
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik XIX

Semantic Analysis and Computational

Modeling of Legal Documents

Bernhard Ernst Waltl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Martin Bichler

Prüfer der Dissertation:
1. Prof. Dr. Florian Matthes

2. Prof. Kevin D. Ashley, PhD, University of Pittsburgh

Die Dissertation wurde am 16.04.2018 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 19.06.2018 angenommen.

II

Zusammenfassung

Die Arbeit mit Rechtstexten folgt dem Paradigma der Wissensarbeit und kann als daten-,
wissens-, und zeitintensiv beschrieben werden. Die Analyse von Information in Hinblick auf
rechtliche Relevanz wird unzureichend von Technologie unterstützt. Dies ist kontraintuitiv,
da relevante Information digital vorliegt, Algorithmen zur Verarbeitung von natürlich-
sprachlichem Text immer präziser und Infrastrukturen zunehmend leistungsfähiger werden.

Das Ziel dieser Arbeit ist die Identifikation der Potentiale von Technologie, die bei der
inhaltlichen Analyse, Strukturierung und Formalisierung von rechtlich relevanter Informa-
tion unterstützen kann. Obwohl es bereits mehrere, in der wissenschaftlichen Literatur auch
beschriebenen Ansätze in diesem Bereich gibt, mangelt es diesen oftmals an Generalisier-
barkeit, Wiederverwendbarkeit und der Anwendbarkeit für die deutsche Rechtsordnung.

Die Arbeit stellt ein methodisches und konzeptuelles Framework vor, das auf etablierten
Methoden der Rechtstheorie aufbaut und Softwareunterstützung zur Analyse von Rechts-
texten bietet. Dabei werden zwei interdisziplinäre Referenzprozesse vorgestellt: i) softwa-
regestützte semantische Analyse von rechtlichen Dokumenten und ii) softwaregestützte
Analyse und Interpretation von Gesetzen. Das Framework basiert auf einer leistungsfä-
higen Softwarearchitektur, u.a. Apache UIMA und Apache Spark, und interagiert mit
einem meta-model-basierten Informationssystem. Die Verfahren zur Erkennung und Ex-
traktion von semantischen Entitäten wurden unter Einbeziehung von regelbasiertem und
aktivem maschinellem Lernen (active machine learning) entwickelt. Das System verfügt
über Komponenten zur Formalisierung von rechtlichen Entscheidungsstrukturen in aus-
führbaren model-basierten Repräsentationen in denen die Ergebnisse der Interpretation
modelliert und analysiert werden können.

Die Anwendbarkeit und Performanz des Prototyps wird im Rahmen eines Industriepro-
jekts gezeigt, in dem automatisch Information aus einem Korpus von ca. 130.000 Doku-
menten aus dem deutschen Steuerrecht, etwa Gesetze, Urteile, und Aufsätze, extrahiert
wird (𝐹1 = 0.92). Die Klassifizierung von Rechtsnormen wird mit einem regel-basierten
Verfahren (𝐹1 = 0.78) und mit maschinellem Lernen durchgeführt (𝐹1 = 0.73). Es wird
außerdem nachgewiesen, dass aktives maschinelles Lernen dem herkömmlichen (supervised)
maschinellen Lernen beim Klassifizieren von rechtlichen Normen in Gesetzen überlegen ist.
Zusätzlich zeigen zwei Machbarkeitsstudien die Anwendbarkeit der Formalisierung zur Be-
rechnung des Kindergelds und der Fristen der ordentlichen Kündigung in Mietwohnungen
nach deutschem Recht.

III

IV

Abstract

The work of legal scientists and legal practitioners follows the paradigm of knowledge work
that is intensive in data, knowledge, and time. The analysis of information with regard
to its legal relevancy still lacks the support of technological innovation. This is counter-
intuitive, since the data is digitally available, algorithms for natural language processing
are becoming increasingly accurate, and the available infrastructure is powerful.

