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SUMMARY

High-frequency ‘‘burst’’ clusters of spikes are a
generic output pattern of many neurons. While
bursting is a ubiquitous computational feature of
different nervous systems across animal species,
the encoding of synaptic inputs by bursts is not well
understood. We find that bursting neurons in the ro-
dent thalamus employ ‘‘multiplexing’’ to differentially
encode low- and high-frequency stimulus features
associatedwitheitherT-typecalcium ‘‘low-threshold’’
or fast sodium spiking events, respectively, and these
events adapt differently. Thus, thalamic bursts
encode disparate information in three channels: (1)
burst size, (2) burst onset time, and (3) precise spike
timing within bursts. Strikingly, this latter ‘‘intraburst’’
encoding channel shows millisecond-level feature
selectivity and adapts across statistical contexts to
maintain stable information encoded per spike.
Consequently, calcium events both encode low-fre-
quencystimuli and, inparallel, gatea transientwindow
for high-frequency, adaptive stimulus encoding by
sodium spike timing, allowing bursts to efficiently
convey fine-scale temporal information.

INTRODUCTION

Complex spiking patterns are a defining property of thalamic

neurons and arise from the interplay between fast and slow

intrinsic membrane properties. Fast sodium-dependent action

potentials (APs) in thalamic neurons can be driven by slow depo-

larizations resulting from the activation of the T-type calcium cur-

rent (IT) (Jahnsen and Llinás, 1984a). IT availability is tuned by

membrane potential, and at physiological extremes, this voltage

dependency supports discrete ‘‘modes’’ of spiking: a stimulus

may trigger either a single ‘‘burst’’ of high frequency (>100 Hz)

APs overlaid on a low-threshold calcium spike (LTS) or a train

of regular ‘‘tonic’’ APs when IT is unavailable.

This complex intrinsic property is common to all thalamic

systems (Llinás and Steriade, 2006), and the characteristics of

IT appear to be evolutionarily conserved and subject to signifi-
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cant functional constraints (Senatore et al., 2012). However,

despite the ubiquity of this markedly nonlinear behavior, the

functional role of thalamic bursting is not understood. Early

studies of thalamic information processing largely focused on

the difference between the two spiking modes, suggesting that

thalamic bursting may not encode any information and instead

indicates a state of ‘‘sensory uncoupling’’ (Coenen and Vendrik,

1972; Livingstone and Hubel, 1981) or serves as a strong but un-

specific ‘‘wake-up call’’ to the cortex, while tonic spiking serves

to encode fine stimulus details (Sherman, 2001).

More recently, this strict burst/tonic functional dichotomy has

been rejected with the widespread observation of burst spiking

in awake animals (Ramcharan et al., 2000; Fanselow et al.,

2001; Martinez-Conde et al., 2002; Weyand et al., 2001; Swa-

dlow and Gusev, 2001). Furthermore, in vivo studies in the cat

primary visual thalamus have demonstrated that thalamic bursts

can convey significant information about sensory inputs (Guido

and Weyand, 1995; Weyand et al., 2001; Reinagel et al., 1999;

Martinez-Conde et al., 2002), particularly in response to stimuli

with naturalistic spatiotemporal structure and correlation

(Wang et al., 2007; Lesica and Stanley, 2004; Denning and Rein-

agel, 2005; Lesica et al., 2006; Alitto et al., 2005). Thalamic neu-

rons also adapt in response to ongoing stimulation (Simons and

Carvell, 1989; Maravall et al., 2013; Lesica et al., 2007), and

control of adaptation has been associated with modulation of

bursting (Mease et al., 2014; Whitmire et al., 2016; Wolfart

et al., 2005).

Much of the progress in understanding how thalamic spiking

patterns encode information has been made by characterizing

in vivo responses to complex, naturalistic stimuli in intact circuits

using reverse correlation (de Boer and Kuyper, 1968), linear-

nonlinear modeling (Korenberg and Hunter, 1986), and/or infor-

mation theoretic methods (Butts et al., 2010; Alitto et al., 2005;

Lesica et al., 2006, 2007; Lesica and Stanley, 2004; Reinagel

et al., 1999; Maravall et al., 2013; Petersen et al., 2008; Gaudry

and Reinagel, 2008; Denning and Reinagel, 2005). These studies

have shown that compared to tonic spikes, burst onset timing

carries distinct sensory information (Reinagel et al., 1999; Alitto

et al., 2005; Lesica et al., 2006; Lesica and Stanley, 2004; Den-

ning and Reinagel, 2005) and that the number of spikes in a burst

(Gaudry and Reinagel, 2008) or spiking ‘‘episode’’ (Butts et al.,

2010) can carry additional information. In combination with the

known intrinsic properties of thalamic neurons, these studies
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Variation in Thalamic Spiking

Events In Vivo

(A) Example thalamic burst recording in vivo from

a juxasomally recorded POm thalamic neuron in

a urethane anesthetized mouse. Here, thalamic

spikes are driven by spontaneous cortical inputs

from layer 5 in the barrel cortex as described in

Mease et al. (2016c).

(B) POm spiking event rasters for a group of POm

in vivo recordings triggered on the first spike in a

burst (n = 23 neurons, different colors) pooled from

11 animals.

(C) ISIs sorted by spike order, pooled across neu-

rons shown in (B).
predict that thalamic stimulus encoding is largely shaped by IT.

However, the systems-level advantage of in vivo prepara-

tions—the ability to map spiking patterns to peripheral sensory

inputs—also makes it difficult to disambiguate circuit and sin-

gle-neuron properties, experimentally control the precise statis-

tics of currents driving the neuron of interest, or manipulate

biophysical properties. Therefore, questions regarding intrinsic

information processing in single neurons are currently most

tractable using in vitro methods.

Recent in vitro studies have provided richer understanding of

the biophysical properties supporting bursting, demonstrating

that IT is active at depolarized resting potentials seen in the

awake state (Bessaı̈h et al., 2008; Lambert et al., 2014; Dreyfus

et al., 2010) and also contributes to presumed ‘‘tonic’’ spiking

patterns (Deleuze et al., 2012). However, despite agreement be-

tween in vitro and in vivo lines of evidence that thalamic informa-

tion processing is more nuanced than binary switches between

tonic and burst output modes, it is unknown how features of syn-

aptic inputs are encoded by thalamic bursts.

