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ABSTRACT: This paper discusses the application of sequential importance sampling (SIS) to the
estimation of the probability of failure in structural reliability. SIS was developed originally in
the statistical community for exploring posterior distributions and estimating normalizing con-
stants. The basic idea is to gradually translate samples from the prior distribution to samples from
the posterior distribution through a sequential reweighting operation. In the context of structural
reliability, SIS can be applied to produce samples of an approximately optimal importance sam-
pling density, which can then be used for estimating the sought probability through importance
sampling. The transition of the samples is defined through the construction of a sequence of in-
termediate distributions. We discuss a particular choice of the intermediate distributions and the
properties of the derived algorithm. Moreover, we introduce an MCMC algorithm for application
within the SIS procedure that is especially efficient for tackling high-dimensional problems.

1 INTRODUCTION

Structural reliability analysis requires the evaluation of the probability of failure, defined by the
following n-fold integral:

Pf =

∫
g(x)≤0

fX(x)dx (1)

where X is an n-dimensional random vector and models the system variables that are expected to
present an uncertain behavior, fX(x) is the joint PDF of X and g(x) ≤ 0 defines the failure event.
The function g(x) is usually termed limit-state function and it can include one or several distinct
failure modes (Ditlevsen and Madsen 1996).

It is common to transform the random variables X to a probability space U consisting of
independent standard normal random variables. This is achieved by an one-to-one transformation
U = T(X) (Hohenbichler and Rackwitz 1981; Der Kiureghian and Liu 1986). The probability of
failure can be expressed in the transformed space as

Pf =

∫
G(u)≤0

ϕn(u)du (2)

where ϕn is the n-variate standard normal PDF and G(u) = g(T−1(u)) is the limit-state function
in the U-space.

The integral in Equation 2 can be evaluated by a variety of existing approaches (Ditlevsen
and Madsen 1996; Lemaire 2009). Among these, simulation methods are often preferred because
of their robustness in dealing with complex engineering models. The probability integral can be
expressed as the expectation of the indicator function I (G(u) ≤ 0), where I (G(u) ≤ 0) = 1 if



G(u) ≤ 0 and I (G(u) ≤ 0) = 0 otherwise. Standard Monte Carlo estimates Pf by generating
ns independent samples {uk, k = 1, . . . , ns} from the PDF ϕn(u) and taking the sample mean of
I (G(u) ≤ 0), i.e.

P̂f = Êϕn [I (G(u) ≤ 0)] =
1

ns

ns∑
k=1

I (G(uk) ≤ 0) (3)

The estimate of Equation 3 is unbiased and has coefficient of variation:

δP̂f
=

√
1− Pf
nsPf

(4)

δP̂f
is a measure of the statistical accuracy of P̂f . Although δP̂f

does not depend on the dimension
of the random variable space n, it is inversely proportional to the target probability Pf . Hence for
a probability in the order of 10−k, crude Monte Carlo requires approximately 10k+2 samples to
achieve an accuracy of δP̂f

= 10%.
Several methods have been proposed that aim at reducing the variance of the crude Monte

Carlo estimate. These include importance sampling (IS) and its adaptive variants (Bucher 1988;
Au and Beck 2003; Kurtz and Song 2013), line sampling (Hohenbichler and Rackwitz 1988;Kout-
sourelakis et al. 2004) and subset simulation (SubS) (Au and Beck 2001). All of the above
methods are based on producing samples that explore the failure region. In this paper, we discuss
a sampling method that adaptively samples the failure region, termed sequential importance sam-
pling (SIS). SIS was developed in the statistical community for exploring posterior distributions
and estimating normalizing constants (Neal 2001;Chopin 2002;Del Moral et al. 2006). Although
the published variants of the method diverge in their implementation approaches, they are all based
in the same principle of gradually transforming samples from a prior to samples from a posterior
distribution through a sequential reweighting operation. A variant of the method was introduced
in the engineering community as transitional Markov chain Monte Carlo (Ching and Chen 2007).
A method based on SIS as well as on ideas found in (Neal 2005) has been proposed for structural
reliability in (Katafygiotis and Zuev 2007) and for reliability-based optimization in (Beaurepaire
et al. 2013).

Here, we discuss the principle of SIS for structural reliability and present an implementation
that is suitable for application to high-dimensional problems. The performance of the method is
demonstrated with numerical examples.