The main research goal of this thesis is the identification of potentials for technology to sup-
port the semantic analysis, structuring, and formalization of legally relevant information.
Although several attempts have already been made and described in scientific literature,
most of the proposed solutions lack of generalizability, re-usability, and applicability — at
least for the German domain.

This thesis introduces a methodological and conceptual framework, incorporating estab-
lished theories from legal theory, to provide software-support for legal scientists and practi-
tioners. It describes two interdisciplinary reference processes: i) for the software supported
semantic analysis of legal documents and ii) for software support during the analysis and
interpretation of statutory texts, e.g., German laws. The framework incorporates state-
of-the-art software architecture, i.e., Apache UIMA and Apache Spark, and interacts with
a meta model-based information system. Rule-based and active machine learning-based
components were implemented to classify and extract semantic types of norms from statu-
tory documents. This was the foundation to develop a formal calculus, i.e., model-based
reasoning, and software components for decision support functionality, representing the
interpretation of legal norms and enabling the computational reasoning.

The applicability and performance of the prototype is shown within an industry project
with the objective to automatically extract information from a corpus of approximately
130,000 documents from the German tax law (𝐹1 = 0.92), e.g., statutes, judgments, and ar-
ticles. The classification of legal norms is executed using rule-based information extraction
(𝐹1 = 0.78) and using machine learning (𝐹1 = 0.73). We also show that active machine
learning is superior to classical supervised machine learning in classifying legal norms in
statutory texts. In addition, we performed two proof-of-concepts in formalizing the child
benefit claim according to the German tax income act and the termination period of the
German tenancy law.

V

VI

Acknowledgment

I would like to express my special appreciation and thanks to my supervisor Prof. Dr. Florian
Matthes for taking the risk of guiding me in this exciting field of research. I want to thank him
for showing me research opportunities, paths, and challenges; and for allowing me to grow as an
academic researcher. I further want to express my sincere gratitude to Prof. Kevin D. Ashley
for joining the doctoral committee and helping me to orientate myself in this complex field. Just
like Kevin inspired so many generations of young researchers, he inspired me.

This interdisciplinary research would not have been possible without the great support from Prof.
Dr. Hans Christoph Grigoleit and Konrad Heßler. Prof. Grigoleit’s continuous enthusiasm for
the legal science fascinated me from the first day on. It was a great pleasure and I am more than
grateful to have a remarkable mentor like him. In numerous discussions, Konrad’s acumen and
ability to understand ideas, find weaknesses, and constructively provide feedback significantly
influenced my perspective on the legal science.

The sebis chair has been an excellent environment for my research. Some special thanks go
to every colleague who directly or indirectly contributed to this thesis, especially Dr. Thomas
Reschenhofer, Dr. Alexander Schneider, Ingo Glaser, Ulrich Gallersdörfer, Jörg Landthaler,
Elena Scepankova, and Marin Zec.

I would also like to thank the students who made this research possible and forced me to
formulate and rethink my too complex ideas. Special thanks go to Georg Bonczek, Johannes
Muhr, Thomas Grass, Dominik Oppmann, Philipp Pickel, Patrick Ruoff, Tobias Waltl, Sirma
Gjorgievska, and Daniel Jorde.

Finally, I want to thank my family for their support. I am most grateful to my parents, Michaela
and Ernst, who always motivated, supported, and encouraged me to develop and continuously
pursue my manifold passions. The same holds for my sister, Magdalena, and my brother,
Michael, who have influenced my character in a most positive way since the earliest years of my
life. I cannot express how much I owe to my patient and loving partner Isabel. Last, but not
least I want to thank Daniel and Ursula for unconditionally being there whenever I got stuck —
I wish I could be the son, brother, partner, and friend you all deserve.

