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Abstract— Model-based design of robotic systems has many
advantages, among them faster development cycles and reduced
costs due to early detections of design flaws. Approximate
models are sufficient for many classical robotic applications;
however, they no longer suffice for safety-critical applications.
For instance, a dangerous situation which has not been detected
by model-based testing might occur in a human-robot co-
existence scenario since models do not exactly replicate be-
haviors of real systems—this problem arises no matter how
accurate a model is, since even disturbances and sensor noise
can cause a mismatch. We address this issue by adding non-
determinism to robotic models and by computing the whole
set of possible behaviors using reachability analysis. By using
reachset conformance, we automatically adjust the required
non-determinism so that all recorded behaviors are captured.
For the first time this approach is demonstrated for a real
robot.

I. INTRODUCTION

Formal methods require models of real physical systems.
However, we only have formal correctness if models and
real systems conform to each other. In [1] it is shown
that for the formal verification of safety properties, reachset
conformance is sufficient. As shown in Fig. 1, this means
that the real behavior (red lines) must always lie within the
reachable set prediction (gray area) of the model. There-
fore, reachset conformance checking is a prerequisite for
safety approaches such as verified controllers [2] or safe
human-robot coexistence [3]. Further possible applications
of reachset-conformant models are, e.g., the error bounding
of feedback control and the formal analysis of open-loop sce-
narios, such as mechanical braking or sensor faults, where the
robot’s possible future behavior could quickly diverge. Here,
reachable sets give us upper and lower-bound predictions
of the robot position and velocity states, which helps us to
formally avoid collisions with surrounding objects.

Bounding uncertainties have previously been addressed in
set-membership approaches [4], [5], where one determines
feasible parameter sets of dynamical systems such that the
current measurement of a physical system is always con-
tained within the output sets of its model. Set-membership
approaches are useful for robot modeling [6], fault diagnosis
[7], and state estimation [8]. Reachset conformance extends
set-membership by the idea that not only current, but also
the future behavior is considered in the uncertainties. The
tool proposed in [9] monitors reachset conformance for a
future time sequence at runtime for systems modeled as
hybrid programs. In this work, we model our systems using
differential equations. Previous reachset conformance checks
can be found for human arms [10], [11] or pedestrians [12].
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Fig. 1. We identify a reachset conformant model of the Schunk LWA-4P
robot, such that the reachable sets enclose all recorded future behaviors of
the robot.

Formal analysis tools for dynamical systems (e.g.,
SpaceEx [13], Flow* [14], HyLAA [15], XSpeed [16], or
CORA [17]) require simple, yet conformant models, which
are restricted to e.g., linear or polynomial terms. In contrast,
the forward dynamics of robot arms are highly nonlinear and
also hard to obtain symbolically, especially when the robot
has many degrees of freedom (DOFs). In [18] the authors
use automatic differentiation to generate fast forward dy-
namics abstractions up to the second order without explicitly
generating the symbolic version of the forward dynamics.
Higher-order approximations are often realized using Taylor
polynomial arithmetics [19], [20] and are not only beneficial
for formal techniques, but also for control design and optimal
control in particular [18], [21].

In this paper we present the first work on reachset confor-
mance of robot arms. We are aiming to find abstract models
with a simple structure and consider unmodeled effects by
adding non-determinism to achieve reachset conformance.
Our approach creates reachset-conformant models in four
steps:

1) We identify the nominal robot dynamics through ex-
periments on the real counterpart.

2) We generate a global forward dynamics abstraction
(linear or polynomial) using Taylor polynomial arith-
metics and exploiting structural properties.

3) We perform open-loop testing using a fixed input
trajectory.

4) We identify additive uncertainties using intervals of
minimum size to ensure that all recorded behaviors
lie within the reachable set of the abstract model.

Our approach is demonstrated experimentally on a 6-DOF
Schunk LWA-4P robot arm shown in Fig. 1. We begin this
paper in Sec. II by formalizing the problem at hand. In
Sec. III we introduce the mathematical tools we use. Sec. IV
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describes our main contribution, which is the identification
of the reachset-conformant robot model. Experimental results
on our Schunk LWA-4P robot arm are presented in Sec. V.

