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Abstract 14 

In the last decade, Bayesian networks (BNs) have been identified as a powerful tool for human 15 

reliability analysis (HRA), with multiple advantages over traditional HRA methods. In this 16 

paper we illustrate how BNs can be used to include additional, qualitative causal paths to 17 

provide traceability. The proposed framework provides the foundation to resolve several needs 18 

frequently expressed by the HRA community. First, the developed extended BN structure 19 

reflects the causal paths found in cognitive psychology literature, thereby addressing the need 20 

for causal traceability and strong scientific basis in HRA. Secondly, the use of node reduction 21 

algorithms allows the BN to be condensed to a level of detail at which quantification is as 22 

straightforward as the techniques used in existing HRA. We illustrate the framework by 23 

developing a BN version of the critical data misperceived crew failure mode in the IDHEAS 24 

HRA method, which is currently under development at the US NRC (Xing et al., 2013). We 25 

illustrate how the model could be quantified with a combination of expert-probabilities and 26 

information from operator performance databases such as SACADA. This paper lays the 27 

foundations necessary to expand the cognitive and quantitative foundations of HRA. 28 
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Acronyms 30 

ACRS Advisory Committee on Reactor Safeguards 

ATHEANA A Technique for Human Event Analysis 

BN Bayesian Network 

CFM Crew Failure Mode 

CPT Conditional Probability Table 

DAG Directed Acyclic Graph 

DT Decision Tree 

HEP Human Error Probability 

HFE Human Failure Event 

HRA Human Reliability Assessment 

HSI Human-System Interface 

IDHEAS Integrated Decision-Tree Human Event Analysis System 

NRC Nuclear Regulatory Commission 

PDF Probability Density Function 

PIF Performance Influencing Factor 

PMF Probability Mass Function 

PRA Probabilistic Risk Assessment  

PSF Performance Shaping Factor 

SPAR-H Standardized Plant Analysis Risk-Human Reliability Analysis method  

THERP Technique for Human Error Rate Prediction  

 

 

  

  

1 Introduction 31 

A comprehensive probabilistic risk assessment (PRA) is an essential element of safety and 32 

reliability assurance for many complex engineering systems. The aim of the PRA is to 33 

understand the possible failure scenarios, the corresponding adverse consequences, and the 34 

failure scenarios’ probabilities. Most engineering systems can be characterized as human-35 

machine systems, in which the human operator and the technical system are interacting. For 36 

that reason it is essential for a PRA to consider not only failures of technical components but 37 

also the effect of human actions and human inaction. Human reliability analysis (HRA) models 38 

human elements as part of PRAs; in general through identification and quantification of human 39 

failure events (HFEs) in PRA models. A variety of methods have been developed and applied 40 

in this field to determine human error probabilities (HEPs) corresponding to HFEs. Among the 41 

most important representatives are THERP (Swain and Guttmann, 1983), SPAR-H (Gertman 42 

et al., 2005) and ATHEANA (Cooper et al., 1996).  43 

The limitations of existing HRA methods have been widely discussed previously (Woods, 1990, 44 

Hollnagel, 2000, Mosleh and Chang, 2004, Sträter, 2004, Boring et al., 2007, French et al., 45 

2011, Groth and Swiler, 2013). Two interrelated shortcomings in existing HRA methods are 46 

the limited scientific basis used to develop those methods and the use of simplified modeling 47 

techniques, which lack causal structure and quantitative traceability.  48 
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Ongoing research into human performance is addressing the first shortcoming.  The scientific 49 

foundations for human reliability have been explored and documented in the work by Whaley 50 

et al. (2012) on the psychological basis of HRA. In particular, they introduce a set of 51 

psychological failure mechanisms and proximate causes, which can lead to human failure 52 

events. Furthermore, they provide detailed insight into the factors that affect human 53 

performance (Performance Influencing Factors, PIFs), the dependency between those factors, 54 

and the causal pathways from those factors to human errors. International data collection 55 

activities offer insight into human performance in complex engineered systems (Park and Jung, 56 

2007, CSNI, 2012, Chang et al., 2014), which provide new opportunities to improve the 57 

quantitative basis of HRA. 58 

The second shortcoming, the lack of causal structure and quantitative traceability, is being 59 

addressed through advanced modeling efforts. Bayesian Network (BN) models (also called 60 

Bayesian Belief Networks), have becoming increasingly popular within HRA as a means for 61 

addressing these shortcomings because of their ability to explicitly model cause and effect 62 

combined with the ability to incorporate information from different sources (Baraldi et al., 2015, 63 

Mkrtchyan et al., 2015). Ongoing international research has demonstrated the ability of BNs 64 

both to capture the causal relationships among PIFs and to facilitate quantification of those 65 

relationships (Groth and Mosleh, 2012, Sundaramurthi and Smidts, 2013, Musharraf et al., 66 

2014, Podofillini et al., 2014). 67 

The psychological foundation has been leveraged in the development of two new HRA 68 

Methods, the IDHEAS (Integrated Decision-Tree Human Event Analysis System) method 69 

(Xing et al., 2013) and the PHOENIX method (Ekanem and Mosleh, 2014, Ekanem et al., 2016). 70 

Both IDHEAS and PHOENIX introduce the concept of crew failure modes (CFMs), a 71 

characterization of ways that a human failure event can occur during a crew interaction with 72 

the system. Both methods include a quantitative model relating PIFs to CFMs. However, the 73 

quantitative models in IDHEAS fall short of both causal and quantitative traceability; e.g. the 74 

motivation for the exclusion of cognitive mechanisms and PIFs from the method remains 75 

unclear (Stetkar, 2014). The PHOENIX method uses a BN model for quantification, but there 76 

are no directed arcs from one PIF to another, and thus the causal paths from the cognitive 77 

literature are not fully captured. 78 

In this paper we propose a methodology to expand the scientific basis and traceability of HRA 79 

by capturing causal paths from cognitive literature in BN models. Furthermore we present a 80 

method for quantifying the BN model using Bayesian parameter updating to combine human 81 

performance data with expert elicitation results. 82 

We introduce the methodology by developing a Bayesian network (BN) model for a single 83 

CFM from the IDHEAS method. We illustrate the procedure step by step, starting from the 84 

corresponding IDHEAS decision tree model, expanding the CFM model to a level where its 85 

cognitive foundation is modeled explicitly, and finally reducing the expanded model to a level 86 

where its quantification becomes straightforward. This process enhances the traceability 87 
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between the HRA quantification models and the underlying cognitive literature basis. In 88 

addition we provide a method to quantify the new model based on expert elicitation and then 89 

show how a database can be used to update these expert elicited distributions, such that the 90 

final model is based on both expert knowledge and observed data. 91 

2 Modeling and quantification tools 92 

This section introduces Bayesian networks (BNs) and Bayesian updating, which provides the 93 

foundation for using a combination of experts’ estimates and data for quantification.   94 

2.1 Bayesian networks 95 

Like decision, event- and fault trees, which are well known in the HRA community, BNs are a 96 

probabilistic modeling tool that is compatible with PRAs. In the last decade, BNs have been 97 

identified as a powerful tool for HRA, with multiple advantages over traditional HRA methods 98 

(Mkrtchyan et al., 2015). The graphical or qualitative part of a BN can be seen as a 99 

documentation of the causal dependencies between the random variables included in the model. 100 

An important difference to decision trees (DTs) is that BN models can explicitly represent the 101 

causality among the variables in the model and they do so in a computationally efficient way. 102 

The conditional independences underlying the graphical structure of the BN enable an efficient 103 

quantification of the model. 104 

For brevity only a short introduction to the most important aspects of BNs is provided here. For 105 

a more in-depth treatment of BNs, the reader is referred to textbooks (Jensen and Nielsen, 2007, 106 

Kjaerulff and Madsen, 2013).  107 

 108 

 109 

Figure 1. Example BN structure documenting the causal relationships between five variables 110 

(Z1 through Z5). In an HRA context, this model could be interpreted as the relationship 111 

between four PIFs (Z1, Z2, Z3, Z4) and HFE (Z5)  112 

BNs are an efficient representation of a joint probability distribution 𝑝(𝐳) over a random vector 113 

𝐙. Each node in the BN represents a random variable 𝑍𝑖. The qualitative dependence structure 114 

between the random variables 𝑍𝑖  is represented by a directed acyclic graph (DAG). Family 115 

terms are used to describe relationships between random variables in a BN. In the BN of Fig. 116 

1, 𝑍5  is a child of 𝑍2 , 𝑍3  and 𝑍4 , which in turn are its parents: 𝑝𝑎(𝑍5) = {𝑍2, 𝑍3, 𝑍4} . 117 