2 SEQUENTIAL IMPORTANCE SAMPLING FOR STRUCTURAL RELIABILITY

In this section, we describe SIS for structural reliability. We first review standard IS; then we
describe SIS for sampling from a sequence of distributions; a particular sequence of distributions
for application to structural reliability is discussed next; subsequently we introduce a Markov
chain Monte Carlo (MCMC) algorithm as an important ingredient of SIS for application to high-
dimensional problems; we finally draw a connection of SIS with SubS.

2.1 Importance sampling

Let h(u) be a positive density referred to as the IS function. The integral in Equation 2 can be
rewritten as:

Pf =

∫
Rn

I (G(u) ≤ 0)w(u)h(u)du = Eh [I (G(u) ≤ 0)w(u)] (5)

where w(u) = ϕn(u)
h(u) is the so-called importance weight function. An estimate of Pf can be

obtained by generating samples {uk, k = 1, . . . , ns} from h(u) and taking the sample mean of
I (G(u) ≤ 0)w(u), i.e.

P̂f = Êh [I (G(u) ≤ 0)w(u)] =
1

ns

ns∑
k=1

I (G(uk) ≤ 0)w(uk) (6)



The probability estimate of Equation 6 is unbiased provided that the support of h(u) contains the
failure domain G(u) ≤ 0. An appropriate choice of the IS function can significantly reduce the
variance of the crude Monte Carlo estimate. The theoretically optimal IS is given by the following
expression:

hopt(u) =
1

Pf
I (G(u) ≤ 0)ϕn(u) (7)

Indeed the IS function of Equation 7 leads to a variance of the IS estimate of zero. However,
the optimal IS function cannot be used in practice since it requires knowledge of Pf . Alternative
choices are unimodal (Schuëller and Stix 1987; Bucher 1988) or multimodal (Au and Beck 2003;
Kurtz and Song 2013) densities based on initial sampling or other type of calculations. However,
it has been discussed (Au and Beck 2003; Katafygiotis and Zuev 2008) that in many settings
involving a large number of random variables, IS based on such densities may fail to describe the
important region leading to a dramatic increase of the variance of the resulting estimate.

2.2 Sequential importance sampling

Consider a sequence of distributions {hj(u), j = 0, . . . ,M}, where each distribution is known up
to a normalizing constant, i.e.

hj(u) =
ηj(u)

Pj
(8)

where ηj(u) is known pointwise and the normalizing constant Pj is unknown. We assume that
η0(u) = h0(u) and hence P0 = 1. We further assume that h0(u) is easy to sample from. We
are interested in obtaining samples from hM (u) and estimating the normalizing constant PM . The
idea of SIS is to sample the distributions {hj(u), j = 0, . . . ,M} in a step-wise manner and estimate
each normalizing constant Pj by IS using as IS density the function hj−1(u). Assume that at step
j − 1 samples {uk, k = 1, . . . , ns} from hj−1(u) are available. The constant Pj can be written as:

Pj =

∫
Rn

ηj(u)du = Pj−1

∫
Rn

wj(u)hj−1(u)du = Pj−1Ehj−1
[wj(u)] (9)

where wj(u) =
ηj(u)
ηj−1(u) . An estimate of the ratio of normalizing constants Sj =

Pj

Pj−1
is given by:

Ŝj =
P̂j

P̂j−1
= Êhj−1

[wj(u)] =
1

ns

ns∑
k=1

wj(uk) (10)

To obtain an accurate estimate Ŝj , we need to ensure that the two densities hj−1(u) and hj(u)
do not vary significantly. This can be controlled by selecting ηj(u) such that the variance of the
importance weights is small. Given samples from hj−1(u), we can obtain samples from hj(u)
applying the following resample-move scheme. First, we apply a resampling method that selects
randomly with replacement samples from {uk, k = 1, . . . , ns} with probability assigned to each
kth sample proportional to wj(uk) (Doucet et al. 2001). We then move the resulting samples in
regions of high probability mass of hj(u) by applying MCMC with invariant distribution hj(u).
This procedure is repeated for each subsequent step and an estimate of PM is obtained as:

P̂M =

M∏
j=1

Ŝj (11)

2.3 Choice of intermediate distributions

In the context of structural reliability, SIS can be applied to obtain samples from an approximation
of the optimal IS density of Equation 7. The indicator function I (G(u) ≤ 0) can be expressed by
the following limit [e.g. see (Spanier and Oldham 1987)]

I (G(u) ≤ 0) = lim
σ→0

Φ

(
−G(u)

σ

)
(12)



where Φ is the standard normal CDF. Choosing σ = σM , with σM small enough, we can approxi-
mate I (G(u) ≤ 0) by the following expression

