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Abstract

Capturing three-dimensional environments is a key task in the growing
fields of virtual and augmented reality. Methods have to work at sensor frame
rates and be extremely accurate to ensure a credible reconstruction. Moreover,
they have to be able to not only recover the geometry of a fixed scene, but
also capture it when people are moving and interacting with objects in it.
This thesis addresses the task of 3D reconstruction of both static and dynamic
objects and scenes scanned with a single hand-held RGB-D camera, without
any markers or prior knowledge.

Reconstructing rigid environments requires estimating the six degrees-of-
freedom camera pose at every time instance, and subsequently fusing the
acquired data into a geometrically consistent computer model. The task of
reconstructing deformable objects is more challenging, as additionally the non-
rigid motion that occurred in every frame has to be determined and factored
out. Solutions are typically based on variants of the iterative closest points (ICP)
algorithm, which iteratively establishes correspondences and minimizes the
distance between two point sets. While this approach is general and versatile,
it is dependent on a good initialization and a low amount of noise.

Recently, point-to-implicit approaches have shown higher robustness than
ICP for rigid registration. They align a point cloud with the zero level set of a
signed distance field (SDF). The SDF is an implicit surface representation, stored
as a voxel grid in which outside areas have positive values and inside areas
have negative ones, leaving the surface as the zero-valued interface. It permits
registration to be done as a direct minimization without correspondence search.

Inspired by this, we propose to tackle both the rigid and deformable
reconstruction problems via implicit-to-implicit alignment of SDF pairs. In
the static case, we obtain more accurate pose estimates with a framework that
permits straightforward incorporation of various additional constraints, such
as surface colour and orientation. We start with the reconstruction of small- to
medium-scale household objects and demonstrate how to extend the approach
to larger spaces such as rooms. To this end, we develop a limited-extent volume
strategy that restricts registration to the most geometrically distinctive regions
of a scene, leading to significantly improved rotational motion estimation.

Finally, we adapt our approach to dynamic scenes by modifying our implicit-
to-implicit approach so that new data is incremented appropriately. For this
purpose we evolve an initial SDF to a target SDF by imposing rigidity con-
straints that require the underlying deformation field to be approximately
Killing, i.e. volume-preserving and generating locally isometric motions. Alter-
natively, we employ gradient flow in the smooth Sobolev space, which favours
global deformations over finer-scale details. These strategies also circumvent
explicit correspondence search and thus avoid the repeated conversion between
SDF and mesh representations that other techniques entail. Nevertheless, we
ensure that correspondence information can be recovered by proposing two
strategies based on Laplacian eigenfunctions, which are known to encode
natural deformation patterns. Thanks to the used SDF representation, our
non-rigid reconstruction approach is able to handle topological changes and
fast motion, which are major obstacles for existing approaches.
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Zusammenfassung

Die Erfassung dreidimensionaler Umgebungen ist eine zentrale Aufgabe in
den wachsenden Feldern der virtuellen und erweiterten Realität. Methoden
hierfür müssen echtzeitig und extrem genau sein, um eine glaubwürdige
Rekonstruktion zu gewährleisten. Darüber hinaus müssen sie in der Lage
sein, nicht nur die Geometrie einer statischen Szene zu erfassen, sondern
diese auch wiederherzustellen, wenn sich Personen bewegen und mit Objekten
interagieren. Diese Dissertation befasst sich mit der 3D-Rekonstruktion von
statischen und dynamischen Objekten und Szenen, die mit einer handgeführten
RGB-D Kamera ohne Marker oder Vorkenntnisse aufgenommen wurden.

Das Rekonstruieren starrer Umgebungen erfordert zu jedem Zeitpunkt die
Schätzung von sechs Freiheitsgraden der Kamerapose und anschließendes
Kombinieren der erfassten Daten zu einem geometrisch konsistenten Com-
putermodell. Für verformbare Objekte ist dies schwieriger, da zusätzlich der
nicht-starre Bewegungsanteil herausgerechnet werden muss. Lösungen basie-
ren typischerweise auf Varianten des Iterative Closest Points (ICP) Algorithmus,
der die Korrespondenzen zwischen zwei Punktwolken festlegt. Obwohl dieser
Ansatz allgemein einsetzbar ist, braucht er für ein gutes Rekonstruktionsergeb-
nis eine gute Initialisierung sowie möglichst wenig Rauschen.

Kürzlich haben Punkt-zu-implizite Ansätze eine höhere Robustheit als ICP
für starre Registrierung gezeigt. Sie richten eine Punktwolke mit dem Nullpegel
eines vorzeichenbehafteten Distanzfeldes (Signed Distance Field - SDF) aus.
Das SDF ist eine implizite, als Voxelgitter gespeicherte Oberflächendarstellung,
in der äußere Bereiche positive und innere Bereiche negative Werte haben,
wobei die Oberfläche als nullwertige Schnittstelle verbleibt. Es ermöglicht eine
Registrierung als direkte Minimierung ohne Korrespondenzsuche.

Davon ausgehend schlagen wir vor, sowohl starre als auch deformierbare
Rekonstruktionsprobleme durch implizite-zu-implizite Ausrichtung von SDF-
Paaren zu lösen. Im statischen Fall erhalten wir ein Framework zur genaueren
Posenschätzung, welches die direkte Integration verschiedener Randbedin-
gungen, wie z. B. Oberflächenfarbe und Orientierung, erlaubt. Wir beginnen
mit der Rekonstruktion von kleinen bis mittelgroßen Haushaltsobjekten und
zeigen, wie der Ansatz auf größere Räume erweitert werden kann. Zu diesem
Zweck entwickeln wir eine Strategie mit Volumen begrenzter Ausdehung, wel-
che die Registrieurng auf die geometrisch am stärksten ausgeprägten Bereiche
einer Szene einschränkt, was zu einer signifikant verbesserten Rotationsbewe-
gungsschätzung führt.

Schließlich erweitern wir unseren Ansatz auf dynamische Szenen. Wir
beginnen mit demselben impliziten zu impliziten Ansatz, passen ihn jedoch
so an, dass neue Daten inkrementell angemessen hinzugefügt werden. Zu
diesem Zweck entwickeln wir ein initiales SDF zu einem finalen SDF. Dafür
verwenden wir Steifigkeitseinschränkungen, die erfordern, dass das zugrun-
deliegende Deformationsfeld annähernd Killing ist, d. h. lokal isometrische
Bewegungen erzeugt und daher Volumen erhält. Alternativ verwenden wir
einen Gradientenfluss in dem glatten Sobolev-Raum, welcher statt feineren
Details globale Deformationen begünstigt. Diese Strategien umgehen auch
die explizite Korrespondenzsuche und vermeiden somit die wiederholte Kon-
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vertierung zwischen SDF- und triangulierten Netzdarstellungen, die andere
Techniken mit sich bringen. Nichtsdestotrotz stellen wir durch zwei Strategien
basierend auf Laplace-Eigenfunktionen, welche natürliche Deformationsmuster
codieren, sicher, dass Korrespondenzinformation wiederhergestellt werden
kann. Dank der verwendeten SDF-Darstellung ist unser Ansatz in der Lage,
mit topologischen Veränderungen und schnellen Bewegungen umzugehen,
welche große Hindernisse für bestehende Ansätze darstellen.
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1
Introduction

Human beings have an innate interest in their environment. Seeking to find
where we came from and what our purpose is, we have been studying our
surrounding world through many disciplines going from physics and chemistry
to philosophy. Among these, computer vision is the one that enables us to
capture our habitats using various imaging modalities and subsequently reason
about them.

Our world has three spatial dimensions, which makes the task of 3D
reconstruction exceptionally important and exciting. It deals with the creation
of three-dimensional digital models of the surfaces of objects in the real world
from sensor data. They can be utilized for various inspection, planning and
navigation applications.

Typically the process starts with the acquisition of images from multiple
viewpoints. They are then registered, i.e. brought into a common reference
frame via rigid camera pose estimation or non-rigid alignment [27] for instance.
Finally, the data is fused into a geometrically consistent reconstruction [13].

If only a monocular sensor is available, a 3D model is obtained via methods
such as structure from motion [49, 84], shape from stereo [77, 189], shape from
silhouettes [124] or shape from shading [90, 244]. However, this modality en-
tails an inherent scale ambiguity [84], which is resolved by 3D scanners. The re-
cent advancements in 3D sensing technology have made real-time dense surface
reconstruction achievable. In particular, the rise of inexpensive consumer-grade
depth cameras, such as the Microsoft Kinect and PrimeSense Carmine [142],
have lead to the development of a variety of compelling techniques.

While the majority of these methods focus on reconstructing static envi-
ronments, dynamic scene capture has recently been attracting more and more
research efforts. Modelling rigid objects requires estimating the position and
orientation of the camera at every instant, i.e. its 6 degrees-of-freedom (DoF)
pose [37]. In contrast, non-rigid reconstruction is a problem of much higher
dimensionality, as each point might have followed a different trajectory from
the rest, yielding infinitely many possible solutions [74]. This thesis is aimed
at recovering the geometry of both rigid and deformable surfaces using the
input of a single RGB-D sensor.
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1.1 Motivation

Real-time camera tracking and dense surface capture are vital components of
augmented and virtual reality systems. While research in these fields has a
long history, it is still subject to a number of open questions.

The earliest techniques for structure from motion (SfM) [70] and multi-
view stereo (MVS) [189] were capable of producing a sparse 3D reconstruction
from images acquired with a monocular RGB sensor. Later on, research on
simultaneous localization and mapping (SLAM) lead to the development of
real-time systems such as Parallel Tracking and Mapping (PTAM) [117] and
MonoSLAM [48]. Subsequently, also methods that recover dense 3D models
by replacing feature tracking with whole image alignment emerged [62, 158,
207]. However, these approaches rely on suitable scene illumination and yield
reconstructions of unknown scale [84].

3D scanners do not suffer from these issues as they capture a point cloud
or depth map representation of the observed scene from a given vantage point.
Range-finders have been successfully employed for the accurate reconstruction
of small and large objects, for example in the Digital Michelangelo Project [127].
While such laser scanners make very precise measurements, the acquisition
process is too slow to permit real-time applications. The introduction of
high-frame rate time-of-flight (ToF) and structured light cameras that capture
both colour and depth (RGB-D) opened up the possibility for dense surface
modelling at 30 Hz.

The first approaches that utilized RGB-D sensors were still based on sparse
feature matching and only leveraged the available per-pixel depth information
for the subsequent iterative closest point (ICP) [15, 37] registration [86]. Shortly
after, the seminal KinectFusion work came about [157]. It was the first system
for creating dense volumetric reconstructions of static scenes with hand-held
Kinect sensors in real time using the full depth images. The approach stores
the recovered geometry in a continuously growing model, and tracks the 6 DoF
camera motion against it via point-to-plane ICP in a frame-to-model fashion.
It then inspired numerous extensions coping with larger volumes [161, 240] or
correcting errors via surface re-integration [46].

A key component of these systems is the volumetric fusion of Curless and
Levoy [45]. The geometry is stored in a 3D grid representing a truncated signed
distance field (SDF), where each voxel contains the distance to the nearest
surface. It is a type of implicit structure in which the inside of objects has
negative values, the outside is positive, and the actual surface is at the zero-level
set interface [163]. This not only provides a convenient way to extract a mesh
via marching cubes [136] or ray tracing [6, 166], but also allows for continuous
surface refinement through the averaging of multiple measurements.

Identifying the advantageous properties of the SDF representation, point-
to-implicit follow-ups of KinectFusion replaced the used ICP registration with
a direct alignment of an incoming point cloud with the zero-level set of the
cumulative SDF [30, 35]. This strategy circumvents correspondence estimation,
thus gaining both speed and accuracy. Inspired by this, we propose to study
the direct alignment of pairs of signed distance fields in this thesis.
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1.2 Objectives

(a) Static objects. (b) Static scenes. (c) Non-rigid surfaces.

Figure 1.1: Types of 3D reconstruction from a single RGB-D stream ad-
dressed in this thesis. We target (a) small- and (b) large-scale rigid objects, as
well as (c) non-rigidly moving surfaces, including topological changes.

Despite the major progress in mapping static environments, the reality
remains that our world is dynamic, as people move and interact with objects
and with each other. Reconstructing non-rigid surfaces using a single RGB-D
device is extremely challenging due to the inherent ambiguity of the problem.
DynamicFusion was the first method to modify a KinectFusion-like system
into one that can simultaneously track and reconstruct a moving surface [156].
To this end, it estimates a warp field that deforms the global model to best
explain the currently observed depth measurements. Several follow-ups further
improved it by integrating SIFT features [138] to anchor the model and handle
tangential motions [98] or by adding surface albedo constraints to increase
robustness and allow for less contrived movements [81]. Nevertheless, these
approaches cannot cope with changing topology due to the underlying mesh-
based correspondence estimation.

On the other hand, the SDF representation that we explore here entails no
special treatment when topological changes occur [163, 243]. Therefore, we set
out to apply it not only for the reconstruction of rigid objects and scenes, but
also for non-rigid ones, as exemplified in Figure 1.1.

1.2 Objectives

Given the applications outlined so far, our first task is to develop a method
for very accurate 6 DoF pose estimation that can be used for tracking the
camera in all following methods. As trajectory estimation inevitably suffers
from drift [122], the approach has to be easily extendible to pose refinement
too. Driven by the intuition that a pair of SDFs will both steer towards
optimal overlap without the need to determine explicit correspondence, we
aim to accomplish our goal through direct SDF alignment. Naturally, the
reconstructed models will also be represented via SDFs, and converted to mesh
whenever needed for display.

We will investigate the applicability of such registration to both object
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and scene scanning. The difference between them is that typically objects are
captured with an outside-in inward-facing trajectory, while larger spaces are
explored with a SLAM-like inside-out one. It is known that different algorithms
are usually better at one of these types [36], so we will examine the limitations
of our approach here.

In the second part of the dissertation we will shift focus to reconstructing
non-rigid environments. Our objective will be to find ways to combine the
images from a single depth video into a 3D model by factoring out the non-rigid
movement in every frame via SDF evolution. We will explore what additional
constraints over the SDF or warp field are required to accomplish this goal,
while being able to capture both rapid motion and topological changes. Finally,
as SDF evolution typically loses track of correspondences [169, 256], we aim to
recover them in our applications, as they are needed for tasks such as texture
transfer, 4D video compression and character animation [44].

To sum up, our objectives are the following:

• precise 6 DoF tracking and refinement;

• capture of various scale static environments, going from household
objects to large office spaces, with the same methodology in order to
investigate its applicability to different settings;

• non-rigid reconstruction that works under topological changes and fast
motion, and recovers correspondences.

1.3 Contributions

To fulfil the objectives listed in the previous section, we develop several novel
algorithms that have the following contributions:

• Correspondence-free alignment energy between pairs of signed dis-
tance fields. Depending on the application, it is tuned for rigid or
non-rigid reconstruction by only changing what the SDF generation de-
pends on: a 6 DoF camera pose for the former, and a dense warp field
for the latter.

• Highly accurate 6 DoF camera tracking and pose optimization for rigid
object and scene reconstruction without explicit correspondence estima-
tion, when the energy is dependent on the pose from which an SDF
is generated. Furthermore, we propose various additional SDF-based
constraints that make the energy more precise, like surface orientation
constraints, or help it work on scenes with poorer geometry, such as
photoconsistency constraints between voxel grids.

• Reconstruction of non-rigidly moving surfaces, which is able to cope
with changing topology and large motions without explicit correspon-
dence search, when the energy is dependent on the deformation field
applied to one of the SDFs. We integrate different regularizers into a
variational level set method variant and investigate two alternatives to
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ensure that the warp field is geometrically plausible. On the one hand,
we enforce it to be an approximately Killing vector field (AKVF) [200],
so that it generates locally nearly isometric motions, achieving an effect
similar to an as-rigid-as-possible regularizer over a mesh representa-
tion [201]. On the other hand, instead of adhering to the commonly used
gradient defined via an L2 inner product, we redefine it in the smooth
Sobolev space H1, resulting in gradient flow which leads to a favourable
coarse-to-fine evolution behaviour and is less susceptible to local minima.

• Voxel correspondence recovery in correspondence-free SDF evolution.
For moderate motions, we implicitly obtain correspondences via an addi-
tional data term which aligns the lowest-energy Laplacian eigenfunctions
of the two shapes of interest, which we term eigencolourings, driven by the
fact that they encode the deformation patterns that a shape can undergo.
For larger motions, we explicitly match voxels by matching the signatures
of the K lowest-frequency eigenfunctions in an approach that handles
partial shapes via carefully designed outlier rejection.

• Datasets for quantitative evaluation. To be able to truly judge the per-
formance of our methods, we strongly rely on numerical assessment of
their accuracy. Whenever possible, we use existing datasets, but when we
identify that they are not sufficient for thorough evaluation, we create our
own ones, shown in Figure 1.2, and make them available to the public.
In the case of rigid reconstruction, we have created a 3D-Printed RGB-D
Object Dataset [198], which contains five objects 3D-printed from original
CAD models and scanned with a precise industrial sensor, a Kinect v1,
and also rendered synthetically. While we consider our biggest contri-
bution to be the provision of ground-truth 3D models, we also release
the scanning trajectories estimated from a marker board. This permits
comprehensive evaluation of both tracking and reconstruction fidelity on
data with different quality and noise characteristics.
For non-rigid reconstruction, we address the lack of ground-truth canoni-
cal models for evaluation of single-stream modelling in the Deformable 3D
Reconstruction Dataset [193]. We use a couple of mechanical toys that have
a rest pose in which we reconstruct them using a markerboard for pose
estimation, before we record sequences in which they move non-rigidly.
Although this does not permit every-frame evaluation, it is a first step to
quantitative evaluation for non-rigid fusion from a single RGB-D camera.

1.4 Outline

This section provides a brief overview of each of the subsequent chapters.
Most of the methods and material of this thesis are published or are under
submission for a major conference or journal. Therefore, we additionally
provide the work related to each chapter, and encourage the interested reader
to consult the online material for video demonstrations of presented methods.
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Chapter 2 We first provide the theoretical foundation upon which this thesis
is built. In particular, we outline the RGB-D imaging process and projective
geometry. In addition, we review registration methods for both rigid and
non-rigid motion, including 6 DoF transformation parameterizations and
deformation field regularization.

Chapter 3 This chapter presents the building block of all methods developed
in this dissertation, the signed distance field (SDF). After an overview of its
geometric properties, we outline the generation process we use and devise the
energy for direct alignment of pairs of SDFs, dubbed SDF-2-SDF energy.

Chapter 4 Here we build upon the concepts developed in Chapter 3 and
employ them for the task of highly accurate 3D reconstruction of small-scale
objects. This encompasses 6 DoF frame-to-frame camera tracking and multi-
view pose refinement, both based on the SDF-2-SDF energy. Moreover we
propose the incorporation of additional geometric and photometric constraints
based on properties stored or derived from SDF grids, such as RGB values or
normal directions. The related publications are:

• Slavcheva, M., Kehl, W., Navab, N., Ilic, S.: SDF-2-SDF: Highly Accurate
3D Object Reconstruction. In: European Conference on Computer Vision
(ECCV) (2016)

• Slavcheva, M., Kehl, W., Navab, N., Ilic, S.: SDF-2-SDF Registration for
Real-time 3D Reconstruction from RGB-D Data. International Journal of
Computer Vision (IJCV) 126(6), 615–636 (2017)

Chapter 5 Next, we adapt the SDF-2-SDF strategy to larger volumes and thus
present an odometry system working on large industrial objects and indoor
spaces via parallel tracking and refinement over partial SDF grids, which we
call limited-extent volumes (LEVs). The related work is:

• Slavcheva, M., Ilic, S.: SDF-TAR: Parallel Tracking and Refinement in
RGB-D Data using Volumetric Registration. In: British Machine Vision
Conference (BMVC) (2016)

(a) Rigid objects. (b) Non-rigid objects.

Figure 1.2: Datasets for quantitative evaluation of rigid and non-rigid recon-
struction.
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Chapter 6 We now switch focus to the more challenging problem of non-
rigid 3D reconstruction from RGB-D input. In this chapter we propose to
accomplish this task via gradient flow between SDFs. In addition, we propose
two strategies to regularize the flow and compare their advantages, namely
AKVF regularization and flow in Sobolev space. The related publications are:

• Slavcheva, M., Baust, M., Cremers, D., Ilic, S.: KillingFusion: Non-rigid
3D Reconstruction without Correspondences. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

• Slavcheva, M., Baust, M., Ilic, S.: SobolevFusion: 3D Reconstruction of
Scenes Undergoing Free Non-rigid Motion. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018)

Chapter 7 While all methods described so far operate without explicit data
association, this may be needed for tasks such as character animation, texture
transfer and video compression. In this chapter we develop two techniques
to estimate correspondences between partial RGB-D views based on their
lowest-frequency Laplacian eigenfunctions. Part of the work is included in the
SobolevFusion approach, while the other related publications are:

• Slavcheva, M., Baust, M., Ilic, S.: Towards Implicit Correspondence in
Signed Distance Field Evolution. In: PeopleCap Workshop, IEEE Interna-
tional Conference on Computer Vision (ICCVW) (2017)

• Slavcheva, M., Baust, M., Ilic, S.: Variational Level Set Evolution for Non-
rigid 3D Reconstruction from a Single Depth Camera. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI) (2018) (under
review)

Chapter 8 Finally, we summarize our findings and lay out directions for
future research in a concluding chapter.

Appendix A We provide mathematical derivations of the major components
of our methods.

Appendix B Here we briefly introduce a correspondence-based non-rigid 3D
reconstruction technique in order to appreciate the differences between the two
ways to tackle this task. It is based on a probabilistic expectation-maximization
variant of non-rigid ICP and relies on patch-based rigidity constraints for
deformation regularization.
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2
Fundamentals

This chapter gives an overview of the required mathematical background
used in the methods developed thereafter. We first introduce the working
principle of range sensing devices, and in particular the types used in our
work. Next, we explain the relation between depth images and 3D point
clouds via projective geometry. Finally, we summarize standard 6 DoF pose
parameterizations, common rigid body registration methods, and widespread
deformation representations.

2.1 RGB-D Sensors

A depth image is a 2D image acquired by a range-sensing device, which stores
the distance to the surfaces observed from the camera center. Given appropriate
calibration, each pixel records the distance in physical units. An RGB-D sensor
captures a colour image in addition to depth. The images may be of different
dimensions and taken with respect to different reference coordinate systems,
or, conversely, they may be pre-aligned.

There are various types of 3D scanners, for which the most wide-spread
techniques are triangulation [83] and time-of-flight (ToF) [78].

Triangulation is the process of finding the 3D position of a point given
its positions in two images taken from a calibrated set of cameras [83]. It
can be either passive, as in stereo vision, or active, as done by structured light
techniques. Stereo matching is typically accomplished via variants of the
PatchMatch algorithm, which carries out random sampling and propagation
to surrounding areas in order to find approximate nearest neighbours on the
epipolar line according to a plane [11, 17]. Structured light approaches project a
known infrared pattern onto the scene and use the pattern distortion, caused by
the varying incident depth, to estimate the disparity. Phase shift scanners also
belong to the family of structured light range-finders [184]. They illuminate the
scene with coherent light and use the phase shift of the reflected light relative
to the source to deduce depth.

On the other hand, time-of-flight cameras, as the name suggests, measure
the time light travels from the emitter to an observed surface and back to the
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(a) Synthetic rendering. (b) Industrial phase-shift scanner. (c) Kinect v1.

Figure 2.1: Sample RGB-D pairs acquired with some of the sensors used
in this dissertation. As the quality degrades from (a) synthetic through (b)
industrial to (c) a mass-produced sensor, the depth becomes noisier and more
measurements are missing. Blue indicates invalid depth or no depth value.

sensor. A ToF camera captures the entire image using a single light pulse and
carries out computations on CMOS integrated circuits or CCD sensors [78].
While the operational principle of a light imaging, detection, and ranging (LIDAR)
device is similar, it employs a rotating laser beam to gather measurements.

The commercial RGB-D devices which became a commodity in recent years
also rely either on structured light, e.g. the Microsoft Kinect v1, or time-of-flight,
e.g. the Kinect v2, to estimate depth [143]. Their quality is reflected through
their depth resolution, which is the minimal measurable depth difference that
can be discerned [116]. It degrades with increasing distance between the
camera center and the measured surface. Another metric, the depth accuracy,
indicates the imprecision in measuring disparity. The differences between
the various types of cameras are related to their applicability outdoors, their
ability to capture non-Lambertian surfaces, and the quality of the depth data.
Some examples are shown in Figure 2.1. Each sensor has its own noise
characteristics, both systematic and random [116], which are still difficult to
model in general [159]. For example, the Kinect v1 has two operating ranges:
near (0.4 - 3.0 m) and far (0.8 - 4.0 m) [2]. It has been determined empirically
that the measurement error is already a few millimeters at the start of the range,
increasing quadratically up to about 4 cm at its maximum [8, 116]. Recently,
learning-based approaches have started emerging in order to both improve the
quality of the measured depth, and increase the acquisition speed [64, 65].

2.2 Projective Geometry

Now that we have understood what depth images represent, we consider the
image formation process that creates them. We extend this section with some
more geometry-related background, including homogeneous coordinates and
rigid body motion parameterizations.
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Figure 2.2: Pinhole camera model. Image source: Multiple View Geometry in
Computer Vision, Hartley and Zisserman [84].

Homogeneous Coordinates

In order to conveniently represent operations such as rotation, translation,
scaling and perspective projection via matrix-vector products, it is customary to
employ homogeneous coordinates [151]. They have one additional coordinate
compared to standard Cartesian coordinates used in Euclidean geometry, and
are invariant to scaling. To obtain the homogeneous coordinates of a pixel
p = (px, py)>, we append a 1, resulting in p̃ = (px, py, 1)>. Similarly, a 3D
point X = (X, Y, Z)> is represented by X̃ = (X, Y, Z, 1)> in homogeneous
coordinates. To convert back from homogeneous coordinates (a, b, k)> we
divide by the scale factor, obtaining (a/k, b/k)>.

Pinhole Camera Model

The projection of a real-world 3D scene onto an image plane is described by
the underlying camera model [84]. We use the pinhole camera model, which
considers the camera as an infinitesimally small hole without any lenses. Light
rays which intersect the image plane after passing through the hole obtain a
projection on the image, following the process illustrated in Figure 2.2. This
model is an ideal approximation, which does not account for distortions for
instance. Therefore, it tends to be most accurate around the optical image center
and becomes less precise towards its borders. Nevertheless, these limitations
can be compensated for with appropriate calibration techniques [222, 255],
so the pinhole camera model is extremely widespread in computer vision
applications. Among its properties are the fact that straight lines remain
straight, while parallel lines intersect at the so-called vanishing point.

The focal length of a pinhole camera is the distance between the camera
center and the image plane. As pixels are generally rectangular, there are two
scaling factors for the focal lengths in x- and y-direction respectively, fx and fy,
measured in pixels. The intersection of the principal axis and the image plane
is the principal point (cx, cy). All of these characteristic quantities are combined
into the intrinsic camera calibration matrix K:

K =

 fx 0 cx
0 fy cy
0 0 1

 . (2.1)
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The projection operator π : R3 → R2 projects a 3D point X = (X, Y, Z)> onto
the image plane in the pixel location p = (px, py)> as follows:

p̃ = K
(
I3×3 03×1

)
X̃ , (2.2)

where I3×3 is the 3× 3 identity matrix. Thus the pixel coordinates are:

px =
X
Z

fx + cx , (2.3)

py =
Y
Z

fy + cy . (2.4)

The inverse operation is called back-projection. Given pixel coordinates
(px, py) and a depth value Z, for instance known from a depth image, the 3D
coordinates are: (

x− cx

fx
Z,

y− cy

fy
Z, Z

)>
. (2.5)

The camera might be moved away from the origin by an extrinsic transfor-
mation consisting of a rotation R and a translation t, whose properties will
be explained in the next section. Then the 3D coordinates X and the pixel
coordinates x are related by the full projection matrix:

x̃ = K
(
R t

)
X̃ . (2.6)

The parameters of the intrinsic camera matrix are determined via calibration
techniques and the imaging of known calibration targets [255], while the
extrinsic camera matrix can be determined via image registration.

Rigid Body Transformations

Rigid body motion is a change in position and orientation, which affects
every point of a set in the same way and preserves the relative distance and
angle between any pair of points. Thus the set of points remains rigid, as for
example caused by the motion of a camera imaging a static scene. A rigid
body transformation in 3D space consists of a rotation and a translation, each
of which has three degrees of freedom, summing to a total of 6 DoF. All
such transformations in 3D Euclidean space form the special Euclidean group
SE(3) [101].