Furthermore 𝑍1 to 𝑍4 are ancestors of 𝑍5, and 𝑍5 is a descendant of the former. Ideally, the 118 
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graphical structure of a BN represents the causal relations among variables, but this is not a 119 

necessary condition. Interpreting the BN in Fig. 1 causally, one finds that 𝑍1 directly influences 120 

𝑍3 and 𝑍4, but only indirectly influences 𝑍5. 121 

In the BN, all random variables 𝑍𝑖 are specified by a conditional probability distribution given 122 

their parents, 𝑝(𝑧𝑖|𝑝𝑎(𝑍𝑖)). For random variables without parents, this reduces to the marginal 123 

distribution 𝑝(𝑧𝑖 ). We restrict ourselves to BNs with discrete random variables, which are 124 

described by their conditional probability mass function (PMF). These are summarized in 125 

conditional probability tables (CPTs).  126 

In the discrete BN, the joint probability distribution of all random variables is the product of all 127 

conditional PMFs:  128 

𝑝(𝐳) = ∏ 𝑝(𝑧𝑖|𝑝𝑎(𝑍𝑖))  

𝑛

𝑖=1

 (1) 

For the BN of Fig. 1, this reads as: 129 

𝑝(𝐳) = 𝑝(𝑧1) ∙ 𝑝(𝑧2) ∙ 𝑝(𝑧3|𝑧1) ∙ 𝑝(𝑧4|𝑧1) ∙ 𝑝(𝑧5|𝑧2, 𝑧3, 𝑧4) (2) 

Formulating the joint distribution as a product of conditional distributions facilitates 130 

the quantification of the model: It is significantly easier to elicit or quantify these 131 

conditional terms than more general joint distributions. In the example of Fig. 1, the 132 

random variable 𝑍4 is related to all other random variables (for an in-depth description 133 

of these relations see (Pearl, 1988)). However, the analyst need only specify 𝑝(𝑧4|𝑧1), 134 

which is further simplified if 𝑍4 is causally dependent on 𝑍1. The BN structure then 135 

takes care of the dependence between 𝑍4 and the remaining random variables in the 136 

model. In this way, the BN supports an intuitive modeling process. In addition, the BN 137 

structure also reduces the number of parameters that need to be estimated. 138 

The BN model supports practitioners in reasoning about the variables in the model. When 139 

observing some of the random variables in the BN, the conditional probability distributions of 140 

other random variables given the observations can be calculated with standard BN algorithms 141 

(e.g., the HEP given the states of some or all PIFs). In the process of reasoning, the parameters 142 

of the BN model remain untouched. In addition, real life situations or simulator experiments 143 

provide new information on the parameters of the BN model. The framework of learning and 144 

updating the parameters of the BN model with new data is called Bayesian parameter updating. 145 

2.2 Bayesian parameter updating 146 

Bayesian updating is applied to enhance the experts’ estimates of the crew failure scenario 147 

probabilities with new data. We revisit the most important aspects of Bayesian updating; for a 148 

more in depth treatment we refer to (Kelly and Smith, 2009, Groth et al., 2014). The goal of 149 

Bayesian updating is to learn the distribution of one or more parameters 𝛉. In the case of the 150 

HRA example considered in this paper, the parameters of interest are the crew failure scenario 151 
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probabilities conditional on the PIFs, 𝑝𝐶𝐹𝑀|𝑃𝐼𝐹1,...,𝑃𝐼𝐹𝑚
. In other HRA applications, the 152 

parameters include PIF probabilities and HEPs. The prior PDF (Probability Density Function) 153 

𝜋0(𝛉) represents the belief in the state of 𝛉 before considering the data, e.g., the probabilities 154 

based solely on expert elicitation. The data can be the result of one or more simulator 155 

experiments or operating events. Applying Bayes’ rule (Eq. 3) allows one to combine the prior 156 

distribution with the data 𝐱 to get the posterior distribution 𝜋1(𝛉|𝐱), representing the belief in 157 

the state of 𝛉 after observing 𝐱:  158 

𝜋1(𝛉|𝐱) ∝ 𝑓(𝐱|𝛉)𝜋0(𝛉) (3) 

where 𝑓(𝐱|𝛉) is the likelihood of the parameters 𝛉 given the data 𝐱. 159 

A typical database on crew performance in NPP control rooms or simulators contains the 160 

number of positive/negative outcomes in a number of trials. Since the outcome of each event is 161 

binary (e.g., success or failure), and assuming that the trials are independent of each other, this 162 

data can be modeled as a Bernoulli process. The parameter to estimate is the probability of 163 

failure 𝜃 and the observation is 𝑛𝑒, the number of times the crew failed to deal with the scenario 164 

in a correct way in a total of 𝑛  observed/simulated scenarios. In this case, the likelihood 165 

function is 𝑓(𝑛𝑒|𝜃) and is the binomial PMF (Probability Mass Function) with parameter 𝜃:  166 

𝑓(𝑛𝑒|𝜃) = (
𝑛

𝑛𝑒
) ∙ 𝜃𝑛𝑒 ∙ (1 − 𝜃)𝑛−𝑛𝑒  

(4) 

For binomial data, it is mathematically convenient to use a beta distribution to represent the 167 

prior beliefs on 𝜃, because the beta distribution is a conjugate prior for the binomial likelihood 168 

function (Raiffa and Schlaifer, 1961). The beta PDF with parameters 𝑎0 and 𝑏0 is: 169 

The use of conjugate priors greatly simplifies the mathematics of Bayesian updating. If the beta 170 

distribution is used to model 𝜋0(𝜃) and the likelihood function is the binomial PMF of Eq. 4, 171 

the posterior 𝜋1(𝜃|𝑛𝑒) is beta distributed as well; one example is shown in Fig. 2. In this case, 172 

the parameters of the posterior beta distribution can be calculated analytically as: 173 

𝑎1 = 𝑎0 + 𝑛𝑒 (6) 

𝑏1 = 𝑏0 + (𝑛 − 𝑛𝑒) (7) 

𝜋0(𝜃) =
1

𝐵(𝑎0 , 𝑏0 )
𝜃𝑎0−1(1 − 𝜃)𝑏0−1 (5) 
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 174 

Figure 2. Updating the beta prior distribution with two different data sets. Posterior I is 175 

obtained by updating with a dataset of length n = 25 in which ne = 4 occurrences of a HFEs 176 

are observed. Alternatively, posterior II is obtained by updating with a dataset of length n=177 

50 with ne = 5 HFE occurrences. 178 

Typically, the parameters of the beta prior, 𝑎0  and 𝑏0 , are obtained from experts. Multiple 179 

techniques to elicit beta parameters from experts have been proposed (Bedford and Cooke, 180 

2001, O'Hagan et al., 2006). A straightforward approach to estimate the parameters of 𝜋0(𝜃) 181 

is to first elicit the expected value 𝐸[𝜃]. A first constraint on the distribution parameters is then 182 

given through the definition of the expected value of a beta distribution: 183 

𝐸[𝜃] =
𝑎0

𝑎0 + 𝑏0
 (8) 

In a next step, the standard deviation of the distribution needs to be determined, representing 184 

the experts’ uncertainty on 𝜃. This elicitation may be done graphically, as in Fig. 3, where beta 185 

PDFs are shown with an expected value 𝐸[𝜃] = 0.1 and varying standard deviation.  186 

 187 

Figure 3. PDFs of beta distributions with mean 0.1 and varying standard deviations. The 188 

standard deviations of the distributions are a) 0.03, b) 0.07 and c) 0.01. 189 

3 Crew failure modes in HRA 190 

Two new HRA methods incorporate the concept of crew failure modes: the IDHEAS method 191 

developed by the U.S. NRC, and the PHOENIX method developed by the University of 192 

Maryland (Ekanem and Mosleh, 2014, Ekanem et al., 2016). PHOENIX and IDHEAS follow 193 

a similar modeling approach combining both qualitative and quantitative steps:  194 
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- Performing a qualitative task analysis and documenting crew failure paths in a crew 195 

response tree (CRT).  196 

- Selecting applicable crew failure modes (CFMs) for each event in a CRT.  197 

- Quantifying the individual CFMs (via Decision Trees for IDHEAS, and via BNs for 198 

PHOENIX) and combining probabilities of the relevant CFMs to calculate the human 199 

error probabilities (HEPs) for each event. 200 

- HFE dependency analysis and possible recovery actions.  201 

In this work we focus specifically on the modeling and quantification of the CFMs. In both 202 

methods, the CFMs are a crucial element, which translates the concept of human errors from a 203 

psychological perspective into crew errors that could lead to an HFE. 204 

IDHEAS and PHOENIX each derive their CFMs from the psychological failure mechanisms 205 

