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Abstract

Energy production from nuclear fusion reactions has presented a challenge for scien-
tists and engineers for the last decades, in particular, due to the necessity to control
matter at extremely high temperatures – the so-called plasma state. According to the
commonly used concept of magnetic confinement, plasma is created within a magnetic
field with toroidal topology. It makes a very complex physical system with dynamics
ranging over many orders of magnitude in temporal and spatial scales. Combined with
an enormous number of degrees of freedom, this leads to a situation, when a variation of
control parameters, like the electron density, the plasma current or the heating power,
modifies the operation regime in a non-linear way. These changes are often related to
an interplay between various types of instabilities in a plasma, that have different trans-
port properties. A good example is the L-H transition, when, after the heating power
exceeds a certain threshold, turbulence at the plasma edge is suppressed by meso-scale
shear flows, which significantly increases the edge pressure gradient: plasma transits
from the low-confinement mode (L-mode) to the high-confinement mode (H-mode).
However, the plasma core behavior is not modified.

In this work we study two macroscopic phenomena observed in several tokamak
plasmas, related to transport processes, and still missing a comprehensive and consis-
tent theoretical explanation. The approach used in this thesis is based on integrated
modelling of real plasma conditions, in which these phenomena have been experimen-
tally observed. “Integrated” in this context means that the plasma is represented by
a complex system of many processes, and all of these are simulated in a self-consistent
manner. It can be considered as a numerical experiment, which is able to provide in-
formation about the plasma that is extremely difficult or impossible to obtain in a real
experiment. Then, by analyzing these simulations, one can draw conclusions about
the real plasma, provided that the macroscopic, measurable quantities are identical.

One of the questions is the mechanism of the saturation of the plasma confine-
ment quality, expressed in terms of the energy confinement time τE, with the increase
of plasma density. This phenomenon is observed in plasmas with no (or weak) external
heating, when the energy is introduced mainly by Ohmic heating, so the plasma stays
in L-mode. The phenomenon consists in the following: at low density, τE has linear
dependence on the density, but at some critical value this dependence becomes weak,
and in many cases negative. This is called the transition from linear to saturated
Ohmic confinement regime (LOC to SOC). It has been discovered in the mid-eighties,
and several hypotheses have been proposed about its mechanism, but no consensus has
been reached so far. Here it is demonstrated, how the interplay between the increasing
electron-ion coupling, decreasing impurity concentration and the consequent enhance-
ment of the ITG turbulence may lead to such an effect. Additionally, a transition to
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the improved Ohmic confinement regime (IOC), when the linear scaling is observed at
SOC typical densities, is also reproduced. Parametric dependencies of the heat fluxes
in both LOC and SOC regimes are analyzed, and detailed turbulent spectra for each
regime are shown.

Another question concerns the mechanism of spontaneous acceleration of the
plasma core in the toroidal direction. It has been observed in both L- and H-mode
plasmas with common parametric scalings. Here the focus is on the global effect of pro-
file shearing, which breaks the parallel symmetry of the distribution function through
poloidal tilting of turbulence and results in finite radial flux of toroidal momentum.
While the significance of this effect has been previously demonstrated with global non-
linear gyrokinetic simulations, it has never been approached via integrated modelling
of real plasma discharges. Using the tilting angle θ0 as a free parameter, this work
shows how it scales with macroscopic plasma characteristics, as well as investigates
mutual dependencies of θ0 to such quantities as the mean parallel wavevector k‖ and
the residual stress, as well as to other critical plasma parameters. It is concluded that
the sign and the magnitude of the tilting are related to the dominant turbulence type,
with the ITG mode producing notably hollow profiles of the plasma toroidal velocity.
A proper account for the usually neglected difference between main ion and impurity
rotation velocities is shown to be important. The result is found to be consistent with
the observed experimental scalings of the rotation velocity.

A particular attention in this work is paid to the impurity content, which is
simulated by an additional species of boron ions. Radial transport of boron is studied,
showing how the profiles of its concentration vary with the increase of plasma density.

Integrated modelling can be also considered as a validation for the TGLF trans-
port model used in this work. It has demonstrated a good agreement in what is related
to the electron channel of energy and particle transport, but some discrepancy in the
ion energy transport, which however is shown to not have a significant effect on the
conclusions of this work.



Zusammenfassung

Die Energieerzeugung aus Kernfusionsreaktionen stellte in den letzten Jahrzehnten
eine Herausforderung für Wissenschaftler und Ingenieure dar, weil die Materie bei
extrem hohen Temperaturen – dem sogenannten Plasmazustand – kontrolliert wer-
den muss. Nach dem gebräuchlichen Konzept des magnetischen Einschlusses wird
Plasma in einem Magnetfeld mit toroidaler Topologie erzeugt. Dies bildet ein sehr
komplexes physikalisches System mit einem Dynamikbereich über viele räumliche und
zeitliche Größenordnungen. In Kombination mit einer enormen Anzahl an Freiheits-
graden führt dies zu einer Situation, in der eine Variation von Steuerparametern, wie
zum Beispiel die Elektronendichte, der Plasmastrom oder die Heizleistung, das Be-
triebsregime in einer nichtlinearen Weise verändert. Diese Änderungen stehen oft im
Zusammenhang mit verschiedenen Arten von Instabilitäten in einem Plasma, die unter-
schiedliche Transporteigenschaften aufweisen. Ein gutes Beispiel ist der LH-Übergang,
bei dem die Turbulenz im Plasmarand durch mesoskalige Scherströmungen unterdrückt
wird, nachdem die Heizleistung einen bestimmten Schwellenwert überschritten hat.
Der Randdrucksgradient wird dabei deutlich erhöht, was das Plasma aus dem Low-
Confinement-Modus (L-Modus) in den High-Confinement-Modus (H-Modus) bringt.
Dabei wird das Verhalten des Plasmakerns jedoch nicht verändert.

In dieser Arbeit untersuchen wir zwei makroskopische Phänomene, die mit Trans-
portprozessen in Zusammenhang stehen. Diese Phänomene wurden in verschiedenen
Tokamak-Plasmen beobachtet, doch es fehlt immer noch eine umfassende und konsis-
tente theoretische Erklärung. Der Ansatz in dieser Arbeit basiert auf einer integrierten
Modellierung realer Plasmabedingungen, unter welchem die Phänomene experimentell
beobachtet wurden. “Integriert” bedeutet in diesem Kontext, dass das Plasma durch
ein komplexes System von vielen Prozessen repräsentiert wird, und diese in einer selb-
stkonsistenten Weise simuliert werden. Es kann als ein numerisches Experiment be-
trachtet werden, welches Informationen über das Plasma liefert, die in einem realen
Experiment extrem schwierig oder sogar unmöglich zu erhalten sind. Durch Analyse
dieser Simulationen kann man Erkenntnisse über das reale Plasma erhalten, sofern die
makroskopischen messbaren Größen identisch sind.

Eine der Fragen ist der Mechanismus der Sättigung der Plasmaeinschlussqualität,
ausgedrückt in der Energieeinschlusszeit τE, mit dem Anstieg der Plasmadichte. Dieses
Phänomen wird in Plasmen ohne (oder mit schwache) externe Heizung beobachtet, so-
dass die Energie hauptsächlich ohmsch eingebracht wird, und das Plasma im L-Modus
bleibt. Das Phänomen lässt sich folgendermaßen zusammenfassen: für niedrige Plas-
madichten hat τE eine lineare Abhängigkeit von der Plasmadichte, doch ab einem
gewissen kritischen Wert wird diese Abhängigkeit schwach und in vielen Fällen sogar
negativ. Dies wird als Übergang vom linearen zum gesättigten ohmschen Einschluss-
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Regime (LOC zu SOC) bezeichnet. Es wurde Mitte der achtziger Jahre entdeckt,
und es wurden mehrere Hypothesen über seinen Mechanismus vorgeschlagen. Bisher
wurde jedoch kein Konsens erzielt. Hier zeigen wir, wie das Wechselspiel zwischen der
zunehmenden Elektron-Ionen-Kopplung, abnehmender Störstellenkonzentration und
der daraus folgenden Verstärkung der ITG-Turbulenz zu einem solchen Effekt führen
kann. Zusätzlich wird ein Übergang zu dem verbesserten ohmschen Einschluss-Regime
(Improved Ohmic Confinement, IOC) reproduziert, wenn die lineare Skalierung bei
SOC-typischen Dichten beobachtet wird. Parametrische Abhängigkeiten der Wärme-
ströme sowohl in LOC als auch SOC-Regimes werden analysiert, und detaillierte Tur-
bulenzspektren für jedes Regime werden gezeigt.

Eine weitere Frage betrifft den Mechanismus der spontanen Beschleunigung des
Plasmakerns in toroidaler Richtung. Es wurde in L- und H-Modus Plasmen mit
gemeinsamen parametrischen Skalierungen beobachtet. Wir legen den Fokus auf dem
globalen Effekt der Profilscherung, welche die parallele Symmetrie der Verteilungs-
funktion durch poloidale Neigung der Turbulenz bricht und zu einem endlichen ra-
dialen Fluss des toroidalen Impulses führt. Die Bedeutung dieses Effekts wurde zu-
vor mit globalen nicht-linearen gyrokinetischen Simulationen demonstriert. Mit in-
tegrierter Modellierung von realen Plasmaentladungen wurder er jedoch nie gezeigt.
Unter der Verwendung des Neigungswinkels θ0 zwischen den turbulenten Strukturen
und der radialen Richting als ein freier Parameter zeigt diese Arbeit, wie der Nei-
gungswinkel mit makroskopischen Plasmaeigenschaften skaliert. Es werden wechsel-
seitige Abhängigkeiten zwischen θ0 und Größen wie zum Beispiel den durchschnit-
tlichen parallelen Wellenvektor k‖ und die Restspannung. Das Vorzeichen und die
Stärke der Neigung stehen dabei in Zusammenhang mit dem dominanten Turbulenz-
typ, wobei der ITG-Typ besonders Hohlprofile der toroidalen Geschwindigkeit erzeugt.
Es wird gezeigt, dass eine angemessene Berücksichtigung des normalerweise vernachläs-
sigten Differenz zwischen den Drehgeschwindigkeiten der Hauptionen und der Stör-
stellen wichtig ist. Das Ergebnis stimmt mit den beobachteten experimentellen Skalie-
rungen der Rotationsgeschwindigkeit überein.

Ein besonderes Augenmerk wird in dieser Arbeit auf den Störstellen gelegt, die
durch einen Zusätz des Borspezies simuliert werden. Der radiale Transport von Bor
wird untersucht, um zu zeigen, wie sich die Konzentrationsprofile mit der Zunahme
der Plasmadichte verändern.

Die integrierte Modellierung kann auch als Validierung für das in dieser Arbeit
verwendete TGLF-Transportmodell betrachtet werden. Es hat eine gute Übereinstim-
mung zwischen Simulation und Experiment in Bezug auf den Elektronenkanal von
Energie und Teilchentransport gezeigt. Eine gefundene Diskrepanz im Ionenenergie-
transport zeigt keinen signifikanten Einfluss auf die hier vorgestellten Ergebnisse.
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Chapter 1

Introduction

1.1 Magnetic confinement concepts

Current views on the way to achieving controlled thermonuclear fusion imply confine-

ment of a high-temperature plasma. Since a plasma consists of charged particles, one

can hold it with quasi-stationary magnetic fields. The principle of magnetic confine-

ment is based on the fact that charged particles move freely along magnetic field lines,

but gyrate in the transverse plane, thereby staying pinned to them. The first magnetic

confinement devices had the linear configuration with higher magnetic field on the two

ends, trying to exploit the magnetic mirror effect (see Sec. 2.1.2, Fig. 2.3), but proved

not effective enough. It became clear, that the magnetic field lines should be closed

on themselves, so that the resulting field has the toroidal topology. In this case, the

magnetic field lines are curved, which gives rise to the drift motion of charged particles

across the field lines (see Sec. 2.1.2). The magnetic field lines should form a toroidal

helix in order to compensate for the vertical drift by the poloidal motion of particles,

so that the particle orbits are closed. There are two types of devices with toroidal

helical field, the tokamaks and stellarators.

a) b)

Figure 1.1: a) Conventional tokamak design and components, b) operational principle.

The tokamak (Russian acronym for Toroidal chamber with magnetic coils) con-

cept relies on a magnetic field configuration with toroidal symmetry. A sketch of such
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4 CHAPTER 1. INTRODUCTION

device is shown in Fig. 1.1. A conventional tokamak consists of a vacuum chamber,

a central solenoid coil, a set of toroidal field coils and few poloidal field coils for fine

plasma shaping. The operational principle is as follows. The main toroidal field coils

create the toroidal magnetic field. A small amount of operational gas (D-T mixture

in a fusion reactor) is injected into the vacuum chamber. Varying electric current in

the central solenoid ionizes the gas and induces toroidal electric current in the plasma

(the transformer principle), as plasma is a good electric conductor. This plasma cur-

rent induces poloidal magnetic field and additionally heats up the plasma according

to the Joule’s law (usually referred to as Ohmic heating). The resultant helical field

configures itself into nested closed surfaces of constant magnetic flux, and confines the

hot plasma in the vessel, away of its walls. However, the necessity to vary the solenoid

current limits the operation time of a plasma discharge.

Ohmic heating efficiency reduces significantly as plasma temperature increases,

as the plasma resistivity follows the Spitzer relation, η ∼ T−3/2, so less heat is produced

at high temperature. Hence, other (external) heating systems are usually applied, such

as microwave radiation at electron and ion cyclotron resonant frequencies (ECR and

ICR) or injection of beams of neutral particles (NBI). These can also be used to drive

additional current in the plasma, partly or fully replacing the solenoid-induced plasma

current, which allows for extended pulse duration, up to the regime of steady operation.

Figure 1.2: Stellarator Wendelstein 7-X structure. The main coils are shown in blue,
confined plasma – in yellow.

The stellarator (able to deliver Stellar energy) concept unifies a number of

toroidal magnetic confinement designs where no significant plasma current is presumed,

as all the confining magnetic fields are created by external (solid) coils. The most

advanced configurations feature very complex geometry of the coils, like in Wendel-

stein 7-X (see Fig. 1.2), that have to create a magnetic field with twisted field lines.

Unlike tokamaks, stellarators do not have general toroidal rotational symmetry, but

usually feature n-fold toroidal symmetry (W7-X, for example, is 5-fold toroidally sym-

metric).

By now the world’s fusion research has advanced the most in the tokamak di-

rection, and the first international thermonuclear experimental reactor (ITER) is a
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tokamak. In the following, we will focus on toroidally symmetric tokamak plasmas,

though several processes are similar in tokamaks and stellarators.

1.2 Transport models for tokamak plasmas

In a tokamak, plasma temperature of around 20 keV and density of around 1020m−3

has to be achieved in the plasma core, but in the vicinity of the vessel wall the tem-

perature has to be maintained lower than the wall melting point. Therefore, any

process that leads to a transfer of particles and energy from the core towards the

wall, across the magnetic field, is unfavorable, as it reduces the confinement quality

and lowers the maximum achievable plasma pressure in the core. Energy transport

is historically the main concern, as well as the means to reduce it and increase the

core plasma pressure and the energy confinement time. But there are other transport-

related problems. Differences in particle transport of various ion species (main fuel

species, product alpha-particles and/or impurity species) establish radial profiles of

their densities, which affect reactor efficiency and should be controlled. For example,

alpha-particles have to be transported out of the core, as they dilute the fuel and lower

the fusion rate; impurities seeded at plasma edge in order to enhance radiation and

decrease temperature of the “exhausted” plasma must not penetrate the core, as they

would cool it down. Transport of angular momentum is another important process

to understand and control, as inducing plasma toroidal and poloidal rotation helps

stabilize instabilities and reduce energy transport. Theoretical understanding is a key

in every aspect here, that allows us to predict and control plasma parameters. This

requires the construction of an adequate mathematical model of the plasma, as well

as the means to compute the relevant quantities from it, such as heat conductivity or

viscosity.

Plasma is a highly dynamical system with an enormous number of degrees of

freedom (of the order of number of particles, ∼ 1020) and a wide range of characteristic

times or frequencies. The smallest and fastest scale is the electron gyration, with

typical frequency about 1011 Hz and radius around 0.1 mm, on the other end is the

global transport scale with frequency of the order of 10 Hz and size around 1 m.

The motion of an individual particle is governed by electric and magnetic fields, but

redistribution of particles also changes this field. The analytical solution of a system of

equations including all particles and field equations does not seem possible. But even

for a numerical solution with modern supercomputers such task is too demanding. A

more effective approach is statistical (also referred to as kinetic), solving the general

kinetic equation
dF

dt
=
∂F

∂t
+
d~x

dt
· ∂F
∂~x

+
d~v

dt
· ∂F
∂~v

= C(F )

for a 6-dimensional probability distribution function (6D phase-space has 3 spatial

and 3 velocity dimensions). The PDF F (~x,~v, t) at a given point of the 6D phase-space

defines the number of particles at the given position ~x with the given velocity ~v. The
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temporal resolution of the PDF solution should be higher than the fastest physical

time scale in the system, that is the electron gyrofrequency. Hence, one needs ∼ 1011

time steps to see global transport variations, which, provided the adequate space and

velocity resolution, is computationally extremely expensive and proves impractical.

A technique has been developed to perform a coordinate transformation, which

eliminates the fast electron gyration and reduces the phase-space dimensionality to

five. Instant position of a particle is substituted with a gyroperiod-averaged position,

and the equation of motion is reformulated. When performed correctly, this allows

one to describe the motion of gyrating particles at a longer time scale, but keeping all

the necessary information on the gyro-orbit parameters [1]. Such approach is called

gyrokinetic, it is widely used in plasma studies. Still, the general gyrokinetic (GK)

equation is non-linear, and simulating the whole plasma volume (global simulation) is

very expensive computationally, yet it provides a good insight into fine processes in

the plasma. The GK equation may be also solved on a limited radial extend, for a

single flux tube, which however leads to the elimination of some effects [2]. Assuming

the deviations from the equilibrium Maxwellian distribution are small and solving

only for the fluctuating part, as well as linearizing the GK equation helps reduce the

computational cost, but somewhat limits the application range to the plasma regions

far from the edge of the confined volume. The linear solution can be corrected on the

basis of linear to non-linear comparison for some specific cases, so that the result of

such corrected linear (referred to as quasi-linear, QL) approach agrees well with that

of non-linear. This way reasonably accurate transport coefficients can be obtained at

low computational cost.

Usually the quantities of interest like density of plasma species or energy fluxes,

are related to the so-called velocity moments of the distribution function, where a

n-order moment is

µn =

∫

d3~v ~vnF.

These relations are presented in table 1.1, where ~u is the local mean plasma velocity.

If one takes moments of the whole kinetic equation, one gets macroscopic equa-

tions that describe a fluid. In order to obtain a fully consistent description, one needs

infinite number of moments, since every n-order moment depends on the (n+1)-order.

However, in practice only the moments up to the third order are used (see table1.1),

obtained with approximated higher order moments, the so-called closure condition.

The modeling approach based on solving the gyrokinetic moment equations without

computing the GK distribution function itself is called gyrofluid. Depending on the

choice of the closure condition, it may include also kinetic physical effects such as

wave-particle interaction.

Development and usage of simplified transport models like quasi-linear gyroki-

netic and gyrofluid are essential for simulations of the plasma evolution during dis-

charges with given parameters. While non-linear global gyrokinetic simulations of

tokamak plasmas require many hours of operation on multi-processor supercomputers,
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Order Quantity Expression

0 Number density n =

∫

d3~v F

1 Particle flux ~Γ ≡ n~u =

∫

d3~v ~vF

2 Stress tensor ¯̄Π =

∫

d3~vm~v~v F

2 Pressure tensor ¯̄P =

∫

d3~v m(~v − ~u)(~v − ~u)F

3 Energy flux ~Q =

∫

d3~v
mv2

2
~vF

3 Heat flux ~q =

∫

d3~v
m

2
(~v − ~u)2 (~v − ~u)F

Table 1.1: Lower order velocity moments of the distribution function that correspond
to measurable quantities [3]

relatively simple QL transport models run within few seconds on an average processor

and represent workhorses of tokamak plasma transport modelling.

1.3 About this thesis

This work is dedicated to theoretical studies of few selected transport problems pre-

senting unresolved issues for fusion research.

The first one is the energy confinement time behavior in the L-mode plasmas1.

The confinement quality is usually estimated by a ratio between the energy stored in

plasma and the loss power, called the energy confinement time:

τE =
W

Ploss
=

3
2

∑

a

∫

naTadV

Pheat − Prad
(1.1)

It has been observed in many tokamaks that the energy confinement of Ohmically

heated L-mode plasmas scales linearly with the plasma density [4] until a critical value

is reached, after which the confinement stays constants or even degrades, see [5] and ref-

erences therein. The two regimes are called Linear and Saturated Ohmic Confinement

(LOC and SOC). It has been suggested to link them to a shift in turbulence regime

from TEM-dominated to ITG–dominated, that modifies transport [6–8]. Experimen-

tally it is very difficult to reliably define the dominant turbulent mode [9]. Hence, in

order to support or oppose this hypothesis, integrated plasma simulations are necessary

that include realistic models of heat and particle transport, focusing on distinguishing

transport properties of the TEM and ITG turbulent modes. A direct comparison to

1low-confinement mode of operation, as opposed to the high-confinement mode (H-mode), when
the formation of the edge transport barrier reduces edge turbulent transport and enhances core plasma
pressure
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experimental measurements for model parametrization to different plasma conditions

would ensure the validity of this study.

LOC SOC

τE

n̄en̄crite

Figure 1.3: Sketch of τE as a function of mean density in Ohmically heated plasmas

The second issue is the nature of plasma intrinsic toroidal rotation. It has been

found that the toroidal plasma can achieve a finite toroidal rotation velocity without

any external source of torque in many tokamaks [10–16]. This phenomenon is now

known as intrinsic rotation and it is believed to be caused by a component of the stress

tensor not related to either viscosity or pinch. It has been shown, that a plasma at rest,

i.e. having the toroidal angular velocity ωφ = 0 and its radial gradient ∂ωφ/∂r = 0

(thus no toroidal momentum diffusion and convection), still possesses a certain residual

stress, that tends to accelerate the plasma. This part of the stress tensor is usually

related to a violation of the spatial symmetry of the distribution function, which would

lead to net turbulent momentum transport and cause plasma toroidal flows. From the

observations it follows that the character of the plasma intrinsic rotation strongly

depends on the magnetic field, current and collisionality, and is found to twice flip the

rotation direction in the core – from co- to counter-current and back again – as the

density grows. Many residual stress mechanisms have been investigated numerically, on

the basis of gyrokinetic or fluid theory [17–24]. Their predictions usually deliver specific

quantities like the rotation velocity gradient or the residual stress for arbitrary plasma

configuration. A general theory of the residual stress should catch this alternating

behavior naturally. Moreover, revealing the conditions of such rotation transitions

can be the key to understanding its origin. Therefore, the analysis and modelling

of momentum transport in purely L-mode discharges without auxiliary NBI heating

(which introduces unwanted external torque) is needed.

