
 
1 INTRODUCTION 

In structural reliability problems, the performance of a component or system is de-
scribed through a limit state function (LSF) 𝑔 𝐗 , where 𝐗 is the vector of basic random 
variables influencing the component/system. System failure is defined as 𝐹 =
𝑔 𝐗 ≤ 0 , 𝑓𝐗 𝐱  denotes the joint probability density function (PDF) of 𝐗 and the 

probability of failure is: 

Pr 𝐹 = Pr 𝑔 𝐗 ≤ 0 = 𝑓𝐗 𝐱 𝑑𝐱
! 𝐱 !!

                                                                                                                                                            (1) 

In the general case, the integral in Equation 1 cannot be solved analytically, and struc-
tural reliability methods (SRMs) have been developed to approximate it. These methods 
include first and second order reliability methods (FORM and SORM), Monte Carlo 
simulation (MCS) and advanced sampling methods, including importance sampling 
techniques (IS) and subset simulation (SuS); For an overview see (Rackwitz, 2001, Au 
and Beck, 2001, Der Kiureghian, 2005, Ditlevsen and Madsen, 2007).  
In near-real-time applications, the probability of 𝐹 must be computed under potentially 
evolving information. Ideally, this is achieved through Bayesian updating of Pr(𝐹) with 
the new information 𝑍 to the posterior probability Pr(𝐹|𝑍). While such updating is pos-
sible with SRM (Straub, 2011), it is often difficult to perform the required computations 
in near-real-time, due to a lack of efficiency or robustness. A modeling and computation 
framework that does facilitate efficient Bayesian updating is the discrete Bayesian net-
work (BN). Hence it was proposed to combine SRMs with discrete Bayesian networks 
for near-real-time computations (Friis-Hansen, 2000, Straub and Der Kiureghian, 
2010b, Straub and Der Kiureghian, 2010a).  
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which probability estimates should be updated with new information. The combination of 
structural reliability with discrete Bayesian networks can overcome such problems. This 
requires the discretization of the continuous basic random variables. We develop an efficient 
discretization scheme, which is based on finding an optimal discretization for the linear FORM 
approximation of the limit state function. Since the objective is a good approximation of the 
probability estimate under all possible future information scenarios, the discretization scheme is 
optimized with respected to the expected posterior error.  



The size of discrete BNs, and the necessary computational effort, increases approxi-
mately exponentially with the number of discrete states of its nodes, which motivates 
the development of efficient discretization algorithms. While efficient discretization in 
the context of machine learning and Bayesian networks in general has been investigated 
by multiple researchers (Dougherty et al., 1995, Kotsiantis and Kanellopoulos, 2006), 
research on efficient discretization in the context of engineering risk analysis or struc-
tural reliability has been limited. In general, it is to be distinguished between static and 
dynamic discretization. While the former is limited to discretizing once at the onset of 
solving the problem, the latter is based on an iterative scheme to update the discretiza-
tion scheme. Static discretization schemes are independent of the evidence, while dy-
namic discretization schemes change as evidence changes. Dynamic discretization for 
risk analysis applications has been developed mainly by (Neil et al., 2008). Some con-
siderations on static discretization schemes for reliability problems have been presented 
in (Friis-Hansen, 2000, Straub, 2009, Straub and Der Kiureghian, 2010a). 

1.1 Bayesian networks 

We provide only a brief introduction to the most important aspects of discrete BNs. For 
a more in-depth treatment of BNs, the reader is referred to textbooks (Jensen and 
Nielsen, 2007, Kjaerulff and Madsen, 2013).  
BNs are based on directed acyclic graphs (DAGs), to efficiently define a joint probabil-
ity distribution 𝑝 𝒁  over a random vector 𝒁. The DAG of a BN, which is often referred 
to as the qualitative part of a BN, consists of a node for each variable in 𝒁 and a set of 
directed links representing relationships between the nodes. Family terms are used to 
describe relationships in BNs. As an example, in the BN of Figure 1, 𝑍! is a child of 𝑍! 
and 𝑍!, while 𝑍! is a parent to 𝑍! and 𝑍!. 
 

	
  
 
Figure 1. A simple BN. 
 