In the present study, we use direct current injection into single

neurons along with manipulation of channel dynamics to eval-

uate how the intrinsic properties of thalamic neurons shape their

coding properties. We apply in vitro reverse correlation and

linear-nonlinear modeling in rodent thalamic neurons of the pos-

terior medial thalamic nucleus (POm) using whole-cell patch-

clamp recordings and Gaussian noisy current stimulation. POm

is a ‘‘higher-order’’ thalamic nucleus in the whisker system that

receives diverse and well-characterized synaptic inputs,

including powerful excitatory inputs from layer 5B (L5B) of barrel

cortex (Groh et al., 2008, 2014; Reichova and Sherman, 2004;

Mease et al., 2016c; Sherman and Guillery, 2006). For a subset

of experiments, we used the presence of these L5B inputs to

precisely target neurons in the POm (Groh et al., 2008). These

approaches allowed us to quantify thalamic single-neuron

computation in isolation from network-level effects while limiting

assumptions about input statistics. We could then quantify how

characteristics of the input current are encoded by different

properties of thalamic bursts and relate this code to underlying

biophysical mechanisms.

We begin by framing the issue of burst encoding using in vivo

POm data illustrating that thalamic bursts are not uniform (see

also Reinagel et al., 1999; Wang et al., 2007; Martinez-Conde
et al., 2002; Gaudry and Reinagel, 2008) and vary with respect

to size, frequency, and spike timing within burst events. We

next establish our in vitro analysis approach by comparing the

classic burst and tonic modes in the linear-nonlinear model

framework andwith information theoreticmethods. Our prepara-

tion allows us to study the encoding properties of thalamic bursts

at a higher level of detail than in previous work and to determine

how intrinsic thalamic adaptive properties change the encoding

as the statistical context of the current stimulus varies.

Our first main result is that bursts convey an unexpected level

of stimulus detail via multiple channels: the times and sizes of

burst events and,most strikingly, the precise timing of APswithin

bursts as well. These data show that thalamic neurons employ

multiplexed stimulus encoding in that bursts can simultaneously

encode both high- and low-frequency information. The second

main result is that burst onset initiates a brief period of efficient

encoding in which adaptation normalizes AP initiation according

to background fluctuations. These findings suggest that the

post-synaptic cortical targets of thalamic neurons may have ac-

cess to a far richer, more dynamic description of synaptic inputs

than has been assumed to date, and they show how many char-

acteristics of thalamic computation measured at the circuit level

arise from the intrinsic properties of single thalamic neurons.

RESULTS

In vivo, spontaneous cortical oscillations drive POm thalamic

neurons to spike without application of additional stimuli (Groh

et al., 2014; Mease et al., 2016c) (Figure 1). Figure 1A shows

an example recording of POm bursts and Figure 1B a group of

such recordings reported previously (Mease et al., 2016c).

Spiking events are non-uniform, in that bursts can contain a

variable number of spikes, and for each neuron, the timing of

successive spikes varies between events. The distribution of

successive interspike intervals (ISIs) (Figure 1C) shows that

ISIs vary over a window of more than 3 ms, even when spike

order is taken into consideration. Our goal here is to determine

how these features of bursts encode underlying synaptic inputs.

Understanding how variation in neural responses encodes

properties of the sensory scene or synaptic input currents is a

natural application for information theoretic approaches (Rieke

et al., 1997; Shannon and Weaver, 1963), and these methods
Cell Reports 19, 1130–1140, May 9, 2017 1131
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Figure 2. In Vitro Noise-Evoked Firing in

Thalamic Neurons Reveals Feature Selec-

tivity on Different Timescales

(A and B) Whole-cell in vitro patch-clamp recording

of a POm neuron illustrates burst (left) and tonic

(right) mode firing in response to (A) current step

(250 pA) or (B) noise stimuli.

(C) Event-triggered average (ETA) stimuli for a

representative POm neuron. Depolarization tran-

sitions ETA shape from a two-peaked biphasic

(black) to a simpler monophasic (gray) shape.

Similar results were seen in all neurons (n = 7

neurons recorded in both burst and tonic modes

and n = 8 additional neurons recorded only in burst

mode).

(D) Filtering the raw input stimulus IðtÞ (top) by the

ETAs shown in C preserves high-frequency oscil-

lations in the tonic case (stonic, middle) and slow

oscillations and small high-frequency oscillations in

the burst case (sburst , bottom).

(E) Input/output relations for tonic and burst ETAs

shown in (C). These functions relate the value of the

filtered stimuli shown in (E) to the probability of

generating a spiking event. Slopes fit to log-linear

portion of IO relations for this neuron were 1.5 and

2.3 (units of log10 event probability/s
2) for burst and

tonic modes, respectively.

See also Figures S1–S3.
have been applied to thalamic spike trains recorded in vivo

(e.g., Gaudry and Reinagel, 2008; Butts et al., 2010; Denning

and Reinagel, 2005). Information theory allows one to quantify

how knowledge of a given neural response (e.g., the number

of spikes in a burst, or the timing of a spike) reduces uncer-

tainty—mathematically, the entropy of the distribution—about

the stimulus (e.g., motion of a whisker, or the net synaptic cur-

rent). This reduction in uncertainty is the information carried by

the response about the stimulus and is commonly measured in

bits; each bit of information indicates a 2-fold decrease in

uncertainty.

Averaging across the group of in vivo recordings in Figure 1,

the entropy of burst size is 0.77 ± 0.47 bits, and the spike-timing

entropy of spikes within bursts is 1.9 ± 1.0 bits (time bin =

0.4 ms). These variable quantities are channels by which

thalamic spiking events can possibly encode information. Moti-

vated by these in vivo observations of burst variability, we next

investigate how information about complex inputs can be en-

coded by the properties of POm bursts in a controlled in vitro

setting.

Noise Stimulation of Thalamic Neurons
As is characteristic of all thalamic relay neurons, POm neurons in

brain slices respond to depolarizing current steps (Figure 2A)

with either high frequency (>100 Hz) ‘‘bursts’’ of APs when hy-

perpolarized or regular ‘‘tonic’’ APs when depolarized (Jahnsen

and Llinás, 1984a; Landisman and Connors, 2007). In burst

mode, sodium APs are overlaid on an LTS, the slow (�50ms) de-

polarization arising from activation of the transient low-threshold

calcium current IT.

To understand how complex, time-varying stimuli are en-

coded during these two spiking modes, we measured the
1132 Cell Reports 19, 1130–1140, May 9, 2017
intrinsic stimulus encoding of POm neurons during stimulation

with broadband Gaussian ‘‘noise’’ current (Figure 2B). Neurons

responded with complex AP patterns in each mode, but the

overall spiking modes were maintained. In burst mode, re-

sponses consisted of clusters of APs overlaid on slow LTS depo-

larizations (Figure 2B, left), with burst events consisting of two or

more APs accounting for more than half of all events (38% ±

21%, 29% ± 9%, 18% ± 9%, and 15% ± 21% for event sizes

of one, two, three, or four or more APs, respectively; n = 15). In

contrast, in tonic mode, neurons produced APs at irregular inter-

vals in response to the same current waveform (Figure 2B, right).

