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“The story so far: In the beginning the Universe was created. This has made a lot of

people very angry and been widely regarded as a bad move.”

Douglas Adams (1952-2001)
The Restaurant at the End of the Universe, 1980






Abstract

Internally coupled ears or ICE for short is an anatomical hearing adaptation found in over
half of the extant terrestrial vertebrates. All lizards and most frogs, birds and crocodilians are
equipped with some form of internally coupled ears. In its simplest form, ICE corresponds to
an acoustic coupling of the eardrums through an air-filled chamber known as the interaural
cavity. The vibration of one eardrum in response to an external sound stimulus creates an
internal pressure wave that propagates through the interaural cavity and drives the opposite
eardrum. In this doctoral dissertation, a mathematical analysis of the eardrums and the
connecting passages as well as the direction-dependent cues in the form of time and amplitude
differences between the ears, reveal the role played by ICE in sound localization. On the
basis of the geometry of the interaural cavity and the elastic properties of the two eardrums
confining it at both ends, the mathematical and physical principles underlying hearing through
ICE are reviewed and analytical expressions for eardrum vibrations as well as the pressures
inside the internal passages in response to an external pressure are derived. Given sound
pressure inputs of equal amplitude and a small direction dependent phase (or time) difference
at the ears, the emergence of highly directional hearing cues is demonstrated. In the first
portion of the thesis, with an emphasis on lizards as ICE archetypes and in conjunction
with the novel piston approximation for the eardrum vibrations, the role of the tympanic
fundamental frequency in segregating the hearing range into a low- and high-frequency
regimes is demonstrated. Moreover, by exploiting the physical properties of the coupling, we
describe a concrete method to numerically estimate the eardrum’s material properties solely
through measurements taken from alive animals. In the second portion, the role played by
ICE in underwater hearing in the fully aquatic frog Xenopus laevis as well as the implications
of an interaural coupling at higher frequencies in the barn owl Tyfo alba is analyzed. In
both animals the interaural cavity is augmented by a secondary air-filled chamber which is
modeled as a Helmholtz resonator. It is shown that, while the resonator improves underwater
hearing sensitivity and directionality in Xenopus, it improves high-frequency directional cues
in the barn owl by negating the effects of the interaural cavity resonances. The ICE-like
amplitude-difference magnification at low-frequencies in the barn owl is also established.
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Chapter 1
Introduction

The perception of external stimuli, be it sight, smell or sound, is a fundamental trait of
all living organisms and one that is essential to their survival. Among these stimuli, the
perception of sound has distinct advantages. First, it is omnidirectional, i.e., the listener need
not be oriented towards a source in order to be able to hear it. Second, the wavelength of
sound is typically much longer than that of visible light and thus, unlike light, is not hindered
by small objects. For this reason, one can typically hear a sound source behind an obstacle
before being able to see it. For this reason, being able to hear confers the obvious advantage
of being able to react to approaching threats without having to be able to see them. To hear
the sound emanating from a particular source, an animal first needs at least one appropriate
receiver sensitive to sound stimuli propagating through the surrounding medium, be it earth,
water or air. Among terrestrial vertebrates that hear in air, the most common organ dedicated
to receiving sound is the eardrum or tympanic membrane, which vibrates in response to an
external sound stimulus. In humans, the eardrum is a thin flexible membrane located at the
end of the external auditory meatus, or ear canal opening at the side of the head, while in
animals such as the Tokay gecko, for example, the eardrum is located rather superficially.
Figures 1.1a and 1.1b illustrate the position of the eardrum in humans and the Tokay gecko,
along with some of the accompanying components relevant to hearing being explicitly shown
in the case of the former.

In order to appropriately react to a sound source and thus fully exploit the sense of
hearing, it is imperative for an animal to be able to accurately judge the location of the
source. In contrast to visual stimuli, the ability to hear a sound source does not by itself
entail the ability to assess its location or, in other words, the ability to localize a sound
source. In certain specific cases, the information from one ear provides sufficient directional
information. Vertical sound localization, for example, is can be achieved through the use of

only one ear. In order to accurately localize in the azimuth, however, the animal would need
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External
Auditory Canal

(a) Human (b) Gecko

Tympanic Membrane/ Eustachian Tube
Eardrum

Fig. 1.1 Figure (a) shows the positions of the human eardrum or tympanic membrane and the
main middle- and inner ear components. The eardrum is situated at the end of the external
auditory canal and is connected via the ossicles - malleus, incus and stapes - to the cochlea.
The cochlea converts the received auditory stimulus to neuronal signals which are transmitted
to the brain via the cochlear nerve; figure adapted from Chittka and Brockmann [1]. The
gecko eardrum (b) on the other hand is located fairly superficially and can be easily made
out on the side of the head (marked by arrows). The vibrations of the eardrum are now
transmitted to the cochlea by a single middle-ear bone, the columella. Figure adapted from
Christensen-Dalsgaard et al. [2].

to simultaneously rely on information from both the ears. The spatial separation of the ears,
as well as the differing paths taken by sound waves to reach the opposite ears often result
in inherent directional differences between the individual sound inputs at both the ears. In
either case, the animal must first convert the mechanical signal of sound into electrochemical
signals that can be processed by its nervous system. Directional information can then be
extracted from the resulting electrochemical signals via neuronal computations.

The quality of information available in this manner, as well as the strategies to efficiently
process it, however, vary greatly among animals. In several animals, the directional informa-
tion available to the animal via the two eardrums is limited owing either to their small size,
or to limited neuronal power and often to both. In this thesis, we study a specific adaptation
that overcomes the aforementioned problems — a physical coupling of the eardrums on their
internal side through air-filled cavities in the animal’s skull — a system referred to as internally
coupled ears or ICE. Our goal is a quantitative and qualitative analysis of the role played by
the ears, as well as the interaural coupling between them in generating and improving the
directional information available to the animal. In the present chapter we briefly introduce
some concepts relevant to hearing and sound localization in general, and ICE in particular.
We begin by briefly reviewing the mechanism of tympanic hearing and its evolution as well

as the directional information generated by both ears. Although the goal of the thesis is
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an acoustic and mechanical analysis of ICE, we will also give a very brief introduction
to the neuronal representation of directional information. We will then provide a concise
introduction into the current state of research in ICE. Finally, we will end the chapter with a
brief outline of the structure of the present dissertation.

1.1 Tympanic hearing and its evolution

In its essence, a tympanic hearing system consists of two eardrums or tympanic membranes
situated on either side of the head, which serve as the primary receivers of auditory stimuli in
the form of sound pressure waves. Tympanic membranes are generally very thin, light and
flexible, making them especially compliant to sound pressure waves in air, which typically
have very small amplitudes. For example, normal conversations between people have an
amplitude of 60 dB in decibels, which corresponds to a pressure amplitude of .02 Pa or
roughly 2 x 10~7 times atmospheric pressure. In mammals, the vibrations of the tympanic
membrane are transmitted via the middle ear bones or ossicles [3] namely, the malleus,
incus and stapes (see Fig. 1.1a), to the inner ear, where the cochlea conducts a spectral
decomposition of the input into its constituent frequency components. In non-mammalian
vertebrates, on the other hand, the vibration of the tympanic membrane is transmitted to the
cochlea via a single middle-ear bone — the columella [4]; cf. Fig. 1.1b.

The ancestors of most terrestrial (land-living) vertebrates that survive today including
amphibians, turtles, lizards, crocodilians, birds and mammals independently developed a
tympanic hearing system adapted to sound pressure in air around the early triassic, i.e., ca.
250 million years ago, over a period of tens of millions of years [6, 7]; Fig. 1.2. It has also
been suggested that the appearance of hearing organs sensitive to sound in air correlated with
the evolution of sound production in insects [8]. In Fig. 1.2, an apparent distinction between
the mammalian and non-mammalian terrestrial vertebrates has been emphasized — while in
the former, the ears are independent or acoustically isolated from each other, most of the latter
seem to be equipped with some form of a connection between the ears or, in other words, with
internally coupled ears or ICE; Figs. 1.3a and 1.3b. By acoustic isolation we mean that, sound
waves originating on the internal side of one ear cannot travel to the opposite ear. As is often
the case, there are exceptions to the rule. A form of interaural coupling has been observed in
mammals like the platypus and talpid moles [9], while non-mammals like snakes [10] and
turtles [11] have hearing organs that are acoustically isolated. Nonetheless, the species with

ICE, estimated to be more than 15,000 [12], are overwhelmingly non-mammalian.
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Fig. 1.2 The evolution of tympanic ears in vertebrates. Tympanic ears evolved independently
in the major tetrapod groups at least five times in anurans (frogs), lepidosaurs (e.g. lizards),
archosaurs (e.g. birds and crocodilia), testudines (turtles) and mammals. In most cases
tympanic ears appeared around the Triassic and the approximate origins are indicated by
orange blotches. The figures above the evolutionary trees show the heads of the animals
along with a cross-section representing the schematic configurations of the respective middle
ears. The major groups with internally coupled ears or ICE, i.e, frogs, lizards, crocodilians
and birds, have been indicated separately by the overhead black bar. Snakes, turtles and
mammals do not fall under the category of animals with coupled ears. Figure adapted from
Schnupp and Carr [5]

1.1.1 Azimuthal sound localization and binaural hearing

As mentioned at the start of the chapter, frequency specific modifications to the sound
reaching the eardrum are made by the external ear or pinna, as well as the head and torso in
humans and other mammals, depending on the direction (elevation and azimuth) of a sound
source [13, 14]. Thus, directional information in the form of monaural sound localization
cues can be extracted from the response of a single ear. Monaural refers to the fact that,
the cue is derived from a single ear. In general, the sound input to a single ear does not by
itself contain enough directional information to fully localize a source. On the other hand, as
the ears of most animals are spatially separated by virtue of being on opposite sides of the
head, the inputs they receive differ from each other. Moreover, as the differences in inputs
usually depend on the sound source direction, they can also be used as directional hearing

cues to localize the source. In contrast to monaural cues, those obtained by simultaneously
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(a) Independent ears (b) Coupled ears

Fig. 1.3 Animals utilizing tympanic membranes can be broadly divided into two categories,
those with independent ears (a) and those with coupled ears (b). Animals with independent
ears typically have very narrow eustachian tubes (compare Fig. 1.1a) coupling the eardrums
such that the eardrums are acoustically isolated from each other. In animals with coupled
ears, wider eustachian tubes along with opening in to the mouth cavity or pharyngeal cavity
allow the propagation of sound waves from one eardrum to the other. As a result of such
an interaural coupling, sound waves can travel from one ear to the other. Barring a few
exceptions, mammals belong to the category of animals with independent ears, whereas
non-mammalian vertebrates have coupled ears.

comparing the inputs from both ears are referred to as binaural cues. Given sound inputs
from a single source presented to two spatially separated ears, two binaural cues are of

particular importance with respect to sound localization in the azimuth,

* the phase or, equivalently, the time difference between the inputs known as the interau-
ral time difference (ITD) [15, p. 140] and,

* the amplitude or level difference between the inputs, known as the interaural level
difference (ILD) [15, p. 155]

The notion that the position of a sound source can be determined by the interaural time and
level differences is known as the duplex theory, first postulated by Lord Rayleigh [16, 17].
Typically, ITDs are reliable sound localization cues at low frequencies, where the ampli-
tude of the sound wave is much longer than the interaural distance; Fig. 1.4a. If the distance
between the ears, or the interaural separation is L, the maximal ITD between the ears at
low frequencies is approximately L/c, where c is the speed of sound in the medium. For a
typical adult human head, the separation between the ears is around L = 22 cm, such that
the maximum ITD between the ears is around 660 us for sound with a speed of ¢ = 340 m/s
in air. When the sound wavelength becomes comparable in length to, or smaller than the
distance between the ears, the head becomes a sizable obstacle to the propagation of sound

waves, such that an “acoustic shadow” is formed on the side farther away from the source;
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(a) Interaural time difference (b) Interaural level difference

Fig. 1.4 An illustration of the frequencies at which (a) the interaural time difference (ITD)
and (b) the interaural level difference (ILD) are reliable cues for sound localization. At low
frequencies (< 1.5 kHz), where the sound wavelength is longer than the separation between
the ears, the phase difference or, equivalently, the time difference between the inputs to the
ears is a reliable cue for sound localization. The ITD, represented by an equivalent phase
difference between sinusoidal sound inputs at the left (L, red) and right (R, blue) ears, is
illustrated in the inset. At higher frequencies (= 1.5 kHz), the animal’s head is a sizable
obstacle to the propagation of sound, resulting in an acoustic shadow and amplitude or level
differences between the inputs to the ears which, in turn, provide information regarding the
location of a source. In nature, however, sounds are complex and contain both high and low
frequency components, often requiring the simultaneous utilization of both ITDs and ILDs.

Fig. 1.4b. As aresult, the amplitude of the sound input on the side closer to the source would
be higher than on the opposite side. At these frequencies, the interaural level difference
becomes a more reliable cue for sound localization. Moreover, at frequencies higher than
3 kHz, ambiguities corresponding to phase differences larger than 27 makes the ITD an
unreliable cue. The transition between the frequency regimes corresponding to I'TDs and
ILDs occurs around 1.5 kHz, where the sound wavelength is roughly equal to the head width.
In practice, however, the sounds present in nature are often very complex and will have both
high and low frequency components. The auditory system would thus need to simultaneously
use information from both ITDs and ILDs to localize a sound source [18, p. 177]. Note that
the ITDs and ILDs in the form defined so far can only distinguish objects on the left from

objects on the right and cannot distinguish sources in the front from those behind.
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Neuronal representation of ITDs and ILDs

The present thesis deals primarily with the acoustical aspects of sound localization and a
detailed analysis of the subsequent neuronal processing is beyond its scope. Nonetheless,
a very brief introduction to the neuronal representation of ITD and ILD cues will help put
the results of the following chapters into perspective. The vibrations of the eardrum that
are transduced to the oval window of the cochlea via the middle ear bone(s) (cf. Figs. 1.1a
and 1.1b), set the fluid in the inner-ear into motion. The cochlea of all vertebrates are equipped
with hair cells that convert the mechanical energy of the fluid motion into electrochemical
signals appropriate for neuronal processing [19]. The basic building block of neuronal
processing is, of course, the neuron. A neuron consists of three parts: dendrites that collect
inputs from other neurons, the soma that processes inputs and the axon that transmits output
signals to other neurons. For our limited purposes, we can ignore the finer details of neuronal
processing and consider the neuron to be a single unit that responds or “fires” based on a
pre-defined computation on a specific number of inputs.

The processing of interaural time difference cues is carried out by neurons that are
excited by simultaneous inputs originating from both ears, which are referred to as excitatory-
excitatory or EE neurons [20]. As the neuron is excited by inputs from both ears, it is referred
to as a binaural neuron. The strength of the response of the neuron is determined by the
timing of the inputs such that, the response is strongest for the most precisely synchronized
inputs. Sound localization using such neurons is conventionally explained by means of
the Jeffress model [21], in which the neurons are arranged along two axonal delay lines,
such that each neuron receives an input from both ears and is tuned to a particular ITD and
consequently, a particular direction; Fig. 1.5. As the neurons are sensitive to synchronized
inputs, they are also referred to as coincidence detector neurons. By comparing Figs. 1.4a
and 1.5 we can conclude that, as the input is closer to the right ear, the neurons left of center
receive synchronized inputs and their resultant excitation leads to a localization of the sound
source. Effectively, a Jeffress circuit forms a map of ITDs which facilitates a fast localization.
Experimental evidence from birds provides strong evidence for the presence of such a delay
line arrangement [22, 23].

The neuronal processing of interaural level differences, in contrast, is modeled in terms
of a central binaural neuron that is excited by an input originating from one ear and inhibited
by an input from the other, in other words, an excitatory-inhibitory or El-neuron [24]. In
essence, a neuron on the left side of the head would be excited by an input from the left ear,
while it would be inhibited by an input from the right ear, such that the strength of excitation
or inhibition depends on the strength of the corresponding input. Conversely, a neuron on
the right side would be excited by an input from the right ear and inhibited by one from the
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Input from right ear

IS

Input from left ear

Fig. 1.5 A simplified representation of the Jeffress model. The coincidence detector or EE
neurons, represented by the letters A-E, simultaneously receive inputs from both ears. They
respond or “fire”, when both their inputs are precisely synchronized. For example, when the
sound reaches the left ear first, the inputs reaching the rightmost neuron is synchronized due
to the input from the left ear being delayed. In contrast, a sound from directly in the front
would result in the synchronization of the neuron in the middle.

left ear. Thus, a simple binaural comparison of the response of the left and right neurons
would provide an animal with directional information. It has been suggested [25, 26] that the
directional response of neurons in the gecko’s midbrain can be explained by the response of
EI neurons [27]. For the case of Fig. 1.4b, the acoustic shadow would lead to a weaker input
to the left ear as compared to the right ear. As a result, the neurons on the right side of the
head would receive a stronger excitatory input from the right side than an inhibitory input

from the left side, thus enabling a localization of the sound source.

The ‘““small animal” problem

When the wavelength of sound is much larger than the head size, acoustic shadowing effects
are negligible and the interaural level difference between the ears all but vanishes. In addition,
the interaural time difference is far too small to be a reliable directional cue. For example,
the Tokay gecko, with its interaural separation of around 2 cm, would have a maximal ITD
of around 64 s between the inputs to its ears. Small animals lacking a pinna, like the Tokay,
would therefore be at a disadvantage as they can neither generate sufficient monaural cues,
nor can they rely on the binaural cues available through the external sound inputs at their ears
[28]. In addition, smaller non-mammalian vertebrates often lack the sophisticated neuronal
hardware of mammals, making them unable to exploit the limited hearing cues available
to them solely from the external inputs. Nevertheless, animals like the Tokay gecko and
other similarly sized lizards are able to localize sounds at low frequencies [25, 26]. As we
will subsequently see, the resolution to the so-called “small animal” problem comes from
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connection between the ears or, in other words, the interaural coupling between the ears,
mentioned earlier in Sec. 1.1.

When the eardrums are solely driven by the external sound pressure from a source, i.e.
the ears are independent, the internal time and level differences would be informationally
1dentical to the interaural time and level differences. On the other hand, if one eardrum also
feels an internal pressure dependent on the response of the opposite eardrum, i.e. the ears are
coupled as in ICE, the internal and interaural differences are no longer identical. Thus, in
contrast to the ITD and ILD which can be determined directly from external sound inputs, the
actual hearing cues available to the animals with coupled ears, determined from the eardrum
vibrations, are the internal time and level differences, or iTD and iLLD for short. Thus, for
animals with independent ears, the iTD and iLD are equivalent to the interaural time and

level differences.

1.2 The ICE model

The resolution to the “small animal” problem comes from the interaural cavity that essentially
forms an air-filled connection between the eardrums, that we introduced in Section 1.1.
Apart from the lizards, several other terrestrial vertebrates including most frogs [29-31],
crocodilians [32-34] and birds (eg. barn owls [35], chickens [36], budgerigars [37] and quails
[38]) possess a hearing system where the eardrums or tympanic membranes are functionally
coupled by anatomical (usually air-filled) connections through the skull; cf. Fig. 1.2. As
a result, a signal arriving at one eardrum can propagate through these connections and
influence the vibrations of the opposite eardrum, resulting in an acoustic coupling. The
different interaural cavity configurations found in nature are illustrated in Figs. 1.6a to 1.6¢
for frogs, lizards and birds, respectively. A system conceptually similar to ICE has also been
observed in the field cricket Gryllus bimaculatus [39], albeit with a more elaborate interaural
connection with branches directly receiving acoustic stimuli without a tympanic membrane,
or other sound receiving apparatus as an interface. A remarkable exception, in which an
interaural connection and, consequently, directional hearing is achieved through a simple
mechanical coupling rather than an acoustic coupling of the sound receiving organs has been
observed in some parasitic flies [40]. In the present thesis, however, we limit ourselves to the
vertebrates with a closed, air-filled interaural connection as the archetypes of ICE.