Conditional probability tables (CPTs) quantitatively define the type and strength of the 
relationships between the nodes. The entries of the CPT of a variable 𝑍! are the proba-
bilities for each state of 𝑍! conditional on all possible combinations of states of its par-
ents: 𝑝 𝑧! 𝑝𝑎(𝑍!) . The joint probability distribution over all random variables is then 
the product of these conditional distributions: 

𝑝 𝐳 = 𝑝 𝑧! 𝑝𝑎 𝑍!                                                                                                                                                                                                 
!

!!!

                      (1) 

The number of parameters needed for defining the CPT of 𝑍! increases with the number 
of states of 𝑍!’s parents. For this reason, the number of parameters that need to be de-
fined for a BN can become large if a node has many parents or if its parents have many 
states. Hence it is desirable to reduce the number of states of the parents. When discre-
tizing a continuous random variable, one aims at limiting the number of discrete states 
for computational efficiency, while at the same time minimizing the discretization error. 
Such an optimal discretization is the aim of this paper.  
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2 TREATMENT OF A RELIABILITY PROBLEM IN A BN 

We combine discrete BNs and structural reliability concepts to facilitate updating of 
failure probabilities under new observations. The general problem setting is illustrated 
in the BN of Fig. 2. We limit ourselves to component reliability problems. The node 
‘Component performance’ is described by the LSF 𝑔(𝐗). The basic random variables 𝐗 
are included in the BN as parents of ‘Component performance’. The nodes 𝑀! represent 
measurements of individual random variables 𝑋!, and nodes 𝐼! represent factors influ-
encing the basic random variables. Dependence between the variables in 𝐗 is modeled 
either directly by links among them (here 𝑋! → 𝑋! and 𝑋! → 𝑋!) or through common 
influencing factors (here 𝐼! → 𝑋! and 𝐼! → 𝑋!).  
 

 
Figure 2. A general BN representing a component reliability problem. 
 
Ultimately, the goal is to predict the component performance, i.e. Pr(𝐹), conditional on 
observations of other variables, typically the measurement variables 𝑀! and possibly the 
influencing variables 𝐼!. Whenever new evidence on these variables is available, the BN 
should be evaluated in near-real time, utilizing exact inference algorithms. 
To this end all continuous random variables are discretized. These include the 𝐗, and 
possibily the 𝑀! and 𝐼!. In the general case, the computational effort for solving the BN 
is a direct function of the CPT size of ‘Component performance’. The size of this CPT 
is 2 𝑛!

!!! !, with 𝑛 being the number of random variables in 𝐗 and 𝑛! the number of 
states used for the discretization of 𝑋!. In this paper, we do not describe the discretiza-
tion of random variables 𝑀! and 𝐼!, since these are typically straightforward and not sig-
nificant to computational performance. 

2.1 Discretization of basic random variables 

In the scope of this paper we discuss discretization of the basic random variables X. To 
facilitate illustration, we consider the special case shown in Figure 3, where the perfor-
mance of the component depends on 𝑛 statistically independent random variables and is 
described by a LSF 𝑔 𝑿 = 𝑔(𝑋!,… ,𝑋!). For all basic random variables 𝑋!, corre-
sponding measurements 𝑀! can be performed. To obtain an equivalent discrete BN, the 
continuous 𝑋! are replaced by the discrete random variables 𝑌!, and the LSF is replaced 
by the CPT of component performance conditional on 𝐘 = [𝑌!;… ;𝑌!]. For each discrete 
random variable 𝑌! with 𝑛! states  1,2,… ,𝑛!   we define a discretization scheme 
𝐷!! = 𝑥!,!,… , 𝑥!,!!!!  consisting of 𝑛! − 1 interval boundaries. 
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Figure 3. Representation of a basic reliability problem with n independent basic random variables in a 
BN. Right: original problem with continuous basic random variables 𝑋!, left: discrete BN, in which 𝑋! are 
substituted with discrete nodes 𝑌!  

Since here the 𝑋!, and thus the 𝑌!, have no parents, the PMF of 𝑌! is defined as: 

𝑝!! 𝑗 =
𝐹!! 𝑥!,!   𝑓𝑜𝑟  𝑦! = 1

𝐹!! 𝑥!,! − 𝐹!! 𝑥!,!!!     𝑓𝑜𝑟  1 < 𝑦! < 𝑛!
1− 𝐹!! 𝑥!,!!!!   𝑓𝑜𝑟    𝑦! = 𝑛!