The cumulative ISI distributions reflect these distinct patterns

(Figures S1A and S1B). In the following, we refer to either single

APs or bursts of APs as ‘‘spiking events.’’

Slow and Fast Timescales of Thalamic Intrinsic
Computation
We characterized the intrinsic computation of each thalamic

neuron as a linear-nonlinear cascade (Figures 2C–2E) consisting

of (1) a spike-triggering current feature and (2) a measure of

sensitivity to that feature, mapping input stimuli to output spiking

events. These two model components quantify the temporal

pattern of input current that trigger APs and the relative selec-

tivity the neuron has for this pattern. From the responses to

noise, we calculated the relevant feature as the ‘‘event-triggered

average’’ (ETA) current by triggering on either the first AP in a

burst spiking event or single APs in tonic mode. The ETA shows

the combination of current inputs that on average are most suc-

cessful in driving spiking events.

ETATonic (Figure 2C, gray) was a relatively brief depolarizing

current, indicating that tonic APs were generated by a sharp

monophasic depolarization within a 10 ms window. This



ETATonic is similar in form to ETAs measured in cortical neurons

(e.g., Mease et al., 2013). In contrast, the burst mode ETABurst

(Figure 2C, black) had a more complex biphasic shape and

long integration window, combining (1) a slow (�200 ms) oscilla-

tion consisting of a hyperpolarizing current followed by a broad

depolarizing current and (2) a very fast (<5 ms) oscillation con-

sisting of a brief hyperpolarizing current followed by a sharp de-

polarization immediately preceding the AP. This ‘‘compound’’

shape resembles the sum of two separate ETAs with long and

short integration windows.

Thus, the AP-triggering feature space changes dramatically in

timescale and amplitude between burst and tonicmodes, partic-

ularly with regard to the range of stimulus frequencies encoded.

We project the raw current stimulus IðtÞ into the dimensions

defined by ETABurst and ETATonic (Figure 2D) by finding the vector

dot product between each feature and the stimulus preceding

each spiking event. This procedure gives filtered stimuli sBurst
and sTonic, which measure the similarity between the raw stimuli

and the ETAs. The two spiking modes enhance distinct

frequency components of the stimulus (Figure S1C): in tonic

mode, intermediate frequencies are retained in sTonic, while in

burst mode, very low and very high frequencies are emphasized

in sBurst due to the compound ‘‘slow-fast’’ shape of ETABurst. In

contrast to previous analysis of the filtering properties of visually

evoked tonic spikes and bursts (Lesica and Stanley, 2004), the

preservation of high frequencies in sBurst suggests that the timing

of burst events can simultaneously encode fast and slow

stimulus patterns.

The ETAs quantify which patterns of stimuli are encoded in

thalamic spiking events at different membrane potentials but

do not indicate how selective the neuron is for these patterns

(i.e., how closely the input must match the ETA for a spiking

event to occur). To further examine the changes in information

encoding between tonic and burst mode, we quantified how

different values of filtered stimuli sBurst and sTonic map to the

occurrence of spiking events (Figure 2E) by sampling input-

output (IO) relations PðeventjsBurstÞ and PðeventjsTonicÞ (see

Experimental Procedures). Neurons in tonic mode encoded cur-

rent stimuli more precisely across a narrower dynamic range,

as the slope of PðeventjsTonicÞ was greater than that of

PðeventjsBurstÞ by a factor of approximately two (median slopes

were 1.2 [interquartile range [IQR] = 1.1–1.5] and 2.4 [IQR =

2.2–2.7] for burst and tonic IO relations, respectively; p < 0.05

two-tailed Wilcoxon rank sum test; data pooled from seven neu-

rons recorded in both firing modes). This finding is in agreement

with Wolfart et al. (2005), who found that hyperpolarization and

concomitant increase in IT availability broadened thalamic IO re-

lations. However, given that the two spiking modes show very

different responses to identical stimuli (Figure 2B), this change

in IO relation was not as dramatic as might be expected; most

of the difference in computation was captured by the change

in the shape of the ETA (Figure 2C).

Repeated presentation of a noisy stimulus allowed us to calcu-

late how much information about the stimulus was encoded by

the timing of burst and tonic spiking events (Supplemental

Experimental Procedures; Figure S2; Fairhall et al., 2006; Bren-

ner et al., 2000; see Gaudry and Reinagel, 2008; Denning and

Reinagel, 2005; Reinagel et al., 1999 for related analysis in the vi-
sual thalamus). Burst events were typically at least 2 bits more

informative about the stimulus than were tonic events (Figures

S2A and S2B), in agreement with Reinagel et al. (1999) and pre-

vious reports that burst events are more precise than tonic

spikes (Zeldenrust et al., 2013; Whitmire et al., 2016; Kepecs

and Lisman, 2003). We next calculated Ifract, the fraction of infor-

mation captured by the ETA (Fairhall et al., 2006). Ifract for

ETATonic reached a maximum of �70% at smaller (1–1.5 ms)

dt, whereas Ifract for ETABurst reached a maximum of �55% at

larger (10–12 ms) dt (Figure S2C). Ifract in burst mode was also

nonzero for dt <10 ms, indicating that burst spiking events also

carried high-frequency information, consistent with the filtering

properties of ETABurst (Figures 2C and 2D). Notably, maximum

Ifract was always less for burst mode than for tonic mode, sug-

gesting that the linear-nonlinear (LN) model characterization us-

ing burst spiking events as stereotyped ‘‘unitary’’ events failed to

capture some aspect of stimulus encoding in burst mode. We

next examine this discrepancy in more detail by considering

the role of AP count within bursts.

Properties of Bursts Convey Different Types of
Information
The disparity in timescales between the ETAs (Figure 2C)

matched the difference in kinetics between the voltage-gated

sodium and calcium currents controlling excitability in thalamic

neurons. Burst mode is controlled by the voltage-dependent

availability of both IT and INa, while during tonic mode, IT is mostly

inactivated due to depolarization (Jahnsen and Llinás, 1984a,

1984b). As depolarization simplifies the structure of ETABurst

from a biphasic current to a single more generic depolarizing

current, the slow timescales most likely arise from the kinetics

of IT (Jahnsen and Llinás, 1984a). Indeed, the application of the

IT channel blocker mibefradil (Figure S3) had a similar effect on

the ETA as depolarization. Together, these experiments demon-

strate that the slow oscillatory ETABurst shape reflects initial de-

inactivation (hyperpolarizing lobe) and subsequent activation

(depolarizing lobe) of IT.