II. PROBLEM STATEMENT

We consider a robot manipulator with rotary joints, whose
n joint positions and n velocities x = (q, q̇)T ∈ R2n depend
on joint torques u ∈ Rn. To describe all possible behaviors of
a robot manipulator, we use a first-order differential inclusion
in state space form. Model uncertainties are captured by sets
of uncertain initial states X0 ⊂ R2n and sets of uncertain
inputs U ⊂ Rn imposed on the initial state x0 = xm(0) and
nominal input um(t):

ẋ ∈
{
f(x, u)

∣∣∣u(t) ∈ um(t)⊕ U
}
, x(0) ∈ x0 ⊕X0, (1)

where the Minkowski sum is defined as A⊕B = {a+ b|a ∈
A, b ∈ B}. Next, we define reachable sets:

Definition 1 (Reachable Set). Given an initial set X0 and
a time-dependent input trajectory um(τ), and the uncertain
input set U , the reachable set at time t of system (1) is

R(t, x0, um(τ)) =
{∫ t

0

f(x(τ), u(τ))dτ + x(0)
∣∣∣

x(0) ∈ x0 ⊕X0,∀τ ∈ [0, t] : u(τ) ∈ um(τ)⊕ U
}
.

For conformance checking, reachable sets are compared
against test suites obtained from the real robot (see Fig. 1):

Definition 2 (Test suite). Given are measured trajectories
xm,1(·), xm,2(·), ... of a physical system starting at the same
initial state x0 and receiving the same input trajectory um(·)
via open-loop control. A test suite is the set

Xm(t, x0, um(·)) = {xm,1(t), xm,2(t), ...}.

For establishing reachset conformance, the sets X0, U are
chosen such that reachable sets always overapproximate all
test suites, regardless of input or initial state. To formalize
our goal, we introduce the volume operator V ol() and the
time horizon te. The goal of this paper is to derive a robot
model in the form of system (1), where f(x, u) is linear
or polynomial and where the uncertainty sets X0 and U are
chosen such that a reachset-conformant model is obtained
whose reachable set has a minimized volume:

min
X0,U

∫ te

0

Vol
(
R(t, x0, um(·))

)
dt

subject to ∀x0, um(·), t ∈ [0, te] :

R(t, x0, um(·)) ⊇ Xm(t, x0, um(·)).

(2)

III. PRELIMINARIES

To obtain reachset-conformant models, we use Taylor
polynomials and interval arithmetics, which are introduced
subsequently.

A. Taylor polynomial arithmetics

We use Taylor polynomials to locally approximate a
continuous function f(z) with variables z =∈ Rk at the
expansion point a ∈ Rk.

Definition 3 (Taylor polynomial (see Sec. 3 in [22])). Let
us first introduce the multi-index set

Lp =
{
(l1, l2, ..., lk)

∣∣li ∈ N,
k∑
i=1

li ≤ p
}
.

We define T pf (z − a) as a p-th order Taylor polynomial of
f(z) around a:

T pf (z − a) =
∑
l∈Lp

∏k
i=1(zi − ai)li
l1!...lk!

(
∂l1+...+lkf(z)

∂zl11 ...∂z
lk
k

)∣∣∣∣∣
z=a

.

One way to create T pf (z) (short notation) is to obtain f(z)
symbolically and subsequently compute its derivatives. A
second way is to perform numerical differentiation, which
often yields high inaccuracies [18].

A third way to build Taylor polynomials is via compo-
sition of simpler Taylor polynomials. In fact, coefficients
of Taylor polynomials form a commutative algebra [19],
[20] with well-defined arithmetic operators such as ’+’,’·’
and ’/’. Via operator overloading we can use the same
algorithms that are used for the numerical evaluation of f(z)
(i.e., recursive Newton-Euler and Featherstone’s algorithm in
robotics) to compose T pf (z) up to an arbitrary degree p. For
our application, this approach is faster and more accurate
than symbolical or numerical derivation. For details on our
implementation of Taylor polynomial arithmetics, please see
[23].