     (2) 

where 𝐹!! 𝑥!  denotes the cumulative distribution function (CDF) of random variable 
𝑋!. The probability of failure corresponding to the discrete BN in Figure 3 can now be 
calculated as:  

𝑃𝑟 𝐹 =    … 𝑝!! 𝑦! ∙… ∙ 𝑝!! 𝑦! ∙ Pr 𝐹 𝑌! = 𝑦! ∩…∩ 𝑌! = 𝑦!

!!

!!!!

!!

!!!!

  (3) 

This expression holds with 𝑛 basic random variables that are unconditionally independ-
ent, i.e. when there are no direct links between the 𝑌!𝑠 and no common parents to the 𝑌! 
(as in Figure 3).  
Once measurements from the nodes 𝐌 = [𝑀!;… ;𝑀!] are available, the conditional 
failure probability can be calculated as: 

𝑃𝑟 𝐹 𝑴 =   
1

𝑝𝐌 𝐦 … 𝑝!! y! ∙ 𝑝!! !! 𝑚! y! ∙… ∙ 𝑝!! y! ∙ 𝑝!! !! 𝑚! y!

!!

!!!!

!!

!!!!
∙ Pr 𝐹 𝑌! = y! ∩…∩ 𝑌! = y!   (4) 

where Pr 𝐹 𝑌! = 𝑦!,… ,𝑌! = 𝑦!  is the conditional failure probability of component 
failure given 𝑌! = 𝑦!,…, and 𝑌! = 𝑦!. If only some of the measurements are available, 
the equation is modified accordingly. 
While the computation of the unconditional failure probability following Eq. 3 is exact, 
the computation of the conditional failure probability through Eq. 4 is only an approxi-
mation. The reason for this dependence? The dependence between the measurement 
variable 𝑀! and the ‘Component performance’ variable is not fully captured in the dis-
crete BN in Figure 3. This has already been discussed in (Straub and Der Kiureghian, 
2010b). In Figure 4 this is illustrated for a reliability problem with only one basic ran-
dom variable 𝑋!. Both the continuous distribution (Figure 4a) and the corresponding 
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discretized distribution (Figure 4b) are updated correctly after observing 𝑀!. However, 
for Eq. 4 to be correct, also the conditional failure probabilities Pr 𝐹 𝑌! = 𝑦!  need to 
be updated. This can be observed in Figure 4a): in interval 𝑌! = 3, which is the one cut 
by the limit state surface, the ratio of the probability mass in the failure domain to that 
in the safe domain changes from the prior to the posterior case. The fact that Pr 𝐹 𝑌! =
3 ≠ Pr 𝐹 𝑌! = 3,𝑀! = 𝑚!  shows that the independence assumption underlying Eq. 
4, namely Pr 𝐹 𝑌! = 𝑦! ≠ Pr 𝐹 𝑌! = 3,𝑀! = 𝑚!  is only an approximation. This error 
occurs only in the intervals that are cut by the limit state surface. In the simple one-
dimensional case of Figure 4 an optimal discretization approach would be to discretize 
the whole outcome space in two intervals, one capturing the survival and one the failure 
domain. This discretization would have zero approximation error. However, already in a 
two-dimensional case, such a solution is not possible. This is illustrated in Figure 5, 
where the cells cut by the limit state surface are indicated in grey. The failure probabil-
ity conditional on measurements calculated according to Equation 4 will necessarily be 
an approximation. The approximation error will be small, if the contribution of the cells 
cut by the limit state surface (the grey cells in Figure 5) to the total failure probability is 
small. An efficient discretization will thus limit this contribution with as few intervals 
as possible. 

3 OPTIMAL DISCRETIZATION OF LINEAR PROBLEMS IN STANDARD 
NORMAL SPACE 

As shown in the previous section, discretization induces an approximation error in the 
estimate of the posterior failure probability. In this section, we find an optimal discreti-
zation that minimizes the expected posterior discretization error for a special case. We 
consider a reliability problem, transformed to standard normal space, and solve the op-
timization problem for the FORM approximation of the LSF. The most important con-
cepts of FORM are therefore shortly revisited. 