The theory of internally coupled ears had its origins in the so-called pressure-difference
receiver principle, used to explain sound localization in locusts by Autrum [42, 43], which was
later expanded upon by Michelsen [44]. Furthermore, the directional behavior of pressure-

difference ears was also found to be analogous to the directionality of pressure-gradient
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W ™
pharyngeal cavity I pharyngeal cavity |
(a) Frog (b) Lizard (c) Bird

Fig. 1.6 Realizations of ICE in different terrestrial vertebrates like (a) frogs, (b) lizards and
(c) birds. The interaural cavity for frogs and lizards is illustrated through coronal slices, while
the bird is shown in a transverse slice as a dorsal view from above. The tympanic membranes
TM (or eardrums) bound the interaural cavity and are indicated by red lines. Also indicated
in the lizard diagram are the columellae, which transfer the eardrum vibrations from the
eardrum to the inner ear (open circles) situated near the brain, indicated by a large filled
circle. Figure taken from van Hemmen et al. [41].

microphones [45]. A review of the evolutionary aspects of ICE can be found in [46] and [47],
while that of its mathematical treatment can be found in [48]. A mathematical treatment of
internally coupled ears, referred to as the ICE model, was first presented by Vossen [49, 50],
where a simple system consisting of circular membranes representing the eardrums, and a
cylindrical canal representing the air-filled cavity between them was shown to generate the
necessary interaural coupling to explain eardrum vibration data obtained via laser vibrometry
in the Tokay gecko, Gekko gecko and the common house gecko, Hemidactylus frenatus. In
the present dissertation, we will extend Vossen’s work in order to construct a more general
theory of ICE. In particular, we are interested in the directional and frequency behavior of
the response of the coupled eardrums, as well as of the iTD and iLLD cues generated from
them. Moreover, the dependence of the resulting expressions on the system’s geometrical

and material parameters will also be clarified.

1.2.1 Outline

The present study of internally coupled ears will divided into two conceptual parts. Chapters 2
and 3 will comprise the first portion, where we will first generalize Vossen’s [49, 50] treatment
of the ICE model and then analyze the response of the system, as well as the hearing cues
generated by it. In Chapter 2, we will introduce our generalized version of the mechanical ICE
model in a way that will emphasize the role played by the individual components of the model

as well as their material and geometrical properties. In Section 2.1, the eardrums, interaural
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cavity and the head model for the sound input will be introduced as the main components
of ICE and the exact expressions for the direction and frequency dependent vibrations of
the eardrums will be derived by means of the piston approximation in Section 2.2. As in
Vossen’s development of the theory of internally coupled ears, we will also assume that the
inputs to the ears have limited inherent directional information in the form of a small phase
difference, and thereby stress the role played by the interaural coupling in the enhancement of
hearing cues. In addition, we will also provide simplified descriptions of ICE in Section 2.3,
based on lumped electrical and mechanical elements. Chapter 3 will deal with the directional
hearing cues generated by the system of internally coupled ears and their dependence on
the input frequency, as well as on the material and geometrical parameters of the system. In
particular, the dependence of the postulated [50] low-high frequency segregation of hearing
cues in ICE on the eardrum fundamental frequency fy will be established in Section 3.3.
The internal time and level differences (iTD & iLD) will be formally defined in Chapter 3.
Moreover, in Section 3.6, a numerical procedure to estimate membrane parameters from a
live animal, by only using the properties of the directional cues will be presented. These
chapters will correspond to a “definitive” description of ICE as a low-frequency terrestrial
hearing adaptation for small animals. In order to test our theory against experimental data,
we will focus on two lizards — the Tokay gecko and the water monitor Varanus salvator.
The second part, comprised of Chapter 4, will extend the definition of ICE to animals that
do not fit the mold of the preceding two chapters. In contrast to the lizards of Chapters 2 and 3,
which are terrestrial animals that use ICE as a low frequency hearing adaptation, Chapter 4
will focus on the African clawed frog Xenopus laevis — a fully aquatic animal, and the barn
owl Tyto alba — a bird that hears at frequencies far higher than those of typical animals with
ICE. Based on the results of Chapter 2, the eardrum and interaural cavity of both animals
will be modeled in parallel in Sections 4.1 and 4.2, respectively. In particular, a modified
mathematical description accounting for the unique Xenopus eardrum will be derived in
Section 4.1, while stressing its adaptation to an underwater environment. The common
thread tying the two vastly different species together, i.e. an additional air-filled chamber
attached to the interaural cavity will be modeled in Section 4.2.2. Finally, in Section 4.5 the
directional behavior of both animals’ eardrums, as well as the directional internal time and
level differences defined in Chapter 3 will be analyzed. In particular, the implications of the
additional air-filled chamber will be stressed for underwater hearing in Xenopus, as well as
for high-frequency hearing in the barn owl. Moreover, in this chapter we will also model
the variation of the cavity resonance with volume, which was numerically estimated for
arbitrary cavity shapes by Vossen et al. [50]. Thus, in contrast to the two chapters preceding

it, Chapter 4 will introduce a modified theory of ICE which will extend its applicability
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to underwater, as well as high-frequency hearing, as opposed to terrestrial, low-frequency

hearing.



Chapter 2

Mathematical ICE Model

In Chapter 1 we briefly introduced the concept of internally coupled ears, or ICE, as a unique
adaptation that facilitates sound localization in animals that hear at frequencies where the
wavelength is several times larger than their head size; Section 1.2. The coupling between
the ears or, in other words, the interaural coupling serves to enhance sound localization
cues in the form of time differences between the eardrum vibrations. Moreover, ICE can
also generate directional amplitude differences between the eardrums even in the absence
of amplitude differences between the incoming sound inputs. Through ICE, the notion of
pressure-difference ears, i.e., ears driven by both an external and internal pressure [42, 44],
has been expanded into a general theory describing sound-localization in the Tokay gecko and
the common house gecko Hemidactylus frenatus [49, 50]. In the present and the following
chapters, we will generalize the concept of ICE in order to explain the sound localization
ability of a much larger group of animals. Our aim is a quantitative understanding of ICE
which first requires a thorough mathematical analysis of the different components involved
in the system.

The goal of the present chapter is to first describe the material and geometrical properties
of the anatomical components relevant to ICE and, subsequently, to derive expressions for
the coupled eardrum vibrations in response to an external stimulus. The anatomical system
consists of two main parts — the eardrums which serve as the primary sound receivers and
an interaural cavity, which is an air-filled chamber that generates the coupling between the
eardrum vibrations. Subsequently, we will model the sound input taking into account the
size of the head with respect to the incoming sound wavelength. Once the aforementioned
biophysical systems have been described, we can proceed with a mathematical analysis of the
different components in order to derive explicit expressions for the directional and frequency
dependence of the coupled eardrum vibrations, such that the roles played by the different

components are immediately apparent. Though the ICE theory to be explained is universal
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and far more general, in the present and following chapters we place a special emphasis on
lizards, particularly the Tokay gecko and the water monitor Varanus salvator, in order to
formulate a definitive description of ICE. The content of the present chapter has previously
appeared in Vedurmudi et al. [12] and, in more detail, in Vedurmudi et al. [48].

2.1 Components of the model

Although the exact form of the anatomical components can vary according to the animal
under consideration, a general physical theory can constructed to describe ICE across all

species. The ICE system and, hence, our model, has three primary components,

* the middle-ear system which consists of the eardrums, usually in the form of tympanic

membranes, including the mechanism to transduce sound to the inner ear,

* the air-filled interaural cavity which is responsible for the coupling that leads to the

modification and often enhancement of the hearing cues and, finally,

* the sound source and the animal’s head which gives us a mathematical expression for

the stimulus at the eardrums.

A clear description of the geometrical and material nature of the above components will
allow us to conduct a thorough quantitative analysis of the ICE model later in the chapter.
In doing so, we formulate a system that accurately describes how ICE functions across the

many species equipped with it.

2.1.1 The middle ear

The middle ear is the primary sound receiving apparatus in vertebrates capable of hearing.
As it serves to transmit sound energy from a source to the inner ear and, consequently,
the brain for neuronal processing, a consistent mathematical model describing its behavior
is an essential first-step in obtaining a quantitative understanding of sound localization
using internally coupled ears. As ICE-like systems are mostly restricted to non-mammalian
amniotes [41], we need not include the external ear comprising the pinna and the external
auditory meatus in our model, as it is an exclusively mammalian feature whose purpose is to
convey and amplify sound energy to the eardrum.

The main components of the middle ear of lizards are the eardrum, the columella, and the
extracolumella. The tympanum, or eardrum, is a thin membrane that separates the outer ear

from the middle ear and vibrates in response to external sound waves. The space on the deep
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(inner) side of the tympanum is the middle ear cavity; this cavity is linked, by the Eustachian
tube, to the larger midline pharyngeal cavity; cf. Fig. 2.2b. The eardrums, usually in the
form of tympanic membranes, vibrate in response to a pressure generated by an external
sound sources. In addition, they are usually bounded by an air-filled middle-ear cavity on
their deep (inner). As a result, the eardrums also feel an internal pressure generated by their
own vibrations. The eardrums are typically placed on either side of the head behind the eyes.
This can be seen in Figs. 2.1a to 2.1c for the leopard gecko — a typical animal with ICE. The
superficial nature of the placement of the eardrums is also directly apparent in the images.

(a) Leopard gecko

(b) Close-up of the Leopard (c) Close-up of the
gecko’s head eardrum

Fig. 2.1 Top: The leopard gecko — a typical animal with ICE. The location of the eardrum
or tympanic membrane (TM) on the side of its head has been highlighted. Bottom Left:
Close-up of its head, where its eardrum as well as the embedded extracolumella (brighter
protrusion, top-left), can be discerned clearly. The vibrations of one of the eardrums excites
the air inside the cavity, which in turn influences the vibrations of the opposite eardrum and
vice versa. Bottom Right: Close-up of the eardrum. The lighter colored protrusion on the
top-left of the tympanum is the extracolumella, which transfers the eardrum vibrations, via
the columella, to the cochlea; cf. Figs. 2.6b, 2.3a, and 2.3b. Photograph courtesy of Prof.
Frieder Mugele (University of Twente).
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In effect, the eardrums separate the middle-ear cavity from the outside world. Unlike
humans, animals with ICE only possess a single middle ear bone, namely, the columella.
The columella functions as a transducer for the eardrum vibrations into the cochlea and is
attached to the eardrum via a cartilaginous extension known as the extracolumella which,
together, apply a significant load [51] on the eardrum surface. Moreover, in lizards [51], birds
[4] and crocodilians [52, p. 933], the extracolumella attaches asymmetrically to the eardrum
resulting in a pronounced deviation from a symmetric vibration pattern. The placement of
the extracolumella for the gecko can be seen on the left in Fig. 2.2a. The placement of the
eardrums, also known as the tympanic membranes, relative to the middle-ear cavity, the
columella and the connection of the latter to the inner-ear through the oval window is shown

in in Fig. 2.2b, which is a more detailed version of Fig. 1.1b.

RW

ET MEC

(a) Gecko eardrum (b) Head cross section

Fig. 2.2 Left: Close-up shot of a Tokay gecko illustrating the scale and shape of the eardrum
(or tympanic membrane) and the extracolumella (yellow box). As the extracolumella is
embedded into the tympanic membrane, it picks up the membrane vibrations and transmits
them through the columella — see also Fig. 2.5 — to the cochlea. Courtesy of Prof. Zhendong
Dai (NUAA). Right: Cross-section of a lizard’s head. The Tympanic Membranes (TM) as
well as the air inside the Middle Ear Cavity (MEC) and Eustachian Tubes (ET) are excited
by incoming sound waves. Because of the large width of the Eustachian Tubes (ET), the air
inside the Pharynx (P) is also excited. The tympanic vibration drives the Columella (C) in
such a way that its lever construction transmits the vibrations to the Oval Window (OW), the
membrane at the entrance to the cochlea. The OW vibration excites the cochlear fluid, giving
rise to a frequency-dependent activation of the underlying auditory nerve fibers. The Round
Window (RW) is a membrane that serves to compensate the pressure within the fluid. Figure
taken from [25].
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(a) Gecko eardrum (b) ICE eardrum

Fig. 2.3 Left: Sketch of the eardrum of a Tokay gecko, taken from Manley [51]. “COL” is
the approximate position of the columella on the extracolumellar footplate. Dimensions in
millimeters. Right: The tympanic membrane in ICE. The lightly shaded region is modeled as
a linear-elastic membrane whereas the darkly shaded region (8 < ¢ < 27w — ) represents
the extracolumella, which together with the masses behind it is taken to be infinitely heavy;
see main text. The angle B corresponds to the breadth of the extracolumella and is estimated
from anatomical data.

The membrane-extracolumella-columella system functions as a second-order lever where
the internal and external pressures drive the membrane, which in turn causes a displacement
of the extracolumella. This is illustrated in Figs. 2.4a and 2.4b. This motion is transferred via
the columella to the inner ear or, to be more precise, the perilymphatic fluid of the cochlea
[53]. The cochlear hair cells transduce this fluid motion into electrochemical impulses, which
will be passed on to the brain via the auditory nerve; cf. Fig. 2.2b. . For frequencies that are
not too high (say, below 4 kHz), the extracolumella can be taken to move as a completely
stiff bar. It has been shown [54] that the extracolumella begins to flex at higher frequencies,
which is illustrated in Fig. 2.5. This flection reduces the columellar transfer efficiency and is
partly responsible for the poor high-frequency response of gecko middle ears, a feature also
observed in other non-mammalian vertebrates. In our current treatment, however, we assume
that the extracolumella behaves as a rigid plate as our frequencies of interest to auditory
processing are < 4 kHz.

In a previous treatment [50] of ICE, the tympanum was modeled as a clamped circular
membrane with asymmetrically attached sectorial load between —f3 < ¢ < . This manifests
itself as an additional boundary condition at ¢ = 3 and ¢ = —f3 which has to be satisfied
via a numerical approximation of keeping the extracolumella straight. In other words, the
membrane would be constrained to vibrate with a profile that would best approximate a
straight line at the extracolumella boundary. While this method has the advantage of being
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(a) Columella motion (b) Second order lever

Fig. 2.4 Left: Sketch showing an exaggerated displacement of the tympanic membrane and
extracolumella driven by a sound pressure, resulting in the displacement of the columella
(COL, yellow rod) about the edge of the eardrum; cf. Fig. 2.3b. Right: Equivalent second-
order lever construction, where the extracolumella has been replaced by a single bar and the
columella by a load (L) close to the fulcrum (triangle). The force exerted by the eardrum
motion has been reduced to an cumulative point force at the opposite end of the bar in the
simplified lever construction.

able to quite accurately reproduce the complex vibration patterns of the eardrum, it does not
lend itself well to an analytical treatment of the coupled system. Furthermore, the constraint
applied in the previous analysis is artificial in the sense that it does not take into account the
mass of the attached extracolumella and columella.

Instead we take a slightly different path. The tympanic membrane will be modeled as
a rigidly clamped sectorial membrane with its vibrating part limited to f < ¢ <27 —f3
[12, 48]. This means that in addition to the radial boundary at aymp, we have a new set of
boundaries at ¢ = f8 and ¢ =27 — B = — 3 where the membrane vibration is set to zero. This
18 illustrated in 2.3. The membrane material will be assumed to be linear-elastic. As before,
the equations describing the vibrations of the membrane will consequently be linear 2™-order
partial differential equations (PDE’s) to be derived in Section 2.2.1. We will effectively be
analyzing the average displacement of the membrane surface in order to calculate the hearing

cuces.

2.1.2 Interaural Cavity

The interaural cavity (IAC) refers to the tympanic or middle-ear cavities and the air-filled
connection between them, that generates the acoustic coupling between the eardrums. In
general, the nature of the connection shows great variation both in size and shape among

animals with ICE. A consistent mathematical description of the qualitative and quantitative
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footplate
___columello /.

Fig. 2.5 Operation of the middle ear lever in Geckos reproduced from [54]. The inferior
process of the extracolumella (AC) hinges at point C. At low frequencies the extracolumella
is a stiff bar, but at higher frequencies the inferior process of the extracolumella begins to flex
as shown in the inset. The columellar footplate (B) is a piston that fits into the oval window
of the cochlea.

properties of ICE can nonetheless be achieved through an air-filled cylinder of length L,
commonly termed the interaural distance, obtained through direct measurement.

The single cylindrical canal system describes ICE in the majority of animals possessing
the system [12, 50]. Lizards [26] and most frogs [55] fall into this category, in which both
tympanic cavities open into wider spaces such as the pharyngeal or the buccal cavity via
the Eustachian tubes, resulting in a single continuous connection between the eardrums; cf.
Figs. 1.6a and 1.6b. On the other hand, in birds like the barn owl Tyto alba [56], and the
African clawed frog Xenopus laevis [57], the Eustachian tubes extend into a single narrow
canal independent of the mouth cavity; cf. Fig. 1.6¢c. We note, however, that, in spite of the
variation in geometry, the general physical principles discussed in this chapter apply to both
cases. The special cases of Xenopus and the barn owl, will be discussed in more detail in
Chap. 4.

In an earlier mathematical treatment of ICE [49, 50], the oral cavity was modeled as a
simple cylinder closed at both ends by rigidly clamped (baffled) circular eardrums. In the
aforementioned model (cf. Fig. 2.6a), the cylinder length is the interaural distance L and the

radius of the cylinder was taken to be equal to that of the eardrum, i.e., acy] = @tymp, which
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resulted in a cavity volume
Vo = Tagmpl. @.1)

which was about an order of magnitude smaller than what is observed in nature. In the
present treatment of ICE, we improve upon the model by treating the cavity volume as a
variable parameter (see Fig. 2.6b) such that,

VC&V
e =y . (2.2)

Thus, the effect of Vv on the internal coupling between the two eardrums and, consequently,

(a) Interaural cavity [50] without vol- (b) Interaural cavity [12] allowing vol-
ume correction. ume correction with aiymp < dcy1

Fig. 2.6 The first model (a) is represented by a cylinder of radius ayymp and length L closed at
both ends by sectorial membranes of radius dymp. The current model (b) accounts for the
volume of the interaural cavity and is instead represented by a cylinder of radius acy > aiymp
and length L. The bold arrows represent the direction conventions along the cylinder’s axis.
The darkly shaded v-shaped region corresponds to the extracolumella; see Section 2.1.1.
The membranes are driven both by an external sound pressure as well as by the internal
pressure inside the cavity (lightly shaded region). The membrane motion in turn moves the
extracolumella like a second-order lever, i.e. the load is situated between the effort and the
fulcrum; Figs. 2.4a and 2.4b. Finally, the extracolumella transduces the membrane vibration
via the columella to the cochlea; cf. Fig. 2.5.

its effect on the iTD and iLD can be directly analyzed. As we will see in Chap. 3, the
geometrical model illustrated in Fig. 2.6b explains the directionality of eardrum vibrations,
as well as the generation of directional hearing cues in the Tokay gecko and the monitor
lizard Varanus [12, 48] within their hearing ranges, i.e. < 4 kHz and < 2 kHz, respectively.

The exact nature of the internal coupling will be discussed in Sec. 2.2 where we perform

a thorough evaluation of the complete system. We will be working in a cylindrical coordinate
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system with x € (0,L) being the direction along the cylindrical axis and (r,¢) the polar
coordinates in the plane perpendicular to it.

2.1.3 Head model and sound input

In realistic environments the acoustic fields experienced by animals are often very complex.
In addition to sound waves radiated directly from one or more sources, they also involve
waves reflected from objects in their immediate neighborhood. Most mammals possess
the neuronal power required to carry out the sophisticated signal processing needed to
derive useful information from these signals, whereas smaller animals with limited neuronal
power like geckos respond to simpler cues — usually the direct field from the nearest or
strongest source. We will therefore model our incoming input as a simple plane wave (or
equivalently, a pure tone) of a given frequency. As the ensuing mathematical description is
linear, more complex inputs can be represented as a combination of pure tones. The input is
specified in terms of its intensity, frequency, and direction. Such a stimulus can be generated
experimentally, for instance in an anechoic chamber using loudspeakers that are placed at
a distance from the animal that is large compared to the animal’s size and the wavelength
of the sound involved [2, 25, 26]. In other experiments, a similar stimulus has also been
provided by means of a headphone sealed to the ear [58].