Garching bei München, September 3, 2018

Bernhard Waltl

VII

VIII

Table of Contents

1 Introduction 1
1.1 Problem Description . 3
1.2 Research Questions . 4
1.3 Epistemological Position and Research Design . 6
1.4 Outline of the Thesis . 8

2 Foundations and Related Work 11
2.1 Legal Text Analytics and Software Engineering 12

2.1.1 Foundations of Text Analytics . 12
2.1.2 Text Mining to Extract Concepts from Legal Documents 13
2.1.3 Text Mining to Classify Legal Norms . 15
2.1.4 Software Architectures for Legal Text Analytics 17

2.2 Representing the Structure of Legal Documents 18
2.3 Computational Models of Legal Reasoning . 19

2.3.1 A Short Introduction to Legal Expert and Decision Support Systems . . . 19
2.3.2 Rule-based Reasoning on Laws and Statutes 20
2.3.3 User-oriented Decision and Reasoning Systems 21

2.4 Summary . 22

3 Semantic Analysis and Annotation of Legal Documents 25
3.1 Process Model for Software-supported Semantic Analysis 26

3.1.1 Reference Process . 27
3.1.2 Activities . 27
3.1.3 Roles . 28
3.1.4 Artifacts . 29
3.1.5 Services & Tools . 30

3.2 Annotations, Annotation Types, and Semantic Entities 31
3.2.1 Annotations and Annotation Types . 32

IX

Table of Contents

3.2.2 Basic and Linguistic Entities . 33
3.2.3 Named Entities . 35
3.2.4 Legal Entities . 35

3.3 Annotating Legal Documents . 37
3.3.1 Manually Annotating Legal Documents 38
3.3.2 Automatically Annotating Legal Documents 39
3.3.3 Collaborative Maintenance of Annotations 40
3.3.4 Annotating Legal Documents: a Technical Perspective 41

3.4 A Software Architecture for Managing Annotated Legal Documents 42
3.4.1 Software Components for Semantic Analysis 43
3.4.2 Active Machine Learning Classifier . 57

3.5 Software Architecture for Processing Legal Documents 57
3.5.1 Assessment of Processing Frameworks . 57
3.5.2 Pipes & Filters Architecture . 62
3.5.3 Apache UIMA . 65
3.5.4 Assessment of Machine Learning Frameworks 71
3.5.5 Active Machine Learning . 78
3.5.6 Apache Spark . 85

3.6 Summary . 87

4 Concept and Design of a Model-based Reasoning Framework 89
4.1 Reference Process to Formalize Statutory Texts 89

4.1.1 Reference Process . 91
4.1.2 Activities . 91
4.1.3 Roles . 93
4.1.4 Services & Tool-Support . 93

4.2 Model-based Reasoning . 94
4.2.1 Ontological Models and Limitations of Description Logics 94
4.2.2 Formalization of Child Benefit . 95
4.2.3 Types . 97
4.2.4 Attributes . 98
4.2.5 Relations . 99
4.2.6 Derived Attributes . 100
4.2.7 MxL: Model-based Expression Language 102

4.3 Design of a Model-based Reasoning Framework 104
4.3.1 Requirements . 104
4.3.2 Components of the Model-based Decision Support System 106
4.3.3 Extension of the System Architecture . 109

4.4 Analysis and Explanation of Decisions and Decision Structures 114
4.4.1 Instances and Fact View . 115
4.4.2 Abstract Syntax Trees for Dependency Analysis 115
4.4.3 Explanation Dialog Component . 117
4.4.4 Data Information Flow Inspection . 118

4.5 Summary . 119

X

Table of Contents

5 Implementation 121
5.1 Collaborative Data Science Environment . 122

5.1.1 Framework . 122
5.1.2 Model and Data Layer . 123
5.1.3 Controllers and Request Handling . 127
5.1.4 User Interface and Views . 128

5.2 Text Analysis Engine . 132
5.2.1 Processing Legal Documents . 132
5.2.2 Information Extraction Components . 136
5.2.3 External Resources: Pattern Definitions, Thesauri, and Dictionaries . . . 138

5.3 Active Machine Learning Component . 139
5.3.1 Interaction Between Information Extraction and AML Component 139
5.3.2 Configuration and Training of Models . 142
5.3.3 Persistence of Models . 144
5.3.4 Predicting of Instances . 145
5.3.5 Query Strategies . 146