3.1 First order reliability method (FORM) 

To get an approximation of the probability of failure through FORM, the LSF 𝑔 𝐗  is 
transformed to U-space, where all random variables 𝑈! ∈ 𝐔 are uncorrelated and have 
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Figure 5. Discretization error in 2D. Figure 4. Discretization error in 1D. 



the standard normal distribution. A suitable transformation for this purpose is the Ros-
enblatt transformation (Hohenbichler and Rackwitz, 1981). When all basic random vari-
ables are independent, this transformation reduces to the marginal transformations: 
𝑈! = Φ!! 𝐹!! 𝑋! , with Φ!! being the inverse standard normal CDF. 
The approximate FORM solution of the probability of failure is obtained by substituting 
the LSF in U-space 𝐺 𝐔  by a linear function 𝐺! 𝐔 . This linearization is done at the 
design point 𝐮∗, also known as the most likely failure point, which is the point that min-
imizes 𝐮∗  subject to 𝐺! 𝐔 ≤ 0. Since all marginal distributions of the standard mul-
ti-normal distribution are standard normal, it can be shown that the FORM probability 
of failure Pr 𝐺! 𝐔 ≤ 0  is: 
Pr 𝐺! 𝐔 ≤ 0 = Φ −𝛽!"#$   (5)        
where Φ is the standard normal CDF and 𝛽!"#$ is the distance from the origin to the 
design point, i.e. 𝛽!"#$ = 𝐮∗ . The problem thus reduces to finding the design point 
𝐮∗.  In the case where 𝑔 𝐔  is linear, the FORM solution of the probability of failure is 
exact, otherwise it is only an approximation, which however is typically good in most 
practical applications with a limited number of random variables (Rackwitz, 2001).  
The linearized LSF 𝐺! 𝐔  can be written as: 
𝐺! 𝐔 = 𝛽!"#$ − α!U               (6) 
where 𝛂 = α!,… ,α!  is the vector of FORM importance measures. These importance 
measures are defined as: 

α! =
u!∗

𝛽!"#$
  (7)  

where u!∗ is the 𝑖-th component of the design point coordinates. The α!𝑠 take values be-
tween 0 and 1, and it is 𝐮∗ , α! is 0, if the uncertainty on 𝑈! has no influence on 
Pr 𝐺! 𝐔 ≤ 0 , and it is 1, if 𝑈! is the only random variable affecting Pr 𝑔! 𝐔 ≤ 0 .  

3.2 Formulation of an optimization problem 

Evaluating 𝐺! 𝐔  is computationally inexpensive once the design point 𝐮∗ is available. 
Therefore, it is feasible to find the optimal discretization for 𝐺! 𝐔  through optimiza-
tion. Furthermore, in cases, where 𝐺 𝐔  is not strongly non-linear, the optimal discreti-
zation found for 𝐺! 𝐔  will be an efficient discretization for 𝐺 𝐔  and, once trans-
formed back to the original space also for g X .  
Since the approximation error of the discretization is associated with the measurements 
of the 𝑋𝑖 (or more generally with the information used to update the distribution of X), 
we introduce equivalent measurements on the random variables 𝑈. We assume that in-
dependent measurements errors ε! are associated with each measurement m! on U! as:  
𝑀! = 𝑈! + 𝜀!      (8)
𝜀! is modeled as a normal distribution with zero mean  and standard deviation σ!.  
For the FORM reliability problem, we define the optimal discretization as the one, 
which minimizes the expected posterior error E! 𝑒𝑟𝑟!"#$ 𝐝,𝐌 . Here, 𝐝 are the dis-
cretization parameters and E! denotes the expectation with respect to the measurements 
𝑀. 𝑒𝑟𝑟!"#$ is a measure for the posterior error, which is here defined as a weighted pos-
terior error: 



𝑒𝑟𝑟!"#$ 𝐝,𝐌 = 𝐸𝑅′!"# 𝐝,𝐌 =
log!" P! 𝑴 𝐝,𝐌 − log!" P! 𝑴 𝐌

log!" P! 𝑴 𝐌
  (9) 

P! 𝑴 𝐝,𝐌  is the conditional probability of failure calculated with the discretization and 
P! 𝑴 𝐌  is the exact conditional probability. Due to the linearity of the problem and all 
random variables having posterior normal distribution, P! 𝑴 𝐌  can be calculated ex-
actly. The error measure of Eq. 9 implies that under/overestimating a conditional proba-
bility of failure of 10!! by an order of magnitude is considered 𝑎 times worse than un-
der/overestimating a conditional probability of failure of 10!!∙!. 
The optimal discretization is defined as: 