B. Interval arithmetics

We use intervals to describe model uncertainties. An inter-
val is defined by an upper and a lower limit [a] := [a, a], a ∈
R, a ∈ R, a ≤ a. Set-based operations ∗ ∈ {+,−, ·} are
defined as

[a]~ [b] := {a ∗ b|a ∈ [a], b ∈ [b]} .

The functions inf([a, a]) := a and sup([a, a]) := a return the
infimum and supremum, respectively.

A k-dimensional interval is called hyperrectangle and
is defined by the Cartesian product of intervals in each
dimension [z1, z1]×· · ·×[zk, zk]. For an arbitrary set Z ∈ Rk
the function inf(Z) := z ∈ Rk and sup(Z) := z ∈ Rk return
the infimum and supremum of the smallest hyperrectangle
overapproximation of Z .

IV. FORWARD DYNAMICS MODELING

We aim to create a reachset-conformant robot model in the
form of (1), consisting of the nominal model f(x, u) and un-
certainty sets X0, U . We first introduce our robot and friction
model. Afterwards we present our main contribution, which
is the forward dynamics abstraction and the identificiation of
uncertain sets based on conformance testing.
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A. Robot model

The standard inverse dynamics model of a robot arm is

τl =

(
M(q) + diag(k2rIm)

)
q̈ + c(q, q̇) + g(q), (3)

where τl is the link-side torque; q, q̇, q̈ are the joint positions,
velocities, and accelerations, respectively; M is the mass
matrix; c are the Coriolis forces; g is the gravity vector; kr is
the gear ratio; and Im is the motor inertia. These terms can
be obtained by using the recursive Newton-Euler algorithm
(see Ch. 7 in [24]). We present two possible ways to obtain
the nominal part of (1): The first one is to solve (3) for q̈,
which results in:

q̈ =Mm(q)−1(τl − c(q, q̇)− g(q)), (4)

where Mm(q) = M(q) + diag(k2rIm). The second way
is to compute q̈ directly using Featherstone’s algorithm for
rigid-body dynamics [25], which bears a result equal to (4).
Featherstone’s algorithm is generally more accurate and is
faster for many DOFs [26]. Using our computer setup (see
Sec. V), however, neither algorithm is able to terminate when
trying to obtain (4) symbolically for DOFs greater than four.
Therefore we use Taylor polynomial arithmetics.

For the joint friction we choose to model the load-
dependency and nonlinearity of joint friction. The resulting
link-side torque is

τl,i := τm,i − τc,i − (v1q̇i + v2q̇
2
i + v3q̇

3
i )︸ ︷︷ ︸

τν,i

, (5)

where i denotes the joint number, τm is the motor torque,
τc is the Coulomb friction, and τν is the viscous friction
modeled as a cubic function with constants v1, v2, v3.

For the Coulomb friction we use the model in [27] which
considers different constants a for each motor quadrant, such
that τc(τl, q̇) is for each joint (subscripts omitted):

τc = a1 + a2τl, if sgn(τl) 6= sgn(q̇) ∧ q̇ < 0, (6)
τc = a3 + a4τl, if sgn(τl) = sgn(q̇) ∧ q̇ < 0, (7)
τc = a5 + a6τl, if sgn(τl) 6= sgn(q̇) ∧ q̇ > 0, (8)
τc = a7 + a8τl, if sgn(τl) = sgn(q̇) ∧ q̇ > 0. (9)

Employing a load-dependent friction model has one caveat:
when inserting (5) into (4), acceleration q̈ appears on both
sides such that forward dynamics becomes implicit and
would need to be solved iteratively [28]. We avoid accel-
eration to appear on the right side by setting τl = g(q) in
(6)–(9), because gravity usually dominates τl at low speeds.
For the identification of our robot and friction model we refer
to the Appendix.