At frequencies within the hearing range of animals with ICE, the sound pressure amplitude
on the outer surface of the eardrum can be taken as uniform. The spatial variation can be
safely neglected as the typical eardrum is less than 1 cm in diameter, while the sound
wavelength in air is around ~ 7 cm at 5 kHz, which, for most animals with ICE, is well
outside the hearing range. For instance, the smallest sound wavelengths in the hearing range
of an adult water monitor Varanus is ~ 170 mm (2 kHz, [59]) and is around ~ 85mm (4000
Hz, [4]) for the smaller Tokay gecko.

In general, as a result of the diffraction of sound around the head and body of an animal,
there would be a difference in phase as well as amplitude between the sound at the two
ears. The exact variation depends on the size (and shape) of the animal, the direction and
the frequency of the incident wave. Nevertheless, because of the small interaural lengths
(relative to the stimulus wavelength) of many animals with ICE, certainly lizards and frogs,
the amplitude (or level) difference is negligible [60]. The phase difference, although small
in animals with ICE, is typically not negligible. In smaller animals, i.e., where the sound
wavelength A is much larger than the interaural distance L, we can neglect diffraction effects
resulting in a phase difference which only depends on the distance between the ears. This
is illustrated in Fig. 2.7 for an incoming sound wave from a source whose distance from

the animal is much larger than the interaural distance. A sound wave has to travel an extra
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distance A to reach the ear on the opposite side, here referred to as the ’contralateral* ear,

compared to the ear on the same side as the source — the “ipsilateral* ear.

RO R

<« >
Back

Fig. 2.7 The acoustic head model for ICE for head size (L) much smaller than wavelength A.
Depending on the angle of the sound source 0, the distance between the sound source and
the Contralateral ear is longer than its distance from the Ipsilateral ear. The extra distance
traveled by the sound wave to reach the contralateral ear is A = Lsin 8, which gives rise to a
phase difference KA. The small head size of many of these animals lets us safely [60] neglect
diffraction effects on the phase and amplitude difference, which would have required us to
account for the fact that the sound wave would have to travel around the head to reach the
contralateral ear.

The sound source direction is quantified by an angle 0 such that, positive values cor-
respond to ipsilateral sources and negative ones to contralateral sources. According our
convention, O = 0° corresponds to sources directly in front of the animal and 6 = +180° to
those directly behind. We have therefore chosen a coordinate system relative to the median-
sagittal plane or the head midline of the animal such that 6 gives the angle of incidence of
the sound wave relative to this plane. For more complex auditory systems we would require
two angles (0, ¢) with the second representing the elevation of the source, but this is not
needed for our current analysis. The terms ipsi- and contralateral also refer to the stimuli at
the respective ears; cf. Fig. 2.7.

We consider as our sound input a pure-tone signal of frequency f and amplitude p

emanating from a far-away source at a direction 8. The angular frequency is given by
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o = 27xf and the wavenumber is given by k = @/c, where c is the speed of sound in
the medium. As the sound wave reaching the opposite ear travels an additional distance
A = Lsin 0, the inputs to the ears have a small frequency and direction dependent phase
difference kA. The sound inputs to both ears are given by [61, p. 154]

po. = pexp(iot) exp(ikA/2), pi = pexp(iot)exp(—ikA/2) (2.3)
where, A= 1Lsin6 . (2.4)

We will later see (cf. Chap. 3) that, through ICE, even animals with small interaural distance L
can obtain useful internal time and level differences. As ICE is usually a terrestrial adaptation,
c refers to the sound speed in air. As we will also deal with ICE in water in a later chapter
(cf. Chap. 4), we note that our definition for the sound inputs to the ear (2.3) is nevertheless

valid in both media for small animals.

2.2 Derivation of the mathematical model

We will now use the physical model for internally coupled ears described in the previous
section to derive an expression for the vibrations of the eardrum in response to the sound
inputs given in Eq.(2.3), as well as an expression for the pressure inside the interaural
cavity. Put in more precise terms, we will derive the steady-state response of the system
to a pure tone stimulus. In doing so, we will be neglecting transient effects. Our goal is to
accurately represent the functions and do so in such a way that the frequency and direction
dependence as well as the effects of coupling on the eardrum vibrations are apparent. Thus,
we will be able to analyze the resulting hearing cues in the next chapter. While deriving
the main functions of interest, we will also discuss the appropriate boundary conditions and
approximations that relate the membrane vibrations to the internal pressure. In Table 2.1 the
main functions used in the derivation below have been listed, together with their physical
interpretation. In order to motivate the derivation below, we start by briefly discussing the
final expression that relates the membrane vibrations to the sound inputs. This also serves

to clearly see the interplay between the terms corresponding to the membrane and to the

2

internal cavity. Given a pair of internally coupled eardrums of area Symp = (7 — B)diymp

driven by the sound pressures given in (2.3), the displacement of its surface at a position
(r,¢) is given by

1 p&+ps  p—p&
o] A 2.5
o/ (r, 93 ,1) 2(1+Amtr+ I+ Aol =
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Table 2.1 Functions and variables used in the ICE Model

Sound source direction, angular frequency and wavenumber
9, a)? k . _1 . .

(k = w/c) with sound speed ¢ =343 ms™ " in air.
Sound pressure inputs to the two ears given the direction and
the phase difference between them.
Tympanic membrane eigenmodes and corresponding eigen-
frequencies.

pO/L7 A

an<r7¢;t), Omn

Uo/ L(r9;1), Mg\ﬁ (t) | Membrane displacement — full and average.

A(a)) Membrane frequency response.

Tympanic membrane density, thickness, wave propagation
velocity and eardrum radius.

Extent of the vibrating part of the membrane. The remaining

pM’ dMa CM, atymp

ﬁ <9 <2m- ﬁ sector corresponds to the extracolumella.
Jfo, & Membrane fundamental frequency and damping coefficient.
L V..V Interaural separation, total cavity volume, tympanic cavity
s Ycavs Ytymp volume.
dcyls Scyl Radius and cross section of the cylindrical cavity.
Order g Bessel function of the first kind, its st zero and s
Jq, ,uan Vqs .
extremum respectively.
Cavity pressure modes and corresponding axial wavenum-
pqs(x7r7¢)’ CC]S bers.
p (x, 9 ’t) ’ Cavity pressure distribution and air velocity.
Vi(x,r,@51)
where

> Unn (1) [dS wpn

A , 2.6)
o pMdM-Q'mn de u,z,m
Awr(®) = /y dS A(r9,0) . 2.7)

Here Q,, = ®* — 0?2, — 2ia® and the Iy coefficients quantitatively relate the internal
pressures at piL“, p})“ the eardrums to the eardrum displacement uy, ug such that

2pi,fl:r+/ ds (uL+u0)+F_/ ds (ug, — up) 2.8)
57

mem mem

2P0 —T, / ds (up+up)—T_ [ dS (ur —uo) (2.9)
Ymem Zmem
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The integrals in Eqs.(2.6)&(2.7) are taken over the vibrating part membrane surface,

Fmem = (1,0) € (0,aiymp) X (B,2r—P) .

The membrane eigenmodes, denoted by u,,,, can be explicitly written down as

U (1,0) = sin k(¢ — B)oc(Unn) (2.10)

mn

where k[m| = m—p) M= 1,2,3,... and Ji is the order-k Bessel function of the first kind
with U, X ayymp being its n'" zero. The remaining quantities are defined in Table 2.1.

For a solitary driving pressure pexp(i®t) on an individual membrane’s surface, A(r, ¢) =
u(r,¢)/p is its frequency response and Ay is the integral of A over the vibrating part of the
membrane surface .pem. The frequency dependence of both these terms is contained in
Q,,, which will be defined later; cf. (2.41). The coefficients I' effectively correspond to
the frequency response of the interaural cavity. In the following, we derive expressions for
the eardrum vibrations and cavity pressure in succession and use the results to finally derive

expressions for coupled membrane vibrations using appropriate boundary conditions.

2.2.1 Tympanic vibrations

As described in Sec. 2.1.1, the eardrum consists of two parts, namely, the tympanic membrane
and the attached extracolumella. The vibrating part of the eardrum or tympanum will be
modeled as a damped linear-elastic membrane. In order to be described as a membrane, the
membrane radius aymp should be much larger than its thickness dy. A typical criterion is
that, in order to be described as a membrane, the ratio agymp /dy should be greater than 80
[62]. This is certainly true for most animals with tympanic hearing as the tympanic diameter
is of the order of a centimeter, while the thickness is of the order of tens of microns. For a
Tokay gecko (aymp ~ 2.6 mm, dy ~ .01 mm), this gives us a ratio aiymp Jdm =~ 260.

As the eardrum is modeled as having a (nearly) circular shape in ICE, we will be working
in polar coordinates denoted by a radial distance and angle (r,¢). We denote the pressure
difference across the eardrum surface by W(r, ¢;¢) and the transverse displacement at any
point on its surface by u(r, ¢;¢), such that, u < tymp- In other words, the membrane only
undergoes small deflections. Moreover, we also assume that the deflections are small enough
such that the gradients are also much less than unity, i.e., |Vu(r,¢)| < 1. Finally, in our
derivation, we assume that the thickness dy; and and density py are uniform over the
membrane surface.
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Fig. 2.8 Infinitesimal section of area rArA¢ on the surface of the vibrating membrane of
radius ayymp. The shaded region corresponds to the extracolumella; cf. 2.3b. The element is
at a distance r from the center of the eardrum and at an azimuthal angle ¢, such that ¢ =0
corresponds to the midline of the extracolumella. We work in polar coordinates as we have
chosen the eardrum to have a nearly circular shape in our model.

The following derivation is based on Kreyszig [63, p. 575]. Let us consider a surface of
infinitesimal area rArA¢@ on the membrane surface at a distance r from the center and at an
azimuthal angle ¢; cf. Fig. 2.8. The angle ¢ is chosen such that ¢ = 0 corresponds to the
midline of the extracolumella and the vibrating part of the membrane is limited to Spemp =
{r < aymp and B < ¢ <21 — B}; cf. Sec. 2.1.1&Fig.2.3b. Given a uniform membrane
tension 7, the restoring forces act normal to each edge of the infinitesimal element along the
gradient of the membrane displacement u; cf. Fig. 2.9a. As the displacements and gradients
are small, the angle made by the gradient with the horizontal plane at any point is also
small. As a result the horizontal forces acting on opposite ends of the infinitesimal elements
cancel out. Denoting the angles made by the gradient at each edge by 6,1, 6,2, 651, 0y2 (see

Figs. 2.9a and 2.9b), the vertical component of the net forces at the radial edges are given by

T(r+Ar)A¢ sin 6,5 — TrA@ sin 6, ~ T(r + Ar)A¢ tan 6,5 — TrA¢@ tan 6,

=1(r+Ar)A¢ ou — TrAQ %

5 2.11)

r+Ar r
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TAr

A4 ,
TX(r+Ar)Ad
~ et = I :E —
TxrAd 'EI ?TAr E ;'
<l~
(@)

Fig. 2.9 Forces acting on the displaced infinitesimal section from Fig. 2.8 due to the inherent
tension 7 in the radial direction (b) and azimuthal direction (c).

Similarly, the vertical components due to the azimuthal edges are given by

TArA¢Q sin 6y, — TArsin 0y; ~ TArtan 6y, — TArtan 6y
Ar du Ar du

_ 2 _ 2o (2.12)
o-+AP r d¢

r% ¢'

In addition to the restoring force due to the membrane tension, we also add an empirical

damping term quantified by a coefficient &. The Newton’s equation for the infinitesimal

)

element driven by a pressure ¥(r, ¢;¢) can thus be written as,

pmdmrArAQii = Y (r, ¢;1)rArA¢ + (T(r—l—Ar)A(p % — TrA¢ %

r+Ar
+ Tg % — g @ —2(xpMerArA¢u .
r 99 siap r 99|,

(2.13)

where, the overhead dot denotes a derivative with respect to time. Dividing through the above

) 1 du
r+Ar r r or

T du
ae \ 30

equation by the infinitesimal area term rArA¢ gives us

_du
or

) N N, T (du
pMdM(u+2au) —\P(r,(l),t) + Ar (ar

r+Ar
_ou
9

)

P+AQ
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Finally, taking the limits Ar — 0 and A¢ — O allows us to rewrite the equation of motion for

the membrane element as an inhomogeneous wave equation

d%u du 1
W—anE—CMA(z)M— pN[—dM\P(}’,(Z),I) (2.14)

2 10 1 92

Ao =gt ot g

(2.15)

where Ay) is the 2D-Laplacian and ¢y is the wave-propagation velocity on the membrane
surface which is defined as (cf. Table 2.1)

T
= . 2.16
M V' Pmdm (2-16)

Furthermore, ¥(r, ¢;¢) is the total pressure driving the membrane (on both the inner and the

outer surface). The tympanic membrane is fixed at its radial boundary r = aymp and, as a
consequence of the presence of the extracolumella, at ¢ = +-J3.

As a preliminary exercise, we first derive expressions for the free (i.e., ¥ = 0) and
force-driven vibrations of a circular membrane. We will then use our results to move on to

the sectorial membrane which corresponds to the tympanum loaded by the extracolumella.

Circular membrane

We consider a rigidly clamped circular membrane of radius dymp and solve for the membrane
displacement u(r, ¢) at a point (7, ¢) with r < aymp and 0 < ¢ < 27. Due to the absence of
the extracolumella, the membrane is only subject to the Dirichlet boundary condition

u(r, 058) [ r=aymp = 0 - (2.17)

We first determine the eigenmodes of an undamped circular membrane by solving (2.14)
for o =0, ¥ = 0. We solve the resulting 2-dimensional Helmholtz equation by using a
separation ansatz [64, p. 187]

”(r7¢;t):f(r)g(¢)T(t) ) (2.18)
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which results in the following set of equations,

d*g(¢)

d¢2 +m2g((])) =0 (2.19)
d*T

dﬂ([) + T (1) =0 (2.20)
9%f(r) 19f(r) . m? B

92 T o, +{H _r_Z} f(r)=0 (2.21)

with separation constants (t and m. The first two equations are second-order ODEs, repre-
senting the dependence on azimuth ¢ and time ¢, that can be readily solved to give,

g(¢) = Mcos m¢ + Nsin m¢ (2.22)
T(t) = Eexp(iot) 4+ Fe " (2.23)

In general, m can take any positive real value — a fact that will help us solve the sectorial
membrane problem. In the case of a full circular membrane, however, requirements of
continuity and smoothness in ¢ result in m taking integer values only.

The third equation (2.50) is known as the Bessel differential equation [65, p. 313] and its

general solution is given by

f(r) = Cln(tmr) + DY (Hmr) - (2.24)

Jm and Y, are the order-m Bessel functions of the first and second kind, respectively. We
can set the coefficients D,, = 0, as the Bessel function of the second kind diverges at r =0
[65] and we are seeking solutions that remain finite on the membrane surface. Imposing the

Dirichlet boundary condition (2.17) at the edges of the membrane effectively results in,

Jm(,uatymp) =0.

As the Bessel function J;,, has a countably infinite number of zeros [66, p. 370], u is
correspondingly constrained to a discrete set of values. In (2.26), the combination of
Gtymp and Uy, corresponds to the n'" zero of J,, and @, = cm Umn 1s the eigenfrequency of
the eigenmode indexed by (m,n). The circular membrane modes can thus be written as

u;iZC(n (]),t) — (Emneiwmnt _i_ane*iwmnt) u;ill:lc(r’ (p) (225)
ui(’:l’illl:lc(r’ (p) = [an cosm¢ + Nyp sinm(p] Jm(numnr) : (2.26)
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As we will later see (cf. Chap. 3, the fundamental frequency fgirc, given by

1§ = empor /27 (2.27)

is of particular relevance to generating hearing cues in ICE.
The spatial parts of the resulting eigenmodes u,,, also form an orthogonal set, i.e.,

/S dS ul', usye =0, if my #my orny #ny (2.28)
where the integral is taken over a disk of radius aiymp. For later convenience we have
denoted the spatial part of the modes by omitting the time-dependence from the argument
of the function uggf(r, ¢). The first few of these modes have been plotted in Fig. 2.10. This
symmetric vibration profile circular membranes does not agree well with that for lizards
due to the inherent asymmetry resulting from the embedded extracolumella (cf. Figs. 2.3a

and 2.3b), but does agree fairly well for many frogs since the footplate of their columella
1s attached symmetrically to the middle of the tympanum [67]; see also Fig. 2.11. We also

1,1) 2,1)

+ve

Fig. 2.10 Eigenmodes of a full circular membrane with the characteristic numbers (m,n) of
the modes shown above each figure. Displacements into the surface of the paper are darkly
shaded while those out are lightly shaded (illustrated in the legend) . The eigenfrequency
increases from left to right and top to bottom. This kind of a vibration profile does not
agree well with that for lizards due to the asymmetry brought about by the embedded
extracolumella, but does agree fairly well for many frogs since the footplate of their columella
attaches symmetrically to the middle of the tympanum [67].
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note that a freely vibrating membrane can have time-dependent components that are both
forward- and backward-moving. The presence of a driving force, however, constrains the
time-dependent component in the steady-state.

Fig. 2.11 The above plots show the excitation patterns of an anuran (frog) tympanum for
different frequencies, as indicated. Unlike lizards, the extracolumella touches the circular
eardrum of frogs in the middle, hence not breaking its rotational symmetry. As a result,
the vibration patters are nearly rotationally invariant. The fixed, circular, border has been
indicated once by a solid (red) circle for 600 Hz. The dominant mode for 600 Hz is the
fundamental one (0,1), higher modes mix in as the frequency increases, corresponding nicely
to the Bessel function of the mode (0, 2); cf. Fig. 2.10. Plot courtesy of M.B. Jgrgensen [67].

Sectorial membrane

In Section 2.1.1, we noted that in vertebrates there is a transducer for the membrane’s
vibrations in the form of a columella which attaches asymmetrically to the eardrum via the
extracolumella; cf. Figs. 2.2b and 2.3a. Consequently, the membrane cannot be modeled

as a full circular disk, but rather as a sector of a given angle. For such a membrane, the
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equation of motion of the vibrating part remains unchanged. However, as the extracolumella
effectively breaks the circular symmetry of the membrane surface, we now have a new set of
temporally fixed boundary conditions at the line of contact of the tympanic membrane with
the extracolumella (cf. Fig. 2.3a), in addition to the Dirichlet boundary condition at r = @tymp;
see Eq. (2.17). In order to calculate the eigenmodes, we proceed from the definition in (2.26)
and determine the values that m is constrained to take based on the boundary conditions at
both edges of the extracolumella.

