VM instances by their
public cloud providers, we introduce a metric dealing with the ”extremes” during
the experiment’s time duration T. The upper bound metric bU provides us with the
highest ”peak” of resources during the experiment, whilst the lower bound metric
bL provides us with the lowest point of resources allocated, which is usually the
initial amount at t = 0.
Additionally, we will use the difference of the two metrics to determine the bound-
ary scale metric bS of the resources during the time duration.

bU := max({st : t = 0, ..., tT }), (2.3)

bL := min({st : t = 0, ..., tT }), (2.4)

bS = |bU − bL|, (2.5)

where

t is the time
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2.1 Metrics

bU is the upper bound metric [Figure 2.22.2]

bL is the lower bound metric [Figure 2.22.2]

bS is the boundary scale metric [Figure 2.22.2]

st is the resource supply at time t

T is the time horizon of experiment in time steps

3. Operating Expense
One of the advantages of the cloud is the on-demand usage, this is why it is im-
perative to take the running costs into account during each experiment. Depend-
ing on the Public Cloud Provider, the billing policies may vary from second to
hourly billing. In addition some cloud providers enforce a minimum billing time
of 1 minute, making it hard to determine during rapid up- & down-scaling how
a user’s costs will be calculated.
We introduce a user-defined operating expense metric eT , which sums up the amount
of resources supplied at each time step. We also round up the result, since cloud
providers tend to see fractions of a time step (1 minute of 1 hour) as a full time
step and tend to bill customers accordingly. It is also noteworthy, that we consider
all VMs used in the experiment as interchangeable (of the same type).

eT :=

⌈
T∑
t=1

st∆t

⌉
, (2.6)

where

eT is the operating expense metric [Figure 2.22.2]

st is the resource supply at time t

T is the time horizon of experiment in time steps

∆t is the time elapsed between two subsequent measurements
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2 APMT Extension

Figure 2.2: Visualization of operating expense eT , upper bound bU , lower bound bL and
boundary scale bS .

2.1.2 User-Oriented Metrics

1. Average Response Time
The average response time rt metric deals with the average amount of time a re-
sponse takes to deliver the result to the client. It is noteworthy that we will track
this value from outside of the operator’s point of view, contrary to [77, Section 3.b.],
using a separate static diagnostics cluster. This cluster will also provide us with
machines that allow us to send customizable traffic to our scaled application.
The response time will be the request round trip time rr plus the actual workflow
processing time of the response on the server. ”A workflow [, in our case,] is a set
of tasks with precedence constraints among them” [33, Section 2.3]. Furthermore,
we define ”[t]he makespan [rm] of a workflow [as] the time between the start of its
first task until the completion of its last task” [33, Section 3.5].

rt :=
1

T

T∑
t=1

(rr + rm)∆t, (2.7)

where

rt is the average response time

rr is the round trip time of a request
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2.1 Metrics

rm is the makespan of a workflow

T is the time horizon of experiment in time steps

∆t is the time elapsed between two subsequent measurements

2. Average Request Latency
The average request latency rl sums up and averages the round-trip times (RTT)
during our experiment duration T. Since we will not be able to send ICMP pings
(OSI layer 3) through the load balancer (OSI layer 4), this metric might be of lim-
ited use. However it is still vital to monitor changes to the latency as it also indi-
cates whenever the errors are occurring only on the load balancer (high latency)
or inside the actual cluster (low latency & high error rate).

rl :=
1

T

T∑
t=1

rr∆t, (2.8)

where

rl is the average request latency

rr is the round trip time of a request

T is the time horizon of experiment in time steps

∆t is the time elapsed between two subsequent measurements

3. Successful & Error Response Count
One of the most important metrics is the amount of errors produced during the
scaling. Optimally, we want this value to be close to or 0. Practically, since in
for example Kubernetes’ Horizontal Pods Auto-scaling algorithm (KHPA) [22, Al-
gorithm 1], the scaling speed heavily depends on the CPU utilization threshold,
errors might still occur.
One of the main objectives of this thesis is to provide users with an easy way to
determine or fine-tune the CPU threshold of the utilized cloud autoscaler given
the parameters: VM count (and instance type) and budget. Allowing them to
maximize the usage of their resources whilst keeping their budget in check.
Again, we will use the separate diagnostics cluster to simulate traffic to the target
load balancer based on a provided pattern. Trivially, the error response count re
is defined as the amount of server-side error responses (HTTP: 5XX) and client-
side error responses (HTTP: 4XX), whilst the successful response count rs is defined
as the amount of successful responses (HTTP: 2XX/3XX). We declare the total re-
sponse count rtotal as follows:

7



2 APMT Extension

rtotal :=

T∑
t=1

(re + rs)∆t, (2.9)

where

rtotal is the total amount of responses

re is the amount of error responses

rs is the amount of successful responses

T is the time horizon of experiment in time steps

∆t is the time elapsed between two subsequent measurements

2.1.3 Metric Analysis

To make comparisons between different scaling policies easier, we need to combine the
metrics we have collected. The overall goal of the APMT extension is to provide the
user with the ability to run and compare multiple experiments with different scaling
parameters. In order to determine which experiment performed best, we need to run
multiple tests and then compare the results.
We can then sort by the following metrics:

Best error response count (least errors)
Best boundary scale (least scaling)
Best operating expense (smallest cost)
Best over-provisioning (least over-provisioning)
Best under-provisioning (least under-provisioning)
Best average response time (fastest responses)
Best average request latency (lowest latency)

After the comparison, the experiment that matches all these metrics best is selected.
The user can then rerun the experiment with tighter constraints (fewer VMs, higher
CPU scaling threshold) and see if their budget can be reduced even further whilst keep-
ing the error rate below a provided threshold. This procedure can be repeated until the
most cost-effective or least error-prone parameters are found.
We later discuss an automated approach to this method called CPU threshold tuning
algorithm, combined with another addition to the APMT interface [Section 55].