B. Abstracting the forward dynamics

We abstract the following forward dynamics:

f(x̂, u) =

(
x̂2

Mm(x̂1)
−1(u− c(x̂1, x̂2)− τν(x̂2))

)
, (10)

where x̂1 = q, x̂2 = q̇ and ui is the input of the ith joint

ui := τm,i − τc,i(gi(x1), x2,i)− gi(x1), (11)

The input u represents the motor torque, but with added
gravity and feed-forward Coulomb friction compensation
since this drastically simplifies the obtained model and only
requires small uncertainty sets. In addition, we avoid mixed
discrete/continuous dynamics by considering the disconti-
nuities of τc inside u instead of f(x̂, u). Additionally, we
exploit three structural properties of robot dynamics:

Property A (Trigonometric x̂1): The generalized coor-
dinates x̂1 of revolute joints only appear as trigonometric
functions sin(x̂1) and cos(x̂1) in (3) as shown in [29]. By
introducing x3 = qs = sin(x̂1) and x4 = qc = cos(x̂1) as
new variables, (3) becomes a polynomial in qs, qc, q̇, q̈, τl.
This reduces the number of operations and therefore reduces
the model error when applying Taylor polynomial arith-
metics. Using this property increases size of the state-space:
x = (q, q̇, qs, qc)

T ∈ R4n.
Property B (Near diagonal mass matrix): For high gear

ratios the mass matrix Mm is dominated by the constant term
diag(k2rIm). This also propagates to the inverse of Mm.

Property C (Omitting Coriolis terms): The Coriolis and
centripetal term c(x1, x2) can be written as

c(x1, x2) :=

xT2 C1(x1)x2
...

xT2 CN (x1)x2

 , see [30], (12)

where Ci ∈ RN×N are matrices that depend only on q
and its coefficients are cijk :=

∂Mij

∂x1,k
− 1

2
∂Mjk

∂x1,i
(as shown

in [24], Ch. 7) . In (12) it is shown that velocities x2
only appear as squared terms in the forward dynamics, such
that small velocities can be neglected and high velocities
may let c(x1, x2) dominate the robot dynamics. We propose
omitting c(x1, x2) for slow moving robots and using Taylor
polynomials of Ci(x1) for high velocities.

In the following we list three useful models which apply
the above properties to a varying degree and are evaluated
subsequently. For a global approximation, we use the ex-
pansion point (qa, q̇a, sin(qa), ua)

T = ~0 and cos(qa) = ~1.
Model 1 is the simplest model, considering properties B and
C and only depends on input u and velocity x2 = q̇:

ẋ = f1(x, u) :=

(
x2

M−1m (qa)(u− T pτν (x2))

)
, (13)

where the subscript of T denotes the function that is Taylor-
approximated. Model 2 uses assumputions A and B, and
therefore considers Coriolis effects:

ẋ = f2(x, u) :=


x2

M−1m (qa)(u− ca(x2, x3, x4)− T pτν (x2)
x2x4
−x2x3


(14)

ca(x2, x3, x4) :=

x′T2 T p−2C1
(x3, x4)x2
...

x′T2 T
p−2
CN

(x3, x4)x2

 , (15)

where (15) is only evaluated for p ≥ 2 (else ca = 0) and
we replace x1 by the trigonometrical variables x3 and x4
when evaluating the Coriolis matrix. From property A we
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know that c(x2, x3, x4) is a polynomial, of which we denote
its order as pmax. We conclude that for p ≥ pmax − 2 :
ca(x2, x3, x4) = c(x2, x3, x4). Model 3 only considers
property A:

ẋ = f3(x, u) :=


x2

T pf (x2, x3, x4, u)

x2x4
−x2x3

 , (16)

where f is the second row of (10) and, e.g., can be computed
using a modified Featherstone’s algorithm that evaluates
qs, qc instead of q. Note that for p = 1 the model in (13) and
the first two rows of (14) and (16), respectively, are identical
and linear.