Both problems concern Ohmically heated L-mode plasmas and might be physi-

cally related, as the critical density of the LOC–SOC transition was found to be close to

the value at which the spontaneous plasma toroidal rotation flips from co– to counter–

current. Both also require an accurate, mode-specific model of turbulent transport.

Along with self–consistent evolution of plasma profiles, such as temperature and den-

sity, this poses a demanding simulation task. While modern gyrokinetic codes allow

such simulations [25, 26] only at enormously high computational costs, a faster and

easier yet sufficiently comprehensive way is implemented in this work. Here, the theo-

retical investigation is done by means of integrated modeling of tokamak plasmas with
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the ASTRA transport modeling system, coupled to quasi-linear gyrofluid transport

model TGLF and neoclassical transport model NEO.

The thesis is organized as follows. Chapter 2 discusses some main properties

of a plasma in a tokamak, and what types of motion occur in a magnetized plasma.

Transport processes are described in detail, with particular stress on turbulence-driven

transport. In the end of this chapter an overview of the transport modeling software

used in this work is given. Chapter 3 presents the ASDEX Upgrade tokamak param-

eters, where the experimental data have been acquired, which are used for reference

and boundary conditions of the simulations. These data are also described, providing

some detail on the diagnostic tools, measurement processing techniques, as well as the

parameter range they cover. Chapter 4 presents the simulations setup and results of

the LOC-SOC transition modelling. The analysis of simulated plasma properties and

their comparison to the measurements is provided. Emphasis is given to the core tur-

bulence characteristics, and the relations between the microinstabilities and the global

plasma confinement parameters. Chapter 5 applies a similar approach to the problem

of plasma intrinsic rotation generation. The discussed mechanism is presented with

a simple fluid model, however a more sophisticated version of it is used in the sim-

ulations. The relations between model parameters are investigated in detail, making

a link between the observed quantities and the core turbulence regime. Section 5.7

provides the results of boron impurity density simulations, validating the assumption

of its radially constant concentration, which is used in the rest of this work. Chapter 6

summarizes the results of this work and provides some outlook.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Theory of transport in tokamak

plasmas

Plasma can be defined as an ionized state of matter, and its behavior is dominated by

collective effects due to long-range electrostatic and magnetic interactions. It should

therefore contain a significant fraction of unbound charged particles (usually electrons

and positive ions), i.e. be at least partially ionized. The ionization degree, at which a

gas starts to behave like plasma, is around 1%. In practice, a piece of ionized matter

must fulfil several criteria in order to be considered a plasma. It is called magnetized if

an external magnetic field is strong enough to introduce a distinct anisotropy in plasma

motion. Magnetic field geometry plays an essential role in magnetic confinement fusion,

as it defines stability and confinement quality of plasma in fusion machines. They are

designed in such a way to possibly reduce particles and energy losses, which largely

depend on particle trajectories. Additionally, large pressure gradients in fusion plasmas

lead to various microinstabilities and associated to them turbulent state, which presents

a transport channel of major concern. Various types of microinstabilities, as well as

the related transport processes, are also reviewed in this chapter.

2.1 Magnetized plasma in tokamaks

2.1.1 Basic plasma parameters

In a plasma, the average electric charge density is close to zero, which is ensured by

electrostatic forces between particles. This property is called quasineutrality. Consider

a piece of plasma with n electrons per volume unit and the same number of (hydrogen)

ions [27]. Assume that because of thermal motion a density fluctuation δn appeared

and caused charge separation over a distance λ. The electric field potential φ follows the

Poisson’s equation ∆φ = −e δn/ε0, where an approximation can be made ∆φ ≈ δφ/λ2

with δφ the potential difference over the charge separation distance. This gives a

11
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relation

δφ ≈ e δn

ε0
λ2

The potential energy e δφ should be of the order of the kinetic energy T , since the

fluctuation is thermal, so for the fluctuation amplitude it can be written

δn

n
∼ ε0T

ne2λ2
.

This consideration gives an expression for a typical charge separation scale λD, called

the Debye radius :

λD =

√

ε0T

ne2
(2.1)

On the scale of a typical plasma size L the relative charge imbalance is δn/n ∼ λ2D/L
2.

Hence, quasineutrality follows from L ≫ λD.

Electrons are two orders of magnitude more mobile than ions, so they react

faster to neutralize the charge separation, while ions can be considered at rest. The

time it takes can be computed from fluid equations, but we use a simple consideration

here. Since e δφ ≈ Te, the reaction time is λD/vth,e, the separation distance over the

electron thermal velocity. Inverse of this is the characteristic frequency, called the

plasma frequency :

ωp =
vth,e
λD

=

√

T

me

√

ne2

ε0T
=

√

ne2

ε0me
(2.2)

Coulomb interaction increases the concentration of negative charges around the

positive and vice versa, thus the electric potential of a given charge decreases faster

than the Coulomb’s law. This effect is known as Debye shielding. The characteristic

length here can be shown to be λD, and the potential decreases with distance as

φ =
q

r
exp

(

− r

λD

)

From this we can set a condition under which the collective behavior due to long-range

interaction is statistically important. This means that each particle should feel many

others, i.e. that the number of particles inside a sphere with radius λD is much more

than one. This can be expressed by introducing the plasma parameter Λ:

Λ =
4π

3
nλ3D ≫ 1

In typical fully ionized fusion plasmas Λ ≈ 107.

Events of long-range Coulomb interaction between particles of plasma are referred

to as Coulomb collisions. Unlike in mechanical “hard-sphere” collisions of neutral

particles, the interaction strength varies slowly with the distance, and in most cases

particles are deflected only slightly from their initial direction. If the condition Λ ≫ 1
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is fulfilled, a particle constantly interacts with others, and a hard collision frequency as

inverse mean time between sequential collisions does not make much sense. Instead, an

effective collision frequency can be introduced, the inverse of the time of the trajectory

deviation by a right angle π/2 [28]. For species with arbitrary charges eZa and eZb the

collision frequency can be written as

νab =
nZ2

1Z
2
2e

4 ln Λ

4πε0m2v3
(2.3)

Here, m = mamb/(ma +mb) is the reduced mass and v is the relative velocity, which

is normally of the order of the thermal velocity of the lighter species. The logarithm

lnΛ is called the Coulomb logarithm, it depends weakly on plasma parameters and for

typical fusion plasmas lnΛ ≈ 15. Electron-ion collision frequency νei is an important

quantity and taking v = vth,e, can be written as

νei =
nZ2

i e
4 ln Λ

4πε0m
1/2
e T

3/2
e

(2.4)

This parameter defines the electrical conductivity of the plasma, high collision fre-

quency means high resistivity. Collisions also establish thermal equilibrium within the

same species, and relatively high ν ensures that the equilibrium velocity distribution

function is Maxwellian. Note, that νee ≈ νei, and νii is about two orders of magnitude

smaller, but ion thermal equilibrium is enhanced by electron-ion collisions. The lat-

ter are also responsible for the energy exchange between electrons and ions, which is

particularly important when only electrons receive external heating (for example, in

Ohmic heating regime of tokamak operation). The equipartition power reads

Pei = 3νeine
me

mi

(Te − Ti) ∼
n2
eZ

2
i (Te − Ti)

miT
3/2
e

. (2.5)

This collisional effect redistributes energy between species and tends to equalize elec-

tron and ion temperatures at high density.

2.1.2 Motion of charged particles in magnetic field

Charged particles in magnetic field B are subjected to the Lorentz force, that is

FL = qv×B, (2.6)

with q the charge and v the vector velocity of the particles. In a uniform magnetic

field the velocity component parallel to the field v‖ is unaffected, and the perpendicu-

lar component v⊥ constantly wraps around the field direction, so an arbitrary particle

follows a helical trajectory, staying on a single magnetic field line (see Fig. 2.1, a).

Periodic motion around a magnetic field line is usually referred to as gyration or gy-
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romotion. Gyration frequency Ωc (cyclotron frequency) and radius ρL (called Larmor

radius) are expressed as

Ωc =
qB

m
, ρL =

mv⊥
qB

(2.7)

Due to higher mass, ions gyrate slower and with larger radius than electrons. The

condition for a magnetized plasma can be then expressed as Ωc ≫ ν, i.e. particles

perform many gyrations between sequential collisions. Additionally, the Larmor radius

should be much smaller than a typical geometric dimension of the plasma, ρL ≪ L.

Both conditions should be fulfilled for all species. For convenient formulation, a small

parameter δ can be introduced, which is expressed and constrained as

δ ∼ ρL
L

≪ 1, δ ∼ ν

Ωc
≪ 1. (2.8)

The latter condition also implies ν ∼ vth/L, A magnetized plasma is highly anisotropic.

Particles move freely along the magnetic field lines at thermal velocities, but in the

transverse direction the motion is strongly constrained to the magnetic field lines.

Thermal and electrical conductivities of fusion plasmas in the parallel and perpendicu-

lar directions are different by many (around ten) orders of magnitude. This anisotropy

is the basic idea of the magnetic confinement of plasmas. This is also the reason why

the most successful configurations are toroidal: field lines can be closed on themselves,

and particles experience no edge losses.

As outlined in Sec. 1.2, the fast time scale of gyromotion can be separated from

slower scales by a coordinate transformation. The exact particle position is then re-

formulated in terms of the position of the center of gyration (guiding center) and the

gyroangle. One can then average over the gyroangle to remove the fast time scale.

Usually in the discussion of particle trajectories we will use the guiding center position

instead of the actual particle position.

particle actual trajectory

guiding center trajectory

θ

B

E

high v , large r┴ L

low v , small r┴ L

vE

a) b)

Figure 2.1: a) Gyromotion and the guiding center-gyroangle representation. b) Mech-
anism of a perpendicular drift on the example of E ×B drift.

The presence of a uniform electric field modifies the particle motion. In general,

it is decomposed as E = E⊥+E‖. The parallel component E‖ can accelerate electrons

and ions (mdv‖/dt = qE‖), but their ability to stream along the B field limits the

magnitude of possible generated electric field due to Debye shielding effect. However,

collisions make the (mainly electron) response to induced electric potential delay, so

some small parallel electric field can appear. When induced by the tokamak central

solenoid (see Fig. 1.1), it creates the toroidal plasma current.
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The perpendicular electric field E⊥ exerts electric force, but because of gyromo-

tion this leads to a net drift in the direction perpendicular to both E⊥ and B. Particles

are accelerated on one side of the orbit (upwards) and pass a longer distance transverse

to E⊥, then decelerated on the other side (downwards) and pass shorter distance back

to the initial phase, see Fig. 2.1, b). Important is, since both gyromotion and elec-

tric force directions are charge dependent, the electrons and ions drift together. This

electric drift is called E × B drift, its velocity is

vE =
E×B

B2
, (2.9)

where B is the magnetic field magnitude. This is similar to the Hall effect, which is

however related to the current J×B/en, and J = 0 in a plasma.

Drift velocity might arise from any force transverse to the background magnetic

field, and the general expression reads

vF =
F×B

qB2
. (2.10)

Note, that F = qE is the only charge dependent force, all the others would move

opposite charges in opposite directions. This can be related to magnetic field gradient

or curvature. The corresponding drifts are referred to as grad-B and curvature drifts.

Grad-B drift arises due to changing Larmor radius when the magnetic field magnitude

is different on opposite sides of the gyration trajectory, therefore it depends also on ρL
via the perpendicular velocity. Curvature drift is a centrifugal effect and the related

“force” is mv2‖/R with R the curvature radius. These two drifts can be expressed as:

v∇B =
mv2⊥
2q

∇B ×B

B3
, vc =

mv2‖
q

(B · ∇B)×B

B4
. (2.11)

B

E, dE
dt

vE
vp

Figure 2.2: Polarization drift: increase of E⊥ magnitude in time leads to additional
particle drift vp perpendicular to vE.

A slow variation of E⊥ in time (ω∆E ≡ dtE/E ≫ Ωc) leads to another kind of

drift, the polarization drift (Fig. 2.2). It is a small additional contribution to E × B

drift, but along the direction ofE⊥. When a particle follows the gyro-orbit, it undergoes

acceleration and deceleration by the electric field, but since its magnitude varies in

time, the two are not fully compensated, which leads to a net drift velocity. The

effect is proportional to the gyroperiod, which is much longer for ions, and the drift
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direction depends on the gyromotion direction, which introduces charge-dependence.

The polarization drift velocity reads

vp =
m

qB2

dE⊥

dt
. (2.12)

Unlike the others, this drift does not appear explicitly in gyrokinetic theory, but

emerges on a particle level from the Poisson equation.

In slowly changing magnetic field, so that ω∆B ≡ dtB/B ≫ Ωc, one can find a

related conserved quantity, an invariant of motion. It is the magnetic moment

µ =
mv2⊥
2B

= const. (2.13)

Technically, its variation over one gyroperiod is of the order (ω∆B/Ωc)
2, so it is only

conserved on a relatively fast time scale, therefore it is an adiabatic invariant. As a

consequence, the magnetic flux (magnetic field times area) enclosed by a gyro-orbit

ψ = πρ2LB ∼ µ is also adiabatically conserved. This has an important consequence on

the particle motion.

B

Figure 2.3: The magnetic mirror effect: denser magnetic field lines (blue) correspond
to increased magnetic field, at some point the parallel velocity vanishes and the particle
is reflected.

Assume no parallel electric field and low collision frequency, so the kinetic energy

T =
m

2

(

v2‖ + v2⊥
)

= const. (2.14)

J

n
∆

B

Figure 2.4: Origin of

diamagnetic current

Take a charged particle moving towards increasing B.

From Eq. (2.13) it follows that v2⊥ ∼ B, so as B increases,

v‖ is reduced. At some point all the kinetic energy consists

in perpendicular motion, and a particle can not move further

in the parallel direction and gets reflected back (see Fig. 2.3).

This effect is called a magnetic mirror and can be seen similar

to a gravity pendulum, but with the magnetic potential energy

instead of the gravitational one. Its importance for magnetic

confinement devices is discussed in Sec. 2.3.2.

There exists another important kind of drift motion,

which is however not a single-particle drift but a collective ef-
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fect. In the presence of a perpendicular density gradient, there are more gyrating

particles up the gradient than down (Fig. 2.4), leading to a finite current in the binor-

mal direction, perpendicular to both B and ∇n. Finite temperature gradients have

the same effect, just due to higher velocity of gyrating particles on one side. The re-

sulting current is the diamagnetic or magnetization current Jdia, which also leads to a

motion of plasma particles as a whole (fluid velocity), the diamagnetic drift, opposite

for electrons and ions:

Jdia =
∇p×B

B2
, vdia =

∇p×B

qnB2
(2.15)

Since a pressure gradient is always present in a confined plasma, electrons and ions are

subjected to constant net motion across it in opposite directions. This plays a central

role in determining the macroscopic plasma equilibrium.

2.1.3 Tokamak magnetic geometry and equilibrium

As stated in Sec. 2.1.2, a magnetized plasma is highly anisotropic, and the magnetic

field with toroidally closed configuration is required to keep charged particles from

rapid loss along the field lines. In practice, as described in Sec. 1.1, a combination of

toroidal and poloidal magnetic fields is applied. The magnetic field of a tokamak can

be expressed as

B = Bϕ +Bp = I(ψ)∇ϕ− 1

2π
∇ψ ×∇ϕ, (2.16)

where ψ is the poloidal magnetic flux and φ is the toroidal angular coordinate.

I(ψ) = RBϕ is a “poloidal current function” with R the major radius of the torus.

Note that ∇ϕ simply denotes the toroidal direction and B is independent on the

toroidal angle, i.e. axisymmetric.

In toroidal magnetic topology, there can be defined surfaces such that for every

point B×∇B = 0, i.e. magnetic field vector is tangential to the surface. Then each of

them can be characterized by the poloidal magnetic flux it encloses. These are called

the flux surfaces. By definition the flux surfaces do not intersect, they are nested,

meaning they form a shell structure. Magnetic flux surfaces can have various shapes,

so it is convenient to work in a coordinate system linked to them instead of fixed

geometrical coordinates. The poloidal flux ψ or Ψ = ψ/2π can be used as a radial

coordinate, to label the given flux surface. The toroidal coordinate is usually the

toroidal angle ϕ, and the poloidal coordinate θ, such that eθ = eψ × eφ is tangential

to the flux surface and orthogonal to the toroidal direction. Hence, a usual set of

magnetic flux coordinates is (ψ, θ, ϕ).

An important characteristic quantity is the ratio of the toroidal to the poloidal

magnetic flux, called the safety factor q. For the axisymmetric field it is expressed as

q =
dϕ

dθ
≃ rBφ

RBθ
, (2.17)
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Figure 2.5: Magnetic flux coordinates and nested surfaces.

where the latter ratio is an approximation for circular poloidal cross-section of a toka-

mak, with r the local radial coordinate value and R the major radius. The factor q

can be understood as the number of toroidal turns a magnetic field line on a given flux

surface makes over one poloidal turn. For most flux surfaces q is irrational, meaning

a field line never closes on itself, but rather densely fills the flux surface. Consider-

ing high anisotropy in parallel and perpendicular directions the poloidal and toroidal

transport become as fast as parallel, while radial remains slow. Hence, many plasma

parameters such as current density or kinetic pressure are constant on a given flux

surface, they are flux functions. Surfaces of rational q are also called resonant, since

they amplify fluctuations with integer number of wavelengths along the magnetic field

line on this surface. This effect is significant only for ratios of small numbers (1,2,3),

and in these cases some global instabilities may appear. The name “safety factor”

refers to the condition of overall plasma stability that at the plasma edge q ≥ 2. In a

conventional tokamak q ≈ 1 at the magnetic axis and monotonically increases towards

the edge.

A magnetic field is able to confine a plasma by opposing the kinetic pressure

of plasma with the magnetic pressure and the magnetic tension. At steady state the

plasma is said to be in equilibrium with the magnetic field. The governing perpendic-

ular pressure balance equation reads

∇⊥

(

p +
B2

2µ0

)

− B2

µ0

b · ∇b = 0, (2.18)

where ∇⊥ is the operator of gradient perpendicular to B, and µ0 = 4π × 10−7 is the

magnetic constant. Here, the gradient of kinetic pressure p is balanced by the gradient

of magnetic pressure B2/2µ0, as well as by the curvature tension of the magnetic field.

In order to visualize the latter, one an imagine magnetic field lines as bent rubber

straps or strings that tend to straighten back. Both confining terms arise from the

J×B Lorenz force, where J is the current due to drifts (except for the electric drift)

and magnetization of the plasma with finite pressure gradient. An important quantity

is the ratio of plasma kinetic pressure to the magnetic pressure, β:

β =
2µ0p

B2
. (2.19)
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Ideally one wants to keep β as high as possible and achieve higher pressure with

lower B (hence lower cost), but plasma can become unstable at high β. The stability

limit depends on many parameters such as plasma current and plasma shape. In

conventional tokamaks β ≈ 1%, while the maximum achieved in spherical tokamaks is

about 40%.

In toroidally symmetric geometry the equilibrium is described by the Grad-

Shafranov equation:

∆∗ψ = −µ0R
2 dp

dψ
− 1

2

d(RBϕ)
2

dψ
, (2.20)

with ∆∗ the elliptic operator, the curvilinear spatial second derivative. Solving this

equation allows to find the 2D equilibrium flux surfaces in the poloidal cross-section of

a tokamak. More details on plasma equilibrium and stability can be found in [29, 30].

One important remark remains to be made here regarding the safety factor q

minimum value in the plasma core. The density of induced plasma current is natu-

rally peaked, since higher core temperature means higher electric conductivity. Con-

sequently, q also naturally behaves monotonically. However, a very peaked current

density profile drives q on the axis below unity, and plasma with q < 1 is unstable.

The core current density aims to flatten and establish q > 1 everywhere, and the cur-

rent density redistribution would happen abruptly. This leads to an outburst of hot

plasma from inside the q = 1 surface outwards, which is seen as a sudden drop of core

electron temperature close to the axis and a sudden increase of it around mid-radius.

After a drop the core temperature starts growing again, until the next drop. This

cyclic behavior is known as the saw-tooth instability, since the temperature measure-

ment signal looks like a saw, with a period of around 10ms. It is rather unfavorable in

a tokamak reactor, so advanced operational scenarios aim at keeping q > 1 everywhere

by driving additional toroidal current.

2.2 General transport problem

As outlined in Sec. 1.2, transport of particles, energy and momentum across the mag-

netic field from the plasma core to the edge is a major concern in fusion research

and the main topic of this work. The spatial distributions of macroscopic quantities

like density, mean velocity or temperature are defined by an equilibrium between the

sources, sinks and fluxes of the transported quantities. In turn, the fluxes usually de-

pend on the shape of the radial profiles in a non-linear way. The relationship between

the kinetic profiles and the fluxes is the crucial element, which allows the determination

of the kinetic profiles in the transport problem. It has to be described by a physically

comprehensive model comprising collisional and turbulent transport processes.

Though there exist some differences between transport channels in tokamak plas-

mas (particle, momentum and heat), the transport problems can be formulated in a

similar way. For a transported scalar quantity Q, like particle density, toroidal mo-
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mentum or energy, the general 3D transport equation has the form

∂Q

∂t
+∇ · ~Γ = SQ, (2.21)

where Γ is the flux vector of Q and SQ is the local source and sink term. In order to

describe an equilibrium plasma state, the solution is searched for the stationary form

of this equation, when the flux exactly balances the sources and sinks.