The matrix representation of 3D rigid body motion is the following 4× 4
matrix:

T =

(
R t
0 1

)
, (2.7)

where R ∈ SO(3) is a 3× 3 orthogonal matrix representing the rotation, and
t ∈ R3 is a vector corresponding to the translation. Due to the orthogonality of
the rotational component, R−1 = R>, the inverse of a rigid body transformation
can be computed as:

T−1 =

(
R> −R>t
0 1

)
. (2.8)
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2.2 Projective Geometry

As there are 16 elements to represent only 6 DoF, it is clear that the matrix
notation is an over-parameterization, which is not ideal for optimization. This
has lead to the development of various other representations, two of which we
describe next and then explain our choice for the remainder of this thesis.

Quaternions are generalizations of complex numbers to 3D. They are repre-
sented as 4-element vectors q = (qw, qx, qy, qz)> with

norm: ‖q‖ =
√

q2
w + q2

x + q2
y + q2

z , and

inverse: q−1 =
q̄
‖q‖ .

(2.9)

A unit quaternion is a quaternion with unit norm [51]. It is used to represent
rotations in 3D space via the following formula [59]:

R(q) =

 1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw

2qxqy + 2qzqw 1− 2q2
x − 2q2

z 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2

x − 2q2
y

 . (2.10)

More specifically, the unit quaternion is a modification of the axis-angle rep-
resentation, where qw corresponds to the angle of rotation θ: qw = cos (θ/2),
while the remaining elements represent the normalised rotation axis r̂:
(qx, qy, qz)> = r̂ sin (θ/2) [226].

To obtain the quaternion from a rotation matrix, first a solution for one
of its four elements has to be determined. To this end, the facts that the
quaternion has unit norm is and the rotational matrix is orthogonal are utilized.
Afterwards it is straightforward to determine the remaining three elements.
The following formulas first calculate qw, while we refer the interested reader
to the technical report of Farrell [66] for the other alternatives:

qw =
1
2

√
1 + R11 + R22 + R33, q =



qw

R32 − R23

4qw

R13 − R31

4qw

R21 − R12

4qw


. (2.11)

It is essential to normalize to unit quaternions when performing any kind of
operations on rotations, so that all other formulas hold true.

Quaternions are popular in robotics, because they allow for convenient
interpolation by a factor of µ between two rotations represented as the unit
quaternions q1 and q2. There are two ways, namely linear interpolation (lerp)
and spherical linear interpolation (slerp) [226]:

lerp(q1, q2, µ) = (1− µ)q1 + µ q2 , (2.12)

slerp(q1, q2, µ) =
sin ((1− µ)α)

sin α
q1 +

sin (µα)

sin α
q2, α = arccos (q1 · q2). (2.13)
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Chapter 2: Fundamentals

The disadvantage of lerp is that it results in faster movement between 20° and
160°, while slerp yields smoother motion, but is more expensive to compute.

In order to represent a full rigid body motion, one has to also account for
the translational component, leading to a total of 7 elements in this param-
eterization - still more than the degrees of freedom. As we target real-time
applications and will often solve systems on the GPU, where memory is limited,
we look for a representation which is minimal.

Exponential coordinates The Lie algebra se(3) of the SE(3) group provides a
way to represent rigid body motion using only 6 elements through exponential
coordinates [141]:

ξ = (u, ωωω) = (u1, u2, u3, ω1, ω2, ω3)
> , (2.14)

where ωωω ∈ R3 represents the rotational component of the transformation,
while u ∈ R3 corresponds to the translation.

An element of the se(3) algebra has the form

u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6 , (2.15)

where Gi are its generators [58]:

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

,

G4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

, G5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

, G6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

.

(2.16)

A twist ξ̂ ∈ se(3) is a 4× 4 matrix parameterized by ξ as follows:

ξ̂ =

(
ωωω× u

0 0

)
, (2.17)

where ωωω× is the skew-symmetric matrix corresponding to ωωω:

ωωω× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 . (2.18)

The matrix representation of the respective rigid body motion is obtained
via exponentiation:

T(ξ) = exp
(
ξ̂
)
= exp

(
ωωω× u

0 0

)
, (2.19)

where

exp(ωωω×) = I +ωωω× +
1
2!

ωωω2
× +

1
3!

ωωω3
× + · · · = I +

sin θ

θ
ωωω× +

1− cos θ

θ2 ωωω2
× . (2.20)
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2.2 Projective Geometry

By substituting exp(ωωω×) into Eq. (2.19), we obtain a closed-form expression
for the conversion from exponential coordinates ξ = (u, ωωω) into a transforma-
tion matrix [58]:

θ =
√

ωωω>ωωω,

A =
sin θ

θ
, B =

1− cos θ

θ2 , C =
1− A

θ2 ,

R = I + Aωωω× + Bωωω2
×,

V = I + Bωωω× + Cωωω2
×,

T(ξ) = exp
(
ξ̂
)
=

(
R Vu
0 1

)
=

(
R t
0 1

)
.

(2.21)

The inverse process is done by taking the logarithm [58]:

θ = arccos
(

tr(R)− 1
2

)
,

ω = ln (R) =
θ

2 sin θ

(
R−R>

)
,

u = V−1u =

(
I− 1

2
ωωω× +

1
θ2

(
1− A

2B

)
ωωω2
×

)
t .

(2.22)

Next, we derive the Jacobian of a point in 3D Euclidean space with respect
to the twist which generated it. Let X = (x1, x2, x3)

> be a 3D point to which a
rigid body transformation T is applied, moving it to point Y = (y1, y2, y3)

>. In
homogeneous coordinates:

Ỹ = T X̃ =

(
R t
0 1

)
X̃ . (2.23)

Using the generators of the Lie algebra, we rewrite the above equation as:


y1
y2
y3
1

 =

(
R t
0 1

)
x1
x2
x3
1

 =

= (u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6)


x1
x2
x3
1

 =

=


u1 + ω2 x3 − ω3 x2
u2 − ω1 x3 + ω3 x1
u3 + ω1 x2 − ω2 x1

0

 .

(2.24)

It is now straightforward to calculate the Jacobian by deriving with respect to
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each of the six exponential coordinates:

∂Y
∂ξ

=



∂y1

∂u1

∂y1

∂u2

∂y1

∂u3

∂y1

∂ω1

∂y1

∂ω2

∂y1

∂ω3

∂y2

∂u1

∂y2

∂u2

∂y2

∂u3

∂y2

∂ω1

∂y2

∂ω2

∂y2

∂ω3

∂y3

∂u1

∂y3

∂u2

∂y3

∂u3

∂y3

∂ω1

∂y3

∂ω2

∂y3

∂ω3


=

=

1 0 0 0 x3 −x2
0 1 0 −x3 0 x1
0 0 1 x2 −x1 0

 =
(
I3×3 −X×

)
.

(2.25)

A major benefit of the Lie algebra representation is the fact that by definition
it is a vector space with a special operation called the Lie bracket [79], and is
thus closed under scalar multiplication. This property is essential for numerical
approaches, such as gradient descent, as it permits the multiplication with
a scalar step size, guaranteeing that the result will be a rigid body motion.
This is contrary to transformation matrices, where it is not certain whether the
orthogonality of the rotation matrix will be conserved.

2.3 Registration

In this section we discuss the most widely used approaches for registration in
static environments, as well as commonly used models for non-rigid tracking.

2.3.1 Rigid Motion

Given point clouds obtained from different points of view upon the surface of a
static object, the registration task is to place them into a common reference frame
by estimating the relative rigid body transformation between them [37, 71].
The problem can be further classified into pairwise registration, when there
are only two views, and multi-view registration, when there are more. If an
initial guess about the transformation is available, we only need to carry out
registration refinement. In the absence of any prior knowledge, we talk about
unconstrained registration [96]. As the registration problem is fundamental for
many computer vision tasks, there is long-standing research on all of these
scenarios.

Iterative Closest Points (ICP) is arguably the most common approach for
rigid point cloud registration. It was introduced in the early 1990s almost
simultaneously by Besl and McKay [15] and Chen and Medioni [37], but is
subject to improvements even nowadays [259]. The earliest algorithms could
cope with moderate amounts of normally distributed noise [15], but could
not perform well in the presence of gross statistical outliers and were very
computationally demanding. Therefore, many extensions followed, which are
summarized in the comprehensive overview by Rusinkiewicz and Levoy [180].
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2.3 Registration

The steps of any ICP variant are the following: point selection in one or
both datasets; matching between the selected points; weighting the point cor-
respondences; rejection of unreliable pairs; and minimisation of a chosen error
metric [180].

An important remark is that the classical ICP approach as suggested by
Besl and McKay is guaranteed to monotonously converge to a local minimum
from any initial setting, although this might not be the global minimum [15].
However, extensions often do not even have a proof of convergence to a local
minimum [254]. Therefore, there is a trade-off between the robustness and
convergence properties of any ICP variant. We consider some of the most
prominent of them next.

The issues of the earliest two approaches, namely sensitivity to noise and
slowness, were addressed shortly after. While Besl and McKay used a point-to-
point error metric between the datasets, Chen and Medioni proposed a point-
to-plane measure, which is usually more accurate [188]. To increase robustness
with respect to occlusion and outliers, Zhang [254] analyzed the distance
distribution, deriving a statistical method for outlier rejection. Fitzgibbon [71]
tackled the runtime limitations and suggested a speedup by employing the
distance transform representation. Extensions to multiview settings were
already outlined by Chen and Medioni as a global view-to-model process, and
followed shortly after [145, 155, 170].

Johnson and Kang [104] also addressed the multiview registration problem
via an ICP modification, which considers not only 3D information, but also
colour, called colour ICP. Henry et al. [86] proposed a similar approach for RGB-
D settings, called RGBD-ICP, which additionally employs the point-to-plane
metric. Colour integration has also been demonstrated as advantageous in
multiple examples in Bernardini and Rushmeier’s overview of the 3D model
acquisition pipeline with range data registration [13]. To sum up, photometric
constraints have the potential to significantly decrease the registration error
when sufficient texture is available.

Similarly, Schütz et al. [186] developed another ICP extension, which uti-
lizes not only colour, but also surface orientation constraints by evaluating the
consistency between normal vectors. Their multi-feature ICP therefore copes
with ambiguous cases that lack prominent geometric features. The authors
demonstrate that if either colour or normal constraints are added to the geomet-
ric error term on their own, they aid registration, while all three components
together yield even more precise results.

In conclusion, the ICP algorithm is general, simple and extensible, but has
numerous failure cases. Even though there exists a closed-form solution if
the point-to-point metric is employed and quaternions are used to represent
rotation [91], iterative solvers are required in case of noisy or missing data. For
instance, Besl and McKay point out that brute-force comparisons exhausting
all possible point correspondences might take several universe lifetimes to find
the best match, while their ICP implementation reduces the computation time
by many orders of magnitude, but runtime is still an issue [15]. Therefore,
approaches which circumvent the computation of all explicit point matches are
of great research interest.
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Frame-to-model ICP variants KinectFusion [157] is a work that inspired sig-
nificant progress in 3D reconstruction from RGB-D sensors, because it was the
first to demonstrate dense tracking and mapping of an indoor scene in real
time. It is based on an ICP variant that aligns the points from an incoming
depth image with a predicted view generated from the whole current recon-
struction, i.e. it is a frame-to-model alignment strategy. More precisely, there
is a global TSDF model, which is incrementally updated after the pose of
each frame is determined using the volumetric surface integration framework
of Curless and Levoy [45]. The TSDF is ray-casted into a noise-free vertex
map, which is used for registration and for display to the user. While the
frame-to-model approach benefits from the fact that the global reconstruction
is continuously refined as more measurements are integrated, if very incorrect
poses are used for fusion, the tracking of all subsequent frames will suffer.
Moreover, as no additional refinement is employed, accumulated drift cannot
be compensated and the final model cannot be further improved. This limita-
tion has been subsequently addressed in BundleFusion [46] which re-integrates
erroneously fused surface components.

Point-to-implicit ICP variants circumvent the explicit matching step of ICP
via direct alignment between the incoming point cloud and the zero level
set of the global TSDF, i.e. they register a point cloud to an implicit surface
representation [177]. The approach of Kubacki et al. [120, 121] proposes a novel
ICP matching criterion and an error metric based on the properties of implicit
representations. Canelhas et al. [34, 35] and Bylow et al. [30] minimize the
sum of squared point-to-model distances. All of these methods use iterative
solvers based on a Taylor linearisation of the objective function to build the
6× 6 system for 6 DoF pose updates. Paragios et al. [165] suggest an alternative
to this strategy by determining the Jacobian of the registration energy with
respect to the camera pose, so that a simpler gradient descent scheme can be
carried out. While these approaches tend to be faster and more robust than
classical ICP, they are imprecise if an incoming point cloud consists of very
few measurements or if the initial pose guess is very far from the optimum, so
even denser approaches are of interest to increase accuracy.

Direct registration methods offer a different way to avoid ICP-like corre-
spondence search. Instead, they minimize an error over the entire image,
for example taking intensity difference as the metric [100]. They have been
investigated in the contexts of visual odometry [115, 224] and SLAM [158].
These approaches have an advantage over feature-based or sparse ICP variants
in the case of poorer geometry or under rapid motion, as the information from
the whole image can stabilize pose estimation.

Pose optimizaiton Regardless of the initial registration technique that has
been employed, many methods carry out a final pose optimization step that
uses the information from multiple views jointly in order to improve the
estimated trajectory. Nevertheless, if the initial error is too large, all techniques
would get stuck into local minima [191].

20



2.3 Registration

A common approach for global refinement is to select a set of keyframes that
build a graph structure and perform graph optimization [122]. The nodes are
the keyframe camera poses, while the edges are the transformations between
them. The objective is to determine the transformations which yield the
smallest global misalignment, expressed by the strongest multiview geometry
consensus. While many authors have successfully employed this strategy [52,
111, 114, 178, 191, 203], the number of connections in the graph increases
exponentially and thus sets a limit to its applicability in online systems. Due
to this issue, graph-free approaches are subject to investigation. For example,
the task can be accomplished via surface deformations instead of changing the
previously determined camera poses [239, 258].

2.3.2 Non-rigid Motion

Having considered some of the major rigid registration techniques, we now
focus on their modifications that allow handling non-rigid movements.

In addition to facing the same challenges as in static environments, such as
limited overlap, missing and noisy data, the non-rigid registration problem is
significantly underconstrained since infinitely many mappings may deform
one shape into another [74]. This is easy to imagine even in a lower dimension,
since if only two points are given, any trajectory could displace one of them to
the the other. Taking inspiration in physical phenomena, researchers impose
various constraints in order to reduce the solution space and find the most
plausible motion. Thus typically they optimize an energy function composed
of data terms that enforce alignment between the two shapes, and regularizers
that are based on assumptions about the possible solutions.

Non-rigid ICP aims to adapt the classical ICP algorithm to the dynamic
case [7, 26, 67]. The task is defined as finding a warp field that brings the
shapes in optimal alignment, while estimating the point correspondences
between them. This joint problem is typically tackled via an expectation-
maximization (EM) [50] procedure. In the E-step the correspondences are
updated based on the current warp estimate, and in the M-step the field is
updated given these correspondences, after which the optimization is repeated
until convergence [263]. Thanks to splitting the complexity of the problem
into these two simpler steps, many state-of-the-art non-rigid 3D reconstruc-
tion systems are based on non-rigid ICP, and some even achieve real-time
performance [31, 55, 80, 94, 98, 132, 156].

Volumetric deformation techniques are inspired by the free-form deforma-
tion (FFD) framework [187] which is driven by the following analogy: the
deformable object is imagined to be embedded in a clear, flexible volume of
plastic, populated with a set of control points. These control points are then
displaced and the position of any other point is determined with the aid of
a tensor product trivariate Bernstein polynomial, giving rise to a deformed
shape.
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Similarly, deformation based on regular voxel grids is often used in medical
imaging, both for volume registration and segmentation [125, 144, 260]. Often
the employed representation is a level set, which is evolved [9, 87]. In computer
vision, Paragios et al. [165] use distance functions for 2D non-rigid registration
driven by a vector field, while Fujiwara et al. [74] demonstrate their locally
rigid, globally non-rigid dual-grid FFD framework between two SDFs on both
2D and synthetic 3D examples. The advantage of these approaches is not only
that they do not entail correspondence estimation, but that they also inherently
cope with changes in topology.

Some techniques couple a regular volumetric grid representation with
correspondence-driven registration [98, 262]. Even though they are not able
to cope with topological changes, they benefit from the regularity which
makes them very suitable for GPU parallelization and therefore for real-time
processing.

Deformation regularization is crucial to reduce dimensionality and make
the non-rigid registration problem tractable [74]. Some techniques employ
multi-view constraints [4, 31, 230], while others resort to prior knowledge
such as rigidly acquired templates [95, 261] or parametric models of hands [214],
faces [219] or entire bodies [19, 21] with embedded skeletons [229, 75]. These
strategies are, however, restricted to a specific class of surfaces or require
recording in specialized studios. Therefore general regularization through
terms in the minimized non-rigid energy has been subject to extensive research.

Linear regularization methods formulate surface deformation as a variational
optimization problem and linearize the energy functional, obtaining a linear
equation system which can be efficiently solved [23]. A commonly used model
is that of thin-plate splines [22, 25, 26]. However, these techniques do not
cope well with rotational motion and are thus mainly used only for fine-scale
refinement after an approximate solution is already available [263].

Non-linear regularization methods are more descriptive of the underlying
deformation process and are therefore used in many state-of-the-art non-rigid
reconstruction systems. Most of them are driven by the intuition that surfaces
do not deform randomly, but have some physical constraints that make them
stay close to rigid. This is especially valid for the case of moving humans, since
their motion is only articulated, as opposed to truly deformable such as an
expanding balloon.

One of the most widely employed regularization frameworks is the as-
rigid-as-possible (ARAP) model [201]. It aims to preserve the first and second
fundamental forms of the surface, which are related to its extrinsic invariants
such as principal curvatures and metric distances. Therefore the resulting
deformation is locally as-rigid-as-possible, preventing physically unlikely con-
figurations caused by excessive stretching or sheering. It has been used both in
template-based [261] and template-free [98] dynamic reconstruction methods.

Approximately Killing vector fields (AKVFs) [12, 200, 215] enforce a similar
effect directly through constraints over the warp. They impose antisymmetry
over the Jacobians of the field and thus divergence-free behaviour, which
generates locally nearly isometric deformations. Thus they minimize an ARAP
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energy to first order [200].
Another frequently used paradigm is embedded deformation (ED) [209], which,

in addition to local rigidity, also imposes spatial smoothness of the deformation
field. It is represented as a graph structure in which the surface geometry is
embedded. Each graph node is associated with a transformation, which affects
the movements of those parts of the shape that are located in nearby space,
leading to an extremely powerful model. The edges between them indicate local
dependencies and enforce global consistency of the overall deformation. The
optimal state is found via a non-linear minimization that determines the values
of the node transformations. The majority of correspondence-based non-rigid
reconstruction systems rely on an ED graph [56, 55, 81, 132, 156, 247].

In the following we will take inspiration from all discussed techniques and
aim to mitigate their drawbacks via the new methods that we propose.
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3
Direct SDF Alignment

Energy

The main representation that we will explore for the development of our new
3D reconstruction methods in this thesis is the signed distance field. This chapter
is devoted to explaining its properties, the way we generate it in the discrete
setting of a digital implementation, and the intuitions behind the energy that
will be used to align pairs of SDFs.

Signed distance fields have a broad range of applications in computer vision,
graphics and medical imaging. They have been used for curve smoothing,
detection of dominant points on curves, finding convex hulls, determining
object skeletons, centerlines and medial axes, computing Dirichlet tessellations,
morphing, hypertexture, scene motion, collision detection, obstacle avoidance,
and many others [106, 152, 246]. They are also used for efficient multi-sensor
fusion, such as for combining the information from sonar and stereo [60].

3.1 SDF Definition

A signed distance function is an n-dimensional implicit function, which asso-
ciates a scalar value with each point of its n-dimensional domain [163]. As our
objective is 3D reconstruction, we will primarily deal with 3-dimensional space
and assume n = 3 from here onwards, unless stated otherwise. Formally, the
function

φ : Ω ⊆ R3 → R (3.1)

assigns to each point in 3D space X ∈ R3 its signed distance to the closest
object boundary, i.e. to the nearest surface location. Points located within the
object bounds have negative signed distance values, while points outside are
positive-valued, as indicated in Figure 3.1a. Therefore the zero-valued interface
between them implicitly defines the object surface. Its explicit counterpart,
such as a mesh representation, can be extracted via methods such as marching
cubes [136] and ray tracing [6, 166].
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(a) Positive-, negative-, and zero-valued SDF regions. (b) SDF gradient.

Figure 3.1: Signed distance fields in 2D indicating (a) the positive-valued
outside, negative-valued inside and zero-valued interface; as well as (b) the
SDF gradient, which is always orthogonal to the level sets. Image source: Level
Set Methods and Dynamic Implicit Surfaces, Osher and Fedkiw [163].

SDFs have many advantages over other boundary representations. They
not only represent the surface, but also its interior and its surrounding volume,
which can be utilized in registration tasks. Moreover, they provide an inexpen-
sive means to compute any offset surface by simply changing the extracted
level set value [73]. Note that for n = 3 the level sets are called isosurfaces,
while for n = 2 they are called isocontours.

However, implicit functions are very costly to compute [73]. This is why
they are usually represented as discrete volumes, subdivided into voxels. With
this limitation in mind, from here on we will purposefully avoid using the term
signed distance function when referring to the digital implementation, since it is
discrete and the actual underlying function is typically not known analytically.
What is being dealt with is a 3D voxel grid of scalar values, which, in our
opinion, is better described by the term field, even though both expressions are
abbreviated as SDF.

We choose to use cubic voxels, while other shapes can also be utilized.
As the voxel size approaches zero, it approximates a point better and better,
and therefore the discrete SDF becomes closer to the actual distance function.
However, the available memory is a limiting factor for the choice of voxel
dimensions, especially when stored on a GPU with restricted global memory.
Consequently, it also influences the quality of the approximation that the
discrete grid provides for the underlying SDF.

3.2 SDF Properties

Before delving into the algorithmic properties of SDF generation and alignment,
we take a moment to describe some of the most important geometric properties
of SDFs. They will help us in choosing appropriate energy terms in our
methods.
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SDF gradient One of the characteristic properties is the fact that the SDF
gradient is orthogonal to the isosurfaces everywhere in the volume. Moreover,
its magnitude is one, since distance is a Euclidean measure, and thus moving
twice as close to the surface from a given point in space results in a signed
distance value which is two times smaller [163, 106]. Therefore, at the surface
the SDF gradient equals the unit surface normals, as visualized in Figure 3.1b.
Mathematically:

‖∇x φ(X)‖ = ‖n(X)‖ = 1, ∀X ∈ ∂Ω. (3.2)

Above we use the symbol ∇x to refer to the spatial gradient of the SDF φ. In
addition, n denotes the unit surface normal.

While Eq. (3.2) is valid in continuous space, it is not defined at points which
are equally distant from more than one surface location, such as the center of a
sphere. In such cases the gradient is undefined [106].

On the contrary, in a discrete setting the gradient is calculated via a nu-
merical scheme, e.g. finite differences, so it is defined everywhere. However,
because of loss of accuracy due to voxel disretization, the norm might not have
unit magnitude any more [163]. Therefore many numerical implementations
re-normalize it in a process called SDF re-initialization. It is achieved either
through imposing a partial differential equation as a hard constraint at selected
steps in a given algorithm [130], or as a soft constraint through an energy term
that enforces the gradient to have unit magnitude [129]. This ensures that the
SDF is valid and all of its properties are preserved.

Viewpoint independence A signed distance field is viewpoint-independent
because the shortest distances to the surface do not depend on where they
are viewed from. However, in a discrete setting this holds true only for SDFs
representing the entire object after multiple views are fused together. When
the SDF is incomplete, as obtained from a single or very few frames, certain
voxels have not been observed yet and have to be excluded from computations.
This is why single-frame SDFs, as for example generated from a single depth
image, are referred to as projective SDFs.

3.3 SDF Generation

Next, we move to the discrete setting and describe the SDF generation process
used in our methods. At this stage we consider the volume as a regular
voxel grid, while it is possible to use memory-efficient representations such as
octrees [92, 252], hierarchical structures [36] or hashed volumes [108, 161].

An RGB-D pair consists of a colour image IRGB : N2 → R3 and an aligned
depth map ID : N2 → R+

0 . As discussed, a single depth image allows us to
generate a discrete projective truncated SDF. For this purpose, first its bounding
volume is determined by back-projecting all pixels to 3D, determining the
maximum extents in each spatial direction, and adding some slight padding
to allow for movement if the camera pose is changed. Then the volume is
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(a) Surface view. (b) Bounding volume. (c) Generated SDF.

Figure 3.2: Discrete signed distance field generation: (a) view of the surface
of interest; (b) bounding volume discretization; (c) voxel grid with SDF values
outlining distinct level sets.

discretized into cubic voxels of a predefined side length l, as outlined in
Figure 3.2.

A point X lies in the voxel with index vox : R3 →N3:

vox(X) = int
(
(X−C)/l − (1/2, 1/2, 1/2)>

)
, (3.3)

where int(·) is an operator that rounds to integers, and C is the lower-left
corner of the volume. All points within the same voxel are characterized by
the same properties as its center

V(X) = l(vox(X) + (1/2, 1/2, 1/2)>) + C , (3.4)

thus we denote the entire voxel by V ∈ R3.
Since a depth image only stores measurements of surface points, the projec-

tive signed distance is the difference of the sensor reading for the voxel center
projection π(V) and its depth VZ. This leads to the following SDF generation
procedure:

d(V) = ID(π(V))−VZ , (3.5)

φ(V) =

{
sgn(d(V)) , if |d(V)| ≥ δ

d(V)/δ , otherwise
(3.6)

ω(V) =

{
1 , if d(V) > −η

0 , otherwise
(3.7)

ζ(V) = IRGB(π(V)) . (3.8)

Here d(V) is the view-dependent projective distance, while φ(V) is the value
that we store. The viewpoint-dependence effect is diminished by scaling
the values by a factor δ and truncating them to the interval [−1, 1], so that
erroneous far-away measurements are disregarded. Similarly, as only values
near the object boundary are of interest for surface reconstruction methods,
a common speed-up practice is to execute calculations only in a narrow band
near it [3, 137, 242]. The chosen value of δ > 0 determines its extent, while the
binary check |φ(V)| < 1 verifies which voxels belong to it.
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(a) Depth map. (b) Beams. (c) Cross section along the x− y plane.

Figure 3.3: Single-frame projective truncated SDF: (a) depth map; (b) render-
ing of the respective marching cubes result, showing interface beams between
regions of 1s and -1s; (c) cross section identifying different parts of the volume.

The binary weight ω(V) indicates whether the signed distance value for
a voxel is reliable. All visible locations and a region of size η > 0 behind
the surface, reflecting the expected object thickness, are assigned weight one.
Voxels with zero weight are discarded from computations.

The values of δ and η are somewhat object- and method-dependent. We
typically use δ of about 3-10 voxel sizes and η of about 2-5 voxel sizes.

Finally, we store the RGB triple corresponding to each voxel in another grid,
ζ, of the same resolution as φ. Note that colour is meaningful only near the
surface, but it can be propagated in normal direction in order to populate the
entire grid with values.

The outlined single-frame SDF generation approach creates interface beams
where the camera rays pass the surface silhouette, because values of 1 and -1
are adjacent there, as shown in Figure 3.3b. As beams are viewpoint-dependent,
we favour SDF re-generation over interpolation when the camera pose is re-
estimated. They cancel out when multiple SDFs are fused, but have faulty
gradients that need to be omitted from calculations. This is easily done, since
the central difference gradient on a beam has at least one component with
absolute value 1, and since voxels behind the surface have not been observed
and thus have zero weight.