8



2.2 Proposed Solution

2.2 Proposed Solution

2.2.1 APMT Architecture Extension

Figure 2.3: Extended APMT architecture [55, Figure 1].

To allow the implementation of the aforementioned metrics into the APMT, we have to
extend the infrastructure given by [55]. We will start by splitting the originally proposed
Load Generator & Monitoring module into two [Figure 2.32.3].
In addition to retrieving the metrics from the Public Cloud Provider, Monitoring is now
also responsible for calculating the new metrics, instead of merely displaying them.
The Load Generator is, depending on the need of the application, responsible for start-
ing and monitoring the static Diagnostics Cluster, which is used for generating traffic if
required.
Lastly, we add a Metric Analysis dashboard to the User Interface, that provides the user
with the calculations done by the Monitoring module.
All in all, we extend the APMT tool from being a mere performance measurement tool
for autoscalers, to a tool that allows users to benchmark their own custom cloud appli-
cations. In the scope of this thesis, we will show off one specific use case:

9



2 APMT Extension

A static load-balanced web server cluster handling incoming HTTP requests.
It is noteworthy, that this thesis will not be dealing with the performance of the Hori-
zontal Pod Autoscaler (HPA), since the APMT implementation of launching a Kuber-
netes cluster has been delivering inconsistent results. The scope of this thesis therefore,
only includes the performance measuring of the VM auto scaling.

2.2.2 Metric Analysis Dashboard (Monitoring)

Figure 2.4: User Interface: Metric Analysis Extension Dashboard

The Metric Analysis Dashboard allows the user to view the results generated by an auto
scale cluster over the past hour. Based on this data the user can then chose to rerun
experiments with adapted parameters. This allows the user to slowly converge to the
optimal parameters which best balance their requirements.
As an extension of the APMT this is written in Javascript (Node.js) and uses AWS’s
Cloudwatch to continuously query metrics from the active auto scaling cluster and then
visualizing them to the user using Chart.js.
Figure 2.42.4 showcases that the dashboard has to retrieve its data from multiple sources.
That data only partially yields from the Public Cloud Provider, since some, namely
Operating Expenses and Resource Allocation Bounds, dependent on the results of others.
Additionally, some locally generated metrics (Average Latency & Average Response Time)

10



2.2 Proposed Solution

have to be retrieved from the database, as the Public Cloud Provider Monitoring Back-
end does not track such metrics.

2.2.3 Daemon (Monitoring & Load Generator)

Figure 2.5: Daemon and Diagnostic Cluster Setup

The Daemon is a python application responsible for spawning and deleting Diagnostics
Clusters. The Daemon takes the provided parameters by the user terminal and provi-
sions an auto scaling cluster from the Public Cloud Provider. The resulting cluster then
targets the provided IP or FQDN with requests following the provided pattern func-
tion over time [Figure 2.52.5]. Another task the Daemon fulfils is the collecting of two of
the User-Oriented Metrics:

• Average Response Time

• Average Request Latency

This is due to the fact that Node.js does not support threads and AWS Cloudwatch does
not track latency and response times from external sources. The successful (2XX, 3XX)
& unsuccessful (4XX, 5XX) responses are directly read from the AWS application load
balancer since it will receive all the requests to the cluster independent of any client-
side connectivity issues.
The implementation of the Daemon only allows for one active user and one active Diag-
nostics Cluster since it’s made for prototyping purposes. The Daemon can be set up as an

11



2 APMT Extension

addition to the APMT without interfering with its functionality. The only requirement
is that the Daemon is able to reach, read & write from and to the APMT database. It can
not function independently as it requires the user data to be read from the APMT.

2.2.4 Diagnostics Cluster (Load Generator)

The Diagnostics Cluster [Figure 2.52.5] provides an external source of traffic for an appli-
cation. Initially, the cluster size is set by the customer using the Daemon, additional
parameters are the start & end time (as UNIX time), time step (at which rate the request
should be sent) and the desired AWS instance type. The user can configure the target
(IP or FQDN) and the function representing the amount of traffic that is desired at each
time step. It is noteworthy, that the Diagnostics Cluster is static and therefore the user
has to make sure to pass the required amount of machines of a sufficient size to actually
generate the traffic pattern passed to the cluster.
The cluster target can be an arbitrary IP or FQDN, even outside of the Public Cloud
Provider’s network, it can therefore also be used to benchmark other external applica-
tions. The provided function is sampled each minute starting from the passed start time
up until the end time. The result of each sampling then represents the amount of re-
quests that will be sent during that minute. The performance and quality of the results
tightly depends on the amount of requests that each of the nodes in a Diagnostics Clus-
ter has to send, it is up to the user to provision VMs that are powerful enough to send
the demanded amount of requests. Each additional machine added to the Diagnostics
Cluster, trivially, acts like a multiplier on that current time steps request count.

2.2.5 Assembling the module

The combined version of the draft [Figure 2.62.6], showcases the various connections be-
tween the introduced parts of the implementation. Chapter 33 is dealing with the techni-
cal details of the implementation of each section. We will, however, first discuss some
challenges and limitations that were encountered during the making of each module
[Section 3.13.1]. We then look at the extension of the Metric Analysis Dashboard in Section
3.33.3, which involves revamping and reworking existing code of the APMT. Section 3.43.4
deals with the implementation of the Scalectl Daemon, which is responsible for collect-
ing latency and response time metrics and the spawning of Diagnostic Clusters. Finally,
section 3.53.5 then deals with the work conducted regarding the creation of Diagnostic
Clusters, which involved the creation of launch configurations and the deployment to
AWS using the boto311 library.