𝐝!"# = argmin
𝐝
E! 𝑒𝑟𝑟!"#$ 𝐝,𝐌 = argmin

𝐝
𝑒𝑟𝑟!"#$ 𝐝,𝐌 𝑓 𝐦

𝐌
𝑑𝐦    10

This optimization requires the computation of an expected value with respect to the pos-
sible measurements before having taken any measurements. This is analogous to a pre-
posterior analysis (Raiffa and Schlaifer, 1961, Straub, 2014). Unlike in traditional pre-
posterior analysis, however, the objective is not to identify an optimal action under 
future available information, but to find the optimal discretization parameters 𝐝!"#. The 
integral in Equation 10 is evaluated through a simple Monte Carlo approach.  
The parameters in 𝐝 are: 𝑛!: the number of intervals used to discretize each random var-
iable 𝑈!, 𝑤!: the width of the discretization frame in the dimension of 𝑈! and 𝑣!: the po-
sition of the midpoint of the discretization frame relative to the design point. These var-
iables are illustrated in Figure 6. For a problem with 𝑛 basic random variables, the full 
set of optimization parameters is 𝐝 = 𝑤!,… ,𝑤!,𝑛!,… ,𝑛!!!, 𝑣!,… , 𝑣! . As the compu-
tational efficiency of the final BN is a direct function of the size of the largest CPT, i.e. 
the size of the CPT associated to the node component performance, we constrain its 
size. To this end, we define 𝑐!" as the maximum number of free parameters of the CPT 
of the node component state. This puts a constraint on the number of intervals 𝑛! per 
random variable: 

𝑐!" ≤ 𝑛!

!

!!!

     (11) 

Figure 6. Schematic representation of a discretization of a linear 2D reliability problem. 𝑤! is the distance 
between the first and the last interval boundary in dimension 𝑖. 𝑣! is the position in dimension 𝑖 of the 
midpoint of the discretization frame relative to the design point. 
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The optimization is performed using a two-level approach. The optimization of the con-
tinuous parameters   width 𝑤! and position of the discretization frame 𝑣! is carried out 
using unconstrained nonlinear optimization conditional on the 𝑛!s. The optimization of 
the discrete 𝑛!s  is performed through a local search. 

4  NUMERICAL INVESTIGATION 

We optimize the discretization for the FORM reliability problem as described by Equa-
tion 6 for two and three dimensions. We fix the reliability index at 𝛽!"#$ = 4.26, cor-
responding to a probability of failure of 10!!. The standard deviation of the additive 
measurement error is set to either 𝜎! = 0.5  or 𝜎! = 1.0. Different combinations of 𝛼! 
values are selected, to investigate the effect of the parameter sensitivity on the optimal 
discretization of the 𝑈!𝑠. In all investigated cases, we find that the position of the mid-
point of the optimal discretization frame coincides with the design point, i.e. 𝑣!

!"# = 0.
Furthermore, the optimal number of intervals 𝑛!

!"# is essentially the same for all random
variables in all investigated cases. We therefore conclude that these two optimization 
parameters may be fixed at = 0 and 𝑛! = 𝑐!"

! !.  
The optimal discretization widths 𝑤!

!"#, however, vary significantly with the importance
measures 𝛼!. At first sight, the dependence of 𝑤!

!"# on 𝛼! is not obvious, but a clear
trend can be observed by plotting the probability mass enclosed by 𝑤!

!"# against 𝛼!, as
shown in Figure 7. The width 𝑤! describes the domain in which a fine discretization 
mesh is applied, see Figure 6. The results of Figure 7 indicate that the probability mass 
contained within this interval should be a direct function of the random variable’s im-
portance, as expressed through α!. The more important the variable, the finer the dis-
cretization should become. The observed relationship between this probability mass and 
α! is almost deterministic, and a function can be fitted, see Figure 7. Neither the dimen-
sionality of the problems nor the standard deviation of the measurement error appear to 
have any influence on this relation. However, in additional investigations it was found 
that the relation does depend on the prior failure probability of the problem (i.e. on 
𝛽!"#$) and on the number of intervals 𝑛! used to discretize the domain. The discussion 
of these effects is outside the scope of this paper.  