SDF Fusion of several SDFs from different viewpoints is done via the rolling
weighted average approach of Curless and Levoy [45]:

Φt+1(V) =
Wt(V)Φt(V) + ωt+1(V)φt+1(V)

Wt(V) + ωt+1(V)
,

Wt+1(V) = Wt(V) + ωt+1(V) .
(3.9)

This is a formula for volumetric updates, where Φt is the cumulative SDF
up to frame number t, while Wt is the respective cumulative weight. It may
happen that certain voxels have not been observed from any viewpoint, so their
cumulative weight is zero. This is likely to occur only for voxels which are
inside the object. Therefore, for implementation purposes their signed distance
is directly set to -1 and division by zero is avoided.
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Colour fusion can be done similarly by considering each channel of the RGB
grid separately and applying Eq. 3.9 over it. However, as noted by Bylow et
al. [30, 29], it is more accurate to weight colour according to the deviation θ
of the line of sight from the surface normal, in addition to the weight of the
voxel itself. This strategy assigns larger certainty to the colours of points whose
normal is pointing towards the camera. The equations below summarise this
procedure, where wc is the colour weight of a voxel, which is the same for all
three channels. The superscript j refers to each of the R, G and B channels, Ct is
the cumulative colour grid at frame t, and WC

t is the corresponding cumulative
colour weight:

wc
t+1(V) = ωt+1(V) cos(θt+1(V)) ,

Cj
t+1(V) =

WC
t (V)Cj

t(V) + wc
t+1(V)ζ

j
t+1(V)

WC
t (V) + wc

t+1(V)
.

(3.10)

3.4 Energy Formulation

Finally, we introduce the alignment energy between two signed distance fields.
It starts from the observation that ICP seeks to match the surface points of two
shapes, while point-to-implicit approaches employ surface points on one side
and an entire volume on the other side, i.e. they make use of the entire shape
to steer towards better overlap. The benefit of using the whole shape rather
than only the surface has been pointed out in other reconstruction and tracking
frameworks too [94]. Our reasoning is to go one step further and instead use
both shapes in their entirety, including their inside and outside regions, to
improve alignment.

This intuition is illustrated via a 2D analogy of rigid reconstruction methods
that use an SDF representation for a given purpose in Figure 3.4. Solid lines
correspond to the zero level set of an SDF, which has positive values on one
side, and negative values on the other. Note that for our approach each
voxel contributes to one summand in the energy, but we visualize it more
densely to highlight the fact that, as opposed to point clouds, SDFs have values
everywhere in the volume.

In any pair-wise alignment there is a reference shape and a data shape that
has to be fit to the target. In our methods the reference φre f erence will be either
the cumulative SDF or the projective truncated SDF of the last tracked frame,
while the data φother will typically be the current projective truncated SDF. The
SDF-2-SDF impicit-to-implicit alignment energy minimizes the sum of squared
voxel-wise differences of a pair of SDFs that occupy the same volume:

Eimplicit(Υ) =
1
2 ∑

voxels

(
φre f erence − φother(Υ)

)2 , (3.11)

where Υ is the objective we are looking for. In the case of rigid reconstruction
it will be the 6 DoF pose ξ, while in the case of non-rigid reconstruction it will
be a dense deformation field Ψ, as discussed in the respective chapters later.
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Figure 3.4: 2D analogy for comparison between the operational principles
of KinectFusion [157], point-to-implicit [30, 35] and our proposed SDF-2-SDF.

The energy might also take the SDF weight fields into account in order to
exclude unobserved voxels:

Eweighted implicit(Υ) =
1
2 ∑

voxels

(
φre f erenceωre f erence − φother(Υ)ωother(Υ)

)2 . (3.12)

This energy formulation has an advantage over ICP in that it is a direct
difference without need for correspondence estimation - upon optimal align-
ment voxels with the same indices in either volume will correspond to each
other. The benefit over point-to-implicit strategies is that our formulation is
symmetric and will yield nearly identical results if the target and data volumes
are swapped. On the contrary, the point-to-implicit result would depend on
which one is represented as a cloud. In particular, if an incoming frame is
very noisy and consequently its 3D cloud is very corrupted, registration can
be significantly impaired. Thanks to the smoothing properties of implicit
functions, our SDFs are likely to be less influenced by noise.

Last but not least, we make use of the truncated ±1s, as opposed to other
methods that simply designate them as empty space, often in order to reduce
storage requirements [109, 161]. Even though this strategy constrains us to
a regular voxel grid structure for the time being, it increases the number of
sample points and ensures that convergence from a larger initial deviation is
possible.

Thus we attribute our energy function design choice to the geometric
benefits of SDFs, including dense sampling of space, a meaningful gradient,
and lower sensitivity to noise.
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Part III

Rigid 3D Reconstruction
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4
SDF-based Object

Reconstruction

The first application that we tackle with our implicit-to-implicit energy is
precise 3D reconstruction of small- and medium-scale objects, such as house-
hold items. Scanning is usually executed with an inward-facing turntable
or hand-held trajectory around the object of interest, which is clearly visible
without any obstructions, apart from possible self-occlusions. This is typical
for domains such as non-destructive testing of industrial machines and compo-
nents, or in the acquisition of datasets for robotic grasping and manipulation.
Hence our method for 3D object reconstruction from a single RGB-D sensor
has to be:

• fast;

• fully automatic;

• highly accurate;

• able to handle generic geometry and texture;

• robust to generic motion.

In the following we present our strategy to fulfil these requirements. Our
main contribution is a novel implicit-to-implicit registration scheme between signed
distance fields, called SDF-2-SDF, which we apply both for real-time frame-to-
frame camera tracking and for posterior frame-to-model global optimization.
SDF-2-SDF alignment is a direct voxel-wise difference minimization that circum-
vents the computationally expensive correspondence search employed by other
pose estimation methods. Moreover, it allows for straightforward incorporation
of additional geometric and photometric constraints over voxel grids, yielding
highly accurate 3D models. An extensive quantitative evaluation demonstrates
improved tracking and higher fidelity reconstructions than a variety of state-
of-the-art systems. Last but not least, we create a publicly available 3D-printed
object reconstruction dataset, which is the first to include ground-truth CAD
models and RGB-D sequences from sensors of various quality.
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4.1 Introduction

Recovering the geometry of a static object from a moving camera entails esti-
mating the device motion and fusing the acquired depth images into consistent
3D models. Depending on the objective, methods differ in their speed, accuracy
and generality. Most existing solutions are derived from simultaneous localiza-
tion and mapping (SLAM) techniques, thus their applications lie in the field of
robotic navigation where precise reconstructions are of secondary importance.
In contrast, the growing markets of 3D printing, reverse engineering, industrial
design, and object inspection require rapid prototyping of high quality models,
which is the aim of our system, as shown in Figure 4.1.

KinectFusion [157] is one of the most influential works capable of real-time
tracking and reconstruction. It conveniently stores the recovered geometry in an
incrementally built signed distance field, which is continuously refined as more
measurements are fused in. However, the employed frame-to-model ICP [15,
37] approach to camera tracking limits it to objects with distinct geometry and
to uniform scanning trajectories. Alternative volumetric techniques employ a
point-to-implicit scheme [30, 35]. It avoids explicit correspondence estimation
by directly aligning the point clouds of incoming depth frames with the zero
level set of the growing SDF. While this strategy has shown higher robustness
than ICP, it becomes unreliable when range data is sparse or once the global
model starts accumulating errors.

Dense visual odometry (DVO) [115] combines image intensities with depth
information for registration via whole image warping between RGB-D frames.
Although it is susceptible to drift on poorly textured scenes, DVO achieves
impressive accuracy in real time and has been incorporated as the tracking
component of many subsequent systems, including the object reconstruction
pipeline of Kehl et al. [111]. The final step of the latter is a g2o pose graph
optimization [122] that ensures optimal alignment between all views. While
it improves the geometry of the final model, it might become prohibitively
expensive for a large number of keyframes.

Addressing these limitations, we develop a system for highly accurate 3D
object reconstruction, named SDF-2-SDF. It comprises online frame-to-frame
camera tracking, followed by swift multi-view pose optimization during the
generation of the output reconstruction. Both of these stages employ our SDF-
2-SDF registration method, which directly minimizes the difference between
pairs of SDFs. Moreover, its formulation allows for integration of surface colour
and normal information for even better alignment. In addition to handling
larger motion, our frame-to-frame tracking strategy avoids drift caused by
errors in the global model. Finally, our global refinement is faster than the
pose graph optimization used in other pipelines [52, 111, 122]. Tackling the
lack of a dataset combining ground-truth CAD models and RGB-D sequences
with known camera trajectories, we acquire such test data and make it publicly
available1. We summarize these contributions as follows:

• precise implicit-to-implicit registration between SDFs for online frame-to-
frame camera tracking;

1http://campar.in.tum.de/personal/slavcheva/3d-printed-dataset/index.html
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Synthetic
data

Industrial
sensor

Kinect v1

Figure 4.1: SDF-2-SDF reconstructions of the 3D-printed dataset objects cap-
tured with different RGB-D sensors. Colours vary due to difference between
synthetic rendering and 3D-printed models, as well as camera radiometrics.

• introduction of a global pose optimization step, which is elegantly inter-
leaved with the model reconstruction;

• improved convergence via incorporation of photometric and surface
orientation constraints;

• the first object reconstruction dataset including ground-truth 3D models,
trajectories and RGB-D data from sensors of varying quality.

Our parallel tracking implementation runs in real-time on a multi-core CPU.
While pose refinement is only essential when depth data is corrupted by noise,
it is interleaved with the final model generation, adding just a few seconds of
processing. Furthermore, these two stages can be used as completely stand-
alone tools, and thus can be adopted into any other pipeline.

4.2 Related Work

Fully automatic object reconstruction requires estimation of the precise 6 DoF
camera poses from which the RGB-D views were acquired. Arguably, the most
widespread strategy for aligning depth data is ICP [15, 37, 180]. While simple
and generic, it performs poorly in the presence of gross statistical outliers and
large motion. Moreover, it is rather costly due to the required re-assignment of
point correspondences in every iteration.

Volumetric registration KinectFusion [102, 157] employs Curless and Levoy’s
volumetric depth map fusion [45] to represent scene geometry as a continuously
incremented SDF, which aids smoothing noise away. Pose estimation is done
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by rendering the global SDF into a predicted depth image and applying multi-
scale point-to-plane ICP for frame-to-model registration. Thus it is susceptible
to drift under erratic motion or lack of discriminative geometry. Through a
comparison to PCL’s implementations of GICP [188] and KinFu [167], we show
that SDF-2-SDF can handle cases where both frame-to-frame and frame-to-
model ICP variants fail.

Multiple authors [30, 35, 40, 121, 146, 165, 177] report superior registration
using implicit surface representations. Notably, Bylow et al. [30] and Canelhas et
al. [35] directly project the points of a tracked frame onto the cumulative SDF
in order to avoid the costly correspondence association step of ICP. Similar to
Stoyanov et al. [206] who leverage point-to-NDT (normal distribution transform)
to NDT-to-NDT, we extend the point-to-implicit strategy to an implicit-to-
implicit one. Our SDF-2-SDF scheme minimizes the direct voxel-wise difference
between a pair of SDFs. Thus it is also correspondence-free, and has further
advantages, such as being denser and symmetric, since both SDFs that are
being registered steer towards optimal alignment. As a result, it has a wider
convergence basin and achieves higher accuracy, as shown by comparisons
versus the ROS point-to-implicit implementation of Canelhas et al. [33].

Visual odometry DVO is a fast tracking system that works exceptionally well
on textured scenes [115, 204]. It employs a photo-consistency constraint to
determine the optimal alignment between two RGB-D frames.

Despite requiring a polychromatic support for the object of interest, visual
odometry is used in the reconstruction pipelines of Dimashova et al. [52] and
Kehl et al. [111]. These two works then execute a g2o pose graph optimiza-
tion [122], which undoubtedly yields results of higher geometric fidelity, but
is rather computationally demanding. When used in dense scene reconstruc-
tion applications, graph-based optimization may last hours to days [257]. We
propose improving the estimated trajectory via global implicit-to-implicit op-
timization. Starting with the SDF model obtained at the end of the online
tracking step, the poses of selected keyframes are refined in a frame-to-model
fashion. The global SDF is thus iteratively updated and can be readily used as
output reconstruction, making our refinement significantly faster.

To once again assess our approach versus both frame-to-frame and frame-to-
model techniques, we compare to the authors’ implementations of DVO [113]
and the method of Kehl et al. [111].

Additional constraints Several ICP variants imposing photometric constraints
in order to avoid registration failure when geometry is not sufficiently dis-
criminative (RGBD-ICP [86], colour-ICP [104], multi-feature ICP [186]). The
previously mentioned object reconstruction pipeline of Kehl et al. [111] utilizes
colour in both its tracking stage, as part of DVO, and in its final fusion stage
after pose optimization has been completed. The refined keyframes are fused
using a modification of Zach et al. [249]’s TV-L1 minimization scheme, which
takes into account the colour associated with each SDF voxel. Similarly, By-
low et al. [29] demonstrate that a voxel grid colour term improves registration
accuracy, especially in the absence of rich geometric features. As the SDF-2-SDF
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formulation allows for straightforward incorporation of additional voxel-wise
constraints, we also associate RGB values with voxels.

Another possibility to increase tracking precision is through further geo-
metric terms. Masuda [146] employs the difference between normal vectors
to this end. We instead utilize the dot product as a more accurate measure of
surface orientation similarity. Although our approach works well without the
inclusion of these colour and normal constraints, they are straightforward to
integrate and further boost performance.

RGB-D datasets A thorough evaluation of a 3D object reconstruction system
requires the availability of both ground-truth trajectories and ground-truth
object models. The TUM RGB-D benchmark [208] includes an ample set of
sequences with associated poses, while the ICL-NUIM dataset [82] provides the
synthetic model of one scene. However, both are designed for SLAM scenarios
and therefore feature large spaces rather than smaller-scale objects. Existing
RGB-D collections of household items, such as that of Washington Univer-
sity [123], Berkeley’s BigBIRD [192] and the texture-less T-LESS dataset [88],
either lack noiseless meshes or continuous 6 DoF pose information. Therefore
we 3D-printed a selection of objects with different geometries, sizes and tex-
tures and scanned them with several RGB-D devices of various quality. Thus
we contribute, what is to the best of our knowledge, the first object dataset
with original CAD models and RGB-D data from various sensors, acquired
from externally measured trajectories.

4.3 SDF-2-SDF

Our object reconstruction pipeline is depicted in Figure 4.2. The object of inter-
est is assumed to be placed on a flat surface, and masked via fast geometric
point labelling [111, 183]. Optionally, depth images are de-noised via bilateral
filtering [220] or anisotropic diffusion [228]. As opposed to other volumetric
methods that require manual volume initialization [30, 35, 157], we automati-
cally estimate the bounding box by back-projection of all masked depth map
pixels. Next, the volume is slightly padded and used for the generation of both
SDFs that are to be aligned.

These steps are applied to each depth image input to our tracking method,
which performs frame-to-frame SDF-2-SDF registration between projective
SDFs. We prefer this strategy in order to avoid the error accumulation that
frame-to-model approaches are susceptible to, and to allow for a moving vol-
ume of interest. At the end of this tracking stage we obtain a weighted average
SDF that can be converted to a coloured mesh via marching cubes. However,
if a noisy depth sensor has been used, posterior refinement is beneficial. In
this case a predefined number of keyframes is globally SDF-2-SDF-registered
to their weighted average SDF, circumventing the need for a pose graph. This
frame-to-model refinement is applied in a coarse-to-fine scheme with respect
to voxel size. Note that the described tracking and optimization stages are
entirely stand-alone, and can therefore be combined with other techniques.
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Figure 4.2: SDF-2-SDF object reconstruction pipeline: the bounding box of
the object is automatically determined for every frame by masking and back-
projection, after which it is discretized into voxels. Pairs of frames are then
SDF-2-SDF registered. Once this online tracking stage is complete, keyframes
are jointly SDF-2-SDF optimized in less than a minute against their weighted
average. The system runs entirely on the CPU and outputs a coloured model.

As we are dealing with rigid registration, the unknown Υ from Eq. (3.12) is
a 6 DoF pose represented via exponential coordinates ξ ∈ R6. The same trans-
formation affects all voxels, thus their contributions can be straightforwardly
added up into the geometric energy that rigidly aligns two SDFs:

Egeom(ξ) =
1
2 ∑

voxels

(
φre f erenceωre f erence − φcurrent(ξ)ωcurrent(ξ)

)2

, (4.1)

where φre f erence is the projective SDF of the last frame generated from the
identity pose, while φcurrent is the projective SDF of the current depth frame
generated from its current pose estimate ξ, which is iteratively optimized. The
respective weight fields ωre f erence and ωcurrent are used to discard unreliable
voxels from the computation. To ease notation, when summing over all voxels
we omit the coordinates, i.e. we write φre f erence instead of φre f erence(V) in sums.

The intuition behind Egeom is that when best alignment between frames
is achieved, their per-voxel difference is minimal: truncated voxels have the
same values, while the near-surface non-truncated voxels from both grids steer
convergence towards surface overlap. Registration is facilitated by the fact that
both SDFs encode the distance to the common surface.

The grid structure used in the SDF-2-SDF formulation allows for straightfor-
ward incorporation of additional constraints that can be expressed over voxel
grids. We propose two terms on the surface voxels, which we approximate as
the non-truncated voxels in the narrow band of an SDF grid. In particular, we
require overlapping voxels to have the same surface orientation, Enorm, and the
same colour in each channel, ERGB:

Enorm(ξ) = ∑
sur f ace
voxels

(
1− nre f erence · ncurrent(ξ)

)
, (4.2)

ERGB(ξ) =
1
6 ∑

sur f ace
voxels

∑
channel

j∈{R,G,B}

(
ζ

j
re f erence − ζ

j
current(ξ)

)2

. (4.3)

Note that as we are considering only near-surface voxels, we do not need to
additionally use the weight fields to disregard unreliable voxels.
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Here it is important to note that since the SDF gradient equals the normals
at surface locations, we do not have to store an additional grid. Furthermore,
this means that Egeom + Enorm is a higher-order approximation of the underlying
continuous shape than Egeom alone. Thus our expectation is that, given data
with little to moderate noise, registration will be slightly more accurate and
converge faster. On the other hand, we expect ERGB to be helpful in situations
with low geometric detail, but richer texture.

The full SDF-2-SDF rigid alignment energy combines all terms, with relative
influence determined by the factors wgeom > 0, wnorm > 0, wRGB > 0:

ESDF(ξ) = wgeomEgeom(ξ) + wnormEnorm(ξ) + wRGBERGB(ξ) . (4.4)

4.3.1 Camera Tracking

Frame-to-model tracking can be detrimental in object reconstruction, as errors
in pose estimation may introduce incorrect geometry when fused into the global
model, and consequently adversely affect the subsequent tracking. Therefore,
we favour frame-to-frame camera tracking on single-frame projective SDFs.

We determine the relative transformation between two RGB-D frames by
setting the pose of the first one to identity and incrementally updating the
other one. The tracking minimization scheme for the geometry term is based
on a first-order Taylor approximation around the current pose estimate ξk in
iteration k (Eq. (4.5), (4.6), (4.7)). Similar to other rigid registration approaches,
it leads to an inexpensive 6× 6 linear system (Eq. (4.8)). Weighting terms have
been omitted from formulas for clarity. In order to avoid numerical instability,
we take a step of size β towards the optimal solution ξ∗ (Eq. 4.9). In each
iteration φcurrent is generated from the current pose estimate ξk, because this
strategy yields more accurate values than repeated interpolation. We terminate
when the translational update falls below a threshold [208].

A = ∑
voxels

∇>ξ φcurrent(ξ
k) ∇ξφcurrent(ξ

k) , (4.5)

b = ∑
voxels

(
φre f erence − φcurrent(ξ

k) +∇ξ φcurrent(ξ
k) ξk

)
∇>ξ φcurrent(ξ

k) , (4.6)

dEgeom

dξ
= Aξ − b , (4.7)

ξ∗ = A−1b , (4.8)

ξk+1 = ξk + β
(

ξ∗ − ξk
)

. (4.9)

In the equations above∇ξ φ denotes the Jacobian of the point V ∈ R3, denoting
the voxel center, with respect to the pose ξ. It is obtained by the chain rule:

∇ξ φ(V(ξ)) = ∇x φ(V)
∂V
∂ξ

= ∇x φ(V)
(
I3×3 | −[V(ξ−1)]×

)
, (4.10)

where I3×3 is the 3× 3 identity matrix, ξ−1 denotes the inverse of the rigid
pose represented by exponential coordinates ξ, and the operator [·]× returns
the skew-symmetric matrix of its argument. Thus ∇ξ φ ∈ R1×6.
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Each colour grid channel is a scalar field, so it is treated identically to Egeom.
As the normals of the SDF equal its spatial gradient, the surface orienta-

tion term imposes curvature constraints, whose derivation is mathematically
equivalent to a second-order Taylor approximation of Egeom. Thus the objective
remains the same, but convergence is speeded up. The derivative of Enorm with
respect to each component i of the exponential coordinates is:

dEnorm

dξi
= ∑

sur f ace
voxels

− nre f erence ·
(
∇x ncurrent(ξ)

∂V
∂ξ

δi

)
, (4.11)

where δi is a 6-element one-hot vector of zeros with i-th component 1, and
∇xn ∈ R3×3 is the spatial gradient of a normal vector, as explained in Sec-
tion 3.2, which evaluates how the orientation changes with location, i.e. it is a
measure of curvature.

The complete derivations of all equations presented here are given in
Appendix A.

4.3.2 Global Pose Refinement

After tracking, a pre-selected number of regularly spaced keyframes are taken
for generation of the final reconstruction. The weighted average scheme of Cur-
less and Levoy [45] provides a convenient way to incorporate the information
from all of their viewpoints into a global model φmodel , which will now act as
the reference SDF in Eq. (4.1).

However, when using noisy data the estimated trajectory might have accu-
mulated drift, so the keyframes’ poses need to be refined to ensure optimal
geometry. For this task we propose a frame-to-model scheme based on the
SDF-2-SDF energy. Each pose ξt is better aligned with the global weighted
average φmodel . In effect, the optimization is interleaved with the computation
of the final reconstruction, and takes less than 30 seconds for 24 keyframes. As
we already have good initial pose estimates from the tracking stage, a cheaper
gradient descent minimization with step α is sufficient:

dEgeom

dξ
= ∑

voxels

(
φcurrent (ξ)− φmodel

)
∇ξ φcurrent(ξ) , (4.12)

ξk+1
t = ξk

t − α
dEgeom(ξk

t )

dξ
. (4.13)

The pose of the first camera determines the world coordinate frame and is fixed
to identity throughout the final optimization. In each iteration, the pose updates
of all other keyframes are determined using the global model, after which
they are simultaneously applied. To keep the objective fixed, the weighted
average is recomputed every couple of iterations, e.g. on every 10th iteration,
rather than on every step. Furthermore, the gradient descent procedure is
applied in a coarse-to-fine scheme over the voxel size to ensure that larger pose
deviations can also be recovered. As we seek to keep this final post-processing
stage as quick as possible, we do not employ the photoconsistency and surface
orientation terms. The derivation is also given in Appendix A.
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Implementation

The SDF-2-SDF energy is highly parallelizable, because the contributions of
each voxel are independent. However, as we estimate the bounding box on the
fly, their amount is not known beforehand and varies for each frame. Hence
the number of reduction operations which ultimately lead to the 6× 6 system
of Eq. (4.8) is unknown. In contrast, KinectFusion [157] and point-to-implicit
approaches [30, 35] register a VGA-sized depth image either to a point cloud
or an SDF, respectively. Thus in these methods there is an upper bound on the
number of reduction operations and they can be implemented efficiently on the
GPU. In our case this is not guaranteed, so instead, we opt for a parallelized
CPU solution on an 8-core Intel i7-4900MQ CPU with 32 GB RAM at 2.80 GHz.

As tracking at a voxel size smaller than the sensor resolution is futile, we
used 2 mm, which is the expected error of our noisiest sensor, the Kinect. Our
approach involves SDF generation at every iteration after the pose estimate has
been updated, so we use SSE instructions to ensure it is done as efficiently as
possible. This leaves the computation of each voxel’s contribution to the 6× 6
system as the bottleneck. To speed it up, we only process voxels with positive
weight, and different values in the two grids, achieving real-time performance
between 17 and 22 FPS on objects of the scale of household items and toys.

On the other hand, our pose optimization scheme has a simpler mathe-
matical formulation that requires only the calculation of a 6-element vector
update in each gradient descent step. We employ a pyramid scheme over voxel
size with levels 4 mm, 2 mm, optionally 1 mm. It ensures that initially larger
deviations are handled, after which smaller-scale ones are compensated and
then used for the final high-resolution model. Typically the whole refinement
stage takes less than half a minute, even in the case of severe drift.

4.4 Evaluation

In this section we present exhaustive evaluation on synthetic and real RGB-D
input. In all scenarios we assume a single rigid object of interest.

Test Set-up and Datasets

First we consider related methods to compare against, then we discuss the
appropriate datasets and metrics over which to evaluate.

Approaches As our tracking and pose optimization routines can be used
stand-alone, we evaluate them separately. We denote our tracking-only compo-
nent as SDF-2-SDF-reg, while SDF-2-SDF refers to the method with refinement.
Unless otherwise specified, we only use Egeom for higher speed and lower
memory consumption than with the optional constraints Enorm and ERGB.

We compare our tracking accuracy to:

• GICP: PCL’s [167] frame-to-frame generalized ICP [188];

• KinFu: PCL’s KinectFusion [1, 157] as a frame-to-model ICP variant;
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• FM-pt-SDF: the frame-to-model point-to-implicit techniques of Bylow et
al. [30] and Canelhas et al. [35], available as a ROS package [33];

• FF-pt-SDF: our frame-to-frame modification of FM-pt-SDF [33];

• DVO-object: the publicly available implementation [113] of dense visual
odometry without refinement [115], applied only over the object, not
using its surroundings for registration;

• DVO-full: DVO over the entire scene, still without refinement.

Since KinectFusion does not include an explicit optimization step, although
frame-to-model registration can be considered as a way of integrating global
information, the fidelity of our non-optimized reconstruction was assessed
against that of KinFu. The refined model was compared to that of Kehl et al.’s
pipeline [111], which tracks by DVO, detects loop closure, optimizes keyframe
poses via g2o [122], and integrates them via TV-L1 minimization [249] over
coloured SDFs, i.e. it is a fairly comparable method that also includes posterior
refinement.

Datasets Our goal has been to develop a method that is generic with respect
to sensor noise characteristics, scanning motion, and object geometry and
texture. Moreover, as we are interested in the usability of models, we want
to assess not only tracking, but also reconstruction accuracy on real data.
Therefore, we use several public datasets, acquired with different sensors.

As already discussed, the availability of benchmarks for object reconstruc-
tion is far more limited than for SLAM. We use several examples from the TUM
RGB-D benchmark [208] and from the Large Dataset of Object Scans [38]. The
latter provides reconstructions obtained via a robust combination of KinFu’s
frame-to-model ICP and DVO’s RGB-D photometric error. However, they both
lack ground-truth 3D models, so we additionally recorded our own 3D-Printed
RGB-D Object Dataset, shown in Figure 1.2(a).

As the name suggests, it contains a selection of 3D-printed objects with
diverse geometry, size and colours. Our five objects exhibit various richness of
geometry and texture: uniformly coloured (bunny), coloured in patches (teddy,
Kenny), densely coloured (leopard, tank); very small (Kenny), very large (teddy);
with thin structures (leopard’s tail, tank’s gun), with spherical components (teddy,
Kenny) and symmetries (teddy, Kenny, tank). Our intention is that symmetries
and elements of poor geometry will be challenging for geometric registration
methods, while scarcely textured ones will be difficult for visual odometry-
based techniques. These models were 3D-printed in colour with a 3D Systems
ZPrinter 650, which reproduces details of resolution 0.1 mm [251]. Thus we
ensure that the textured ground-truth CAD models are at our disposal for
evaluation, eliminating any dependence on the precision of a stitching method
or system calibration that existing datasets entail.

To capture increasing levels of sensor noise, we used three RGB-D cameras:
noise-free synthetic rendering in Blender [16], an industrial phase shift sensor
of resolution 0.13 mm, and a Kinect v1. We recorded in two scanning modes:
turntable and handheld with the Kinect. We also simulated them in Blender
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Figure 4.3: Synthetic trajectories used for simulating noiseless RGB-D input
in Blender.

as 120-pose trajectories of radius 50 cm, where the handheld one is a sine
wave with frequency 5 and amplitude 15 cm, as shown in Figure 4.3. Thus the
synthetic groundtruth trajectories are known, while the Kinect poses are obtained
from a markerboard placed under the object. The industrial sensor takes 4
seconds to acquire a single RGB-D pair, permitting us to only record turntable
sequences. Due to its limited field of view, we could not place a sufficiently
large markerboard, so we only use it for evaluation of model accuracy. In all
cases the object of interest is placed on a richly textured support that provides
optimal conditions for visual odometry, ensuring fair comparisons.