1https://aws.amazon.com/sdk-for-python/
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2.2 Proposed Solution

Figure 2.6: Combined Structure
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3 APMT Module Implementation

3.1 Challenges and Limitations

The APMT tool was implemented using Node.js and is therefore only single-threaded
and event-based. Whilst this is ideal for displaying remote and static data, it is a chal-
lenge to actually retrieve new metrics during runtime from a cluster. This is the reason
why the Python based Scalectl Daemon is set up to record asynchronous data. However,
due to the nature of proposed architecture, the Scalectl Daemon only allows the setup
and tracking of one user and one cluster at a time.
Additional constraints arise from choice of the the Public Cloud Provider, Amazon Web
Services (AWS)11:

• The minimum Auto Scaling Group scaling interval is 300 seconds, making it hard
to react to burst like traffic peaks. This also delays the automatic termination of
over-provisioned machines.

• Auto Scaling Groups are fixed at an instance type, meaning you can not have ma-
chines of various performance, memory or storage levels attached to the cluster.

• The smallest metric interval of Cloudwatch, the monitoring back-end of AWS, is
1 minute. Whilst it records multiple datapoints in that duration, you can only
request certain summarized fields: Minimum, Maximum, Sum or Average; for
each minute, limiting our insights into the traffic received during that time frame.

• The termination time of a machine is billed to the user, this is especially important
in correlation to the Over-Provisioning Timeshare metric, since it is the main reason
why such phases occur when using AWS.

• Costs calculation and the subsequent billing is delayed by a day when using AWS,
making it hard to actually determine one’s budget. This is the reason why the
Operating Expense metric is calculated off the data retrieved from Cloudwatch, it
allows us an instant insight into the costs of running an application for 1 hour,
making it easier to predict possible costs.

The scope of this thesis did not include research or implementation of other Public
Cloud Providers, we will therefore abstain from comparing AWS’s service coverage (or
similar points) to those of other providers.

1https://aws.amazon.com/
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3 APMT Module Implementation

3.2 APMT Server-Side

The original implementation of the APMT deployed the tool using a docker-compose ser-
vice with the application and Mongodb database container being separated. Due to
the nature of the Scalectl Daemon implementation requiring database access and also for
simplicity reasons, the service was merged into a monolithic Docker container, contain-
ing the database, the APMT and the Scalectl Daemon.
Retrieving Cloudwatch data:
The code for retrieving metrics from AWS’s Cloudwatch was already implemented in-
side the APMT for the ”Generic Metrics” [Section 3.3.13.3.1] and therefore only required a
mere extension. It involves setting up a parameters array params featuring the wanted
metrics and the target dimension (ELB or Auto Scaling Group), then executing the get-
MetricStatistics function. Inside the callback function we can then retrieve the data
which is an array of containing ”datapoints” which each have a timestamp, statistics
during that time step (sum, average, min, max) and unit [Source Code 3.13.1].
We can now nest this function with a new parameter array inside the callback function
of the previous request, slowly filling our dataAll (return data) array.

1 [...]
2 var params = {
3 EndTime: new Date,
4 MetricName: 'HTTPCode_Target_4XX_Count',
5 Namespace: 'AWS/ApplicationELB',
6 Period: 60,
7 StartTime: new Date(d.getTime() - 60 * MS_PER_MINUTE),
8 Dimensions: [{
9 Name: 'LoadBalancer',

10 Value: lbname
11 },],
12 Statistics: ["Sum"]
13 };
14 cloudwatch.getMetricStatistics(params, function (err, data) {
15 if (err) console.log(err, err.stack);
16 // an error occurred
17 else {
18 dataAll.HTTPCode4XXCount = data;
19 // Nested repeat with different params
20 [...]
21 }
22 }

Source Code 3.1: Retrieving metric from Cloudwatch
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3.3 APMT Client-Side

3.3 APMT Client-Side

Note: The full code of the APMT extension can be found on GitHub22.
To increase the responsiveness of the new dashboard an automatic page refresh was
introduced to the existing dashboard [Section 3.3.13.3.1]. This was done by storing the chart
references outside of the function and then wrapping the chart updates and data popu-
lating tasks into a callUpdate() function [Source Code 3.23.2]. Using setInterval([...]) we can
then refresh the page every 60 seconds, which coincides with the arrival of a new AWS
Cloudwatch datapoint.

1 $(function() {
2 var myChartLatency;
3 [...]
4 var myChartErrorResponsecount;
5 function callUpdate() {
6 [...]
7 }
8 }
9 callUpdate();

10 setInterval(callUpdate, 60000);

Source Code 3.2: Automatic page refresh

3.3.1 Generic Metrics

Figure 3.1: Original Metric Analysis Dashboard

2https://github.com/CM2Walki/ScaleX
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3 APMT Module Implementation

The original metric analysis dashboard [Figure 3.13.1] is rendered using Chart.js33 and is
keeping track of the amount of AWS Auto Scale instances and the average CPU Utiliza-
tion of a group. The generic metrics dashboards was merely updated to feature clearer
line connections and proper maximum values for aesthetic reasons.
Since the data displayed in the graphs is retrieved directly from Cloudwatch, Diagnos-
tic Clusters data will not be tracked, as they have Cloudwatch disabled when launched.
This also means that the the other metrics are not influenced by those clusters, meaning
that additional costs might occur.

3.3.2 Operation-Oriented Metrics

Figure 3.2: Wrong-Provisioning Timeshare & Instance Operating Expenses

As described in Section 2.1.12.1.1 the Operation-Oriented Metrics deal with the point of view
of a cloud administrator. The Wrong-Provisioning Timeshare metric gives valuable intel
on how long a cluster takes to scale in or out, visualized in Figure 3.23.2. AWS Cloudwatch
offers multiple statistics that allow us to calculate the Over- and Under-provisioning
phases of the cluster. As seen in the graph, we have to keep track of three separate
datasets:

• Desired Instances: The amount of requested instances by the Auto Scaling Group.

• In-Service Instances: The amount of instances that are fully reachable by requests
(not being started or terminated).

• AutoScale Instances: The amount of instances actually part of the Auto Scaling
Group, regardless of their state.