A generic decomposition of the flux term can be given as:

~Γ = −D~∇Q+ ~vQ+ ~R. (2.22)

Here, the term −D~∇Q describes diffusion, i.e. a tendency of any internal gradients

to level off on a macroscopic scale. It originates from the Second Law of Thermody-

namics, a law of non-decrease of entropy of a closed system. The minus sign denotes

transport in the direction opposite to the gradient, to where there is less Q. The

transport coefficient before the gradient term is called diffusivity. The term ~vQ de-

scribes convection, i.e. macroscopic flow of matter, and the amount of matter (or heat)

transported is proportional to its local concentration. The direction of convective flux

can vary for different phenomena. The third term is not directly proportional to Q or

∇Q. It is rather specific to momentum transport, where it represents the non-diagonal

part of the momentum stress tensor and is called the residual stress. While the de-

composition (2.22) may look arbitrary or like a first-order Taylor expansion (Fick’s

model), it is in fact exact for gyrokinetic turbulence in the local limit. Note, that the

equation (2.22) is non-linear, as D, ~v and ~R in general also depend on Q and ∇Q, for
example, via growth rates and frequencies of turbulence modes, and the solution can

only be found numerically. Despite the non-linearity, for the equation (2.21) in the

stationary form this solution is normally unique, since diffusive processes dominate.

Solving the transport problem means assigning the transport coefficients, sources

and sinks for all transported quantities in a plasma and solving the equations of the

sort (2.21). Due to the toroidal symmetry of tokamaks, as well as the fact that the

transported quantities such as the electron density are flux functions, a general slow

transport problem may be formulated as one-dimensional in the radial direction, con-

cerning only the transport across flux surfaces. The coordinate system implemented

in the following is (ρ, θ, ζ), where the toroidal angle ζ = −φ and the variable used for

flux surface labeling is ρ, which has the dimensionality of length, defined as

ρ =

√

Φ

πB0

with Φ =
1

2π

∫

V

( ~B · ∇ζ)d3x. (2.23)

Here, Φ is the toroidal magnetic flux enclosed by the given flux surface. The

volume V of this flux surface is defined as

V =

ρ
∫

0

dρ

2π
∫

0

dζ

2π
∫

0

√
g dθ = 2π

ρ
∫

0

dρ

2π
∫

0

√
g dθ, (2.24)
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with g being the determinant of the metric tensor g = (∇ρ∇θ∇ζ)−2. Given that, the

flux surface average of a function can be written down as

〈Q〉 = ∂

∂V

ρ
∫

0

dρ

2π
∫

0

dζ

2π
∫

0

√
g Qdθ = 2π

∂ρ

∂V

2π
∫

0

√
g Qdθ. (2.25)

The net flux Γ of a vector ~h through a magnetic surface can be expressed as

Γ =

∫

∇ · ~hdV = 〈~h · ∇V 〉 = ∂V

∂ρ
〈~h · ∇ρ〉 (2.26)

As a function of ρ, the net flux Γ = Γ(ρ) can be decomposed in accordance with (2.22)

and presented as

Γ(ρ) =
∂V

∂ρ

(

〈|∇ρ|〉 (vQ+R)−
〈

(∇ρ)2
〉

D
∂Q

∂ρ

)

(2.27)

The partial derivatives of V with respect to ρ and vice versa take into account the

geometry of the flux surfaces, which is required for a correct reduction of the problem

to one dimension.

The time derivative of the quantity Q by definition is taken at constant ρ. In

general, if the background magnetic field varies with time, the relation between Φ and

ρ also varies, and a time derivative at constant Φ is given by

∂Q

∂t

∣

∣

∣

∣

Φ

=
∂Q

∂t

∣

∣

∣

∣

ρ

+
∂Q

∂ρ

∂ρ

∂t

∣

∣

∣

∣

Φ

=
∂Q

∂t
− ρḂ0

2B0

∂Q

∂ρ
(2.28)

Now that all the ingredients have been discussed, a 1D transport equation can be

constructed. The exact form of it depends on the transported quantity. An example

for the electron density is given below, where the notation V ′ = ∂V/∂ρ is used:

1

V ′

(

∂

∂t
− Ḃ0

2B0

∂

∂ρ

)

(V ′ne) +
1

V ′

∂

∂ρ
(V ′Γe) = Se. (2.29)

In the steady state, when ∂Q/∂t = 0, equations of the kind (2.29) describe a

balance between sinks, sources and the radial flux. But in different transport chan-

nels the significance of each term may vary. For instance, in plasmas without NBI

heating/torque input the density source is located at the edge, so the radial profile

is defined by the equilibrium between convective and diffusive processes. A similar

situation occurs in the momentum transport channel, but the residual part can also

provide a significant contribution. On the other hand, the source of thermal energy is

distributed along the radial coordinate, but the convection plays no role.
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2.3 Collisional and neoclassical transport

This section discusses the nature and properties of transport processes in magnetized

toroidal plasmas due to the trajectories of plasma particles and their modification by

collisions.

2.3.1 “Random walk” collisional transport

Consider a gas, where a particle at thermal motion collides with other particles, and

each collision randomly changes its direction of motion. This phenomenon is also

known as Brownian motion. Denote λ the average distance a particle passes between

two collisions (mean free path), and τ the average time period between two collisions.

Since after each i collision the displacement ∆xi direction is random, after a large

number of collisions N a particle mean displacement 〈∆x〉 =
∑

i∆xi = 0. However,

the mean square distance from the initial point is finite,

〈

(∆x)2
〉

=
∑

i

(∆xi)
2 = Nλ2.

Then, after the time ∆t = Nτ the mean square distance will be

〈

(∆x)2
〉

=
λ2

τ
∆t = D∆t,

where D = λ2/τ is defined as the diffusion coefficient. So, in order to find the diffusion

rate, one has to identify λ and τ .

On a fast timescale the motion of charged particles in a strong magnetic field is

constrained to gyro-orbits. Collisions lead to net diffusion if the center of mass of two

colliding particles shifts in the perpendicular plane when the particles jump to new

orbits, and its displacement is the effective λ value. Due to energy and momentum

conservation and since the gyration direction is the same, a Coulomb collision of alike

particles does not change their center of mass position. This means that alike particles

might exchange orbits and velocity leading to energy transport, but on the average no

particle diffusion occurs.

Particles of different charge gyrate in opposite directions, and the mean square

displacement of the center of mass of two unlike particles colliding can be shown to be

λ2 = 2
v2m2

r

|q1||q2|B2
, with mr =

m1m2

m1 +m2
the reduced mass.

In the case of electrons and single-charged ions the mass ratio is high enough to take

mr ≈ me and v ≈ vth,e, so the expression for λ2 becomes

λ2 = 4
meTe
e2B2

.
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Taking the effective intercollision time τ equal the inverse effective electron-ion collision

frequency νei from Eq. (2.4), one can obtain the diffusion coefficient for particle density

in the form

Dn = 4νei
meTe
e2B2

∼ νeir
2
L,e (2.30)

Note that there is a single Dn for electrons and ions. Because of quasineutrality

condition they diffuse at the same rate, such diffusion is therefore called ambipolar.

Collisional diffusion is the main mean of particle diffusion in a neutral gas or

liquid. These states of matter have been studied long before the plasma, so collisional

transport in a plasma is called classical. With typical fusion reactor parameters, the

classical diffusion coefficient takes the value about 10−5m2/s. This is five orders of

magnitude lower than experimentally observed values, which are of the order of 1m2/s.

Similar approach can be used to estimate thermal diffusivity χ, which enters the

expression for heat flux:

q = −nχ∇T. (2.31)

Unlike with particle diffusion, here alike particle collisions matter, and thermal diffu-

sivities for electrons and ions are different:

χe =
νee
4

v2th,e
Ω2
c,e

∼ νeer
2
L,e, χi =

νii
4

v2th,i
Ω2
c,i

∼ νiir
2
L,i (2.32)

By this estimation, χi ∼ χe
√

mi/me, and the total classical thermal diffusion is hence

mostly governed by ions. For reactor conditions the classical χ ≈ 10−3m2/s, which is

also much lower than experimental 1m2/s.

2.3.2 Neoclassical transport

The above considerations assumed straight magnetic field lines and ignored parallel mo-

tions of particles. In magnetic confinement devices the magnetic field lines are twisted,

the toroidal magnetic field strength decreases from the torus center as Bϕ ∼ 1/R (the

inner side of the torus is therefore called the High Field Side, HFS, while the outer

is the Low Field Side, LFS). Hence, particles do not stay pinned to a single field line

but drift across the field, as described in Sec. 2.1.2. Moreover, following the parallel

direction, particles experience variation of the B magnitude, and some particles may

be reflected back at some point, if their parallel velocity is not high enough (the mirror

effect). Particles that cannot complete a full poloidal turn are trapped on the outer

side of the torus, while the others can pass to the HFS. The two fractions have clearly

distinguishable transport properties.

In a helical magnetic field, a particle is subjected to both curvature and grad-B

drifts (2.11), the combination of their vertical components can be written [31] using
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the expression for q (2.17) as:

vD =
m

2eRBϕ

(

v2⊥ + 2v2‖
)

∼ mv2

2eRBϕ
(2− sin2 α), (2.33)

where α = is the particle pitch angle, defined as sinα = v⊥/v. It can be shown that

trapped particles have α > αcrit, where αcrit is such that

sin2 αcrit =
Bmin

Bmax
=

1− ǫ

1 + ǫ
, (2.34)

defined through the local inverse aspect ratio ǫ = r/R in the approximation of a

circular cross-section. The trapped fraction can then be obtained as fT =
√
2ǫ and for

a conventional tokamak edge with ǫ = 0.3 can reach as much as 75%.

The drift vertical velocity (2.33) direction depends on the particle electric charge.

A passing positive ion with v‖ > 0 starting from the LFS midplane, θ = 0, would shift

outwards to a maximum displacement δp at the HFS, θ = π, but then return to the

initial flux surface when back to θ = 0. If the particle charge or v‖ sign is opposite,

the shift is inward. A collision would change the particle average radial position by a

step of the order of δp. The distance δp can be estimated from the drift velocity and

the poloidal transit frequency ωtr that takes the form

ωtr =
vθ
r

=
v‖
Rq

, (2.35)

so the average radial displacement due to the drift, given v‖ ≫ v⊥, is

δp =
vD
ωtr

=

(

v2⊥ + 2v2‖

)

2RΩc
· R q
v‖

≈ 2
qvth
Ωc

= 2qrL. (2.36)

The diffusion coefficient can be computed in a similar way as in the classical case, using

the effective collision frequency:

Dp
n = δ2pνei = 4q2r2Lνei = 4q2DCL

n (2.37)

Similar considerations apply to heat transport, resulting in χp ∼ q2χCL. Transport

due to the passing particles is known as the Pfirsch-Schlüter transport.

As noted above, trapped particles transport properties are different, namely, their

diffusivity is much higher than for passing particles. The reason for that is, due to lower

v‖ it takes more time to complete a full “banana” orbit, meaning a trapped particle has

higher chances to undergo a collision and switch orbit. In addition, low v‖ allows this

at smaller scattering angles, so the effective collision frequency is higher than νei. In

order to compute the diffusion coefficients, one needs to know the characteristic time

(or frequency) scale and the step size.

Following the same logic as before, the frequency of interest is the bouncing
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a) b)

Figure 2.6: a) Neoclassical trajectories in toroidal geometry. Blue and green lines corre-
spond to outward and inward shift, respectively; red line shows bouncing trajectory of a
trapped particle, the “banana” orbit. b) Poloidal projections of neoclassical trajectories
with the same color code, grey background denotes the magnetic field magnitude.

frequency ωb = 2π/τb. Since v‖ flips sign twice over the bouncing period τb, the average

parallel velocity is roughly v̄‖ = v‖/2, so the average bouncing frequency is

ωb =
v‖
2Rq

=
ωp
2
. (2.38)

The radial step size calculation reasoning is also similar. As v‖ ≪ v⊥, one can take

v ∼ v⊥, and the expression for the radial displacement over one half of the banana

orbit becomes

δb =

(

v2⊥ + 2v2‖

)

2RΩc
· 2R q
v‖

≈ q v2th
v‖

=

√

3

2ǫ
q rL (2.39)

In order to define the effective collision frequency, one can find that the required

scattering angle is of the order of
√
2ǫ, and the collision frequency then νeff = νei/ǫ. It

is now possible to compose the diffusion coefficient for trapped particles. It contains

the factor fT , as it only applies to the trapped fraction:

Db
n = fT δ

2
b νeff =

√
2ǫ

3q2r2L
2ǫ

νei
ǫ

=
3√
2

q2

ǫ3/2
DCL
n (2.40)

For the conditions close to plasma edge (q = 3, ǫ = 1/4) it is about 100 times the

classical collisional diffusion.

Heat diffusivities from trapped particles diffusion feature the same factor q2/ǫ3/2

but different numerical multipliers:

χe = 0.89
q2

ǫ3/2
χCLe , χi = 0.68

q2

ǫ3/2
χCLi . (2.41)

An important note: the argumentation above is valid for plasmas where particles

can actually complete the banana orbit, i.e. the collision frequency is much lower

than the bouncing frequency, νeff ≪ νb. The ratio of these two frequencies is the
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non-dimensional quantity collisionality ν∗ = νei/νb, which scales as ∼ n/T 2. For

fusion plasmas collisionality is usually 10−1-10−3, so this condition is well fulfilled. If

the collisionality ν∗ ∼ 1, the trapped particles fraction is notably reduced, and the

neoclassical transport occurs in the Pfirsch-Schlüter regime.

2.4 Turbulent transport

Transport due to single particle trajectories is important in many aspects, but in the

conditions of significant gradients in density and temperature in the plasma core it is

not dominant. These gradients present a source of free thermodynamic energy, which

leads to a formation of turbulent convective structures. These turbulent vortices are

very effective in mixing extended radial regions of plasma, resulting in high transport

rates.

If the plasma beta is low, so that the electromagnetic effects are weak, as is

the case in L-mode plasmas of AUG, the dominant turbulence is electrostatic. In the

plasma core various electrostatic modes can exist. They can be differentiated by:

• The species that determine the mode dynamics: electrons or ions, which also

defines the direction of mode propagation;

• The energy source they feed on: while in general it represents a gradient of

the equilibrium distribution function, the actual source can be a gradient in the

electron density, electron temperature or ion temperature;

• The spatial and temporal scales they occupy: typical kyρi between 0.1-1.0 for ion

modes and 0.3-50 for electron modes, typical frequencies of the order of few tens

of kHz.

• The effect they have on the macroscopic profiles.

At the plasma edge it becomes difficult to define particular turbulent modes, as

the driving gradients are so large that the non-linear dynamics prevails, and no linear

structure is conserved [32]. In this work we focus on the core turbulence, and this

section discusses the properties of some electrostatic modes, which belong to the class

of drift wave modes.

2.4.1 Drift wave instability

Drift waves appear in magnetically confined plasmas, in both toroidal and linear ge-

ometry. It requires a pressure gradient across the magnetic field direction, which is

inevitable if the plasma is purposefully confined. It can involve both parallel and per-

pendicular dynamics and therefore has a three-dimensional nature (unlike, for exam-

ple, interchange instability, which can be considered in the perpendicular plane only).
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There are several ways the drift wave instability can be realized in the toroidal geom-

etry of a tokamak, representing various instability modes. The most common are: the

ion temperature gradient mode (ITG), the electron temperature gradient mode (ETG)

and the trapped electron mode (TEM). In the plasma conditions studied in this work

the two crucial modes are ITG and TEM.

Basic instability mechanism

In the description of basic principles of the drift waves we assume for simplicity only

a density gradient and perturbations at a constant temperature [33]. Consider plasma

with the external magnetic field in z direction and a density gradient in x direction,

where a small positive perturbation of ion density δni appears. This means higher

concentration of positive electric charge and an increase of electrostatic potential by

δφ. The potential bump induces the electric field directed away from it, and E × B

convection starts in the (x,y) plane around the bump (see Fig. 2.7). Electrons are

attracted to the potential excess to establish the Boltzmann density distribution

ne = n0 exp

(

eφ

Te

)

, (2.42)

and due to high anisotropy in electric conductivity the electron flow is mainly in the

parallel direction z. Note, that in this picture the perturbation size δx ≫ λD, while

perturbations with δx ≤ λD are immediately balanced locally. Hence, quasineutrality

holds, and no significant charge separation is allowed. In this case, the perturbation

amplitude

ñe = n0

[

exp

(

eφ

Te

)

− 1

]

(2.43)

can be truncated, considering eφ ≪ Te, to

ñe ≃ n0
eφ̃

Te
. (2.44)

This implies adiabatic electron response, i.e. density and potential perturbation occur

simultaneously and at the same point.

The ion continuity equation in the approximation of slow parallel motion

∂n

∂t
+ uE×B,x∇xn = 0 (2.45)

can be rewritten using the definition of uE×B,x = ∇yφ/B and remembering the electron

diamagnetic drift expression

udia,e = −∇xne
ne

Te
eB

, (2.46)
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Figure 2.7: Electron parallel dynamics connects den-
sity and potential perturbations and leads to their
propagation along y at udia,e. Shades of grey denote
density

Figure 2.8: Drift waves
growth and transport mecha-
nism with finite phase shift δ

as well as the quasineutrality condition (2.44), eventually yielding

∂n

∂t
+

1

B
∇yφ · udia,e

neeB

Te
= 0 =⇒ ∂φ

∂t
+ udia,e∇yφ = 0. (2.47)

Assuming a harmonic form of the perturbation, one can make the substitutions

∂/∂t → −iω and ∂/∂y → ik, and rewrite the expression (2.47) as the dispersion rela-

tion for drift waves:

ω ≡ ωdia,e = kyudia,e. (2.48)

It shows that a harmonic potential perturbation propagates in the electron diamag-

netic direction, along y coordinate. This dispersion relation is actually modified by

accounting for finite ion inertia and the presence of polarization drift, which leads to

ω =
kyωdia,e
1 + k2yρ

2
s

, (2.49)

where ρs = cs/Ωc,i is the sound Larmor radius with cs = (Te/mi)
1/2 the ion sound speed

in the plasma. In this model, the wave is undamped and the perturbation amplitude

is constant.

In order for the instability to grow the adiabatic approximation should be bro-

ken, and finite dissipation (for instance, due to collisions or Landau damping) should

be taken into account. This results in a delay or positive phase shift between the po-

tential and the density bumps, which formally modifies the expression (2.44) for each

wavelength k into

ñe,k ≃ N
eφk

Te
(1− iδk) . (2.50)

Here, the potential maximum is delayed from the density maximum. The E ×B flow

hence carries more density towards the maximum (see Fig. 2.8), and the perturbation
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grows as eγkt with the (linear) growth rate

γ =
νeime

k2‖Te
ω2
dia,ek

2
yρ

2
s (2.51)

Large perturbation amplitude also leads to significant net transport of density

down the density gradient, across the magnetic field. The transport mechanism is

closely related to the instability growth mechanism.

Ion temperature gradient mode

HFS LFS

Figure 2.9: ITG linear

global potential perturbation

(Y.Camenen, NF 2011).

The ITG mode is a type of a drift wave instability in

magnetically confined plasmas, defined by ion dynam-

ics and driven by the gradient of the ion temperature.

The toroidal ITG mode is one of the most important

sources of turbulent transport in tokamaks, as it forms

meso-scale structures that efficiently mix up significant

regions of plasma, transporting energy and particles

towards the plasma edge. It is the main contributor

into ion heat conductivity, also affecting the electron

channel, especially at high density. Fig. 2.9 presents

the poloidal structure of a simulated global linear ITG

potential perturbation. It shows an ideal mode struc-

ture, but the real non-linear turbulent eddies of the

ITG mode are much smaller.

We can obtain the system of equations that describes ITG dynamics in a toka-

mak by taking velocity moments of a gyrokinetic equation for the fluctuating part

f = F − FM of the ion distribution function (a detailed derivation can be found in [34]):

∂f

∂t
+~vgc · ∇f +~vE · ∇f −

~b

m
(µB +∇E) ∂f

∂v‖
= −~vE · ∇FM −~vgc ·

Ze∇〈φ〉
T

FM (2.52)

with the gradient of the Maxwellian decomposed as

∇FM =

[

1

Ln
+

(E
T

− 3

2

)

1

LT

]

FM (2.53)

Neglecting the non-linear term ~vE · ∇f and making further simplifying assump-

tions (simple magnetic geometry, no centrifugal effects, ..), we arrive to a set of fluid

equations:

ω̂ñ + 2ñ+ 2T̃ + 4(U + k̂‖)ũ = φ
[

R
Ln

− 2
]

,

ω̂ũ+ 4ũ+ 2(U + k̂‖)ñ+ 2(U + k̂‖)T̃ = φ
[

U ′ − 2(U + k̂‖)
]

,

ω̂T̃ + 4
3
ñ + 14

3
T̃ + 8

3
(U + k̂‖)ũ = φ

[

R
LT

− 4
3

]

,

and the quasineutrality condition: Zñτ = φ.
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Here Z is the ion charge, τ = Te/Ti, U and U ′ are the toroidal velocity and its

gradient, and the following notation is used:

1

Lx
=

∇x
x

; ω̂ =
ω

ωD
, k̂‖ = −k‖vth

4ωD
with ωD = − kθT

eBR
, φ =

eφ̃

Te
.

Assuming no parallel dynamics, i.e. ũ = 0, and Z = 1, we simplify this system

to relate only the density and temperature fluctuation to the gradients:

ω̂ñ+ 2ñ+ 2T̃ = φ
[

R
Ln

− 2
]

,

ω̂T̃ + 4
3
ñ + 14

3
T̃ = φ

[

R
LT

− 4
3

]

,

ñτ = φ.

Now, in order to understand the basic dynamics of the ITG mode, we will take

only the dominant terms, so that the system is reduced to

ω̂ñ + 2T̃ = 0,

ω̂T̃ − R
LT

φ = 0,

ñτ = φ.

The mechanism is as follows: the initial temperature perturbation generates a

perturbation in density, that is neutralized by passing electrons, which implies an

electrostatic potential. The E × B flow mixes cold and hot regions, which enhances

the initial perturbation.

1.00.0 k ρy   s

ω
γ

Figure 2.10: Linear growth rate γ and real frequency ω of a typical ITG mode

The ITG mode normally forms turbulent vortices of the size of few ion Larmor

radii in the poloidal cross-section, kyρi ≈ 0.1− 1. Above the higher limit kyρi ≈ 1 the

turbulent motion is smeared out by faster ion gyration, below the lower limit kyρi ≈ 0.1

the eddies are damped by the Landau damping mechanism and also can be easily split

into smaller structures.