Thus, the slow component of ETABurst can be thought of as

triggering an IT-dependent LTS, while the fast component deter-

mines the precise timing of the leading sodium AP in a burst. To

examine these two channels separately, we decomposed

ETABurst as a linear combination of two separate dimensions

(Figures 3A and S4A): (1) slow ETACa, and (2) fast ETANa (see

Experimental Procedures). Measured as Ifract of the total informa-

tion carried by spiking event times (Figure 3B), ETACa or ETANa

individually captured less information than the compound

feature ETABurst, but taken jointly, it captured more total informa-

tion, especially at short timescales. However, it should be noted

the information calculated jointly may be artificially high, as

ETACa and ETANa are not orthogonal, although nearly so (see

Experimental Procedures).

The utility of this decomposition is seen when considering

bursts of different sizes (Figure 3C). Here, we ignore the precise

timing of APs within a burst and treat bursts as single events with

different AP counts, which typically varied between one and five

APs per spiking event. To illustrate the motivation behind this

analysis, we calculated the compound ETABurst separately for

bursts with different AP counts (Figure S4B); larger bursts are
Cell Reports 19, 1130–1140, May 9, 2017 1133
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Figure 3. Sodium and Calcium Spike-Trig-

gering Features Are Separable in Burst

Mode

(A) Burst mode ETAs separated into slow calcium

ETACa (left, blue) and fast sodium ETANa (right,

gray) components (see Experimental Procedures

and Figure S4). Population means shown; note

10 3 difference in timescale.

(B) Information capture fraction Ifract versus bin size

for the compound burst ETA (black), the single

features ETACa (blue) and ETANa (gray) from (A),

and the joint representation in ETANa and ETACa

(cyan); values plotted are population means ± SEM

(n = 7 neurons).

(C) Event-triggering stimuli projected into sNa
(ordinate) and sCa (abscissa) space. Each marker

shows one spiking event; color indicates AP

count per event. Correlation coefficient between

sCajevent and sNajevent for this neuron was �0.27.

(D) Event-triggered average voltage byAP count for

a representative POm neuron. To emphasize slow

fluctuations, spikes were truncated using a median

filter (window size = 2.5 ms). Inset: integral of LTS

from�50ms to50msversus theaverage sCa before

each spiking event (population mean n = 15) for

different sized bursts; error bars show mean ± SD

each dimension. Color conventions as in (C).

See also Figure S4.
preceded by a larger slow oscillation and a smaller fast oscilla-

tion. To quantify how ETANa and ETACa stimulus features are en-

coded in thalamic AP trains, we project the raw stimulus IðtÞ into
a two-dimensional space of sNa versus sCa (Figure 3C). We then

parse the burst-size-dependent change in feature selectivity into

the simplified dimensions of ETACa and ETANa by examining how

the joint event-triggering stimulus distribution P ðsNa; sCajeventÞ
changes as a function of spiking event size.

Most importantly, sCa was highly predictive of output AP count

(event size). Figure 3C shows P ðsNa; sCajeventÞ for a representa-

tive recording. Each marker represents one spiking event (e.g., a

single AP or a burst of two ormore APs), colored according to the

number of associated sodium APs. Within this two-dimensional

space, the event-triggering stimulus distribution shifts according

to event size: as event size increases, sCa increases and sNa de-

creases. P ðsNajeventÞ and P ðsCajeventÞ were negatively corre-

lated for all neurons (mean r = �0.25 ± 0.11; n = 15). Figure S4C

summarizes this tradeoff versus event size; for spiking events

with only one sodium AP, fast and slow frequencies were equally

important, but as AP count increased, the importance of the slow

feature dominated.

We interpret these data as showing that LTSs that trigger more

sodiumAPs encodemore information about the slow feature and

are triggered by larger slow oscillations (i.e., larger sCa), and that

the precise time of the first sodium AP in such large events is

less dependent on high-frequency fluctuations (i.e., smaller

sNa). We quantified information IETA captured by ETANa and

ETACa as a function of burst size (Figure S4D) by examining

how the distributions of sCa and sNa changed as a function of

AP count (Supplemental Experimental Procedures). This

approach showed a comparable trend: bursts of increasing

AP count encoded more information about the slow feature
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ETACa (IETA = 2.4 ± 0.2, 3.3 ± 0.2, and 3.7 ± 0.2 bits for AP counts

of one, two, and three or more, respectively; bin size = 0.2 s;

mean ± SEM for n = 7 neurons), whereas information about the

fast feature ETANa was greatest for spiking events with only

one AP (IETA = 2.4 ± 0.4, 1.1 ± 0.3, and 1.1 ± 0.4 bits for AP counts

of one, two, and three or more, respectively; bin size = 0.2 s;

mean ± SEM for n = 7 neurons).

While the LTS slow depolarization is often referred to as a

‘‘spike,’’ the shape of the LTS is not always stereotyped.

Instead, the amplitude and duration of the LTS are strongly

dependent on membrane potential history, as seen in the orig-

inal report by Jahnsen and Llinás (Jahnsen and Llinás, 1984a).

In our case, stimulation with a complex noise current evoked

LTSs with variable amplitude. LTS amplitude was positively

correlated with sCa, the projection onto the slow ETACa. We

quantified the LTS by calculating the average event-triggered

membrane potential (Figure 3D), which showed a clear progres-

sion in the shape of the LTS as a function of the number of APs:

greater numbers of sodium APs are associated with larger

LTSs that (1) were preceded by more hyperpolarization and

had (2) longer duration, (3) greater amplitude, and (4) a faster

rate of rise. These last two points predict that, as we observed,

fast fluctuations are less important to initial spiking, for the

following reasons: more boosting depolarization from the LTS

ensures precise AP timing regardless of additional high-fre-

quency inputs, and a faster rate of rise ensures a lower sodium

activation threshold due to decreased fast sodium channel

inactivation during the approach to threshold. In fact, there

was a very clear correspondence between the value of sCa
and the size of the resultant LTS (Figure 3D, inset), which is

consistent with larger sCa being associated with greater

numbers of APs.
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Figure 4. Voltage-DependentHigh-FrequencySelectivity throughout

Bursts

(A and B) IO relation PðAP j sNa; tÞ for sodium APs (A) evolves throughout

multiple AP bursts (colored by timewindow) due to the changing distribution of

sNajAP (B). Each marker in (B) shows sNa for one AP as a function of time from

the first AP in the burst; black to gray indicates increasing AP order. Black open

markers show mean of sNa; tjAP for the initial AP in a burst (t = 0) and t = 5 ms

bins thereafter.