C. Identifying the uncertainty sets

After obtaining the nominal part of (1), we identify the
sets X0 and U by solving the optimization problem in (2).
We first consider the case of linear systems (p = 1), which
can also be written in the standardized form ẋ = Ax+Bum.

Given an initial state x0 and an input trajectory um(·), the
solution of a linear system is known to be

x(t, x0, um(·)) = eAtx0 +

∫ t

0

eA(t−τ)v(τ)dτ,

v(τ) = Bum(τ).

If the linear system has the uncertainty sets X0 and U , the
reachable set is

R(t, x0, um(·)) =

eAt(x0 ⊕X0)⊕
∫ t

0

eA(t−τ)(v(τ)⊕ V)dτ, V = BU .

We consider the conformance constraint in (2) and subtract
x(t, ∗) = x(t, x0, um(·)) from both sides to obtain ∀t ∈
[0, te],∀x0,∀um(·):

Xm(t, ∗)− x(t, ∗) ⊆ R(t, ∗)− x(t, ∗)
where on the left-hand side x is substracted from every
element of Xm, and thus

Xm(t, ∗)− x(t, ∗) ⊆ eAtX0 ⊕
∫ t

0

eA(t−τ)Vdτ, (17)

and observe that the right side is now independent of x0, um.

Proposition 1. By moving a constant set V out of the con-
volution integral, the result becomes an underapproximation{∫ t

0

eA(t−τ)dτv

∣∣∣∣v ∈ V} ⊆{∫ t

0

eA(t−τ)v(τ)dτ

∣∣∣∣∀τ : v(τ) ∈ V
}
.

The proof is trivial, because the notation already shows that
on the right-hand side more solutions are present. �

After introducting

Xall(t) :=

I⋃
i=1

(
Xm,i(t, x0,i, um,i(·))− x(t, um,i(·))

)
,

where I is the number of test suites, we infer from proposi-
tion 1 and (17)

Xall ⊆ eAtX0 ⊕
∫ t

0

eA(t−τ)dτV, (18)

which is a stricter constraint on V and thus it subsumes (17).
For easier reading we introduce E1, E2 to replace the matrix-
valued terms in (18):

Xall(t) ⊆ E1(t)X0 ⊕ E2(t)V =
(
E1(t) E2(t)

)(X0

V

)
.

We overapproximate both sides by hyperrectangles (multidi-
mensional intervals). We then know that the following must
hold true for t ∈ [0, te]:

sup(Xall(t)) ≤ sup

((
E1(t) E2(t)

)(X0

V

))
,

inf(Xall(t)) ≥ inf

((
E1(t) E2(t)

)(X0

V

))
.

Without loss of generality we assume that the origin is
contained in X0 and V . Hence inf(X0,V)T is a 4n×1 vector
with only negative elements, and sup(X0,V)T is a 4n × 1
vector with only positive elements. Usually, t is sampled.
We stack the vectors and matrices for all m samples in time
0 ≤ ti ≤ te:

sup(XM ) ≤ |EM | sup
(
X0

V

)
(19)

inf(XM ) ≥ |EM | inf
(
X0

V

)
(20)

XM =

 . . .
Xall(tk)
. . .

 ⊂ Rn·m, k = 0, ...,m

EM =

 . . . . . .
E1(tk) E2(tk)
. . . . . .

 ∈ Rn·m×2·n, k = 0, ...,m.

We overapproximate all reachable sets R(t, ∗) with
hyperrectangles HR(t,∗). Because x(t, ∗) is a vector,
Vol(HR(t,∗)) = Vol(HR(t,∗) − x(t, ∗)) = Vol(E1(t)X0 ⊕
E2(t)V), where the last expression is evaluated via matrix
interval multiplication (see Sec. 2.2 in [31]). We therefore
simplify the optimization task in (2) to an optimization
problem, that minimizes the sum of the edge lengths of
HR(t):

min
y1,y2

jT
m∑
k=0

(
E1(tk) E2(tk)