5.4 Implementation of the Model-based Reasoning Framework 147
5.4.1 Domain Experts, Modeling Components, and a Reasoning Engine 148
5.4.2 Modeling and Knowledge Acquisition . 150
5.4.3 Accessing the Model and Fact Store . 152
5.4.4 Knowledge Acquisition Component . 152
5.4.5 Explanation Component . 154

5.5 Summary . 155

6 Evaluation and Assessment 157
6.1 Evaluation Approach . 157
6.2 Case Study: Analysis of Fiscal Court Cases to Support Editorial Processes 158
6.3 Performance Evaluation: Classifying Legal Norms with Rule-based Information

Extraction . 162
6.4 Performance Evaluation: Classifying Legal Norms with Active Machine Learning 169
6.5 Formalizing Termination Notice Periods of Germany’s Tenancy Law 177

7 Conclusion 185
7.1 Summary . 185
7.2 Critical Reflection . 190

7.2.1 Functional Limitations of the Legal Text Analytics Frameworks 190
7.2.2 Functional Limitations of the Model-based Formalization 191
7.2.3 User Applicability . 192
7.2.4 Critical Reflection on the Evaluation . 193
7.2.5 Critical Reflection on the Research Methodology 194

7.3 Outlook . 194
7.3.1 Legal Text Analytics to Support Business Processes 194
7.3.2 Legal Text Analytics in Other Domains 195
7.3.3 Legal Text Analytics to Support Drafting of Documents 195
7.3.4 Representation and Modeling of Arguments 195

XI

Table of Contents

7.3.5 Formalization of Deontic Concepts, Events, and Actions 196

Bibliography 197

Abbreviations 207

A Appendix 211
A Requirements Table for the Model-based Reasoning Framework 211
B Law Object Mapped into a JSON Document . 213
C Implementation of Margin Sampling Query Strategy 214

XII

List of Figures

1.1 Adapted information systems research framework proposed by Hevner et al. (2004). 7
1.2 Structure, outline, and main contribution of this thesis. 9

2.1 Transition from unstructured to structured information using computational lin-
guistics (based on Ide and Pustejovsky (2017); Jurafsky and Martin (2014); Man-
ning and Schütze (1999); Bishop (2006)). 12

3.1 Reference process for software-supported semantic analysis of legal documents
based on Waltl et al. (2017a). 27

3.2 View of an automatically annotated German law (left: annotation type selection
using check boxes; middle: annotated and highlighted text; right: labels visualiz-
ing the annotations separately). 34

3.3 Manually highlighted text to be annotated. 38
3.4 Pop-up allowing the annotation of the selected text with freetext information or

by assigning a semantic type. 39
3.5 An example of an automatically annotated German law (excerpt from the product

liability act). 40
3.6 Annotations can also be deleted (see the button in the lower part of the pop-up). 41
3.7 Overview of LEXIA’s system architecture with the main components (originally

published in Waltl et al. 2016). 43
3.8 Import architecture to flexibly support different documents types, e.g., laws, judg-

ments, and document formats, e.g., XML, PDF, and HTML (see Waltl et al. 2016). 44
3.9 An example of splitting article 1 of the product liability act on the sentence level. 47
3.10 An example of tokenizing article 2 of the product liability act. 48
3.11 An example of subject tagging according to the “Nominativkasus” rule. 50
3.12 An example of POS-tagging article 1 of the product liability act. 51
3.13 An example of automatically recognized named entities in a German judgment. . 52
3.14 Automatically extracted dependency grammar of a German legal sentence1. . . . 54

XIII

List of Figures

3.15 Ruta script, that matches the specified named or semantic entities (e.g., legal
definitions) based on pattern matching when applied to a law text (see Waltl
et al. 2016). 55

3.16 Schematic overview of a Pipes & Filters architecture for the analysis of legal
documents (extension of a pipeline model as introduced in Waltl et al. 2016). . . 63