(C) Mean LTS depolarization for the same neuron and same timescale.

(D) Mean sNa; tjAP from B plotted versus corresponding mean binned mem-

brane potential at t in (C), showing strong correlation between sNajAP and the

shape of the underlying LTS.

(E) Progression of intraburst ETAt throughout a burst; color code indicates

same AP binning categories as in (A). Gray trace is ETATonic for the same

neuron.

(F) Similarity of ETATonic to intraburst ETAt s shown in (E), calculated as the

vector dot product. Each data point showsmean and SD for n = 7 neurons with

both tonic and burst conditions; color code as in (A) and (E).
High-Frequency StimulusEncoding byAPswithin Bursts
The presence of the high frequency component ETANa shows

that the timing of the initial AP in a burst is sensitive to particular

stimulus patterns and not simply triggered by the LTS depolari-

zation. This finding suggests that subsequent ‘‘intraburst’’ APs

in a burst might also encode particular stimulus features. This

possibility is important because thalamic bursts have been re-

garded as inflexible, stereotyped events that signal the occur-

rence of environmental change (Sherman and Guillery, 2006),

rather than conveying detailed information about the stimulus

in the specific temporal patterns of spikes. In contrast to our pre-

vious treatment of bursts of APs as single events in Figure 3, we

next found LN models as a function of AP time within bursts
(Figure 4) by calculating the values of high-frequency stimuli

sNa which drove intraburst APs.

In the case that the timing of intraburst APs depends only on

the underlying LTS depolarization, the distribution of event-trig-

gering high-frequency stimuli PðsNajeventÞ for these APs should

be identical to PðsNaÞ, creating a flat IO relation. Contrary to this

expectation, sNajevent for intraburst APs was on average posi-

tive, indicating intraburst selectivity for high-frequency inputs.

Furthermore, the selectivity for high frequencies varies as a func-

tion of time relative to the initial AP in a burst. This result comes

from examining how the distribution of sNa for intraburst APs

changes for successive APs (i.e., finding PðsNa; tjeventÞ, where

t is time relative to the first AP in a burst).

Figure 4 shows the time-resolved selectivity for sNa throughout

a burst, with IO relations Pðevent j sNa; tÞ in (Figure 4A) and the

corresponding values of sNa plotted versus time t relative to initial

AP in a burst event (Figure 4B). Values of sNa are shaded accord-

ing to AP order in the burst, and the black overlay shows mean

sNa value plotted bymean t within 5 ms intervals. In a case where

ETANa is entirely irrelevant to the generation of APs and APs are

driven only by the underlying LTS depolarization, the IO relations

Pðevent j sNa; tÞ (Figure 4A) would be flat (dotted lines), and the

corresponding projections (Figure 4B) would be centered at

zero with an SD of one. Contrary to these expectations, mean

sNa values were always positive and showed a distinctive pro-

gression throughout the course of the burst, indicating that

throughout a burst, intraburst AP timing becomes increasingly

dependent on ETANa, increasing the slope of Pðevent j sNa; tÞ.
(Figure 4A). For subsequent APs occurring�2–7ms after the first

AP, the importance of high frequencies is at a minimum but

steadily increases for APs occurring later in the burst, with

mean sNa reaching a maximum for the latest APs.

What causes this progression in selectivity for high fre-

quencies?We found that the time course of selectivity (Figure 4B)

for ETANa was tightly linked to the depolarization from the LTS

(Figure 4C). Replotting the mean sNa value by membrane poten-

tial during segments of the LTS (Figure 4D) revealed a strong

linear relationship between high-frequency selectivity (mean

sNa) and depolarization (correlation coefficient r = �0.84 ±

0.22, n = 15 neurons). Taken together, these observations sug-

gest that while initial APs may be mostly dependent on the un-

derlying LTS calcium event, later APs are increasingly sensitive

to high-frequency inputs that occur while the LTS decays.

Thus, the ETACa stimulus feature that drives the LTS shifts the

neuron into a transient regime of selectivity for fast stimulus fea-

tures similar to ETANa.

To illustrate this point in an alternative but complementary

way, we plot ETAt triggered on APs fromdifferent periods twithin

a burst (Figure 4E). The waveform correlated to initial APs in a

burst is ETANa and is a simple depolarizing transient; in contrast,

intermediate APs at the peak of the LTS are driven by smaller de-

polarizing transients preceded by brief hyperpolarization. Finally,

for later APs, the ETAs simplify and become increasingly similar

to ETATonic for the same neuron. We quantify similarity between

tonic and intraburst ETAs and see the same progression (Fig-

ure 4F) across all neurons. This finding directly demonstrates

the changing importance of high-frequency stimulus compo-

nents during the course of the LTS and suggests that intraburst
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Figure 5. Different Adaptive Characteristics

of Sodium and Calcium Feature Selectivity

(A) Example input current stimulus, SD (s) switch-

ing at 40 s intervals from s = 1 to s = 1.3.

(B) Sample POm voltage response.

(C andD) IO relations for calcium (C) and sodium (D)

events, for raw stimulus values (black, s = 1; solid

gray, s = 1.3 normalized; gray dashed, s = 1.3

unnormalized). Gain scaling error was more than

6-fold greater for ETACa than ETANa (1.9 ± 0.65 and

0.3 ± 0.08 bits, for slow and fast features, respec-

tively, see Experimental Procedures).

See also Figure S5.
encoding is comparable to the purely tonic firing regime, partic-

ularly for initial and later APs, which do not receive maximal de-

polarizing drive from the LTS. These high frequencies have not

been explicitly represented in previous in vivo work, where visual

stimuli typically varied more slowly than the noise current used

here.

These data demonstrate that the information coding capacity

of thalamic bursts is contained not only in the burst onset time or

total AP count but also in the precise timing of APs within a burst.

This simultaneous encoding of distinct stimulus characteristics

is an example of ‘‘multiplexing,’’ a strategy that greatly enhances

the coding efficiency of single neurons (Fairhall et al., 2001; Pan-

zeri et al., 2010).

Adaptation in High- and Low-Frequency Information
Channels
Adaptation to sustained stimulation is a key computation in the

rodent somatosensory system (Maravall et al., 2007, 2013; Whit-

mire et al., 2016), and given the complex intrinsic feature selec-

tivity of thalamic neurons we report here, we hypothesized that

these computational properties might support adaptation at

the level of single cells (Mease et al., 2013). To determine if

and how POm stimulus encoding adapts to shifts in statistical

context, we switched the SD (s) of the stimulus (Figures 5A,

5B, and S5A–S5C) and compared LN models across s condi-

tions (Figures S5D–S5G, 5C, and 5D). The fast ETANa and slow

ETACa channels showed very different adaptive responses, in

that changing s altered the essential shape of the event-trig-

gering currents encoded by slow LTS events, but not fast sodium

APs (Figures S5D–S5G).