Figure 7. Logarithm of the probability mass enclosed by the discretization frame plotted against 𝛼!. Φ de-
notes the standard normal CDF and 𝑢𝑏! respectively 𝑙𝑏! the last (upper) and the first (lower) interval 
bound in dimension 𝑖. 
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5 APPLICATION 

We apply the results presented in Section 4 to define an efficient discretization for a 
general limit state with non-normal random variables. The approximation errors made 
by this discretization are investigated for different measurement outcomes.  
Failure is defined through the LSF  𝑔 𝐱 : 
 𝑔 𝐱 = 𝑎 − 𝑋!!

!!!                                                                                                                                                                                                                                   (12) 
The basic random variables 𝑋! to 𝑋! are mutually uncorrelated and distributed as 
𝑋!~𝐿𝑁 0,0.5  and 𝑋!,… ,𝑋!~𝐿𝑁 1,0.3 . The values of the parameter 𝑎 are chosen, 
such that the prior failure probability is in the range of   1𝐸 − 5 to ensure that the results 
from section 4 are applicable. In the case of 𝑛 = 2 dimensions it is 𝑎 = 30; for 𝑛 = 3 
dimensions 𝑎 = 100; and for 𝑛 = 4 dimensions  𝑎 = 400. Measurements 𝑀! = m! are 
available for all basic random variables; they are associated with multiplicative meas-
urement errors 𝜀_i ∼ LN 0,0.71 . For this special case, an exact 𝑃! 𝐌 is available since 
all posterior random variables are also lognormal and they all enter the LSF in multipli-
cative format. 
 
Table 1:  Evaluation of the discretization error for different measurements 𝐦. 𝑛 is the number  of random 
variables, 𝛼 is the constant of the LSF, Eq. 12; P! 𝑴 denotes the analytical conditional failure probability 
and  P! 𝑴 the conditional failure probability calculated with the discrete BN. 

𝑛 𝑎 𝐦 P! 𝑴 P! 𝑴 Absolute 
error  

Relative 
error [%] 

2 30 6.9,5.1  3.8𝐸 − 4 3.8𝐸 − 4 3𝐸 − 6 1 
2 30 2.4,2.9  1.1𝐸 − 5 1.1𝐸 − 5 7𝐸 − 7 6 
2 30 1.3,5.5  4.2𝐸 − 6 4.4𝐸 − 6 3𝐸 − 7 6 
2 30 0.5,2.4  5.4𝐸 − 8 6.7𝐸 − 8 1𝐸 − 8 25 
2 30 0.2,0.5  4.5𝐸 − 11 9.8𝐸 − 11 5𝐸 − 11 117 
3 100 2.2,6.0,9.1  1.5𝐸 − 4 1.5𝐸 − 4 1𝐸 − 7 0 
3 100 1.7,3.0,2.9  9.8𝐸 − 6 1.1𝐸 − 5 1𝐸 − 6 10 
3 100 0.4,2.2,0.8  9.4𝐸 − 9 1.3𝐸 − 8 4𝐸 − 9 41 
4 400 2.0,1.4,5.8,7.8  2.0𝐸 − 5 2.1𝐸 − 5 1𝐸 − 6 7 
4 400 0.7,1.1,7.3,2.6  4.2𝐸 − 7 5.2𝐸 − 7 1𝐸 − 7 23 
4 400 0.3,0.7,2.7,1.9  2.0𝐸 − 9 3.2𝐸 − 9 1𝐸 − 9 57 

 
For the discretization of the outcome space, 𝑛! = 10 intervals are used per dimension, 
the discretization frame was centered at the design point and the discretization widths 
𝑤! were determined from the exponential function shown in Figure 7. In Table 1 the es-
timated conditional probability of failure P! 𝑴 together with the exact failure probabili-
ties P! 𝑴 are shown for different measurement cases 𝐦. 

6 SUMMARY AND CONCLUSIONS 

Solving and updating structural reliability problems in a Bayesian Network (BN) 
framework is of interest especially in near-real time applications, where failure proba-
bilities have to be updated frequently after obtaining new information, often by non-
experts. In this paper, we proposed an approach to discretize continuous reliability prob-
lems, such that they can be solved and updated in the BN framework. By solving an op-



timization problem for linear problems in standard normal space, corresponding to a 
FORM analysis, we derived a heuristics for discretizing the outcome space of a reliabil-
ity problem. As shown in a simple application example, the heuristic provides an effi-
cient optimization also for non-normal, non-linear reliability problems.  
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