I (G(u) ≤ 0) ≈ Φ

(
−G(u)

σM

)
(13)

Inserting Equation (13) into Equation (7), we obtain the following approximation of the optimal
IS density:

hopt(u) ≈ hM (u) =
1

PM
Φ

(
−G(u)

σM

)
ϕn(u) (14)

Define the sequence of distribution {hj(u), j = 0, . . . ,M}, with

hj(u) =
1

Pj
Φ

(
−G(u)

σj

)
ϕn(u) =

1

Pj
ηj(u) (15)

where∞ = σ0 > . . . > σM > 0. This sequence, which was also used in the method of (Beaure-
paire et al. 2013), allows to gradually approach the density of Equation 14 by a series of smooth
approximations of the optimal IS density, as demonstrated in Figure 1. We can apply SIS to sam-
ple this distribution sequence and estimate the constant PM . Note that h0(u) = ϕn(u), which can
be readily sampled from. To ensure that each pair of consecutive distributions are not too different
from one another, we can select the parameters σj adaptively, such that the sample coefficient of
variation δ̂wj of the importance weights adheres a target value δtarget. Hence, at each step of the
SIS procedure, we need to solve the following optimization problem

σj = argmin‖δ̂wj − δtarget‖ (16)

The procedure is stopped when the coefficient of variation of the samples {I (G(uk) ≤ 0) ϕn(uk)
hj(uk)

, k=

1, . . . , ns} is smaller than δtarget, M is set to the current step j and the probability of failure is eval-
uated by IS with the available samples from hM (u).

failure domain 
−5 −4 −3 −2 −1 0 1 2 3 4

φ(u) 

hj(u) 

hj–1(u) 

hj+1(u) 
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Figure 1: Sequence of intermediate distributions

2.4 MCMC sampling

At each step j of the SIS procedure, MCMC sampling is used to move the samples {uk, k =
1, . . . , ns} obtained from the applied resampling scheme to regions of high probability density of
hj(u). The basic idea of MCMC is to sample states of a Markov chain with stationary distribution
equal to the target distribution. The most widely used MCMC method is the Metropolis-Hastings
(M-H) algorithm (Hastings 1970). The transition from a state u0 to the next state u1 of the M-H
algorithm for sampling from hj(u) ∝ Φ (−G(u)/σj)ϕn(u) is as follows:



1. Generate a candidate state v from a proposal probability density q(·|u0)

2. Calculate the ratio

r(u0,v) =
Φ (−G(v)/σj)ϕn(v)q(u0|v)

Φ (−G(u0)/σj)ϕn(u0)q(v|u0)
(17)

3. Accept v with probability α(u0,v) = min{1, r(u0,v)}, i.e set u1 = v with probability
α(u0,v) and u1 = u0 with probability 1− α(u0,v).

The M-H update leaves the stationary distribution hj(u) unchanged. Hence, the Markov chain will
asymptotically converge to hj(u), under certain restrictions on the choice of the proposal density
(Hastings 1970). The transient period that is required until the Markov chain reaches its stationary
state is termed burn-in period. Moreover, the generated samples will be correlated according to
the correlation of the Markov process which depends on the particular choice of q(·|u0).

A standard choice of the proposal distribution is a multivariate symmetric distribution centered
at the current state u0. The resulting M-H samplers become inefficient in sampling high dimen-
sional target distributions (Au and Beck 2001; Katafygiotis and Zuev 2007). This inefficiency is
due to the appearance of the ratio ϕn(v)

ϕn(u0)
in the acceptance probability α(u0,v). As explained in

(Katafygiotis and Zuev 2007), this ratio becomes extremely small in high dimensions and hence
the probability of obtaining repeated samples will be extremely high. To overcome this issue, we
propose to choose q(·|u0) as the multivariate Gaussian density conditional on the current state u0,
i.e.

q(v|u0) = ϕn
(
v− ρu0, (1− ρ2)I

)
(18)

The density of Equation 18 assumes that the current and candidate state are jointly Gaussian with
component-wise cross-correlation coefficient ρ. We therefore term the resulting update conditional
sampling M-H algorithm. Inserting this proposal to the ratio of Equation 17, we get

r(u0,v) =
Φ (−G(v)/σj)

Φ (−G(u0)/σj)
(19)

That is, the fraction ϕn(v)
ϕn(u0)

disappears and r(u0,v) depends only on the ratio of one-dimensional
distribution functions with arguments limit-state function values. This ratio depends on the prox-
imity of the limit-state function values for the current and candidate state and not on the dimension
of the random variable space. Hence, the conditional sampling M-H algorithm is suitable for ap-
plication to high dimensional problems. It should be noted that the proposal density of Equation 18
is often used for sampling Gaussian process prior models (Neal 1998).