Most importantly, for the fast feature ETANa, the IO relation had

the same fundamental shape, regardless of s. An increase in

s decreased the slope and increased the dynamic range of

both Pðevent j sCaÞ (Figure 5C) and Pðevent j sNaÞ (Figure 5D).

However, when re-expressed in normalized units, this difference

disappeared for Pðevent j sNa=sÞ (Figure 5D). This property is a

hallmark of adaptive ‘‘gain scaling’’ behavior (Fairhall et al.,

2001; Maravall et al., 2007; Mease et al., 2013), in which a neu-

ron’s excitability adjusts precisely to maintain the same informa-

tion encoded per AP, regardless of the overall statistical context.

In marked contrast, the normalized IO relations Pðevent j sCa=sÞ
retained the s-dependent decrease in selectivity. Thus, both

the slow ETA feature and the neurons’ sensitivity to that feature

depend on the statistical context of the stimulus. We conclude

that stimulus encoding by sodium APs and calcium LTSs adapts

differently with respect to changes in stimulus context.
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DISCUSSION

Thalamic Multiplexing
We find that the contribution of IT to thalamic excitability and

bursting initiates a transient but efficient period of stimulus en-

coding: an initial selectivity for slow inputs by IT-mediated

LTSs and subsequent variance-independent selectivity for fast

inputs by sodium APs. This finding suggests a role for bursts in

transmitting fine stimulus details, a function that was largely as-

signed to the tonic thalamic relay mode.

At voltages with available IT, thalamic spiking events encode

three types of information: (1) the timing of a spiking event

indicates the occurrence of a slow oscillation (Figure 2), (2) the

number of APs generated during a spiking event indicates the

amplitude of this slow oscillation (Figure 3), and most strikingly,

(3) the precise timing of APs within a spiking event encode the

timing of very fast oscillations (Figure 4). This encoding scheme

is an example of a multiplexed code in which both overall spike

count and spike timing carry information (Fairhall et al., 2001;

Panzeri et al., 2010) and reveals that the raw information coding

capacity of thalamic neurons is far greater than previously

reported.

Burst and Tonic Feature Selectivity
To establish our analysis framework, we show that burst and

tonic spiking events encode very different patterns of current

(Figure 2C). This finding is agreement with studies in the visual

thalamus showing that bursts evoked by noisy or natural scene

stimuli are triggered by periods of inhibitory visual stimuli fol-

lowed by excitatory visual stimuli integrated over hundreds of

milliseconds, whereas single tonic spikes are evoked by visual

stimuli favoring excitation within 100 ms of the spike (Alitto

et al., 2005; Butts et al., 2010; Wang et al., 2007; Gaudry and Re-

inagel, 2008; Lesica and Stanley, 2004; Lesica et al., 2006; Rein-

agel et al., 1999). We find that this circuit-level feature encoding

can occur on the level of membrane potential dynamics of single

thalamic neurons, as the slow component ðETACaÞ of ETABurst

had a temporally broad (>200 ms), biphasic shape (Figure 2C),

integrating temporally offset inhibitory and excitatory currents,

whereas ETATonic was only excitatory and had a comparatively

brief integration window. We predict that the overall balance be-

tween slow modulatory excitatory and inhibitory inputs to POm

(Sherman and Guillery, 2006) would serve to fix the shape of

the event-triggering stimulus feature between the extremes of

ETABurst and ETATonic (Figure 2C) via slow changes in membrane

potential and the consequent availability of IT.



In contrast to these previous studies, the fast component

ðETANaÞ of ETABurst demonstrates that burst onset timing can

also encode high-frequency stimuli in addition to slower inhibi-

tory and excitatory inputs. Relatedly, we find that the integration

window of ETATonic is much shorter (<10 ms) than comparable

measures reported previously (Lesica and Stanley, 2004; Alitto

et al., 2005; Wang et al., 2007). The most obvious explanation

for these differences is that our in vitro experiments allowed us

to directly test the contribution of higher-frequency current to

thalamic AP generation, beyond the temporal resolution possible

in previous approaches using sensory rather than current stimu-

lation. Another possible explanation for the fast timescale we

observe in ETATonic is that our manipulations imposed a particu-

larly stringent separation of spiking modes; here, we pharmaco-

logically reduced or inactivated IT through direct current injection

to induce tonic spiking, while previous studies used ISI criteria to

infer the presence of tonic spikes without experimental manipu-

lation of IT.

Burst Size Encoding of Low-Frequency Inputs
Decomposing ETABurst into slow ETACa and fast ETANa features

(Figure 3) revealed that events with different AP counts encoded

distinct combinations of stimuli (Figure 3C) and, more causally,

were driven by different levels of depolarization from the LTS

(Figure 3D). Previous studies of model bursting neurons sug-

gested that burst size may encode a variety of stimulus features

(Elijah et al., 2015; Kepecs and Lisman, 2003; Kepecs et al.,

2002), but this possibility had not been tested experimentally

on at the single-neuron level. Our approach recalls the theoret-

ical work of (Kepecs and Lisman, 2003) using covariance anal-

ysis. While both approaches find that events with different AP

counts project to different regions of a reduced two-dimensional

stimulus space, our dimensionality reduction approach identifies

a temporal sequence of stimuli—a slow, biphasic oscillation fol-

lowed by high-frequency excitation—rather than a combination

of orthogonal stimulus features (Kepecs and Lisman, 2003).

Moreover, we also observed that AP timing depended on high-

frequency inputs, whereas Kepecs and Lisman (2003) reported

that AP times within bursts were robust to noise. In general, it ap-

pears that models capturing the fast dynamics we observe

experimentally are elusive, as we have not yet been able to

reproduce high-frequency selectivity in standard bursting

models (e.g., McCormick and Huguenard, 1992).

We found that current oscillations showing greater similarity to

ETACa evoked bursts with greater numbers of APs (Figure 3). The

filtering properties of ETACa capture thalamic sensitivity to slow

background changes in membrane potential and large depolar-

izations which might arise from synchronous inputs, consistent

with circuit-level observations in the visual thalamus. Butts

et al. (2010) found that high spike count responses are evoked

by stimuli more similar to the ETA; relatedly, Gaudry and Reina-

gel (2008) showed that burst size can encode sensory informa-

tion and that larger bursts are preceded by stronger inhibitory

stimuli, while Lesica et al. (2006) correlated the degree of inhibi-

tion present in the ETA with bursting in in vivo data and mem-

brane potential in a model. Here, we directly show that the

slow selectivity of ETACa arises from IT and that stimuli which

best match this waveform trigger larger LTSs and bursts with
more APs, linking stimulus encoding to the underlying bursting

mechanism.