3.17 An aggregated analysis engine with integrated JCAS object. 66
3.18 An example of a highlighted text based on annotations by UIMA Ruta rules. . . 70
3.19 Active Machine Learning (AML) process for the classification of norms describing

the interaction between classifier, strategy, and domain expert (see Waltl et al.
2017b). 78

3.20 Black box overview of the AML component and its interaction with the informa-
tion extraction component. 82

3.21 White box view of the AML component and its integration into the text analysis
engine. 83

3.22 Apache Spark stack including libraries for efficient data management (i.e., Shark
and Spark Streaming), machine learning (i.e., MLLib), and processing of graphs
(i.e., Graph). 85

3.23 The machine learning core, part of the active learning engine, based on MLLib. . 86

4.1 Reference process for software-supported interpretation and formalization of legal
documents (Waltl et al. 2017c). 91

4.2 Illustration of the German child benefit regulation in a semantic model. 97
4.3 Overview of a model-based reasoning system and its interactions grouped into

three components: model store, model execution, and interaction component. . . 107
4.4 Overall system architecture including components for model-based reasoning. . . 110
4.5 Knowledge acquisition interface organized in three areas: model and instance view

on the left, knowledge acquisition in the middle, and linked documents on the right.111
4.6 Modeling interface organized into a document (left) and a model view (right). . . 112
4.7 Attribute manipulation within the modeling component. 112
4.8 The evaluation path of an MxL expression according to Reschenhofer (2013, p. 39).114
4.9 Automatically and instantly created object diagram visualizing types, attributes,

relations, and evaluated derived attributes from the model and fact storage. . . . 115
4.10 Automatically determined AST for derived attribute §32.4.1 of the type child. . . 116
4.11 Information on the decision structure: type information, MxL expression, and AST.117
4.12 Overview of the types and the high-level data flows between model elements. . . 118
4.13 Data flows with fine granular resolution on the level of types, atomic attributes,

and derived attributes. 119

5.1 Handling requests with the model-view-controller principle for the Play Framework.122
5.2 Model for the internal representation of legal documents and annotations. 124
5.3 Instantiated object diagram visualizing the nested structure of German laws, e.g.,

German Civil Code (only two objects per level; remaining objects omitted). . . . 125
5.4 The basic view of a legal document. 129
5.5 Full-text search results with options for search result refinement. 130
5.6 The processing view of a legal document with its four configuration areas. 131

XIV

List of Figures

5.7 The text analysis engine with its annotators and components. 132
5.8 The text analysis engine with its annotators and components. 139
5.9 Configuration, training, evaluation, and prediction of instances, such as sentence

types, with AML. 141
5.10 System architecture focusing on the components that enable model-based reasoning.148
5.11 Interaction between domain experts and the software services and tools. 149
5.12 Simplified data model to illustrate the mapping (see Oppmann 2016). 151

6.1 Judgments in the tax law document corpus provided by Datev eG (Σ 47,359 docs).160
6.2 Average accuracy of classifiers against random learning. Comparison of Naive

Bayes (NB), logistic regression (LR), and multilayer perceptron classifiers (MLP). 173
6.3 Average 𝐹1 per type using logistic regression classification. 174
6.4 Average precision per type using logistic regression classification. 175
6.5 Average recall per type using logistic regression classification. 176
6.6 Facts focusing on termination periods and justification. 178
6.7 Explanation for two derived attributes: isValid and isValidReason. 181
6.8 Knowledge acquisition interface for the termination type. 181
6.9 Instantiation of the semantic model showing the atomic and derived attributes,

as well as relations among instances. 182

XV

XVI

List of Tables

3.1 Comparison of the in-line and stand-off annotation methods. 41
3.2 Four nouns with their automatically extracted linguistic features. 50
3.3 Quantitative indicators for the complexity of legal texts as presented in Waltl and