)
(y1 − y2), (21)

where j is a 2n · m × 1 column vector of ones, y1 =
(sup(X0), sup(V))T and y2 = (inf(X0), inf(V))T . The ad-
vantage of (21) is that together with (19) and (20) a linear
program is formed which can be efficiently solved. U∗ is
obtained by using the pseudo-inverse B#:

U = B#V∗,
where U∗ is a hyperrectangle, when evaluated using matrix
interval multiplication.
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TABLE I
SIMULATION ERROR OF MODEL ABSTRACTIONS

polyn. Model 1 Model 2 Model 3
ord. p slow fast slow fast slow fast

1 0.0040 0.0408 0.0040 0.0408 0.0040 0.0408
3 0.0034 0.0243 0.0042 0.0294 ∞ ∞
5 −− −− 0.0026 0.0161 0.0031 ∞
7 −− −− 0.0025 0.0162 −− −−

For polynomial and nonlinear systems, we first linearize
the dynamics and then use binary search for each dimension
to find the sets X0,U .

V. EXPERIMENTAL RESULTS

In this section we present the experimental results of our
approach. We carry out the experiments on a 6-DOF Schunk
LWA 4P robot (Fig. 3), which is controlled by Simulink
Real-Time OS on a Core i7 Speedgoat machine. The results
for the identification of the nominal model can be found
in the Appendix. Subsequently, we first evaluate the model
abstractions in a simulation study, and then provide the
results of conformance testing.

A. Evaluation of the model abstractions

In this section we evaluate the effectiveness of the three
different model abstractions proposed in Sec. IV-B. These
are computed using our MATLAB reachability analysis tool
CORA [17], which already contains an implementation of
Taylor polynomial arithmetics. As can be inferred from their
model structures models 1 and 2 have maximal polynomial
degrees; for our robot these are 3 and 12, respectively.

We compare these models in simulations by generating a
slow and a fast trajectory, where the top speeds of each axis
are 0.4 and 1.2 rad/s (max. velocity from the robot’s data
sheet), respectively. In Tab. I we show the mean of velocity
errors of each abstracted model versus the standard numerical
simulation using Featherstone’s algorithm.

We observe that for the slow trajectory, there is almost no
difference between the abstracted models and the numerical
simulation. For fast trajectories the errors are larger. For
model 2, the error decreases below the error of model 1 for
higher orders, because of the improved modeling. For model
3, however, the errors frequently diverge from the simulation.

We observe that the linear model already has a decent
approximation performance, although one would not expect
this for a single expansion point. Our simulations have shown
that the model 1 abstractions only start to diverge from the
original rigid-body dynamics at velocities much higher than
the robot’s capability. The improvements of model 2 are not
that significant for our robot. In fact, as will be shown later
in the experiments, the uncertainty of friction has a higher
effect on the dynamics than the Coriolis terms, which have
been considered in model 2. Model 3 is not suitable for
global approximation.
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Fig. 2. Open-loop control with gravity and Coulomb friction compensation
result in non-deterministic robot behavior (red). The same motor torques
influence the abstracted model, which generates the reachable sets (gray).

B. Conformance testing and optimal uncertainty sets

In this subsection we present the results from conformance
testing and obtained optimal uncertainty sets. We focus on
the linear model 1, which turned out to be sufficiently
accurate in the previous subsection.

For conformance testing we have recorded 152 test suites,
where each test suite consists of a fixed series of motor
torques that are applied via open-loop control to the real
robot 15 times from the same initial state, as shown in
Fig. 2. The motor torques are pre-recorded from closed-
loop point-to-point (PTP) motions. We generate 38 uniformly
random PTP motions; from each motion, we choose four
initial points, as shown in Fig. 3. The robot moves to these
initial points via closed-loop control, and then immediately
switches to open-loop by applying the pre-recorded motor
torques, such that the resulting trajectories diverge. Each test
suite is up to te = 5 seconds long.

Using the data from all test suites, we determine the
optimal uncertainty bounds via Sec. IV-C such that the
reachable sets enclose all measurements, as shown in Fig.
2. The results are shown in Tab. II for two cases: In the
first case we aim for conformance of all states (position and
velocity). In the second case we only aim for conformance
of the robot position by excluding the velocity constraints
in (19) and (20) from the linear program (21). Fig. 4 shows
the reachability analysis of both cases for an exemplary test
suite.