Metrics We take inspiration in the typical RGB-D benchmark metrics [208],
but modify them to be more appropriate for object reconstruction. We will use
them in their original SLAM formulation in the respective chapter. First, we
evaluate the relative pose error (RPE) [208] per frame transformation:

RPEt→t+1 = (Pi
−1Pt+1)

−1(Qt
−1Qt+1), (4.14)

where t is the frame number, {Q1...n} is the ground-truth trajectory and {P1...n}
is the estimated one. It evaluates the difference between the ground-truth
and estimated transformations, and equals identity when they are perfectly
aligned. In addition, we report the angular error per transformation. Both
the translational and angular errors are also evaluated for the absolute poses.
Note that while our relative metric is identical to the RGB-D benchmark RPE
per frame, our absolute metric is, in general, more severe than its absolute
trajectory error (ATE) [208]. This is because the ATE targets SLAM scenarios
and first determines the best alignment between the two trajectories, while
in our case they both start with the same initial reference pose, because this
directly influences the way frames are fused into models.

Finally, we evaluate the reconstruction error against the original CAD model
used for 3D-printing, via the cloud-to-model evaluation of CloudCompare [42].

Tracking Accuracy

Synthetic data We start our evaluation with a proof of concept, tested through
noise-free synthetic data and summarized in Figure 4.4. SDF-2-SDF-reg clearly
outperforms the other methods with an average relative drift below 0.4 mm
and angular error below 0.06° for all objects and trajectories. In addition, the
maximum errors never surpass 1.55 mm and 0.25° respectively. An analogous
trend is observed for the absolute errors: the average translational deviation is
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Figure 4.4: Comparison of tracking errors on synthetic sequences from the
3D-Printed RGB-D Object Dataset.
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Figure 4.5: Comparison of tracking errors on Kinect sequences from the
3D-Printed RGB-D Object Dataset.

approximately 2 mm, which corresponds to the used voxel size and therefore
suggests that given high quality data, only the grid resolution limits our
tracking accuracy. The angular deviation always stays below 1°. Notably, our
approach performs equally well regardless of object geometry and yields a
negligible error with respect to the trajectory size.

FF-pt-SDF and KinFu are closest to our precision on the relative metrics,
albeit being at least 2-3 times higher. KinFu exhibits similar behaviour on the
absolute metrics, while FF-pt-SDF worsens. This suggests that the relative
metrics tend to give advantage to frame-to-frame methods. Nevertheless, SDF-
2-SDF-reg is not affected by this bias. As the point clouds are rather small, GICP
fails to deliver reliable results and is consistently the worst method for these
datasets. Visual odometry and FM-pt-SDF are usually slightly less precise than
FF-pt-SDF. The inferior performance of DVO on these small objects indicates
that it is designed for scenes with large data clouds rather than small-scale
tracking, where it tends to converge locally.
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Kinect sequences Figure 4.5 shows that overall the results on the Kinect
sequences exhibit similar trends to the synthetic case, although the errors
are considerably higher. Typically DVO-full and our SDF-2-SDF-reg are most
precise, while GICP and DVO-object are least accurate. The relative drift of SDF-
2-SDF-reg ranges between 2 mm on large objects like teddy and 10 mm on more
challenging ones. The relative angular error is below 1°, and is often almost
negligible, e.g. 0.19° on turntable teddy, and 0.26° on tank and leopard, which are
difficult objects with thin structures. The Kenny sequence is a notable exception,
since it is composed of a sphere and an ellipsoid, making its back completely
symmetric and thus extremely challenging for geometric registration methods.
Furthermore, the Kinect is often unable to capture Kenny’s arms as they are
rather thin, and its high level of noise poses a problem for all methods.

If the richly textured support is taken into consideration for registration,
DVO-full outperforms all methods on the relative metrics. However, if only
data on the object of interest is used, DVO-object performs much worse.
Industrial scenarios often require the inspection of texture-less objects in their
working environment, which may not be modified by placing additional
support structures. Thus our SDF-2-SDF-reg is designed to be able to function
independent of texture, while we would employ colour only if the geometric
energy terms entirely fail. It is important to note that despite using only
geometric constraints only over the object of interest, we achieve lower absolute
errors than DVO-full on teddy in both scanning modes, and outperform it on
tank and bunny on turntable trajectories.

All results indicate that SDF-2-SDF-reg is superior to the other volumetric
methods. In most cases KinFu is more accurate than both point-to-implicit
implementations, of which frame-to-frame tends to be slightly better than
the frame-to-model variant. The reason for the poorer performance of these
methods is that they register a sparse point cloud to a dense SDF or to another
cloud. Therefore, when the object is small there are very few data points,
whose measurements are unreliable in the presence of severe noise. Thanks
to the inherent smoothing properties of volumetric representations, SDF-2-
SDF-reg copes better with such issues. Moreover, it relies on a denser set of
correspondences: on average, the used clouds consist of 8 · 103 data points,
while the SDFs have 386 · 103 voxels.

A notable failure case for FM-pt-SDF was the turntable teddy, where sym-
metry on the back caused drift from the middle of the sequence onwards,
which lead to unrepairable errors in the global model and consequently flawed
tracking. Similarly, FM-pt-SDF performed poorly on the turntable Kenny due
to its fine structures, while FF-pt-SDF did not suffer from error build-up and
was most accurate. Clearly, FF-pt-SDF is more suited to camera tracking based
on a single object of interest than FM-pt-SDF. In contrast, SLAM scenarios
feature large scenes, so areas are often repeatedly scanned and thus provide
opportunities for frame-to-model tracking to recover from drift. However, in
object scanning every incoming frame usually exposes large unseen areas of
the object for which a model of the geometry recovered so far is not as helpful.
Due to this reasoning we designed SDF-2-SDF-reg to track in a frame-to-frame
fashion.
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Figure 4.6: Convergence analysis of registration methods with respect to
frame distance, simulating larger initial deviation on Kinect turntable data.

Convergence Basin

To deepen our analysis of SDF-2-SDF registration, we investigate its conver-
gence basin next. We simulated initial conditions in which the global minimum
is gradually further away, by skipping frames from the original turntable
Kinect sequences. The first five plots in Figure 4.6 display comparisons to
other techniques on each object, while the last plot is averaged over all of
them. In the majority of cases, the errors of most methods grow approximately
linearly with distance, but SDF-2-SDF-reg has the slowest rate. Thus thanks
to its denser formulation and the existence of meaningful values everywhere
in the volume, it can determine an accurate pose from a much larger initial
deviation of up to approximately 15°.

Notably, with the exception of two-frame distance on Kenny, SDF-2-SDF-reg
is considerably more precise than DVO-full. The remaining results exhibit
a trend similar to what we observed in Figure 4.5: GICP, DVO-object and
FM-pt-SDF have the fastest error growth rates, and are outperformed by KinFu
and FF-pt-SDF, which behave alike. In particular, the errors of FF-pt-SDF
and SDF-2-SDF-reg are nearly identical for each frame distance on the tank
sequence. This indicates that a frame-to-frame strategy is more advantageous
than frame-to-model for a larger pose difference. The reason is that a model
is of limited help here, as concluded earlier, because a new frame exposes
more unseen parts of the object. On the other hand, the previously observed
parts can steer into local minima. Moreover, as the tank has a relatively
uncomplicated geometry, the point-to-implicit and implicit-to-implicit methods
behave similarly. However, the remaining objects, where geometry is more
peculiar, present a harder challenge to point-to-implicit strategies, since their
point clouds are more susceptible to noise than SDFs. These observations once
again confirm our design choices for the SDF-2-SDF framework.
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Table 4.1: Effect of curvature constraints on convergence rate: comparison of
number of iterations to converge when tracking with the signed distance term
only (Egeom) versus combined with the surface orientation term (Egeom + Enorm).

Object
Iterations to convergence

Turntable Handheld
Egeom Egeom + Enorm Egeom Egeom + Enorm

bunny 42.09 23.37 41.26 31.18
teddy 17.28 15.60 25.16 17.22
Kenny 46.01 28.36 76.44 41.09
leopard 24.03 17.29 34.52 22.49
tank 28.88 19.73 41.86 29.02
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Figure 4.7: Effect of surface orientation and colour constraints on the average
absolute error of SDF-2-SDF-reg tracking.

Contributions of Additional Constraints

Next, we evaluate the effect of surface orientation and photoconsistency on the
registration error, summarized in Figure 4.7. We obtained similar results with
weight values from the set {0.05, 0.1, 0.2} for both wnorm and wRGB. While there
is no considerable change on the synthetically rendered RGB-D sequences,
indicating that high quality depth data is sufficient for highly accurate regis-
tration, on Kinect data each additional constraint decreases the error of Egeom
by a certain amount. This depends on the properties of the object, while all
three constraints together make ESDF most accurate. An exception is again the
angular error of the challenging handheld Kenny dataset. Its error decreases
with the normal term, but increases with the texture one. We suppose that
this is due to imprecise depth-to-color camera calibration, which can lead to a
significant offset on a small object like this.

Considering that the additional terms entail more calculations, we advocate
to use them depending on the specific case. For instance, Enorm is very beneficial
on the teddy, since it is a large object, where normals can be estimated reliably.
Colour helps on richly textured objects, like leopard and tank. Finally, it is
noteworthy that in several cases the final error of ESDF has become even lower
than that of DVO-full from Figure 4.5, where it previously was not.
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Figure 4.8: Comparisons of iterations until convergence with Egeom versus
Egeom + Enorm on Kinect sequences.

As previously discussed, since surface normals equal the normalized gra-
dient of the signed distance field, Enorm is a second-order term in addition to
Egeom, which does not significantly change the optimum of the energy. How-
ever, assuming that the computation of normals is not heavily influenced by
noise, we expect that this optimum will be reached in fewer iterations. We
investigate this claim on noisy Kinect data in Table 4.1 and Figure 4.8.

First, we notice that handheld sequences typically require more iterations to
reach convergence than turntable ones. This is due to the more erratic scanning
motion, which causes the effects of motion blur and rolling shutter to be more
noticeable. In addition, bigger objects, like teddy, require less iterations than
smaller ones, like Kenny, since they contain more data, a smaller proportion
of which is influenced by noise. Last but not least, the expectation for less
iterations with the normal term is confirmed in all cases. The plots indicate that
Enorm remedies cases when Egeom alone did not converge, since spikes in the
red curves are not present in the blue ones. There are rare cases in which the
combined energy needs several more iterations than the geometric one alone,
occurring on frame pairs with smaller overlap. As the standard deviation of
the required number of iterations decreases noticeably, we conclude that the
second-order term regularizes the energy.
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Figure 4.9: Comparison of estimated trajectories on the TUM RGB-D bench-
mark [208].

Note that synthetic renderings and high quality industrial sensor sequences
typically require less iterations than Kinect ones, even based on Egeom only.
Therefore, while on Kinect data Enorm might lead to convergence in half the
iterations, its contribution is not as significant on less noisy data.

Other Public RGB-D Datasets

As a last part of our evaluation of tracking performance, we test on sequences
from the 3D Object Reconstruction category of the TUM RGB-D benchmark [208].
As the dataset itself is SLAM-oriented, the sequences contain larger-scale
moderately cluttered scenes, unconstrained camera motion and occasionally
missing depth data due to close proximity to the sensor. Due to this intended
use we only test DVO-full, KinFu and FM-pt-SDF, in addition to our approach,
as shown in Figure 4.9. The entire images were used for DVO, while all other
methods tracked solely using the bounding volume of the object of interest.
Nevertheless, our SDF-2-SDF-reg was most precise on fr1/plant and fr3/teddy,
and was only slightly less accurate than FM-pt-SDF on fr2/flowerbouquet. The
reason is that its leaves have no effective thickness, therefore the SDFs lose their
power in discerning inside from outside and, depending on parameters, might
oversmooth and become inferior to point cloud registration. This effect can be
mitigated by a finer voxel size, but that would entail a longer processing time.

Pose Refinement and Reconstruction Accuracy

We now shift our focus to evaluating the output model accuracy after pose
refinement. The results of SDF-2-SDF on our 3D-Printed RGB-D Object Dataset
are displayed in Figure 4.1. While the shapes are reconstructed well, the
difference in device quality is apparent. The models obtained from phase
shift data are very detailed and synthetic-alike, while those from Kinect are
smoothed out. This is most clearly visible on the edges of the tank, on the ears
of the leopard that have not been captured by the Kinect, and from the lack of
details on the bunny body.

Furthermore, in Figures 4.10 and 4.11 we provide qualitative comparison
on both the industrial and Kinect turntable sequences of our 3D-Printed RGB-D
Object Dataset between KinFu, the DVO-full based method of Kehl et al., and
SDF-2-SDF without and with refinement. These snapshots reflect the numerical
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Table 4.2: CloudCompare evaluation of the absolute cloud-to-model recon-
struction error on the 3D-Printed RGB-D Object Dataset. SDF-2-SDF-reg refers
to our method without refinement, while SDF-2-SDF includes refinement. The
variants of Kehl et al.’s pipeline [111] indicate whether DVO-object or DVO-full
was used for tracking.

Object Method
Error [mm]

industr. turntab. Kinect turntable Kinect handheld
mean std.dev. mean std.dev. mean std.dev.

bunny

KinFu 0.664 0.654 3.800 2.840 4.101 3.716
SDF-2-SDF-reg 0.656 0.438 2.586 1.869 1.770 1.733

bunny Kehl-object 2.149 2.869 5.156 4.115 8.274 6.013
Kehl-full 0.838 0.860 1.134 1.243 1.124 1.095

SDF-2-SDF 0.541 0.436 0.953 0.843 0.996 0.853

teddy

KinFu 0.998 0.807 1.271 1.045 2.355 1.447
SDF-2-SDF-reg 0.930 0.588 1.078 0.890 1.589 1.537

teddy Kehl-object 1.028 0.892 2.306 1.862 2.287 1.826
Kehl-full 4.828 4.215 1.221 0.858 3.066 2.380

SDF-2-SDF 0.910 0.584 0.722 0.542 0.990 0.841

Kenny

KinFu 1.650 1.451 1.511 1.387 2.874 2.727
SDF-2-SDF-reg 0.363 0.391 1.295 1.311 2.415 2.051

Kenny Kehl-object 1.816 1.710 3.181 3.238 failed failed
Kehl-full 2.553 2.644 1.263 0.850 2.282 1.381

SDF-2-SDF 0.315 0.336 1.276 1.128 2.358 1.960

leopard

KinFu 1.785 1.299 4.445 2.430 1.886 3.292
SDF-2-SDF-reg 0.760 0.830 2.692 1.882 1.321 1.220

leopard Kehl-object 1.018 1.378 5.693 5.050 failed failed
Kehl-full 3.626 3.705 1.907 1.218 1.281 1.218

SDF-2-SDF 0.652 0.614 1.308 1.154 1.263 1.111

tank

KinFu 1.390 1.315 1.561 1.453 2.579 2.265
SDF-2-SDF-reg 0.953 0.740 1.336 1.188 2.042 2.404

tank Kehl-object 1.573 2.250 1.192 1.009 2.340 2.062
Kehl-full 2.617 2.571 1.064 0.872 0.946 0.806

SDF-2-SDF 0.466 0.416 0.911 0.745 1.508 1.760

reconstruction errors, listed in Table 4.2, where we additionally test Kehl et al.’s
pipeline in its less accurate version based on DVO-object for tracking.

In most cases, SDF-2-SDF-reg yields better results than KinFu even without
refinement. In particular, optimization is typically not needed when using
phase shift data. On the other hand, it is vital on the more challenging Kenny,
leopard and bunny Kinect scans. SDF-2-SDF’s error is clearly below 1 mm on
all phase shift sequences, and stays below 2 mm on the Kinect ones. As these
values correspond to the device uncertainties, we once again confirm that our
approach is only limited by the sensor resolution and the voxel size.

Contrary to expectations, the table shows better results for Kehl-object
than Kehl-full on industrial data. This is, however, because the provided
implementation required resizing the original 2040× 1080 images to VGA
resolution, leading to increased error when processing areas near the image
border, where the textured table is located. The results of KinFu and SDF-2-
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KinFu Kehl et al. SDF-2-SDF-reg SDF-2-SDF
(using DVO-full) (no refinement) (with refinement)

Figure 4.10: Qualitative comparison of untextured reconstructions from
scans with the high quality industrial sensor. Object poses might differ
slightly, since models yielded by different methods are non-identical. Fine
structures cause related approaches to fail, e.g. on Kenny, or to exhibit misalign-
ment errors, e.g. on bunny’s ears, tank’s gun, connection of leopard’s halves.

SDF did not change for VGA and the original size, indicating that volumetric
approaches are less sensitive to such issues. Moreover, the speed of SDF-2-SDF
remained unaffected, as it only depends on the voxel resolution, and not on the
image or point cloud size, while the other methods slowed down with larger
image dimensions. Thus our system generalizes well not only for various
object geometry, but also for any device.

Both qualitative comparison figures suggest that the large teddy is the easiest
object for all methods, while the tiny Kenny is most difficult, since it is not only
more affected by noise, but also uniformly textured and with a symmetric back.
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KinFu Kehl et al. SDF-2-SDF-reg SDF-2-SDF
(using DVO-full) (no refinement) (with refinement)

Figure 4.11: Qualitative comparison of untextured reconstructions from
Kinect scans of the objects from our 3D-Printed RGB-D Object Dataset.

On industrial data SDF-2-SDF-reg produces slightly better reconstructions than
Kehl et al., while on Kinect data Kehl et al. is superior. However, the model
errors indicate that if its DVO tracking component is constrained only to the
object, performance becomes significantly worse on Kinect data and might
even fail on the more erratic handheld trajectories.

To sum up, our registration technique alone outperforms related methods
on high quality depth data, while it requires the posterior refinement step on
noisier input, with which it again manages to deliver a highly accurate 3D
reconstruction.

56



4.4 Evaluation

KinFu + DVO SDF-2-SDF KinFu + DVO SDF-2-SDF KinFu + DVO SDF-2-SDF

Figure 4.12: Qualitative comparison versus reconstructions in the Large
Dataset of Object Scans [38].
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Figure 4.13: Comparison of sensor quality and SDF-2-SDF reconstructions
on a challenging spider object scanned with an industrial sensor and a Kinect.

Further Qualitative Results

We now present some additional qualitative results. First, to demonstrate the
generality of our approach, we test it on bigger objects from the Large Dataset of
Object Scans [38], and compare to the reconstructions provided by the authors
in Figure 4.12. Note that in order to stay within real-time constraints, we used
a voxel size of 8 mm for tracking. Even though the dataset reconstructions are
obtained via a combination of ICP’s geometric error with the photoconsistency
of DVO-full, SDF-2-SDF manages to better recover challenging details such as
chair legs and support beams over long sequences with thousands of frames.

In addition, Figure 4.13 shows two of our own scans of a spider toy object,
acquired with a monochromatic 10 FPS version of the phase shift sensor
used for the dataset, and with a Kinect. This is a difficult object because it
has very thin legs, which are hard to capture with a sensor, and which are
then challenging to accurately register. Nevertheless, SDF-2-SDF manages to
reconstruct a geometrically consistent model regardless of the sensor. What is
interesting to note here is the texture-less rendering of the reconstructions, as
they are very indicative of the difference of quality of the two sensors, even
when the reconstruction is accurate.
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Table 4.3: SDF-2-SDF-reg camera tracking module runtime statistics on the
3D-Printed RGB-D Object Dataset: average/ fastest/ slowest.

Tracking [milliseconds per frame]
Pre- Reference SDF Minimization

processing generation iterations
1.7/ 1.6/ 1.8 2.6/ 1.7/ 3.8 45.3/ 41.4/ 54.9
Overall: 49.6/ 44.7/ 60.5 ms↔ 20/ 22/ 17 FPS

Table 4.4: SDF-2-SDF pose optimization module runtime statistics on the
3D-Printed RGB-D Object Dataset: average/ fastest/ slowest.

Refinement [total seconds]
Weighted Optimizing Marching
averaging poses cubes

1.9/ 0.4/ 6.8 6.1/ 0.3/ 20.2 0.6/ 0.2/ 1.3
Overall: 8.6/ 0.9/ 28.3 s

Runtime

As explained in the method, thanks to SSE instructions and 8-core parallel
processing over the narrow band, SDF-2-SDF-reg tracking runs at 17-22 FPS on
household objects when a voxel size of 2 mm is used. Tables 4.3 and 4.4 list the
time taken for each major step of our pipeline as average over all sequences, as
well as the fastest and slowest runs. The quickest processing time was achieved
on the small and noise-free synthetic Kenny, while the most time consuming was
the Kinect leopard, since it is a large but thin object and is thus very susceptible
to sensor noise, leading to more iterations required to converge.

Our refinement procedure needs at most 40 iterations on each voxel res-
olution level, taking up to 30 seconds to deliver the output reconstruction,
which is generated via marching cubes from the final field. In comparison,
Kehl et al.’s pose graph optimization took 196.4 s on average (minimum 53 s,
maximum 902 s) for the same amount of keyframes. Table 4.4 shows that our
pose-graph-free refinement is considerably faster.

4.5 Conclusion

We have developed a complete 3D object reconstruction pipeline that starts
with raw sensor data and delivers a highly precise 3D model without any
user interaction. The underlying novel implicit-to-implicit registration method
is dense and direct, whereby it makes use of all available depth data, while
avoiding explicit correspondence search. The proposed global refinement
technique is an elegant and inexpensive way to jointly optimize the poses
of several views and the reconstructed model. Experimental evaluation has
shown that our reconstructions are of higher quality than those produced by
related state-of-the-art systems. Last but not least, in contrast to other direct
volumetric methods, we achieve real-time tracking on the CPU, which might
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be critical for certain applications.
Despite the achieved processing at interactive rates for small- to medium-

scale objects, it is desirable to extend our method to larger scenes, such as
office spaces, i.e. to make it applicable to SLAM scenarios. This is challenging
since we employ a memory-intensive regular voxel grid and utilize the signs
of values in empty space, so a hierarchical memory-efficient data structure is
not directly applicable in our case. In addition, the reduction operations for
building a 6× 6 from an amount of voxels larger than the number of pixels in
a VGA image prevent a straightforward GPU implementation. Storing only
the signed distances for 5123 voxels requires 0.5 GB, and for 10243 - 4 GB. The
storage of voxel weight and colour further increases the memory consumption.
Clearly, the problem soon becomes intractable, as processing a high amount of
voxels also naturally entails increased runtime. Therefore in the next chapter
we investigate other strategies for extending our technique to larger volumes.
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5
SDF-based Scene

Reconstruction

The next application that we address with our implicit-to-implicit scheme
is the 3D reconstruction of larger-scale static objects and scenes, such as rooms
and big industrial machines, from depth data. This task is closely related to
Simultaneous Localization and Mapping (SLAM) [10, 47, 53, 126], where the
goal is to estimate the ego-motion of the camera or robot via techniques such as
visual odometry [162] and fuse the observed data into a map, or reconstruction,
of the explored environment. More importantly, this has to happen at the
frame rate of the used sensor without any latency, so that, for instance, a robot
can react to its surroundings in a timely manner.

Here we extend our SDF-2-SDF object reconstruction approach to the
real-time SLAM scenario. In this sense, we benefit from the accuracy of the
developed implicit-to-implicit registration scheme, but adapt it in several ways
to make it suitable for larger volumes and inside-out scanning motion.

First, if the entire observed volume is represented as a regular voxel grid
during tracking, it will be extremely slow. Therefore we choose to carry out
registration only over the most geometrically discriminative regions of the
scene, which are characterized by high curvature. We anchor so-called limited-
extent volumes (LEVs), which are 8× 8× 8 sub-volumes representing partial
SDFs, at such salient locations and carry out SDF-2-SDF registration over them.

As the memory consumption is fixed, we are able to efficiently parallelize
the pose estimation process and port it to the GPU. Moreover, as the CPU
would now be left idle, we instead dedicate it for concurrent joint refinement
of the most recently tracked poses. In this way we create a fully online
hybrid GPU/CPU method that carries out both tracking and optimization,
thus reducing drift without posterior processing.

We use public datasets of both large objects and scenes to quantitatively
demonstrate the accuracy of our trajectory estimation, which is particularly
advantageous on rotational motion, and the fidelity of our reconstructions.
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5.1 Introduction

Simultaneous localization and mapping in real time is among the most pivotal
computer vision tasks, with many commercial applications ranging from
robotic navigation and scene reconstruction to augmented and virtual reality.
Equipped with a hand-held camera, the goal is to explore a static environment,
simultaneously determining the 6 degrees-of-freedom camera pose at every
time instance and reconstructing the surroundings.

Here we consider the scanning scenario that employs an RGB-D sensor,
which eliminates the inherent scale ambiguity that monocular approaches are
subject to. The earliest works [61, 86] relied on hand-crafted sparse visual
features to match 3D locations via ICP variants [15, 37]. Soon after, the sem-
inal KinectFusion system [157] demonstrated the advantages of volumetric
registration through the use of a continuously incremented truncated signed
distance field that represents the estimated scene geometry. It was then fol-
lowed by various extensions that proposed improvements to different aspects
of the pipeline, e.g. to make the registration energy more robust [30, 35, 109],
or to tackle the memory limitations of regular voxel grids, such as moving
volumes [176, 237, 240], octrees [203, 205, 253] and voxel hashing [161].

The cumulative SDF globally incorporates information from multiple views
and thus the frame-to-growing-model registration scheme can be considered
as including a form of global optimization. However, it only allows for drift
reduction, without a possibility to reposition incorrectly fused geometry. Most
existing approaches that explicitly perform optimization require all depth
maps [46, 257] or meshed scene fragments [39, 68, 85, 258] to be stored and
lead to lengthy posterior refinement.

This problem is addressed by Parallel Tracking and Mapping (PTAM) [117],
which is one of the most acclaimed real-time monocular SLAM techniques.
It combines tracking in one thread with global map refinement in another
one. The framework that we propose is inspired by this parallel approach, but
targets an RGB-D setting. Our key idea is to enable concurrent execution by
unifying the efficiency of sparse interest point alignment with the accuracy
of dense volumetric approaches, which we observed in our SDF-2-SDF object
reconstruction method presented in the previous chapter.

Recall that it utilizes implicit-to-implicit SDF grid alignment to achieve
more precise motion estimation than KinectFusion and point-to-implicit ap-
proaches [30, 35]. While these techniques register over an amount of data equal
to the depth map resolution, SDF-2-SDF processes all voxels. In addition to the
associated high memory requirements, the large amount of atomic reduction
operations prevents efficient GPU parallelization, thus restricting operation
to small spaces that are insufficient for SLAM. Guided by the intuition that
geometry-poor locations, such as flat walls, impede registration, we propose to
select a fixed number of the most geometry-rich locations in a range image, and
anchor small SDF volumes of fixed size around them. Thus only informative
data is used for registration, achieving the accuracy of fully dense techniques
at a fraction of the cost. Furthermore, this strategy is more straightforward to
implement than moving volumes, octrees and voxel hashing. It enables us to
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Figure 5.1: Illustration of our hybrid GPU/CPU concurrent tracking and
refinement approach: the GPU tracking module continues its operation, while
the CPU refinement module jointly optimizes the last available batch of tracked
frames. Once the next batch is complete, i.e. when the third camera highlighted
in green has been tracked, the refinement module will switch to the middle
batch, while the tracking module will continue independently. To reduce drift
even further, we additionally make sure the batches overlap so that the pose of
each frame is refined twice.

apply SDF-2-SDF registration in parallel over all volumes on the GPU, seeking a
common rigid-body motion. Moreover, as the CPU would now be only respon-
sible for the data flow, it is available to perform concurrent pose refinement over
several of the already registered frames. In this way we create a system that
minimizes drift in real-time without the need for posterior global optimization.

To sum up, we propose SDF tracking and refinement (SDF-TAR): a real-
time system for parallel tracking and refinement based on direct registration
between multiple limited-extent SDFs, whose operational principle is sketched
in Figure 5.1. Our contributions are the following:

• a novel approach to reduce the memory footprint of volumetric registra-
tion, while preserving its accuracy;

• a fully real-time volumetric SLAM method which combines GPU tracking
with concurrent CPU pose refinement on overlapping batches of RGB-D
frames for online drift reduction.

Quantitative experimental evaluation demonstrates that our limited-extent vol-
ume (LEV) strategy leads to more precise tracking than related state-of-the-art
techniques when the dominant motion is rotational, and on-par results in
general settings. In addition, we assess the drift reduction achieved by our
batch refinement, which is manifested through higher-fidelity reconstructions.