In standard SIS, to generate ns samples from hj(u), one MCMC move is performed starting
from each of the ns seeds that resulted from the resampling step (Chopin 2002). Hence, the
seeds follow only asymptotically the distribution hj(u). Therefore, when applying local MCMC
transitions, a single move might not be sufficient for the chain to converge to its stationary state,
even if hj−1(u) and hj(u) do not vary much. It is therefore beneficial to use less chains and
allow them to mix properly. We propose to resample nc < ns samples from the weighted sample
approximation of hj(u) and run a Markov chain of length ns/nc starting from each of the nc
seeds. This will reduce the burn-in effect on the statistics of the probability estimate, as will be
demonstrated in Section 3.

2.5 Connection to Subset Simulation

SubS is an adaptive simulation method proposed in (Au and Beck 2001). The method is based
on expressing the failure event F = [u ∈ Rn : G(u ≤ 0)] as an intersection of intermediate failure
events that are nested; i.e. it holds F0 ⊂ F1 ⊂ . . .⊂ FM , F0 is the certain event and FM = F . The
probability of failure is expressed as:

Pf = Pr(F ) = Pr

 M⋂
j=0

Fj

 =
M∏
j=1

Pr(Fj |Fj−1) (20)



That is, Pf is expressed as a product of larger conditional probabilities. The intermediate events
are defined as Fj = [u ∈ Rn : G(u ≤ bj)], where ∞ = b0 > b1 > . . . > bM = 0. The values
of bj are chosen adaptively, so that the estimates of the conditional probabilities correspond to a
chosen value p. To this end, ns samples are simulated conditional on each intermediate failure
event Fj−1 and bj is set to the p-percentile of the limit-state function values. Samples conditional
on the certain event F0 are generated by crude Monte Carlo. Samples conditional on the events
{Fj , j = 1, . . . ,M − 1} are computed by simulating states of Markov chains through MCMC
starting from the samples conditional on Fj−1 for which G(u) < bj .

SubS can be understood as a special case of the SIS method discussed in Section 2.2 if the
intermediate distributions are chosen as the optimal IS density for each of the intermediate failure
domains, i.e.

hj(u) ∝ I (G(u) ≤ bj)ϕn(u) (21)

However, SubS differs from the SIS method discussed here, because of the particular choice of
the intermediate distributions of Equation 21, that is a series of multivariate normal distributions
conditional on a set of nested failure events. Therefore, at each sampling step j, the available
samples from hj−1(u) that fell in Fj will already be distributed according to hj(u). Hence, the
resampling step discussed in Section 2.2 is not required. Moreover, all states of the simulated
Markov chains will be distributed according to the target distribution hj(u). Thus, the Markov
chains do not require a burn-in period to reach their stationary states.

3 EXAMPLES

In this section, we investigate the performance of the SIS method with three numerical examples.
In the first two examples, we compare the coefficient of variation (CV) of the probability estimates
with the one obtained by SubS. The third example demonstrates the applicability of the conditional
sampling M-H (CSM-H) algorithm to a high dimensional problem. For all examples, the CV of
the probability estimate is computed with 500 independent simulation runs.

3.1 Convex limit-state function

The first example consist of a convex limit-state function, defined at the standard normal space
(U-space) as follows:

G1(u) = 0.1(u1 − u2)2 −
1√
2

(u1 − u2) + 2.5 (22)

The corresponding probability of failure is computed as 4.21× 10−3. Table 1 compares the CV
of the probability estimates obtained by SubS and SIS for different number of samples per level,
i.e. per intermediate distribution, namely ns = 500, 1000 and 2000. The conditional probability
for SubS is set to p = 0.1 and the target CV for selection of the intermediate distributions for
SIS is set to δtarget = 1.5. These values result in the same computational cost on average for the
two methods. We investigate three different MCMC settings for the generation of the samples
from each distribution in SIS: (a) Resample nc = ns seeds and run nc chains with unit length; (b)
Resample nc = 0.1ns seeds and run nc chains with length 10; (c) Resample nc = 0.1ns seeds, run
nc chains with length 15 and discard the first 5 samples from each chain to account for burn-in.
Note that for SubS with p = 0.1 the total number of failure points per level and hence the total
number of chains will be 0.1ns. MCMC sampling is performed applying the CSM-H algorithm
described in Section 2.4 with correlation parameter ρ = 0.8. For SubS, MCMC is performed
applying a conditional sampling algorithm presented in (Papaioannou et al. 2014) with correlation
parameter between current and candidate state ρ = 0.8.