(Whaley et all 2014). In both methods, PIFs are used to characterize the content of the task, and 206 

PIFs are used to quantify the probability of occurrence of a CFM. The two methods differ in 207 

the number of CFMs used, as well as the quantification approach. IDHEAS considers 14 Crew 208 

Failure modes (CFMs) representing failures that are typical for human performance in nuclear 209 

power plant control rooms. The CFMs in IDHEAS are summarized in Tab. 1. The PHOENIX 210 

method considers 19 different CFMs, which are summarized in Tab. 2. 211 

In IDHEAS, each CFM is quantified using a DT1, such as the one shown in Fig. 4. Each PIF is 212 

represented as a branch point in the DT. For simplicity, the IDHEAS developers chose to limit 213 

the number of PIFs in each DT to four.  214 

Table 1. Crew Failure Modes used in the IDHEAS method (Xing et al., 2013) 215 

Phase of 

response 
Plant status assessment Response planning Execution 

Crew Failure  

Mode (CFM) 
Key alarm not attended to† Delay 

implementation† 

Fail to initiate 

execution 

Data misleading or not available 

 

Misinterpret 

procedure† 

 

Fail to execute 

response correctly 

Premature termination of critical 

data collection 

Choose inappropriate 

strategy  

Critical data misperceived   

 Wrong data source attended to†   

 Critical data not checked with 

appropriate frequency 

  

   

 Critical data 

dismissed/discounted† 
  

  Misread or skip step in procedure*† 

 Critical data 

miscommunicated**† 
  

† CFM for which data was collected. 

 

 

 

                                                      
1 Note: The applied models are referred to as decision trees in the IDHEAS report (Xing et al. 2013). 

However, since there are no decisions involved, the tool should be more appropriately termed event tree 

in a PRA sense. Because this paper is mainly intended for the HRA community, we stick to the terms 

used in the IDHEAS report.  
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* May occur in either ‘Response Planning’ or ‘Execution’ phases. 

 

 

** May occur in any of the three phases.  

In PHOENIX, the CFMs are quantified using one BN that maps relationships between PIFs and 216 

all nineteen CFMs. PHOENIX considers nine “primary” PIFs, which all directly influence each 217 

of the CFMs. PHOENIX also includes an expanded qualitative BN model, which includes 218 

approximately 20 additional PIFs that have been collapsed into the nine primary PIFs. The BN 219 

model used in PHOENIX does not directly model interdependency between the PIFs. 220 

Table 2. CFMs used in the PHOENIX method. 221 

Information processing 
Diagnosis/decision 

making 
Action taking 

Key alarm not responded to (intentional & 

unintentional) 

Plant/system state 

misdiagnosed 
Incorrect timing of action 

Data not obtained (intentional) Procedure misinterpreted 
Incorrect operation of 

component/object 

Data discounted 
Failure to adapt procedure 

to the situation 

Action on wrong 

component / object 

Decision to stop gathering data 
Procedure step omitted 

(intentional) 
 

Data incorrectly processed Deviation from procedure  

Reading error Decision to delay action  

Information miscommunicated 
Inappropriate strategy 

chosen 
 

Wrong data source attended to   

Data not checked with appropriate 

frequency 
  

3.1 IDHEAS critical data misperceived  222 

In the remainder of this paper, the CFM critical data misperceived is considered exemplarily 223 

to demonstrate the proposed framework. This CFM is presented to some detail in the following. 224 

Critical data misperceived captures situations such as the one in which a parameter has to be 225 

read from a control panel or the status of some piece of equipment is to be determined from an 226 

indication on the control panel and this piece of information is critical in the sense that its 227 

misinterpretation will lead to an incorrect response (Xing et al., 2013). Three PIFs are used to 228 

describe the context: HSI/environment, workload, and training2, where HSI refers to Human-229 

system interface. All the PIFs are binary with states labeled as {poor and good}, {high and low} 230 

or {no and yes}. In Fig. 4 the DT for the CFM critical data misperceived is shown. Each path 231 

through the DT represents one possible crew failure scenario. The analysts are provided with a 232 

                                                      
2 This DT also contains a branch for recovery potential, which is used in most IDHEAS CFM. The 

meaning of “recovery potential” has been defined in a generic manner as “opportunities for correction 

given failure”. However these opportunities have not been clearly specified for the considered CFM, and 

thus we neglect this concept in the remaining sections of the paper. 
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set of two to five questions3 for each PIF guiding them in determining the states of the PIFs 233 

(see Appendix A). Expert elicitation was used to assign probabilities to the different crew 234 

failure scenarios.  235 

 236 

 237 

Figure 4. Decision tree for the crew failure mode critical data misperceived (Xing et al., 238 

2013). The paths through the decision tree are numbered and for each path a probability was 239 

elicited from experts. E.g. the HEP for poor HSI/environment, high workload, poor training 240 

and no recovery potential is 0.56. (Note: The expert elicitation task has not been completed as 241 

of the writing of this paper; some probabilities are listed as “unknown” and some may change 242 

in the final IDHEAS report.) 243 

4 Development of a BN structure for each CFM 244 

As explained in section 2, the directed acyclic graph (DAG) part of a BN ideally represents the 245 

causal relationships between the random variables in the model. Furthermore, the structure also 246 

defines the information (i.e., the marginal and conditional probabilities) needed to quantify the 247 

BN. In this section, we illustrate the development of two BN structures for each CFM: a first 248 

BN that contains an expanded causal structure based on cognitive literature (Whaley et al., 2012) 249 

and PIF specification nodes corresponding to the questions in Appendix A; and a second BN 250 

obtained through reduction of the first structure.  251 

Since the availability of data is the main bottleneck in HRA, we aim at developing a BN 252 

structure whose quantification requires roughly the same amount of information as the original 253 

DT. In section 4.3 we enhance the causal details in the original method by explicitly including 254 

the PIF specifications and by adding PIFs that are essential to the interpretation of the CFM. 255 

This model can be quantified or used un-quantified to help document the causal paths on which 256 

the model is based. In section 4.4, we demonstrate that node reduction algorithms can be used 257 

to reduce the BN with full causal details down to a structure, for which quantification is feasible 258 

                                                      
3These questions are not explicitly included in the DT. In section 4 we propose a way to directly include 

these questions in the model.  
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with respect to data availability. In the presented example, the final model is equivalent to the 259 

DT with explicit inclusion of the PIF specification nodes.  260 

In the following subsections, we discuss the general idea behind the structure development 261 

approach and we develop the structure for the crew failure mode critical data misperceived step 262 

by step. Quantification of the models is discussed in section 5. 263 

4.1 Summary of approach and models 264 

We propose an approach for developing causal (BN) models for HRA starting from the 265 

psychological basis of the models. The following steps summarize the approach: 266 

 Review of the cognitive foundation for each CFM to identify the main causal failure 267 

paths, the PIFs and possibly other relationships. 268 

 Development of an exhaustive causal model including all identified causal failure paths, 269 

PIFs and relationships. 270 

 Application of node reduction algorithms, to remove nodes from the model that are not 271 

quantifiable with feasible effort. 272 

 Elicitation of experts and initial quantification of model. 273 

 Updating the quantification with results from human performance databases. 274 

4.2 BN model of original IDHEAS DT  275 

Each DT used to quantify the IDHEAS CFMs includes a number of PIFs. It is straightforward 276 

to develop a BN structure out of these PIFs and the target node, which is the node representing 277 

the CFM event. Since the PIFs influence the state of the CFM node, generally the PIFs are 278 

modeled as parents of the latter. From the structure it is clear that quantifying these structures 279 

requires conditional probability distributions for the CFM node and marginal distributions for 280 

the PIF nodes.  281 

The simple BN structure is shown in Fig. 5 for the CFM critical data misperceived. In this BN, 282 

the PIFs are assumed to be independent if the target node is not observed. The question if the 283 

PIFs are actually independent is not addressed within the original IDHEAS framework, since 284 

the IDEHAS decision trees provide HEPs only conditional on the states of all PIFs. 285 

 286 

 287 
 288 

Figure 5. BN for the CFM critical data misperceived that corresponds to the original DT 289 

model.  290 

Critical data
misperceived

Workload
HSI /

Environment
Training
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4.3 BN model with full causal details 291 