5.2 Related Work

Here we describe related approaches for scene reconstruction from RGB-D data,
with special focus on works that were not mentioned or thoroughly discussed
in the object reconstruction chapter.
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Volumetric reconstruction KinectFusion [102, 157] and point-to-implicit ap-
proaches [30, 35] have already been analyzed at length in this thesis. While they
tend to be susceptible to errors under erratic motion and lack of discriminative
geometry, our implicit-to-implicit registration scheme leverages both SDFs
for more accurate direct alignment. In the previous chapter we used it both
for the frame-to-frame tracking and for the subsequent global optimization,
obtaining improved trajectory and reconstruction precision in the context of
object scanning.

Here we propose to make it suitable for SLAM scenarios as well. We seek
to apply it in a fully online fashion following the example of PTAM [117]
that executes concurrent tracking and refinement. To this end, the camera
is tracked in real-time on the GPU, while a fixed number of already tracked
frames are jointly refined on the CPU. As there is no real-time constraint on the
refinement, it runs for as much time as the tracking module permits, i.e. until
enough frames are tracked for the next batch to start being optimized.

Memory load reduction A major limitation of regular voxel grids is their
high memory requirement, which limits the operational volume to medium-
scale spaces. It has been tackled in various ways, including moving vol-
umes [176, 237, 240], octrees [?, 203, 205, 253], voxel hashing [109, 161], non-
hierarchical [160] and hybrid hierarchical structures [36]. However, they are
beneficial for storing or updating values, but may not as efficient when an SDF
needs to be re-generated multiple times per second, as done in our SDF-2-SDF
approach when a camera pose is re-estimated.

Moreover, methods that rely on dense image alignment need robust tech-
niques to disregard outliers [62, 115]. On the other hand, approaches like
RGB-D SLAM [61] that detect 2D features and match them in 3D, discard
a lot of useful information and require RANSAC [69] and pose graph opti-
mization [122] to estimate consistent trajectories. While many authors have
addressed 3D keypoint detection [41, 76, 99, 105, 202, 221], the occlusions
and noise inherent to consumer-grade RGB-D cameras currently limit their
applications to object detection, recognition and classification [5, 18, 57].

Inspired by the accuracy of SDF-2-SDF registration, we aim to apply it
to larger-sized objects and SLAM. To this end, we propose a quasi-dense
technique which combines the efficiency of keypoint-based methods with the
accuracy of dense schemes. First, in order to make GPU parallelization suitable,
we make sure that there is an upper bound on the number of voxels that will
be used for registration. More precisely, we carry out registration over a fixed
number of limited-extent volumes (LEVs), which are small SDFs with fixed
side length. We anchor them at locations of distinct geometry and determine
a common rigid-body motion from all of them. The volumes capture local
geometry and thus grant flexibility with respect to their exact positions. The
anchor points are chosen as the locations with highest mean curvature, which
is the second-order derivative taken directly over the depth map [89], further
facilitating real-time performance. Therefore this strategy ensures not only
fixed memory requirements and suitability for GPU implementation, but also
accuracy similar to that of full volume SDF-2-SDF.
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Figure 5.2: SDF-TAR pipeline: the relative motion between every two depth
frames is estimated on the GPU from p limited-extent volumes, anchored
at locations of high curvature. As soon as frame Fm is tracked, the CPU
refinement module starts jointly optimizing frames Fm−2b+1 to Fm. In the
meantime tracking resumes on frames Fm+1 to Fm+b. Once this new batch is
ready, refinement is switched to frames Fm−b+1 to Fm+b. This strategy ensures
highest geometric consistency by optimizing every pose twice.

Global optimization Although refinement can be highly beneficial, it is often
not viable for volumetric methods. Due to the high processing requirements of
dense data, most existing pipelines resort to expensive posterior optimization
that can take hours [39, 68, 85, 257, 258]. This added runtime can be avoided
by running refinement concurrently to tracking, as in PTAM [117]. Our pose
optimization is also applicable online, as it is done over limited-extent volumes.

Approaches that include refinement perform it either jointly over all frames,
or over a fixed amount of those that were last tracked. For instance, Pirker et
al. [168] carry out sliding window bundle adjustment, but use sparse 2D-3D
correspondences that entail loop closure detection and posterior pose graph
optimization. Whelan et al. [238] combine incremental as-rigid-as-possible
space deformation and every-frame map correction, but depend on the pres-
ence of loop closure and add some minimal time latency as more frames are
processed. Similarly, ElasticFusion [239, 241] relies on local loop closures to
activate non-rigid model-to-model refinement, without further improving the
estimated trajectory. Therefore, we identify SDF-TAR as the first pose-graph-
and loop-closure-free volumetric RGB-D SLAM method that carries out camera
tracking and batch optimization in a fully online fashion.

5.3 SDF-TAR

Figure 5.2 presents the pipeline of our concurrent SDF-based tracking and
refinement approach. Next, we describe our limited-extent volume scheme for
reducing the memory requirements of regular voxel grid registration. Then
we explain how our implicit-to-implicit energy is applied over these partial
volumes both for 6 DoF frame-to-frame tracking and for joint refinement, and
how we combine these stages into an online hybrid GPU/CPU SLAM system.

5.3.1 Limited-Extent Volumes

Our strategy for reducing the memory load is an easy to implement solution
based on the intuition that regions of indiscriminative geometry are not useful
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(a) Masked depth. (b) Normal map. (c) Curvature peaks. (d) LEVs.

Figure 5.3: Limited-extent volume anchor point selection process: (a) Far-
away (blue) and near-edge (red) points are masked out from the depth map
to discard potentially noisy values. (b) Normals are calculated as derivatives
over depth. (c) Curvature is calculated as derivatives of normals. Its size is
non-maximum suppressed to determine peaks separated by a minimal distance.
(d) The p highest peaks are used as anchor points for the LEVs, which are
small SDFs of fixed size.

for registration may even impede it. On the contrary, geometry-rich locations
are highly distinct from their surroundings and can therefore quickly steer
registration to an optimal solution.

Thus our key idea is to set p partial SDFs Ω1, ..., Ωp of resolution x ×
y× z voxels with side length l around the points of highest curvature in the
scene. Then we carry out our SDF-2-SDF registration in order to determine a
common rigid-body motion ξ for all of these limited-extent volumes (LEVs)
simultaneously. This approach guarantees that the memory load will be kept
constant for every pair of frames, and thus gives an upper bound for the
processing time. Hence we can set all parameters appropriately, so that we will
always stay within real-time constraints.

We anchor the LEVs at the points of highest curvature, which are not
only discriminative, but also inexpensive to detect, since they can be found
via operations over the depth image only, without need to search in 3D. The
process is illustrated in Figure 5.3. First, we pre-process the depth image.
Since the sensor error increases quadratically with distance [116], we consider
measurements further than 2 m as unreliable and discard them. Furthermore,
RGB-D cameras tend to be inaccurate near depth discontinuities, thus we
also mask out pixels near edges. Next, we estimate the surface normals as
derivatives over the preprocessed depth map, following the method of Holzer et
al. [89]. Then we calculate the curvature magnitude from the derivatives of the
normal map. Finally, we apply non-maximum suppression [153], so that only
one high curvature point is selected within every window of size w× w pixels.
This ensures that neighbouring LEVs will not overlap. Finally, we select the p
points with highest curvature values in the non-maximum-suppressed image,
back-project them to 3D and generate partial SDFs of x× y× z around them.
If there are less than p peaks, we simply take all of them.

5.3.2 Parallel Tracking and Refinement

As we are still dealing with a rigid registration problem, the energy remains
the same as in Eq. (4.1). Note that in order to keep processing within real-time
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constraints, we only use the geometric SDF energy term and do not employ
the additional photoconsistency and surface orientation terms. As the energy
is now a sum over partial volumes, all of which are influenced by the same
transformation ξ, we re-write it as:

Egeom LEV(ξ) = ∑
volume Ωi

i = 1..p

(
∑

voxels ∈ Ωi

(
φre f erenceωre f erence − φcurrent(ξ)ωcurrent(ξ)

)2
)

.

(5.1)

Note that the locations of the LEVs are determined only over the reference
frame, after which their physical volumes are used for the generation of the p
partial SDFs of both the reference and the other frame.

Limited-Extent Volume Registration

Following the same reasoning in favour of frame-to-frame tracking as in the
object reconstruction chapter, we keep the same strategy here. Therefore the
solutions following the Taylor expansion in Eq. (4.5)-(4.9) stay the same with a
modification only in Eq. (4.5) and (4.6) to reflect the nested sum over voxels
and volumes from Eq. (5.1).

However, if refinement is done over all already tracked frames, its conver-
gence time will respectively increase with their number. In addition, optimiza-
tion from frames separated by a large distance is not necessarily beneficial,
since they may be capturing completely non-overlapping parts of the scene.
Therefore, we propose to carry out pose optimization over batches of the last few
tracked frames.

More precisely, it is done over q ≤ p LEVs, jointly in batches of 2b frames.
The first half of a batch consists of frames, whose poses have already been
refined once, while the second half are the lastly tracked frames. A local
weighted average φlocal of these 2b frames is generated in each LEV. As in the
object reconstruction case, each φlocal is re-calculated only on every f th iteration
in order to keep the objective fixed meanwhile. For stability the first b/2 poses
are kept fixed, while each other pose is refined following the gradient descent
scheme introduces in the previous chapter, resulting in one 6-element-vector
update per frame. Therefore, once frame number m is tracked, optimization is
carried out following the modified version of Eq. (4.12):

dEgeom LEV

dξ
= ∑

volume Ωi
i = 1..p

(
∑

voxels ∈ Ωi

(
φd (ξ)− φlocal

)
∇ξ φd(ξ)

)
,

d ∈ [m− 2b + 1, ..., m] .

(5.2)

Finally, the gradient descent update with step α is applied only to the
second half of the batch, i.e. to the frames with indices d2 ∈ [m− b + 1, ..., m]:

ξk+1
d2 = ξk

d2 − α
dEgeom LEV(ξ

k
d2)

dξ
. (5.3)
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Concurrent GPU/CPU Processing

As our objective is a fully real-time SLAM method without any posterior
processing, we execute the tracking and refinement modules concurrently. We
allocate a separate GPU stream responsible for 6 DoF frame-to-frame camera
pose estimation: an incoming depth map is transferred to device memory,
pre-processed according to Figure 5.3, and then registered to the previous one
using the limited-extent volume scheme explained above.

Once b frames have been processed, the CPU is signalled to start the
optimization module. It carries out refinement in a locally global fashion: a local
batch of 2b frames is jointly globally optimized. The batch consists of the newly
tracked b poses and the b previous ones, of which the first b/2 are kept fixed
for stability and only contribute to the weighted average calculation. When
the next b frames have been tracked, the CPU is signalled to switch batches
in a first in - first out fashion: the first half of the old batch is dropped, the
second half is shifted to the left, and the new b frames are added at the end to
fill it up completely. Then the procedure is repeated over the new batch and so
forth. This strategy gives a broader context for optimization and ensures that
every frame participates in the refinement twice, and is therefore geometrically
consistent with frames both before and after it.

Given a trajectory estimated in this manner, a reconstruction can be gen-
erated in various ways, among which volumetric fusion [1, 158], carefully
selected key-frame fusion [148], or point-based fusion [112]. As the particular
method is not the focus of this work, when comparing the outputs of different
pipelines we will always display results generated with the same technique,
namely the publicly available fusion from PCL [1].

Implementation

Our implementation was done on the previously used Intel i7-4900MQ CPU at
2.80 GHz, and an NVIDIA Quadro K2100M GPU. Pre-processing VGA-sized
depth images takes 7-8 ms: transferring the image to device memory, and
estimating its normals and curvature size take approximately 4.5 ms in total,
while the non-maximum suppression and sorting the peaks in order of their
curvature magnitude last another 3 ms. The remaining 25 ms are entirely
available for tracking, so the maximum number of iterations is set depending
on the chosen number of LEVs. Depending on frame distance, 10-60 iterations
are required for convergence. Refinement runs concurrently without a time
limit. Instead, it switches to a new batch when it receives the signal that b new
frames have been tracked.

The tracking module requires 160 MB of GPU memory for p = 64 SDFs (if
signed distances are stored as float and weights as uchar), totalling 322.4 MB
for two frames together with their depth maps. In addition, the refinement
module takes 20 MB of CPU memory for the weighted average, and another
23.4 MB for 20 range images. These values demonstrate the real-time capa-
bilities of SDF-TAR, combined with its low memory load. Furthermore, they
show that there are enough resources for an additional thread, responsible for
parallel data fusion.
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(a) Number of LEVs. (b) LEV anchor strategy.

Figure 5.4: Parameter analysis of SDF-TAR: influence of (a) the number of
LEVs used and (b) the LEV anchor point selection strategy on the absolute
trajectory error on sequences from the TUM RGB-D benchmark [208].

5.4 Evaluation

Similar to our assessment of implicit-to-implicit registration for 3D object re-
construction, we quantitatively evaluate both the trajectory estimation accuracy
and the model fidelity of SDF-TAR. We first compare the performance of
SDF-2-SDF and SDF-TAR on our 3D-Printed RGB-D Object Dataset. Then we
continue the evaluation of SDF-TAR on large-scale objects from the CoRBS
dataset [233], which provides externally estimated Kinect v2 trajectories and
models fused from them. Finally, to analyze our SLAM capabilities, we test on
the TUM RGB-D benchmark [208], which contains many Axus Xtion scans of
indoor spaces together with groud-truth camera trajectories.

We will again use the cloud-to-model CloudCompare distance to assess
reconstruction accuracy. For trajectory estimation we will employ the original
RGB-D benchmark absolute trajectory error (ATE), which quantifies the overall
error, and relative pose error (RPE), which is the drift over a fixed time interval.

As before, we compare to related volumetric methods, namely Kinect-
Fusion [1] and point-to-implicit approaches [30, 35], and also to DNA-SLAM,
which is a ToF noise-aware DVO variant [232]. We cite the error values reported
in the respective papers.

Parameter Analysis

The parameters in SDF-TAR reflect the inherent properties of the environment,
most of which are fixed to default values as follows. The resolution of a
single LEV SDF is 8× 8× 8 voxels, with side 8 mm for tracking and 4 mm
for refinement. The grid size of 83 is chosen to guarantee that shared GPU
memory will be efficiently utilized. Other GPU-based approaches also employ
such grids [46, 161]. While the finer voxel size is advantageous for more
accurate refinement, an even smaller one is not beneficial because it would
become corrupted by sensor noise. The δ parameter equals the voxel size,
while η is twice the voxel size, as they control the represented surface region.
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Figure 5.5: Comparison of SDF-2-SDF and SDF-TAR on Kinect data from the
3D-Printed RGB-D Object Dataset. SDF-TAR decreases accuracy only slightly,
while ensuring that concurrent tracking and refinement are accomplished
within real-time constraints. Notably, both the translational and rotational
error on the handheld Kenny sequence are significantly decreased.

Independent of how many LEVs are used for tracking, only n = 8 are used for
refinement, since a good initialization is available and since generating them
for a whole batch of frames on the CPU would otherwise take too much time.
The batch size is 20 frames (b = 10), while the weighted average is generated
on every f = 5th iteration.

Some of the remaining parameters depend on the richness of the scanned
geometry, so we investigate them here. We assess the susceptibility of trajectory
estimation accuracy to changes in them on three sequences of the TUM RGB-
D benchmark [208]: fr1/xyz and fr1/rpy, which are designed for evaluating
translational and rotational motion estimation respectively, and fr1/desk which
is a typical SLAM scenario combining both kinds of motion. In order to isolate
the effect of the parameters on the partial volume registration, we disable the
refinement module for this test.

First, to judge the dependence of the tracking error on the number of LEVs,
we test with amounts from 20 to 150 per frame. The results in Figure 5.4(a)
show that the error is large with only few volumes, and gradually decreases
as more LEVs are taken into account. There is a rather broad range of values
which lead to near-optimal results, typically around 60-90 volumes. When the
LEV number becomes too high, however, the error slightly increases again.
This means that the volumes have become so many that they also encompass
flat regions, which inhibit registration. Naturally, in order to keep runtime as
low as possible, we advocate taking the smallest amount that promises stable
results, e.g. 80 LEVs per frame.

Next, we assess our LEV anchor point selection procedure, which determines
where the partial SDFs are centered. We compare it to two other strategies
of similar efficiency that can be applied directly over a depth map. In them
the image is split into non-overlapping windows of w× w pixels, one pixel
is selected per window, then back-projected to 3D and taken as the anchor
point. The uniform approach uses the center of each window, while the random
strategy selects a pixel at random. For all methods we first pre-process the
depth map as explained in Figure 5.3 to discard invalid regions, and then test
over the same number of LEVs, equal to the amount that gave optimal results
for the respective sequence in the experiment above. Figure 5.4(b) shows that
the uniform strategy leads to a 4-6 times higher error than our proposal, while
the random sampling is nearly two times less accurate than ours. Thus our
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Table 5.1: Comparison of absolute trajectory error (ATE) [meters] on se-
quences from the TUM RGB-D benchmark [208]. SDF-TAR achieves a con-
siderably smaller error when the dominant motion is rotational (e.g. fr1/rpy,
fr1/360), and demonstrates comparable accuracy under general motion.

Method fr1/xyz fr1/rpy fr1/desk fr1/desk2 fr1/360 fr1/floor
KinFu [1] 0.023 0.081 0.057 0.102 0.591 0.918
FM-pt-SDF [30] 0.021 0.042 0.035 0.061 0.119 0.567
FM-pt-SDF [35] 0.014 — 0.033 0.230 — 0.984
SDF-TAR 0.015 0.021 0.030 0.091 0.113 0.279

(a) Reconstruction of fr1/xyz. (b) Estimated trajectorites.

Figure 5.6: Examples of estimated trajectories and reconstructions by SDF-
TAR on sequences from the TUM RGB-D benchmark [208].

strategy clearly selects more discriminative regions that, combined with its
high speed, are more advantageous for registration.

Finally, we assess the benefit of the refinement module. Enabling it decreases
the ATE error on fr1/xyz by only 19%, while on fr1/rpy it was reduced more
than 50%. Not surprisingly, on the combined motion sequence fr1/desk the
improvement was in between: 41%. These results indicate that our refinement
strategy is highly beneficial for reducing the rotational error in tracking. We
attribute this to the small volumes that only encapsulate informative context
around salient locations. On the contrary, motion between flat regions can
only be estimated as translation-only sliding against each other, which would
inhibit accurate rotation estimation.

Furthermore, we try an every-frame refinement strategy, whereby the same
frame-to-partial model registration scheme is used, but only the last tracked
pose in a batch is optimized, and the batch is switched after every frame. This
refinement leads to a very slight improvement over the non-optimized trajectory.
The reason is that the energy for every-frame refinement is too similar to the
tracking energy, so it cannot significantly improve the pose. In contrast, the
refinement approach that we follow has multiple frames influencing each other,
resulting in better estimates. Thus we have developed a powerful strategy that
can be applied in parallel with the tracking module and significantly reduces
rotational drift.
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Table 5.2: Comparison of relative pose error (RPE) translational root-mean
squared values per frame [meters/frame] on TUM RGB-D benchmark [208]
sequences. SDF-TAR achieves the lowest error on all examples.

Method fr1/xyz fr1/rpy fr1/desk fr1/desk2 fr1/360 fr1/floor
KinFu [1] 0.004 — 0.020 0.020 — 0.035
FM-pt-SDF [35] 0.003 — 0.007 0.019 — 0.050
SDF-TAR 0.003 0.004 0.006 0.009 0.011 0.020

Table 5.3: Comparison of relative pose error (RPE) rotational root-mean
squared values per frame [°/frame] on TUM RGB-D benchmark [208] sequences.
SDF-TAR outperforms the other methods on nearly all examples.

Method fr1/xyz fr1/rpy fr1/desk fr1/desk2 fr1/360 fr1/floor
KinFu [1] 0.474 — 2.003 1.795 — 1.718
FM-pt-SDF [35] 0.472 — 0.759 1.080 — 2.085
SDF-TAR 0.442 1.042 0.768 0.993 1.514 0.844

SDF-TAR versus SDF-2-SDF

To assess the influence of the LEV modification to the standard SDF-2-SDF
registration strategy, we compare our two approaches on the Kinect sequences
of our 3D-Printed RGB-D Object Dataset using the same voxel size of 2 mm. The
results in Figure 5.5 confirm what could be expected: the numerical accuracy
of SDF-TAR is slightly inferior to SDF-2-SDF due to the decreased density.
Nevertheless, the errors remain lower than the majority of other methods
examined in Figure 4.5. Moreover, the error on the challenging handheld
Kenny sequence is significantly decreased when taking only LEVs rather than
the entire projective SDF. Therefore, SDF-TAR is a promising modification of
SDF-2-SDF that is capable of applying our dense implicit-to-implicit energy
to large spaces and SLAM scenarios in real time, executing both tracking and
refinement concurrently.

Simultaneous Localization and Mapping

We continue our quantitative evaluation on one of the most widely used
publicly available datasets, the TUM RGB-D benchmark [208], and therefore now
assess the SLAM capabilities of SDF-TAR. The absolute and relative tracking
errors are summarized in Tables 5.1, 5.2 and 5.3, while Figure 5.6 shows
examples of estimated trajectories and reconstructions. The ATE testifies that
SDF-TAR considerably outperforms related works on sequences with dominant
rotational motion, and achieves on-par or better accuracy on general types of
motion. Moreover, our relative rotational drift is well below 1° even on the
challenging fr1/floor sequence. We, therefore, conclude that the LEVs reduce
the negative influences of noise, blur and rolling shutter effect by constraining
registration to the most discriminative local geometry, and effectively avoiding
regions that typically impede accuracy, such as flat surfaces.
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Table 5.4: Comparison of relative pose error (RPE) root-mean squared values
for translational [meters/second] and rotational [°/second] error per second
on sequences from the CoRBS dataset [233].

Method
Desk D1 Cabinet E1 Human H1

transl. rot. transl. rot. transl. rot.
DNA-SLAM [232] 0.027 0.970 0.035 1.426 0.020 0.725
KinFu [1] 0.026 1.739 0.045 1.047 0.034 1.626
FM-pt-SDF [33] 0.032 1.753 0.033 1.731 0.041 1.891
SDF-TAR 0.030 0.964 0.032 0.990 0.037 1.456

(a) KinFu [1]. (b) FM-pt-SDF [33]. (c) SDF-TAR.

Figure 5.7: Qualitative comparison on Desk1 from the CoRBS dataset [233]:
related approaches wash out fine structures due to drift (marked in red), while
the concurrent refinement of SDF-TAR reduces it, yielding more detailed,
higher fidelity results.

Reconstruction of Large Objects

Finally, we assess the performance of SDF-TAR on the task of reconstructing
large-scale objects, such as furniture items and industrial machines. The
difference in scanning motion between SLAM and object reconstruction of any
scale is that the latter is usually executed with an outside-in motion facing the
object, while the former is done in an inside-out manner which is typically
more prone to tracking errors [36]. Thus it is interesting to see if our approach
generalizes well to both kinds of motion.

As mentioned, we make use of the CoRBS dataset [233], but since it is
relatively new and was created after KinectFusion [157] and the publication
Canelhas et al. [35], we run KinFu [1] and the ROS version of FM-pt-SDF by
Canelhas [33] ourselves. For all tests we used a voxel size of 8 mm, while
other parameters were set to the most advantageous ones defined by the
respective authors of each approach. In addition, we include results from
DNA-SLAM [232], which is a SLAM system from the authors of the CoRBS
dataset, specifically designed for time-of-flight cameras, but, unfortunately,
reporting only RPE values and no model errors.

Table 5.4 provides an overview of the relative trajectory errors per second.
KinFu [1] and FM-pt-SDF [33] perform similarly, as was often the case for
smaller-scale objects, while DNA-SLAM and our SDF-TAR achieve higher
precision. In some cases DNA-SLAM outperforms us, since it is specifically de-
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Table 5.5: CloudCompare absolute cloud-to-model error comparison [centime-
ters] on objects from the CoRBS dataset [233].

Method Desk D1 Cabinet E1 Human H1
KinFu [1] 1.5686 1.2504 0.7105
FM-pt-SDF [33] 1.3266 1.1599 0.6583
SDF-TAR 0.9856 1.0552 0.7258

Figure 5.8: SDF-TAR reconstructions of large objects from the CoRBS
dataset [233].

signed for this kind of depth sensor. Nevertheless, SDF-TAR still demonstrates
excellent rotational motion estimation.

The CloudCompare results in Table 5.5 exhibit a similar trend. We achieve
the smallest model error on most objects, which we attribute to the smaller ro-
tational drift, combined with the benefit of online refinement. This proves that
SDF-TAR has successfully adapted SDF-2-SDF registration to larger volumes
of interest, as can be seen from the reconstructed models shown in Figure 5.8.

We provide a further qualitative comparison in Figure 5.7. Even though all
methods manage to recover a consistent model, the zoomed-in parts show that
larger drift causes the other approaches to wash out finer structures, such as
the sides of the stapler, while we manage to keep them intact.

These results confirm that the SDF-2-SDF energy is well suited both for
small- and large-scale object reconstruction, in which the motion is object-
centered. It is also applicable to more challenging outward-facing SLAM
scanning, where it is especially accurate under rotational motion.

5.5 Conclusion

We have presented a hybrid GPU/CPU system for concurrent tracking and
batch refinement that extends out SDF-2-SDF registration scheme to large
volumes of interest. For this purpose we developed a novel memory reduction
scheme, which aligns multiple voxel grids representing partial SDFs anchored
at locations of distinctive geometry. These limited-extent volumes not only
provide an easy to implement way for keeping memory load and runtime
fixed, but also lead to considerably more accurate rotational motion estimation
than related methods, as demonstrated on public datasets.
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5.5 Conclusion

Even though we are now able to handle volumes of almost arbitrary dimen-
sions, this still does not mean that we can accurately capture our surrounding
3D world. The main reason for this is that so far we have assumed that this
world is static. While this is true when we scan household objects made out
of hard plastic or empty office spaces, our surroundings are actually dynamic.
Things change shape over time like a gradually deflating balloon or a growing
plant. Even faster than these processes are interactions that happen every
second: people interact with each other and with the objects around them.
These problems are much more challenging than 6 DoF camera pose estimation,
because essentially any point may have moved to any other location. As the
goal that we set out at the beginning of this thesis was to capture the real
world, we now investigate how to adapt our implicit-to-implicit strategy to
more general non-rigid motion.
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6
Variational SDF Evolution

We now aim to reconstruct non-rigidly moving 3D objects with our implicit-
to-implicit energy. In particular, the scenario of interest involves using a single
RGB-D camera, which is either static or moving while capturing non-rigid
motion in real time. Moreover, we want to reconstruct arbitrary scenes in which
there may be more than one subject, such as two people interacting or a person
handling an object. Therefore we have to be able to manage the resulting
topological changes that occur when surfaces merge and split, e.g. when people
shake hands or a person takes off their jacket. In addition, the movements
might be slow or fast, causing small or large pose differences, and exposing
different amounts of new geometry in each frame. Finally, we want our method
to be general and therefore independent of shape priors or templates. To sum
up, our non-rigid 3D reconstruction approach has to manage:

• fast, unconstrained motion;

• multiple interacting subjects;

• topological changes;

• without prior knowledge.

In the following we discuss how to achieve these objectives with appro-
priate modifications to our implicit-to-implicit scheme. As opposed to recent
techniques that achieve impressive results by considering the problem from a
SLAM perspective and putting emphasis on a deformation field that brings
depth data into alignment, we view the task as shape evolution. A suitable
analogy here is to imagine the shape as a piece of clay. We may play with it and
deform it into any other shape that can be constructed with the same amount
of clay, without requiring that the points that were initially on the surface of the
blob of clay are still on the surface in the end structure. We may even deform
a stick into a donut, or into a pair of smaller sticks. In our reconstruction
scenario we know that while two consecutive frames might be separated by a
large pose change, they are not as dramatically different as the examples above.
This provides us with constraints to appropriately stop the shape evolution so
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that consecutive frames can be fused together into a geometrically consistent
reconstruction after the non-rigid motion is factored out.