Matthes (2014). 51
3.4 Pros and cons of rule-based information extraction from a survey among 54 dif-

ferent software vendors, as summarized by Chiticariu et al. (2013). 55
3.5 Framework comparison considering ten different language processing frameworks

and eight different categories. 62
3.6 Comparison of different frameworks regarding ML and software engineering cri-

teria (extension of Muhr 2017). 77
3.7 Query strategies for active machine learning (see Waltl et al. 2017b; Muhr 2017). 80
3.8 Basic terms and their descriptions in the context of AML (based on Muhr 2017). 81
3.9 Overview of main classifiers supported by MLLib. 85

5.1 Mapping to meta-model based IS (see Neubert 2012). 151

6.1 Quality assessment of YoD extraction in 100 randomly selected cases. 161
6.2 Quality metrics calculated from the confusion matrix of Table 6.1. 162
6.3 Semantic types of norms in German civil law statutes. 164
6.4 Examples of semantic types of norms from the German Civil Code. 165
6.5 Manually labeled dataset consisting of sentences extracted from the German ten-

ancy law. 166
6.6 Four iterations of rule-based norm classification in German tenancy law. 167
6.7 Functional type classification of statutory legal norms for German legislative

texts (Waltl et al., 2017b). The table is organized as hierarchy of types being
more general on the left and more specific on the right. 170

6.8 Semantic types and their distribution within the manually labeled dataset. 171

A.1 Structured requirements to model the semantics of statutory texts. 212

XVII

XVIII

CHAPTER 1

Introduction

The usage of information technology within the legal domain is highly appealing and has been in
the center of academic research since many decades. The reasons are manifold, but are rooted in
the fact that working with legal texts, such as laws, statutes, judgments, and contracts, can be
considered as classical knowledge work according to Di Ciccio et al. (2015). These tasks are

∙ knowledge-intensive,

∙ data-intensive, and

∙ time-intensive.

Consequently, software support can make a huge impact and has been a main objective of aca-
demic and industrial research since the early beginnings of the interdisciplinary field of legal
informatics. The attempts of providing adequate support were as diverse as the tasks of legal
knowledge workers are and covered a very broad spectrum, such as formalizing legal rules for
civil and common law jurisdictions to enable computational reasoning, structuring legal knowl-
edge in formal ontologies, providing alternative representations and legal visualizations for legal
documents, or extracting information from and semantically annotation of legal documents, i.e.,
legal text analytics. An excellent overview of the work form the last 25 years is provided in the
overview paper from Bench-Capon et al. (2012).

Advances in computer science, software engineering, and information systems research have, in
a certain way, always influenced and positively contributed to legal informatics. For example
the semantic web, which was originally proposed by Berners-Lee et al. (2001), had a significant
impact on the development of research communities in legal informatics, such as the International
Association for Artificial Intelligence and Law (IAAIL). Their approaches investigated how
to structure legal knowledge in an ontological format, thus making it accessible for knowledge
representation and for computational legal reasoning (see Sartor et al. 2011a,b; Casellas 2011).

1

1. Introduction

Based on the literature that summarizes the trends in legal informatics (e.g., Ashley 2017; Bench-
Capon et al. 2012), it becomes evident that the most recent advances and trends in computer
science, especially in information retrieval, machine learning, and artificial intelligence, influence
the field of legal informatics. This trend can also be observed in recent publications: in the works
on extraction of legally relevant concepts from textual legal documents; e.g., to improve search
results in legal information databases (Grabmair et al. 2015), to classify legal sentences and
norms (Maat et al. 2010; Maat and Winkels 2010), or to structure legal contracts(Chalkidis
et al. 2017); or in work on the use of artificially intelligent application in various scenarios;
e.g., predictive analytics (Nay 2017), or case-based reasoning using qualitative and quantitative
information (Grabmair 2016).

Recent publications motivate the usage and integration of information technology within the
legal domain for two complementary tasks:

1. Legal text analytics as a sub-domain of data science and text mining (see Ashley 2017;
Manning and Schütze 1999; Jurafsky and Martin 2014).

2. Computational models of legal reasoning as a sub-domain of artificial intelligence
(see Ashley 2017; Russell and Norvig 2009; Bench-Capon et al. 2012).