The BN model in Fig. 5, derived from the DT, reveals little about the cognitive paths leading 292 

to crew failure. This missing information is, however, essential to understanding the model with 293 

its features and limitations. The model is therefore expanded. We expand the model at two 294 

levels to the BN shown in Fig. 6. Firstly, we add an additional layer of nodes (white in Fig. 6). 295 

These nodes are intended to specify the causal paths leading to error based on cognitive 296 

psychology. These nodes are often too generic or abstract for analysts to directly determine the 297 

states, but critical for correctly modeling human performance. Secondly, an additional layer of 298 

PIF specification nodes is introduced (light grey in Fig. 6). These are based on questions and 299 

rules for the analysts that are provided in IDHEAS to support the determination of the states of 300 

the PIFs (Appendix A).  301 

 302 

Figure 6. Fully expanded BN for the CFM critical data misperceived. The black node 303 

represents the target variable; dark grey nodes the PIF variables; light grey nodes the PIF 304 

specification variables and white nodes additional variables illustrating the causal paths. The 305 

causal paths I to III are indicated through roman numerals. 306 

The literature serving as a foundation for IDHEAS (Whaley et al., 2012) summarizes the causal 307 

paths that can lead to a crew failure event, based on a comprehensive study of cognitive 308 

psychology. These paths can be implemented directly as nodes in the model to add additional 309 

causal details extracted from scientific literature. For the example CFM (Fig. 6) there are three 310 

main causal paths leading to data misperceived, following cognitive literature (Köhler, 1947, 311 

Broadbent, 1958, Tversky and Kahneman, 1974, Biederman, 1987, Endsley, 1995, Klein, 1998, 312 

Warner and Letsky, 2008): 313 

 The first causal path (path I in Fig. 6) corresponds to the misperception of data due to 314 

extreme HSI/environment conditions. In this case, the quality of the HSI is so poor, or 315 
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certain factors in the environment are so severe, that the information is degraded in 316 

such a way that it is misperceived. For example, the operators may be inundated with 317 

so many alarms that they experience sensory overload (Broadbent, 1958) and therefore 318 

misperceive the critical data. Technically this could be seen as an instrumentation 319 

failure rather than a HFE, but this instrumentation failure would manifest as a human 320 

failure event (Endsley, 1995, Klein, 1998). 321 

 The second causal path (path II in Fig. 6) is attention degradation that leads to 322 

misperception. Attention can be degraded due to a combination of factors, including 323 

characteristics of the situation and the information (e.g., the HSI and environment), 324 

high workload, multiple priorities, and through the biases introduced by training, 325 

knowledge, and experience. Training, workload and perception of urgency cause the 326 

crew to prioritize certain tasks and direct attention to these. A misdirection of attention 327 

can lead to misperception of critical data. The prioritization and the crew members’ 328 

expectation biases determines the amount of attention paid to the various pieces of 329 

information, which again may lead to misperceiving the critical data (Eriksen and St. 330 

James, 1986, Endsley, 1995). 331 

 The third causal path (path III in Fig. 6) stems from expectation biases related to 332 

experience and knowledge, which can cause misperception of critical data. This can 333 

occur in a direct manner, e.g., situations where a person “sees what they want to see”, 334 

or indirectly through changing the person’s attention to focus on other data (Einhorn 335 

and Hogarth, 1981, Endsley, 1995). 336 

As shown in the model (Fig. 6), the PIFs identified in the IDHEAS model influence the 337 

occurrence of the CFM through multiple causal paths. HSI/environment influences the target 338 

CFM through one direct causal path and additionally through two indirect causal paths. 339 

Training also influences the CFM (indirectly) through two different causal paths. The third 340 

causal path, expectation bias, is only indirectly captured in the original IDHEAS model. 341 

The IDHEAS PIF specification nodes (light grey nodes) are intended to capture various aspects 342 

of the three PIFs, and are used in this model to demonstrate how observable questions can be 343 

explicitly included in the model. 344 

The node prioritization has a dual role. Firstly, it represents a PIF question specifying training, 345 

which is “Is the significance of the decision that is based on obtaining this information correctly 346 

given a high priority compared to other concurrent tasks?”. Secondly, prioritization is part of 347 

the second causal path. According to this path training influences prioritization. The link is 348 

thus directed from training to prioritization, and not like other PIF specifications the other way 349 

around (cf. Groth and Mosleh, 2012). To capture the influence of prioritization according to its 350 

role as a PIF specification node correctly, an additional dependence between prioritization and 351 

the node crew trained to understand the scenario needs to be introduced. Further discussions 352 

on the role of the node prioritization may be necessary, but are left for future research. 353 
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4.4 BN model reduction to facilitate IDHEAS-like quantification 354 

The full model in Fig. 6 can be quantified using a variety of approaches. However, a secondary 355 

objective of this work is to develop a HRA model based on IDHEAS, and thus to limit the 356 

amount of additional information that must be elicited. To achieve this goal, the model in Fig. 357 

6 is reduced to a form that more closely resembles the original IDHEAS DT, but is augmented 358 

with the PIF specifications from Appendix A. 359 

To do so, the node removal algorithm by (Shachter, 1986) is applied to the BN of Fig. 6. This 360 

algorithm allows removing nodes, which have not received evidence, in a way that the 361 

(in)dependence assumptions incorporated in a BN are not altered (Straub and Der Kiureghian, 362 

2010). The two principles of node removal are:  363 

 Firstly, a node, which has not received evidence and which does not have children can 364 

be removed from the network. One refers to such nodes as barren.  365 

 Secondly, the direction of a link between two nodes 𝑍𝑖 and 𝑍𝑗 can be reversed if 𝑍𝑖 366 

inherits 𝑍𝑗 ’s parents and vice versa and if this does not cause the BN structure to 367 

become cyclic.  368 

Nodes are eliminated by first reversing all links so that the nodes to be removed have no 369 

children, and then removing them. In this way, the joint probability of all remaining nodes in 370 

the BN is unaltered. Removing the white nodes from the BN in Fig. 6 results in the BN of Fig. 371 

7.  372 

 373 

Figure 7. Reduced BN for the CFM critical data misperceived. 374 

Exemplarily we describe the removal of the node attention. This node has one child, namely 375 

critical data misperceived. In order to make attention barren, its link pointing to critical data 376 

misperceived should be reversed. To not introduce any new independencies by doing so, both 377 

of the involved nodes need to inherit each other’s parents. Prioritization and workload thus 378 

become parents of critical data misperceived. On the other hand critical data misperceived 379 

does not have any other parents, which are not at the same time parents of attention, with the 380 

exception of attention itself. Therefore the node attention does not inherent any additional 381 
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parents. Since reversing the link between attention and critical data misperceived makes the 382 

former node barren, it can be removed. 383 

4.5 Discussion/ implications of the models 384 

Of special interest is the causal role of the node prioritization in this structure. According to 385 

causal path II discussed in section 4.2, high workload increases the probability of misperceiving 386 

critical data if the crew does not set correct priorities. In Fig. 6, prioritization is modeled as a 387 

child of perception of urgency and training. The causal interpretation is that both training and 388 

perception of urgency influence the probability of correct prioritization. Both prioritization and 389 

workload are parents of the node attention in Fig. 6. The combination of ineffective 390 

prioritization together with high workload will influence the attention paid to critical data.  391 

Our derivation of the BN model from the cognitive paths proposed a direct dependency of 392 

critical data misperceived on the node prioritization, which is not considered directly as a PIF 393 

in IDHEAS. A detailed discussion on whether the inclusion of this is necessary or whether there 394 

are reasons to exclude this PIF is not within the scope of this paper. Since multiple cognitive 395 

literature sources indicate this dependency (Eriksen and St. James, 1986, Endsley, 1995), it is 396 

considered a critical PIF for accurately representing the cognitive factors.  397 

The BN structure in Fig. 7 has advantages over the simple BN structure of Fig. 5. Firstly, in 398 

this model the analyst would directly answer the questions corresponding to the PIF 399 

specification nodes rather than assigning a PIF state based on implicit consideration of the 400 

questions, which is a much more abstract process4. The explicit inclusion of PIF specifications 401 

in the model expands the level of documentation provided by the model, enhances the 402 

traceability from analysis input to probability estimate, and reduces variability among analysts. 403 

Secondly, if marginal probabilities are elicited for the PIF specification nodes, as was done in 404 