The framework that we propose is based on the variational level set
method [256]. Knowing that SDFs inherently handle topological changes,
which is one of our main goals, we aim to warp a given initial SDF to a tar-
get SDF via gradient flow without explicit correspondence search. We keep
the data term of our energy to the implicit-to-implicit alignment one used
throughout this thesis. Here it is not subject to a 6 DoF transformation, but to
a much higher-dimensional warp field, so regularization terms are required.
To ensure geometrically consistent reconstructions, we devise and compare
different strategies. In particular, we use an approximately Killing vector field
regularizer that is similar to an as-rigid-as-possible [201]. Alternatively, we
apply gradient flow in Sobolev space [154], which is smoother and permits
coarse-to-fine evolution that first recovers global deformations and then adds
smaller-scale changes. In this way we are eventually able to capture rapid
motions, topological changes and interacting agents.

As always, we verify the performance of our approaches through quali-
tative and quantitative assessment. A major issue in single-stream non-rigid
reconstruction is the lack of real-world datasets that permit quantitative eval-
uation. We address this problem by using mechanical toys that have a rest
pose, in which they can be accurately reconstructed to obtain a groud-truth 3D
model. After non-rigid-movement sequences are recorded and reconstructed,
we can compare our output to the initially generated model. While this does
not permit every-frame evaluation, it is a first effort towards quantifying the
performance of non-rigid reconstruction approaches, so we make our data
publicly available.

6.1 Introduction

As we have seen in the last two chapters, the wide availability of off-the-shelf
RGB-D sensors and the growing popularity of virtual and augmented reality
have made 6 DoF camera pose estimation and volumetric fusion for real-time
single-stream 3D reconstruction possible. Many techniques for capturing static
environments have demonstrated impressive results [39, 110, 114, 157, 161, 239,
258]. However, real-life scenes also include moving people, interacting with
objects in their surroundings and with each other. This requires the capture of
non-rigidly moving surfaces, which is a very unconstrained problem that still
poses major challenges.

The problem is ill-posed because there are infinitely many solutions that
may have deformed one frame to the next [74]. While older techniques resorted
to the use of multiple cameras [31, 44, 55, 54, 107] or templates [19, 95, 131, 261]
in order to better constrain the solution space, nowadays methods that utilize
a single RGB-D camera are emerging. DynamicFusion [156] first demon-
strated real-time simultaneous tracking and reconstruction of non-rigid sur-
faces. Several works build over it, incorporating colour features [98], albedo
constraints [81] or human-specific priors [247, 248]. Their results are of ever-
improving visual quality, however, they are still constrained mainly to contrived
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(a) Input. (b) Warped live frames. (c) Canonical-pose reconstruction.

Figure 6.1: Non-rigid reconstruction of a person playing with a balloon. (a)
Our system takes a single depth stream as input and warps each frame towards
the canonical model in order to grow it. (b) Then the model is warped back
towards the live depth for display to the user. (c) The final output is a complete
3D model despite the topological changes that occurred.

motion without interactions or topological changes.
Having studied the power of implicit-to-implicit registration in the rigid

case, and knowing the advantageous properties of SDFs under changing
topology, we addresses these issues through the use of SDF evolution. This is
the process of gradually deforming one SDF to another one under variational
gradient flow. The majority of recent approaches for both dynamic and static
reconstruction employ a SDF for storing the growing reconstruction [98, 157,
156]. One of the main advantages of this representation is its ability to smooth
out noise when repeated measurements at the same voxel are averaged [45].
However, these methods intermittently revert back to a mesh representation
in order to estimate correspondences for non-rigid alignment, thereby losing
accuracy, computational speed and the SDF capability to conveniently capture
topological changes.

Therefore we propose a method that operates entirely within the SDF
representation. It warps an initial SDF to a target SDF via gradient flow
without correspondence search, steered by a data term that imposes voxel-wise
alignment. Furthermore, we propose two strategies that ensure geometric
plausibility. On the one hand, we include an approximately Killing vector
field [200] energy term which enforces the estimated deformation field to
generate locally nearly isometric motions, acting similar to an as-rigid-as-
possible regularizer [201]. On the other hand, instead of adhering to the
commonly used gradient defined via an L2 inner product, we apply gradient
flow defined in Sobolev space [154], which acts as a pre-conditioner ensuring a
coarse-to-fine evolution behaviour [211]. While the former approach [193] is
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slightly faster and thus allows for the incorporation of additional terms which
impose desirable geometric properties, such as unit gradient magnitude, the
latter one [195] achieves higher geometric detail without over-smoothing effects.
As a result, our variational solution is able to handle challenging scenarios
such as changing topology and fast motion. Figure 6.1 shows an example of
our novel approach that:

• stays entirely within the SDF representation, circumventing intermittent
conversion to a mesh;

• gradually evolves a shape without explicitly estimating correspondences;

• handles topological changes and large, rapid movements.

6.2 Related Work

Here we discuss existing approaches on level set evolution, vector field es-
timation and deformable surface tracking in RGB-D data, identifying their
limitations in the context of our problem of interest and suggesting remedies.

Multi-view and template-based surface tracking External constraints help
to alleviate the highly unconstrained nature of non-rigid registration. For
example, the system of Zollhöfer et al. [261] deforms a template to incoming
depth frames in real time, but requires the subject to stay absolutely still
during the template generation, which cannot be guaranteed when scanning
animals or kids. Multi-camera setups are another way to avoid the challenging
task of incrementally building a model. For instance, Fusion4D [55] recently
demonstrated a powerful real-time performance capture system using 24
cameras and multiple GPUs, which is a setup not available to the general
user. Moreover, Section 8 of the publication states that even though Fusion4D
deals with certain topology changes, the algorithm does not address the
problem intrinsically. We explicitly tackle this issue here, but as the focus is on
reconstructing a dynamic environment using a single RGB-D sensor without
any prior knowledge, we will not discuss other systems that employ specialized
multi-camera set-ups [4, 44, 107], hand [214, 216], face [218], skeleton [247] or
human body [19, 248] priors, or that require the acquisition of a static template.
We refer the reader to the recent comprehensive overview by Zollhöfer et
al. [263] for an extensive analysis of the properties of such methods.

Single-stream incremental non-rigid reconstruction Template-free methods
for non-rigid fusion from a single depth camera have been on the rise since
2015 with the development of the offline bundle adjustment scheme of Dou et
al. [56] and the first real-time solution for simultaneous surface tracking and
reconstruction, DynamicFusion [156]. Several extensions to this seminal work
have been proposed, most notably VolumeDeform [98] which combines the
used dense depth-based correspondences with sparse SIFT features to reduce
drift and handle tangential motions, and the system of Guo et al. [81] which in-
creases robustness by integrating surface albedo constraints. Nevertheless, they
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have been demonstrated only on examples of relatively constrained motions
without changing topology.

Level set methods Fast motion, surface merging and splitting are inherently
handled by the signed distance field representation [163]. It has been applied
for segmentation [9, 87] and registration [125, 144] in medical imaging, where
organ shape priors are typically available, and for surface manipulation and
animation on complete noise-free models in graphics [43, 73, 223, 236]. In
computer vision Paragios et al. [165] and Fujiwara et al. [74] have used level
sets for non-rigid registration on 2D image data and have discussed extensions
to 3D. The task of fusion from 2.5D data is more challenging since new data
has to be incremented in a consistent manner.

Scene flow and piecewise rigid motion The step before fusion requires esti-
mating a dense warp field between a new frame and the existing reconstruction.
This is the objective in scene flow [97, 171, 227, 231, 234]. Related to these are
also approaches that segment the scene into static and dynamic components
and reconstruct them separately [103, 179]. Many of these techniques are
variational in nature, combining a data term that imposes similarity between
the warped observed data and the target model, and a regularizer that imposes
motion smoothness to better constrain the solution space. We thus propose
to extend the variational level set method [256] to the setting of incremental
fusion from a single depth stream.

As the challenge is how to increment new observations instead of erro-
neously registering them to old data, we investigate additional regularizers.
Non-rigid motion tends to be not only smooth, but also volume-preserving.
Therefore a prior that enforces the field to be solenoidal, i.e. divergence-free,
would benefit the fusion. Killing vector fields are of this class and generate
locally isometric motions [12, 200, 215]. Thus they offer a way to impose a rigid-
ity prior directly through the warp field, rather than resorting to embedded
deformation [209] or as-rigid-as-possible schemes [201].

Gradient flow Another important remark is that the L2-type inner prod-
uct employed for gradient flow in most variants of the variational level set
method [163, 164, 256] assumes a metric that may lead to slow convergence
and sub-optimal solutions [212]. Instead, gradient flow in the Sobolev space H1

has been shown to have a superior performance without changing the global
optimum thanks to a desirable coarse-to-fine evolution behaviour that is robust
to spurious artifacts [212]. We refer the reader to the book of Neuberger [154]
for a thorough mathematical introduction to the topic.

6.3 SDF Evolution

In the non-rigid case the unknown Υ from Eq. (3.11) is a deformation field
that brings the two SDFs in voxel-wise alignment. Thus our objective is to
determine a vector flow field Ψ = (U, V, W) : N3 → R3 of the same resolution
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as the SDFs. U, V and W denote its x-, y- and z-components respectively,
each of which is a scalar grid N3 → R. We denote the vector applied at voxel
(x, y, z) by (u, v, w).

In the non-rigid case the 3D reconstruction is typically accumulated in the
first pose that was observed, which is called the canonical pose. The task is to
factor out the motion in every frame so that it can be fused in a geometrically
consistent manner with the canonical model. Therefore a frame-to-model
alignment strategy is most appropriate for our implicit-to-implicit scheme here.

Given the current state of the cumulative model φi−1
model and an incoming

RGB-D pair (Ii
RGB, Ii

D), we iteratively estimate a deformation field that warps
the projective TSDF φi

proj generated from Ii
D towards φi−1

model , resulting in the

warped TSDF φi
warped. Then we fuse φi

warped into the global model, obtaining

its updated state φi
model . Finally, we run a backward deformation from φi

model
towards φi

proj in order to provide a live visualization to the user.
We assume that both the scene and the camera are moving. Therefore we

estimate a rigid camera transformation using our SDF-2-SDF scheme from
Chapter 4. We prefer this formulation over ICP variants [15, 180], since they
would need a very robust norm to discard the many outliers that result from
large deformations.

Next, we describe our variational model for non-rigid 3D reconstruction
from a single depth stream.

Signed Distance Field Evolution Energy

As a new RGB-D frame is acquired and we estimate the approximate camera
pose, we generate its projective TSDF φproj. Next, we iteratively warp it
towards the canonical TSDF φmodel . In iteration t, we calculate a deformation
field increment Ψ = (U, V, W) and apply it to the current warped TSDF φ

(t)
proj,

obtaining its new state φ
(t+1)
proj via tri-linear interpolation. We do this following

a variational formulation consisting of a data term and a combination of
regularizers:

Ede f (Ψ) = Edata(Ψ) + wregEreg(Ψ) , (6.1)

where wreg > 0 controls the trade-off between data fidelity and regularity. A
solution of this model can be found via a gradient descent scheme with step
size α > 0:

Ψ(t+1) = Ψ(t) − α ∇Ede f

(
Ψ(t)

)
, (6.2)

where ∇Ede f

(
Ψ(t)

)
denotes the variational derivative of the energy with

respect to the deformation field. As will be explained in Section 6.3.2, ∇Ede f
depends on the choice of the underlying inner product, but beforehand we
define our deformation energy terms.
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Data term

Our data term is driven by the intuition that under perfect alignment, the
warped and the target TSDFs will have identical signed distance values in each
overlapping voxel. Therefore the value at each voxel (x, y, z) of the current
frame φproj, displaced by its flow vector (u, v, w), will be equal to the value in
that voxel in φmodel . Thus to obtain the warp, we minimize the direct squared
voxel-wise difference:

Edata(Ψ) =
1
2 ∑

x,y,z

(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)2 . (6.3)

We obtain the derivative by standard calculus of variations:

∇Edata(Ψ) =
(
φproj(Ψ)− φmodel

)
∇φproj(Ψ) . (6.4)

Note that we use the symbol ∇ both for the spatial gradient of φ and for the
variational derivatives of the energy terms. The derivations of this and all
following formulas are given in Appendix A.

Regularization

Commonly, non-rigid registration methods impose regularity constraints in
order to introduce additional information, thereby reducing the solution space
of the problem [263]. In our setting regularity can be enforced through the
warp field itself, as well as over the TSDFs. We propose several alternatives
in this section and analyze how to best combine them for efficient deformable
reconstruction.

6.3.1 Damped Approximately Killing Vector Field Regularizer

Uniform motion The expected input to our system is noisy Kinect data,
which might cause inconsistencies within voxel neighbourhoods that result in
holes in the reconstruction. A classical Tikhonov-type regularizer can be used
to reduce spurious artifacts and impose motion smoothness, as often done in
scene and optical flow [28, 97, 234]:

Esmooth(Ψ) =
1
2 ∑

x,y,z

(
|∇U(x, y, z)|2 + |∇V(x, y, z)|2 + |∇W(x, y, z)|2

)
. (6.5)

Using calculus of variations we obtain:

∇Esmooth(Ψ) = −(∆U, ∆V, ∆W)> , (6.6)

where ∆U denotes the Laplace operator applied to the x-component of the
flow field, and similarly for V and W.

Divergence-free flow Another strategy is to prevent uncontrollable deforma-
tions via rigidity constraints. Most common are the as-rigid-as-possible [201]
and embedded deformation [209] formulations, which ensure that the vertices
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of a latent control graph move in an approximately rigid manner. Here we
propose an alternative, whereby local rigidity is imposed directly through the
deformation field.

A 3D flow field that generates locally isometric motions is called a Killing
vector field [12, 200, 215], named after the German mathematician Wilhelm
Killing. It is divergence-free, i.e. volume-preserving, and satisfies the Killing
condition JΨ + J>Ψ = 0, where JΨ is the Jacobian of the field. However, it does
not regularize angular motion.

A field which generates only nearly isometric motion and thus balances
both volume and angular distortion is an approximately Killing vector field
(AKVF) [200]. It minimizes the Frobenius norm of the Killing condition:

Eakv f (Ψ) =
1
2 ∑

x,y,z

∥∥∥JΨ + J>Ψ
∥∥∥2

F
. (6.7)

Its functional derivative is:

∇Eakv f (Ψ) = −2(∆U, ∆V, ∆W)> − 2
(

∂(divΨ)

∂x
,

∂(divΨ)

∂y
,

∂(divΨ)

∂z

)>
, (6.8)

where divΨ = Ux + Vy + Wz is the divergence of the warp field. We refer the
reader to the supplementary material for complete derivations of all equations
in this section.

However, this constraint might be too strict for surfaces undergoing large
deformations. Thus we propose to damp the Killing condition. First, we
rewrite Eq. (6.7) using the column-wise stacking operator vec(·) as follows:

Eakv f (Ψ) =
1
2 ∑

x,y,z
vec(JΨ + J>Ψ )>vec(JΨ + J>Ψ ) =

= ∑
x,y,z

vec(JΨ)
>vec(JΨ) + vec(J>Ψ )>vec(JΨ) .

(6.9)

Next, we notice that the first term can be written as:

vec(JΨ)
>vec(JΨ) = |∇U|2 + |∇V|2 + |∇W|2 = 2Esmooth(Ψ) . (6.10)

Therefore we devise our damped Killing regularizer as a damped-down AKVF
condition, in which more weight is given to the motion smoothness component:

EKilling(Ψ) = ∑
x,y,z

(
vec(JΨ)

>vec(JΨ) + γvec(J>Ψ )>vec(JΨ)
)

. (6.11)

The parameter γ controls the trade-off between Killing property and motion
uniformity. A value of γ = 1 corresponds to the AKVF condition from Eq. 6.7.
The respective derivative is:

∇EKilling(Ψ) = −2(∆U, ∆V, ∆W)> − 2γ

(
∂(divΨ)

∂x
,

∂(divΨ)

∂y
,

∂(divΨ)

∂z

)>
.

(6.12)
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Motion. Reconstruction.

Figure 6.2: Effect of faulty gradient flow. If the magnitude of the level set is
not conserved to be one, the reconstruction accumulates artifacts.

Level set property One of the characteristic properties of a signed distance
field is that its gradient magnitude equals unity everywhere where it is differ-
entiable [163]. To ensure geometric correctness during the evolution of φproj
towards φmodel , this property has to be conserved [129]:

Elevel
set

(Ψ) =
1
2 ∑

x,y,z

(
|∇φproj(x + u, y + v, z + w)| − 1

)2 . (6.13)

Again, applying the calculus of variations we obtain:

∇Elevel
set

(Ψ) =
|∇φproj(Ψ)| − 1
|∇φproj(Ψ)|ε

Hφproj(Ψ) ∇φproj(Ψ) , (6.14)

where Hφproj(Ψ) ∈ R3×3 is the currrent TSDF’s Hessian matrix, composed
of second-order partial derivatives. To avoid division by zero we use the
expression | · |ε, which equals the norm plus a small constant ε = 10−5.

Without preserving the level set property, a faulty gradient is propagated.
As shown in Figure 6.2, this leads to artifacts, which may sometimes look like
Victoria’s secretTM wings, but are not always desirable.

This term is not only suitable for imposing regularity over the warped TSDF,
but also for reducing noise in it, since spurious artifacts will get smoothed
out when this constraint is applied. However, it does not hold strictly on
a discretized signed distance field with a numerically approximated gradi-
ent [163], and is not valid at the border of voxel truncation, so it may lead
to over-smoothing effects. To overcome these issues, we instead consider
pre-conditioning the gradient flow, as explained next.

6.3.2 Sobolev Gradient Flow

The concept of Sobolev gradient flow was developed several decades ago in
the context of the numerical solutions of partial differential equations. The
main idea is to compute the variational derivative of an energy with respect to
the inner product of a smooth subspace of L2, i.e. a Sobolev space, in order to
obtain a gradient, which employed in a descent scheme yields a gradient flow
that favours globally consistent solutions and is less susceptible to undesired
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(a) s = 3 (b) wsmooth = 0 (c) default

Figure 6.3: Parameter analysis for Ede f Sobolev: (a) a small neigbourhood s is
not able to fully overcome the effects of noise; (b) no motion regularization
results in inconsistent geometry; (c) the default setting s = 7, wsmooth = 0.2,
λ = 0.1 yields a pleasing reconstruction.

local minima. To describe this effect Sundaramoorthi et al. [211] coined the
term coarse-to-fine evolution, which accurately summarizes the fact that coarse-
scale changes are favoured over fine-scale ones. In the context of incremental
3D reconstruction, this means that the warped TSDF will first adapt to more
global deformations before eventually converging also with respect to fine-scale
details.

To compute a Sobolev gradient, it is sufficient to project the original gradient
∇Ede f to the Sobolev space H1 [32]. As done in traditional descent schemes,
let us define ∇Ede f from Eq. (6.2) as the L2 gradient ∇L2 Ede f . Thus we obtain:

∇H1 Ede f = (Id− λ∆)−1 ∇L2 Ede f , (6.15)

where Id denotes the identity operator. Eq. (6.15) involves the solution of an
equation system, but it is possible to derive an approximate way of obtaining
Sobolev gradients. First we note that Eq. (6.15) can be realized via

∇H1 Ede f = S ∗ ∇L2 Ede f , (6.16)

where the filter S is the impulse response of the operator (Id− λ∆)−1. In prac-
tice, we approximate S for chosen λ and filter size s by solving the following
system:

(Id− λ∆)S = v , (6.17)

where v is a one-hot vector that corresponds to a discretized Dirac impulse of
size s× s× s voxels, and ∆ is the Laplacian matrix discretized via a s-point
finite-difference stencil.

However, 3D convolutions might become prohibitively expensive for large
values of s. Thus we further approximate the Sobolev kernel S by three
separable 1D convolutions. To do so, we calculate the tensor higher-order SVD
decomposition [119] of S and retain only the first singular vector from each
resulting U matrix, and after normalization to unit sum obtain the 1D s-element
filters Sx, Sy and Sz. Note that as their entries are identical, the subscript is used
to denote the spatial direction of application. This is an approximation of S
with crucial performance advantages. The process of generating the separated
kernels is outlined in more details in Appendix A.
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Combined Energy

While any of the energy terms discussed in Section 6.3 can be combined into
Ereg with appropriate balancing weights, and the proposed Sobolev filters can
be additionally applied to regularize any energy, each of these components
entails an increase in runtime. As we aim for applications at interactive rates,
we favour two of the possible combinations.

If we are to use Sobolev gradient flow, a regularizer that imposes smooth
motion is sufficient, since the gradient descent will follow a coarse-to-fine
evolution that will first recover global motion and then add details. The
following energy drives the gradient flow in our non-rigid 3D reconstruction
method called SobolevFusion:

∇Ede f Sobolev = ∇H1(Edata + wsmoothEsmooth) . (6.18)

As the Sobolev gradient flow enforces globally consistent motion without
changing the global optimum [212], we do not need to impose additional
rigidity constraints or carry out level set re-initialization [129, 130].

However, if the kernel size s is too large, the execution time starts to lag
behind near-real-time rates. Therefore we propose another alternative, without
Sobolev regularization, which allows for incorporation of more priors into
the energy formulation. Due to the lack of pre-conditioning, we need to
impose rigidity constraints and ensure that the level set property is conserved
throughout the evolution. The energy below is used for the version of our
variational SDF evolution approach called KillingFusion:

∇Ede f Killing = ∇L2(Edata + wkEKilling + wlsElevel
set

) . (6.19)

As our experiments will demonstrate, the two strategies lead to similar
results. While Ede f Killing is slightly faster, Ede f Sobolev does not suffer from
over-smoothing effects and may yield reconstructions with better geometric
details.

Parameter Analysis

We use the Andrew-Chair full-loop sequence from Dou et al. [56] in order to
determine the most advantageous parameters in case of using Sobolev pre-
conditioning with Ede f Sobolev, shown in Fig. 6.3. Our model is robust with
regard to the parameter choice and achieves good results with a variety of
settings, of which we recommend neighbourhood size s = 7, filter parameter
λ = 0.1 and motion smoothness wsmooth = 0.2 as default.

A Sobolev filter size s = 3 is not sufficient to achieve satisfactory results.
While a larger kernel would impede the speed, the differences with s ≥ 7
become negligible.

The parameter λ has an effect on the convergence rate. We estimated
empirically that doubling its value reduces the number of iterations by 3-
8%. Moreover, motion regularity is essential to overcome noise. The ranges
λ ∈ [0.05; 0.4] and wsmooth ∈ [0.1; 0.5] yield high fidelity reconstructions, so we
set the default values as the midpoints of those intervals.
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(a) wls = 0 (b) wk = 0 (c) γ = 0 (d) γ = 1 (e) default

Figure 6.4: Parameter analysis for Ede f Killing: (a) no level set property preserva-
tion; (b) no motion regularization; (c) conventional motion smoothness without
a Killing component; (d) pure AKVF condition; (e) default setting: wls = 0.2,
wk = 0.5, γ = 0.1.

For the case without Sobolev regularization, we use the fast-motion Duck
sequence from the Deformable 3D Reconstruction Dataset of KillingFusion, since
the effect of the damped Killing regularizer is better observable under large
motion. As shown in Fig. 6.4 without level set property preservation the
model is not smooth and develops fine-scale artifacts where the property has
been violated during the evolution. If all motion regularizers are disabled,
the moving parts of the object, such as its wings and head, get destroyed
as more frames are fused inconsistently. If only Esmooth is used as motion
regularization, the reconstruction is somewhat smoother, but holes appear in
several regions due to discrepancies. Conversely, if no damping is applied to
the AKVF condition, the stronger rigidity prior causes the non-rigidly moving
wings to nearly vanish. Our default setting of wls = 0.2, wk = 0.5, γ = 0.1
yields a geometrically consistent reconstruction. We empirically determined
the suitable range for γ to be [0.05; 0.25].

In all tests we used a gradient descent step size α = 0.1.

Implementation

One of the main benefits of our correspondence-free variational energy formu-
lation is that it can be applied to each voxel independently, so all displacement
vector updated can be computed in parallel. We tested our implementations
on a laptop with an Nvidia Quadro K1100M GPU with 2 GB of global memory,
and on a desktop PC with an Nvidia Titan Black with 6 GB of memory. De-
pending on the bounding volume, we used a voxel size in the range 4-12 mm
in order to fit the entire regular voxel grid into GPU memory.

On the laptop we achieve 30 frames per second for 643 voxels with Ede f Sobolev

and for 803 voxels with Ede f Killing. On the PC the resolution is approximately
doubled, with real-time performance for 1283 and 1503 voxels respectively.
The runtime with Sobolev regularization can be improved if a smaller kernel
size is used, at the risk of certain loss of geometric quality. In particular, a
neighbourhood of s = 5 achieves similar speed to the L2-energy formulation.

Details on the fast implementation of separable Sobolev kernels are given in
Appendix A, alongside with the derivations of all formulas from this section.
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(a) Warped live frames. (b) Canonical model.

Figure 6.5: Non-rigid reconstruction from a single depth stream using the
damped AKVF regularizer. We obtain a geometrically consistent model after
a 360◦ loop under topological changes and large motion.

Figure 6.6: Warped live frames from a sequence of a person taking off their
hat. The resulting topological changes are handled seamlessly.

6.4 Evaluation

In this section we carry out various tests of the non-rigid reconstruction and
voxel correspondence components of the proposed formulation. We qualita-
tively and quantitatively compare to state-of-the-art methods. As mentioned,
the outputs of the two versions of our variational approach, i.e. with Sobolev
gradient flow, SobolevFusion, and with damped AKVF constraints, KillingFusion,
are similar. Thus we will show several examples of each, but include the results
of both systems only if they are notably different, and discuss the reasons
causing the difference.

Multiview Data

As a proof of concept, we consider the easier case of evolving a complete 3D
model before testing on single-stream sequences. For this purpose we run our
deformation framework on the MIT multiview mesh dataset [229], as done by
Zollhöfer et al. [261]. It contains several sequences of 150-200 meshes, fused
from multiview captures around people who are executing movements with
considerably large deformation. Hence it also permits quantitative evaluation.

Figure 6.16 shows our reconstructions throughout the sequences, together
with the alignment error indicating the deviation from the ground truth. We
started with an SDF initialized from the first mesh and continuously evolve
it towards the SDF corresponding to every next frame. While the error tends
to slightly increase over time, the effects of drift accumulation are not severe.
The model error remains below 2 mm throughout both sequences, with an
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Input KillingFusion SobolevFusion Input KillingFusion SobolevFusion

Figure 6.7: Comparison of Sobolev pre-conditioning versus damped AKVF
regularization: SobolevFusion achieves crisper geometric details, while Killing-
Fusion is slightly faster.

average of 1.3 mm in Bouncing and 0.9 mm in Swing. We included one of
the dancing girl sequences, as they are typically used in the literature to
demonstrate problems with topology changes when the dress touches the
legs [56], but observe no problem for KillingFusion. In particular, we notice no
larger artifacts near the dress edge than other areas of the model. The biggest
errors are, in fact, typically near the hands of the subjects. This is because the
used voxel size of 8 mm does not always manage to recover fine structures
like the fingers with absolute accuracy. Last but not least, we noticed that if
instead we deform the first SDF to every frame, more iterations are required to
converge, but the errors do not change significantly.

Topologial Changes and Fast Motion

A major advantage of our proposed formulation that stays entirely within the
TSDF representation is that it can inherently handle topological changes and
capture large deformations. Thus we first demonstrate these abilities.

Figures 6.1 and 6.5 each show a human turning in a complete 360◦ loop
while undergoing topology changes, such as interacting with a balloon or
splitting his hands from the hips. They have been reconstructed with the
Sobolev and the AKVF regularization respectively, proving that both variants
of our scheme are able to recover a complete 3D model in unconstrained
motion. Similarly, Figure 6.6 displays a person taking off their hat, captured
with the AKVF regularizer. This proves that both versions of our reconstruction
technique handle interacting subjects.

KillingFusion versus SobolevFusion

Similarly, Figure 6.7 directly, compares live frames of the two versions of our
variational formulation on a recording with interacting subjects. In addition to
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Figure 6.8: Comparison of warped live frames on a sequence with topologi-
cal changes. Our variational approach evolves into the correct geometric shape
between frames, while the correspondence-based VolumeDeform [98] is unable
to track the motion when the frog hands touch.

less over-smoothing of facial features and folds on clothes, the Sobolev variant
captures concavities better and defines sharper edges, both at the shape outline
and where surfaces touch. However, convolving the grid with 7-voxel Sobolev
kernels is more computationally demanding. Thus selecting which version of
our variational formulation to use is a trade-off between speed and level of
geometric detail.