We also note that, because of the relatively large mass of the extracolumella as well as its
attached elements in comparison to the membrane, we can effectively model it as an infinitely
heavy sectorial plate of radius aymp and angle 2f3. In other words, the vibrating part of the
membrane lies in the region f < ¢ < 27w — f3; see Fig. 2.3b. As a result, we require that the
membrane displacement goes to zero at ¢ = § and ¢ =27 — 3 so that the ¢ part of (2.26)
takes the form sin (¢ — ). We therefore obtain the following set of orthogonal eigenmodes,

nn (1, 931) = [Myn€ ™" + Nyne ™ ™| thy (1, 9) (2.29)
umn(r7 (])) =sin K(‘P - B)JK(.umnr) ) (2.30)

where, the azimuthal component is indexed by x which is defined as a discrete function
km|=0.5(m+1)n/(n—B) m=0,1,2,.... (2.31)

We see that the radial — r — part of the modes u,,,(r, @) is given by the (fractional) order-k
Bessel function of the first kind with L, X aiymp being its n'" zero. The mode corresponding
m = —1 represents the trivial ”zero* solution to the membrane equation. As in the case of
the circular membrane modes (2.28), the sectorial eigenmodes u,,, also form an orthogonal
set, i.e.,

/SdS Umyn Umon, = 0, if my #mp orny #ny . (2.32)

The fundamental frequency fj of the sectorial modes follows in a similar way to that of the

circular membrane modes (2.27)

fo=cmMo1 /27 . (2.33)

It should be apparent from the form of the above modes that, unlike in the case of the
circular membrane eigenmodes, these modes are no longer radially symmetric. The sectorial
shape of the membrane has important physical consequences and captures the complex
vibration patterns of a realistic membrane. For a circular membrane driven by a uniform

pressure, the asymmetric modes (with m # Q) are suppressed. This holds in the case of
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frogs [68], where the extracolumella is attached to the middle of the tympanic membrane
and its rotational symmetry is not broken; see also Fig. 2.11. On the other hand, for the
sectorial membrane as in the case of lizards, the radial symmetry is broken explicitly by the
extracolumella. The first few of these modes are shown in Fig. 2.12. The vibrations of a

(1,1) 2,1) G,1)

Fig. 2.12 Eigenmodes of a sectorial membrane where the omitted region corresponds to the
extracolumella with = 7 /25; cf. Fig. 2.3b. The eigennumbers are shown above each figure.
As in Fig. 2.10, displacements into the surface of the paper are darkly shaded while those out
are lightly shaded. The eigenfrequency increases from left to right and top to bottom.

sectorial membrane are discussed in more detail in [61, p. 87].

Undamped and damped vibrations

For a damped membrane with o > 0 in Eq. (2.14), the spatial part of the above eigenmodes
remains unchanged. The form of the time-dependent part 7'(¢) as given by (2.18) is obtained
from the solution to the following ordinary differential equation,

dPhn(t) Zadhmn(t)
dr? dt

— @2, (1) =0 (2.34)

The above expression differs from the equation for the time-varying part of the pressure
(2.20) only in a first-order damping term. We therefore expect (2.34) to have exponentially
decaying solutions in time and look for them.
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As an ansatz, we assume /,,;, to take the form exp(i@,,,) where @, can, in general, be a
complex number. This leads to a quadratic equation in @, with solutions
~2 .~ 2 _
Wy — 210 Wy — @, = 0 (2.35)

B = 100+ O, (2.36)

where @, =1/ 0%+ 2, . (2.37)

We see that the new, now damped, eigenmodes possess both an exponential damping term
as well as a shift in the original eigenfrequencies. We require the membrane displacement
to remain finite as t — oo. As exp(—i@,,;,) terms lead to vibration amplitudes that increase
exponentially as exp(oit) we can safely drop them. This then leads to

T (1, 037) = thp (1, 0) [ane"“’ffm’ Ny @t | o= (2.38)

The effect of membrane damping is therefore not only an exponentially decreasing damping
term, but also a shift in the eigenfrequencies of all the membrane eigenmodes. The general
solution is given by a linear combination of u,,, with the coefficients that are determined by
initial conditions. These could be, for instance, the membrane displacement and velocity at
t=0.

Forced vibrations

For a periodically driven membrane, there are two components of the full solution corre-
sponding to forced vibrations. The first of these is the quasi-stationary-state solution which
oscillates with the same frequency as the input and does not depend on the initial conditions —
ugs. The second of these is the transient solution that depends on the initial conditions but not
directly on the driving pressure — u;.

The quasi-steady-state solution is expressed as a linear combination of the spatial part
of the membrane eigenmodes defined in (2.30) with a time-component equal to that of the

driving pressure, exp(i@t),

o oo

ugs(r,0:1) = Y. Y Conttn (r, 9) exp(icor). (2.39)

m=0n=1
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By substituting (2.39) into (2.14) with ¥ = pexp(imt) we obtain

Y. Y omdMQunConttin (1,9 = pexp(io) (2.40)
m=0n=1
Qi = [(0* — @p,) —2iao)] . (2.41)

Using the orthogonality of the eigenmodes, we can calculate the coefficients Cy,,

p[dS wun

Cmn =
pMdM-an f dS(an)2

(2.42)

with the integral this time being taken over the circular disk of radius agymp (or equivalently,
over the vibrating surface of the tympanum).

The transient solution is found by solving the membrane equation for ¥(r,¢;¢) = 0
which, effectively, is the solution of the free damped membrane, i.e., a linear combination of

the eigenmodes given in (2.38),

r¢)t:ii n(rQst). (2.43)

The complete solution is given by u = u; 4 ug and the coefficients M,,;,, and N,,, are deter-
mined by the initial conditions (at t = 0).

Quasi-Steady-State Approximation

The damping coefficient « is usually given in terms of the membrane fundamental frequency
(fo) and a quality factor Q as a = 27 fy/2Q. The eardrums in the animals we are concerned
with are generally underdamped, i.e., Q > 0.5, which results in damping coefficients that are
around ~ 2700 s~ ! for the Gecko lizards and around ~ 400 s~! for the larger Varanus; see
Tab. 3.1 in Chap. 3. As a result, the exponential decay of the transient vibration amplitude
allows us to safely assume that within a few time-periods of the input frequency, and even
far less for the Geckos, the transient vibrations of the forced membrane are gone. In our
subsequent derivations, we can safely neglect the transient parts of the membrane vibration.
The transient behavior can be dealt with in a more precise manner, by solving the pressure
differential equation with the vibrating membranes serving as time-dependent boundary
conditions. A rigorous mathematical treatment of coupled membrane vibrations is beyond

the scope of the present work, but has been treated in full elsewhere [69].
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2.2.2 Cavity Pressure

Given a cavity of arbitrary shape coupling the two eardrums, understanding the physics
of ICE formally reduces to finding an expression for the internal pressure at one eardrum
in terms of the internal pressure at the opposite eardrum. To do so, we first need to find
an expression for the pressure within the interaural cavity. At our frequencies of interest
(< 4 kHz) and given the small interaural sound propagation distances (< 10 cm), viscous
acoustic damping in air can be neglected so that we follow common acoustic models (e.g.
[70, p. 313], [71, p. 247]) and describe the air inside the cavity by linear acoustics in a
cylindrical coordinate system. In this approach, air moves due to a local pressure p(x,r,@;¢)
obeying the 3-dimensional wave equation
2 .
éw =A@ p(x,1,95t) (2.44)
10 0% 1 9% 92

where Ay = 5t gt g tan

(2.45)
is the 3-dimensional Laplacian in cylindrical coordinates with x denoting the dimension along
the cylinder axis, while c is speed of sound. The choice of cylindrical coordinates reflects the
circular cross section of the canal(s) comprising the interaural cavity in our treatment of ICE;
cf. Sec. 2.1.2. The acoustic wave equation results from a linearization of the Euler equations
in terms of small pressure and velocity fluctuations [72, pp. 538-541].

The complete solution must take into account the boundary conditions at and within
the cavity walls and the ones at the air-membrane interface. We also note that Eq. (2.44)
presumes through its boundary conditions that the animal’s mouth is closed, which is typical
for a waiting predator or prey.

General solution

In order to solve (2.44) for a particular frequency f with angular frequency ®w =27 f, we

use the following separation ansatz, similar to the one used in (2.18)

p(x;1,9,1) = f(x)g(r)h(9) exp(iar) (2.46)

which after substitution into (2.44) leads to,

2 r r
@ F0)elr)h(o) + 1 (o) | S+ 1220

2 2 X
#7008 5 2 ¢ glrni) L <o,

(2.47)
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As always, k := ®/c is the wavelength of the sound wave at the given angular frequency
(o =2nf). Before proceeding we should note that, in general, the time component of the
pressure also has a temporally backward-moving component, i.e., exp(—i@t). By making
the ansatz in (2.46), we have implicitly used the fact that the form of the input as given in
(2.3) constrains the pressure to only having a forward-moving component, i.e., exp(i®t).
The substitution exp(i@t) in (2.46) actually means that we are looking for the (countable)
eigenvalues of —A inside the cavity, in terms of @? with appropriate boundary conditions; see
below. Although this might look mathematically contradictory at first, we will soon see that
it is not. Making the ansatz of separation of variables and dividing (2.47) by f(x)g(r)h(¢)

gives the following set of separated ordinary differential equations (ODEs),

d*f

dx<2x> +8fx) =0 (2.48)
dzdh(p(g)) +q2h(¢> =0 (2.49)
82g(r) 1 ag(r‘) 2 5 qz B

o7 Trar T z| 80 =0 (2.50)

—.2
—.Vq

with separation constants g and . The above equations are nearly identical to those in (2.19)
—(2.21). As before, the first two equations can be readily solved to give,

f(x) =exp(£ilx) (2.51)
h(9) = exp(+ig9). (2.52)

The third equation (2.50), i.e. the Bessel differential equation can be solved to give (cf.
Eq. (2.21))
8(r) = Cqly(Vqr) +Dg¥y(Vyr). (2.53)

J, and Y, are the order-g Bessel functions of the first and second kind, respectively. We can
set the coefficients D, = 0 as the Bessel function of the second kind diverges at r = 0 [63,
p- 313] and we are seeking solutions that remain finite on within the interaural cavity.

With the above solutions for f(x), g(r), and A(¢), we can write down a specific solution
to (2.44),

Pq(x,1,9) = (Aqexp(ilyx) + Bgexp(—ilyx)) pg(r,9) (2.54)
Pg(r,9) = Jg(Vgr/acy) (Cycosq9 + Dysinge) . (2.55)
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The coefficients A, B, g, { and v will be subsequently determined by the boundary conditions.
Through p; we denote the components of the eigenfunction in the radial and azimuthal

directions.

Pressure boundary conditions

In order to determine the coefficients in (2.55), we have to satisfy three sets of boundary

conditions,

* Continuity and smoothness in ¢ or equivalently 2(0) = h(27) and j—q) ] =

* Vanishing of the normal derivative at the cavity walls — %

r:acyl
» Equating the membrane velocity to the air velocity at the inner air-membrane interface.

The first set of requirements, as in the case of a circular membrane, is trivial and constrains
q to take integer values. The second and third are a result of the so called “no-penetration”
boundary-condition of fluid-mechanics. They arise from the fact that the cavity wall and the
eardrum are impermeable boundaries. This translates into the requirement that the normal
velocity function should vanish [73, p. 111]. The velocity function (v) is related to the
pressure by

ov
—p—=V 2.56
ey P, (2.56)
where p is the density of air. This result emerges directly from the linearization of the Euler
equation
ov 1
Y V= —_VP+f. (2.57)
dt P

Assuming that the acoustic pressure can be described as a fluctuation p around a stationary
background (atmospheric) pressure Py and that the fluid velocity v, as small fluctuations in a

quiescent fluid vo = 0, we obtain

V=vg+v=v

P=P+p.

Neglecting the body forces due to gravity (f) gives us

v

éat

1
+VVV:—EVp. (2.58)

We can neglect the convection term (v - Vv) as it is of second order in the extremely small v,
and thus arrive at (2.56).
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At the cylindrical cavity wall, the normal velocity is in the radial direction, and vanishes.
Substituting the expression (2.60) for the pressure into (2.56) leads to a Neumann boundary

condition for the pressure,

1 0 ;
v— p(x,r,¢;t) _0
ipw ar r=dey
_ 9Ver)| (2.59)
or r—dey:

This constrains v, to a discrete set of values which correspond to the local minima and
maxima of J,. This is in contrast to the Dirichlet boundary condition for the corresponding
Bessel equation describing the membrane vibrations (2.17). We therefore introduce an
additional index s which takes integer values such that v, X acy corresponds to the sth
extremum of the order-g Bessel function of the first kind. This results in (2.54) becoming a

set of modes indexed by (g, s) :

Pas(x,1,0) = (Agsexp(i8ysx) + Bysexp(—ilyx)) pog (2.60)
Pas(1,0) = Jgs(Vgsr/acy1) (Cys c08 g9 + Dyssingg) (2.61)

Effectively, the modes are 3-dimensional waves propagating with wave numbers ( in
the x-direction and v, in the radial direction. The wavenumber {, of the (g,s) mode is
related to the wavenumber k of sound in air as (cf. Eq. (2.50))

o=k =V . (2.62)

As was the case with the membrane modes (2.32), the pressure modes defined through

Egs. (2.54) and (2.59) form a discrete orthogonal basis inside the cylinder. This means that

/Qdeqlslpqzsz =0, if g1 # g2 or 51 # 52 (2.63)

where the integral is over the volume of the cylinder. This is a consequence of the fact that
for different ¢’s the trigonometric parts of the modes are orthogonal, whereas for the same ¢
the Bessel parts are orthogonal for different s’s. Expressed mathematically, this requirement

gives us
[d5 fusifus = 0. a1 £ @z 051 # 52 (2.64)

where dS = rdrd ¢ with the integral being taken over the disk of radius acy). We can therefore

write the general solution to Eq. (2.44) as a linear combination of the orthogonal modes given
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in (2.60) :

oo o0

px,rd:t) =Y Y pys(x,r,¢)exp(ior) (2.65)

q=0s5=0
where the individual modes py; are defined in Eq. (2.54).

The first of these modes (corresponding to ¢ = 0,s = 0) is of particular importance. Since
the first maximum of Jy occurs at r = 0, we have vy = 0 and, consequently, {y) = k. Thus,
the first propagating mode in the air-filled cavity is a plane wave that is constant in » and ¢
and only propagates along the axis of the cylinder. Unlike the higher modes, which depend
on the radius r and polar angle ¢, the plane wave mode is the same in all the sections of the
interaural cavity. The pressure, particle velocity and volume flow rate for the plane wave
mode are given by

p(x;1) = (Ae™ + Be ™) exp(icr) , (2.66)
1. .
v(x;t) = —p—(Ae’k’C — Be ™) exp(iwr) and (2.67)
c
1 . ,
U(x;t) = —Scyl&(Ae’kx — Be ™ exp(ir) , (2.68)

where, as usual, Sy is the area of cross section of the cylindrical canal.

The third and final set of boundary conditions at the internal air-membrane interface at
either end of the cylinder will be used to determine the remaining coefficients, A,s and B.
To do so, we first need to use the analytical expression for the membrane vibrations derived
in Sec. 2.2.1 as apply them as boundary conditions for the cavity pressure.

2.2.3 Vibration of coupled membranes

We can now move on to the analysis of the vibration of internally coupled membranes and
derive the expressions defined in (2.5). The analysis in this section is similar to the treatment
of the vibration of a circular membrane backed by a cylindrical air cavity closed at the
opposite end as given by [74]. The quantities of interest there were the eigenmodes of the
circular membrane, but we are primarily interested in the steady state vibration of sectorial
membranes that are internally coupled to each other as well as to external stimuli at both
ends.

It is convenient to first write down the main equations of the system based on our

previously derived expressions. A general expression for the quasi-steady-state vibrations of
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the eardrums is given by a linear combination of the sectorial eigenmodes, (2.30),

AGTRY Z Z O Lty (r, @) explict) (2.69)
m=0n=
where 0 and L denote the x = 0 and x = L membranes respectively. Given the cavity pressure
distribution p(x,r,@;t) as given by Eq. (2.65), the driving pressure on either side of the
membrane equals W/L(r,¢;1) = pq /Lei“” —p(0/L,r,¢;t). Substituting these expressions
into (2.14) gives us the following set of equations,

Y Y ordmQunCon thn (r, 9) explioon) = P/ (r, ¢31) . (2.70)

m=0n=1

The above equation is only valid on the vibrating part of the membrane surface, i.e., for
Smemb = {7 < aymp and B < ¢ <271 — B }.

As discussed in Subsection 2.2.2, the interaural cavity pressure satisfies the no-penetration
condition at solid boundaries. This means that at both ends of the cylinder, we equate the
velocity profile of air to the velocity profile of the circular surface including the membrane;
cf. Fig. 2.13a. As the membrane diameter is smaller than the cylinder diameter, we will
have to set the air-particle velocity to zero for r > agymp. Additionally, since the membrane
displacement is only in the x-direction, we need only calculate the x-component of the

velocity. Using the relation in Eq. (2.56) we get,

Vas (4,1, 0) = L (Aqsei@zxx _B se_"@lsx> Pas(1,9) 2.71)
ve(x,n@5t) = — Z qus x,r,¢)exp(iot) (2.72)
P(Dq 0s=

and the exact boundary conditions are given by

v(0.r i) = (r:0) € Smemt 2.73)

0, otherwise

iug, (r,0) €S
vi(L i) =4 " (7:9) € Smemb : (2.74)

0, otherwise

where, according to our convention, membrane displacements outward from the cylinder are

taken as positive (in x) and those inward are taken as negative.
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Approximate boundary condition

As we have just seen, the exact boundary conditions would require us to set the air velocity to
be exactly equal to the membrane velocity. The membrane and cavity modes, while forming
orthogonal bases by themselves (2.63), are, however, not orthogonal to each other. In other
words, each membrane mode couples with every cavity mode and vice versa. Even in the
absence of the extracolumella with full circular membranes on either end of the cylinder, the
cavity and membrane modes have different boundary conditions. For the internal pressure,
these are Neumann boundary condition, whereas for the membrane, we have Dirichlet
boundary conditions (2.17).

Our way around this problem is to approximate the eardrum motion, and thus boundary
conditions (2.73) and (2.74). We do this by effectively replacing each sectorial membrane by
a circular piston [12] operating on the internal pressure p and moving with the membrane’s

average velocity ugﬁ so that

1 -ave . ave
ug‘;eL = Kgﬂ/dSuO/L, tigg, = 10Uy (2.75)
vi(0,r,@51) = —uf*™® Ve(L,r,@5t) = ui*® (2.76)

where we have in fact taken the average velocity of the entire cylindrical surface including
the eardrum; cf. Fig. 2.13b. Since the bare cylinder surface is solid and nonmoving, the
present approximation of averaging over the lateral faces of the cylinder only differs from the
average over the membrane surface by a factor. The exact mathematical justification for the
current procedure is beyond the scope of the present work and has been presented elsewhere
[69]. The piston approximation used in our derivation refers to the averaging of the tympanic
motion including the non-moving extracolumella non-moving part of the cylinder face and
thus, effectively, approximating the Neumann boundary condition for the internal cavity
pressure.

Physically, we can assume that air is locally nearly incompressible so that in the long-
wavelength domain we focus here in a local boundary variation on one or both faces (corre-
sponding to the membrane displacement) has the same effect as the average variation on the
left and right face from where it propagates through the cylinder representing the pharyngeal
cavity. As said in the caption of Fig. 2.13b, “In effect, it computes the net volume change,”
as confirmed mathematically [69]

2 ave ave
Avcay = ﬂacyl(uLv +I/£OV ) .
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(a) Exact Membranes (b) Piston Approximation

Fig. 2.13 Above: Exact membrane boundary conditions. The velocity of air (v,) equals that
of the membrane (ug,;). Below: Piston approximation. The membrane is approximated by a
circular piston moving with the membrane’s average velocity and with boundary conditions
(2.76) applied to (2.44) and (2.56). The piston approximation refers to (2.44) and the
boundary condition for the pressure p in the 3-dimensional cavity, not to the motion (2.14)
of the eardrum itself. In effect, it computes the net volume change.