Encoding of the slow feature ETACa depended on the overall

statistical context of the stimulus, as changes in SD (s) changed

the fundamental forms of both the ETAs (Figure S5) and the cor-

responding IO relations (Figure 5) (see also Wolfart et al., 2005).

This context sensitivity may arise because different s values

explore substantially different subthreshold voltage ranges,

with different levels of IT availability (Jahnsen and Llinás,

1984b). Indeed, our finding that slow sCa predicts LTS size (Fig-

ure 4D, inset) and the associated AP count supports a scenario

where the low-frequency channel encodes the local s in the

number of APs per spiking event. This idea is consistent with

the observed s-dependent increase in burstiness (Figure S5).

Conceptually, this finding is similar to how bursts can encode

slope in amodel neuron (Kepecs et al., 2002), albeit by an entirely

different biophysical mechanism.

Adaptive Intraburst Encoding of High-Frequency Inputs
The most striking finding we report here is that during bursting

and LTS generation, thalamic neurons remain selective for very

fast inputs, enabling the AP times within bursts to accurately

convey fine temporal details. This greatly increases the informa-

tion content of thalamic bursts beyond ‘‘AP-count’’ codes where

stimulus encoding is limited to the size of the burst (Lesica and

Stanley, 2004; Gaudry and Reinagel, 2008; Elijah et al., 2015;

Butts et al., 2010). Existing analyses of precise AP times within

visually evoked thalamic bursts have not explored the role of

specific stimulus selectivity within bursts, demonstrating rather

that shorter initial ISIs in a burst are correlated with larger burst

AP count (Gaudry and Reinagel, 2008) or duration (Butts et al.,

2010), reflecting the fact that larger LTSs drive more APs sepa-

rated by shorter intervals. In contrast, we show here that intra-

burst AP times can convey specific high-frequency information,

distinct from burst size.

Encoding of high-frequency inputs showed gain scaling (Fair-

hall et al., 2001; Mease et al., 2013; Maravall et al., 2007), such

that the information per APwas held constant regardless of stim-

ulus contrast (Figure 5), as can arise from intrinsic spike genera-

tion in cortical neurons (Mease et al., 2013). Here, gain scaling is

transiently gated by selectivity for low frequencies, as the LTS

creates a window for adaptive encoding of fast features. Given

the similar intrinsic properties of thalamic relay neurons across

different nuclei and sensory systems (Jahnsen and Llinás,

1984a; Landisman and Connors, 2007), this fast encoding may

be a generic scheme across levels of thalamic hierarchy (e.g.,

primary versus higher-order) and sensory modalities. For

example, such a fast encoding channel may be an intrinsic

mechanism supporting the extreme temporal precision of pri-

mary thalamic neurons’ responses to whisker stimuli in vivo

(Petersen et al., 2008).

Matching Synaptic Inputs to Intrinsic Computation
The multiplexed encoding we report is well matched to the vari-

ety of excitatory and inhibitory inputs that converge on thalamic

relay neurons. Although the exact anatomical origin of inputs is

nucleus specific, a general input scheme is the combination

of fast ‘‘driver’’ and slow ‘‘modulatory’’ excitatory inputs of
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brainstem and/or cortical origin, along with slow inhibitory inputs

mainly from other thalamic nuclei (Sherman and Guillery, 2006).

We used near-white-noise current to sample minimally biased

models of feature selectivity (Rieke et al., 1997); this general

thalamic input scheme predicts that the spectral properties of

synaptic inputs to POm neurons in vivo likely favor high- and

low-frequency inputs from different sources, as we detail below.

For POm neurons, these inputs are relatively well character-

ized and include inhibitory input from within the thalamus as

well as modulatory excitatory input from cortical layer 6 (Reich-

ova and Sherman, 2004; Mease et al., 2014; Crandall et al.,

2015) and fast driving input from both the brainstem and cortical

L5B (Groh et al., 2008, 2014; Reichova and Sherman, 2004;

Mease et al., 2016c). In the multiplexing framework, inhibitory

and layer 6 modulatory inputs could set the resting membrane

potential and thereby control the availability of IT and ETA shape

(see also Lesica et al., 2006). L5B and brainstem inputs to POm

are integratedwithin an�50mswindow in vivo (Groh et al., 2014)

and could provide the strong excitation needed to trigger an LTS;

in this case, POm burst size may encode the degree of syn-

chrony of L5B inputs (Groh et al., 2008) or the coincidence of

L5B and brainstem inputs (Groh et al., 2014).

Stimuli triggering an LTS also ‘‘unlock’’ a fast encoding chan-

nel of transient sensitivity to high frequencies. Specific to POm,

the timescales of ETATonic and ETANa (Figures 2 and 4) corre-

spond well to the fast rise (0.5 ms) and decay (1.2 ms) times of

the glutamatergic ‘‘driver’’ excitatory postsynaptic currents

(EPSCs) from cortical L5B (Groh et al., 2008), suggesting that

POm’s encoding of L5B inputs could also preserve fine L5B

spiking structure, e.g., high-frequency bursts (de Kock and Sak-

mann, 2008). In fact, the LTS-dependent selectivity (Figure 4)

and intrinsic adaptive gain control (Figure 5D) for high-frequency

inputs may well match to the rapid synaptic gain control from

short-term depression at L5B-POm synapses (Groh et al.,

2008). Although these synapses depress strongly and rapidly,

gain scaling could adjust thalamic excitability to normalize L5B

input regardless of depression state. For example, the initial

L5B spike would trigger large glutamate release at the L5B-

POm synapse, thus activating IT and the initiation of a POm

LTS. Subsequent L5B spikes within the next �50 ms would

trigger only small EPSCs due to synaptic depression, but our re-

sults predict that such spikes could still induce additional POm

APs during the transient window of enhanced high-frequency

selectivity.