Geometric Fidelity

Next, we compare our approach to a state-of-the-art non-rigid reconstruction
technique that relies on correspondences, VolumeDeform [98], whose authors
kindly provided their results on our recordings. In Fig. 6.8 we test on a frog
puppet whose arms touch and then split again. While both VolumeDeform
and our method are able to capture controlled motion, the third and fifth
displayed live frames show that VolumeDeform is unable to track the hands
when they touch and instead retains the canonical pose. In contrast, our
approach captures this kind of motion successfully.

In addition to these qualitative observations, we carry out quantitative
experiments. To be able to quantify results, we used mechanical toys that can
both deform and move autonomously. We first reconstructed them in their
static rest pose using a markerboard for external ground-truth pose estimation.
Then we recorded their non-rigid movement sequences starting from the rest
pose, which lets us evaluate the error in the final canonical-pose reconstruction.
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Ground Volume Killing Sobolev
truth Deform [98] Fusion Fusion

— 5.4 mm 3.9 mm 3.7 mm

— 4.2 mm 3.5 mm 3.1 mm

Figure 6.9: Geometric error on objects with ground-truth canonical models
from our the Deformable 3D Reconstruction Dataset. Both versions of our
variational formulation outperform VolumeDeform [98], as the mechanical toys
in the sequences exhibit fast motion. Errors are given below the respective
reconstruction.

Addressing the lack of single-stream reconstruction datasets acquired with real
sensors, we make our data publicly available1.

Figures 6.8 and 6.15 juxtapose our results with VolumeDeform [98]. Note
that the reconstructions are partial because these objects do not complete
360° loops. Both approaches perform well under general motion, such as
that of the Duck wings. However, the latter three Snoopy live frames show
that it cannot recover once a topological change occurs when the feet touch.
Furthermore, the rapid ear motion, making a full revolution from horizontal
to vertical position and back within 5 frames, cannot be captured and causes
artifacts in the final reconstruction, while our level-set based KillingFusion fully
evolves the surface even in such cases. These results indicate that SDFs are
better suited for overcoming large inter-frame motion and changing topology.

Figure 6.9 gives the CloudCompare model errors of the outputs of VolumeDe-
form [98] and both versions of our system. As our formulation is designed to
handle such challenging motions, its error is lower than that of VolumeDeform.
Moreover, the results show that the version with Sobolev gradient flow avoids
the over-smoothing and the occurrence of spurious artifacts caused by noise
that are present in the damped AKVF alternative.

1http://campar.in.tum.de/personal/slavcheva/deformable-dataset/index.html
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Figure 6.10: Comparison of warped live frames of the Umbrella sequence
from VolumeDeform [98]. Sobolev gradient flow yields similar or higher level
of detail as VolumeDeform without artifacts at the edge, while the damped
AKVF deformation leads to over-smoothing of thin elements such as the tip.

DynamicFusion [156] KillingFusion SobolevFusion

Figure 6.11: Canonical model comparison on the full-loop Squeeze sequence
from DynamicFusion [156]. SobolevFusion recovers the fine structures on the
face better than KillingFusion [193].

Public Data

While there are no available single-stream non-rigid reconstruction datasets
with ground-truth data, some authors have made their recordings publicly
available.

In Figure 6.10 we test on the Umbrella sequence from VolumeDeform [98].
Our method achieves a similar, or even higher, level of detail as VolumeDeform,
without creating spurious elements around the edge or fusing the strap into
the umbrella. Furthermore, we again observe that the Sobolev pre-conditioning
scheme better captures fine structures, such as the umbrella tip, while the
damped AKVF approach with level set preservation constraint tends to over-
smooth such geometric details.

Next, we test on the Boxing sequence of VolumeDeform [98] in Figure 6.12.
KillingFusion achieves similar quality. Notably, the second warped frame
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Current warp into the live frame Final canonical model
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Figure 6.12: Comparison on the Boxing sequence from VolumeDeform [98].
Our depth-only KillingFusion outputs reconstructions of comparable fidelity
to VolumeDeform which additionally relies on the colour frames for SIFT
matching. In particular, our canonical model exhibits less artifacts where larger
motion occurred, e.g. around the neck which bends more than 90°. Moreover,
the marked regions of our live frames show that KillingFusion follows the
folds of the neck more naturally.

demonstrates that our SDFs deform to the geometry more naturally: our
warped model replicates the skin folding around the neck, while the model of
VolumeDeform does not bend further than a certain extent, causing artifacts in
the final reconstruction as well. This is similar to the behaviour we observed on
our own rapid motion recordings. In conclusion, another dataset also indicates
that level set evolution allows to capture larger motion better than mesh-based
techniques.

We also run KillingFusion on the 360° sequences used in Dou et al.’s offline
non-rigid bundle adjustment paper [56] and in DynamicFusion [156], namely
Andrew-Chair in Figure 6.13 and Squeeze in Figure 6.11. As we do not have the
authors’ resulting meshes, we show snapshots available from the publications.
KillingFusion manages to recover a complete model of comparable fidelity
to the other techniques. In particular, despite the coarse voxel resolution,
it preserves fine-scale details such as noses, ears and folds on shirts after a
full loop around the subject. Moreover, we again notice that SobolevFusion
captures details better, as, for instance, the facial features are much more
conspicuous than for KillingFusion.
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Figure 6.13: Comparison to the offline bundle adjustment method of Dou et
al. [56]: our KillingFusion achieves similar quality at real time, preserving fine
structures, such as shirt folds and the nose, after a full loop around the subject.

Large Motion

Even though many of the sequences used so far exhibit large motion, we
simulate an extreme case of a lower frame-rate sensor by taking every nth

frame from 360◦ sequences. To this end we use the slow-motion Andrew-Chair
from Dou et al. [56] and the fast Alex sequence, as displayed in Figure 6.14.

Both versions of our approach manage well with frequency decresed up to
5 times. Naturally, when less frames are fused, the cumulative TSDF is noisier.
However, there are differences in the geometric fidelity that are not only due
to noise. In particular, when only every 10th frame is used, the reconstruction
is still consistent for the slower Andrew-Chair sequence, while the faster Alex
sequence starts creating artifacts due to misaligned geometry. Moreover, due
to improved convergence of the Sobolev scheme, it manages to recover even
larger motion than KillingFusion. This can be concluded from the last two
columns of Figure 6.14, as the KillingFusion result for Alex at 10-frame speedup
is similar to that of SobolevFusion for 15-frame speedup.

Last but not least, we observed that SobolevFusion requires up to 15% less
iterations to converge than KillingFusion. While a single Sobolev iteration with
a 73 kernel is slower than a single Killing iteration, the difference in numbers
of iterations make the approaches comparable in terms of processing time. It is
likely that KillingFusion is still slightly faster, but the ease of implementation of
the SobolevFusion energy that consists of fewer terms may be more appealing.
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every 3rd every 5th every 10th every 15th every 10th

SobolevFusion KillingFusion

Figure 6.14: Lower frame-rate test. We use only every nth frame, as indicated
under the results. SobolevFusion outputs high-fidelity reconstructions using
only 20% of the frames. For slow motion, even less frames give good results,
while for large motion some of the geometry cannot be recovered, resulting
in artifacts. The right-most columns show the KillingFusion result for every
10th frame, exhibiting similar degradation properties as SobolevFusion does
for every 15th frame due to its better convergence.

6.5 Conclusion

We have developed a technique for non-rigid 3D reconstruction of surfaces
undergoing free motion, including fast movements, changing topology and
interacting subjects. Our variational energy formulation allows to determine
dense deformation flow field updates without correspondence search and to
avoid repeated conversion between mesh and SDF representations. Thanks to
the theories of two mathematicians, Killing and Sobolev, we have proposed
several regularization alternatives that ensure that a geometrically consistent
reconstruction is obtained. A variety of qualitative and quantitative examples
have shown that KillingFusion and SobolevFusion can recover the geometry
of objects undergoing diverse kinds of deformations. Furthermore, we have
contributed a quantitative evaluation dataset, hoping to shift the focus in non-
rigid reconstruction from qualitative assessments, which may sometimes be
misleading, to quantitative tests that put different techniques in front of the
same challenges.

As the scenarios featuring fast motion, interactions and changing topology
are traditionally challenging for other state-of-the-art methods, we believe
that our contribution is a step forward towards making real-time capture of
unconstrained motion and 3D avatar creation truly available to the general
user.

However, one of the limitations of our correspondence-free scheme is that
it is unable to track correspondences, similar to other methods based on the
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variational level set method [169]. If the objective is obtaining an accurate 3D
model of the object that was captured, our technique is absolutely sufficient.
Nevertheless, some applications require correspondence information, such as
texture transfer, character animation or 4D video compression [44]. As we
believe that SDF evolution is better suited to capturing topological changes and
fast motion than correspondence-based deformation techniques, in the next
chapter we set out to recover correspondences after the evolution has taken
place.
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Figure 6.15: Comparison between KillingFusion and VolumeDeform [98]
under rapid motion and topological changes. Duck’s wings and Snoopy’s ears
make a complete up-down revolution within 5 frames, and Snoopy’s feet touch
and separate several times. While a mesh-based method does not handle such
motions, our SDF-based approach fully captures the deformations. This is
reflected in less artifacts in the final model. Live frames are in chronological
order, the objects do not complete 360° loops. Red is saturated at 1 cm in all
error plots.
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Figure 6.16: Non-rigid registration of complete 3D shapes from the MIT
dataset [229]. Starting with an initial SDF, we gradually evolve it to match
every next model in the sequence. Each pair shows our reconstruction along
with its corresponding error plot, where red is saturated at 1 cm deviation.
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7
Voxel Correspondence via
Laplacian Eigenfunctions

So far we have created a technique that reconstructs non-rigidly moving
objects using our implicit-to-implicit energy. It applies gradient flow in order
to evolve the current input towards the canonical-pose SDF and subsequently
fuse its new data into it. However, the underlying variational level set method
entails loss of data association, which might be needed for other applications.

To recover correspondences, we study the properties of the lowest-frequency
Laplacian eigenfunctions of an SDF, as they are known to encode natural
deformation patterns that the underlying shape can undergo. Therefore we
will not use the implicit-to-implicit energy in this chapter, but will stay within
the SDF representation and develop techniques that can be used in addition to
the evolution energy.

For moderate motions we are able to obtain implicit associations via an ad-
ditional data term that imposes voxel-wise eigenfunction alignment. This is not
sufficient for larger motions, so we explicitly estimate voxel correspondences
via signature matching of lower-dimensional embeddings of the eigenfunctions.

7.1 Introduction

Real-world scenes contain shapes that move and interact non-rigidly over time,
i.e. they inhabit a 4D spatio-temporal domain. Multi-camera systems are able
to recover complete, but independent 3D models of the scenes at isolated
time instances [189]. However, these are not consistent over time as they lack
motion information. Thus in order to enable tasks such as performance capture,
primitives on a template 3D surface have to be tracked across frames of such
motion sequences, following a deformation model. This challenging problem
has numerous applications, among which virtual reality, 3D avatar animation,
4D video compression and special effects.

103



Chapter 7: Voxel Correspondence via Laplacian Eigenfunctions

(a) Texture after plain SDF evolution.

(b) Texture after voxel matching.

Figure 7.1: Comparison of texture obtained after non-rigid SDF evolution:
(a) colours would diffuse into each other if evolved with the same warp field
as the SDFs, but (b) become consistent if Laplacian eigenfunction signatures
are matched for voxel correspondence.

One major difficulty is capturing non-rigid motion involving topological
changes, e.g. when subjects interact, or when loose clothing touches or splits
from other surfaces. While triangular meshes have become a common discrete
surface representation for motion capture, they require tedious handling for
such situations [250].

On the other hand, level set methods [163, 164] inherently manage changing
topology without need for additional processing. We have experienced this in
the previous chapter, where multiple examples show that KillingFusion and
SobolevFusion cope with such motion seamlessly. Variants of the variational
level set framework are widely used in shape analysis due to the ease they
provide for calculating geometric properties, such as derivatives, normals and
curvature, over a fixed Cartesian grid without parameterization. However,
the underlying level set evolution involves an incremental iterative numerical
scheme, in which correspondences are lost [169, 242], as can be seen by the
colour diffusion in Figure 7.1a. This limits applications to reconstruction and
modelling, but prevents tasks that require tracking data associated with the
surface, such as texture mapping and identity transfer.
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To remedy this discrepancy, researchers have investigated hybrid struc-
tures combining the advantages of both meshes and level sets. For instance,
SpringLS [139, 140] provide interoperability between the two representations,
allowing the user to interpret geometry in the form that is more beneficial at
the current step of an algorithm.

Other authors adhere to the mesh representation and use spectral methods
based on the Laplace-Beltrami operator to calculate volumetric descriptors,
which are matched to identify corresponding interest points across shapes.
These include the volumetric heat kernel signature [172] and its scale-invariant
follow-up versions [135].

Other approaches favour the level set framework. The Particle Level Set [63]
and the Marker Level Set [149, 150] methods apply the estimated motion not
only to the volumetric grid, but also to a set of particles attached to the surface,
and subsequently correct for their locations. Similarly, Pons et al. [169] maintain
explicit backward correspondences to the reference shape and advect them
using a system of coupled Eulerian partial differential equations.

While some of these techniques demonstrate successful results on synthetic
examples or in scenarios where the level set equations are analytically defined,
they all entail some overhead for representation conversion, descriptor match-
ing, or additional equation handling. To the best of our knowledge, no method
has managed to integrate correspondence tracking within the level set equation
itself. This is largely due to the conflicting objectives of an evolving level set
energy versus direct explicit correspondence matching.

Our objective in this chapter is to develop techniques which allows to
propagate volumetric correspondences together with or after variational SDF evolution.
We propose to utilize the lowest-frequency eigenfunctions of the Laplacian
matrices of the TSDFs, as they encode the inherent deformation patterns of the
shapes. First, we search for implicit correspondences via an eigencolour data term
that aligns these representations [194]. As it is robust only up to moderate
movements, we suggest an explicit correspondence alternative, in which we match
signatures of lower-dimensional embeddings of the eigenfunctions [195].

While this strategy for posterior correspondence estimation is antithetical
to traditional approaches, which use data association in order to perform the
non-rigid warping, we reckon that it is the most suitable way to incorporate
correspondence into the SDF evolution scheme. As it inherently handles
topological changes, which occur whenever objects interact, it paves the way
towards capture of arbitrary everyday scenes.

7.2 Related Work

Deformable models are commonly used for 3D reconstruction, registration,
simulation, animation and motion tracking [140]. Meshes and level sets are
the two representations that are most often employed for manipulating the 3D
data at hand. Each has advantages in certain applications, e.g. meshes are more
suitable for registration, where correspondences between vertices need to be
estimated [20, 21, 217], while level sets are more often utilized in segmentation,
where the boundary of a particular structure is determined by a propagating
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front [163]. However, for tasks which need to combine the two representations,
there either has to be an explicit structure that can be cast into either a mesh or
a level set [140], or the solution needs to implicitly provide the data associated
with the other representation.

Spectral descriptors Spectral decomposition methods based on the Laplace-
Beltrami operator on meshes have achieved remarkable results for non-rigid
full and partial shape matching [24, 133, 134, 175, 210]. They model deforma-
tions as approximate isometries of the object boundary, i.e. its surface. Inspired
by this success, researchers have looked into volume isometries, which are more
natural to be preserved during motion. This brought about the volumetric heat
kernel signatures [172], volumetric maximally stable extremal regions [135],
and a variety of other signatures based on Laplace-Beltrami eigendecomposi-
tion [173, 181, 182]. They typically take an arbitrarily big subset of the operator
eigenfunctions in order to build a descriptor. Subsequently, quantization and
matching are required in order to determine corresponding regions for the
applications of non-rigid shape retrieval and classification. However, examples
are limited to mainly synthetic noise-free meshes.

Hybrid structures While the spectral descriptors are computed from a mesh
representation of the shape, some authors avoid it due to the difficulty of
discretizing equations on polygonal grids and the tedious calculation of projec-
tions onto the discretized surface for handling properties such as gradients [14].
Instead, they prefer to use the level set framework [164, 190, 223]. It, however,
does not preserve correspondences and is therefore ill-suited for tasks such
as surface registration and motion tracking. Pons et al. [169] were among
the first to propose a way to maintain correspondences during the level set
evolution. They use a system of coupled PDEs in order to track backward
correspondences to the initial surface position. Their framework handles large
deformations and topological changes, but is based on analytically defined
motion equations of curvature-dependent speed.

The Particle Level Set method [63] provides a similar scheme, in which
a set of particles are associated with the initial surface. They are advected
together with the level set evolution, and then processed for addition and
deletion where topological changes occurred. Moreover, at each iteration, a
correction step has to be done to ensure that the particles are still aligned with
the surface. This is a complicated procedure, which might take hundreds of
seconds. Therefore, speedups and modifications followed, such as the Marker
Level Set [149, 150], which is still far from interactive frame rates.

More recently, SpringLS have been proposed to offer direct interoperability
between meshes and level sets [139, 140]. They define a level set as a constella-
tion of triangular surface elements, which are loosely connected via structures
with the physical properties of springs, so that rigidity constraints can be
applied. However, the processing speed still remains at the order of several
minutes, while accuracy is only slightly better than that of Pons et al. [169].
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#30

(a) Reference.

#31

(b) Without Eeig.

#31

(c) With Eeig.

Figure 7.2: Texture transfer from frame #30 to frame #31 of the Swing se-
quence of the MIT dataset [229]: (a) reference texture; (b) colour propagated
with Ede f , showing diffusion around moving parts; (c) colour propagated with
Ede f combined with the eigencolouring term Eeig.

Voxel correspondence As the graph Laplacian of a shape is invariant to iso-
metric deformations [128, 174], correspondence can be estimated after warping.
The approach of Mateus et al. [147] matches voxel sets by comparing Laplacian
eigenfunction signatures and reducing the problem to rigid alignment in a
lower-dimensional embedded space. We modify the technique to handle SDFs
of partial shapes, so that it can be used in non-rigid fusion.

7.3 Laplacian Eigencolourings

We take inspiration in part by the Laplace-Beltrami operator, whose spectrum
is an isometry invariant of the shape, independent of its spatial position or
parameterization, and is even dubbed to "understand" geometry [128, 174].
In analogy to physical vibration models, it is indicative of the trajectories in
which a surface is able to deform [128]. The Laplace-Beltrami is an operator
associated with the surface, i.e. the volume boundary of an object, and therefore
convenient methods for calculating it from a mesh representation exist. While
it is invariant to isometric deformations [182], it is more natural for the volume
to be preserved during articulated motion. However, the volumetric Laplacian
shares similar invariance properties only if a very fine grid with appropriate
boundary conditions is used, which might be prohibitively expensive for
practical 3D scenarios [182]. Nevertheless, it has been shown that the Laplacian
of a voxel representation of a shape is able to handle its articulations [147].

Therefore, we propose to stay within the level set framework, where objects
are represented via voxel grids. We utilize the lower-frequency eigenfunctions
of the Laplacian, corresponding to its smallest eigenvalues, as they represent
the base shape (e.g. a human body) and capture information about its natural
non-rigid motion patterns, while the higher-frequency ones account for details
(limbs, wrinkles) [128, 174]. This is visualized in Figure 7.9, where the lower-
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Figure 7.3: Lowest-frequency Θ1-eigencolourings of several poses of the
same subject. The contours form similar patterns in all cases and saturate
around the skirt folds, which is the most motile region.

frequency eigenfunctions form patterns around the most motile body parts,
while the higher-frequency eigenfunctions appear almost as noise. We include
the eigenfunctions directly as an energy term in a variational framework. Thus,
without explicitly tracking correspondences, we are able to implicitly infer
them. This is demonstrated through texture transfer during level set evolution,
as shown in Figure 7.2 and the results that follow: if we store an RGB grid
containing the colour of each voxel and warp it in the same way as the SDF,
colours would diffuse into each other, while more carefully tailored techniques
result in consistent textures.

As the eigenfunction representation results in a colouring of the voxels,
which describe the natural deformation modes of the shape, we also call it
eigencolouring. To build it we first calculate the normalized graph Laplacian of
the respective voxel grid. Let the number of voxels in the narrow band that is
not truncated to ±1 be l - we refer to them as occupied in the current context.
This is the main difference to other spectral methods, which typically consider
the entire shape. The adjacency matrix W of size l × l has an entry 1 when
adjacent voxels are occupied, and 0 elsewhere. Note that the diagonal entries
are 0, as a voxel is not adjacent to itself. The degree matrix D contains the
degree of each voxel, i.e. the row-wise sums of elements in W, on its diagonal.
Then the normalized Laplacian is [147]:

L = D−
1
2 (D−W)D−

1
2 . (7.1)

Next, we calculate its eigendecomposition L = UΛU>. The full spectrum
of the Laplacian (or rather, the Laplace-Beltrami) reflects all possible ways in
which the shape can deform isometrically. However, since real-world data
contains noise, we discard high-frequency eigenfunctions. Instead, we want
to capture only the most significant characteristics of the shape, so we retain
only the K ≤ 20 eigenfunctions with smallest non-zero eigenvalues [147]. Thus
we obtain the matrix UK, which is a lower-dimensional embedding of the
shape, whose columns are the K retained eigenvectors, while its l rows are the
K-dimensional coordinates of the embedded shape.

As each eigenfunction is an l-element vector, we pad it to the size of
the original TSDF and de-linearize its indices, obtaining Θe which is the
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eigencolouring of the volume for its eth smallest non-zero eigenvalue. It is a
scalar field of the same resolution as the TSDF and if mapped to colour values
gives a colour pattern distinctive for the shape, as shown in Figure 7.3. We pad
with the smallest entry of the eigenfunction so that the gradient is not reversed.
Furthermore, we normalize the values to the interval [−1; 1] similar to a TSDF.

Given two TSDFs which we want to align, φinput and φtarget, we expect their
K lowest-frequency eigencolourings to be similar, since they stem from the
same shape in potentially different poses. However, there is no guarantee that
the eigenvalues are reliably ordered in the two embeddings, so we need to
determine a K × K permutation matrix P that aligns the eigenspaces of our
two shapes. In addition, due to sign ambiguity, we have to determine a sign
matrix M, resulting in an overall transformation T = MP.

In case we use only K = 1 eigenfunction, it always corresponds to the
smallest non-trivial eigenvalue, so there is no ambiguity. For larger K, we
determine the transformation T as explained in Section 7.4 and re-order the
embeddings respectively. Finally, we integrate the Laplacian eigencolourings
term into our variational formulation:

Eeig(Ψ) =
1
2 ∑

x,y,z

K

∑
t=1

(
Θinput(x + u, y + v, z + w)−Θtarget(x, y, z)

)2 . (7.2)

The complete non-rigid evolution energy then becomes:

Ede f 2(Ψ) = Edata(Ψ) + weigEeig(Ψ) + wregEreg(Ψ) . (7.3)

As we view the eigencolourings term as another data term, we use weig = 1 in
our experiments.

Figuresc 7.7 and 7.8 show colour transfer using correspondences estimated
implicitly using Ede f 2. They demonstrate that the energy is robust for moderate
motion such as a squat, but cannot handle larger deformations such as the
turning dancing girl. Thus we turn to explicit voxel matching next.

7.4 Voxel Matching

The transformation T discussed in the previous section relates the reduced
embeddings of the two shapes as follows:

(UK
input)

> = T(UK
target)

> . (7.4)

To calculate it, we seek an optimal assignment between their column eigen-
vectors ui

target and uj
input, i, j ∈ {1, ..., K}. The approach of Mateus et al. [147]

suggests to construct histograms from these eigenvectors, since they are in-
variant to the value ordering and the number of entries l, and consider them
as signatures of the eigenfunctions. We thus build a 200-bin histogram hist(·)
from each vector and store the similarity of each eigenvector pair as the `1
histogram difference in a score matrix A:

Ai,j = min(||hist(ui
target)− hist(±uj

input)||1) . (7.5)

109



Chapter 7: Voxel Correspondence via Laplacian Eigenfunctions

Figure 7.4: Complete non-rigid fusion pipeline. First we generate the projec-
tive TSDF φi

proj of an input RGB-D pair from the current camera pose estimate.

Then we warp it towards the current canonical model TSDF φi−1
model using our

variational minimization scheme, obtaining φi
warped. Next, we estimate voxel

correspondences between φi
proj and φi

warped in order to transfer colour to the

warped TSDF. Afterwards we fuse φi
warped into the canonical model, obtaining

its updated state φi
model . Finally, we run a backward warp from φi

model to φi
proj

to visualize the live frame to the user.

Additionally, a matrix M′ stores the sign of ±uj
input that yielded the lower

score.
This is an assignment problem between eigenfunction signatures, which we

solve for the lowest cost via the Munkres algorithm [72] over A. We then build
the permutation matrix P according to its output, and look up M′ for the ap-
propriate sign in M. We thus obtain the sought transformation matrix T = MP
and use it to estimate correspondence, since according to Umeyama’s theorem,
it can be found through alignment of the two Laplacian eigenspaces [225].
The correspondences between the embeddings are transferred to the voxels of
the original shapes via nearest neighbour search between the embedded- and
voxel-coordinates. If a near-surface voxel is assigned to an off-surface voxel,
we discard the match.

After obtaining initial matches, we use the Weiszfeld algorithm [235] to
determine the geometric median in a 3× 3× 3 neighbourhood in order to retain
only the most likely correspondence. This step is crucial as we are dealing
with partial TSDFs, whose Laplacian eigenfunctions might carry information
about non-overlapping regions.

Implementation

We use the described strategy to transfer colour from an initial projective TSDF
to its warped counterpart. In this way we are able to obtain a reliably coloured
cumulative model following the complete pipeline described in Figure 7.4.

As parallelization of the voxel matching procedure is not straightforward,
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7.5 Evaluation

i i + 1 i + 2 i + 3 i + 5 i + 10 i + 15

Figure 7.5: Colour transfer from reference frame i to target frame i + n. With
increasing distance the amount of transferred colour decreases, but remains
correct thanks to our robust voxel correspondence scheme.

in practice we run it on the CPU while the next frame(s) are being warped
on the GPU. Depending on volume size, it takes 58-500 ms per frame on a
2.80 GHz Intel Core i7 CPU. When done, it continues with the latest warped
frame, effectively avoiding temporal overhead.

7.5 Evaluation

To evaluate the ability of our system to determine correspondences, we look at
texture transfer. If voxel matches are accurately determined, colours will not
diffuse into each other over time.

First, we assess the amount of colour that can be transferred depending
on the difference in pose. To this end we test on the richly textured Minion
sequence from VolumeDeform [98]. Figure 7.5 shows the results when transfer-
ring colour from frame i to the next one, as well as to frames separated by a
larger distance. The amount of texture that is being recovered decreases with
the increasing pose difference, but our scheme manages to determine stable
matches even when views are 15 frames apart. Furthermore, our procedure for
match rejection makes sure that only reliable correspondences are returned,
and thus there is no transfer of incorrect colours.

Fig. 7.1 demonstrates results on a full 360◦ loop sequence that was used
in the previous chapter as well. When the RGB values are propagated with
the same warp field as the evolving TSDF, the colours on the resulting model
diffuse into each other during the interpolation process. In particular, since
there is no guarantee that surface voxels remain on the surface during evolution,
colours mix not only with their neighbouring ones, but also with the colour-less
off-surface voxels, resulting in the observed smoky effect. One possibility to
counteract this problem is to propagate colours along the normal direction, but
the issue of colour diffusion will still persist.

On the other hand, our voxel matching scheme is able to recover a much
clearer texture. Colours on the front are rather crisp, since the difference
between the canonical pose and the initial frames is not too large and thus
matching is very exact. The back shows more mixed colours, as the poses
become more distant and matching becomes more challenging, but the result
remains visually pleasing.

Note that our proposed technique is a first solution to combine explicit
correspondence information with level set evolution. Thus the main objective
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i i + 5 i + 10

Figure 7.6: Densifying voxel correspondence based on Laplacian eigenfunc-
tion signature matching via expectation-maximization [147].

has been to reliably colour the reconstructions, rather than to estimate a dense
set of correspondences. Nevertheless, we carry out quantitative evaluation on
the yt sequence with Vicon markers used in BodyFusion [247], which features
a human in motion.