Given the modified boundary conditions (2.76), it is straightforward to calculate the

ave
0/L°

modes (2.63) and the modal expansion (2.71), (2.72) of the air velocity. By multiplying

coefficients Ays and By, in terms of u To do this we use the orthogonality of the cavity
both sides of the boundary relations in (2.76) by p4(r, ¢) and integrating over the circular
surfaces at the ends of the cylinder, this results in a system of two linear equations for each
pair of Ays and By,

Ags — Bygs = —Lysp 0*u® (2.77)
Agse ot — Be ol = L, p?SP° (2.78)
JdSpgs(r,9)
where L, = - . (2.79)
® quSdePés(’”a‘P)

We must now make use of the fact that the cavity pressure modes (2.60) integrate to 0
(i.e., [dSpgs = 0) unless ¢ = 0 and s = 0. For ¢ = 0 this is a consequence of the Bessel
functions integrating to zero while for ¢ > 1 this is due to the more obvious fact that the

integral of the trigonometric part from O to 27 is zero. That is,
Qacyl
/ rly(vgsr)dr =0, (2.80)
0
21
/0 (Aqscosqq) +qusinq¢) dp=0. (2.81)

As a result we have A, = B = 0 for all modes except the (0,0) mode. In other words, as a
result of the piston approximation, we only encounter plane wave modes inside the cavity.

We will subsequently omit the subscripts “00” for these coefficients. From the above linear



44 Mathematical ICE Model

equations, they are given in terms of the total membrane displacement as

2

) .
A= g (8% ) (2:52)
2
@
B = amir (87" +16) (2:83)

We have also directly substituted {yy = k and simplified the expression for Ly in the above
expressions. These coefficients can now be substituted in place of the pressure into the
right-hand side of (2.70) so as to give

Z Z pMdManCI(%fumn(r?(P) -
m=0

=0n=1
) (2.84)

Po/L+ pZ) <u876LcotkL+u8V/eLcsckL> .

The time component exp(i®t) cancels on both sides of the equation. We note that the
right-hand side of the above equation system is independent of the spatial (r,¢) coordinates.

The above coupled system of equations can be considerably simplified by taking their
sum and difference to obtain a new set of decoupled equations. After some algebra, we have

the following set of “sum and difference” equations,

< & w? kL
y ZpMdManC o (r, ) = p++pTuivecot S (2.85)
m=0n=

? kL
y ZpMdMan e (1,9) = p—— 2w tan = (2.86)
m=0n=

where the “plus” and “minus” have been defined as the sum and difference of the respective
“0/L” components. That is,

Cn+m = Crl;m + C?nna P+ = pix +p8X ) (2.87)

Cr;n = CL Cr(zm’ p-= PEX - pgx ’ (2.88)

Lt?:e = Lt%ve-i- 0 = Z Z nUmn (1, 9) (2.89)
m=0n=

uve — uaive uave Z Z Cmnumn T, ¢) (2.90)
m=0n=

Thus it is apparent that the above system of equations is decoupled because the #%'° terms can

be expressed as a linear expansion of the respective C;-, coefficients alone. Analogously to
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the calculation of the coefficients for the quasi-steady-state vibration in (2.40) and (2.42) we
can now use the orthogonality of the membrane modes u,,, to determine the coefficients of the

sum and difference vibrations in terms of the pressure and average membrane displacement,

2
pw kL | K,
ch, / sy, = [p++ ; uivecotT} QZZ (2.91)
2
_ w kL | Kyn
(/ dS upn)?
where K,,,, = . (2.93)
" pmdm de u%m

The integrals are over the vibrating part of the membrane surface .#pnem . The substitution
K, will simplify our calculations in the appendix for the estimation of membrane parameters.
The next step will be to sum both sides of (2.91) and (2.92) over all the membrane eigenmodes
(m,n). The left-hand sides of the equations give us

Y Y c,. / dS tyn = Tag,uy . (2.94)

m=0n=1

Hence we obtain exact expressions for the average membrane displacements,

= 2.95

Tcacylui 1+At0tri Y ( )

where Awi= Y, Y Kun - (2.96)
m=0n=1

We have thus shown how the quantities A, Ay and 'y first defined in (2.6), (2.7), (2.8)
and (2.9) emerge from our analysis. As stated earlier, the 'y terms contain the effect of
the coupling through the air cavity and A is the frequency response of the membrane to a
pure tone of angular frequency . Qualitatively we can see that the information about the
membrane (drymp, cM, &) is contained within A whereas the properties of the interaural cavity
(Veav, dey1, L) are contained in I'x. That is, we have obtained the results first motivated in
(2.6)-(2.9),

o ”mn(ra¢)f”mn /
A= , Aot = A(r,0)dS , 2.97
m,n pMdManfuiznn ol ymem <r ¢) ( )

pc? pc?

I, = v kLcotkL/2, T_ =

cav cav

kLtankL/2 ., (2.98)
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where, as before, Q,,, = ®0* — a)nzm — 2iaw. Subsituting the above expressions along with
(2.95) into (2.91) and (2.92) gives us the results mentioned at the start of this section,

B 1 pix + PSX pix _ pgx
uo/n(ri9) =3 <1+At0tl"+ T Al

1 pex pex pex . pex
2 ave L 0 L 0
s == T Aot - 2.100
ey /1 (19) = 3 (1 F Aol T+ Ael ) (2-100)

) A(r9), (2.99)

Convergence of A

Since the membrane frequency response A(r, @), or equivalently Ay in (2.97), is the summa-
tion of an infinite number of eigenmodes, in order to proceed with a numerical analysis of our
model we first need to ensure that it converges to a finite value. Through the Cauchy-Schwarz

inequality we obtain

|Atot’ < Stymp ZKmn/|pMdMQ-m7n| < oo (2.101)

m,n

with Siymp as the tympanic area and K, as the coefficient defined in (2.93). The former
inequality is Cauchy-Schwarz, the latter is a general characteristic of the spectrum of the
two-dimensional Laplacian associated with the eardrum; cf. (2.14), (2.41), and Table 2.1.
We therefore need to approximate Ay by choosing an appropriate mode cutoff based on
the hearing range of the animal and the high damping at their corresponding eigenfrequencies.
In our analysis we chose a cutoff of N = 30 modes. The basic method involves arranging
the modes in increasing order of eigenfrequency (or equivalently t,,,). As a result, we can
express the summation over a single index. In general, for the frequency ranges of the animals
we are interested in, we need not calculate the summation beyond the first 30 eigenmodes.
At these frequencies, the damping sufficiently suppresses higher modes with respect to the

lower ones.

2.3 Simplified ICE models

Now that we have derived a geometrical ICE model based on the relevant anatomy of
animals with coupled ears, wherein the flexible eardrums or tympanic membranes are
coupled through a continuous air-filled cavity. With this knowledge at hand, we now present
simplified equivalent descriptions of the model by representing the various components
through equivalent lumped circuit or mechanical elements. Our goal is to obtain simplified

qualitative and quantitative models that mimic the results obtained in the present chapter. In
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particular, by presenting the simplified models with appropriate time-varying inputs, we will
obtain quantities mathematically similar to those we have derived so far. In doing so we will

effectively be exploiting the linearity of the ICE model.

2.3.1 Circuit equivalent

The results of ICE model can, in some cases, be reproduced by representing its components
through equivalent circuit elements such as impedances, current sources and voltage sources
that quantify the motion of the middle ear components. The method was used to describe the
interaural coupling in lizards [25, 26, 75] and was based on methods presented by Fletcher
[61, p. 164] and Zwislocki [76]. In such a model, the external sound inputs are represented by
voltage sources, while the rest of the system is represented by impedances whose numerical
values depend on the material and geometrical properties of the corresponding component.
In general, the impedance values thus determined can have both resistive and reactive
components. The circuit analog for the ICE model is illustrated in Fig. 2.14. For the
eardrum, the higher modes are neglected and the equivalent resistance Ry, inductance Ly
and capacitance Cy of the eardrum are given by

L d 1
:M, LMZPM2M and CM:

Rwm
2 )
Q T atymp (DO Ly

(2.102)

respectively. Recall that @y = 27 fj is the angular fundamental frequency of the eardrum
and Q is its quality factor such that, the membrane damping is given by a = @y /2Q; cf.
Sec. 2.2.1. For the interaural cavity pressure, its spatial variation between the eardrums is
neglected such that it is represented only by a capacitance Cy which is defined in terms of

the cavity volume V,,y as

— Vcav
pct

Cv (2.103)
The equivalent resistance Ry and inductance Ly are set to zero for the air-filled cavity.
Physically, the air inside the cavity is assumed to be globally adiabatic, as opposed to locally
adiabatic, when deriving the acoustic wave equation. The adiabatic equation of state is thus
used to determine the instantaneous pressure change inside the cavity from the instantaneous
volume change due to the eardrum motion which, after linearization, results in a uniform

pressure inside the cavity. The total impedance Z of both components is given by

Zyiyv = Ryiyv + joLy v + 1/ jaoCyyy - (2.104)
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The role of the “current” in the circuit is played by the integral vibration velocity of the

eardrums, which is defined in terms of the average membrane displacement (2.100) as
Uo/L = ia)Stympug‘;eL , (2.105)

where Siymp 1s the surface area of the eardrum. The variables Uy, are referred to as the
“acoustic flow” and is equivalent to the volume flow rate of air at the eardrum interface, inside
the cavity. Requiring a conservation of acoustic flow at the branches, we apply Ohm’s law to

I 1

Zint ) AN

8.

o (R

Fig. 2.14 The equivalent circuit model for ICE described using lumped elements. The
eardrums are represented by an impedance Zy; which depends upon the fundamental fre-
quency fo and the damping . The equivalent impedance Zy represents the interaural cavity
and is only a function of its volume, the density of air and the speed of sound. The input
pressures pg*/L are represented by voltage sources which induce “currents” Uy /1" In each
arm of the circuit.

the circuit in Fig. 2.14 resulting in,

Pt =UZm+ (UL +Uo) Zv (2.106)
Py =UoZm+ (UL +Uo) Zy . (2.107)

Solving the above equations results in

€X

LA O b

2Up 9 =
L/o Im+ 27y M

(2.108)
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The above expressions are, in fact, qualitatively very similar to the expressions for the
average membrane displacements ug‘fz (2.100). The first term in the summation of the
membrane frequency response A (2.97) is equivalent to an “admittance®, or the inverse of

the impedance Zy

[0C 1
— = (2.109)
pmdm (@ —2iawm — o) M
/ dS I/l(z)l
CO — ymem ,

dsS up )?
(/%nem Ol )

where ug; is the first membrane mode (2.30). The cavity “plus‘ coefficient I' (2.98), on the
other hand, is equivalent to the impedance Zy in the f — 0 limit, while the cavity “minus*

coefficient vanishes, i.e.,

IimI'y = -7 d IimI'_=0 2.110
flg% + Y an fl_r>r(1) ( )
The ICE model I';. coefficients are, effectively, corrections to the impedances that account

for the spatial variation of pressure inside the cavity.

2.3.2 Mechanical equivalent

A mechanical analog to the ICE model can be similarly constructed by using assumptions
similar to those for the electrical equivalent and representing the system by a modified
version of a well-known problem, i.e., the coupled vibration of two rigid masses coupled by a
massless spring [77, p. 35]. Firstly, the vibrating eardrums can be replaced by rigid objects of
mass mp, denoted by Py /, attached to an infinitely heavy wall by means of springs of stiffness
K and dashpots with damping coefficient b. As in the circuit analog, we neglect the spatial
variation of pressure between the eardrums and represent the effect of the cavity pressure by
means of a third spring of stiffness K.,y coupling the rigid masses. The mechanical analog to
ICE is illustrated in Fig. 2.15.

The masses are subjected to time varying forces Fj /z(t), such that their equations of

motions are given by,
mpl;il/z = FI/Z(I) — Kpbt]/z — bu1/2 — Kecav (Ltl + l/tz) R (2.111)

where u /; is the displacement of the respective masses and the overhead dot represents the

derivative with respect to time. For periodic driving forces differing by a small phase ® of
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Fig. 2.15 The equivalent mechanical model for ICE described using a coupled mass-spring
system. Two rigid objects Py and P (red) of mass m,, representing the eardrums and the
attached middle-ear components are coupled by a spring of stiffness k.,y, which represents
the air inside the interaural cavity. Each mass is also attached to a wall by means of a
spring of stiffness &, and a dashpot with a damping coefficient b corresponding to the
eardrum fundamental frequency and damping respectively. The masses Py , are driven by
time-dependent forces Fj (1) & F>(t) representing the sound pressure.

the form
Fi(1) = F %) B(r) = FO®/2) (2.112)

the equations of motion can be decoupled by applying the sum-and-difference method used
in Sec. 2.2.3 to give

mpl;i+ = (Fz(t)+F] (t))— Kpu+—bu+—2k‘cavu+ (2113)
moii_ = (Fa(t) — Fi(1)) — tou_ — bii_ . (2.114)

The steady state displacements u** can be readily obtained from the above equations to give

. cos Wt isin ot
) = . 2.115
ul/z( ) —mpa)2+ib0)+ Kp+2Kcav:|:_mpm2+ibw+Kp ( :
e 58
uxy u_

Moreover, by requiring the initial (at time ¢ = 0) displacement and velocity of the masses
to be zero, the transient displacements u'" can also be calculated. To do so, we follow the
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methods used in Sec. 2.2.1 and solve Egs. (2.113)&(2.114) independently to give

_l’_ . _l’_ .« . —
cos, t + arsinc @, t 1S1In @, t
0 0 0 ]F e U2 (2.116)

—mp®? 4 ib® + Ky + 2 Keay i —mp@? +ibo + K,

-~

”tf/z(f )= {

tr

tr
I/l_|_ u

such that, u; 5 (7) = uis/z(t) +uf /2(t). Where we have defined

O =\~ (b/2mp)? + (et K) iy, @y = /(b 2my ) 4 RSy 2117)

as the (angular) resonance frequencies of the ’plus* and “minus‘ components, respectively.

To summarize, in the mechanical analog to ICE, the flexible tympanic membrane is
replaced by a rigid mass with a natural frequency and damping provided by an externally
attached spring and dashpot, respectively. The parameters for the mechanical equivalent are
related to those of the ICE model as (cf. Table 2.1),

2¢Q2
pc-S
Keay = —— (2.119)
Vcav
Where, as usual, Scy) = ﬂagylL is the radius of the cylindrical interaural cavity. Thus, as in the

circuit equivalent, the mechanical model is an approximation of the full ICE-model which
neglects the contribution of higher membrane modes, as well as the variation of pressure
within the interaural cavity.

Although the simplified models are analytically tractable, it should be stressed that the
ICE model is a more accurate description of the physics of hearing. In comparison to the
lumped element and the spring-dashpot method discussed in this section, the ICE model
using a cylindrical cavity coupling the eardrums has three main advantages, which are,

* by accounting for the effect of asymmetrically loaded extracolumella, we were able to
describe the membrane motion in spatial detail,

* as the model accounts for the spatial variation of pressure within the interaural cavity,
it is applicable over a wider frequency range and,

* the source of the external inputs and their nature are not obscured as they are in the
simplified models.
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2.4 Conclusion

In the present chapter, we have laid the mathematical groundwork for internally coupled
ears or, the ICE model. In Sec. 2.1.1, we described the eardrum which serves as the primary
receiver of external stimulus in ICE. The presence of a transducer of membrane vibrations in
the form of an asymmetrically attached extracolumella was accounted for by requiring the
ICE eardrum to have a sectorial shape; see Fig. 2.3b. The extracolumella was represented
by a non-moving sector of angle 23. In Sec. 2.2.1, we derived general expressions for
the pressure driven motion of the eardrum, by treating its vibrating part as a linear elastic
membrane clamped at its circular boundary and at its point of contact with the extracolumella.
Through the use of a sectorial membrane, we also accounted for the asymmetry in its vibration,
resulting in markedly different vibration patterns; compare Figs. 2.10 and 2.12. The interaural
cavity was modeled in Sec. 2.1.2 as a cylindrical canal connecting the eardrums, with its
length equal to the interaural distance L, i.e. the distance between the eardrums in a realistic
animal. The cross section or, equivalently, the radius of the cylinder was calculated (2.1)
from L and by fixing the volume of the cavity V.,y. The radius thus determined was different
from the cylinder radius in a previous treatment of ice [50], where it was taken to be equal
to the eardrum radius, resulting in a much smaller cavity volume (2.1); compare Figs. 2.6a
and 2.6b. Analytical expressions for the pressure were derived in Sec. 2.2.2 by solving the
acoustic wave equation inside the cavity. The different nature of the boundary conditions
at the circular wall of the cylinder, i.e. Neumann as opposed to Dirichlet for the eardrum,
resulted in different modes for the cylindrical cavity; cf. Eqgs. (2.60)&(2.61). The vibration
of coupled membranes and, consequently, the boundary condition for the pressure at the
tympanic membrane interface was dealt with in Sec. 2.2.3. The smallness of the tympanic
membrane vibrations relative to the length of the interaural cavity was then exploited to
motivate the piston-approximation, where the pressure boundary condition, or, equivalently,
the eardrum motion, was approximated by pistons moving with the average velocity of
the eardrums. The directional sound inputs defined in Sec. 2.1.3 were then used to derive
expressions (see Egs. (2.99) and (2.100)) for the eardrum vibration driven by an external
and internal pressure. We concluded the chapter in Sec. 2.3 by presenting two simplified
models for ICE, namely, a lumped circuit model (see Fig. 2.14) with electrical components
corresponding to the cavity, eardrum and pressure, and a mechanical model (see Fig. 2.15)
which replaced the components with masses, springs and dashpots. The quantities derived in
this chapter will be used in the next chapter to analyze the directional and frequency behavior

of our system, including the resulting cues for sound localization.



Chapter 3
Hearing and Sound Localization

In the previous chapter, we derived a consistent geometrical model for internally coupled ears.
In particular, we now have analytical expressions for the membrane vibration amplitudes ug
and u, in terms of the membrane parameters as a function of direction and frequency (2.100).
Furthermore, the derived expressions (2.100) will be used to compare the ICE model with
experimental results. For the most part, we will be focusing on the Tokay gecko (Gecko) and
the water monitor (Varanus). Using parameters based on standard anatomical data (see Table
3.1) and an extracolumellar angle f=7/30(= 6°), we get a membrane-vibration velocity of
cM = 5.4m/s for Tokay and cpp = 2.0 m/s for Varanus. The data for Tokay are based on values
from Christensen-Dalsgaard and Manley [25, 26], while those for Varanus are based on data
from Bruce Young and can be found in [12]&[48], where the results of the present chapter
have previously appeared. This difference in ¢y or, equivalently the fundamental frequency
fo also results in considerable differences in the nature of their hearing cues. Nevertheless,
the ICE model adequately explains the generation of hearing cues in both species. In our
subsequent computations, we take the speed of sound in air to be ¢ = 343 ms~! and the
density of air as p = 1.206 kgm .

Table 3.1 System parameters

Parameter Gecko Varanus
Interaural distance L 22 mm 16 mm
Eardrum radius aiymp 2.6mm 2.6 mm

Membrane density py Img/mm?® | 1.2mg/mm?
Eardrum thickness dy 10 um 30um
Cavity volume Ve, 3.5ml 2.0ml
Cylinder radius acay 6.6 mm 6.3mm
Fundamental frequency fy | 1.05kHz 0.4kHz
Damping coefficient o ~2611s7 1| ~350s7!
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We begin the chapter by analyzing the frequency response of an individual eardrum in
the absence of an interaural coupling or, effectively, driven only by an external pressure. In
particular, we focus on the membrane frequency response A in order to motivate its essential
role in our model. We will then proceed to the vibration of coupled membranes, where
we will also directly compare calculated values with experimentally determined ones. We
will then focus on the directional information available to the animal from the vibration
amplitudes by means of internal time differences (iTD) and internal level differences (iLD),
defined as the time (or, equivalently, phase) and amplitude differences between tympanic
membrane vibrations, respectively. These will be contrasted with the interaural time and level
differences, which correspond to the time and amplitude differences between the external
sound inputs to the ears. Thus, by assigning numerical values to the the material properties
of the membrane, as well as to the geometry of the interaural cavity, we can analyze the
behavior of the hearing cues in greater detail.