A similar mechanism exists for the electrons, giving rise the the ETG mode,

which occupies the range of spatial scales from kyρi ≈ 10 to the electron Larmor radius

scale. This mode contributes substantially to the electron heat transport channel at

Ti/Te > 1, which does not happen in Ohmically heated plasmas studied in this work.
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Here, the ETG drives only around 1% of the total electron heat flux, and hence is of

no particular interest.

Trapped electron mode

HFS LFS

Figure 2.11: TEM linear

global potential perturbation

(Y.Camenen, NF 2011).

The TEM mode is another type of instability in mag-

netically confined plasmas. It is driven by both elec-

tron temperature and density gradients, and in low-β

plasmas represents the most important energy trans-

port channel for electrons. It occupies the kθ domain

similar to the ITG mode, but propagates in the oppo-

site poloidal direction. The TEM mechanism is also

similar to that of the ITG. The latter owes its prop-

erties to the mass of ions, that makes them slow in

the parallel direction. Electrons are much lighter and

faster, but on the average this is valid only for the

passing particles. Trapped electrons bounce along the

”banana” orbits (magnetic mirror effect, see Fig. 2.6)

back and forth, and while their mean square parallel

velocity < v2‖ >∼ v2th, the mean parallel velocity < v‖ >= 0. This makes them as slow

(on the average) as the ions, giving rise to a similar instability mechanism. As in the

ITG case, Fig. 2.11 shows an ideal linear mode structure in the poloidal plane.

The system of equations for the TEM is obtained in the same way as that for the

ITG. We take the velocity moments of the gyrokinetic equation in a linearized form

and assume harmonic perturbations in density and temperature. Then for a generic

species j:

(−ω + ωDj) ñj + ωDjT̃j − τjωDj

[

1
2
R
Ln

− 1
]

φ = 0,
(

−ω + 7
3
ωDj
)

T̃j +
2
3
ωDjñj − τjωDj

[

1
2
R
LT

− 2
3

]

φ = 0.

The quasineutrality condition with ft the fraction of trapped electrons reads:

ni = net + nep ⇒ ñi = ftñe + (1− ft)φ,

where for the passing electrons we assume ñe = φ.

In total, we have 5 equations with 5 unknown variables [35]. In order to focus

on the TEM only, we assume no ion temperature fluctuations T̃i = 0, and switch off

the corresponding equation. The resulting system reads:

−ω̂ñi − 1
τ
ñi +

[

1
2
R
Ln

− 1
]

φ = 0,

−ω̂ñe + ñe + T̃e +
[

1
2
R
Ln

− 1
]

φ = 0,

−ω̂T̃e + 7
3
T̃e +

2
3
ñe +

[

1
2
R
LTe

− 2
3

]

φ = 0,

ñi − ftñe − (1− ft)φ = 0.
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Here, the frequency ω̂ is normalized to the electron drift frequency ωDe. Two

driving terms can be seen: the density gradient and the electron temperature gradient.

The properties of modes driven by the two mechanisms are slightly different, but

normally a combined effect takes place. TEM driven by the temperature gradient can

create inward particle flux, which leads to high density peaking factor ne(core)/n̄e. It

will be shown in the following sections that this peaking effect may be an indicator of

TEM activity. The typical range of TEM spatial scales are similar to those of ITG,

but not restricted by the ion Larmor radius.

There are some other fundamental differences between TEM and ITG modes.

In the low-k limit the ITG is subjected to Landau damping that limits its growth

rate. In turn, TEM is not affected because of zero mean parallel velocity of trapped

electrons. On the other hand, TEM strongly depends on the fraction of deeply trapped

electrons fT (i.e. those following the banana orbits for a sufficiently long time), hence

it is very sensitive to plasma collisionality. If the collision frequency is of the order of

the bouncing frequency or higher, fT decreases and the TEM mode is stabilized. In

addition, trapped electrons tend to pump up the ITG mode, so it is stronger at higher

trapped fraction.

2.4.2 Transport driven by microinstabilities

The mechanism of transport by turbulent eddies can be understood from Fig. 2.8:

the convective cell of circulating E ×B flow connects regions of plasma with different

density and temperature. The inward and outward fluxes are unbalanced, so on the

average plasma is transported down the pressure gradient.

In general, the radial convective particle and heat fluxes in the presence of a

fluctuating electrostatic potential can be defined locally as

Γ =

〈

∫

d3v f̃
b×∇φ̃
B

· eρ
〉

, Q =

〈

∫

d3v E f̃ b×∇φ̃
B

· eρ
〉

, (2.54)

where tilde marks the fluctuating part, E is the kinetic energy and 〈.〉 denotes ensemble

averaging over a small spatial domain and some characteristic time of few fluctuation

periods. The net radial flux can then be obtained by integrating over a flux surface.

Note that the contribution from magnetic field fluctuations can be considered negligible

in the case of low-β L-mode plasmas, which are simulated in this work.

It can be shown that the turbulent flux is proportional to density and temperature

gradients, and can be characterized by a diffusion-like law. Taking, for example, the

expression for the particle flux Γ (2.54) and rewriting it as

Γ =

〈

ikφ̃∗

B
ñ

〉

= 〈ṽE,rñ〉 , (2.55)

we can make use of the continuity equation ωñ+∇· ṽEn = 0 and the incompressibility
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condition ∇ · ṽE = 0 to obtain the relation ñ = τcṽE∇n with τc the correlation time of

a turbulent vortex. Substitution of it to the formula for Γ yields

Γ = −
〈

k2φ̃2

B2
τc

〉

∇n = −D∇n, (2.56)

where the expression D involves averaging over all turbulent scales over the flux surface.

A similar approach is applicable to the heat flux, which appears to be proportional to

the temperature gradient. In general, the fluctuating part of the distribution function

is proportional to the gradient of the equilibrium distribution (2.53), due to the E×B

flows in the case of turbulent transport or the magnetic drifts in the case of neoclassical

transport.

It is useful to introduce some reference diffusivities similar to those used in clas-

sical transport theory, and then express turbulent diffusion in their terms. If the actual

diffusion equals a reference one with some constant factor, it is said that it follows this

particular scaling. The first one is the Bohm diffusivity

DB = ρ2sΩc,i =
Te
eB

, (2.57)

first observed experimentally (to a numerical factor) by David Bohm and colleagues

in 1949. Technically, it describes diffusion with characteristic step size of one Larmor

radius (ρs = mivth,e/qB is the so-called sound Larmor radius, since it contains ion mass

and electron velocity, similar to the expression for ion sound speed) in a characteristic

time of one gyroperiod. Another diffusivity scaling can be obtained by using the time

step proportional to the inverse growth rate of the turbulence, γ ∼ cs/a. Considering

that ρs = cs/Ωc,i, one arrives to

DGB = ρ2sΩc,i
ρs
a
, (2.58)

with a ≫ ρs being some characteristic scale length (plasma minor radius, logarithmic

gradient of density or temperature) used for normalization. It is called gyroBohm

diffusivity as it is the Bohm diffusivity reduced by one normalized gyroradius. It

appears naturally when solving linearized kinetic equation for the distribution function

in the local limit.

By comparing expressions (2.32), (2.41) and (2.58) one finds the approximate

ratio of neoclassical and turbulent heat diffusivities

χNC
χGB

∼ q2νii
a

cs
, (2.59)

and for typical tokamak parameters χNC/χGB ≪ 1.

2.4.3 Scale separation

Strongly magnetized fusion tokamak plasma exhibits various types of dynamics on a

wide range of spatial and temporal scales. The fastest time scales are of the order of
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1011 Hz, these are the plasma frequency ωp and the electron cyclotron frequency Ωc
(a little lower is the ion cyclotron frequency, ∼ 109 Hz, which also relates to the fast

scale), therefore they govern quasineutrality preservation and gyromotion. The scales

of orbit frequencies are 2-3 orders of magnitude slower, and the collision frequencies

are slower by another 2-3 orders, ∼ 103-104 Hz. Frequencies about 10 Hz and lower

present the so-called confinement time scale, at which global profiles of pressure and

other quantities establish. Theoretical treatment of all scales at once is impractical,

as different processes dominate at different frequencies and length. The example of

effective averaging over gyromotion has been given above, and a somewhat similar

approach can be used to separate other scales from one another.

However, unlike the exact gyrokinetic dimensional reduction method, others are

approximate and rely on the small parameter δ (perturbation theory approach), similar

to that given by Eq. (2.8). Generally, it is set as

δ ∼ ρL
L

∼ ω

Ωc
∼ vd
vth

≪ 1. (2.60)

Here, ω corresponds to the confinement time scale (νc/ω ∼ 1 is assumed), and vd is

the velocity related to E ×B and magnetic drifts. The distribution function can then

be expanded as f = f (0) + f (1) + f (2) + ..., where f/f (n) ∼ δn. Equations for different

scales can then be solved independently (scale separation principle).

In neoclassical theory it is assumed that the time variation of the distribution

function is of the order δ2, so no fast evolution of local parameters is allowed. The

zero-order term f (0) = FM (n(r), T (r), φ(r)) is the equilibrium Maxwellian and has

no dependence on the parallel coordinate s, therefore describing plasma pressure and

electrostatic potential as flux functions. First order equations for the kinetic equa-

tion moments govern the plasma pressure equilibrium and flows of plasma parameters

within flux surfaces that are divergence-free. It is only the second order of the δ expan-

sion that introduces radial fluxes and time variation of flux functions, so by the theory

construction the radial transport occurs at time scales comparable to the confinement

time scale.

If one allows for faster time variations, so that ∂f/∂t ∼ δ, one comes to an

interplay between drifts and radial fluxes, as they now appear at the same scale. This

brings up waves with typical frequencies in the range of 104 Hz, which can become

unstable and grow in amplitude, leading to turbulence formation. This phenomenon

is knows as drift waves, and it is the most effective transport channel in the core

of low-β tokamak plasmas. The plasma edge may feature other important transport

mechanisms, such as MHD modes, but this work is mainly focused on core transport.

Different treatment of time evolution of the distribution function in the two the-

ories does not automatically make one of them wrong. It is simply the scale separation

principle in action: each phenomenon is considered at its typical scale. Here, it is

assumed that neoclassical motion does not affect the microinstabilities and vice versa,

and in fact there have been studies that found the interaction between the two small
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in the local limit [36]. Hence, in this work the turbulent and neoclassical transport are

summed up linearly.

2.5 Transport modeling software

Modeling transport in a plasma requires solution of a system of transport equations of

the type (2.21) and equations that relate the transported quantities to each other. The

primary quantities of interest are densities and temperatures of each particle species.

The plasma current density and flow velocity are also simulated, although not as

routinely since they do not enter directly in the prediction of plasma confinement (but

they can affect it through interaction with turbulence). Despite the general problem

being three-dimensional, parallel and perpendicular directions can be decoupled due

to the high anisotropy of magnetized plasma. In a tokamak, finite pitch angle of

magnetic lines projects the parallel direction to both toroidal and poloidal directions,

so transport over a flux surface is much faster than that between flux surfaces (radial).

This makes only the radial transport relevant for plasma confinement, which is the

main (energy) transport-related issue. This applies to the regions of plasma within

closed flux surfaces, while in the open field lines region (scrape-off layer near the walls)

parallel transport becomes of the first importance.

The transport modelling may be approached in two different ways. If the aim is

to compute fluxes from given (e.g. measured) profiles, the modeling is interpretive. In

this case no sophisticated physical model is necessary, direct solution of the system of

equations gives the fluxes. This might be useful, for example, when determining para-

metric dependencies of the transport coefficients. If, on the other hand, both profiles

and fluxes are to be computed from first principles given basic discharge conditions

(engineering parameters like the magnetic field, total current, average density, heating

power or fueling), the modeling is called predictive. One then needs an independent

physical transport model able to predict fluxes given the plasma conditions, and the

solver of transport equations returning profiles upon providing the fluxes from the

model. This process is iterated until the profiles and fluxes are consistent with each

other, i.e. in equilibrium.

In this work the predictive modeling is specifically addressed, with interpretative

modeling using for comparison. The transport solver used is the ASTRA system, which

embeds the TGLF transport model for turbulent transport. Neoclassical transport

coefficients are obtained either by means of analytic expressions as described in [37]

(in the energy confinement modeling), or with NEO code (in the intrinsic rotation

modelling). These tools are discussed in detail below.

2.5.1 ASTRA

ASTRA stands for Automated System for TRansport Analysis, it is a software which

started to be developed in the late 1980s in the Kurchatov Institute and still continues
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nowadays. It is a flexible programming system able to create numerical codes for

predictive or interpretative transport modeling, stability analysis and experimental

data processing. ASTRA organizes the transport code in a modular manner, which

makes it easy to include and exclude pieces of physical description and construct a

model adjusted for a given problem. Its main operational regime is interactive, so that

the user can observe the plasma parameters as they evolve, and adjust the simulation

parameters or even the model in the process.

With the focus on transport processes in the plasma core (confined regions), the

three-dimensional problem is effectively reduced to one radial dimension. However, the

magnetic equilibrium geometry is at least two-dimensional, as tokamaks feature ap-

proximate toroidal symmetry. The basis of a transport code built by ASTRA consists

of a 2D equilibrium solver and a set of 1D transport equations with closure conditions

(totalling to the so-called 1.5D system of equations). The coordinate systems imple-

mented in the equilibrium solver is cylindrical (r, ϕ, z) with the polar axis aligned to

the major axis of a torus. Transport equations are formulated in the coordinate system

(a, θ, ζ) with the toroidal angle ζ = −ϕ, linked to the magnetic geometry, which covers

only the confined plasma, up to the separatrix. More details can be found in [38, 39]

The basic set of transport equations includes equations for the electron density,

electron temperature, ion temperature and the poloidal flux ψ:
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(2.61)

where a = e, i is the species label. The electron flux Γe and heat fluxes qe and qi
are total fluxes through a surface of constant ρ. In the basic set there is no equation

for the ion density, sine it is usually defined by the electron density, ion charge and

the impurity content (if any) via the quasineutrality condition. The set can also be

expanded to include separate equations for impurity density or fluid plasma velocity.

The fluxes in Eq. 2.61 are expressed in terms of thermodynamic forces and a

matrix of transport coefficients:
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In order to solve the direct problem at least some of the transport matrix terms

must be computed. Of particular interest are the “diagonal” terms Dn, χe and χi,

as well as the particle pinch term Cn. In this work the neoclassical contribution to

these quantities is computed with simplified analytical expressions (in the energy con-

finement study) and with the neoclassical code NEO treated as an external module

for ASTRA; the contributions from turbulent transport are computed by the TGLF

transport model, also implemented as a module.
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Figure 2.12: Example of ASTRA interface window without control buttons

The operational interface of ASTRA in the interactive regime is shown in

Fig. 2.12. It is a window presenting the key simulation parameters (simulated shot

number and time, major and minor radii of the plasma, toroidal magnetic field, plasma

current, maximum safety factor and the average electron density), up to 128 radial pro-

files of various characteristics and a list of single-valued quantities. It allows to modify

the graphic mode, control values of variables and constants, as well as some other

features. In Fig. 2.12 the first of the total eight adjustable pages of figures is shown,

featuring (top row of figures) the profiles of simulated electron and ion temperatures

plotted against the measurements (shown with crosses); the total current and its boot-

strap fraction; electron and ion heat conductivities; electron and ion heat fluxes; also

(bottom row of figures) the safety factor and the magnetic shear; loop voltage and

the effective charge; electron and main ion density against the experimental electron

density; the Ohmic heating and radiated power profiles.

2.5.2 TGLF

TGLF stands for Trapped-Gyro-Landau-Fluid, this is a quasi-linear gyrofluid transport

model [40, 41], an improved version of previously successful GLF23 model [42]. It is

based on a system of velocity moment equations of the gyro-averaged kinetic equation.

The closure at the level of the heat fluxes (3rd order moment) is performed, which
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effectively keeps kinetic effects, in particular, Landau damping. The model treats

trapped and passing electrons together in a unified system of equations and couples

both to the ions, which makes it valid from the lowest wavenumbers of the trapped

ion mode up to the electron Larmor scale. Adjusted and verified against gyrokinetic

codes (GKS, GYRO), it offers comparable accuracy at much lower computational costs,

allowing for fast and comprehensive transport simulations.

The basic linearized electrostatic gyrokinetic equation has the form [43]:

(

∂

∂t
+ v‖∇‖ + iωdv

)

F̃ =
(

−v‖∇‖ − iωdv + iωT∗
)

F0J0
eφ̃

T
. (2.63)

Here, F̃ (Xgc, E, µ) is the fluctuating gyro-averaged distribution function, φ̃ is the elec-

trostatic potential. On the left hand side, ∂F̃ /∂t is the mode frequency −iωF̃ , the
term v‖∇‖F̃ represents the parallel transport, iωdvF̃ includes perpendicular transport

due to curvature and centrifugal drifts. The equilibrium E×B drift is not included in

the equation, it enters the solution directly by turbulence spectrum modification (shift

in kr). The fluctuating E × B drift acting on the F̃ is a non-linear term absent in a

quasi-linear formulation. The right hand side contains the parallel and perpendicular

electric forces, as well as the drive term, where ωT∗ is a combination of Maxwellian

gradients R/Ln and R/LT . The Bessel functions J0 account for finite Larmor radius

(FLR) effects.

The transport model is formulated in terms of parallel and total velocities (v‖, v).

Six moment equation are derived from Eq. 2.63 for each species, for the density n,

parallel velocity u‖, parallel P‖ and total PT pressure, parallel Q‖ and total QT energy

fluxes. For trapped particles, only three moments are kept (nt, P t
‖, P

t
T ), with the

parallel gradient operator and the odd moments set to zero. The system is closed

by expressing higher order moments as linear combinations of the listed six, with

coefficients obtained through fitting to non-linear gyrokinetic simulation results. The

saturated amplitudes for the fluctuating fields are expressed via a saturation rule, which

is built using the linear growth rates and frequencies (it is quite complex, details can

be found in [41]).

The model validity

Quasi-linear approach is based on the assumption that the non-linearity that deter-

mines the turbulent motion is small, and the linear structure of the turbulent modes

retains. This assumption has been tested with non-linear gyrokinetic simulations and

proven valid for the plasma core, inside 0.8-0.9 of the minor radius [44–46]. The modes

can grow linearly at the time scale of the inverse growth rate γ, and the mixing length

transport scaling χ ∼ γ/k2⊥ holds. The linear flux spectra are converted to non-linear

using fitting coefficients, the quasi-linear weights, defined for each scale to match the

results of non-linear simulations.

The fluid approximation is compensated by the accurate account for wave-
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particle resonances in the closure of the equations. The kinetic effects are derived

analytically and computed numerically, so that the kinetic response is recovered by

the gyrofluid model. The fact that TGLF fluxes are very close to those computed with

GYRO confirms the validity.

2.5.3 NEO

The NEO code [47] provides a first principles based calculation of the neoclassical

transport coefficients directly from solution of the distribution function. It solves a

hierarchy of equations derived by expanding the drift-kinetic equation (DKE) in powers

of ρ∗,i, the ratio of the ion gyroradius to the system size, giving an exact solution for

the usual second-order neoclassical fluxes. NEO extends previous numerical studies

by including the self-consistent coupling of electrons and multiple ion species and

the calculation of the first-order electrostatic potential via coupling with the Poisson

equation.

The DKE for the total distribution function fa(ǫ, µ) is taken in the form

∂fa
∂t

+ (v‖b+ vD + vE) · ∇fa −
Zae

ma
(v‖b+ vD) · ∇Φ

∂fa
∂ǫ

+ µ̇
∂fa
∂µ

= Ca + Sa (2.64)

with a the species index, Sa containing sources of particles, momentum, energy; Ca is

the nonlinear collision operator Ca =
∑

bCab(fa, fb), which couples the dynamics of all

species entering the simulation. The collision operator is taken in its full form.

Particle and heat diffusion coefficients can be computed in an easier way, with

the expressions derived in [37], but NEO is used due to its ability to compute such

quantities as the poloidal velocities of ion species.

Note, that while the drift-kinetic and gyrokinetic equations may look similar,

there is a fundamental difference between them, namely that the distribution function

that enters the latter is gyro-averaged. This introduces the effects of finite Larmor

radius of particles, which has a particular importance on turbulent motion by effec-

tively smearing the fluctuations on the scales smaller than the Larmor radius. This

makes the gyrokinetic theory superior to the drift-kinetic formulation. But the use

of gyrokinetic equation for neoclassical transport calculations is much more computa-

tionally demanding, and since the FLR effects have little importance for neoclassical

trajectories, the DKE is a good option when solving for the neoclassical transport.



40 CHAPTER 2. THEORY OF TRANSPORT IN TOKAMAK PLASMAS



Chapter 3

Experimental basis

The simulations performed in this work are based on experimental measurements of

plasma in the ASDEX Upgrade tokamak. This chapter provides an overview of the

machine, as well as gives detailed information on plasma conditions, measurements

methods and results.

3.1 ASDEX Upgrade

ASDEX Upgrade (AUG) is a medium-size tokamak with tungsten plasma facing com-

ponents located in Garching near Munich, Germany. The geometric parameters of

AUG are: plasma major radius R = 1.65m, minor radius a = 0.5m, plasma volume

V = 14m3. The maximum achievable toroidal magnetic field on the axis Bt = 3.1T,

the maximum induced plasma current Ip = 1.4MA, however the usual operation pa-

rameters are 2.5T and 1MA. The electron density can reach 1020m−3. The maximum

power of plasma heating is 31MW that includes ECRH (4MW), ICRH (6MW) and

NBI (20MW) auxiliary heating systems, supplementing the inductive Ohmic heating

(up to 1MW). This makes the highest P/R ratio, i.e. power over the linear size,

among the tokamaks worldwide.

The set of plasma diagnostics installed at AUG is very diverse, the total num-

ber exceeds 30. These exploit various operating principles: spectroscopy (active and

passive, from radio to soft X-ray), reflectometry, interferometry, motional Stark effect

polarimetry, penetrating measurements with Langmuir probes, bolometry, thermogra-

phy, visible-light cameras and some others.