(Hallbert and Kolaczkowski, 2007), the BN in Fig. 7 can deal with missing information or 405 

uncertainty about one of the PIF specification nodes’ states. For example, the HRA analyst may 406 

lack information about specific indicator designs, which may make it difficult to assess the state 407 

of easiness of data to read. In situations where the analyst does not have information about one 408 

or more PIFs, the analyst can use the prior probabilities in the BN rather than guessing or 409 

making unwarranted assumptions about the system.  410 

Thirdly, the fully quantified BN can be used to reason about additional problems and gather 411 

additional insight. With identical analyst inputs, the BN structure in Fig. 7 will produce the 412 

same HEP assignments as the IDHEAS DT. However, the BN structure also offers the 413 

opportunity to reason about the PIFs, given knowledge of the CFM (and/or other PIFs). This 414 

provides an added benefit: the ability to identify, which PIFs (or PIF details) are likely to be 415 

present when we know there is an HFE. This gives insight into the probabilities of the causes 416 

                                                      
4 This holds also if the original DT is considered together with the questions provided in the IDHEAS 

report. 
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or HFEs, which is a critical piece of information that can be used to prevent errors (Groth and 417 

Swiler, 2013). 418 

5 CFM BN Quantification 419 

This section describes the quantification of the BN structures developed in the previous section. 420 

We first present the straightforward quantification of the BN model in Fig. 5 based on the 421 

IDHEAS DT and how this simple model can be augmented with expert elicited data about the 422 

PIFs. Thereafter we show how the BN of Fig. 7 can be quantified using expert estimates, and 423 

finally how information from the SACADA (Scenario Authoring, Characterization, and 424 

Debriefing Application) (Chang et al., 2014) or similar databases can be used in this 425 

quantification. The BN of Fig. 6 can be quantified using a similar approach, but this is omitted 426 

for brevity.  427 

5.1 Quantifying the BN model based on the original DT 428 

As discussed in section 2, there is a conditional probability table (CPT) attached to each of the 429 

nodes in a BN. The CPT of the node critical data misperceived in the BN of Fig. 5 is identical 430 

to the conditional HEPs from the corresponding decision tree with one exception: the 431 

contribution of the recovery=yes branches is omitted because recovery is not clearly defined 432 

for this CFM. This CPT is shown in Tab. 3. 433 

Table 3. CPT of the node critical data misperceived. The HEPs corresponding to the grey cells 434 

are marked as unknown in Fig. 4. For that reason, the estimates for the scenario [HSI = poor, 435 

workload = low and training = poor] were used. This corresponds to a conservative 436 

approximation, since changing the state of training from good to poor will certainly increase 437 

the HEP.  438 

HSI/Env. Poor Good 

Workload High Low High   Low 

Training Poor Good Poor Good Poor Good Poor Good 

Recovery No No No No No No No No 

Error 0.56 0.011 6.5E-3 6.5E-3 5.7E-3 1.6E-4 1.3E-4 1.3E-5 

No error 0.44 0.989 0.9935 0.9935 0.9943 0.99984 0.99987 0.999987 

Quantification of the BN also requires probability distributions for each of the PIF nodes. 439 

Unlike the conditional HEPs, these probability distributions are not provided by the original 440 

IDHEAS method.  441 

The marginal distributions of the PIF nodes can be quantified using dummy distributions (e.g. 442 

assigning the same probability to each state of a PIF). In that case quantifying the BNs does not 443 

require any additional probability elicitations compared to quantifying the DT models. 444 

However, if dummy distributions are used for the PIF nodes, the BN, like the DT model, is only 445 

capable of giving ‘correct’ HEPs if the states of all PIFs are known (i.e., the BN model will 446 

predict HEPs identical to the DT, but additional benefits of the BN cannot be realized).   447 
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If the marginal distributions are actually elicited, the simple BN structure is capable of dealing 448 

with uncertainty about PIF states. In (Groth and Swiler, 2013) expert elicitations were used to 449 

quantify the CPTs of the PIFs, based on information elicited in (Hallbert and Kolaczkowski, 450 

2007). Probability distributions for the PIFs of the CFM critical data misperceived, which are 451 

based on (Groth and Swiler, 2013) are given in Tab. 4. 452 

Table 4. Illustrative probabilities quantifying the CPTs of the PIFs. The probabilities are 

based on (Groth and Swiler, 2013). 

 

 

5.2 Quantification of BN model of DT with PIF specification nodes 453 

We illustrate the quantification of the final BN model of Fig. 7. In this and similar BNs, there 454 

are three types of nodes to quantify: the CFM node (conditional on the PIFs), the PIF nodes 455 

(conditional on the PIF specification nodes), and the PIF specification nodes (marginal 456 

probabilities since these have no parents). 457 

5.2.1 CFM node given PIFs 458 

The parameters used in section 5.1 to quantify the CFM node were point estimates. (Xing et al., 459 

2013) additionally provides HEPs with corresponding uncertainty estimates (i.e. quantile 460 

estimates). We fit beta distributions to these quantile estimates. For proof-of-concept, 461 

artificially generated data is used to update these fitted beta priors; the expected values of the 462 

posterior distributions are then used to quantify the final BN. Due to the updating as well as the 463 

fitting process, the parameters of the final BN do not exactly correspond to the parameters from 464 

Tab. 3.  465 

For quantification of the BN in Fig. 5 following section 5.1, the target node needs to be defined 466 

conditional on three parents, i.e. the three PIFs. For the BN in Fig. 7, an additional direct 467 

dependency of the target node on the node prioritization was found. It is thus necessary to 468 

define the CPT of the target node on HSI/environment, training, workload and prioritization. 469 

Since IDHEAS does not provide probabilities for critical data misperceived conditional on the 470 

state of prioritization, simple assumptions are used here. For the purpose of illustration, we 471 

assume that workload and prioritization interact in a way that the conditional probabilities of 472 

critical data misperceived are equal to: 473 

 the conditional probabilities derived for low workload, if the crew is able to prioritize; 474 

PIF PIF state Pr(𝑃𝐼𝐹) 

HSI/environment good 0.16 

 poor 0.84 

Training good 0.67 

 poor 0.33 

Workload low 0.84 

 high 0.16 
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 the conditional probabilities derived for low workload, if workload is low and the crew 475 

is not able to prioritize; 476 

 the conditional probabilities derived for high workload, if workload is high and the 477 

crew is not able to prioritize; 478 

5.2.2 PIF nodes  479 

In section 5.1, marginal probability distributions need to be assigned to quantify the PIF nodes 480 

of the simple BN in Fig. 5. For the quantification of the extended BN in Fig. 7, the PIF nodes 481 

are defined conditional on PIF specification nodes. The IDHEAS report (Xing et al., 2013) 482 

provides rules on defining the states of the PIFs given the states of the PIF specification nodes. 483 

To be in line with the original method, we use these rules to quantify the CPTs of the PIF nodes. 484 

Presently, these rules are deterministic, which means they can be modeled as AND or OR 485 

relationships (deterministic nodes in the BN). These rules are provided for the CFM critical 486 

data misperceived as pseudo-code in Appendix B. Future research could focus on redefining 487 

these rules if it is found that these deterministic rules do not match reality, or if the relationship 488 

between the PIFs and PIF specifications is more nuanced than originally thought. It is, however, 489 

important that there is a common understanding on how the PIF specification nodes are linked 490 

to the PIF nodes, on how these nodes are included in the BN, and on how to quantitatively 491 

represent the dependence. 492 

These rules can directly be transformed to CPTs quantifying the respective nodes in the BN. 493 

For example, the CPT for training given the two corresponding PIF specifications is provided 494 

in Tab. 5. The IDHEAS report defines training conditional on prioritization and crew trained 495 

to understand the scenario. However, to represent causality, the node prioritization is 496 

considered as a child of training rather than its parent in the BNs of Fig. 6 and 7. The CPT 497 

derived from the rules provided in the IDHEAS report needs thus to be reformulated using 498 

Bayes’ rule5. 499 

Table 5. Deterministic CPT of training given the two corresponding PIF specification nodes 500 

Crew trained to understand the scenario Yes No 

Prioritization Yes No Yes No 

Good training  1 1 1 0 

Poor training 0 0 0 1 

5.2.3 PIF specification nodes 501 

The PIF specification nodes require marginal probabilities. We elicit these probabilities from 502 

experts. Since a CFM like critical data misperceived typically does not apply in a NPP’s normal 503 

state, it is important for the elicitation process that the experts understand that they are to give 504 

probabilities that are implicitly conditional on scenarios in which the CFM may apply. For 505 

example, if the CFM critical data misperceived and the PIF specification node nominal 506 

                                                      
5 Note: No additional parameters need to be elicited in this case. 
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environment are considered, the experts need to give a probability of the event environment 507 

being nominal in situations where critical data is received. As proof-of-concept, the PIF 508 

specification nodes of the CFM critical data misperceived were quantified. The question, 509 

whether it is actually reasonable to elicit probabilities for such nodes conditional on being in 510 

an off-normal state, from experts should be further discussed. Such a discussion is outside the 511 

scope of this paper.  512 

A small survey was carried out to illustrate the process to elicit the prior probabilities of the 513 