Independent eardrum response

Before we compare our model with experimental data, we take a look at the frequency
dependence of a single membrane’s independent vibrations. In other words, we analyze the
frequency behavior of the eardrum by means of the eardrum frequency response A (2.97),
for the fictitious case where it is only subject to an external sound pressure on one side. The
frequency response of the real and imaginary parts of A are plotted in Figs. 3.1a and 3.1b. In
both cases the real part R{ Ao} has a low-pass response, i.e., it is more or less frequency
independent up to the membrane eigenfrequency fy and sharply drops to zero afterwards.
The imaginary part 3{ A}, on the other hand, has a band-pass response where it peaks close
to, but beyond f = fj and falls off thereafter. The difference in the frequency behavior of A in
both cases is due to the lower damping of the Varanus eardrum. A higher damping coefficient
o results in a flatter frequency dependence of the real part R{ A } and a sharper, narrower
peak in the imaginary part 3{ A }. The properties of R{ A} and S{A} will be used
to estimate membrane parameters in Sec. 3.6. Moreover, as we will see in the subsequent
sections, the behavior of the hearing cues (time and level differences) mirrors that of the

membrane response.

3.1 Interaural transmission gain

In earlier literature on hearing in animals with internally coupled ears [2, 26], the effect of

interaural coupling on eardrum vibration was quantified by means of the so-called interaural
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Fig. 3.1 Real (R) and imaginary (3) part of the (integral) membrane-frequency response
(2.97) for the ICE Model description of the Tokay gecko (left) and Varanus (right). In both
cases, the response is dominated by the fundamental frequency fj of the tympanic membrane.
The presence of local maxima in the response of Varanus is a result of its comparatively low
membrane damping. The higher damping coefficient o for the gecko eardrum results in a
flatter real part R{ A}, while the lower damping in Varanus results in a sharper imaginary
part 3{ A }. The frequency at which the response becomes purely imaginary is denoted by
[+« and will be discussed in more detail in Section 3.4. Compare with Figs. 3.6a and 3.6b.

transmission gain. This is defined as the response ratio of eardrum vibrations to unilateral
local stimulation. In other words, the ratio of the responses of both eardrums to an external
stimulus presented only to a single eardrum is calculated. Such a stimulus is achieved
by using, for example, a closely placed headphone at one ear, such that the opposite ear
effectively receives no external input. The contralateral eardrum is therefore driven solely by
the internal pressure set up by the vibrations of the ipsilateral one. A better understanding
of ICE could nevertheless be gained by instead studying the responses of both eardrums to
simultaneous and, therefore, realistic inputs separated by a small direction-dependent time
difference.

Without loss of generality, we can mathematically derive the transmission gain Gr by
setting pg* = 0 and p§* = pexp(imr) in (2.100). The resulting ipsi- and contralateral eardrum
vibration amplitudes are then used to calculate Gr,

o)1 (1, 0) = 1 (Pexp(iwt) - Pexp(ia)t)) AGLO) .

2\ 1+ Al T4+ A=
-1 .
_ 17 Veay SINkL
=G l= (=) =coskL+-35——. 3.1
T (ML) COSKE P Aotk ©-1)

The mathematical expressions for I'+ (2.98) allow us to reach the considerably simplified
formula of Eq. (3.1).
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Fig. 3.2 Top: Experimental and calculated transmission gain for Hemidactylus (common
house gecko). The transmission gain G7 is defined as the response ratio of contra- and ipsi-
lateral eardrum vibrations under unilateral stimulation; see (3.1). The black lines correspond
to values experimentally determined by Christensen-Dalsgaard and Manley [26] and the
smooth solid (red) lines to values calculated to the ICE model. Left: Amplitude in decibels
and Right: phase in radians. Bottom: Calculated values of transmission gain for Tokay. The
values were experimentally measured by Christensen-Dalsgaard et al. [2] for five lightly
anesthetized specimens. All the presented experimental data have been gathered through
laser Doppler vibrometry measurements on the membrane surface.

In Figs. 3.2a and 3.2b the frequency dependence the phase and amplitude of the trans-
mission gain calculated through ICE have been plotted together with the experimentally
determined values for (a) Hemidactylus frenatus, the common house gecko, and (b) the Tokay
gecko. There is a fair agreement between calculated and experimental values. Moreover,
the results of our model also agree with the results for Hemidactylus from the previous
mathematical treatment of ICE [49, 50].

The minor discrepancy in Fig. Fig. 3.2b for Tokay can be explained using the fact
that there was a large size and hence weight variation (24-70 g) among the experimental
specimens [2]. Variations in size lead to similar variations in the membrane fundamental

frequency and can lead to considerable changes in the frequency behavior of the system. In
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the following sections we will see examples of this variation across two species when we

compare the frequency behavior for an adult gecko with that of a juvenile varanus.

3.2 Membrane vibration velocity

In order to compare our model with experimental results, we define the average vibration

velocity in dB re mms~'Pa~!, meaning the decibel velocity with respect to 1 mm/s for

an input pressure amplitude of 1 Pa as vgg = 20 loglolug‘;ﬂ. Figs. 3.3a & 3.3b show the
respective frequency dependence of the membrane vibrations for ipsilateral 6 = 90° and
contralateral 8 = —90° stimuli for both Gecko and Varanus.
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Fig. 3.3 Top: Experimental and calculated v4g for ipsi- (6 = 90°) and contralateral (6 =
—90°) stimuli for Gecko. Bottom: Experimental and calculated membrane amplitude for
Varanus at 6 = £90°. The vertical dashed lines in the lower plots correspond to the higher
membrane modes for the Varanus. We thus see that not only at f but also at higher membrane
resonances does a less taut membrane with low a give peaks; compare Fig. 3.7b. The first
resonant peak (or trough) allows a straightforward mathematical specification of the first
extremum (max/min) for the iLD or equivalently the tympanic eigenfrequency fj in the alive
animal. All experimental data presented were gathered through laser Doppler vibrometry.
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In the case of Gecko, the contralateral response has a minimum near fy, whereas the
spectral response of Varanus shows multiple peaks corresponding to higher membrane eigen-
frequencies. The occurrence of multiple peaks instead of a single one in the biophysically
relevant range of up to 2 kHz is due to the fact that the eardrum of Varanus is very un-
derdamped [much smaller o; cf. (2.14)], resulting in higher modes being less suppressed.
Nevertheless, the present ICE model explains the frequency behavior in both cases and allows

for a determination of the tympanic fundamental frequency in the alive animal.

-90°

Y /i
X, \400Hz
-120% T

’ 560’ Hz

-180°

(a) Gecko (b) Varanus

Fig. 3.4 Polar plots for the membrane vibration velocity in mm s~ 'for different frequencies
for Tokay (left) and Varanus (right). Positive angles correspond to ipsilateral directions
and negative angles to contralateral ones. The directionality of the system is immediately
apparent from the way in which ipsilateral directions result in higher vibration amplitudes,
even though the external inputs to the ears have the same amplitude. The above plots have
been generated using the expression given in (2.100) using the parameters from Table 3.1.
The input sound pressures have been assumed to have an amplitude of 60 dB SPL.

Figures 3.4a and 3.4b show the variation of the membrane-vibration velocity with di-
rection for different frequencies in Tokay and Varanus, respectively. For both animals, the
ipsilateral ear is on the right-hand side and corresponds to positive values for the angle in
degrees with respect to the rostral-caudal axis. In both cases, the eardrum has a markedly
higher vibration velocity for sounds coming from an ipsilateral than from a contralateral

direction.

3.2.1 Membrane-vibration pattern

The measured vibration patterns [51] are shown on the left in Fig. 3.5a. The amplitudes

were measured for eight locations on the membrane to find the pattern seen in the figure. At
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around 4kHz, the vibration pattern distinctly develops two maxima — something that would
not happen to a centrally loaded tympanum except at frequencies well beyond the hearing
range of Geckos (200 Hz to 3 kHz).

(a) Experiment (b) Calculated

Fig. 3.5 Left: Experimental membrane vibration patterns of the Tokay gecko dependent on
sound frequency varying from .25 kHz to 2 kHz, with the corresponding frequencies shown
above the membranes [51]. Right: Vibration pattern of one of the membranes in the ICE
model for an ipsilateral stimulus. In both cases we see a similar complex vibrational pattern
for the membranes, which becomes increasingly circularly asymmetric with increasing
frequency.

In order to compare our ICE model with the experimental results, we now plot the
response of one of the membranes to an ipsilateral stimulus. This is calculated by using
(2.100) and 1is illustrated in Figs. 3.5a and 3.5b (right) for the same frequency range as that
of the experimental data.

The asymmetric nature of our membrane vibration pattern is a result of the chosen geom-
etry. Mathematically, it is a result of the fact that a uniform pressure on the surface of a full
circular membrane only couples to the circularly symmetric Jy modes. The extracolumella,
however, breaks this symmetry and all the resulting eigenmodes couple with the pressure,
which offers a clear contrast to Fig. 2.11. As qualitative and semi-quantitative reproduction,
the present model is very strong but for a full quantitative analysis we would need to take
into account both the microstructure of the tympanum and the motion of the extracolumella
and has been dealt with elsewhere [59].
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3.3 Internal time and level differences

As we have seen in the previous section, the membrane vibration amplitudes are directional
by themselves. However, we will now show that the difference between the vibrations
between the left and right tympanum is more sensitive to the source direction 6. In the

following, we focus on three universal aspects of ICE:

1. the internal time difference (iTD), which for frequencies < f greatly exceeds the

interaural time difference (ITD) and forms a plateau from f = 0 onwards;

2. the internal level difference (iLD), which exhibits a pronounced maximum once the

iTD has strongly decreased; and
3. the fundamental frequency fj of the tympanum segregating the iTD and iLD domain.

Both iTD and iLLD also depend on the sound-source direction. Moreover, the directionality
of the hearing cues experienced by the animal directly reflect the nature of the stimulus.
Finally, it should be constantly borne in mind that what the animal actually “hears” is not the
interaural but the internal stimulus and the two may greatly differ; Sections 1.1.1 and 1.2.

It has previously [78] been shown that lizards have two distinct populations of cochlear
hair cells — one that responds to amplitude cues and the other to temporal cues. These two
hair-cell populations both project bilaterally, i.e., they innervate neurons in both the left and
right hemispheres, thus imparting a neuronal template to contrast both the amplitude and
temporal patterns [79] arising from the eardrum vibrations. It is well known that certain
neurons are sensitive to time differences between eardrum vibrations [5, 2, 46]. We refer to
this metric as the internal Time Difference (iTD), in contrast to the Interaural Time Difference
(ITD) as measured from the external inputs to the ears. The internal time and level differences
are the unique outcome of the interaction between the outside signal and the internal coupling
arising from the air-filled interaural cavity; cf. Figs. 1.6a to 1.6¢c. Furthermore, we follow
Jgrgensen et al. [31] in postulating an algorithm for determining amplitude (level) differences.
More specifically, we assume that this is done by a neuronal subtraction of logarithmic
vibration amplitudes of the two membranes. The biological physics is that of hair-cell
response being governed by the (Weber-Fechner) logarithm of the amplitude whereas the
“subtraction” is that of excitation minus inhibition (E/I), which was briefly discussed in
Section 1.1.1. We refer to this subtraction as the internal Level Difference (iLD) and contrast
it with the Interaural Level Difference (ILD), i.e., the logarithmic amplitude difference
between the external sound inputs to both ears.
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3.3.1 Internal time difference - iTD

The internal Time Difference (iTD) corresponds to the actual time difference between left

and right membrane vibrations as experienced by the animal and is defined as

ITD = Arg(i® /i) /@ = Arg(u® /ud"®) /o | (3.2)
up < Juy©=(1+B)/(1-B), (3.3)

where
B = i[(l + Atotr+)/(1 + Atotr—)] tan(kA/Z) (3-4)

is direction-dependent through A = Lsin 6 (2.3). The above expressions can be easily derived
by using the expressions for #5'® and u7"® from Eq. (2.100),

ui®  pr(1+Awpd ) +p-(1+ Al 1)
ud  pr(14+ A=) — p—(1+Awl4)
1+ Zf(l + Aol ) /(1 + Al )
1= A ) /(1 Ao )
1t itan(kA/2)(1+ AT+ ) /(1 + Aol )
1 —itan(kA/2)(1+ ATy ) /(14 Ao -)

(3.5)

The last step follows from the fact that

p+=pL +p5 = p(exp(ikA/2) +exp(—ikA/2))

=2pcoskA/2
p-=pr —p; = p(exp(ikA/2) —exp(—ikA/2))
= 2ipsinkA/2 .

In contrast to the iTD, the interaural time difference (ITD), calculated from a given sound
input (2.3) is

ITD = Arg (pg*/p;) /@ = Lsin6/c , (3.6)

viz., the time difference between the arrival of sound from a given source at both ears;
cf. Section 1.1.1. The ITD is independent of frequency and, for the parameters defined
in Table 3.1, it is &~ 64 us for 8 = £90° for Gecko and ~ 45 us for a young Varanus.
Figures 3.6a and 3.6b show the frequency and direction dependence of the internal time
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Fig. 3.6 Frequency and direction dependence of the iTDs for Gecko (top) and Varanus
(bottom). (a) For Gecko, the iTDs exhibit a plateau of iTD ~ 3.5ITD, up to about f = fj
and sharply fall thereafter. As indicated, the plateau is uniform, irrespective of the direction
0. Due to the plateau, the iTDs can thus be effective low-frequency cues. (b) For Varanus,
the iTDs slowly increase up to fy and then decrease; the discontinuity is an artefact of 27
which corresponds to a loss of directional information in the iTD. The young animal can
therefore only exploit a restricted low-frequency range of iTDs (up to approximately 200 Hz),
nevertheless illustrating that the time dilation factor iTD/ITD can differ from 3 appreciably.

difference (iTD) for Gecko and Varanus, respectively. Experimentally, by measuring the
phase difference between the eardrum vibrations, one in fact measures the iTD.

In the case of Gecko, the iTDs have a low-pass response, 1.e., they are more or less
constant up to a certain frequency and drop sharply thereafter, with iTD/ITD, =1 at f = fj.
From a neuronal-processing point of view, this is convenient as it mirrors the behavior of
the ITDs, but strongly increased by a factor of about 3.5 for 0 < f < % fo in Gecko and an
astounding 15 for 0 < f < 0.2fy in Varanus; cf. Figs. 3.6a and 3.6b (left). The number 3.5
depends on the specific geometry of the internal cavity as found in many lizards, such as
Gecko, but it is not unique. An increase in the iTD by a factor of 3 has also been observed
in some birds [80]. Figure 3.6b illustrates its variation for Varanus. We refer to the ratio of

internal and interaural time difference as the time dilation factor, or TDF for short.
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3.3.2 Internal level difference - iLD

For the input (2.3), the internal Level Difference (iLD) is defined as the logarithmic difference
between the left and right (0/L) membrane amplitudes of (2.40), i.e.,

iLD =20Log,o|u7"¢/ui’®| = 20Log,o|u7" /ui’| , (3.7)
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Fig. 3.7 Calculated frequency and direction dependence of the iLDs for (a) Gecko (top)
and (b) Varanus (bottom). The location of the eigenfrequencies has been indicated by
dashed arrows. For Gecko, the iLDs peak close to f = fy and decrease slowly thereafter.
They can therefore serve both as effective high-frequency hearing cues and as an efficient
means of determining fy in alive animals. Clearly, the higher tympanic eigenmodes play no
role for tokay. For juvenile Varanus with small o and fy ~ 500 Hz, however, we see the
corresponding peaks of some (at least five) higher membrane eigenmodes.

As the left and right inputs (2.3) effectively have the same amplitude, the interaural level

difference (ILD) is identically zero, i.e.,
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For Gecko, the iLD has a band-pass like behavior. It is zero for both very low and high
frequencies and peaks close to the membrane eigenfrequency fy; cf. Fig. 3.7a. The iLDs
steeply increase across 0 = 0° and attain a maximum/minimum at 8 = +90°. Under normal
circumstances, as in Gecko, the functional dependence is given by a sine. For Varanus,
Fig. 3.7b shows an iLLD spectrum with multiple peaks near membrane resonances (i.e.,
eigenfrequencies), corresponding to a much lower damping (smaller o). Moreover, at the
fundamental membrane eigenfrequency fy, the directional response peaks at 6 = +30°. A
possible explanation of this deviating behavior is that the experiments were performed on
juvenile monitor lizards, suggesting that increased membrane damping and cavity volume in

adults should give similar results to those shown for the adult Gecko.

3.3.3 iTD/iLD transition

From the low-pass behavior of the iTDs and the high-pass behavior of the iLDs we can infer
that internal time differences may well work as effective cues at lower frequencies, whereas
internal level differences are most effective at higher frequencies. Unlike larger animals
where such a transition would rely on the fact that higher-frequency sound waves would have
a “shadow” on the contralateral eardrum due to diffraction [61, p .154] and Section 1.1.1,
the iTDs and iLDs in ICE are generated solely as a consequence of the internal coupling

between the eardrums.

~ 1TD/ITD
artt

0.5 fo 1.5 2. 2.5
frequency (kHz)

Fig. 3.8 Transition between the iTD and iLLD frequency regimes for directions 6 # 0°. At
lower frequencies iTDs work better as directional cues, e.g., with iTD/ITD ~ 3 for adult
lizards, while at higher frequencies the iLDs become pronounced, even though for most
lizards the external /LD ~ 0. The transition between the two kinds of cues is governed by
the eardrum’s fundamental eigenfrequency fy.
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In animals with ICE, the transition between the different frequency regimes is governed
by the fundamental frequency of the tympanic membrane fy; see Fig. 3.8. In other words,
instead of a segregation of the frequency regimes of hearing cues dictated by the size of the
head (see Figs. 1.4a and 1.4b), the transition between the use of hearing cues is dictated
by the properties of the eardrum. Despite the lack of an amplitude difference between the
inputs, the system uses small phase differences to generate frequency-dependent time (or
equivalently phase) and amplitude differences between the eardrums by using the internal
coupling and the mechanics of the membrane.

3.4 Role of the membrane-response function A

A parallel between the frequency response of the internal time and level differences (iTD and
iLD), and the membrane frequency response A(r, @) (2.97) should be immediately apparent;
compare Figs.3.1a,3.1b and Figs. 3.6a, 3.6b, 3.7a and 3.7b. This similarity results from the
way in which we have defined the ratio of the complex vibration amplitudes (3.3), (3.4).
Furthermore, it explains the role of the membrane eigenfrequency as well as the damping o
in the generation of interaural cues. Put simply, the flat response of the iTD as well as the
magnitude and position of the iLD peak depend on f and oc. While a low value of o will
result in a strong iLD close to fj, the TDF (iTD/ITD) will vary strongly with frequency up to
fo, as in the case of the young Varanus. Using our definition of B (3.3), the ratio between the

membrane vibration amplitudes can therefore be rewritten as,

exp(ikA/2) + At (T— cos 2+l sin %)
exp(—ikA/2) + Awr(T— cos % — il sin %) '

ave ave __
upjuy =

We now focus on the case where the sound source is at 6 = /2(=90°) and, subsequently,
A = L. This means that the sound source is on the same side as the L ear; cf. Fig. 2.7. The

ratio between the membrane vibrations can therefore be explicitly written down

u%ve uAve — exp(ilfL/2) +/~\~tot(SiI.1kL/2 — l'(.ZOS kL/Z) 7
exp(—ikL/2) + Aot (sinkL/2 +icoskL/2)
_ exp(ikL/2) — iAo exp(ikL/2)
B exp(—ikL/2) 4 iAexp(—ikL/2) ’
1— ii\tot

1+ iAo

= exp(ikL)

(3.9
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We have used the definitions of I'y. from (2.98) and absorbed the factor pcsz /Veay into Ao
by defining

Avor = PPkLAwy/ Veay - (3.10)

From Figs. 3.1a & 3.1b we can see that there is a frequency f, where the membrane response
becomes purely imaginary. Let us assume that at this point A = i) Where 7 is a positive
real number which carries information about both the tympanic membrane as well as the
internal cavity. The ratio (3.9) reduces to

1
up’ Juy’ = eXp(ikL)l——F—?] : (3.11)

The right-hand side of the above equation is a phase factor multiplied by a real number.
The argument of the quantity kL is equal to the phase difference between the inputs to
the eardrums and, due to our definition of iTD (3.2), the resultant internal time difference
between the ears equals the interaural time difference. The corresponding values for f can
be calculated numerically and are found to be around 1097 Hz for Gecko and around 402 Hz
for Varanus.