3http://www.chartjs.org/
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3.3 APMT Client-Side

Trivially, we can now use the Desired Instances and the In-Service Instances at each time
step and determine if we are in a under-provisioned state by subtracting the desired
instances count from the active in service instance count [Source Code 3.33.3].

1 for(i=0;i<desiredInstancesDataArr.length; i++) {
2 // How many machines do we have
3 // vs how many do we need?
4 var diff = desiredInstancesDataArr[i].Average -
5 inServiceInstancesDataArr[i].Average;
6 [...]
7 if (diff > 0) {
8 // Too few
9 valueunderprovisioning.push(

10 Math.abs(inServiceInstancesDataArr[i].Average + diff));
11 // Increment minutes spent under-provisioned
12 underprovisiongCosts = underprovisiongCosts + 1;
13 [...]
14 }
15 [...]
16 }

Source Code 3.3: Is cluster in under-provisioned state

1 for(i=0;i<desiredInstancesDataArr.length; i++) {
2 // How many machines do we have
3 // vs how many do we need?
4 [...]
5 var diff_over = desiredInstancesDataArr[i].Average -
6 instancesDataArr[i].Average;
7 [...]
8 else if (diff_over < 0) {
9 // Too many

10 valueoverprovisioning.push(instancesDataArr[i].Average);
11 // Increment minutes spent over-provisioned
12 overprovisiongCosts = overprovisiongCosts + 1;
13 [...]
14 }

Source Code 3.4: Is cluster in over-provisioned state

19



3 APMT Module Implementation

Similarly, we can now calculate whenever the cluster currently is in an over-provisioned
state by subtracting the Desired Instances count from the AutoScale Instances count [Source
Code 3.43.4].
Since, during the process, we incremented overprovisiongCosts and underprovisiongCosts
we already determined the Wrong-Provisioning Timeshare. Combined with the summing
up of all CPU minutes [Source Code 3.53.5 (Line 3-7)], we can now populate our Operating
Expense ”doughnut” chart [Figure 3.23.2]. Since AWS uses per minute billing this graph
provides a transparent feedback source regarding a user’s budget usage.

1 var costs = 0;
2 [...]
3 for(i=0; i<instancesDataArr.length; i++) {
4 [...]
5 // Add up all instances in this time step
6 costs = costs + instancesDataArr[i].Average;
7 }
8 [...]
9 // Calculate based on per minute price (full costs)

10 var totalcosts = (costs*(instancecost/60)).toFixed(2);
11 // Subtract overprovisiongCosts for displaying purposes
12 costs = costs - overprovisiongCosts;
13 // Set centre text element
14 document.getElementById("lbloperatingexpense").textContent =
15 `${totalcosts}\$`;
16 // Draw charts
17 [...]

Source Code 3.5: Operating Expense calculation

1 for(i=0;i<instancesDataArr.length; i++) {
2 if (instancesDataArr[i].Average > max) {
3 max = instancesDataArr[i].Average; // New maximum
4 }
5 if (instancesDataArr[i].Average < min) {
6 min = instancesDataArr[i].Average; // New minimum
7 }
8 }
9 var boundaryscale = Math.abs(max-min)

Source Code 3.6: Resource Allocation Bounds calculation
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3.3 APMT Client-Side

To calculate the boundary scale metric, we first have to find our upper & lower
bounds. This is done by iterating the data points and then finding the highest and
lowest amount of VMs in the retrieved data set [Source Code 3.63.6]. Then we can use
the absolute value of the subtraction of the upper bound from the lower bound as our
boundary scale. The data is then loaded into a ”bar” chart [Figure 3.33.3] and displayed
to the user. The Resource Allocation Bounds give cloud operators a quick overview to
how much one’s cluster has scaled, with lower values of the boundary scale indicating
smaller overall cluster sizes.

Figure 3.3: Resource Allocation Bounds graph
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3 APMT Module Implementation

3.3.3 User-Oriented Metrics

As mentioned in Section 2.1.22.1.2, the User-Oriented Metrics deal with measurable data from
the end-users’s point of view. This gives us valuable insights into the performance
of our web-application whilst it is being scaled. In order to track responsiveness, the
APMT uses its Scalectl Daemon to continuously query the end point of an application.

Average Latency & Average Response Time

AWS Elastic Load Balancers do not reply to ICMP pings on layer 3 which is why the
Daemon uses an opening of a TCP socket on layer 4 and the subsequent measured tim-
ings to simulate our Average Latency. It is noteworthy, that the latency measurement
will not get relayed to a cluster machine, because of the Scalectl Daemon never sending
anything on the Application Layer (layer 7).
Similar to the Average Latency, measuring the Average Response Time is done by the Dae-
mon, however in this case, a whole request on the Application Layer (HTTP) is sent
which will be routed to one of the Auto Scaling Group instances by the Elastic Load
Balancer. The Daemon then reads the entire response (header and payload); the total
time it takes for the response to return and to be processed is therefore the response
time.
This process gets repeated up to six times per minute for each metric by the Scalectl Dae-
mon, the resulting average data point and its time stamp are then added to Mongodb,
having a similar structure as a AWS Cloudwatch data point (see Section 3.43.4).
The APMT dashboard can now read the data points and populate the appropriate
graphs exactly as if the data points were delivered by AWS Cloudwatch [Figure 3.43.4].