3.2 The AUG Ohmic Database

Ohmic plasma discharges in tokamaks exhibit a rich phenomenology with complex

parameter dependencies and present a challenging area for theoretical description. A

series of L-mode discharges with predominantly Ohmic heating has been conducted

in AUG over the recent years. Those featured various values of the toroidal magnetic

41
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a) b) c)

Figure 3.1: a) Sketch of the ASDEX Upgrade tokamak: plasma, plasma vessel, mag-
netic field coils and support structure [IPP, J. Weber]. b) Visible light from plasma
during a discharge in AUG. Central regions of the plasma emit in the invisible spectrum
range up to soft x-ray. c) Poloidal cross-section with flux surfaces

field and the plasma current and had the electron density varied over the discharge

duration. Hence, a significant area of plasma parameter space has been covered. Mea-

surements of the most relevant plasma parameters, such as electron density, electron

and ion temperatures, impurity content and toroidal rotation velocity in those con-

ditions, provide a good experimental basis and modelling reference for the study of

transport processes. The measurements data has been organized into a database, the

ASDEX Upgrade Ohmic Database [13], which consists of 186 data points from 14

different discharges.

Initial analysis of the database has identified two particularly convenient subsets

of data: 17 points with Bt = 1.91T, Ip = 0.62MA and ne ranging from 1.1× 1019m−3

to 3.1 × 1019m−3; 16 points at Bt = 2.51T, Ip = 1.04MA with ne increasing from

1.5 × 1019m−3 to 4.6 × 1019m−3, which is the highest density of the whole database.

The choice to have pairs of discharges provides a more complete density variation than

possible within a single plasma shot. Both subsets have linear and saturated phases of

the energy confinement time, as well as alternating sign of the core toroidal rotation

direction. Using these for detailed analysis allows us to investigate not only how the

considered transport phenomena depend on the density, but also their scaling with the

plasma current, which has been reported from various experiments.

3.2.1 Collected measurements

The information contained in the database is acquired with various plasma diagnostics.

This section shows how the data is treated before it is used in the simulations.

The electron density comes from the IDA, Integrated Data Analysis that com-

bines measurements of DCN laser interferometry, lithium beam spectroscopy, O-mode

reflectometry and optional Thomson scattering spectroscopy. The reason for such com-

bination is that the lithium beam diagnostics has high spatial resolution at the plasma
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edge and in SOL, but its use is limited to these regions. On the other hand, laser

interferometer measures the line integrated density over the whole plasma volume, but

its spatial resolution is constrained by the number of active laser beams. IDA combines

the two to gain from the advantages of both, it also interpolates the interferometry

reconstructed profile for higher spatial resolution in the plasma core. Its temporal

resolution is also very high, 1µs.

Even if the operational conditions are steady, the plasma itself is not, being

subjected to various types of fluctuations. The most prominent one in L-mode is

that related to sawteeth instability that affects mainly Te and slightly ne. Since those

fluctuations are much faster than the transport time scale, it is reasonable to average

the profiles over several sawteeth periods. However, the operational conditions vary

with time, so a too long averaging period would mix different plasma regimes. Here,

with the sawteeth period of around 30ms, the averaging period equal to 40ms is

used. The effect of the sawteeth on the plasma profiles is taken into account in the

simulations.

Figure 3.2: Averaging over several measurements for each of DCR, LIN and IDA
diagnostics (left) and comparison of raw and fit IDA profiles (right)

An example of profiles handling is given in Fig. 3.2. The left plot shows several

individual profiles of DCR (laser interferometry), LIN (lithium beam spectroscopy)

and IDA in the temporal range t = 2.5± 0.02 s and the averaged profiles. LIN profile

is consistent with other diagnostics around the last close flux surface (r/a = 1), but

overestimates the density amplitude further inside the plasma. DCR profiles are not

particularly reliable, since they are a result of the reconstruction of integrated mea-

surements. It is also a little misaligned at the edge, resulting in a shift of the profile

“pedestal” outside of the separatrix. Unfortunately, more reliable diagnostics that can

return the whole density profile (such as fast swept reflectometer) were not available

at the time of these experiments. IDA density profiles feature the core region elevated

over DCR and the edge “step” as an artifact of the DCR-LIN polynomial combination

due to LIN overestimation. While in H mode such step may occur naturally due to the

edge transport barrier, it is not expected in L mode plasmas, which is supported by

higher quality measurements in more recent discharges [48]. In order to eliminate this

step, a smoothing has been applied on IDA profiles, by means of the linear low-pass
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filter scipy.signal.filtfilt of the scipy library for Python. The smoothing pa-

rameters are chosen such that the profiles are modified as little as possible except for

the problem edge region. The resulting “fit” is shown in the right plot of this figure,

together with diagnostic profiles averaged over 0.04 s period.

Figure 3.3: Averaging over several measurements for CEC and IDA diagnostics (left)
and comparison of raw and fit IDA profiles (right)

The results of similar approach to Te data of the integrated data analysis tool

are presented in Fig. 3.3. The main data source in this case is the electron cyclotron

emission (ECE) diagnostics marked as CEC. From the left plot one can clearly see the

saw-tooth temperature oscillations. Averaged profile features a small dip at the axis,

which is flattened out for simplicity (fit in the right plot), especially because there is

no mechanism in the model to produce hollow temperature profiles. It may be caused

by the sawteeth activity and some central radiation, however no significant radiation

from the plasma core is observed.

Ion temperature and toroidal rotation velocity measurements are performed with

charge exchange recombination spectroscopy (CXRS) diagnostics. It is based on the

exchange of electrons between impurity species ions of plasma and injected neutral

atoms (with NBI heating system) of the main plasma species (deuterium). Boron

has been selected as the signal species, since the tokamak wall is routinely boronized

(coating of tungsten walls with boron leads to the plasma confinement improvement),

so boron is always present in the plasma. An injected neutral atom penetrates deep into

the plasma and exchanges an electron with a boron ion. This electron falls to lower

energy levels and emits radiation at certain wavelengths. Spectroscopy of radiation

from a specific point of intersection of the NBI beam with a flux surface can give

the temperature (half-width of the Gauss peak) and the velocity (Doppler shift of the

peak) of boron at that flux surface. Deuterium temperature is assumed equal to boron

temperature, since the temperature equilibration time between different ion species is

much shorter than the transport time scale. The toroidal velocity of deuterium can be

computed assuming neoclassical velocity difference, as discussed in Sec. 5.3.

However, while it helps measure the temperature, NBI introduces some signifi-

cant heating power, so the temperature rises. It also allows to measure the rotation

velocity, but introduces a lot of torque, which leads to plasma acceleration. In or-

der to reduce these effects and in general influence the plasma as little as possible,
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NBI is shot in short blips when used for diagnostic purposes only. Each blip lasts

for ∼ 15ms, and the intervals between the blips are around 0.3 s. A series of 1 to 5

CXRS measurements (the exposure time can be different) is performed during each

blip, which is necessary to reconstruct the velocity profile of unperturbed plasma by

back-extrapolation of measured velocity profiles (the technique is described in [13]).

The effect on ion temperature is normally rather small, so a simple averaging over

the single series can be made. An example of such approach is shown in Fig. 3.4.

A combination of two diagnostics is used for the Ti: CEZ (core, toroidal view) and

CPZ (edge, poloidal view). The toroidal velocity measurements are obtained with

CEZ only. Colored dots and lines show the measurements in three sequential CXRS

measurements. Thick black line is then the resulting profile obtained with averaging

for Ti and backward extrapolation for Vφ.

Figure 3.4: Ion temperature averaged (left) and toroidal velocity back-extrapolated
(right) from three sequential NBI blips

In the lower current cases there are 5 sequential measurements available for

profile reconstruction in both discharges, but during the shot #27001 only a single

measurement per blip was done, meaning no extrapolation of the velocity profile is

possible. A workaround may be to notice that each blip shifts the profile by 2-3 km/s

on average, and add an artificial shifted profile after the existing one. An example

is presented in Fig. 3.5, which compares two similarly shaped velocity profiles. On

the left, three blips are given, while on the right there is one real measurement and

one artificial. The difference between the extrapolation result and the first blip profile

is very similar in both cases. When the simulation results are presented (Sec. 5.4),

the experimental profiles used as a reference are produced with real measurements

only, and the simulated profiles representing the discharge #27001 are lower then the

measurements, roughly coinciding with the artificially obtained profiles shown here.

Another experimental quantity necessary for transport simulations is the so-

called effective charge

Zeff = 1 +
1

ne

∑

i

niZi(Zi − 1), (3.1)

where the summation goes over all species with Zi being the ionization degree (ion

charge). The contribution increases quadratically with the atomic number, but the
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Figure 3.5: Toroidal velocity profile extrapolated from three real NBI blips (left) com-
pared to a similarly shaped profile made using one artificial shifted profile (right). Note
that the two correspond to the lowest and the highest density in the high current scan.

concentration of heavy ions is normally rather low, and they are usually not fully

ionized at moderate plasma temperatures. The most straightforward way to compute

the effective charge is given by the expression (3.1), i.e. by knowing concentration

densities of all ion species, or at least the major ones. Alternatively, one can exploit

the fact that Zeff affects, for example, plasma electric conductivity and the amount

of synchrotron radiation, so its averaged value can be obtained from the loop voltage

(and known plasma current) or from bolometric measurements of the bremsstrahlung.

Unfortunately, the bremsstrahlung measurements are often corrupted by reflections,

and low-Z impurity measurements by CXRS are not always available in discharges

using NBI blips only to measure plasma rotation. On the other hand, the loop voltage

is routinely measured with high temporal resolution.

During the selected discharges the available Zeff measurement methods did not

prove absolutely reliable and consistent at each data point. Therefore, it has been

decided to develop a scaling law of Zeff as a function of the plasma current Ip and the

mean electron density ne, using all available data. Considering the importance of Zeff

for the turbulence regime, introducing a simple smooth function instead of scattered

data points is intended to reduce the overall uncertainty for the turbulence simulations.

Figure 3.6: Zeff estimated with various methods and the proposed scaling, for both data
subsets

Figure 3.6 summarizes the available measurements analysis and requires some
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clarification. Zeff(X) is the effective charge computed from measured concentration of

X ions. Both carbon and boron concentrations are minimum values measured with

CXRS, but carbon concentration measurements were less reliable, so it is approximated

as 30% of boron. Tungsten is estimated from radiation spectrum measurements, “ra-

diative” Zeff comes from bolometric data. Estimation from the loop voltage Uloop makes

use of the Spitzer resistivity formula

ηS =
πZe2m1/2 lnΛ

(4πε0)2T 3/2
(3.2)

with a modification due to neoclassical parallel transport included. All the data sets

show direct proportionality to the plasma current and inverse – to the electron den-

sity. The estimation from combined impurity content is somewhat lower than what

bolometry and loop voltage suggest, but it only provides the minimum value. A fit to

the data has been found in the form

Zeff = 1 + 3.2I3p/n
3
e, (3.3)

with Ip the total plasma current in MA and n̄e the line averaged electron density in

1019m−3. It is valid for both data subsets and is used throughout this work.

Another point that Fig. 3.6 suggests is that boron is the most abundant impurity,

since it contributes the most to Zeff . Hence, boron was chosen as the only impurity

species in the simulations, because having more species increases the computational

costs significantly.

3.2.2 Data subset parameters

As specified previously, the data available from the database include profiles of electron

density, electron and ion temperature and boron toroidal velocity, as well as values of

the magnetic field, plasma current and the effective charge Zeff . This section presents

and discusses some important trends of the listed parameters for the chosen subsets of

data: shots #28386, #28243 with Ip = 0.6MA and #27000, #27001 at Ip = 1.0MA.

The two will be referred to as low and high current case, respectively.

Fig. 3.7, (a) shows six profiles of electron density versus the normalized geometric

coordinate r/a, as it evolves during the shots at the high current. Sub-figures (b, c, d)

present the corresponding profiles of electron and ion temperatures and the toroidal

velocity. The legend marks profiles by shot number and time slice. With the increase

of mean density the electron temperature gradually decreases, so the electron pressure

stays roughly constant, while ion temperature shows almost no variation at low density,

followed by a slight decrease at higher densities. Such behavior can be explained in

terms of the energy exchange between electrons and ions, which is proportional to the

electron density. Electrons gain energy by the Joule heating, while ions are only heated

by electron-ion collisions, so in the core always Te > Ti (outside r/a ≈ 0.8 in Ohmic
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a b

c d

Figure 3.7: Plasma profiles at Ip = 1.0MA

plasmas Ti > Te due to edge radiative losses and different stiffness of electron and

ion transport). With the density increase, electrons transfer more energy to the ions,

which keeps Ti constant at decreasing Te. However, at high density Te is reduced even

farther and since the core Ti/Te < 1, the ion temperature decreases.

The toroidal rotation velocity profile exhibits a lot of variation: it is all positive

(co-current) at low density, then the core rotation reverses its direction to counter-

current as ne increases, but at even higher density the core rotation reverses back to

co-current. Edge velocity stays rather the same slightly co-current, so what drives the

core velocity direction change is the varying velocity shear (radial gradient) around the

mid-radius.

a b

c d

Figure 3.8: Plasma profiles at Ip = 0.6MA

In the low current case (Fig. 3.8) the picture is very similar, but the density and
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temperature ranges are shifted to lower values, which is natural as the Ohmic heating

power is also lower. Another notable difference is the change in edge rotation direction

at high density.

a b

c d

Figure 3.9: Energy confinement time and normalized rotation gradient as functions of
mean electron density

Fig. 3.10 brings up the two major problems related to L-mode Ohmically heated

plasmas on the example of the two data subsets under discussion. The first one in the

energy confinement time τE trend transiting from linear to saturated phase (a and b).

The second is the core toroidal rotation direction double reversal, shown in terms of

normalized toroidal velocity gradient u′ = −Rv′φ/vth,i averaged over the mid-radius,

r/a = 0.4..0.6 (c and d). The problems consist in finding a satisfactory explanation of

the observed plasma behavior.

Figure 3.10: Energy confinement time for both low and high current versus ne/Ip

Note, that the critical density for both phenomena is about the same value

and depends on the plasma current. In fact, the low and high current cases can be

combined into a single figure, when plotted against the ratio ne/Ip, and the trends

seem to coincide well. The same applies to the effective charge scaling, which suggests

that all these processes are somehow related.
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The density and current-dependent representation is phenomenological and may

not reflect the physical nature of the phenomena. These “engineering” parameters

might act through affecting the electron temperature and collisionality, which plays an

essential role defining the transport regime, or the heat flux and impurity concentration

that impact turbulent transport properties. Either way, the problems posed are related

to energy and momentum transport, and finding solutions requires thorough transport

modelling of the plasmas in L-mode conditions.



Chapter 4

Energy confinement time modelling

This chapter presents the setup and results of transport simulations of L-mode Ohmic

plasmas presented in the previous section, with deuterium as main plasma species, in

ASDEX Upgrade geometry. The experimental basis of the modeling consists of two

subsets comprised of two discharges each, which have been described described in detail

in the previous section.

This part of the work (published as [49]) aims at investigating the link between

turbulence regime (TEM or ITG-dominant) and plasma energy confinement. It has

been suggested [6–8] that the energy confinement time τE scales linearly with mean

electron density (Linear Ohmic Confinement regime, LOC) when turbulence is domi-

nated by TEM, and saturates (Saturated Ohmic Confinement regime, SOC) when ITG

dominates the transport. In order to confirm it or provide an alternative explanation,

one needs to be able to directly relate the turbulence mode shift to the confinement

regime transition. It is extremely difficult to actually “measure” the presence of TEM

or ITG in a plasma [9], but it is possible to make such relation in simulations. Model

parametrization with real plasma conditions then allows us to make conclusions re-

garding the real turbulent state, provided the turbulence model is correct.

The TGLF transport model is an appropriate tool for such an application. It

returns turbulence characteristics and fluxes of PDF velocity moments given the local

plasma conditions. The heat conductivities χ can be compared to those computed

from experimental profiles by the power balance relations (for the species a):

χa(ρ) = − 625Qa

na
∂Ta
∂ρ

〈

(∇ρ)2
〉 ∂V

∂ρ

, with Qa =

∫ ρ

0

[Pin − Pout]
∂V

∂ρ
dρ, (4.1)

for validation and reference. In the expressions (4.1) the radial coordinate

ρ =
√

Φ/πB0 with Φ the toroidal flux enclosed by the given flux surface and B0 the

reference magnetic field, and V is the volume enclosed by the flux surface. In order to

support the self-consistent modelling, three sets of data are compared. One comprises

the experimental measurements of AUG plasmas and is referred to as “Data”. Another

one consists of the results of ASTRA simulations with experimental kinetic profiles and

51
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plasma boundary, and with heat transport coefficients obtained from the power bal-

ance calculations, see formula (4.1). This one is referred to as “PB” that stands for

power balance. The results of ASTRA simulations with the TGLF module and the

self-consistent evolution of the kinetic profiles, yet with experimental plasma boundary

(separatrix coordinates), form the third data set, which is labeled “TGLF”. Both types

of ASTRA simulations feature free evolution of the current density distribution, and

most of the model parameters are the same.

4.1 Model description

ASTRA solves transport equations that determine the temperature and density pro-

files, as explained in Section 2.5.1. The self–consistent evolution of energy transport

coefficients and plasma temperature profiles saturates when the heating is balanced by

outward radial heat fluxes, while for the density, for which no particle source is present

in the core, it results from the balance of diffusion and convection. Turbulent trans-

port coefficients (heat conductivities χe and χi, particle diffusivity Dn and convection

coefficient Cn) are computed by TGLF every fifth time step on the basis of evolving

kinetic profiles in ASTRA, and are then used to compute the profiles, resulting in

full self–consistency. Neoclassical transport coefficients are computed with analytical

expressions [37]. The two sets of transport coefficients are then summed up linearly.

The electron diffusion and convection coefficients are balanced by a particle

source at the edge, which is expressed by a gas puffing and ionization model. The

puffing rate adjusts itself, so that the line integrated electron density stays equal to

the experimental value. Boron is used as the only impurity species as it is intrinsic

to AUG plasmas, where the wall undergoes frequent boronizations. Mean boron con-

centration follows the scaling Zeff = 1 + 3.2I3p/n̄
3
e with Ip expressed in MA and n̄e in

1019m−3, and is further discussed below. The density of main plasma ions and boron

impurity ions is computed from the quasineutrality condition and Zeff according to the

scaling.

The boundary condition for the electron density is set at the separatrix by an

outflow proportional to the local density value. Boundary conditions for the tempera-

tures are set at the separatrix, as well. Since the error bars on the edge temperature

measurements are of the order of the measured values, we used a scaling that approxi-

mates the experimental values, see fig 4.1. It consists in inverse proportionality of the

edge electron temperature to the edge electron density that has been shown valid [59],

and Ti,ρ=1 = 2Te,ρ=1.

The plasma boundary shape is defined by elongation κ = 1.62 and triangularity

δ = 0.15. The idea was to make the simulation result depend only on the basic

discharge parameters (Bt, Ip) and the average electron density n̄e, and not on particular

experimental data, in order to eliminate measurement uncertainty variation and minor

effects contributions. The implemented generalization of boundary conditions gives
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Figure 4.1: Electron and ion temperature boundary conditions at the plasma edge. The
dashed curves represent the scaling used in the modeling.

good agreement with the measurements in the whole range of investigated plasma

conditions.

The main power source is the Ohmic heating computed as

POhm = I2p/σ = IpUloop, (4.2)

with σ the neoclassical electric conductivity [50]. In the high current discharges the

Ohmic power it varies in the range 0.8-1.0MW, with the low current it is about 0.5MW.

In addition, the high current discharges feature a minor pulsed ECR heating with

averaged PECRH ≈ 130 kW. Both power sources transfer energy to the electrons, while

the ions gain energy via the collisional equipartition (Eq. 2.5). The effect of turbulent

equipartition [51] is also included, which is however counter-directed.

The model for radiated power assumes tungsten as the main source of radiation

and follows [52]:

Prad,W = nenWLZ , (4.3)

where LZ = LZ(Te) is the tungsten cooling factor, which is a polynomial fit to ex-

perimental data. The tungsten concentration is estimated to be of the order of 10−4

from the bolometric measurements, varying with the density as Fig. 3.6 suggests. The

estimated values amount to 20 − 40% of the Ohmic power (see Fig. 4.11), which is

about two times higher than those measured by soft x-ray diagnostics (more details

in Sec. 5.2), however the sensitivity of the confinement time in this regard has been

found to be rather weak. Due to the low concentration, tungsten is considered a trace

impurity and does not enter the quasineutrality condition, therefore it does not affect

the densities of other species or the turbulence properties relevant for the interpreta-

tion of the simulation results. Bremsstrahlung radiation is also accounted for in the

form

Pbr = 5.06e−5Zeffn
2
eT

1/2
e MW, (4.4)

while the cyclotron radiation is found to be very small and therefore neglected.

ASTRA also computes the magnetic equilibrium and the current diffusion. The

current density profile evolves freely to establish an equilibrium, which is distinguished
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by a flat profile of the loop voltage. A model for the sawtooth instability (current

density redistribution, similar to [53]) is used, in order to limit the current profile

peaking and the subsequent decrease of q in the core. The radial position of the q = 1

surface is defined by the equilibrium solver, it is usually located at r/a ≈ 0.2. The

accompanying central flattening of the density and temperatures profiles is achieved

with an additional term in heat conductivities and particle diffusion that vanish outside

the radial position of q = 1. We also put an edge correction for χe, χi in the form

α · e(1−ρ)2/β with α = 2 and β = 0.02. It is effectively non-zero only at r/a > 0.8,

and accounts for edge transport not captured by TGLF. Both modifications do not

affect the radial region between r/a = 0.25 and 0.8, where the turbulence modelling is

considered valid.

The TGLF settings are as follows. We work with Miller geometry [54] and kinetic

electrons. The total number of modes is 24, in the range kyρi = 0.1−25 (15 of them are

in the short wavelength region), which is a default setting proven to represent well the

real structure. The heat flux is computed from two most unstable modes per ky. The

velocity shearing effects have been tested and found to be small in these conditions,

because the intrinsic VE×B and V‖ rotation velocities (no external torque injection) do

not produce relevant velocity shear. This has been shown in both TGLF and GKW

simulations. Hence, the shearing has been excluded from the modeling for simplicity.

We use the saturation rule 1 [55], though both 0 and 1 have been tested. The major

difference between the two only regards the edge region at r/a > 0.8, and a proper

adjustment of the edge correction for χe, χi makes the results obtained with both rules

very similar.

Figure 4.2: Left: Comparison of measured Zeff (Data) to the scaling (PB and TGLF)
for the two plasma current values, as a function of ne/Ip. Right: corresponding loop
voltage values.