For directions other than 6 = 90°, a similar result can be obtained, but the exact value
of f, in this case would also depend on the cavity volume. It is only when the source is
fully ipsilateral/contralateral to an ear, that f, can be determined solely from the membrane

parameters.

3.5 Volume dependence

In the previous chapter, we defined the interaural cavity of the ICE Model in such a way
that the cavity volume V., can be treated as an independent parameter; see Sec. 2.1.2.
Effectively, V.4y determines the strength of the internal coupling and is convenient to use
in a mathematical analysis. In Figs. 3.9a & 3.9b, we see the frequency dependence of the
iTDs and iL.Ds (at source direction 8 = 90°) for different cavity volumes while keeping the
other system parameters fixed. The lower limit of possible cavity volumes for a cylindrical
interaural cavity is equal to that of a cylinder with a radius equal to that of the membrane,
1.e., deyl > ayymp, leading to a cross-sectional area of n:atzympL; cf. Figs. 2.6a and 2.6b
and Eq. (2.2).

The volume dependence arises from the coupling parameters I'+ defined in (2.98) which

decrease with the volume as 1/Vc,y. This means that as we let the volume go to infinity while
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Fig. 3.9 1TD and iLD frequency response for different cavity volumes for Gecko (top) and
Varanus (bottom). The sound source direction was chosen to be 8 = 90°. As we increase
Veav, the iLDs become smaller and less sharp around fj. The iTDs on the other hand increase
with decreasing volume, but also result in a phase ambiguity of 27 close to f. At an optimal
volume of ~ 2.2 cm? for the Tokay gecko and 6 cm? for Varanus, we have an optimal
frequency response for both hearing cues.

keeping the interaural distance L constant (acy — ), the eardrums vibrate as uncoupled
membranes driven by the sound pressures py

MO/L(ra(p;l) :A(r7¢)p0/L' (312)

A(r, @) essentially gives us the frequency response of the membrane amplitude at a given
point (r,¢) on its surface.

For Gekko as well as for Varanus, the iLD goes to zero for small volumes. The iTD,
on the other hand, appears to increase. However, it loses its plateau which is important for
auditory information processing for low frequencies using time difference maps of the kind
described in Section 1.1.1, and develops a phase ambiguity of 27 close to fy. This means
that the eardrums vibrate with a phase difference of 7 and can no longer be used to localize
sound sources. Thus, both very small and very large volumes effectively break the coupling
between the membranes. For the Tokay, we find an optimal response, i.e., flat amplified iTDs
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at low frequencies and strong iLDs at higher frequencies for V.4, ~ 2.2 cc. This could be due
to the fact that the assumed volume of 3.5 cm? (cf. Table 3.1) is for an “empty” skull. A live
specimen would have a tongue and other organs inside the pharyngeal and mouth cavities
which would reduce the effective volume V.

Rather more interesting is the fact that, for larger cavity volumes (= 6 cc), the frequency
response of the iLDs and 1TDs of Varanus become similar to that of the Gekko; cf. Fig.
3.9b, solid (red) lines. The local iLD maxima corresponding to higher membrane modes
are suppressed and the iTD has a fairly smooth and flat response at lower frequencies. This
implies that the hearing system of an adult Varanus would me more effective at localizing

sound sources, than a juvenile lizard over a larger frequency range.

3.5.1 Ciritical volume

In Figs. 3.9a & 3.9b we see that for a certain value of V¢, a singularity appears for the iLD
close to fy for a source direction 8 = 90°. A comprehension of what causes this singularity
to emerge is essential to a complete understanding of ICE. The physical explanation for this
apparent singularity is that at the critical volume the internal pressure at the contralateral
membrane cancels the external pressure at the frequency of maximal iLD response. As
a result, the contralateral membrane vibration velocity, or equivalently the displacement,
vanishes entirely, i.e. up(r, ¢;¢) = 0. Hence by definition the iLD is bound to diverge.

This result can be derived directly from the expression for the membrane displacement

(2.5). Rewriting uq explicitly in terms of input pressure amplitude and direction gives us

2pcoskA/2  2ipsinkA/2
1+ Aol + 1+ Aol -

(o) = ( )AG0).

For a sound source closer to the L ear, the opposite O ear is on the contralateral side; see Fig.
2.7. We thus have A = Lsin 0 = L for 6 = w/2 (= 90°). The displacement can be rewritten
as

pcoskL/2  ipsinkL/2
I+ Awd s T+ Al -

()= ( )Aio)

where the 1/2 has been absorbed into the brackets. As shown in Section 3.4, the frequency
where iTD = ITD, viz., f., is achieved when the membrane frequency response A (2.6)

becomes purely imaginary. As derived in (3.10) let us suppose that A (f = f.) = in, where
2
n is a real number and consider the case where V.., = pc?kL1 so that the factor % in

the denominators beside the tan and cos becomes equal to 1. Using the definitions of I'1
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(2.98) at f = f. we find

pcoskL/2 ipsinkL/2
1 —icotkL/2 1+itankL/2
< ipsinkL/2 ipsinkL/2
0

)Aio).
)A0),

uO(r7¢> =

1+itankL/2 1+itankL/2

In the second equation we have multiplied and divided the first fraction by itankL/2. It is
thus clear that for this cavity volume, the membrane displacement on the contralateral side
identically vanishes resulting in a singularity of the iLD, actually a trivial one. Nevertheless
we can safely use the term “critical” to denote this cavity volume V. = pcszn.

For the animal, V. 1s not an optimal cavity volume to fully exploit interaural coupling.
This is mainly due to the fact that the iTD response starts to show a phase ambiguity on either
side of f; cf. Fig. 3.9a (right). The animal would be unable to distinguish between sources
on the left and the right and would therefore be better off by operating with a cavity volume
slightly above Vi, where a strong iLD is coupled with an unambiguous iTD response.

This is also a possible explanation of the differences observed in the generated hearing
cues for the juvenile Varanus when we compare it with Gecko. Given its other system
parameters, i.e., membrane eigenfrequency, damping, interaural separation, the volume of

2.0 cc in Varanus is well below its V4 of 6 cc.

3.6 Estimating the eardrum’s fundamental frequency and

damping coefficient

The fundamental frequency fo and the damping coefficient o of the eardrum are important
quantities to auditory performance. The former to partitioning the auditory landscape, the
latter to determining the duration of transient response of the tympanum. In order to directly
measure the material properties of the eardrum, one would, in general need to excise the
tissue. The Young’s modulus of the Varanus eardrum has been measured using such a
procedure [59]. The material properties, including viscoelastic damping, were also measured
using similar methods for a dissected duck ear [81]. In contrast, we will now propose an
experimental and numerical procedure to determine both fj; and & from the results of the
present chapter, thereby only requiring vibrometry data from a live animal.

To determine both, we need two quantities from experimentally measured tympanic
vibration and hearing cues. As we see from Figs. 3.6a and 3.6b & Figs. 3.7a and 3.7b,
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the maximum of the iLD as well as the frequency f. at which iTD=iLD, for sound-source
directions 8 = +90°, the internal iTD equals the external ITD are experimentally accessible
and near f. We can analytically estimate the location of the iLD maximum and determine
f« in terms of fj by using the properties of the membrane frequency response A or, more
specifically, A’s integral over the membrane surface A¢; cf. (2.97). An experimental recipe

follows at the end of this section. Aot has been defined as

where
(fumn)z 2 2 .
__(Jumn)” — (0% — @2 —2iaw). 3.14
= [ St (0 — o5, —2i0) ( )

We can now split Ay into its real and imaginary parts,

R{Awt} = Y Knn(0® — 0p,)/[(0° — 0F,)* +40°0?] (3.15)
S{Awt} = Y Km2ao/[(0* — of,)* +4a°0?] . (3.16)

R{Awt} and I{Aw} have been plotted for Gekko and Varanus in Figs. 3.1a and 3.1b,
respectively. We see that, for a certain frequency fi, R{ A} = 0. In Sec 3.4 we have also
shown that exactly at f = f, the internal time difference iTD becomes equal to the interaural
time difference ITD. Furthermore, it is possible to measure the corresponding iLLD at f..
Using the definition (3.11) of the membrane vibration-amplitude ratio at f, and recalling that

P kLA Veay = i1, we obtain

}f:f*

‘ yave 141
iLD|,_, =20log,, # =20log, -
10iLD/20 -1

Thus, by measuring the iLD at f,, we can calculate the imaginary part of the membrane

frequency response as well. We should also note here that 17 is a dimensionless quantity. The
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resulting non-linear equations in o and @y, are given by

(oo}

Kmn(a’f - wﬁm)

%{AtotHf:f* :Z (@ ol 140707 = (3.18)
m,n * *
> K20, NVeay
A o _ 3.19
3{ tot}’j_f* n%(wf_mr%m)z‘f’étazwg pclo, ( )

where @, = 271 f, . We have also used the fact that k = @/c. Given the above equations, the
problem boils down to calculating fy = w;; /27 and o as the remaining eigenfrequencies are
related to the fundamental eigenfrequency by fin/fo = Omn/®11 = Umn/H11- Here fmy is
the n' zero of the order k Bessel function of the first kind Ji; cf. (2.30).

Having determined f as well as 1) through the corresponding iLLD based on membrane
vibration amplitudes, it would be possible to use (3.18) and (3.19) to obtain estimates for fj
and a. This can be done by using standard iterative algorithms to find the roots of functions.
A common example is the Newton-Raphson method [82, Ch. 5]. For a real-valued function
f, in order to find an approximation for its roots x : f(x) = 0 we start with an initial guess of

Xo. A better approximation for x is then given by

= xg— f(x0)
f'(x0)
Xnd1 = Xn — % .

To find a root for a system of two equations (x,y) : g1(x,y) =0, g2(x,y) =0 in two dimen-
sions, we would instead need to calculate the appropriate Jacobian matrix,

_ | ox 0Oy
J_@@'
dx  dy

The corresponding iteration rule is given by

gt ) _ (X)) g1 (816 (3.20)
Yt Va 82(%n, ¥n)

In dimensions higher than 2, it is more feasible to multiply both sides of (3.20) by J and
to solve the resulting system. Since we only need to estimate two values, the inverse of

the Jacobian can be easily calculated. The relevant variables for our numerical problem are
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x = fo and y = o and the corresponding equations are given by

81(fo,0) = R{Awi}p—y, =0 (3.21)
_ o nvcav .
82(fo,0) = S{Awt} -, el 0. (3.22)

Furthermore, the derivatives needed to calculate the Jacobian are given by

OR{Awt} 2 & K@, (02 — 03,)* — 40’ 0?)

_ : 3.23
d fo fOr;1 [oxeh 02
OR{ A} _ g o5 Kon a)2 @)
(3.24)
da Z S A
aS{Atot} 8w, & Kmn(a)2 - wr%m)wém
_ , (3.25)
d fo fo mzr’l !Q ol
93 {Aw} Ko ((00F — 003,)* — 402 0)
Bhal _ 20 Z o , (3.26)

Where, Q= = (0? — 02, — 2ia®,). The Newton-Raphson method converges quadratically
to the correct value of the root.

In order to simplify the estimation of the relevant parameters, it would be more prudent
to separate the dependence on the size of the membrane from terms that arise independently
in the mathematical analysis. Specifically, we aim to express the coefficients K, as given by
Eq. (3.14) in a way that the dimensional dependence of the membrane parameters is separated
from non-dimensional factors arising from the integrals of Bessel functions. Writing the

integrals in the numerator and denominator explicitly we obtain

/dS Umn = /;ﬂ_ﬁ sink(¢p —f)do /Oa[ymp rJi(Umnr) dr

1 dtymp
= 1 —cosmﬂ]/ rJic(Umn?) dr
0

2 1
a
= P 1) _ cosma] /0 ¢ (GrympmnT) dF (3.27)

/ sl — /ﬁ P G k(o — B)do / T2 () dr
— B [ I )

1
= (7 — B) dymp /0 I (arymp ) dF (3.28)
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where 7 =r/ aymp- Recall that agymp X tmn corresponds to the n® zero of J,. We have thus
separated the geometrical parameter auymp from the Bessel integrals in (3.27) and (3.28).
Furthermore, we see that the integral in (3.27) is non-zero (and equal to 2) only for odd
values of m as cosmm = 1 for even m.

For x[m] =0.5mn/(x—B), m=1,3,5..., we can rewrite Kpy

_ 16 Stymp e
mn — 7[2 pMdM mn »
1 2
_ </ fJK(Cltymp‘umnf)df>
Koy = 20 . (3.29)

i
m? /0 FJ,ZC(atymp,umnF)dF

where Siymp = (T — B)atzymp is the surface area of the tympanum. The values of Ky, for 20
modes are given in Table 3.2 and are arranged in a descending order of Ky, /2., which is
the value of Ay at f = 0. The I?mn are independent of the size of the membrane and depend

only on the extracolumellar angle 3.

Numerical calculations in experimental practice

In practice we would need to choose an appropriate cutoff for the membrane eigenmodes.
Ideally, we have to ensure that the last eigenmode has a frequency well above the hearing
range of the animal. In order to test our method for the numerical estimation of fy and o, we
performed simulations for Gekko and Varanus while using the first 70 membrane eigenmodes,
with the 70" mode corresponding to an eigenfrequency of around 11.7 kHz and 4.45 kHz
for Gekko and Varanus, respectively; - well beyond the hearing range of either species. The
estimated values of f; and 1 are shown in Table 3.3. In a real-world experimental setup, these
values would correspond to those estimated from measured membrane vibration amplitudes
and phases.

We seek to test the accuracy of our method by assuming that the values calculated for 70
modes were obtained from a hypothetical experiment. This way we can test the performance
of the algorithm in case the experimenter only chooses a limited number of modes. To do so,
we would first need initial guesses for f and o. For the fundamental frequency we can take
[« itself as an initial guess for fy, as eyeballing the iTD plots tells us that the values are fairly
close to each other; cf. Figs. 3.6a & 3.6b. Based on the behavior of the membrane response

as shown in Figs. 3.3a & 3.3b, one can conclude that the system is overdamped for Gekko
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Table 3.2 Numerical parameters needed for estimating fo and o

m | n | Hmn X dtymp Kinn

1 | 1] 3.16602 3833

3 1] 456064 04463

5 1] 5.87051 01583

7 12| 6.30889 02812

9 [ 1] 7.13348 |7.822x1073
1|2 779759 4.13x107*
13]1] 836358 | 4.56x1073
15]2] 921062 |5.666x10~8
17 [ 3] 9.45094 .03299

19 1] 957637 |2.938x1073
21 [ 2] 105742 |3.541x107°
23 11| 10.7703 | 2.026x1073
25 3] 109788 |4.775x1073
27121 119022 |6.028x107°
20 [ 1] 119512 | 1.467x1073
313 12.443 2.01x1073
33 4| 125928 | 8.459x1073
35 1] 13.1214 | 1.103x1073
37121 13.2033 | 6.768x107°
39 3] 13.8616 | 1.135x107°

Table 3.3 Estimated f, and n

Gekko Varanus
f« | 1097.78 Hz | 402.664 Hz
n 0.666 1.697

and underdamped for Varanus. The value of the damping in the former would be > . /4
and < @, /4 in the latter, where @, = 27 f.

Given an initial guess, we can calculate the values of R{ A} and S{A} at these
values of fy and o from Eqgs. (3.18) and (3.19). The value of the Jacobian can similarly be
calculated by plugging these values into Eqgs. (3.23)—(3.26) along with the values of Kun
given in Table 3.2. Thereafter one can iteratively use the Newton-Raphson method (3.20)
until a suitable convergence is reached.

The simulation was performed for Npoqes = 1, 2, 5, 10, 15, 20, and 25 modes. The
results of the simulation are presented in Table 3.4. For both Gekko and Varanus we see
that, with an increasing number of eigenmodes used, the values converge to the quantities
defined in Table 3.1. The slower convergence and apparent oscillation in & for Gekko is



3.6 Estimating the eardrum’s fundamental frequency and damping coefficient 75

Table 3.4 Simulation Results

Gekko Varanus

Nmodes | JoHz) | a(s™) | fo(Ho) | a(s™)
1 1097.78 | 2490.72 | 402.664 | 347.637
2 1074.34 | 2589.08 | 401.074 | 349.942
5 1058.12 | 2611.35 | 400.333 | 350.108
10 1052.66 | 2612.18 | 400.108 | 350.046
15 1051.89 | 2612.09 | 400.077 | 350.034
20 1051.02 | 2611.87 | 400.041 | 350.02
25 1050.92 | 2611.84 | 400.037 | 350.018

Exact 1050 | 2611.45 400 350

due to the higher value of its damping, which causes a greater difference between f, and
fo. However, we must be careful while choosing initial guesses for Varanus as its lower
damping results in a larger number of extrema and roots, and a simulation might converge to
a point corresponding to a higher eigenmode. In practice, five modes are more than sufficient
for good convergence in both fy and . As a side remark, we need to emphasize that the
numbers behind the decimal point in Tables 3.3 and 3.4 are experimentally irrelevant, but
have been presented in order to demonstrate the accuracy of the numerical procedure.
Focusing on fj in particular, as a rule of thumb one can take the location of the minimum
of the contralateral eardrum amplitude f,, which is equivalent to the frequency of maximum
iLD, as the fundamental frequency fy; the error between f, and fy is at most 5% [48].
Determining the damping coefficient « is slightly more involved. The procedure outlined
in Egs. (3.18)—(3.29) gives us a systematic method to approximate ¢ from the membrane
vibrations for an arbitrary number of modes. In Table 3.4, we see that assuming f; to be the
fundamental frequency, which is equivalent to assuming fy = fi, gives us a value of & with
an error of at most 5%. Taking into account the second mode further reduces the error to
within 1%. In fact, for the case of a single mode, the expression for & can be written down

explicitly by substituting wy = @1 = @, in (3.19) giving us

K 1%
11 _ NVeav ' (3.30)
200,  pcLoy
LK L Siymp K
o= PeLRu_ Bpel Fymp Kir (3.31)

B 277‘/cav B nzvcav PMdM n

We thus have (3.31) as an expression for the membrane damping coefficient o given only the
geometrical and material parameters (thickness and density) of the membrane and cavity and

N — the iLD measurement at a given frequency. Moreover, apart from the relative ease of
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measurement, the above expression would provide a reasonably accurate estimate for o from

a realistic eardrum.

3.7 Conclusion

In conclusion, the present chapter dealt with the frequency and directional behavior of the
quantities derived in Chap. 2 and the hearing cues generated by them, namely the internal
time and level differences (iTD & iLD). We began in Sec. 3.1, by comparing the transmission
gain, i.e. the relative response at one eardrum to an isolated input at the opposite eardrum,
derived using the ICE model to experimentally measured values. The results agreed with
values measured for the Tokay gecko and the common house gecko, Hemidactylus frenatus;
see Figs. 3.2a and 3.2b. In the subsequent analysis we included newer data from the Asian
water monitor Varanus salvator. The individual membrane vibration velocities of the coupled
system were compared to, and showed good agreement with experimentally measured values
in Sec. 3.2; cf. Figs. 3.3a and 3.3b. The directionality of the eardrum vibrations was further
illustrated through polar plots in Figures 3.4a and 3.4b. Furthermore, the vibration patterns
of the eardrum surface showed a characteristic asymmetry, agreeing with values measured
using laser vibrometry for the Tokay gecko; see Figs. 3.5a and 3.5b. The frequency and
direction dependence of the iTD & iLLD, was discussed in Sec. 3.3 and the internal time
difference was found to be nearly flat at low frequencies, irrespective of the sound source
direction, and thus mirrored the behavior of the interaural time difference (ITD). Close to
the membrane fundamental frequency fj, the iTD sharply drops and thereafter becomes
equal to the ITD at higher frequencies, thus showing a low-pass frequency behavior. In other
words, at low frequencies, the time dilation factor (TDF), or the ratio of the internal and
interaural time difference, is independent of direction and frequency; see Figs. 3.6a and 3.6b.
In contrast, the iLD was found to show a band-pass behavior, where it rose sharply from
zero at low frequencies, peaking close to fp, and dropping sharply thereafter; see Figs. 3.7a
and 3.7b. Moreover, both the iTD and iLD were shown to be positive for positive values of
the direction 6, and vice versa. Thus, the eardrum fundamental frequency f forms a natural
segregation of frequencies at which iTDs and iLDs are dominant.