Figure 3.4: User-Oriented Metrics Dashboard
Average Response Time & Latency
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3.3 APMT Client-Side

Successful & Error Response Count

Figure 3.5: User-Oriented Metrics Dashboard
Successful & Error Response Count

AWS’s Elastic Load Balancers differentiate between errors that occurred on the load
balancer (HTTPCode5XXCountELB) and errors that happened on the target group’s
machines (HTTPCode5XXCount). For simplicity reasons, we sum these values up to
make the graphs more readable. These metrics can be retrieved, just as with the generic
metrics, from AWS’s Cloudwatch.
The resulting data points can then be added up and displayed in their appropriate
charts, using the ”timestamp” as their x- and the ”Sum” as their y-value [Figure 3.53.5].
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3 APMT Module Implementation

3.4 Scalectl Daemon

Note: The full code of the Scalectl Daemon can be found on GitHub44.
The Scalectl Daemon is a pure Python based Daemon, it takes care of creating Diagnos-
tics Clusters and monitoring the target for changes in latency and response times. It
delivers its data to the APMT by storing it into a separate user-specific collection in
Mongodb, that can then be read whilst accessing the dashboard. The implementation
is also almost fully object-oriented. In addition, the daemon gets turned into a binary
using pyinstaller55 and Make66.
The Daemon is split into a client and daemon part, with the first ”scalectl” command
spawning the daemon if it does not exist, yet. Subsequent clients can then communicate
with the daemon using a REST API [Source Code 3.73.7].

1 if __name__ == "__main__":
2 # Setup variables
3 alias = 'scalectl'
4 api = 'api/v1/'
5 host = 'localhost'
6 port = 8085
7 # Setup scalectl client
8 scalectlclient = ScaleCtlClient(alias, port, api)
9 scalectlclient.setup_hostfile()

10 # Setup scalectl daemon (if not already running)
11 scalectldaemon = ScaleCtlDaemon('/tmp/scalectl-daemon.pid',
12 'ScaleAPI', host, port)
13 [...]

Source Code 3.7: Starting the Scalectl Daemon and Client

Daemon Server

The Daemon server is the heart of the Scalectl Daemon. The base is formed by a Python
2.7 daemon module77. Upon initialization of the daemon object, we overwrite the run([...])
method, instead of running an infinite loop to keep the process alive we spawn a gevent88

web server serving a Flask99 web application [Source Code 3.83.8].

4https://github.com/CM2Walki/ScaleX-tune
5https://www.pyinstaller.org/
6ftp://ftp.gnu.org/old-gnu/Manuals/make-3.79.1/html chapter/make 2.html
7http://web.archive.org/web/20131017130434/

http://www.jejik.com/articles/2007/02/a simple unix linux daemon in python/
8http://www.gevent.org/
9http://flask.pocoo.org/
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3.4 Scalectl Daemon

1 # ORM object for Mongodb (keeps connection and queries)
2 mongodbORM = MongoDatabase('localhost', 27017)
3 userStorage = Storage() # user setup info is stored here
4 # daemon remote commands
5 commandList = DaemonCommands(mongodbORM, userStorage)
6 [...]
7 class ScaleCtlDaemon(Daemon):
8 def __init__(self, pidfile, name, host, port):
9 Daemon.__init__(self, pidfile)

10 self.app = None
11 self.host = host
12 self.port = port
13 self.name = name
14

15 def run(self):
16 self.app = Flask(self.name) # Setup Flask
17 V1View.register(self.app) # Register route
18 http_server = WSGIServer((self.host, self.port),
19 self.app) # Setup server
20 http_server.serve_forever() # Start server

Source Code 3.8: Setting up the daemon server

The V1View object holds all routes. It is responsible for decoding the arguments when
necessary and then calling the appropriate follow-up function. The DaemonCommands
object is ”building the context” of a user that wants to log in. Since the Scalectl Daemon
only supports one active user, there will always only be one [user] Context object. The
Context object gets created by the DaemonCommands object, which also provides it with
the user information it has previously retrieved from the APMT database [Source Code
3.93.9].
Since the Context object is storing all the AWS connections as well as the reference to
the latency and response time measuring thread, we can quickly discard an active user
by just replacing the object in DaemonCommands forcing the garbage collector to tidy up
the orphaned Context object and all of its associated variables and objects.

Figure 3.6: Scalectl Daemon: Setting up a user
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3 APMT Module Implementation

1 class DaemonCommands:
2 def setup_user(self, username):
3 # Try to find the user in the APMT database
4 result = self.mongodbORM.
5 get_user_info_from_name(username)
6 if result is not None:
7 # Check if we have the fields we need
8 if result["username"] and
9 [...] and result["awssubnetid2"]:

10 # Setup user
11 self.userStorage.set_username(
12 result["username"])
13 [...]
14 self.userStorage.set_awssubnetid2(
15 result["awssubnetid2"])
16 # Setup AWS connection
17 self.userContext = Context(self.userStorage,
18 self.mongodbORM)
19 # Retrieve running clusters
20 response = self.userContext.build_context(
21 self.userStorage)
22 [...]

Source Code 3.9: Setting up a user

Latency & Response Time Measuring

The latency and response measuring takes place inside a separate thread. It uses an
thread object python implementation1010. As mentioned in Section 3.3.33.3.3, AWS Load Bal-
ancer do not respond to ICMP (layer 3) pings, this is why the Scalectl Daemon comes
with a simple ”TCPPing” (layer 4) implementation. This is involves initiating a TCP
connection and waiting for it to be acknowledged. If we measure the blocking time of
socket.connect([...]) [Source Code 3.103.10 (line 25)] we get a similar latency value as with a
ICMP ping. Since this is merely a TCP handshake, we are not sending any application
data and are therefore not routed to a cluster instance. However, for the response time
we want to access an actual instance, this is why we initiate a run-of-the-mill request
aimed at the HTTP port [Source Code 3.103.10 (line 31)]. The thread then measures the time
it took to read the headers and the payload. After measuring both metrics, the results
are summed up and divided by probes (the amount of probes in this time step), thus
yielding the average for that data point. The values are then saved into the Mongodb.