Implications for Circuit-Level Computations
The thalamus is an active and dynamic processor of information

en route to the cortex. We find intrinsic properties alone allow

thalamic neurons to (1) simultaneously transmit information on

different timescales to the cortex, and (2) differentially adapt en-

coding of this information. In this multiplexed encoding scheme,

the timing and size of bursts could reflect low-frequency input

synchrony of the presynaptic network, while the timing of spikes

could faithfully relay individual presynaptic spike times to the

cortex. However, it remains an open question to what degree

this information—particularly the fine-scale intraburst informa-

tion—is indeed transmitted to the cortex and is relevant to sen-

sory processing or behavior.
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It is clear that thalamic bursts and single spikes evoke

different responses in the cortex. Compared to single spikes,

bursting strongly activates cortical networks (Swadlow and Gu-

sev, 2001), evokes larger depolarizations in cortical neurons

(Bruno and Sakmann, 2006), and promotes facilitation of

cortical sensory responses (Whitmire et al., 2017). However,

propagation of more precise burst size information requires

that cortical responses scale with thalamic burst size, which

has yet to be shown. One possible approach could be

combining optogenetic methods with thalamic and cortical re-

cordings (Whitmire et al., 2016; Mease et al., 2016a, 2016b;

Whitmire et al., 2017).

The successful transmission of precise temporal information

within bursts depends critically on the properties of thalamocort-

ical (TC) connections. TC synapses from POm have submillisec-

ond precision (�0.4 ms jitter) (Lee and Sherman, 2008), and the

integration window of cortical neurons can be quite precise

(1–10 ms) (Gabernet et al., 2005), suggesting that thalamic intra-

burst AP timing could in principle persist across the TC synapse.

However, the AP-triggering efficacy of cortical excitatory post-

synaptic potentials (EPSPs) corresponding to APs within a

thalamic burst would be controlled by the depression or facilita-

tion dynamics of the synapse. In the case of POm projections,

these dynamics can be target-specific, as (Viaene et al., 2011)

report both depressing and facilitating connections to primary

and secondary somatosensory cortices, respectively. In the

case of strong depression, survival of later thalamic spike times

in cortex would likely be contingent on TC convergence onto sin-

gle cortical neurons (Constantinople andBruno, 2013; Bruno and

Sakmann, 2006) and on strong, precise synchrony across

thalamic neurons, which (Whitmire et al., 2016) find is promoted

during bursting. Intriguingly, neurons in barrel cortex can encode

separate channels of high- and low-frequency information about

whisker displacement (Alenda et al., 2010), and our findings sug-

gest that such parallel information streams are present at the

level of single thalamic neurons.

EXPERIMENTAL PROCEDURES

Animal protocols followed the guidelines of German animal welfare and were

approved by oversight committees at the Technische Universität M€unchen

and Heidelberg University. In vivo recordings in 6- to 8-week-old thy1-

ChR2 (line 18) or wild-type mice (both BL/6 background) of either sex were

done as in Groh et al. (2014). In vitro whole-cell patch-clamp recordings

were made in brain slices maintained at 33�C –35�C as described previously

(Groh et al., 2008; Mease et al., 2013), for Wistar rats (n = 8 cells) and BL/6

mice (n = 8 cells) of either sex, 20–25 days after birth. Gaussian noise current

stimuli were exponentially filtered with temporal correlation of 0.5 or 1.0 ms.

We use ‘‘spiking event’’ to refer to a single AP or a burst of two or more APs.

In the latter case, the time of the first AP is taken as the event time. Calcu-

lation of linear-nonlinear models was as described previously (Mease et al.,

2013). ETABurst was split into components ETACa and ETANa by fitting an

exponential to the fast rising stimulus trajectory immediately preceding the

trigger time (Figure S3). Details are found in Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2017.04.050.

http://dx.doi.org/10.1016/j.celrep.2017.04.050
http://dx.doi.org/10.1016/j.celrep.2017.04.050


AUTHOR CONTRIBUTIONS

All authors contributed to research design and the final manuscript. R.A.M.

and A.G. performed research, analyzed data, and wrote an initial draft of the

manuscript.

ACKNOWLEDGMENTS

We thank Arthur Konnerth, Bert Sakmann, and Bernhard Meyer for lab space

and support at the Technische Universität M€unchen. This work was funded by

the DFG Collaborative Research Center (1158; R.A.M. and A.G.), the NIH

(Institutional Grant for Neurobiology T32 GM07108–35), The Grass Foundation

(R.A.M. and A.G.), the DFG Collaborative Research Center (1134) and

CellNetworks Cluster of Excellence EXC 81 (T.K.), and the National Science

Foundation (EF-0928251; A.L.F.).

Received: December 23, 2016

Revised: March 18, 2017

Accepted: April 18, 2017

Published: May 9, 2017

REFERENCES

Alenda, A., Molano-Mazón, M., Panzeri, S., and Maravall, M. (2010). Sensory

input drives multiple intracellular information streams in somatosensory cor-

tex. J. Neurosci. 30, 10872–10884.

Alitto, H.J., Weyand, T.G., and Usrey, W.M. (2005). Distinct properties of stim-

ulus-evoked bursts in the lateral geniculate nucleus. J. Neurosci. 25, 514–523.

Bessaı̈h, T., Leresche, N., and Lambert, R.C. (2008). T current potentiation in-

creases the occurrence and temporal fidelity of synaptically evoked burst firing

in sensory thalamic neurons. Proc. Natl. Acad. Sci. USA 105, 11376–11381.

Brenner, N., Strong, S.P., Koberle, R., Bialek, W., and de Ruyter van Steven-

inck, R.R. (2000). Synergy in a neural code. Neural Comput. 12, 1531–1552.

Bruno, R.M., and Sakmann, B. (2006). Cortex is driven by weak but synchro-

nously active thalamocortical synapses. Science 312, 1622–1627.

Butts, D.A., Desbordes, G., Weng, C., Jin, J., Alonso, J.M., and Stanley, G.B.

(2010). The episodic nature of spike trains in the early visual pathway.

J. Neurophysiol. 104, 3371–3387.

Coenen, A.M., and Vendrik, A.J. (1972). Determination of the transfer ratio of

cat’s geniculate neurons through quasi-intracellular recordings and the rela-

tion with the level of alertness. Exp. Brain Res. 14, 227–242.

Constantinople, C.M., and Bruno, R.M. (2013). Deep cortical layers are acti-

vated directly by thalamus. Science 340, 1591–1594.

Crandall, S.R., Cruikshank, S.J., and Connors, B.W. (2015). A corticothalamic

switch: controlling the thalamus with dynamic synapses. Neuron 86, 768–782.

de Boer, R., and Kuyper, P. (1968). Triggered correlation. IEEE Trans. Biomed.

Eng. 15, 169–179.

de Kock, C.P., and Sakmann, B. (2008). High frequency action potential bursts

(>or= 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake

rat primary somatosensory cortex. J. Physiol. 586, 3353–3364.
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