1
2

3
4

Fig. 3. In each random point-to-point motion the conformance testing starts
from four different points indicated by dotted lines, where the controller is
switched from closed-loop to open-loop
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Fig. 4. Reachable set predictions of model 1 for axis 1-6 (left to right) of the Schunk LWA-4P robot. Light gray: both position and velocity are reachset
conformant. Dark gray: only the position is reachset conformant. Colored lines are the measured test trajectories. The colors indicate the temperature
relative to the temperature range of each axis, where red is hot and blue is cold.

TABLE II
IDENTIFIED OPTIMAL UNCERTAINTY SETS OF MODEL 1 FOR EACH JOINT

Velocity conformant
Jnt. X0 : q X0 : q̇ U

1 [−0.0030, 0.0030] [−0.0317, 1.2140] [−2.7201, 3.6017]
2 [−0.0017, 0.0017] [−0.6586, 0.2550] [−2.3225, 7.1559]
3 [−0.0025, 0.0025] [−0.0154, 0.0463] [−6.8833, 2.6287]
4 [−0.0027, 0.0027] [−0.0184, 0.0331] [−1.7374, 2.0317]
5 [−0.0075, 0.0075] [−0.1179, 0.0551] [−1.4919, 0.5486]
6 [−0.0063, 0.0063] [−0.0765, 0.0765] [−1.0060, 1.0060]

Position conformant
Jnt. X0 : q X0 : q̇ U

1 [−0.0030, 0.0030] [−0.2785, 1.1309] [−1.9257, 1.8615]
2 [−0.0017, 0.0017] [−2.0695, 2.3636] [−0.8212, 1.0395]
3 [−0.0025, 0.0025] [0, 0] [−1.8045, 1.5717]
4 [−0.0027, 0.0027] [0.0000, 0.6020] [−1.2072, 1.2231]
5 [−0.0075, 0.0075] [−0.3491, 0.1180] [−0.6622, 0.2146]
6 [−0.0063, 0.0063] [−0.6369, 0.7051] [−0.5366, 0.5187]

We observe that in both cases the test suite is enclosed,
which means that the model shown in this evaluation is
indeed reachset conformant. By color-coding the test trajec-
tories according to the joint temperature measurement, we
observe that temperature is one of the main reasons why
the trajectories diverge. We have not included a temperature
model in this work, but this would further improve the open-
loop prediction.

VI. CONCLUSIONS

We present an approach to create reachset-conformant
models of robot manipulators. To this end, we abstract
the identified forward dynamics to linear or polynomial
systems and optimize the required uncertainty sets to achieve
reachset conformance. Experimental results demonstrate the
effectiveness of our approach on a real robot. Reachset-
conformant models are useful for the formal analysis of
uncertain behavior, such as to avoid collisions. We wish to
apply our model to the formal analysis of mechanical braking
(STOP 0 and STOP 1).

During the experiments it became apparent that friction
has a large effect on the dynamics and that an accurate fric-

tion model is very important. Especially the highly uncertain
stiction in the case of crossing zero velocity has not been
addressed by this paper and is the subject of future work.
We also plan to consider temperature dependency of friction
in the future to reduce the uncertainty bounds.

APPENDIX: DYNAMIC PARAMETER IDENTIFICATION

The identification of our robot is based on the works in
[32] and [33]. The standard DH parameters can be found
with the help of CAD files available from the Schunk
website. Gear ratios are taken from the robot’s data sheets
(kr = [160, 160, 160, 160, 100, 100]). We estimate the grav-
ity model from 1000 static positions. Subsequently, we use
the gravity torques as load torque to identify our friction
model. As an example, we display the curve fitting results of
the friction models for joint 2 in Fig. 5. Lastly, we determine
our inertial parameters through linear regression. The results
are shown in Tab. III.
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