10http://sebastiandahlgren.se/2014/06/27/running-a-method-as-a-background-thread-in-python/
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3.4 Scalectl Daemon

1 class Updater(object):
2 def __init__(self, interval, target, mongodb, username):
3 [..]
4 self.thread = threading.Thread(target=self.run, args=())
5 self.thread.daemon = True
6 self.thread.start()
7 self.stop = False
8

9 def run(self):
10 self.mongodb.create_perf_data_db(self.username)
11 counter = 1
12 probes = 0
13 total_lat = 0.0
14 total_resp = 0.0
15 while True:
16 if not self.stop:
17 now = datetime.datetime.now()
18 if now.second > 0:
19 if counter > 10:
20 # Latency
21 # Open socket
22 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
23 # Get starttime
24 start = time.time()
25 s.connect((str(self.target), 80))
26 total_lat = total_lat + (1000 * (time.time() - start))
27 s.close()
28 # Response Time
29 start = time.time()
30 # Process the header and the payload!
31 r = requests.get('http://' + (str(self.target)),
32 stream=True)
33 for chunk in r.iter_content(chunk_size=1024):
34 print ""
35 total_resp = total_resp + (1000 * (time.time() - start))
36 counter = 1
37 probes = probes + 1
38 counter = counter + 1
39 else:
40 if probes > 0:
41 total_lat = total_lat / probes
42 total_resp = total_resp / probes
43 [...]
44 self.mongodb.add_datapoint(self.username, total_lat,
45 total_resp, int(time.time()))
46 probes = 0
47 total_lat = 0.0
48 total_resp = 0.0
49 counter = 1
50 time.sleep(self.interval)

Source Code 3.10: Latency & Response Time Measuring
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3 APMT Module Implementation

Daemon Client

Figure 3.7: Scalectl Daemon commands

The client can now communicate with the daemon using the REST API. The Python im-
plementation follows a similar pattern as the server-side application. The ScaleCtlClient
object parses parameters passed through the terminal, and if required, encodes them in
base64. The encoding has to be done for mathematical functions as they generally do
not perform well as a plain text http parameter [Source Code 3.113.11].
The first command a user has to execute is the ”scalectl setup [username]” command.
This tells the daemon to retrieve the user information of the provided user name from
the APMT database [Figure 3.83.8].

1 class ScaleCtlClient:
2 [...]
3 def build_request(self, query):
4 return '%s%s' % (self.url, query)
5 [...]
6 def setup_user(self, username):
7 try:
8 response = requests.get(self.build_request('setup_user'),
9 params={'username': str(username)})

10 except requests.exceptions.ConnectionError:
11 print 'Unable to contact HTTP server! Is the Daemon running?'
12 sys.exit(2)
13 [...]

Source Code 3.11: Setting up a user client-side

Figure 3.8: Scalectl Daemon: Setting up a user
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3.5 Diagnostics Cluster

The user can now choose to run a Diagnostics Cluster using the following command
syntax:

1 scalectl cluster run STARTIME TIMEEND TIMESTEP TARGET FUNCTION SIZE VMTYPE

Figure 3.9: Scalectl Daemon: Example of the cluster run command

This will trigger the following steps on the daemon server:

• Build the user context for the active user information stored in the Storage object

• Create a new security group if it does not exist

• Delete the old auto scaling launch configuration if it exists

• Create a new auto scaling launch configuration, with the provided instance type
(vmtype) and adapted userdata (VM start up commands, including environment
variables of the docker container (see Section 3.53.5))

• Start a new auto scaling cluster of the provided cluster size

Depending on the start time passed to the cluster the instances will start to sample the
provided function each time step and output the desired amount of requests. In the
next section we will look into the containerized script that is responsible for this traffic
generation.

3.5 Diagnostics Cluster

Note: The Dockerfile can be found on GitHub1111 and the image as an automated built
repository on DockerHub1212.
As we have previously established the Diagnostics Cluster is an Auto Scaling Group
launched by the Scalectl Daemon. To ensure maximum performance, and again simplic-
ity, the Linux distribution used by the cluster is CoreOS1313, a minimalistic distribution
that is made specifically for cloud usage. It deploys quickly, does not create much idle
system usage and has Docker1414 installed by default, only requiring us to execute a com-
mand [Source Code 3.123.12] to start the process of benchmarking.
11https://github.com/CM2Walki/BenchmarkContainer
12https://hub.docker.com/r/walki/benchmarkcontainer/
13https://coreos.com/
14https://www.docker.com/
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1 #!/bin/bash
2 docker run -d -e TIMESTART=1537699862 -e TIMEEND=2147483647 -e TIMESTEP=60 \
3 -e TARGET=awsloadbal-1159594470.eu-central-1.elb.amazonaws.com \
4 -e FUNCTION="(-1)*(x-10)ˆ2+100" --name=benchmark \
5 walki/benchmarkcontainer
6 sudo systemctl stop update-engine # Stop auto updates

Source Code 3.12: UserData (start up script) generated by Scalectl Daemon

The Docker image is based on the alpine:latest image, making it very space efficient,
however this also means that we have to use regular Bourne shell (sh) instead of bash.
The script in [Source Code 33], was created as a proof of concept and should be replaced
in the future, since it uses curl to spawn requests, which in our tests has shown that
it can not handle a large amount of burst-like requests. Overtime the performance of
the script can even decrease, as shown in Figure 3.53.5. The data in that figure shows
a test conducted with 14 machines using the function ”x*10000”, whilst the test did
reach 140000 requests per minute, it spawned inconsistencies over time, hinting at the
fact that the x*10000 curl requests could not be completed in time. Contrary to the
expectations the total requests per minute actually started dropping after the 140000
peak. The target machine, which was running a static nginx web page only reached
30% CPU usage at most during the test, not even triggering the Auto Scaling Group to
provision more machines.