The impurity concentration has been identified as an important quantity for

ITG turbulence [56–58]. An increased impurity content leads to main ion dilution,

which reduces the ITG drive. The Zeff is given by a scaling depending on engineering

parameters of the plasma. It is introduced in Sec. 3.2.1 and has the form

Zeff = 1 + 3.2I3p/n̄
3
e (4.5)
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with Ip the total plasma current in MA and n̄e the line averaged electron density in

1019m−3. Note, that this scaling has been tested at a minimum Ipn̄e ≈ 1.5 and is

not intended to use at lower densities. Fig. 4.2 shows the scaling Zeff values of the

modeling compared to the Zeff from the loop voltage measurements data.

Note that here and in the following, the last three points of the Ip = 0.62MA

data subset belong to the second discharge in the subset, #28243, which had slightly

different conditions, than the first one, #28386. Presumably, the position of the q = 1

surface plays a role here, in the discharge #28243 it is closer to the magnetic axis. These

differences are not accounted for, hence not visible, in the ASTRA–TGLF modeling,

but are often present in the power balance simulation results.

4.2 Analysis of the results

4.2.1 Comparison to experimental profiles

As already mentioned, the data subsets represent density ramps at two different plasma

currents, so that in each subset the plasma evolves from the LOC to the SOC regime.

Figures 4.3 and 4.4 show the simulated plasma kinetic profiles in comparison with the

measurements for both subsets of discharges. The profiles corresponding to the LOC

phase are shown in blue, the SOC – in red, and those at the transition between the

phases are drawn black.

The simulated and measured electron density profiles (subfig. b) demonstrate

a very good agreement, and the simulated electron temperatures (a) deviate only

slightly from the measured ones. Simulated ion temperature profiles remain the same

a b

c d

Figure 4.3: Kinetic plasma profiles simulated with ASTRA–TGLF (solid) and the cor-
responding experimental measurements (dashed) in the LOC regime, at the transition
critical density, and in the SOC regime for Ip = 0.62MA.
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a b

c d

Figure 4.4: Same as above for Ip = 1.04MA.

during the density growth, and while TGLF reproduces the measurements well at low

densities, a deviation appears at high density, where the observations show a decrease

of Ti. This difference is significant, up to 30%. It is also reflected in the simulated

pressure profiles, which are higher then the experimental ones in the SOC regime. The

effect this deviation may have on the global confinement characteristics is discussed

further in this section.

Figure 4.5: Evolution of plasma kinetic parameters in the core (r/a = 0.2, top row)
and at the edge (r/a = 0.8, bottom row) with the density growth, comparison between
PB (points) and TGLF (lines) simulations with ASTRA.
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In order to look into the evolution of the kinetic profiles with the increase of the

density in more detail, we show a comparison of measured and simulated values in the

core, r/a = 0.2 and at the edge, r/a = 0.8, for both subsets of data, see Fig. 4.5.

The interesting part here is the evolution of the plasma pressure, which provides

also the plasma kinetic energy. In the experiment, the edge pressure grows steadily

together with the electron density, while in the core it saturates at a certain point.

In the plasmas with Ip = 0.62MA the saturation point is at around 2.0 × 1019m−3,

for the plasma with Ip = 1.04MA it is roughly 3.1 × 1019m−3. These points can be

associated with the LOC–SOC transition critical density. It can be seen that, while

the core electron temperature reduces gradually as the density increases, the core ion

temperature stays rather constant before the critical density is reached, and starts to

decrease after that. Therefore, the plasma energy saturation is likely caused by the

ion temperature behavior.

Figure 4.6: Normalized logarithmic gradient of ion temperature R/LTi, averaged be-
tween r/a = 0.4 and 0.6, as a function of mean electron density.

In the simulation, the pressure saturation at the transition density is less pro-

nounced, because of almost no reduction in the core ion temperature, while the electron

temperature and density are reproduced well. However, a modification of ion transport

at the critical density can be noticed by the change in the trend of simulated R/LTi ,

while the values stay close to the experimental ones, see Fig. 4.6. It should be noted

in this regard, that a small difference in local R/LTi over an extended radial window

can produce a significant discrepancy in the core Ti, which is observed at high density.

Fig. 4.7 compares the experimental and the simulated temperature ratio Ti/Te,

averaged around mid-radius, which due to the similarity of Te and Ti profiles is a

good proxy for the global temperature ratio. There is a deviation for the case at

Ip = 1.04MA, high density, where the value reaches 0.8 in the simulation, while in the

experiment it stays at 0.7.

The effect of Ti/Te on the frequency of the most unstable mode at this high

density at a given radial position r/a = 0.55 is shown in Fig. 4.8. Certainly, the

difference between 0.7 and 0.8 is rather small. Therefore, we consider the overall effect

of the ion temperature mismatch between the modeling and the measurements to have

negligible impact on the turbulence properties.
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Figure 4.7: Temperature ratio Ti/Te, averaged between r/a = 0.4 and 0.6, as a function
of mean electron density.

Figure 4.8: Temperature ratio Ti/Te effect on turbulence frequency at fixed density.

4.2.2 Heat conductivities

We continue the analysis by comparing the electron and ion heat conductivities, χe

and χi, from PB and TGLF simulations. In the power balance simulations the heat

conductivities are computed from the experimental temperature profiles with Eq. (4.1).

In the self-consistent modelling the total heat conductivity is a sum of the turbulent,

computed by TGLF, and neoclassical contributions. In all regimes, the neoclassical

contribution is approximately one order of magnitude smaller then the turbulent one.

Fig. 4.9 illustrates the comparison of heat conductivities, presenting the values averaged

over the radial range from r/a = 0.4 to 0.6.

The TGLF electron heat conductivity shows inverse proportionality to the aver-

age electron density, reducing from slightly above 1m2/s at 1 × 1019m−3 to 0.4m2/s

at high density for both plasma currents. The power balance values show a similar

trend at low and middle density values, while at high density they significantly diverge.

The ion heat conductivity from TGLF demonstrates a slight decrease with the electron

density increase as well, except for the very low densities, where it appears to grow.

On the contrary, the power balance χi shows a steady increase, roughly quadratic with

the average density, reaching up to 4m2/s at the top of the density scans in both cases.

It is expected from studies like [60] that χe is reduced when the collisionality increases,

as TEM is stabilized by collisions, and the electron heat transport is driven by the

ITG mode. The trend of χe values computed by TGLF is consistent with this picture.

The values of power balance χe and χi depend on the assumptions made for the
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Figure 4.9: Heat conductivities from PB and TGLF simulations, averaged between
r/a = 0.4 and 0.6 as functions of mean electron density. Error bars on the PB points
are estimated to be between 20% and 50%

radiated power model and the magnetic equilibrium. In extreme cases, a variation up

to 30% is observed in both directions, and the χe trend may vary. However, the rapid

rise of χi at high density remains irrespective on the assumptions made on Prad. From

the observed overestimation of Ti by TGLF at high density one can expect that χi is

underestimated. On the other hand, χe of TGLF is reasonable, but the power balance

χi is too high to be consistent with it. Considering high sensitivity of the PB-calculated

heat conductivities to the profile shapes, we believe that the actual values of χi are

only slightly higher then the TGLF prediction.

4.2.3 Energy confinement time

The global energy confinement time for all considered discharges is displayed in

Fig. 4.10, where the experimental estimate is compared to the values from PB and

TGLF simulations. Despite the similarity of the kinetic plasma profiles in the exper-

imental database and the PB modeling, the energy confinement time values do not

always coincide. The reason is, first of all, in the different approaches to compute τE.

The experimental estimate takes the total kinetic plasma energy as the stored energy,

while in ASTRA it is the kinetic energy of electrons and deuterium and boron ions

only (though the difference should be rather small). Also, although the Ohmic power

is defined as POhm = IpUloop in both approaches, the loop voltage values slightly differ,

as discussed in section 4.1.

Looking at the TGLF simulations results, one can see that the range of values of

τE is recovered by the model. This implies that, as the kinetic profiles are satisfactorily
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Figure 4.10: Energy confinement time as a function of average electron density.

reproduced (see figures 4.3, 4.4), also the net power POhm − Prad is obtained within

reasonable limits, despite uncertainties in the effective charge, loop voltage, and radi-

ated power. Since the former two could be reasonably constrained by measurements,

the radiated power approximation seems to be good, as well.

Second, the trend of τE with respect to the electron line averaged density shows

both the linear and the saturated phase. Note that the saturated phase begins at

lower densities (≈ 2 × 1019) for the lower current case, while the 1 MA case displays

the transition at ≈ 3.1× 1019, and here the simulations and the measurements agree.

While in the higher current case the experimental confinement time in the SOC

phase experiences minor to no degradation, in the lower current case it is significantly

reduced after the phase transition. The simulations results do not have this feature,

they show confinement time saturation at a constant level. This disagreement may arise

due to the fact that χTGLFi depends on the density much weaker than χPBi . Ultimately,

this most likely points towards a problem of too weak stiffness of the ITG transport

in TGLF, which leads to an overestimation of R/LTI discussed in Sec. 4.2.1.

4.2.4 Global energy and power balance

Since the confinement time is the ratio between plasma energy and absorbed power, it

is useful to look at these ingredients separately and compare the modeling results to

the experimental data. In Fig. 4.11, the ASTRA-TGLF simulated Ohmic power POhm,

total radiated power Prad tot, total absorbed power Qtot = Pheat−Prad and total plasma

energy Wtot as functions of the ratio n̄e/Ip are compared to the results with PB.

Considering the accuracy of the agreement on the loop voltage (Fig. 4.2), the

Ohmic power is reproduced with the same quality, and so is Qtot, which is an impor-

tant element to compute the power balance. Both are shown to moderately increase

with the density. The plasma energy grows roughly linearly with the density, with

simulated values higher than experimental at high densities, which is a consequence of

underestimated ion transport, as shown in Fig. 4.9.

The discrepancies in the experimental and simulated Wtot and Qtot can explain

the behavior of the confinement time shown in Fig. 4.10, in particular the big deviation

seen in the SOC phase for the lower current case.
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Figure 4.11: The Ohmic power POhm, total radiated power Prad tot, total absorbed power
Qtot and total plasma energy Wtot as functions of the ratio n̄e/Ip.

4.2.5 Density peaking behavior during the density scan

L-mode Ohmic plasmas also demonstrate a change in density profile peaking behavior

at different average electron densities. The profile is rather flat at very low density,

it becomes peaked shortly before the critical density of the LOC-SOC transition, and

reverts back towards a flatter profile as the density is further increased. The maximum

peaking is found theoretically to happen at the TEM-ITG transition, while both in

deep TEM or deep ITG regimes, the density profile flattens (due to outward-directed

thermodiffusion in TEM and outward directed collisional pinch in ITG) [7, 12, 61].

Fig. 4.12 shows the evolution of density peaking during density ramp-ups in our plasma

conditions, as defined by the ratio of the centrally averaged electron density (inside

r/a = 0.2) to the full volume average value, and by a R/Ln averaged around the

mid-radius, between r/a = 0.3 and r/a = 0.7.

Note that the highest peaking appears at the average densities below critical

density of the LOC-SOC transition. This is consistent with the result that the domi-

nant turbulence regime is already the ITG when the LOC-SOC transition takes place,

whereas dominant TEM conditions can occur at densities which are below those cor-

responding to the maximum density peaking. However, the situation can be different

in other machines, as reported in [62], which also shows that the previously thought

picture TEM → ITG ⇒ LOC → SOC does not hold as a universal mechanism.
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Figure 4.12: Measures of density peaking: the ratio ne(core)/n̄e (top) and the normal-
ized logarithmic electron density gradient averaged between r/a = 0.3 and r/a = 0.7
(bottom) as functions of average electron density, for the two plasma currents.

4.2.6 Turbulence spectra

In order to gain a deeper understanding on how the energy transport varies during the

density buildup, it is instructive to look at the spectral characteristics of the turbulence

as predicted by TGLF.

For this analysis, the TGLF code is run separately, outside of ASTRA envi-

ronment with data files generated by the ASTRA-TGLF modeling for specific radial

points. It produces k-spectra of the real frequency of the most unstable mode ω(k)

normalized to cs/a, and the electron and ion heat fluxes Qe,i(k) expressed in arbitrary

real units. Note that TGLF could be run directly with experimental data, though

the ASTRA-TGLF self-consistent profiles are preferable due to their consistency with

the heat fluxes, moreover all plasma parameters are smooth and the values are still

very close to experimental. One could argue that the simulated ion temperature much

exceeds the measurements, but its normalized gradient R/LTi that plays a role of tur-

bulence drive is very close to experimental (see Fig. 4.6), except the region of high

density at high current, so this does not affect the discussion on the LOC-SOC tran-

sition. In this situation, the only turbulence-relevant parameter predicted outside the

experimental error bars is the temperature ratio Ti/Te, but its impact on the turbu-

lence is shown in Sec. 4.2.1 to not be relevant in determining the turbulence properties

in the range of deviation from the measurements. The effect this and other quantities

have on transport is discussed in detail in section 4.2.7.
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Figure 4.13: Turbulence spectral characteristic, density scan representation

Fig. 4.13 illustrates the turbulence spectral analysis for the data subset with

Ip = 1.04MA, presenting ω, Qe and Qi in the range kyρs = [0.1 − 2]. Electron heat

transport due to high-k ETG turbulence has been found small according to TGLF

in these plasma conditions, it does not exceed 1% of the total electron transport.

Therefore, we limit the k-space shown in the plots to kyρs < 2. We choose the radial

points r/a = 0.5 and r/a = 0.7, so that we are able to show also the radial variation

of the parameters presented. The picture for the lower current case is very similar,

scaled to the averaged density by the plasma current ratio. For the mode frequency

ω, the sign convention is that a positive value refers to a mode rotating in the electron

diamagnetic direction (e.g., TEM when the frequency is robustly positive).

It can be seen from the top plots (a, b), that the transition between TEM and ITG

indeed happens along the density scan (line averaged density as a control parameter

in the horizontal axis). However, the scales below kyρs = 0.2 seem to be dominated

by ITG already at the lowest densities in the range of study, and other wavenumbers

up to kyρs = 1.0 experience the mode transition at different values of n̄e. As a rule,

lower ky values transit first, since the collisional frequency is wavenumber independent,

so at a fixed collisionality, electron detrapping at larger scales is more efficient [63].
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Interestingly, the mode transition at scales responsible for the dominant heat transport

(namely, kyρs = [0.3 − 0.7]) occurs close to the average density of the highest density

peaking, especially at the mid-radius. At the same time, no significant variation of the

ω spectrum is observed at the LOC to SOC regime transition.

The electron heat flux Qe(k) in the subplots c and d is expressed in arbitrary

units ([gB] ·neT 5/2
e , which to a constant factor are watts), in logarithmic scale, in order

to resolve also minor contributions of subdominant modes. The white line marks the

boundary between positive and negative mode frequencies. It can be seen, especially

at scales around kyρs = 0.8, that the electron heat flux drops by about an order of

magnitude as the given scale shifts to the ITG-dominant regime. The explanation can

be given as follows: TEM propagates in the electron diamagnetic drift direction, and

the transport by electrons, which drift in the same direction is enhanced, it is said

to be resonant; ITG propagates in the opposite direction, so the transport is reduced

due to this non-resonance condition. Nevertheless, the electron heat transport channel

in the ITG domain is still substantial, and the total heat flux (shown with the black

line) stays relatively constant. Interesting to note, the wavenumber of the mode with

highest transport activity shifts towards larger scales as the average density increases,

as well as when comparing outer regions of the plasma to mid-radius position.

The ion heat flux (subplots e and f) is driven by the ITG alone, and no transport

is observed outside the typical scales of ion turbulence. The subplot e shows that ITG

activity starts already at the lowest density in the range of study, but the ITG mode is

still subdominant there. The total heat flux in the ion channel increases steadily with

the average density, much due to the increasing strength of ITG with decreasing Zeff .

Fig. 4.14 illustrates the same quantities from a different perspective, presenting

radial profiles of ω, Qe and Qi for three selected mean density values: 1.48, 2.27 and

3.17× 1019m−3, with the latter two being close to the maximum peaking density and

the critical LOC-SOC density, respectively. The real frequency ω is expressed in cs/a,

the heat fluxes are expressed in arbitrary units ([gB] ·neT 5/2
e ). The densities are chosen

such that the turbulence regime changes: from dominant TEM, through the condition

of mode transition to dominant ITG. It can be seen how the scale of maximum electron

heat flux goes to smaller ky as the density increases, moving from TEM to ITG-driven.

The ion heat flux is almost negligible at low density, but increases as the ITG becomes

stronger. The picture at even higher density is very similar to the third one, just with

larger Qi, as can be guessed from Fig. 4.13. Note, that Qi is reduced at r/a ≫ 0.7 at

intermediate and high densities, this is an effect of backward energy transfer from the

ions to the electrons, since Ti > Te there.

This analysis confirms the relation of the TEM-ITG dominant turbulent mode

transition to the density peaking phenomenon. At the same time, we find no proof that

this mode transition impacts the global confinement and, more specifically, leads to the

energy confinement time saturation. Rather, it seems that when the ITG-driven ion

heat flux reaches a certain value, the confinement does not improve anymore. Similar

conclusions have been made in [13, 26], however other works (for example, [64, 65])



4.2. ANALYSIS OF THE RESULTS 65

Figure 4.14: Turbulence spectral characteristics, radial representation

report TEM-ITG transition and the τE saturation at the same density value, and

others [66] even in the opposite order.

4.2.7 Sensitivity analysis of heat fluxes

In order to complement the study of heat transport in the electron and ion transport

channels, we perform a sensitivity analysis of these quantities to various plasma param-

eters. The aim here is to clarify whether the LOC-SOC behavior in terms of ITG and

TEM-ITG transition is governed by a single dominant parameter, or by a combination

of many. Since the average electron density and the plasma current (that influences

also the magnetic equilibrium) seem to be the main actuators, we fix one of them by

the choice of data points, and investigate their impacts separately.

First, we define a data point (I) in the subset with Ip = 0.62MA in the beginning

of the SOC phase, so that in the subset with Ip = 1.04MA there exist a data point

(II) with the same average density, but in LOC phase. We then find a third point (III)

in the lower current subset, so that its confinement time equals that of point II (see

Fig. 4.15). During the self–consistent ASTRA–TGLF simulations for each of these



66 CHAPTER 4. ENERGY CONFINEMENT TIME MODELLING

>

I

II
III

Figure 4.15: Substitution scheme

three data points a TGLF input file is produced, that corresponds to a specific radial

location (here r/a = 0.5). These input files contain all the physics parameters needed

to run the code, like safety factor, magnetic shear, normalized temperature and density

gradients, species density concentrations etc. We than take the data file for the point

II and replace one of the parameters with that from the point I, keeping all the others

unchanged. As a result, we simulate plasma conditions of the LOC regime, with one of

the parameters from the SOC. Running the TGLF code with this modified input file

and comparing the outcome in terms of heat fluxes, one can see which parameters are

mostly responsible for the transition between the LOC and SOC plasma turbulence

regimes. The same is done with the LOC data of the point III. This way we arrive to

two sets of modified plasma conditions and the heat fluxes obtained accordingly.

Figure 4.16: Sensitivity of electron and ion conductivities to single parameter variation.

Fig. 4.16 presents the result of this exercise, showing relative variations of the

electron and ion heat fluxes in gyro–Bohm units. The lines mark the heat fluxes of

nominal plasma conditions: red corresponds to the SOC regime of I, blue on the left

(“Same n̄e”) is the LOC of II, blue on the right (“Same Ip”) represents the LOC of the

data point III. Note that the electron heat flux (in gB units) is almost at the same level

in all three conditions. The replaced parameters are: magnetic equilibrium and plasma

geometry (Equil), normalized logarithmic gradients of electron and ion temperatures,

the temperature ratio, collisionality, and the plasma composition (Comp), that includes

species densities and density gradients. The black dots show the heat fluxes levels in
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the conditions when this parameter is replaced. A dot that lies on the blue line means

that this replacement has no effect. An important remark: if one replaces all of these

parameters at once, both the electron and the ion heat fluxes appear at the red lines.

The following conclusions can be drawn:

1. Having different currents or different densities does not have a direct impact on

the transport levels, as the plots look very similar, except for the effect of changed

equilibrium on the electron heat flux when the averaged density is fixed, which

is however expected.

2. Reducing the electron-ion temperature difference raises Qe due to TEM desta-

bilization, whereas increasing the collisionality has the opposite effect. R/LTi
affects ITG-driven electron heat transport. The Comp factor impacts Qe via the

electron density gradient, that is smaller in SOC.

3. Qi is influenced the most by R/LTi and Ti/Te factors that have effect on ITG

stability, and by the impurity concentration (Zeff) embedded in the Comp factor.

High impurity content means dilution of main ion species that reduces the ITG

drive at lower average electron densities.

We can conclude here that the temperature ratio is an important factor leading to

a destabilization of both major turbulent modes and the increase of the corresponding

heat fluxes. The normalized gradient of ion temperature R/LTi , as well as the effective

charge Zeff have a particular impact on ITG turbulence, the variation of these param-

eters over the density scans leads to an increase in ion heat flux and the LOC-SOC

regime transition. At the same time, the electron heat flux has no preferential change.

The role of Zeff in determining a correct behavior of the ITG along the LOC-SOC

transition has been previously investigated [56–58], and the following section presents

an additional study of it in the context of this work.

4.3 Effect of impurity content on turbulence and

confinement

In order to show the effect of the impurity concentration on turbulence more explic-

itly, and inspired by numerous experiments on achieving so-called Improved Ohmic

Confinement (IOC) phase in Ohmic plasmas (for example, as described in [67,68]), we

have also conducted ASTRA-TGLF simulations with various levels of impurity content

which will affect the value of Zeff . We use the same modeling approach as discussed in

section 4.1. With fixed Zeff dependence on n̄e and flat Zeff radial profile, we investigate

the range from Zeff = 1, i.e. pure deuterium plasma, to Zeff = 4 in the Ohmic plasmas

with Ip = 1.04MA. The results can therefore be directly compared to those presented

above for the same plasma current. Note that while values with Zeff ≥ 3 are hardly
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realistic with boron impurities alone, they may be seen as an extension of the realistic

range, which shows that the trend of energy confinement improvement has its limits.