Interestingly, it was also found that the frequency behavior of the hearing cues showed
parallels to that of the membrane frequency response A, with the iTD corresponding to its
real part and the iLD to its imaginary part; cf. Figs. 3.1a and 3.1b & Sec. 3.4. The properties
of A therefore allowed us to estimate the transition frequency f, as the frequency at which
iTD=ITD. By comparing the results for Varanus and Tokay, it was found that the flatness of
the iTD response, as well as the peak of the iLD response strongly depend on . As stated in
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Sec. 2.1.2, the cavity volume V,,y can be treated as an independent parameter in ICE. This
fact was used in Sec. 3.5 to analyze the dependence of the hearing cues, i.e. iTD and iLD, on
Veav- It was found that, reducing V., ’strengthened* the interaural coupling by increasing
the iTD and iLD, while simultaneously sharpening the latter’s peak until a critical volume
Verit Was reached. It was thus shown that an animal with ICE would need a cavity volume
bigger than V, to optimally exploit its interaural coupling. Finally, in Sec. 3.6, by using
the aforementioned properties of A, we devised an experimental and numerical procedure to
directly estimate f and the membrane damping ¢ from the measured hearing cues in a living
animal with ICE. Finally, for the damping o a simple estimate, requiring only measured

values of membrane material and geometrical parameters, was also derived (3.31).






Chapter 4

ICE-like Systems

The theory of ICE was initially [49, 50] developed to explain the enhancement of sound
localization cues in terrestrial animals hearing at typically low frequencies. The previous
two chapters and Vedurmudi et al. [12, 48] dealt with constructing a mathematical and
geometrical model for internally coupled ears based on data from two extant lizards, the
Tokay gecko and the water monitor Varanus; cf. Chapters 2 and 3. In the present chapter, we
focus on animals equipped with ICE that utilize the interaural coupling in ways considerably
different from those of the lizards. In particular, we will focus on the fully aquatic African
clawed frog Xenopus laevis [57] and the barn owl Tyto alba [56] with its remarkably high
range of hearing frequencies. The “small-animal problem” associated with lizards in air
would be further exacerbated underwater, where the sound velocity (and thus the wavelength)
is approximately four times greater than in air, causing both I'TD and ILD cues to be further
diminished. However, despite its small size, Xenopus communicates by underwater sound
and has a rich vocal repertoire [83—85]. Receptive females approach calling males [86] and
special adaptations for underwater hearing and sound localization would thus be of utmost
importance. Barn owls, which also possess an interaural coupling [56], use frequencies
between 3 and 9 kHz to locate prey [87] with a remarkably low localization error of less than
2° in azimuth [88]. Communication calls of adult barn owls, on the other hand, are limited to
frequencies below 3 kHz [89]. Although the barn owl interaural cavity was initially thought
to play no role in sound localization [90], it has since been shown that for a narrow band at
lower frequencies (1.5 to 3 kHz) there is sound transmission through the interaural canal
that induces considerable directionality in the eardrums [56]. Thus, while the barn owl can
utilize ICE for interspecific communication at lower frequencies, their high range of hearing
frequencies suggests that the resonances of their interaural cavity can play a significant role

in their hearing.
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The present chapter deals with the very different auditory problems faced by Xenopus
and the barn owl, albeit with remarkably similar solutions. In spite of serving very different
purposes with regards to sound localization, the interaural cavities of both animals share
geometric similarities and, as a result, can be described using similar physical principles.
A key similarity in the cavity geometry for both animals is the presence of a third air-filled
chamber medially connected to the interaural cavity. In the barn owl, the cavity of the
sphenoid bone [91] plays this role, whereas in Xenopus, the lungs themselves are directly
connected to the interaural cavity [57]. In this chapter, the medially connected cavity will
be treated as a Helmholtz resonator driven by the motion of air in the interaural cavity. The
acoustics of a Helmholtz resonator has previously been used [29, 92] to describe the middle
ear and mouth cavity of frogs with respect to terrestrial hearing. In the present chapter,
however, we will see how the Xenopus eardrum, as well as the medial connection to its
lungs are adaptations to its underwater environment. The central role played by the lung
volume in generating underwater iLD cues, as well as in improving hearing sensitivity at
frequencies relevant to the mating behavior of Xenopus will be demonstrated. Furthermore,
the interaural cavities of both animals are too narrow to be described using the cylindrical
model of Section 2.1.2. As a result, a modified description of the interaural cavity will also
be introduced. In the case of Xenopus, we will also introduce a different model to account for
the special construction of its eardrum. In contrast, the barn owl interaural cavity, along with
attached Helmholtz resonator will be shown to generate iL.Ds in the lower frequency region
of its hearing, while also improving iTDs for its higher hearing frequencies — in stark contrast
to the lizards. We will also see the importance of “tuning” the volume of the resonator with

respect to hearing and sound localization, in both Xenopus and the barn owl.

4.1 Eardrum

We will now describe the middle-ear systems of Xenopus and the barn owl. The majority of
the present section deals with Xenopus’s plate-like eardrum and its mechanical properties,
while accounting for the surrounding medium, i.e. water. As the barn owl eardrum is geared
to hearing in air, and is thus anatomically similar to those of most reptiles and birds, we will

limit ourselves to a brief recap of the eardrum vibrations derived in Section 2.2.1.

4.1.1 Xenopus

The Xenopus eardrum is unusual compared to those of other animals with ICE as well

as to those of other frogs [93]. Instead of a flexible tympanic membrane, they possess a
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cartilaginous tympanic plate behind the eye covered by skin and fatty tissue [94]. The plate
is suspended around its periphery in a cartilaginous annular membrane [95]; cf. Figs. 4.1a
and 4.1b. Rather than being deformed by an external sound stimulus like typical eardrums,
the tympanic plate moves as a whole within the thin annular cartilaginous ring [57]. The
pars media, or the shaft of the stapes is attached centrally to the tympanic plate and transmits

the vibrations of the tympanic plate to the inner ear via the columella; cf. Fig. 4.1b.

—Ku

(a) Xenopus tympanic plate (b) Schematic model

Fig. 4.1 (a) Tympanic plate of Xenopus laevis after removal of the skin and fat layer. The
pars media of the stapes can be discerned through the cartilaginous disc. Scale bar denotes 5
mm; adapted from Mason et al. [95]. (b) Schematic (see inset) and motion of the tympanic
plate (thick/blue) driven by an external (p®*) and internal ( pm) pressure and displaced from
its resting position (dotted/blue). The tympanic plate also experiences a pressure (p') due to
acoustic radiation into the water surrounding Xenopus. The restoring force, which is provided
by the tympanic annulus (dashed/red) has been quantified as a stiffness k and is a function of
its Young’s modulus E and the geometry. The inertial mass of the system includes that of the
attached stapes and columella which are represented here in black.

We model the system of tympanic plate and annulus as a composite structure where the
tympanic plate plays the role of a pressure receiver whereas the cartilaginous annulus provides
a restoring force and thus, a natural vibration frequency to the system. Physically, this entails
calculating the force exerted by the annulus given a deflection u of its inner radius. As we
will see later in the present chapter, evolution has replaced the thin and decently flexible
tympanic membrane by a rather massive plate as an adaptation for underwater hearing. In
contrast to our earlier treatment (Sec. 2.1.1 and [12]) of eardrums as thin membranes, we
therefore model the motion of the annulus as the bending of a thin annular plate subject to a
small uniform deflection at its inner periphery. The deflection w of the surface of a circular

homogeneous Kirchoff-Love plate with a load ¢(r,¢) (Force/Area) acting on its surface is
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given by [96, p. 283]

DypAlyw = q(r,0) 4.1)
19 9% 1 9?

A(z)—;5+m+r—za—w , 4.2)

where A(y) is the two-dimensional Laplace operator, here taken in polar coordinates. For
a plate of thickness  with Young’s modulus E and Poisson ratio v, D,, = ER? /12(1 — v?)
is its flexural rigidity. In our model, the cartilaginous ring is loaded only by the tympanic
plate along its inner edge. Moreover, as the loading is uniform and the annulus is modeled as
homogeneous, we can neglect the dependence of w on the angle ¢.
The solution to (4.1) in the absence of a load on the surface of the annulus or, g(r, ¢) = 0,
is given by
) )
w(r):CIZ(2logr—1)+C210gr+C3§+C4 . (4.3)
The coefficients C1_4 are to be determined by the boundary conditions at the inner and outer
radius, which we denote by a; and a,, respectively. We first require the tympanic annulus to
be rigidly clamped at its outer edge, resulting in a deflection with vanishing rotation about the
horizontal edge. At the inner edge, the deflection of the ring w is fixed by the displacement
of the tympanic plate u. Furthermore, at the inner edge, the bending moment M, vanishes.

This gives us

dJ

wir=am)=0 & 5> Lm0 e
?w  vaow

W(I’ = al> =u & Mrr = (W 7§) o =0. (45)

Applying the boundary conditions to (4.3) we obtain a set of linear equations for the coeffi-

cients C|_4, with solutions

4u [a%(l +v)+d3(1 —v)]

“1= (a3 —a?) (a3(3+V)+a3(1—V)) —4a3a3(logaz/ay)(2 — (1+ v)logas/ay) (+6)
C — 4uaias[1—(1+v)logas/a] @)
(a3 —a?) (a3(3+V)+a3(1—V)) —4daia3(logaz/ay)(2 — (1+ v)logas/ay)

Cy— 4u [a7+aj(1+v)logas +a3(1—v)logas] @8)

(a3 —a?) (a3(3+V)+a3(1—V)) —4aia3(logaz/ay)(2 — (1+ v)logas/ar)

2 2

C4=—Q%(Zlogaz—1)—C210gaz—C3% (4.9)
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As the equation of motion is essentially linear, the above coefficients Cj_4 are proportional
to the deflection u at the inner edge.

The restoring force F at the edge in response to the deflection or, equivalently, the shear
force [96, p. 53] of the annulus is given by

_F 2719 [ ow
2w Py {;z (3_)1 Y (410)
_ 2DnC1 (4.11)

ay

Comparing the above result with the expression for the coefficient C; in (4.6), we see that

the restoring force F is linearly related to the deflection u through a coefficient of the form

167D, [a3(1+ V) + (1 - v)d3]

K=
(a3 —at) [a3(3+ V) +a3(1— V)| —4aja3 2 — (1+V)logasz/ai]logas /a,

. (4.12)

so that F = —ku. In our model, the tympanic plate and annulus system therefore behaves as
a harmonic oscillator with a spring constant k. For a plate of mass my, the resonant (angular)
frequency is given by wy = 27 fy = \/Tmp . The inner radius a; is equal to the radius of the
tympanic plate ap,, while the width of the tympanic annulus a,,, can be used to set the outer
radius equal to ax = ap + dann.

Let us take a tympanic plate of mass m, and area S, driven by an external pressure
p™ from the sound source and an internal pressure p™ due to the interaural coupling; see
Fig. 4.1b. As a result of its vibrations, the tympanic plate also experiences a force f, due
to acoustic radiation into the medium — namely, water. The restoring force provided by
the cartilaginous ring is equivalent to that of a spring of stiffness k. Let u /L(t) be the
displacement of the tympanic plate from its mean position, with the subscripts 0/L denoting
the eardrums at x = 0 and x = L, respectively. The equation of motion of the plate is thus
given by

dzuo/ L ex in .

mp— 3+ = Sp (P = ™) + f; — Kuoy. — bilg1. 4.13)
where b is an empirical damping coefficient and, as usual, we look for quasi-steady-state
solutions of the form u, /Lexp(ia)t). To do so, we now need to determine the radiative force
fr and internal pressure p™ in terms of the displacement ug,;. Finally, after defining the
acoustic head model, we will obtain sound inputs in the form of an external pressure p**
which will be used to determine ;. Eq. (4.13) is structurally similar to equation for the
mechanical equivalent of the ICE model from Eq. (2.111); cf. Section 2.3.2. In the present
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derivation however, the origin of the spring constant from the tympanic annulus (4.12) has

been explicitly derived.

Acoustic radiation from the eardrum

As the external surface of the vibrating eardrum is continuously in contact with a fluid, i.e.
water, we must account for the influence of the latter on the eardrum vibrations. The pressure
field at a point r due to an arbitrary acoustic radiator vibrating with an angular frequency
o = 27 f can be computed by treating each infinitesimal area element of the radiator as a
point source and integrating over the surface to give [97, p. 179]

_ipow [ v(r)e kR

prr) =5 | = s, (4.14)

where py 1s the density of the fluid and R is the distance between the point r and the area
element dS at a point r’ on the acoustic radiator, while v(r’) is the vibrational velocity of
the radiator surface at r'. The wavelength k,, = ®/c,, is for sound waves in water with
propagation speed c,,,.

Let us now consider a circular piston of radius a vibrating harmonically with an angular
frequency @ = 27 f, while bounded on one side by a fluid of density py and sound speed cy.
Let the piston’s vibration amplitude in complex notation be uexp(i@t) so that its velocity is
v =iou exp(iot). As we are interested in the pressure on the surface of the piston itself, R
is the distance between dS and another element on the piston’s surface dS’; see Fig. 4.2. The

force on the element d§’ is given by

2 / —iky R
Po®-u dS /e B
df, =— ds . 4.15
f = R (4.15)

The net force is calculated by integrating the above equation over dS’. The integral can
greatly simplified by using the acoustic reciprocity principle [97, p. 172], which states that
the pressure created at dS’ by a vibration at dS is equal to the pressure created at dS by a

vibration at dS’. We define the infinitesimal elements as
dS =RdpdR, dS =rdyadr

and integrate dS over the circle of radius #/, i.e. R from 0 to 27/ cos ¢ and ¢ from —7x/2 to
/2. Thus the interactions within the circle of radius 7’ have been accounted for. We then
integrate dS’ over the area of the piston, i.e., ¥ from 0 to a and y from 0 to 7; cf. Fig. 4.2.

Having calculated the interelement interaction once, we apply the reciprocity principle by
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multiplying the result by two and rewrite the integral (4.15) in the form

/2 2r' cos @ ,—ikyR
- 2” Ow “ / / / / / ¢ " (RdRAQ)(Fdrdy).  (4.16)
'=0Jo=—m/2

Fig. 4.2 Surface of a vibrating circular piston of ra-
dius a. As the piston is bounded by a fluid medium
on one side, it behaves as an acoustic source with
a characteristic pressure field in the half-space cor-
responding to the medium, including its own sur-
face. Consequently, each piston surface element
dS creates a pressure dp at the surface element d.S'.
The total force on the piston can be calculated by
integrating over both elements using the acoustic
reciprocity principle.

As the eardrum radius is of the order of 5 mm and typical hearing frequencies are below 3
kHz, we can reasonably assume that k,,a < 1 and, as a consequence, exp(ik,,R) =~ 1 + ik,,R.
In the low-frequency limit f; then simplifies to the form

for@lu  with  Tp=pocoS, (8kwa —i(kwa)z) . (4.17)
3n 2
The above derivation is equivalent to a low frequency approximation for the acoustic radiation
from a baffled circular piston [71, pp. 301-305]. The force exerted by the medium on the
piston is thus proportional to the density pg and the sound speed ¢y in the medium, as well
as to the amplitude u of vibrations. For low frequencies, the real part of I', scales linearly
with frequency and is equivalent to an added mass of mg = 8poSpa/37 on the surface of the
piston. Taking a thickness d,, and density p,, for the piston, we find that the relative added

mass is given by
my 8 Poa

my 37 ppdp

(4.18)

where my, is the piston mass. The density of air (p,; ~ 1.2 X 1073 g/cc) is small relative
to that of living tissue, which has a density comparable to that of water. For example, the
density of the tympanic membrane and the cartilaginous tympanic annulus in humans was
found to be ~ 1.2 g/cm> [98]. As a result, at low frequencies and for small piston radii, we

can neglect f, relative to the force exerted by a sound wave in air. A piston vibrating in water,
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however, will be subjected to significant forces even at low frequencies. These forces will be

accounted for in our subsequent treatment of underwater eardrum vibrations.

4.1.2 Barn owl

In general, both reptiles and birds show significant variation in anatomical structure of their
middle-ears [4]. Nonetheless, they can functionally still both be described using the second-
order lever system (see Figs. 2.4a&2.4b) consisting of a tympanic membrane, extracolumella
and columella [27]; cf. Fig. 4.3. The barn owl eardrums are geared to terrestrial hearing and
will be described, as in the case of the lizards (see Fig. 2.3b and Section 2.2.1), as a circular
membrane asymmetrically loaded by the extracolumella; ref. Fig. 4.5b. Analogously to

Fig. 4.3 Schematic diagram of a typical avian mid-
dle ear. The various processes of the extracolumella
(E) are attached asymmetrically to the tympanic
membrane (T). The motion of the tympanic mem-
brane in response to a sound stimulus is transmitted
via the columella (C) to the inner ear (not shown).
Figure adapted from Manley and Gleich [99]. Com-
pare with the gecko ear Fig. 2.3a.

the lizard eardrum, the vibration of the barn owl eardrum is also best described by means
of a membrane frequency response A (2.97) such that for an input pressure pexp(iwt), the
membrane displacement of an independent eardrum is given by Apexp(imt). Recall that the

membrane frequency response is defined in terms of the membrane modes up;, as

A— o Unn (1, Q) [ thmn

, Atot:/ A(r,¢)dS , (4.19)

where Q,,, = ©0* — a),%m —2iaw. As usual, pp and dyy denote the membrane density and
thickness, while @,,, and o denote the eigenfrequency of the (m,n) mode and damping,
respectively; cf. Table 2.1.

4.2 Interaural cavity

The cylindrical interaural cavity described in Sec. 2.1.2 allowed us, essentially, to express the
cavity pressure as a single plane wave between the eardrums (2.66). While a general theory

of ICE can be developed this way, a cylindrical interaural cavity does not provide an accurate
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description of interaural coupling in all animals with ICE. Thus far, in our description of ICE,
although the volume of the interaural cavity V.., was analyzed as an independent parameter
in Section 3.5, it cannot take arbitrary positive values and is bounded from below by the
volume of the cylinder V with radius aiymp (2.1) and length L, where agyy, is the radius of
the eardrum and L is the interaural distance. In other words,

Veav 2> VO ; (420)
Vo = TagmpL - (4.21)

However, in animals like the African clawed frog Xenopus laevis and the barn owl Tyto alba,
the interaural cavity volumes are far too small to be described by such a cylinder. In both

cases, the interaural cavity becomes significantly narrower as one moves inwards from the
eardrum [56, 57]; cf. Figs. 4.4a and 4.4b.

interaural
canal

orbit

2.5cm
D —————

(a) Xenopus (b) Barn owl

Fig. 4.4 (a) Dental cement cast of the middle ear cavities in Xenopus (above) and schematic
diagram of air filled cavities in a submerged Xenopus (below). The middle ear cavity (MEC)
consists of two tympanic cavities that taper into a shared Eustachian tube which is medially
connected to the lungs (L) through a rece<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>