Figure 3.10: Diagnostics Cluster:
Resulting traffic (left)

Plot of function (right)
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3.5 Diagnostics Cluster

However the script [Source Code 33] performs up to expectations when used to repli-
cate small amounts of requests as seen in Figure 3.103.10. The request count can also be
influenced by adding additional machines to the Diagnostics Cluster, which act as a
multiplier upon the total count. This, however, requires extra coordination between
the machines to all act upon the same time. The variable ”Timestart” was added ex-
actly for that case. As seen in the script, when provided with a timestart located in the
future, the process will wait until that time has been reached before starting to create
traffic.
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3 APMT Module Implementation

1 #!/bin/sh
2 mathfunction=$1
3 timestart=$2
4 timeend=$3
5 timestep=$4
6 target=$5
7

8 # Wait for initial time
9 while true; do

10 curtime=$(date +%s)
11 if [[ $curtime -ge $timestart ]]; then
12 break
13 fi
14 sleep 1s
15 done
16

17 COUNTER=1
18 curmathfunction=0
19 currentload=0
20 # Start hammering away
21 while true; do
22 curtime=$(date +%s)
23 if [[ $curtime -ge $timeend ]]; then
24 break
25 fi
26 curmathfunction=$(echo $mathfunction | sed 's/x/'$COUNTER'/g')
27 currentload=$(echo $curmathfunction | bc -l)
28 COUNT=0
29 while true; do
30 curl -s "$target" > /dev/null &
31 COUNT=$((COUNT+1))
32 if [[ $COUNT -ge $currentload ]]; then
33 break
34 fi
35 done
36 COUNTER=$((COUNTER+1))
37 sleep $timestep
38 done

Source Code 3.13: Benchmarking sh script found inside the container

Upon entering the main loop, the script now determines whenever it has already
reached the ”Timeend” variable. If that is not case, it retrieves the provided maths
function and replaces all occurrences of x with the current sampling point (COUNTER).
Then the current load is calculated using the bc1515 command. The next while loop then
spawns curl jobs aimed at the ”Target” depending on the previous calculation. This
process gets repeated each ”Timestep”-seconds up until the ”Timeend” is reached or
the VM instance is terminated.

15https://www.gnu.org/software/bc/manual/html chapter/bc 5.html
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4 Future Research

During the making of this thesis, the suggested metrics have shown promising results
when it comes to tracking the status of an Auto Scaling Group. With the help of the
Diagnostics Cluster’s capability to replicate traffic patterns based on a passed function
it is possible to theorize an algorithm that tweaks CPU scaling thresholds that satisfy
either user-oriented or operation-oriented metrics.
Since the Diagnostics Cluster accepts any function, we can replicate past traffic patterns
from e.g. a sale or press release, by interpolating a function from that period’s data set.
This way we are able to reproduce the same environment over and over again, allowing
for tweaking to take place. We can also anticipate higher event traffic by manually
modifying the traffic pattern function.
In the end, this can potentially lead to budget savings, because we might have fewer
over-provisioning phases. One the other hand, there is also the possibility to improve
responsiveness, as we no longer only take the current moment’s ”snapshot” as our only
reference, since we have previous similar data available. This can help us anticipate
scaling up in advance but also help us by scaling down faster.
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4.1 Threshold Tuning Algorithm

4.1 Threshold Tuning Algorithm

In order to determine the most ideal value for the CPU threshold, we assume a similar
stance as the two congestion control phases of TCP: Slow-Start and Congestion-Avoidance
[11, Figure 1]. Whilst TCP regards package loss as an indication for imminent congestion,
we will consider an increase in errorrate over a certain threshold ([ErrorThreshold,
Algorithm 11] as our sign of congestion.

input : CongestionStepSize, ExposedPorts, ExperimentTimeInMinutes,
ErrorThreshold, U > 0

output : UOptimal

inSlowStartPhase← true;
1 while true do

Exp← CreateExperimentWithThreshold(U);
wait(); // Wait for experiment to launch
DiagnosticsClusterGenerateTraffic(ExposedPorts);
Etotal ← 0;
for t← 1 to ExperimentT imeInMinutes do

Etotal ← Etotal + GetCurrentErrorRate();
wait(1); // Wait one minute

end
if Etotal ≤ ErrorThreshold then

if inSlowStartPhase then
U ← U ∗ 2;

else
U ← U + CongestionStepSize;

end
else

if inSlowStartPhase then
U ← U/2;
isSlowStartPhase← false;

else
U ← U − CongestionStepSize;
returnU ;

end
end
KillExperiment(Exp);

end
Algorithm 1: User-Oriented Threshold Tuning Algorithm

The algorithm above showcases the procedure to find the optimal CPU threshold
for a user-oriented use case. We start off with a user-provided CPU threshold value,
optimally the one that is used in production for that specific application. Next, we
initialise an application experiment cluster of a predefined-size that scales if the average

35



4 Future Research

CPU usage rises over the provided threshold. We now let our Diagnostics Cluster create
traffic at the exposed ports of the application, after which we start collecting the error
rate of the application each minute up until the provided ExperimentT imeInMinutes.
When the experiment is concluded, we determine if we got over the ErrorThreshold
if that not the case, we double the CPU utilization and run a new experiment. We keep
doubling the CPU utilisation of the experiments, until we slip over the ErrorThreshold
in which case we half the utilization again. This correlates with the Slow-Start of the
TCP protocol congestion avoidance procedure.
Now we start linearly increasing the CPU utilization by the CongestionStepSize. Until
the ErrorThershold is violated again, in which case we decrement by
CongestionStepSize and output the optimal CPU scaling utilization threshold.

4.2 Diagnostic Cluster Upgrades

The script responsible for the Diagnostics Cluster’s ability to replicate traffic, has a lot of
potential for additions and improvements:

• Support for multiple variables, so more complex functions are possible (cubic
splines).

• Support for targeting multiple routes on an endpoint.

• A programming language that can use a system’s bandwidth more efficiently has
to be found.

• The traffic pattern generation should be spread out across threads and across time.

• The successful and error response metric should be read from the Diagnostic Clus-
ter, this way the user-oriented metrics can be tested independently, even on non-
cloud clusters.