PIF specification nodes. The survey participants were two HRA experts with a background in 514 

cognitive psychology (experts I and II) and one former operator of a nuclear power plant on a 515 

submarine (expert III). Since the final probabilities should be elicited from actual nuclear power 516 

plant operators, the numbers given in this report are intended only for illustrative purposes of 517 

the framework. The survey is shown in Appendix C and the numbers given by the experts are 518 

summarized in Tab. 6.  519 

 520 

Table 6. Results from the survey, carried out to elicit prior probabilities for the PIF specification 521 

nodes. Experts I and II are HRA specialists with a background in cognitive psychology and 522 

expert III is a former operator of a nuclear power plant on a submarine. The elicited numbers 523 

are probability estimates for the PIF specification nodes being in state “yes”. 524 

PIF specification node 

Expert 

Mean 

I II III 

Indications clear and unambigous 0.9 0.8 0.9 0.87 

Easiness of information to read 0.8 0.75 0.9 0.82 

Clear display of range for comparison 0.8 0.8 0.95 0.85 

Environment nominal 0.2 0.25 0.25 0.23 

Indicators/source of data easy to read and locate 0.8 0. 8 0.5 0.7 

Still determining plant status 0.7 0.65 0.98 0.78 

Several alarms 0.8 0.9 0.98 0.89 

More tasks than usual 0.15 0. 3 1.0 0.48 

Crew trained to understand the scenario 0.8 0.8 0.98 0.86 

Prioritization 0.95 0.9 0.9 0.92 

 525 

The experts agree well on most questions. But there is a large spread in the experts estimates 526 

in questions 5 (Indicators/source of data easy to read and locate), 6 (Still determining plant 527 

status) and 8 (More tasks than usual). The mean values from Tab. 6 are directly used to quantify 528 

the marginal probabilities of the BN in Fig. 7, i.e. for the quantification of the PIF specification 529 

nodes we do not consider parameter uncertainties. 530 
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6 Updating with data 531 

In this section, we illustrate how the SACADA database (Chang et al., 2014) could be used to 532 

update the probabilities of the CFM node in the IDHEAS-BN. These HEPs in IDHEAS are 533 

conditional on the relevant PIFs. Since SACADA and IDHEAS are not completely consistent, 534 

it is not always possible to deterministically decide in which states the IDHEAS PIFs are for a 535 

given SACADA case. Nevertheless, SACADA still provides information, which can and should 536 

be used to improve the quantitative side of IDHEAS. To this end, we define rules to 537 

probabilistically map SACADA onto IDHEAS. These rules allow estimating a probability of 538 

observing a specific context Pr (𝑃𝐼𝐹1 = 𝑠1, … , 𝑃𝐼𝐹𝑚 = 𝑠𝑚), which is defined through the states 539 

𝑠𝑖  of the PIFs, given a SACADA case. This concept is well known in HRA, e.g., from the 540 

quantification of SPAR-H (Gertman et al., 2005). Consider a crew failure scenario in a CFM, 541 

for which the corresponding probability 𝑝𝐶𝐹𝑀|𝑃𝐼𝐹1=𝑠1,...,𝑃𝐼𝐹𝑚=𝑠𝑚
 is to be updated. The prior 542 

distribution of 𝑝𝐶𝐹𝑀|𝑃𝐼𝐹1=𝑠1,...,𝑃𝐼𝐹𝑚=𝑠𝑚
is beta with parameters 𝑎0  and 𝑏0 . A database with 𝑛 543 

cases is used to update the distribution of 𝑝𝐶𝐹𝑀|𝑃𝐼𝐹1=𝑠1,...,𝑃𝐼𝐹𝑚=𝑠𝑚
. In the case where the database 544 

is not completely consistent with the PIFs, one can rewrite Eqs. 6 and 7 to: 545 

𝑎1 = 𝑎0 + ∑ Pr (𝑃𝐼𝐹1 = 𝑠1, … , 𝑃𝐼𝐹𝑚 = 𝑠𝑚|SACADA case 𝑖)

𝑛

𝑖=1

∙ 𝐼𝐹(SACADA case 𝑖) 
(9) 

𝑏1 = 𝑏0 + ∑ Pr (𝑃𝐼𝐹1 = 𝑠1, … , 𝑃𝐼𝐹𝑚 = 𝑠𝑚|𝑆𝐴𝐶𝐴𝐷𝐴 𝑐𝑎𝑠𝑒 𝑖)(1 − 𝐼𝐹(SACADA case 𝑖))

𝑛

𝑖=1

 (10) 

where 𝐼𝐹 is an indicator function, which is 1 if a failure was recorded in the SACADA database 546 

case 𝑖  and 0 otherwise. Applying Eqs. 9 and 10 requires the conditional probabilities 547 

Pr (𝑃𝐼𝐹1 = 𝑠1, … , 𝑃𝐼𝐹𝑚 = 𝑠𝑚|SACADA case 𝑖) . We use expert estimates to determine the 548 

distributions of the relevant IDHEAS specification nodes for a given SACADA case 𝑖, and BN 549 

inference algorithms to calculate Pr (𝑃𝐼𝐹1 = 𝑠1, … , 𝑃𝐼𝐹𝑚 = 𝑠𝑚|SACADA case 𝑖). Ideally the 550 

elicited experts should know both IDHEAS and SACADA well. Nevertheless if many 551 

SACADA indicators 𝑆𝐼𝑖  need to be mapped on PIF specification nodes 𝑃𝑆𝑗 from IDHEAS the 552 

expert elicitation becomes a tedious task. To simplify this process one can assign a factor 553 

𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
 to each SACADA indicator, which represents its effect on the PIF specification node. 554 

Qualitatively the effect of a SACADA indicator 𝑆𝐼𝑖  on a PIF specification node 𝑃𝑆𝑗 can be 555 

summarized as: 556 

 𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
= 0, if 𝑆𝐼𝑖 being in state true causes 𝑃𝑆𝑗 to be in state false with certainty; 557 

 0 < 𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
< 1, if 𝑆𝐼𝑖  being in state true decreases the probability of 𝑃𝑆𝑗  being in 558 

state true;   559 

 𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
= 1, if 𝑆𝐼𝑖 does not have an influence on 𝑃𝑆𝑗;  560 

 𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
> 1, if 𝑆𝐼𝑖 being in state true increases the probability of 𝑃𝑆𝑗 being in state true; 561 

 𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
= ∞, if 𝑆𝐼𝑖 being in state true causes 𝑃𝑆𝑗 to be in state true with certainty. 562 
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Assuming that the joint effect of 𝑚 SACADA indicators {𝑆𝐼1, … , 𝑆𝐼𝑚} on 𝑃𝑆𝑗 can be expressed 563 

as the product of the factors 𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
 corresponding to 𝑆𝐼𝑖, one can write: 564 

Pr(𝑃𝑆𝑗 = 𝑡𝑟𝑢𝑒|𝑆𝐼1, … , 𝑆𝐼𝑚) = 𝑚𝑖𝑛 (1, Pr (𝑃𝑆𝑗 = 𝑡𝑟𝑢𝑒) ∙ ∏ 𝑎𝑃𝑆𝑗,𝑆𝐼𝑖

𝑚

𝑖=1

) 
(11) 

For proof-of-concept these factors are estimated in Tab. 7 for the CFM critical data 565 

misperceived. It is important to note that the numbers in this table only serve the purpose of 566 

illustration. No factors are assigned to the SACADA indicators marked in grey in this table, 567 

since these indicators are redundant. From Pr(𝑃𝑆𝑗 = 𝑡𝑟𝑢𝑒|𝑆𝐼1, … , 𝑆𝐼𝑚)  the 568 

probability  Pr (𝑃𝐼𝐹1 = 𝑠1, … , 𝑃𝐼𝐹𝑚 = 𝑠𝑚|SACADA case 𝑖)  can be obtained through BN 569 

inference algorithms, which are implemented in any BN software.  570 
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 571 

Table 7. SACADA indicators, which can be related to PIF specification nodes in IDHEAS. 572 

Factors used to relate the two are given in the last column. 573 

PIF specification node  

(IDHEAS) (𝑃𝑆𝑗) 

SACADA indicator (𝑆𝐼𝑖) Factor  

(𝑎𝑃𝑆𝑗,𝑆𝐼𝑖
) 