We observed that our matching procedure typically returns a low error
for markers on the torso of the subject, which is a region where mesh-based
correspondences often suffer from sliding. However, since the lower-frequency
Laplacian eigenfunctions do not always capture limbs, it is often not possible
to find correspondences for markers located on the arms. As 12 out of the 18
Vicon markers are placed on the subject’s arms, this dataset is not optimally
suited for our method, which on average returns matches for half the mark-
ers per frame. Yet, our mean `1 error of 7.7 cm over the entire sequence is
comparable to that of other single-stream methods that do not employ priors,
namely 4.4 cm for DynamicFusion [156] and 3.7 cm for VolumeDeform [98].
A reason for the bigger error is that our method accumulates a higher dis-
cretizaiton error, since it always stays in voxel space, while others explicitly
determine correspondences for deformation field calculation. Further, Table 1
of BodyFusion [247] allows us to compare the ratios of maximum to average
error on the Vicon dataset: 2.0 for BodyFusion, 2.9 for DynamicFusion, 2.4
for VolumeDeform and 2.2 for our approach. This means that for Dynamic-
Fusion the maximum error deviates most from the mean, while the error of
the skeleton-based BodyFusion stays most uniform throughout the sequence.
Our ratio is outperformed only by that of BodyFusion, i.e. our algorithm is
consistent over all frames and is independent of the amount of motion.

Finally, we devise another quantitative test for voxel correspondences,
which allows us to test on locations that are not on limbs. For this purpose
we detect SIFT features [138] on well-textured sequences, such as the Minion
from VolumeDeform [98]. Next, we match them across frames using a very
strict outlier rejection policy, so that only very accurate matches are retained.
On average we kept 26 SIFT matches per frame pair. Then we carried out our
voxel matching scheme as before and compared the 3D locations of the found
correspondences to the back-projected SIFT keypoints, obtaining an average `1
error of 7.2 cm. Since this result is close to that on the Vicon dataset, it confirms
the performance of our system. This is a promising result for the incorporation
of explicit correspondences into implicit level set frameworks.
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Figure 7.7: Texture transfer via the implicit correspondence energy on the
Squat sequence of the MIT dataset [229]. When there is no abrupt motion,
Eeig is sufficient to preserve a stable texture.

7.6 Conclusion

We have devised two voxel correspondence estimation strategies over SDFs of
partial shapes, allowing realistic colouring of the obtained models when used
in one of our variational SDF evolution non-rigid reconstruction schemes. Our
voxel correspondence techniques allow us to stay within the SDF representation
by considering the Laplacian of the shape represented in the narrow band of the
voxel grid. We rely on the lowest-frequency Laplacian eigenfunctions, as they
encode information about the natural deformation patterns, and consequently
the non-rigid isometries, of the underlying shape. We have demonstrated the
ability of the resulting methods to reduce colour diffusion and preserve texture
during level set evolution, while keeping geometric accuracy at the same order
of magnitude as our original techniques. These results further increase our
confidence that unconstrained performance capture and 3D avatar creation
under large motion will soon be achievable goals.
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Figure 7.8: Texture transfer via the implicit correspondence energy on the
Swing sequence of the MIT dataset [229]. Texture diffusion occurs under this
larger motion as blue replaces purple on the skirt, and the geometric quality
suffers as we cannot recover the arm.

114



7.6 Conclusion

Base shape. λ1 λ2 λ3 λ4 λ5 λ20

λ50 λ100 λlast−100 λlast−50 λlast−20 λlast−10 λlast

Figure 7.9: Laplacian eigenfunction visualization. λ1 corresponds to the
smallest eigenvalue, λ2 to the second-smallest, etc.. λlast denotes the largest
eigenvalue, out of a total of 3151 in this case, while λlast−10 is the 10th largest
and so on. The contours indicate that the smaller eigenvalues, corresponding
to the lower-frequency eigenfunctions, capture more general and significant
characteristics of the shape. On the other hand, the larger eigenvalues are asso-
ciated with eigenfunctions containing a lot of high-frequency noise. Therefore,
we choose the smallest eigenvalue for our framework.
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8
Conclusion

Here we will sum up our method and findings, analyze their advantages and
limitations, and consequently propose avenues for future research.

8.1 Summary

We have developed an implicit-to-implicit correspondence-free alignment
scheme between pairs of SDFs. Initially we used it for 6 DoF camera pose
estimation and refinement in the context of small- to medium-scale object
reconstruction. Then we extended this approach to larger spaces and inside-
out SLAM-like scanning trajectories via a limited-extent volume strategy that
only takes into account the most geometrically distinctive areas of the scene.
These approaches lead to increased tracking accuracy and reconstructed model
precision compared to other methods. Finally, we extended the technique to
non-rigidly moving objects, where the focus was on adding rigidity constraints
that make sure that the deformable motion can be factored out so that the
new data can be incremented onto the canonical-pose reconstruction in a con-
sistent manner. We proposed two strategies for this purpose: one enforces
the underlying deformation field to be approximately Killing, thus generating
locally isometric motions; and another one that follows gradient flow in the
smoother Sobolev space, which favours global deformations rather than repli-
cating smaller-scale details and noise. The biggest advantage of our non-rigid
scheme over state-of-the-art approaches is the SDF representation used in all
parts of the pipeline, which ensures that topological changes and fast motion
are inherently handled without additional processing. As correspondence in-
formation is lost in the process, we proposed two strategies to recover it using
the eigenfunctions of the shape Laplacian, since they are known to encode the
deformation patterns that the objects can undergo. Along all of these steps we
carried out extensive qualitative and quantitative evaluations, contributing new
public datasets when we identified missing functionalities of existing ones.
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8.2 Limitations and Future Work

While the main focus of our work has been to develop the concepts and
methods that tackle open challenges in computer vision, more engineering
effort has to be made should our approaches be applied at scale. For instance,
while the LEV scheme ensures that camera pose estimation can be done with
a low runtime and memory footprint, volumetric fusion in our approaches is
still done in regular voxel grids. It should be replaced with an efficient data
structure that reduces storage requirements, such as voxel hashing [108, 161] or
a hierarchical grid [93, 109]. Another difference of these schemes to ours is
that we utilize the truncated ±1 values of the SDF in the alignment process,
while others designate them as empty space and completely disregard them.
Therefore a straightforward substitution of the data structures may not be
sufficient, and modifications will be required to achieve the same accuracy and
wide convergence basin.

A memory-efficient alternative that we have actually explored is surfel-based
fusion in our patch-based deformable reconstruction framework described in
Appendix B. Since surfels can be viewed as points with associated attributed,
they are nearly as efficient as a point cloud in terms of storage. While the
proposed framework achieves good results on a variety of public sequences,
its quality is limited by the dependence on surfel-related parameters, while the
speed is still behind real-time capabilities due to the employed expectation-
maximization procedure. Nevertheless, the results are very promising, indi-
cating that surfel-based non-rigid reconstruction is an interesting direction for
future research.

Finally, the topic of recovering correspondence in the variational level set
framework offers many opportunities for further exploration. As already dis-
cussed, in order to obtain dense correspondence, we can carry out an expectation-
maximization procedure over the spectral matches. It is currently not feasible
in real time, therefore possible adaptations of existing GPU-based implementa-
tions [213] have to be investigated. Alternatively, we could learn a mapping
from sparse to dense fields [245], or even learn correspondences in the spectral
embedding [54]. If we are to adhere to our Laplacian eigenfunction strategy, it
would benefit from segmentation in the case of multiple objects, so that we can
compute a separate, more representative Laplacian matrix for each one, and
consequently improve the accuracy of our matches.

Non-rigid loop closure is an extremely interesting task for improving the
quality and robustness of non-rigid reconstruction. It can be of tremendous
help in order to mitigate errors caused by improper registration due to erratic
motion, for instance. Currently mainly subject-specific approaches exist [185],
but general techniques would be incredibly valuable.
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8.3 Epilogue

Signed distance fields have proven to be an omnipotent tool throughout this
thesis. We believe that correspondence-free approaches are extremely powerful,
especially for capturing dynamic scenes that feature interactions and topology
changes. Although the exciting journey taken to reach these last lines of the
dissertation is now coming to an end, we believe that the developed method-
ology and obtained results will serve as a stepping stone for future research
and, ultimately, for making precise, real-time, realistic 3D reconstruction of any
scene possible.
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A
Mathematical Derivations

Here we give the derivations of equations given in the main body of the
dissertation. While these derivations are not essential for understanding the
presented methods, we provide them for completeness.

Taylor expansion and linear system for rigid camera
tracking

First we derive the Taylor expansion of Egeom from Eq. (4.1), which leads to the
presented results in Eq. (4.5)-(4.9).

Consider the Jacobian with respect to exponential coordinates ξ:

∇ξ φ =
dφ

dξ
=

dφ

dX
dX
dξ

= ∇x φ

1 0 0 0 Y3 −Y2
0 1 0 −Y3 0 Y1
0 0 1 Y2 −Y1 0

 =

= ∇x φ
(
I3×3 | −Y×

)
,

(A.1)

where X = Y(ξ) is the result of applying the transformation corresponding to
ξ to the 3D point Y, and I3×3 is the 3× 3 identity matrix.

Next, we apply first-order Taylor expansion to an SDF around the current
pose estimate:

φ(ξ) = φ
(

ξk
)
+∇ξ φ

(
ξk
) (

ξ − ξk
)
=

= φ
(

ξk
)
−∇ξ φ

(
ξk
)

ξk +∇ξ φ
(

ξk
)

ξ .
(A.2)

Now we substitute the result from the Taylor expansion into the formula
for Egeom:
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Egeom(ξ) =
1
2 ∑

voxels

(
φre f erence − φcurrent (ξ)

)2
=

=
1
2 ∑

voxels

(
φre f erence − φcurrent

(
ξk
)
+∇ξ φcurrent

(
ξk
)

ξk −∇ξ φcurrent

(
ξk
)

ξ
)2

=

=
1
2 ∑

voxels

((
φre f erence − φcurrent

(
ξk
)
+∇ξ φcurrent

(
ξk
)

ξk
)2

+

+ ξ>∇>ξ φcurrent

(
ξk
)
∇ξ φcurrent

(
ξk
)

ξ−

− 2
(

φre f erence − φcurrent

(
ξk
)
+∇ξ φcurrent

(
ξk
)

ξk
)
∇ξ φcurrent

(
ξk
)

ξ

)
.

(A.3)

Next, we use the obtained expression for the derivative:

dEgeom

dξ
=

1
2 ∑

voxels

(
0 + 2∇>ξ φcurrent

(
ξk
)
∇ξ φcurrent

(
ξk
)

ξ−

− 2
(

φre f erence − φcurrent

(
ξk
)
+∇ξ φcurrent

(
ξk
)

ξk
)
∇>ξ φcurrent

(
ξk
))

=

= ∑
voxels

(
∇>ξ φcurrent

(
ξk
)
∇ξ φcurrent

(
ξk
)

ξ−

−
(

φre f erence − φcurrent

(
ξk
)
+∇ξ φcurrent

(
ξk
)

ξk
)
∇>ξ φcurrent

(
ξk
))

.

(A.4)

Now we define the following matrix A ∈ R6×6 and vector b ∈ R6×1:

A = ∑
voxels

(
∇>ξ φcurrent

(
ξk
)
∇ξ φcurrent

(
ξk
))

, (A.5)

b = ∑
voxels

((
φre f erence − φcurrent

(
ξk
)
+∇ξ φcurrent

(
ξk
)

ξk
)
∇>ξ φcurrent

(
ξk
))

.

(A.6)

Finally, we use the expressions for A and b to rewrite Eq. (A.4):

dEgeom

dξ
= A ξ − b

⇒ ξ∗ = A−1 b

ξk+1 = ξk + β
(

ξ∗ − ξk
)

.

(A.7)
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Derivative of the energy term for surface orientation
similarity

This corresponds to deriving Eq. (4.2) into Eq. (4.11).

dEnorm

dξi
= ∑

sur f ace
voxels

−
dnre f erence

dξi
· ncurrent(ξ)− nre f erence ·

dncurrent(ξ)

dξi
=

= ∑
sur f ace
voxels

− nre f erence ·
dncurrent(ξ)

dξi
=

= ∑
sur f ace
voxels

− nre f erence ·
(

dncurrent(ξ)

dV
dV
dξi

)
=

= ∑
sur f ace
voxels

− nre f erence ·
(dncurrent(ξ)

dV
dV
dξ

dξ

dξi

)
=

= ∑
sur f ace
voxels

− nre f erence ·
(
∇x ncurrent(ξ)

(
I3×3 | −(V(ξ−1))×

)
δi

)
,

(A.8)

where δi is a 6-element one-hot vector of zeros with ith component 1.

Gradient descent for rigid camera pose refinement

Here the frame-to-model SDF-2-SDF equation has the following form:

Eglobal(ξ) =
1
2 ∑

voxels

(
φmodel − φcurrent(ξ)

)2

. (A.9)

We calculate its derivative:

dEglobal

dξ
=

1
2 ∑

voxels

2 (φmodel − φcurrent (ξ))
d (−φcurrent(ξ))

dξ
=

= ∑
voxels

(φcurrent (ξ)− φmodel)
dφcurrent(ξ)

dξ
=

= ∑
voxels

(φcurrent (ξ)− φmodel)
dφcurrent(ξ)

dV
dV
dξ

=

= ∑
voxels

(φcurrent (ξ)− φmodel)∇ξ φcur(ξ) .

(A.10)

Finally, we obtain the gradient descent update for each frame t 6= 0:

ξk+1
t = ξk

t − α ∑
voxels

(
φcurrent

(
ξk

t

)
− φmodel

)
∇ξ φcurrent

(
ξk

t

)
. (A.11)
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SDF evolution: Data term

The data term aligns the projective TSDF φproj of the current frame with the
cumulative TSDF φmodel , driving their voxel-wise difference to be minimal:

Edata(Ψ) =
1
2 ∑

x,y,z

(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)2 . (A.12)

∂Edata
∂u

=
1
2

[
∂
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)2

∂u
− div

∂
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)2

∂∇u

]
=

=
1
2

∂
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)2

∂u
=

=
1
2

2
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)∂
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)
∂u

=

=
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)∂φproj(x + u, y + v, z + w)

∂u
=

=
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)
∇xφproj(x + u, y + v, z + w)

(A.13)

Above ∇xφ denotes the x-component of the spatial gradient of the TSDF φ,
which is obtained numerically via central differences. We will use analogous
notation for the y- and z-components. The full TSDF gradient is therefore
written as ∇φ = (∇xφ,∇yφ,∇zφ)>.

We also use the nabla symbol ∇ to denote energy derivatives. Thus:

∇Edata(Ψ) =
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)∇xφproj(x + u, y + v, z + w)
∇yφproj(x + u, y + v, z + w)
∇zφproj(x + u, y + v, z + w)

 =

=
(
φproj(x + u, y + v, z + w)− φmodel(x, y, z)

)
∇φproj(x + u, y + v, z + w) =

=
(
φproj(Ψ)− φmodel

)
∇φproj(Ψ)

(A.14)

We use φproj(Ψ) to refer to the evolved TSDF after the application of the
warp field vector (u, v, w), i.e. equivalently to φproj(x + u, y + v, z + w). We will
use this shorthand notation from here onwards.

SDF evolution: Uniform motion term

The term which encourages nearby vectors to be similar is the Tikhonov-type
regularizer:

Esmooth(Ψ) =
1
2 ∑

x,y,z

(
|∇U(x, y, z)|2 + |∇V(x, y, z)|2 + |∇W(x, y, z)|2

)
. (A.15)
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∂Esmooth
∂u

=
1
2

[
∂
(
|∇U(x, y, z)|2 + |∇V(x, y, z)|2 + |∇W(x, y, z)|2

)
∂u

−

− div
∂
(
|∇U(x, y, z)|2 + |∇V(x, y, z)|2 + |∇W(x, y, z)|2

)
∂∇u

]
=

=
1
2

[
0− div

∂
(
|∇U(x, y, z)|2 + |∇V(x, y, z)|2 + |∇W(x, y, z)|2

)
∂∇u

]
=

= − 1
2

div
∂|∇U(x, y, z)|2

∂∇u
= −1

2
div2∇U(x, y, z) = −div∇U = −∆U

(A.16)

The symbol ∆ denotes the Laplacian of its operand. Thus:

∇Esmooth(Ψ) = −(∆U, ∆V, ∆W)> (A.17)

SDF evolution: Approximately Killing vector field
term

The approximately Killing vector field term (AKVF) enforces the warp field to
be divergence free by minimizing the Frobenius norm of the Killing condition:

Eakv f (Ψ) =
1
2 ∑

x,y,z

∥∥∥JΨ + J>Ψ
∥∥∥2

F
. (A.18)

The Jacobian of the vector field is: JΨ =

∂U/∂x ∂U/∂y ∂U/∂z
∂V/∂x ∂V/∂y ∂V/∂z
∂W/∂x ∂W/∂y ∂W/∂z

 =

Ux Uy Uz
Vx Vy Vz
Wx Wy Wz

 and its transpose is denoted by J>Ψ .

Next, let us rewrite Eq. (6.7) using the column-wise stacking operator
vec(A), which denotes the vectorized matrix A. Thus, vec(JΨ) ∈ R9×1 is the
9-element vector of stacked elements from JΨ, and similarly vec(J>Ψ ) ∈ R9×1

contains the elements from J>Ψ . Finally, vec(JΨ)
> ∈ R1×9 denotes the transpose

of vec(JΨ).

vec(JΨ) =
(
Ux Vx Wx Uy Vy Wy Uz Vz Wz

)> (A.19)
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Eakv f (Ψ) =
1
2 ∑

x,y,z

∥∥∥∥∥∥
 2Ux Vx + Uy Wx + Uz

Vx + Uy 2Vy Wy + Vz
Wx + Uz Wy + Vz 2Wz

∥∥∥∥∥∥
2

F

=

=
1
2 ∑

x,y,z
vec(JΨ + J>Ψ )>vec(JΨ + J>Ψ ) =

=
1
2 ∑

x,y,z

(
vec(JΨ)

>vec(JΨ) + 2vec(J>Ψ )>vec(JΨ) + vec(J>Ψ )>vec(J>Ψ )

)
=

= ∑
x,y,z

vec(JΨ)
>vec(JΨ) + vec(J>Ψ )>vec(JΨ) =

= ∑
x,y,z

(
2U2

x + 2V2
y + 2W2

z + U2
y + U2

z + V2
x + V2

z + W2
x + W2

y + 2VxUy + 2WxUz + 2WyVz

)
(A.20)

∂Eakv f

∂u
=

∂(2U2
x + 2V2

y + 2W2
z + U2

y + U2
z + V2

x + V2
z + W2

x + W2
y + 2VxUy + 2WxUz + 2WyVz)

∂u
−

− ∂

∂x
∂(2U2

x + 2V2
y + 2W2

z + U2
y + U2

z + V2
x + V2

z + W2
x + W2

y + 2VxUy + 2WxUz + 2WyVz)

∂Ux
−

− ∂

∂y
∂(2U2

x + 2V2
y + 2W2

z + U2
y + U2

z + V2
x + V2

z + W2
x + W2

y + 2VxUy + 2WxUz + 2WyVz)

∂Uy
−

− ∂

∂z
∂(2U2

x + 2V2
y + 2W2

z + U2
y + U2

z + V2
x + V2

z + W2
x + W2

y + 2VxUy + 2WxUz + 2WyVz)

∂Uz
=

= 0− ∂

∂x
(4Ux)−

∂

∂y
(2Uy + 2Vx)−

∂

∂z
(2Uz + 2Wx) =

= −4Uxx − (2Uyy + 2Vxy)− (2Uzz + 2Wxz) = −2(2Uxx + Uyy + Uzz + Vxy + Wxz)

(A.21)

Similarly:

∂Eakv f

∂v
= −2(Vxx + 2Vyy + Vzz + Uxy + Wyz)

∂Eakv f

∂w
= −2(Wxx + Wyy + 2Wzz + Uxz + Vyz)

(A.22)

Finally,

∇Eakv f (Ψ) = −2

2Uxx + Uyy + Uzz + Vxy + Wxz
Vxx + 2Vyy + Vzz + Uxy + Wyz

Wxx + Wyy + 2Wzz + Uxz + Vyz

 =

= −2

Uxx + Uyy + Uzz
Vxx + Vyy + Vzz

Wxx + Wyy + Wzz

− 2

Uxx + Vxy + Wxz
Uxy + Vyy + Wyz
Uxz + Vyz + Wzz

 =

= −2

∆U
∆V
∆W

− 2

∂(divΨ)/∂x
∂(divΨ)/∂y
∂(divΨ)/∂z

 ,

(A.23)

where divΨ = Ux + Vy + Wz is the divergence of the warp field Ψ.
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SDF evolution: Damped Killing term

As discussed, the condition from Eq. (6.7) is too strong to account for large
deformations. Re-writing the first term from the vectorized form in Eq. (A.20)
sum leads to:

∑
x,y,z

vec(JΨ)
>vec(JΨ) = ∑

x,y,z

(
U2

x + U2
y + U2

x + V2
x + V2

y + V2
z + W2

x + W2
y + W2

z
)
=

= ∑
x,y,z

(
|∇U|2 + |∇V|2 + |∇W|2

)
= Esmooth(Ψ)

(A.24)

Thus increasing the weight of the motion smoothness component and
decreasing the weight of the rigidity component leads to the damped Killing
condition:

EKilling(Ψ) = ∑
x,y,z

(
vec(JΨ)

>vec(JΨ) + γvec(J>Ψ )>vec(JΨ)
)

. (A.25)

The factor γ controls the balance between the strictly rigid and non-rigid
components of the regularization. A choice of γ = 1 would lead to the AKVF
condition from the previous section. As we aim to alleviate the effect of the
rigidity constraint, we use values of γ < 1 in our optimization. The combined
functional derivative is then:

∇EKilling(Ψ) = −2(∆U, ∆V, ∆W)> − 2γ

(
∂

∂x
(divΨ),

∂

∂y
(divΨ),

∂

∂z
(divΨ)

)>
.

(A.26)

SDF evolution: Level set term

Maintaining the property of unity gradient ensures geometrically correct TSDF
evolution:

Elevel set(Ψ) =
1
2 ∑

x,y,z

(
|∇φproj(x + u, y + v, z + w)| − 1

)2 . (A.27)

Note that when the implementation is over a truncated signed distance
field, the gradient magnitude is unit in the narrow band and 0 in the truncated
±1 regions. If the TSDF is also scaled, the scale δ has to be applied also to
the unity in the narrow band. Furthermore, values on the border between
truncated and non-truncated region will be between 0 and 1/δ, so additional
care has to be taken there.
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The functional derivative is then:

∂Elevel set
∂u

=
1
2

[
∂
(
|∇φproj(x + u, y + v, z + w)| − 1

)2

∂u
− div

∂
(
|∇φproj(x + u, y + v, z + w)| − 1

)2

∂∇u

]
=

=
1
2

∂
(
|∇φproj(x + u, y + v, z + w)| − 1

)2

∂u
=

=
1
2

2
(
|∇φproj(x + u, y + v, z + w)| − 1

)∂
(
|∇φproj(x + u, y + v, z + w)| − 1

)
∂u

=

=
(
|∇φproj(Ψ)| − 1

)∂
(( ∂φproj(Ψ)

∂x
)2

+
( ∂φproj(Ψ)

∂y
)2

+
( ∂φproj(Ψ)

∂z
)2)1/2

∂u
=

=
|∇φproj(Ψ)| − 1
2|∇φproj(Ψ)|ε

(
2

∂φproj(Ψ)

∂x
∂

∂u
∂φproj(Ψ)

∂x
+ 2

∂φproj(Ψ)

∂y
∂

∂u
∂φproj(Ψ)

∂y
+ 2

∂φproj(Ψ)

∂z
∂

∂u
∂φproj(Ψ)

∂z

)
=

=
|∇φproj(Ψ)| − 1
|∇φproj(Ψ)|ε

(
∇xφproj(Ψ)∇xxφproj(Ψ) +∇yφproj(Ψ)∇xyφproj(Ψ) +∇zφproj(Ψ)∇xzφproj(Ψ)

)
=

=
|∇φproj(Ψ)| − 1
|∇φproj(Ψ)|ε

(
∇xxφproj(Ψ) ∇xyφproj(Ψ) ∇xzφproj(Ψ)

)
∇φproj(Ψ) ,

(A.28)

where | · |ε denotes the norm plus a small constant ε which avoids division by
zero. Similarly we obtain:

∇Elevel
set

(Ψ) =
|∇φproj(Ψ)| − 1
|∇φproj(Ψ)|ε

∇xxφproj(Ψ) ∇xyφproj(Ψ) ∇xzφproj(Ψ)
∇yxφproj(Ψ) ∇yyφproj(Ψ) ∇yzφproj(Ψ)
∇zxφproj(Ψ) ∇zyφproj(Ψ) ∇zzφproj(Ψ)

∇φproj(Ψ) ,

(A.29)

where the 3× 3 matrix in the middle is the Hessian Hφproj(Ψ) of the warped
TSDF.

Sobolev Kernels

Here we explain how to obtain the three separable 1D filters starting with from
the following equation from the paper:

(Id− λ∆)S = v . (A.30)

Let the size of the 3D Sobolev filter we are interested in be s× s× s. Then
the terms in the above equation are as follows:

• Id is the s3 × s3 identity matrix.

• ∆ is the s-point stencil finite difference Laplacian matrix describing neigh-
bouring voxels, resulting in the occupancy shown in Figure A.1.

• v is a one-hot s3-element vector with 1 at the middle index
⌊

s3

2

⌋
(assuming

indexing starting at 0). It corresponds to a discretized Dirac impulse of
size s× s× s voxels.

• S is the s3-element solution of the linear system that we are looking
for. By restructuring it into a s× s× s volume, we obtain the sought 3D
Sobolev filter.
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Figure A.1: Occupancy of a s3 × s3 matrix ∆.

In order to obtain the corresponding 1D filters, we make an approximation
using the higher-order SVD decomposition of the tensor S. It yields three s× s
U-matrices with equal elements. We take the first singular vector from each
of these matrices, obtaining the approximated 1D filters Sx, Sy and Sz. Note
that they have equal entries, but we use the subscript to indicate the spatial
direction in which they are applied.

This procedure needs to be done only once for selected neighbourhood size
s and Sobolev parameter λ, after which the 1D filter entries can be stored. The
separable convolutions are then applied over the energy derivative in each
gradient descent step.
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B
Patch-based Non-rigid

3D Reconstruction from
a Single Depth Stream

Figure B.1: Patch-based non-rigid 3D reconstruction from a single depth
stream. Each input frame is subdivided into surface patches and deformed
towards the canonical-pose model via a probabilistic non-rigid deformation
framework. It imposes rigidity constraints by assuming that each patch is
rigid and is connected non-rigidly to its neighbouring patches. This strategy
provides robustness to occlusions and noisy data, leading to a geometrically
consistent 3D model of the deforming object, as shown on the right.
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Chapter B: Patch-based Non-rigid

3D Reconstruction from

a Single Depth Stream

Figure B.2: Patch-based non-rigid reconstruction pipeline. We split the input
sequence into subsequences of frames, called keyframes, in each of which a
local model is built following the proposed expectation-maximization non-rigid
patch-based deformation framework. The final output is obtained via a global
fusion approach, which propagates and concatenates correspondences through
keyframes and traces them back to the canonical pose.

In this project [118] we develop an approach for 3D reconstruction and
tracking of dynamic surfaces captured with a single RGB-D sensor. It is
robust to rapid motions, noisy data and occlusions due to the underlying
probabilistic expectation-maximization non-rigid registration framework. Our
pipeline subdivides each input depth image into non-rigidly connected rigid
surface patches, and deforms it towards the canonical pose by estimating a
6 DoF transformation for each patch. The powerful combination of a data term
imposing similarity between model and data, and a regularizer enforcing as-
rigid-as-possible motion of neighbouring patches ensures that we can handle
large deformations, while coping with sensor noise. In contrast to most
existing techniques that require repeated conversion between mesh and SDF
representation, we employ a surfel-based fusion technique. Last but not least,
a robust keyframe-based scheme allows us to keep track of correspondences
throughout the entire sequence.

The advantage of this technique over the implicit-to-implicit scheme devel-
oped in this dissertation is the direct availability of correspondences throughout
the entire sequence. One of its main differences to existing approaches is the
accumulation of recovered geometry in a surfel representation rather than an
SDF. As surfels do not have explicit connectivity like a mesh, we expect that the
approach is better-suited to handling topological changes than correspondence-
based warp field techniques like DynamicFusion [156] and VolumeDeform [98].
While this has proven true in some examples, the patch-based framework still
does not outperform KillingFusion and SobolevFusion in terms of changing
topology. We suspect that this is due to the sensitivity of the surfel-based
fusion to its parameter settings [112] and believe it can be improved in future
work.
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