It is shown that SubS performs better than SIS for the case where nc = ns. This is due to
the fact that in SIS the seeds of the Markov chains follow only asymptotically the target distribu-
tion and hence a single local move is not sufficient for the chains to converge to their stationary
distribution. On the other hand, in SubS the seeds follow the target distribution, so convergence
of the chains is not an issue. Using less number of chains with longer period, nc = 0.1ns, in SIS



Table 1: Coefficient of variation of probability estimate for Example 1.

Number of samples
per level ns

CV of estimate δP̂f

SubS SIS (nc = ns) SIS (nc = 0.1ns)
SIS (nc = 0.1ns)
Burn-in period= 5

500 0.27 0.37 0.27 0.25
1000 0.19 0.29 0.19 0.16
2000 0.14 0.19 0.13 0.11

gives comparable results with SubS, because the transient effect is reduced since the chains are run
longer. In addition, applying an initial burn-in period gives better results than SubS at the expense
of additional computational time.

3.2 Series system reliability problem

The second example is a series system reliability problem, defined by the following limit-state
function at the U-space (Waarts 2000):

G2(u) = min


0.1(u1 − u2)2 − (u1 + u2)/

√
2 + 3

0.1(u1 − u2)2 + (u1 + u2)/
√

2 + 3
u1 − u2 + 7

√
2

u2 − u1 + 7
√

2

 (23)

The corresponding probability of failure is computed as 2.2× 10−3. Table 2 compares the CV
of the probability estimates obtained by SIS with the different MCMC settings discussed in Sec-
tion 3.1. It is shown that SubS performs better than SIS in the case where nc = ns. SIS performs
slightly better than SubS for the case where nc = 0.1ns, while discarding the initial samples fur-
ther improves the performance of SIS. Figure 2 shows the optimal IS density of the limit-state
function of Equation 23 and samples from the approximate optimal IS density obtained with SIS
for ns = 1000 and nc = 0.1ns. It is demonstrated that the method succeeds to sample accurately
all four important failure regions.

u1 

u2 

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

u1 

u2 

(a) (b) 

Figure 2: (a) Optimal IS density for Example 2; (b) Samples of approximate optimal IS density
obtained from SIS.



Table 2: Coefficient of variation of probability estimate for Example 2.

Number of samples
per level ns

CV of estimate δP̂f

SubS SIS (nc = ns) SIS (nc = 0.1ns)
SIS (nc = 0.1ns)
Burn-in period= 5

500 0.30 0.53 0.28 0.23
1000 0.23 0.49 0.21 0.17
2000 0.16 0.25 0.14 0.11

3.3 Linear limit-state function in high dimensions

This example consist of limit-state function expressed as a linear function of independent standard
normal random variables (Engelund and Rackwitz 1993):

G3(u) = − 1√
n

n∑
i=1

ui + β (24)

The probability of failure for this limit-state function is Φ(−β) independent of the dimension n.
We choose β = 3.5 which corresponds to a probability of failure of 2.33× 10−4. We use this
example to demonstrate the performance of the proposed CSM-H algorithm for varying random
dimension n. Figure 3 compares the CV of the probability estimate obtained by SIS with CSM-H
to the one by SIS with the standard M-H algorithm. For CSM-H, the correlation parameter is
chosen as ρ = 0.8 while for M-H, the proposal PDF is chosen as the independent standard normal
PDF centered at the current state. For both algorithms, we use ns = 1000 samples per level and
nc = 100 chains with length of 10. It is shown that the CV obtained when applying the standard
M-H increases with increase of the dimension n. On the other hand, the behavior of the proposed
CSM-H algorithm is not influenced by the random dimension.
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Figure 3: Coefficient of variation of probability estimate δP̂f
against random dimension n for

Example 3.

4 CONCLUSION

This paper presented a SIS method for structural reliability. The method is based on sampling a
sequence of distributions that gradually approach the optimal IS density. Samples from each dis-
tribution are obtained through resampling weighted samples from the previous distribution in the
sequence and moving the resulting samples applying MCMC. For the MCMC step, a conditional
sampling Metropolis-Hastings algorithm is proposed that is suitable for application to high dimen-
sional problems. The method is compared with SubS and it is shown that SIS performs at least as
good as SubS in the case where the same number of chains is used for the MCMC sampling for
both methods.
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