Fig. 4.17 compares the energy confinement time τE and the mid-radius R/Ln
as functions of the average electron density for the plasma with the experimental

Zeff scaling discussed in pervious sections (shown with black squares), to those of

plasmas with fixed Zeff values (colored circles). It can be seen from the τE plot that,

with increasing boron content, the linear phase extends itself to higher densities, and

the τE saturation becomes less pronounced. Plasmas with high Zeff feature higher

resistivity, which leads to higher Ohmic power and, consequently, higher electron and

ion temperatures. The best confinement at high density is reached with Zeff ≈ 3, when

no saturated phase can be distinguished anymore. At even higher Zeff the reduced

ion density limits the stored energy Wtot, and despite the ITG turbulence suppression

the confinement quality decreases. The shift of the R/Ln peak to higher density with

the Zeff increase serves as an indicator for the corresponding shift in the dominant

turbulent mode transition, as discussed in section 4.2.5.

Fig. 4.18 presents ω, Qe and Qi at the radial position r/a = 0.7 in the range

kyρs = [0.1 − 2], obtained with pure deuterium plasma, Zeff = 1.0 (on the left), and

with significant impurity content, Zeff = 3 (on the right) that corresponds to the best

τE as shown in Fig. 4.17. Figure 4.18 can be compared with Fig. 4.13 (b,d,f), which

represents the same spectral characteristics at the same radial location for plasmas

with experimental Zeff scaling and can be considered as a reference. In pure deuterium

plasma the ITG takes over already at a very low density, otherwise the plasma behavior

is similar to the case of experimental Zeff scaling. With Zeff = 3 the ion dilution effect

stabilizes the ITG. The increased Te reduces the equipartition power, so at high density

the temperature ratio Te/Ti stays higher and provides an additional ITG stabilization.

The increased R/LTe enhances the electron heat flux, so TEM dominates the energy

transport up to significantly higher densities. Despite the Ohmic power is higher, larger

Qe at low density slightly decreases the confinement time. At the same time, ITG is

strongly suppressed, so Qi grows slowly with the density, and the linear trend holds in

Figure 4.17: Energy confinement time τE and the normalized logarithmic electron den-
sity gradient R/Ln averaged within the radial range r/a = 0.4 − 0.6 as functions of
average electron density, for different Zeff values.
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Figure 4.18: Turbulence spectra with Zeff = 1 (a,c,e) and Zeff = 3 (b,d,f).

a wider range of densities.

With high impurity concentration, the dominant turbulent mode transition and

the confinement regime modification are still well separated in the parameter space.

For example, in the plasma with Zeff = 3 at n̄e = 3.5× 1019 the heat transport in both

electron and ion channels is already dominated by ITG, but the ion heat flux is still

small, and the plasma is still in the linear confinement regime. It can be concluded

that what defines the saturation of τE is the ion heat flux, which in the case of high-Zeff

IOC regime is reduced by main ion dilution.

4.4 Conclusions on energy confinement modelling

In this work it has been shown that TGLF, embedded in the ASTRA transport solver,

is able to reproduce the energy confinement time saturation in L-mode plasmas as

observed in AUG. The confinement scaling transition from linear to saturated has

been studied in detail, at two values of the plasma current. In both cases, the plasma

core at low density is dominated by TEM turbulence, while ITG mode is instead stable.
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Ion channel of turbulent heat transport is weak. With the increase of density, TEM is

suppressed by higher collisionality, ITG enhances and starts to dominate both electron

and ion heat transport channels. Switching of different ky-scales between TEM and

ITG dominance occurs gradually both along the radial coordinate and the density

scan, with the mid-radial region switching the last (see Fig. 4.14 for details). At this

point, the maximum in electron density peaking is observed. The saturation of energy

confinement time happens at higher density, which does not support the paradigm

of direct influence of the turbulence regime on the confinement scaling. The critical

densities of TEM-ITG and, later, LOC-SOC transitions are roughly proportional to

the plasma current value. On the other hand, one can think of a situation when the

TEM mode is strong for some reason, and a critical Qi is reached before the TEM-ITG

transition.

The LOC phase can be explained by a reduction of electron transport as the

coupling between ion and electron temperatures becomes stronger. The absolute heat

loss rate stays constant, while the energy content increases. This holds even after the

ITG becomes dominant.

The transition to the SOC phase is a consequence of a number of factors. The

Te-Ti coupling becomes strong and the Te reduces, as more heat is transferred to the

ions. The increase of R/LTi and the reduction of the impurity concentration leads to

the ITG mode enhancement, ion heat transport is strongly stiff and effectively exhausts

the thermal energy.

The impurity content is confirmed to be an essential ingredient here, it acts

through dilution to stabilize the ITG at lower densities, when impurities are more

abundant. The observed scaling of the confinement time transition density as a function

of plasma current thus reflects the dependence of Zeff on plasma density and current

itself. Additional impurity seeding thus can shift the plasma to the IOC phase, by

reducing turbulent heat flux via ITG stabilization, which is clearly demonstrated by

the simulations.



Chapter 5

Intrinsic toroidal rotation modeling

A lot of attention has recently been drawn to the observation, obtained from many

machines, of the sustainment of a sizeable plasma toroidal rotation in the absence of

any external source of momentum. This intrinsic plasma rotation has been found [10–

16] to develop a significant velocity gradient around mid-radius with the increase of

density (and collisionality), with a pronounced counter-current velocity in the core.

However, at even higher collisionality the velocity profile relaxes back to co-current

and roughly flat (see Sec. 3.2.2). It can be shown that such behavior can only arise

from a component of the stress tensor not related to either viscosity or convection

(referred to as the residual stress). From a theoretical point of view, this finite residual

stress can appear only when parallel symmetry is broken. In an axisymmetric torus

this translates to the breaking of the poloidal symmetry in the fluctuations or in the

equilibrium. Several symmetry breaking mechanisms have been proposed recently [17–

24]. In some of these, the stress on a given flux surface depends on the local parameters,

while the background is considered constant; others are global, meaning they require

a radial variation of plasma profiles, which immediately breaks the radial symmetry

and, consequently, the poloidal symmetry, as the two are linked via the drifts. Several

local mechanisms have been tested with AUG parameters and found to be weak [69],

hence a global mechanism is believed to dominate. At the same time, it has been

demonstrated in [70] that the most prominent global effect is the radial shearing of

background equilibrium profiles [20]. It introduces the radial shear in the magnetic

drift frequency, which is related to the mode frequency, and the poloidal tilting of

turbulent eddies. The resulting asymmetry in the kr spectrum gives rise to a non-zero

poloidally averaged parallel wave number k̂‖ that leads to a finite residual stress. This

section shows the results of the work aimed to estimate the tilt angle θ̂0 values that

suffice to explain the observed toroidal rotation profiles.

71
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5.1 Residual stress scaling

The toroidal momentum transport model used in this work has been described in [71],

where a solution is obtained for the mean parallel velocity u‖ taking into account

contributions from diamagnetic and poloidal flows in addition to the usual E × B

contribution. We make use of the radial coordinate ρ =
√

Φ/πB0 with Φ the toroidal

flux enclosed by a given flux surface and B0 the reference magnetic field. The radial

flux of toroidal angular momentum then has the following form:

〈

R
Bϕ

B
Π‖ρ|∇ρ|

〉

=
R2

0B0

I
〈|∇ρ|2〉

[

−ρmχ‖

∂u‖
∂ρ

+ ρmV u‖ + δneo

]

+

+
〈

RΠres
ϕρ |∇ρ|

〉

, (5.1)

where Π‖ρ is the parallel stress tensor, δneo contains diamagnetic and poloidal flow

contributions and Πres
ϕρ is the residual part of the stress tensor, angular brackets denote

flux surface averaging. In the following we will refer to the last term as the residual

flux and denote it with ΓR. Note that the effect of δneo has been already studied and

found too small to explain the observed rotation gradient in the given conditions [69].

The nature and structure of the residual stress can be derived from the linearized

gyrokinetic equation for the fluctuating part of the distribution function f̃ that reads

∂tf̃ + v‖∇‖f̃ + vE,0 · ∇f̃ + vd · ∇f̃ + v̇∇vf̃ = −ṽE · ∇FM − ˜̇v‖∇vFM (5.2)

Assume that f̃
(

ρ, θ, ϕ, v‖, µ
)

is symmetric under (θ, v‖) → (−θ,−v‖) transforma-

tion. This means that modes with positive and negative k‖ have equal amplitudes, and

the flux surface average
〈

k‖
〉

= 0. As shown below, such symmetry brings the residual

stress to zero. Hence, in a real plasma that displays finite intrinsic rotation the paral-

lel symmetry must be broken. The degree of asymmetry can be characterized by the

Bloch shift parameter θ0 defined as θ0 = −kr/(ŝkθ) (more technical details in [20,73]).

It can be seen as an angle by which the turbulent eddies are turned (on the average

over the flux surface) from the radial direction. It also shows the resulting shift of the

maximum of the potential fluctuations in the poloidal direction (see Fig. 5.1). The

mean
〈

k‖
〉

also depends on θ0, but the analytic form of this dependence is unknown.

Taking velocity moments of the equation (5.2) (a more detailed derivation can

be found, for example, in [34]), we arrive to a set of fluid equations:

ωñ+ 2ñ + 2T̃ + 4(u+ k̂‖)w̃ =

[

R

Ln
− 2

]

φ, (5.3)

ωw̃ + 4w̃ + 2(u+ k̂‖)ñ + 2(u+ k̂‖)T̃ =
[

u′ − 2(u+ k̂‖)
]

φ, (5.4)

ωT̃ +
4

3
ñ+

14

3
T̃ +

8

3
(u+ k̂‖)w̃ =

[

R

LT
− 4

3

]

φ, (5.5)
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Figure 5.1: Tilting angle illustration in terms of turbulent eddies in the poloidal cross-
section for two turbulent modes (TEM and ITG simulations from [20]) and the distri-
bution of potential fluctuations over the extended poloidal angle (from GKW [69])

where we exploit the following notation and normalizations:

u′ =
R2

vth

dΩ

dr
, u =

RΩ

vth
, k̂‖ = −k‖vth

4ωD
with ωD = − kθT

eBR
. (5.6)

The combination of equations (5.3) and (5.4) yields

w̃
[

ω + 4
(

1− û2
)]

=

[

u′ − û

(

R

Ln
− ω

τ

)]

, (5.7)

where û = u+ k̂‖ and we used the quasineutrality condition φ = Zτñ assuming Z = 1,

τ = Te/T , which suggests main plasma ions as the principle medium of turbulent

momentum transport.

Expression for the toroidal stress Πϕρ ∝ Im(φ†w̃) can be then derived as

Πϕρ ∝ u′ − 4û
(

1− û2
)

− û
R

Ln
, (5.8)

and the residual part is then expressed in the following form:

Πres
ϕρ

χ̂ϕ
= k̂‖

[

R

Ln
− 4

τ

(

k̂2‖ − 1
)

]

(5.9)

One way to proceed is to introduce a representation of the parallel wave vector

and its square as k‖ = ŝθ0/(qR) and k
2
‖ = 1/(qR)2, with q the safety factor and ŝ the

magnetic shear. The normalized quantities become

k̂‖ =
k‖vth
4ωD

=
k‖R

2kθρi
=

ŝθ0
2qkθρi

, k̂2‖ =
1

4q2(kθρi)2
.

The resulting expression for the residual stress after recovering all normalizations and

making an ITG-relevant assumption kθρi = 0.5 can then be written as

Πres
ϕρ = ρmχϕ

vth
R2

ŝθ0
q

[

R

Ln
− 4

τ

(

1

q2
− 1

)]

. (5.10)
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This formula is similar to formula (26) obtained in the work [20]. Despite this approach

being fully analytic, it implies a strong assumption, that is k‖ ∝ θ0, which needs

verification.

In practice, TGLF is used to compute the parallel wavenumber from the turbulent

spectrum given the tilting angle θ̂0 as an input parameter. Unfortunately, it is not

possible to find the angle self-consistently, because TGLF is a local model and does

not contain global effects. It is possible to obtain θ̂0 from gyrokinetic global simulations,

and this work has been done [70] for a few plasma conditions, but such simulations

are very computationally demanding and are not suitable for extensive studies. At the

same time, the range of values used in this work is consistent with the results of global

modelling. After k‖ is computed, the residual stress calculation generally follows the

logic presented above, but in real geometry.

5.2 Rotation modeling setup

The ASTRA transport code is used, coupled to the TGLF transport model and

the drift-kinetic solver NEO. The discharges simulated are the same as described in

Sec. 3.2.2. The modelling setup is also similar, though a few differences require men-

tioning. The profiles of current density, electron and ion temperatures evolve freely

and consistently with the related transport coefficients, until an equilibrium is reached.

The electron density evolution is allowed, but the time scale is set to very long (by

means of an additional diffusivity as described in [74]). This way the density profiles

may vary and eliminate any inconsistencies with the transport coefficients, but stay

very close to experimental. This is important, because the tilting mechanism seems

to be sensitive to density gradients, and a little modification of the density profile

might lead to a significant change in the required tilting angle θ0. Boron is included

as single impurity species, with density defined by the same effective charge scaling,

Zeff = 1+3.2I3p/n̄
3
e (Ip in MA, ne in 1019m−3). The impurity concentration profiles are

assumed flat. This assumption is verified with separate impurity transport simulations,

presented in Sec. 5.7. Such amount of attention to the impurity content is paid due to

its effect on turbulence, especially ITG, which has been shown previously, in Sec. 4. A

model for sawtooth instability implemented in this work is Kadomtsev-type [75] and

results in the current profile flattening in the core, with consequences on the Ohmic

power profile. The heat conductivities at the edge are modified in the same way as

described in Sec. 4.

Another notable difference is the radiated power model. Recently recovered soft

x-ray measurements demonstrated that the major radiated power comes from the edge

and the SOL. Fig. 5.2 shows some of these measurements with dashed lines. Although

individual profiles vary, they typically can be decomposed into a roughly flat part and

a bump on top of it that reaches its maximum at the edge and continues to the SOL.
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Figure 5.2: Radiated power profiles measured with bolometric diagnostics (dashed) and
its approximation used in the modeling (solid), shown for three different mean densities
in each case.

Following this observation, a scaling has been designed in the form

Prad = 0.013Ip + 0.001n2
e,0 exp

(

1− x

0.02

)

, (5.11)

valid for all discharges under consideration. The resulting profiles are shown in Fig. 5.2

with solid lines. When integrated over the plasma volume, both the measured and the

fit radiation profiles amount to roughly 60% of the total radiated power, measured

separately. The difference is considered to be radiated from the SOL, which does not

enter this modeling. The presented approach is somewhat different from that used in

the energy confinement time modeling, where the radiation profiles were computed by

ASTRA subroutine assuming tungsten to be the radiation source. However, no effect

has been noticed on the resulting temperature profiles, presumably due to the stiffness

of turbulent transport.

The momentum transport part of the model is as follows. ASTRA solves the

momentum transport equation (5.1) for the parallel fluid velocity of deuterium u‖, the

toroidal velocity is taken as a projection:

vϕ(r) =
R0 +∆S + r

R0

u‖(r),

where R0 is the tokamak major radius, ∆S is the Shafranov shift of flux surfaces and

r is average minor radius of the flux surface (to be distinguished from ρ introduced

previously). This is an approximation of a more general expression vϕ = u‖B0/Bϕ,

which is valid for L-mode plasmas where J ≈ 1 (see the definition below), because the

poloidal beta βθ = β q/ε is small. In order to be able to compare to the CXRS-measured

velocity profiles, the deuterium-boron differential rotation is accounted for, so that

VD = VB+Vdif (see details in Sec. 5.3). The boundary condition for the parallel velocity

is set at r/a ≈ 0.8, where also the last experimentally measured value of vϕ is obtained.

The momentum diffusivity (viscosity) χ‖ is related to the ion heat conductivity as

χ‖ = Pr ·χi with Pr the Prandtl number, which, when computed gyrokinetically, takes



76 CHAPTER 5. INTRINSIC TOROIDAL ROTATION MODELING

values around unity. There have been experimental studies suggested Pr to be in the

range 0.6 - 2 for various plasma conditions [18, 76], but normally somewhere below 1.

Here we use the value Pr = 0.9, but set an additional limit χ‖ > 0.5m2/s, in order

to avoid unlimited acceleration. This additional restriction only affects the plasma

at r/a ≈ 0.2, between the radial regions of high sawtooth activity and developed

turbulence.

ASTRA computes the diffusion and pinch fluxes terms of equation (5.1) as:

Γdif =
R0

J

〈

(∇ρ)2
〉

ρmχ‖u
′
‖, (5.12)

Γpin =
R0

J

〈

(∇ρ)2
〉

ρmVpu‖, (5.13)

where J = Ipol/R0B0 is the normalized poloidal current function, ρm is the mass

density, u′‖ = −R∇ru‖/vth,i is the normalized gradient of the parallel velocity. The

pinch velocity Vp can be defined as

Vp = − 1

R0
χ‖

√
ε

(

1

2
R/Ln + 2.7

)

, (5.14)

following the analysis in [77, 78]. If the residual stress term is provided, ASTRA uses

it in the transport equation, as well.

TGLF produces the stress tensor as a sum of the diffusive (diagonal) and the

residual parts. Therefore, before using it in the momentum transport equation one

has to subtract the diffusive part to avoid double counting. A problem might arise

here, since the diffusion term (5.12) may differ from that of TGLF. Test simulations

have shown that the TGLF total stress is close to zero in the core, inside r/a ≈ 0.2,

especially in low density plasmas, so a subtraction would lead to a cancelation of

explicit ASTRA diffusion and an unstable behavior of the velocity profile. To avoid

this, the Heaviside function h(0.2) is applied on the subtracted expression. The value

0.2 is fixed for simplicity, even though the position where the stress vanishes may vary.

Another measure used here for stability is a slight increase of χ‖ before it is inserted

into TGLF (by approx. 0.1m2/s). In the following, the residual stress discussed is the

difference between the TGLF stress tensor and the diffusive term.

Figure 5.3: Tilting angle scaling

The choice of the tilting angle profile is defined by several limiting considerations.
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On the magnetic axis it is expected θ0 = 0 for symmetry reasons, also since the pressure

profile is flat there. It can increase towards the edge, but not exceed π/2, which would

mean purely poloidal structure. Close to the edge θ0 may decrease again, due to the

strong turbulence self-organization aiming to enhance the transport. having this in

mind, it is decided to represent the tilting angle by a general expression

θ0 = a(1− r)b + crd, (5.15)

which yields shapes shown in Fig 5.3 with θ0 measured in radians (for a given value

a = 0.3). Various parameter values have been tested. Interestingly, almost no effect

has been noticed upon variation within the limits shown by the shaded regions. What

matters the most is the value around the mid-radius, where θ0 = a. In the final

simulations, no edge variation is assumed, c = 0, and a modest core increase rate with

b = 8 is chosen. The profile adjustment to match the measured velocity profile is done

by varying the a parameter alone. More discussion on the θ̂0 profile shape is given in

Sec. 5.4.

5.3 Toroidal differential rotation

We make a particular stress on the fact, that the CXRS measurements of the toroidal

rotation result in a velocity profile for the chosen impurity species (in our case boron)

and not the main plasma ions. While it is usually assumed that the difference between

the rotation velocities of the two species is negligible, a stricter approach would be to

account for the differential rotation as it appears in neoclassical theory. A simplified

expression for the differential rotation frequency is derived in [72] under the assumption

of low impurity concentration. It takes the form

ωImp − ωi =
3

4
K2

vth,i
R

ρip
LTi

(5.16)

where ρip = mivth,i/ZieBp, and K2 is a function of the plasma collisionality, aspect

ratio and impurity concentration, in our case K2 varies from zero on the magnetic axis

to 0.65 < K2 < 0.7 at the edge.

Fig. 5.4 compares the toroidal velocity difference obtained with formula (5.16)

and with NEO in the high current case. The two match to a reasonable degree up to

r/a = 0.8, while higher discrepancy is observed further towards the edge. So, a good

approximation is available without any noticeable additional computational demands.

Still, since NEO also provides poloidal velocities for both ion species, which are an

important ingredient to compute the neoclassical corrections ∆neo, in our calculations

we implement the NEO code, that directly solves the drift-kinetic equation.

The importance of accounting for the differential rotation can be easily proven.

The typical values are of the order of several km/s, that in the considered case of

ohmic plasmas amounts to up to tens of percent of the boron toroidal rotation velocity.
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Figure 5.4: Toroidal differential rotation of main deuterium plasma and boron impurity
(VD − VB) from NEO (solid lines) and simplified formula (5.16) (dashed lines)

Additionally, for hollow velocity profiles this shifts radially the point of Vϕ = 0, that

leads to a different distribution of the radial momentum flux caused by the convective

term.

A typical feature of CXRS-measured profiles is the flattened central region, and

the differential rotation profile increases up to approximately the same radial point,

so the derived deuterium velocity would decrease towards the axis monotonously. In

fact, the differential rotation in the center up to r/a ≈ 0.25 is mainly defined by R/LTi
through the dependence of deuterium poloidal velocity on its temperature gradient.

Considering inaccuracies in Ti measurements close to the magnetic axis, the compensa-

tion can be assumed exact. It would also provide a handy cross-check tool between Vϕ
and Ti measurements, if one assumes that the radial position where the boron velocity

profile bends is the same as where the LTi profile does.

5.4 Rotation simulation results

With the approach described above it is possible to reproduce the observed velocity

profiles to a good accuracy, finding a proper tilting angle for each plasma state. The

results are presented in this section in the following way: the values averaged over

r/a = 0.4−0.6 are shown with black dots for each simulated plasma state. Five states

in each current case are selected and shown in color that represent typical regimes. For

these selected cases also the profiles of the important quantities are presented.

Some simulated toroidal velocity profiles in comparison with the measurements

for the density scan at Ip = 0.62MA are presented in Fig. 5.5. With the boundary

condition set at r/a = 0.8, the simulated rotation profiles and, more importantly,

their mid-radius gradients are close to experimental. The gradient region extends

approximately from 0.2 to 0.7 of the normalized radius, and they all feature a central

bump inside r/a = 0.2, as discussed previously.