HSI/environment  

Environment nominal 

Noisy background (Table A1, Miscellaneous) 0 

Overloaded (Table A2, Status of alarm board) 0. 7 

Multiple alarms (Table B3) 0. 7 

Indicators easy to read and 

locate 

Slight change (Table A3, Degree of change) 0. 8 

Distinct change (Table A3, Degree of change) 1. 5 

No mimics (Table A3, Degree of change) 0 

Small indications (Table A3, Degree of change) 0. 7 

Similar displays (Table A3, Degree of change) 0. 8 

Slight changes (Table B4)   

Labeling/mimic display issues (Table B4)   

Training  

Crew trained to understand 

the scenario 

Standard (Table A4, Familiarity) ∞ 

Novel (Table A4, Familiarity) 0. 2 

Anomaly (Table A4, Familiarity) 0. 2 

Unfamiliar (Table B6) 0 

Procedure-scenario mismatch (Table B6)  Novel 0. 2 

Prior Experience (Table B6)  Anomaly 0. 2 

Prioritization 

Competing priorities (Table A5, Uncertainty) 0. 5 

Conflicting guidance (Table A5, Uncertainty) 0. 5 

Competing priorities (Table B6) redundant  

Conflicting guidance (Table B6) redundant  

Workload  

More tasks than usual 

Normal (Table A1, Workload) 0 

Concurrent demand (Table A1, Workload)  

Multiple concurrent demands (Table A1, Workload) 2 

Multiple demands (Table A1, Miscellaneous)  

Coordination (Table A1, Miscellaneous) 1.1 

Several alarms 

Dark (Table A2, Status of alarm board) 0 

Busy (Table A2, Status of alarm board) ∞ 

Overloaded (Table A2, Status of alarm board) ∞ 

Multiple alarms (Table B3, Background)  

Not applicable (Table B3, Background) redundant  
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7 Example results with the “critical data misperceived” BN 574 

With the established BN for critical data misperceived, HEPs conditional on different 575 

observations are investigated (Tab. 8). Case I gives the prior HEP before having knowledge 576 

about the states of the PIFs or the PIF specification nodes. The states of the PIF specification 577 

nodes occur in that case according to the probabilities elicited from the experts. The BN gives 578 

reasonable prior HEPs if the CPTs of the PIF specification nodes are elicited (either based on 579 

data, experts or similar sources) and not populated with dummy parameters. The capability of 580 

giving such probabilities sets the BN apart from the decision trees originally used to quantify 581 

IDHEAS. 582 

Cases II and III represent the extreme cases of the CFM critical data misperceived. In Case II, 583 

the states of all PIF specification nodes are observed and all of them are in a favorable state. 584 

The HEP is therefore minimal for that case.  In Case III, all PIF specification nodes are in an 585 

unfavorable state, hence the corresponding HEP is maximal. Both cases can also be derived 586 

from the original IDHEAS decision trees. Since evidence is here given to all PIF specification 587 

nodes, it is irrelevant if the CPTs of these nodes are elicited or populated with dummy 588 

parameters. 589 

Cases IV and V represent cases with missing information. In Case IV some of the questions 590 

corresponding to the PIF specification nodes have not been answered. The same is true for Case 591 

V, which additionally demonstrates that evidence can also be given directly at the PIF level.  592 

Table 8. HEPs for different observations. 593 

 Case I Case II Case III Case IV Case V 

Clear display of range for 

comparison 

- Yes No - - 

Easiness of data to read - Yes No - - 

Unambiguity - Yes No Yes - 

Environment nominal - Yes No Yes - 

Indicators easy to read and locate - Yes No Yes - 

Crew trained to understand the 

scenario 

- Yes No Yes - 

Prioritization - Yes No - No 

Still determining plant status - No Yes Yes No 

More tasks than usual - No Yes - No 

Several alarms - No Yes Yes No 

HSI/environment - -  - Good 

Training - -  - - 

Workload - -  - - 

HEP 0.01 0.00005 0.5 0.002 0.0003 

Besides providing evidence at the level of PIFs or PIF specification nodes, it is possible to 594 

directly give evidence on the target node. It is for example possible to determine the distribution 595 

of the PIF nodes given a HFE as 𝑃𝑟(𝐻𝑆𝐼/𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 =  𝑝𝑜𝑜𝑟 |𝐻𝐹𝐸 = 𝑦𝑒𝑠) = 0.998, 596 
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𝑃𝑟(𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 =  ℎ𝑖𝑔ℎ |𝐻𝐹𝐸 = 𝑦𝑒𝑠) = 0.996 , 𝑃𝑟(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =  𝑝𝑜𝑜𝑟 |𝐻𝐹𝐸 = 𝑦𝑒𝑠) =597 

0.532 and 𝑃𝑟(𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  𝑛𝑜 |𝐻𝐹𝐸 = 𝑦𝑒𝑠) = 0.675. 598 

8 Discussion 599 

We present a comprehensive framework for the application of BNs to address shortcomings of 600 

HRA with respect to scientific basis and traceability (both causal and quantitative). A main 601 

advantage of BNs is that they allow for models that are causally traceable. To this end, 602 

unobservable PIFs and concepts from psychology can be included in the BN structure and 603 

removed in a later step. Furthermore the quantification of BNs can rely on different information 604 

sources, such as data and expert elicitations.  605 

Causal traceability is a major need in the field of HRA. We demonstrate how an expanded BN 606 

structure can qualitatively document the theoretical background of the method. Furthermore, 607 

we show how to reduce that structure to maintain causal traceability and to enable a more 608 

straightforward quantification than the full expanded structure. While both structures are 609 

quantifiable from a mathematical point of view, quantification of the expanded structure is 610 

difficult from an HRA-perspective, since data or experts that are capable of estimating the 611 

specific probabilities are not available.  612 

If the BN is implemented in a software tool, the additional nodes of the expanded structure can 613 

be marked in separate color, to highlight that these nodes are necessary for the understanding 614 

of the causal relationships but are not quantified. While many recently developed HRA methods 615 

have a strong background in psychological research, this background becomes usually hidden 616 

for more applied users, who are presented only a reduced number of PIFs. By developing 617 

expanded BN structures and presenting them to users, the theoretical background becomes 618 

more traceable even if it may not be possible to provide it in full detail in this manner. It has 619 

been found by many researchers that the results of a HRA vary strongly with the analyst (Lois 620 

et al., 2009). This is currently a major point of criticism against HRA methods.  621 

An example of how the proposed framework can help to increase causal traceability was 622 

presented in this paper by the application of the framework to the CFM critical data 623 

misperceived. An additional dependency between the node prioritization and the target node 624 

was revealed through the process of building an exhaustive BN structure and reducing it. For 625 

the purpose of traceability of the HRA method, it is important that the model developer is aware 626 

of additional causal details like these and communicates them to the analysts. It is then up to 627 

the model developer to decide whether quantification of these causal details is necessary or not.  628 

Another major need in HRA, which is addressed here, is an exhaustive and rigorous 629 

quantification framework. It is generally known that HRA models are not capable or even 630 

intended to fully capture all aspects of human behavior. In spite of this, it is necessary to model 631 

human error, using all information and knowledge available. Many HRA researchers rely on 632 

quantifying their models either through experts or through data. Our proposed quantification 633 

framework combines these two, which is in line with the Bayesian understanding of probability 634 
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used throughout PRA (Kelly and Smith, 2009) and is the only method to come up with sound 635 

probability estimates in an industry with scarce data. Using Bayesian updating allows using 636 

continuously more data to update the parameters of the BN, in order to improve the quality of 637 

the model.  638 

A last point implicitly addressed in this paper is the applicability of BN-based HRA methods 639 

for every-day HRA practice. While HRA researchers may be tempted to embrace BNs simply 640 

for their powerful modeling features, HRA practitioners call for models that are applicable in 641 

their everyday practice. Not many of the BN HRA models developed up to this point satisfy 642 

this need. By developing a BN which is scalable to different sizes, we offer the potential to 643 

have the same HRA method meet the needs of both practitioners and researchers. 644 

9 Conclusion 645 

We propose a framework for developing BN models for HRA directly from causal 646 

dependencies found in cognitive literature. The framework is illustrated through the causal 647 

paths that were identified during the development of IDHEAS. In order to develop the BN 648 

structure, a two-level approach is proposed. In a first step, identified causal paths for a crew 649 

failure mode are modeled in a qualitative BN structure. Since quantification of such a BN 650 

structure is difficult, the model is reduced in a second step using node reduction algorithms. 651 

These algorithms allow for a well-founded simplification of the model, which does neither 652 

introduce new dependencies that are not justified through the original causal paths nor neglect 653 

existing dependencies. The proposed framework thus enhances the traceability and the 654 

scientific-basis of HRA methods. As proof-of-concept, the approach is applied to the IDHEAS 655 

crew failure mode critical data misperceived. In this process, an additional direct dependency 656 

of this event on prioritization was found. We additionally propose a quantification framework 657 

for the developed BN structure that combines both expert elicitations and observed data through 658 

Bayesian updating. In HRA reality, a full agreement between experts is almost never achieved 659 

and data is scarce. The combination of the two within a well-established framework therefore 660 

represents a promising strategy for estimating human error probabilities. 661 
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Appendix A: 775 

Questions provided in IDHEAS (Xing et al., 2013) for the CFM critical data misperceived, 

to specify the meaning of the PIFs: 

The PIF HSI/environment is considered to be in state poor only if any of the following 

questions are answered with “no” (Xing et al., 2013) p. 93: 

 “Are the indications clear and unambiguous”?   