In total, it has to be able to generate traffic more efficiently to force Auto Scaling Groups
to provision more machines, a case which rarely occurred using the current Bourne
script implementation.
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4.3 Combination

4.3 Combination

Figure 4.1: User Interface Proposal: Automatic Metric Tuning Dashboard

With the help of the Threshold Tuning Algorithm [Algorithm 11] and a more efficient Di-
agnostic Cluster, we can extend the APMT even further with an Automatic Metric Tuning
Dashboard [Figure 4.14.1], that allows a user to run experiments/tests that converge to-
wards certain Quality of Service requirements automatically.
Depending on the application, operators might favor responsiveness over costs or vice-
versa.
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5 Conclusion

In the scope of this thesis, the Autoscaling Performance Measurement Tool (APMT)
was successfully extended with six additional experimental metrics, classified into two
groups: Operation-oriented & User-oriented.
These metrics, combined with the addition of a Scalectl Daemon that records exter-
nal data, now allow valuable insights into the scaling patterns of AWS Auto Scaling
Groups. These patterns can also be replicated by the attached Daemon which is able to
spawn Diagnostic Clusters that generate request patterns matching the provided func-
tion.
These additions combined with the proposed Threshold Tuning Algorithm have a great
potential to improve long-term auto scaler performance, regardless of the Public Cloud
Provider that offers it.
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Appendix

Continuous Deployment during development

To ensure rapid development of both the Scalectl Daemon and the extended APMT, both
GitHub repositories were outfitted with a ”remotedeploy.sh”. These can be executed
inside the IDE of the developer to automatically redeploy an application with the latest
changes applied to it. In addition, the monolithic APMT image as well as the bench-
marking image are both built automatically on changes to their respective git reposito-
ries.

1 #!/bin/bash
2 # Add the Scalectl daemon to an existing container
3 # Creates a ScaleX container if it doesn't exist already
4 if [ -z $1 ] || [ -z $2 ] || [ -z $3 ]; then
5 printf 'Not enough arguments provided!\n\n'
6 printf 'Usage: ./remotedeploy.sh REMOTE SCALEXPORT SCALEXCONTAINERNAME\n\n'
7 printf 'Example: ./remotedeploy.sh root@example.org 8080 ScaleX\n'
8 exit 1;
9 fi

10 REMOTE=$1
11 SCALEXPORT=$2
12 SCALEXCONTAINERNAME=$3
13 ssh $REMOTE << EOF
14 if ! docker start '$SCALEXCONTAINERNAME'; \
15 then docker run -d -p '$SCALEXPORT':8080 \
16 --name='$SCALEXCONTAINERNAME' walki/apmt; fi
17 docker exec '$SCALEXCONTAINERNAME' bash -c 'if cd /usr/src/ScaleX-tune/.git; \
18 then cd /usr/src/ScaleX-tune/ && git fetch --all && \
19 git reset --hard origin/master; \
20 else cd /usr/src/ && git clone https://github.com/CM2Walki/ScaleX-tune; fi'
21 docker exec '$SCALEXCONTAINERNAME' bash -c 'cd /usr/src/ScaleX-tune && \
22 make init clean-build build'
23 docker exec '$SCALEXCONTAINERNAME' bash -c 'scalectl stop'
24 docker exec '$SCALEXCONTAINERNAME' bash -c 'rm /tmp/scalectl-daemon.pid > \
25 /dev/null 2>&1'
26 docker exec '$SCALEXCONTAINERNAME' bash -c 'scalectl start'
27 printf 'Deployment script done.\n'
28 EOF

Source Code 1: Add the Scalectl Daemon to an existing container (or update it)
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1 init:
2 pip install -r requirements.txt
3

4 update:
5 git fetch --all
6 git reset --hard origin/master
7

8 clean-build:
9 rm -rf tunex/build/

10 rm -rf tunex/dist/
11 rm -f /var/log/scalectl.log
12 find tunex/ -name '*.pyc' -exec rm --force {} +
13 find tunex/ -name '*.pyo' -exec rm --force {} +
14

15 build:
16 cd /usr/src/ScaleX-tune/tunex/ && pyinstaller --onefile scalectl.py
17 mv /usr/src/ScaleX-tune/tunex/dist/scalectl /usr/bin/scalectl

Source Code 2: Makefile that can rebuild the Scalectl Daemon using pyinstaller

1 #!/bin/bash
2 # Add the ScaleX module to an existing container
3 # Creates a ScaleX container if it doesn't exist already
4 if [ -z $1 ] || [ -z $2 ] || [ -z $3 ]; then
5 printf 'Not enough arguments provided!\n\n'
6 printf 'Usage: ./remotedeploy.sh REMOTE SCALEXPORT SCALEXCONTAINERNAME\n\n'
7 printf 'Example: ./remotedeploy.sh root@example.org 8080 ScaleX\n'
8 exit 1;
9 fi

10 REMOTE=$1
11 SCALEXPORT=$2
12 SCALEXCONTAINERNAME=$3
13 ssh $REMOTE << EOF
14 if ! docker start '$SCALEXCONTAINERNAME'; \
15 then docker run -d -p '$SCALEXPORT':8080 \
16 --name='$SCALEXCONTAINERNAME' walki/apmt; fi
17 docker exec '$SCALEXCONTAINERNAME' bash -c 'if cd /usr/src/apmt/.git; \
18 then cd /usr/src/apmt/ && git fetch --all && git reset --hard origin/master && \
19 cp -a /usr/src/apmt/server/. /usr/src/apmt/; else cd /usr/src/ && \
20 git clone https://github.com/CM2Walki/ScaleX && mkdir -p /data/db && \
21 mkdir -p /usr/src/apmt && cp -a /usr/src/apmt/server/. /usr/src/apmt/ && \
22 cd /usr/src/apmt && npm install; fi'
23 docker restart '$SCALEXCONTAINERNAME'
24 printf 'Deployment script done.\n'
25 EOF

Source Code 3: Deploy changes to APMT to remote
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