Fig. 5.6 presents the corresponding simulations parameters for the lower cur-

rent case. Subfigure 5.6, a shows the θ̂0 mid-radius value used as TGLF input,

subfigure 5.6, b presents the simulated normalized velocity gradient u′ averaged over
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Figure 5.5: Comparison of the boron toroidal velocity profiles as measured (dashed) and
simulated (solid) at Ip = 0.62MA (left) and Ip = 1.04MA (right).

a)

b)

c)

d)

e)

f)

Figure 5.6: Simulation parameters at Ip = 0.62MA: a) input tilting angle, b) simulated

u′, c) averaged parallel wavenumber 〈k̂‖〉 from TGLF, d) residual stress Πres
ϕρ from

TGLF; e and f) radial profiles of 〈k̂‖〉 and Πres
ϕρ for the colored data points

r/a = 0.4 − 0.6. The values of 〈k̂‖〉 and Πres
ϕρ produced by TGLF are shown in sub-

figures 5.6, c and d, and subfigures 5.6, e and f present the radial profiles of these

quantities for the five “colored” plasma states (residual stress is actually “residual”,

with diffusion extracted). Interesting to note that θ̂0 varies with the increase of density

in a complicated manner, starting from slightly negative values at low density, increas-

ing to ≈ 0.5 around the density of maximum R/Ln and LOC-SOC transition, and then

gradually falling down below 0.1 at the highest density achieved in the experiment. At

the same time, 〈k̂‖〉 and Πres
ϕρ scale roughly linearly to ne and to each other. They also

reach a maximum and then fall down, but at a considerably higher density than θ̂0.

This suggests that the analytic approximation k‖ ∝ θ0 is only valid at low density.

The trend shown by the residual stress is identical to that of u′. The profiles of 〈k̂‖〉
and the residual stress show rather complicated and irregular structures and are not

directly correlated, only in the average amplitude. The profiles’ behavior outside 0.8

of the normalized radius has no effect on the toroidal velocity due to the boundary
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condition.

The initial hypothesis related the momentum transport mechanism to turbulent

structures tilting, therefore it is reasonable to correlate the obtained tilt angles to the

turbulence characteristics of the corresponding plasma conditions. Fig. 5.7 presents

the evolution of the dominant turbulent mode real frequency in three radial positions,

somewhat similar to Fig. 4.13. As already discussed in Sec. 4.2.6, at low density most

scales are dominated by electron modes (TEM in the considered range), while with

the density increasing ITG takes over. The TEM-ITG transitions occur at various

radial positions at different densities (collisionalities). The transition range of density

coincides with that where θ̂0 increases. We may assume that small negative angles

θ̂0 ≈ −0.1 are a TEM feature, while θ̂0 ≈ 0.5 is typical for ITG, since it is reached

when ITG takes over most of the plasma core. At high density, the gradual reduction

of the poloidal tilting may be explained by increased radial alignment of strong ITG

turbulence. In principle, for the same reason the tilting should decrease close to the

edge.

Figure 5.7: Dominant mode real frequency ω in the range kyρs = 0.1 − 2 for the case
Ip = 0.62MA for three radial points: 0.5, 0.6 and 0.7.

To support this idea, Fig. 5.8 shows the evolution of turbulence real frequency ω

at three mean density values along the TEM-ITG transition, resolving it radially and

presenting a picture similar to Fig. 4.14. These three states correspond to θ̂0 values

−0.1, 0.3 and 0.6, respectively. Note, that the low-k positive frequency spot at the

edge is a modelling artifact, since the boundary was fixed at r/a = 0.8 and affected

the density gradient there. The feature is absent in Fig. 4.14, where the boundary was

set at the separatrix.

It should be noted that setting positive θ̂0 at low density or negative θ̂0 at high

density in the simulations would result in a negative residual stress, which would drag

the core rotation in the co-current direction. Taking into consideration that TEM

and ITG modes propagate in opposite poloidal directions, it can be assumed that the

turbulent residual stress depends on ω, or at least its sign.

Figure 5.9 shows the simulation parameters for plasmas at Ip = 1.04MA. All

the features discussed for the Fig. 5.6 present here as well, but shifted to higher mean
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Figure 5.8: Dominant mode real frequency ω in the range kyρs = 0.1 − 2 for the case
Ip = 0.62MA for three mean densities along the transition from TEM to ITG-dominant

density values. Here the region of “high density, flat rotation” plasma states is pre-

sented by several data points, while the region of TEM-ITG transition has rather poor

resolution in the density scan. Both u′ and θ̂0 reach slightly lower maximum values

than at the lower current, but k̂‖ profiles are very similar, and the residual stress is

notably larger.

a)

b)

c)

d)

e)

f)

Figure 5.9: Simulation parameters at Ip = 1.04MA: a) input tilting angle, b) simulated

u′, c) the averaged parallel wavenumber 〈k̂‖〉 from TGLF, d) the residual stress Πres
ϕρ

from TGLF; e and f) radial profiles of 〈k̂‖〉 and Πres
ϕρ for the colored data points

A R/Ln-scaling of u′ has been suggested previously [12, 13]. Indeed, as has

been demonstrated in Sec. 4.2.5, the density peaking maximizes at about the same

mean density as u′, with the latter shown to scale as θ̂0. Both of these processes are

attributed to the transition from TEM to ITG dominant mode. At higher densities the

peaking is also reduced, when ITG is strong in the plasma core. A weaker experimental

dependence of u′ on the logarithmic temperature gradients has also been reported

in [13]. In this work it has been shown (see Fig. 4.6 in Sec. 4.2.1) how R/LTI varies
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along the density ramp-up, and a correlation with θ̂0 can indeed be found. However, it

does not contradict the hypothesis of the turbulent nature of the residual stress, but

rather may give a hint on the details. For example, a reduction of θ̂0 at high density

may be explained by stronger ITG turbulence, among other factors due to an increase

in R/LTi .

5.5 Parametric scans study

In order to study in more detail how 〈k̂‖〉 scales with θ̂0 and find other relevant factors,

a single plasma state has been chosen with high velocity gradient (#27000, t = 4.1 s,

n̄e = 3.3× 1019m−3), and θ̂0 has been varied from below 0 to the fitting value (0.42 in

this case) and beyond that, up to 0.8. The model has not been changed, it constrains

the density profile variation and allows free evolution of electron and ion temperatures

and the parallel velocity. Additional attention has been paid to the heat conductivities.

It is known that a shift of turbulent eddies from radial alignment reduces their heat

transport effectiveness. This can be caused not only by the profile shearing mechanism,

but also by the flow shearing, i.e. finite gradient of toroidal or poloidal velocity. The

effect of finite θ̂0 and flow shearing can be estimated separately, if the rotation profile

is fixed to experimentally measured, but the tilting is set to zero.

The results of these exercises are presented in Fig. 5.10. Subfigures a, c and e

show the dependence of the normalized rotation gradient, parallel wavenumber and

the residual stress (all averaged over r/a = 0.4− 0.6) on the tilting angle, respectively.

Subfigures b, e and f show the radial profiles of the corresponding quantities. The

dashed black lines and circles represent the pure velocity shearing effect at experimental

vφ and θ̂0 = 0 (for u′ it is simply the experimental value). The vertical green lines

mark θ̂0 = 0.42.

At low tilting angles, |θ̂0| ≤ 0.3, the system response is linear to a high extend.

Moreover, it seems symmetric under the sign flip of the tilting, with negative angles

leading to rotation drive in the opposite direction. At θ̂0 > 0.3 the parallel wavenumber

does not increase linearly anymore, it starts to degrade. The residual stress continues

to increase, but in a different manner: instead of a broad bump between the normalized

radius points 0.3 and 0.8, there appears a single peak around r/a = 0.55. At θ̂0 > 0.7

Πres
ϕρ demonstrates a rapid rise, and the core rotation velocity exceeds 105m/s (not

shown on the plot). The linear part resembles the LOC phase evolution, as well as the

late SOC phase (reversed).

The ion heat conductivity variation with the tilting angle is shown in Fig. 5.11.

Note, that only the turbulent contribution changes, while the neoclassical part is not

affected, but the latter is roughly one order of magnitude smaller. Fig. 5.11 also

presents the central ion temperature values, in order to see the effect of changing χi
on a measureable quantity. The χi demonstrates only little variation up to moderate

tilting angle values, θ̂0 ≤ 0.4. After this point, a notable reduction occurs, which also
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a) b)

c) d)

e) f)

Figure 5.10: Scan of the tilting angle for plasma parameters: a) normalized mid-radius
rotation gradient u′ and b) the corresponding toroidal rotation velocity profiles, c) the
mid-radius averaged parallel wavenumber 〈k̂‖〉 and d) its radial profiles, e) the mid-
radius averaged residual stress Πres

ϕρ and its radial profiles.

Figure 5.11: Mid-radius ion heat conductivity as a function of the tilting angle, and
the corresponding central ion temperature

leads to a slight ion temperature rise. However, considering the usual experimental

error bars on Ti around 10% and the experimentally relevant range of θ̂0 < 0.5, this

effect seems too small to serve as an indicator of the turbulence tilting in Ohmically

heated plasmas. The velocity shearing effect alone has a negligible influence on χi.

There is likely a mutual impact of the residual stress and the ion heat conduc-

tivity, which is related via the Prandtl number to the viscosity χ‖. Velocity shearing

reduces χ‖, it leads to larger velocity gradient that shears the turbulence even more.

This might explain an abrupt increase of Πres
ϕρ at large tilting angles, however the
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corresponding high rotation velocities have not been observed experimentally, which

suggests that the related range of parameters (θ̂0 > 0.7) has not been reached.

The analysis above concludes that 〈k̂‖〉 ∝ θ̂0 at small tilting angles, but also

suggests that in general the function k̂‖(θ̂0) is not just linear, but rather 〈k̂‖〉 = θ̂0·f(...),
where parentheses may include mode growth rates and frequencies, which are also the

functions of θ̂0. This explains the linearity of k̂‖ at tilting close to zero and the non-

linearity at larger θ̂0. Also, 〈k̂‖〉 is the integral value over all kyρs, and the impact of

tilting at different scales may vary.

An exercise has been performed to investigate the effect of various plasma pa-

rameters on 〈k̂‖〉. The method is similar to that described in Sec. 4.2.7, it consists in

the modification of single quantities in the TGLF input files. In this study the values

are not taken from other plasma states, but represent a scan over some realistic range.

The quantities tested are: logarithmic gradients of density R/Ln, electron tempera-

ture R/LTe and ion temperature R/LTi , the temperature ratio Ti/Te, collisionality ν∗
and the effective charge Zeff . Since the momentum transport mechanism may depend

on the dominant turbulence mode, two plasma states at have been studied: an early

LOC phase with ne = 1.6 × 1019m−3, θ̂0 = −0.07, and an early SOC phase with

ne = 3.2 × 1019m−3, θ̂0 = 0.35, both at Ip = 1.04MA. These plasma states have

already been shown to be dominated by TEM and ITG, respectively.

a)

b)

c)

d)

e)

f)

Figure 5.12: Parameter scans of k̂‖ for a TEM-dominated plasma

The illustrating plots for the TEM state are collected in Fig. 5.12, for the ITG

state – in Fig. 5.13. They present radial profiles of k̂‖ rather than single or averaged

values, in order to resolve a radial shift of the profile peak that occurs in some cases.

The default, natural k̂‖ is denoted by a thick black line, it is the same in all the plots.

The corresponding number in the legend shows the natural parameter value at the

radial position of the dashed black vertical line, i.e. around r/a = 0.51. Colored lines

represent k̂‖ profiles obtained with the control parameter changed by a factor (except
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a)

b)

c)

d)

e)

f)

Figure 5.13: Parameter scans of k̂‖ for an ITG-dominated plasma

for Zeff) over its whole radial profile. For R/Ln, R/LTe , R/LTi and Ti/Te the factors

vary from 0.5 to 1.6, for the collisionality the range is from 0.1 to 5. Scaling of the

effective charge is done over a range of fixed values, from 1.0 to 2.6, and the Zeff profile

is flat.

The parameter dependencies presented are rather complicated, but some mean-

ingful trends can be identified over limited parameter ranges. For example, in the TEM

case, increasing R/LTi , Zeff or ν∗, or reducing R/LTe moves k̂‖ towards positive values.

In the ITG case, the maximum k̂‖ scales positively with R/Ln, R/LTe, Ti/Te and ν∗,

while higher impurity concentration tends to decrease it. Additionally, k̂‖ is insensitive

to the ion temperature gradient in the ITG regime. Generally, one can conclude that

there can not be a direct relation between θ̂0 and u′, the residual stress generation

mechanism is complex, and many factors are involved.

5.6 Conclusions on momentum transport modeling

The working assumption of this study was the residual stress generation mechanism

through the poloidal tilt of the turbulent global mode structure due to the radial

variation of equilibrium plasma profiles. Simulations of L-mode Ohmic plasmas in

AUG at various conditions have been performed with ASTRA-TGLF-NEO system,

supported by experimental measurements. A proper account for the difference in the

toroidal rotation velocity of deuterium and boron is made, which has been usually

neglected in the past.

The modelling has yielded the tilting angle θ̂0 values necessary to explain the ob-

served plasma toroidal velocity profiles, namely the transitions from flat to hollow shape

and back with the increase of plasma density. Those are in a general agreement with

the results of non-linear gyrokinetic modeling with GKW of the same plasma condi-
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tions described in [70]. A relation of the tilting to drift-wave turbulence characteristics

is suggested. The picture seems consistent with experimentally observed scaling of the

normalized rotation gradient u′ with the normalized density gradient [12, 13].

The results generally confirm the fluid equations relating the residual stress, the

mean parallel wavenumber 〈k̂‖〉 and the tilting angle at low θ̂0, even though the relation

between 〈k̂‖〉 and θ̂0 is found to be more complicated than linear. Dependencies of 〈k̂‖〉
on a number of plasma parameters have been studied with TGLF parametric scans,

confirming complexity of the residual stress generation mechanism.
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5.7 Simulation of boron density profiles

It was assumed in the modelling of L-mode Ohmic discharges that boron is the only

impurity in the plasma, and that the corresponding plasma effective charge follows the

proposed scaling 4.5. It was also assumed that the concentration of boron is radially

constant. This assumption is based on the modelling of boron transport, which results

are presented in this section.

The boron transport simulations for the same discharges feature fully self-

consistent evolution of electron and ion temperatures, as well as electron and boron

densities, so TGLF treats boron as kinetic species. Both electron and boron density

are modelled with a free boundary value, defined by a prescribed edge flux. The boron

source was adjusted for each data point so that the average Zeff matches to the exper-

imental scaling. Plasma rotation is modelled in accordance with the setting described

in the previous section.

Figure 5.14: Simulated boron density, concentration and the profile hollowness factor
at Ip = 1.04MA

Figure 5.15: Simulated boron density, concentration and the profile hollowness factor
at Ip = 0.62MA

The resulting boron density profile and the boron concentration profile for the

case with Ip = 1.04MA are shown in Fig. 5.14 (a, b). At low density, more impurity is

accumulated at the edge, leading to a concentration profile with ≈ 30% hollowness, see

Fig. 5.14, c. As the electron density increases, boron distributes more uniformly, and at

n̄e ≥ 4×1019m−3 its concentration is effectively flat. In the plasmas with Ip = 0.62MA

(Fig. 5.15) such uniformity is reached already at n̄e ≥ 2.2 × 1019m−3. Since the

deviation from uniformity is only observed at the plasma edge, the approximation of

flat boron concentration is consistent with the model predictions.
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Chapter 6

Conclusions

The aim of this work is a detailed analysis of transport processes in L-mode toka-

mak plasmas, for which the understanding of physical mechanisms is missing or not

complete. The analysis is done via integrated modelling of actual plasma discharges

performed in the ASDEX Upgrade tokamak, employing the ASTRA-TGLF modelling

package. The major questions that have been posed before us, are:

• What causes the saturation of the energy confinement time in Ohmically heated

plasmas? Does the dominant turbulence regime fully define the energy confine-

ment time scaling? What is the role of the impurity concentration?

• What is the dominant mechanism of spontaneous toroidal rotation in tokamak

plasmas? What are the crucial plasma parameters that control the magnitude of

this effect?

On the other hand, thorough modelling serves as a validation of the TGLF transport

model against experimental measurements, which is an essential stage in the process

of development of physical models. The degree of agreement of the measured and pre-

dicted plasma parameters can support the model correctness or point out the possible

issues.

6.1 Summary of results and outlook

The analysis of plasma simulations during density ramps allowed us to relate the energy

confinement time evolution with the properties of core plasma turbulence. It has been

shown that the plasma core at low density is dominated by TEM turbulence, while the

ITG mode is stable, and the ion channel of turbulent heat transport is weak. With

the increase of density, TEM is suppressed by higher collisionality, ITG is destabilized

and starts to dominate both electron and ion heat transport channels. Switching of

different ky-scales between TEM and ITG dominance occurs gradually both along the

radial coordinate and the density scan, with the mid-radial region switching the last.

The latter is accompanied by the maximum in the density peaking factor, which is
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the ratio of the central density to the volume averaged value. The energy confinement

time saturation is observed as the ITG-driven heat transport keeps increasing, when

TEM is already well subdominant. The hypothesis of direct relation between TEM-

ITG dominant mode shift to LOC-SOC confinement regime transition has not been

confirmed. As the collisionality increases, the Te-Ti coupling becomes stronger, and

more thermal energy is transferred from the electrons to the ions. At low density, heat

transport in the electron channel is reduced, while the ITG mode that dominates the

ion channel is still weak. Hence, the total pressure in the core increases linearly with

the density. The increase of R/LTi and the reduction of impurity concentration lead to

ITG enhancement. The ion heat transport is strongly stiff and effectively exhausts the

thermal energy, so the total pressure in the plasma core saturates or starts to degrade,

and so does the energy confinement time.

The impurity content is confirmed to be an essential ingredient in the modelling

of plasma turbulence. It acts through dilution to stabilize the ITG at lower densities,

when impurities are more abundant. The observed scaling of Zeff with electron density

and plasma current correlates with the dependence of the energy confinement time

on these parameters. Additional impurity seeding reduces the turbulent heat flux in

the ion channel via ITG stabilization at higher densities and thereby can shift the

plasma to the IOC phase. It is demonstrated that high impurity content modifies the

spectrum of the most unstable modes, keeping ITG stable up to much higher electron

density if compared to the clean plasma. The best confinement improvement at high

density has been reached with Zeff ≈ 3. Some additional core ECR heating will reduce

the electron-ion coupling and also improve the L-mode confinement. However, the

dilution of main ion fraction makes the IOC regime unsuitable for fusion production,

as the reaction rate drops accordingly. The modelling of radial transport of low-Z

impurities represented by boron demonstrated the radial variation of its equilibrium

concentration. It has been shown to be hollow at low density and flatten out as the

density increases, with the approximation of radially constant concentration generally

reasonable.

In general, the physical picture drawn by these simulations is consistent. The

LOC-SOC transition has posed an open question for many years, and this work provides

a detailed answer, confirming some of the previous results and providing new insights

into this complex phenomenology. In particular, it has been shown previously that

the amount of impurities affects strongly the ITG turbulence intensity, and that ITG

is responsible for the energy confinement time saturation. On the other hand, the

problem has never been approached via an integrated modelling, which allowed us to

demonstrate the complex interplay of effects described above. The fact that the real

plasma conditions are modelled in an integrated manner is a necessity and at the same

time an advantage to gain understanding on the cause-effect relationships.

In the study of intrinsic plasma toroidal rotation a global mechanism of residual

stress formation due to profile shearing effect has been tested. Profile shearing here

means the effect of finite radial variation of background plasma parameters on the
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turbulent modes. In particular, it causes a poloidal shift of the maximum of potential

fluctuations from the outward midplane, and the consequent tilting of turbulent eddies

from the radial alignment. Such poloidal asymmetry of the distribution function (finite

mean parallel wavenumber 〈k̂‖〉) enables a substantial momentum transport. As has

been shown, this mechanism is able to explain the observed toroidal rotation profiles

in AUG L-mode plasmas with the assumption of tilt angles in the reasonable range,

θ̂0 ∈ [−0.1, 0.6] radians. The values required by TGLF to reproduce the experimental

intrinsic rotation profiles are consistent with the results of non-linear global gyrokinetic

simulation of the same plasma discharges. The evolution of the required tilting angle

with the plasma parameters suggests its relation to the dominant turbulence type,

which would explain the observed rotation reversal close to the density of maximum

density peaking. The picture seems consistent with experimentally observed scaling

of the normalized rotation gradient u′ with the normalized density gradient. The

results generally confirm the fluid equations relating the residual stress, the mean

parallel wavenumber 〈k̂‖〉 and the tilting angle at low θ̂0, even though the relation

between 〈k̂‖〉 and θ̂0 is found to be more complicated than linear. Dependencies of 〈k̂‖〉
on a number of plasma parameters have been studied with TGLF parametric scans,

confirming complexity of the residual stress generation mechanism.

As an outlook, establishing an analytical model of the tilting angle θ̂0 is needed,

in order to properly account for it in local simulations. However, from the practical

point of view, the conclusion can be drawn that high intrinsic rotation requires a

substantial normalized density gradient, so in plasmas of ITER and beyond, where the

density gradient in the core is expected to be small, the effect would be very weak.

Also, modelling of a conventional fusion reactor (DEMO) even with strong turbulence

tilting showed rather small residual stress. Note, that the edge toroidal velocity has

not been modelled in this work, and its mechanisms are so far unclear, which also

makes an important research topic.

6.2 Discussion on the transport modelling

The TGLF module of turbulence-driven transport for ASTRA has proven to be a

powerful and comprehensive transport model, presenting an effective tool for turbu-

lence modelling and analysis. In the simulations of L-mode Ohmic plasmas in ASDEX

Upgrade, the self-consistent profiles of electron temperature and density match the

measurements very accurately. A disagreement has been found between the predicted

and measured ion temperature profiles, which may be a result of an underestimation of

stiffness of the ion channel of energy transport. This discrepancy is shown to have little

effect the conclusions of this work, but is an important concern itself. Overprediction

of the ion temperature at high density has been an issue for other physical models,

too, which might be a sign of some unaccounted effects.

The current setting of TGLF (saturation rule 1) features an edge transport model
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for the electrons, but not for the ions, so some approximations and assumptions have

to be made in this regard. Development of an improved edge transport model is hence

of great importance. Consistent treatment of shear layers could advance QL transport

models and allow them to also predict the L-H transition. Coupling to the SOL would

also be advantageous, eventually leading to even higher degree of integration in the

modelling, covering a whole power plant.

This work shows once again the advantage of integrated modeling with QL trans-

port models to be fast at full plasma simulations in realistic conditions, even restricted

to the local limit. A global version of, for example, TGLF would include the profile

shearing effects, but it would require an extensive database of global non-linear gy-

rokinetic simulations for the model tuning, which is not considered practical in the

community.
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