 “Is the information easy to read“?   

 “Is the range (or band) with which the information is to be compared clearly 

identified on the display“?   

 “Is the environment in the location of the indicator/source of information nominal 

(i.e., not challenging due to noise, heat, humidity, etc.)“?   

 “Are the indicators/sources of data easy to locate and read“?   

The PIF workload is considered to be in state high only if any of the following questions are 

answered with yes (Xing et al., 2013) p. 93f: 

 “Does the need to obtain information occur at a time when the operators are still in 

the process of determining the plant status?”   

 “Does this occur at a time when there are several alarms or indications or tasks that 

need attention? “  

 “Is the scenario one for which the number of tasks the crew has to perform in the 

time available higher than would be typically addressed in training?”    

The PIF training is considered to be in state poor only if both of the following questions are 

answered with yes (Xing et al., 2013) p. 94f: 

 “Has the crew been properly trained to understand and deal with scenarios in which 

the information source may provide difficulties?”   

 “Is the significance of the decision that is based on obtaining this information 

correctly given a high priority compared to other concurrent tasks?”   

Appendix B 

Deterministic rule quantifying the node HSI/environment: 

 IF   776 

 Indications are clear and unambiguous  777 

 AND indications are easy to read 778 
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 AND the Range (or band) with which the information is to be compared is clearly 779 

identified on the display 780 

 AND the environment in the location of the indicator/source of information is nominal 781 

 AND the indicators/sources of data are easy to locate and read 782 

THEN  783 

HSI/environment is good 784 

ELSE  785 

 HSI/environment is poor  786 

Deterministic rule quantifying the node training: 787 
 788 

IF 789 

 The crew has been properly trained to understand and deal with scenarios in which the 790 

information source may provide difficulties 791 

 OR the significance of the decision that is based on obtaining this information correctly 792 

is given a high priority compared to other concurrent tasks (referred to as prioritization 793 

in the model from Fig. 6 and 7) 794 

THEN  795 

Training is good 796 

ELSE  797 

 Training is poor 798 

Deterministic rule quantifying the node workload: 799 
 800 

IF 801 

 The need to obtain information occurs at a time when the operators are still in the 802 

process of determining the plant status 803 

 OR this occurs at a time when there are several alarms or indications or tasks that need 804 

attention 805 

 OR the scenario is one for which the number of tasks the crew has to perform in the 806 

time available is higher than would be typically addressed in training 807 

THEN  808 

Workload is high 809 

ELSE  810 

 Workload is low 811 

Appendix C 812 

Survey to elicit probability distributions for the PIF specification nodes: 813 

Purpose of this survey:  814 

The purpose of this survey is to obtain probabilities, which can be used to illustrate a framework 815 

for quantifying IDHEAS. (Note that data will be used for proof-of-concept of the mathematics, 816 

to define how IDHEAS models could be modified to include information about the probability 817 

of PIFs. IDHEAS models will not be modified based on the results of this survey. 818 

Background: 819 
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 IDHEAS provides models that assign the probability of a human failure event, given the state 820 

of several performance influencing factors (PIFs). IDHEAS contains 14 models and 821 

approximately 20 PIFs. 822 

Description of survey task:  823 

Consider the crew failure mode critical Data Misperceived, which is defined as: 824 

“A critical piece of information that is required to develop a plant status assessment is 825 

misperceived. A critical piece of data is one that, when misperceived in a certain way will lead 826 

to an incorrect response in that it leads to taking an incorrect or inappropriate path through the 827 

procedures or executing a response incorrectly.” (From SRM Vol. 3 – Draft IDHEAS method 828 

for internal procedural events)  829 

We consider a post-initiator event i.e. the NPP is already in an off-normal state, where the NPP-830 

crew is confronted with critical data. For critical data misperceived, the IDHEAS model 831 

identifies three main factors (PIFs), which influence human performance: Human System 832 

Interface (HSI)/environment, training, and workload. Furthermore, IDHEAS provides several 833 

questions that analysts use to assign the state of those three PIFs. In this survey, you are asked 834 

to provide a probability for each of these questions.  835 

Note: 836 

 A (Bayesian) probability is a degree of belief rather than an actual physically 837 

measurable quantity 838 

 You can give your answer in one of the two forms: 839 

a. The probability of event X occurring is ______. 840 

b. Event X is ______-times more/less (more/less) likely than not X.  841 

Name:  ___________________________________________________ 842 

Company: ___________________________________________________ 843 

Position: ___________________________________________________ 844 

Brief description of your experience/background: 845 

Basis for estimates in this document (e.g., „12 years of experience operating commercial 846 

NPP“ „HRA database “ „22 years of experience in HRA“): 847 

Reminder: The purpose of the survey is to obtain the probability of these conditions, NOT to 848 

obtain the human error probability for these conditions.  849 

Human System Interface (HSI)/environment: 850 

1. Unambiguity and clearness of indications. 851 

a. The probability that the indications to this data are clear and unambiguous is ___. 852 

b. Indications are ______-times more/less likely to be clear and unambiguous than 853 

to be unclear and ambiguous. 854 

2. Easiness of information to read. 855 

a. The probability that the information is easy to read is ______. 856 

b. Information is ______-times more/less likely to be easy to read than to be not 857 

easy to read. 858 

3. Range (band) for comparison. 859 

a. The probability that the range (or band), with which the information is to be 860 

compared, is clearly identified on the display is ______. 861 

b. A display is ______-times more/less likely to have a clearly identified range (band) 862 

than to have a not clearly identified range (band). 863 

4. Nominal environment. 864 
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a. The probability of having a nominal environment (i.e. one that is not challenging 865 

due to noise, heat, humidity, etc.) is ______. 866 

b. During the event it is ______-times more/less likely that environment is nominal 867 

rather than non-nominal environment (challenging due to noise, heat, humidity, 868 

etc.). 869 

5. Location and easiness to read of the indicators/sources. 870 

a. The probability that indicators/sources are easy to locate and read is ______. 871 

b. Indicators/sources are ______-times more/less likely to be easy to read and locate 872 

than to be not easy to read and locate. 873 

Workload: 874 

6. Crew still determining the plant status. 875 

a. The probability that the need to obtain information occurs at a time when the 876 

operators are still in the process of determining the plant status is______. 877 

b. Crew still determining the plant status is ______-times more/less likely than crew 878 

not in the process of determining the plant status. 879 

7. Several alarms. 880 

a. The probability that the need to receive critical data occurs at a time when there 881 

are several alarms, indications or tasks that need attention is ______. 882 

b. A situation with Several alarms, indications or tasks that need attention at the same 883 

time is ______-times more/less likely than a situation without several alarms, 884 

indications or tasks. 885 

8. More tasks in the available time than typically addressed in training. 886 

a. The probability that the number of tasks the crew has to perform in the available 887 

time is higher than it would be typically addressed in training is ____. 888 

b. A situation with a higher number of tasks than addressed in training is ______-889 

times more/less likely than a situation with same or a lower number of tasks than 890 

typically addressed in training. 891 

Training: 892 

9. Crew trained to understand the scenario. 893 

a. The probability that the crew has been properly trained to understand and deal 894 

with the scenarios, in which the information source may provide difficulties is 895 

______. 896 

b. Crew properly trained to understand and deal with the scenario is ______-times 897 

more/less likely than crew not properly trained to understand and deal with the 898 

scenario. 899 

10. Significance of the decision that is based on this information. 900 

a. The probability that the decision based on obtaining this information correctly is 901 

given a high priority compared to other concurrent tasks is ______. 902 

Giving the decision, which is based on the information, a high priority is ______-times 903 

more/less likely than not giving the decision a high priority. 904 