Throughout the last years, the field of data and text mining, including Natural Language Pro-
cessing, has made significant progress, which increases the attractiveness of its usage within
the legal domain, in the so-called legal text analytics. This is due to several reasons, and the
following three are particularly important:

1. Availability of (digital) data: Throughout the legal domain, there is a trend towards
open data initiatives. Legislators and jurisdictions all over the world publish more and more
legally relevant information, such as laws, statutes, judgments, amendments, articles, etc.,
in a digital and machine-readable format. It is foreseeable that most of the documents
will be published in a native digital format, i.e., not as scans, and image or character
recognition are required to extract the content of a document.

2. Accuracy and efficiency of algorithms: Basic algorithms performing linguistic opera-
tions on unstructured information, e.g., text, become increasingly accurate. Complex and
computationally expensive operations, such as usage of machine learning algorithms, are
efficiently implemented. Their execution is no longer limited to powerful processing units
but is possible in web applications or even on mobile devices.

3. Capabilities of the infrastructure: In addition to more efficient algorithms, which
have become more efficient, the physical infrastructure executing them has also improved.
Resources for handling the documents, such as memory and processing time, is comparably
cheap and can be consumed flexibly in cloud services and virtual machines. This lowers the
barrier of performing complex (legal) data science tasks, since the expenses for deploying
and running these services has drastically decreased.

Based on the textual analysis and interpretation of legal texts, algorithms supporting the for-
malization of decision structures and the usage of artificial intelligence to “break down a complex
human intellectual task” (see Ashley 2017, p. 4) are highly attractive and many different at-

2

1. Introduction

tempts to formalize legal decision structures have been made (a good overview of different
attempts can be found in Bench-Capon et al. (2012)).

1.1. Problem Description

The general research objective of this thesis is to contribute a framework tailored to the German
legislation and jurisdiction to leverage the potential of legal text analytics and computational
modeling of legal reasoning. The objective is to conceptualize and prototypically implement a
collaborative environment

1. to perform state-of-the-art legal text analytics,

2. to annotate legal texts to connect them with corresponding reasoning structures, and

3. to computationally reason on interpreted legal norms.

Current implementations of text mining environments lack an adaption to the German legal
system (see Ide and Pustejovsky (2017)). This lack becomes apparent in the design and con-
ceptualization of the software frameworks regarding important software technical aspects, such
as the data model, the annotation framework, the type system and the modularity of the soft-
ware components. The accuracy and the efficiency of existing algorithms has continuously been
improved during the last decades. However, there is no free lunch in data science1. Machine
learning models and algorithms need to be adapted for a particular domain. This includes pre-
processing tasks, such as splitting of sections within legal documents, but also tasks during the
processing, such as defining the semantic entities and training the linguistic models accordingly.
Different tasks in legal data analytics have already been attempted, such as the extraction of
contract elements by Chalkidis et al. (2017), or the classification of legal norms by Maat et al.
(2010); Maat and Winkels (2010) within a Dutch document corpus. However, these attempts
did not focus on the provision of a standardized framework that would allow for reusing com-
ponents, trained models, and patterns. This can be considered as a drawback within the legal
informatics community, as no generally accepted standard for processing and annotating of legal
documents has emerged.

A main goal during the analysis of legal documents is to support subsequent reasoning processes.
Legal reasoning has many different notions and concepts and is also examined with respect to
the different jurisdictions, e.g., common and civil law. An extensive overview of the different
approaches is provided in Bench-Capon et al. (2012), where 50 papers of AI and law research are
summarized. A main issue is isomorphism (see also Section 4.1), which deals with the challenge
of ensuring the semantical equivalence between the legal text and the decision structures. This
work tackles this issue by developing a concept and implementation to connect the text with the
computational model using annotations. These could either be created automatically, by text
analytics components, or manually .

Finally, based on the insights on meta-model-based knowledge engineering and domain specific
languages, a framework for computational reasoning is developed to model interpreted legal

1An detailed discussion on the challenges and limitations was provided by Flach (2012).

3

1. Introduction

norms and performing legal reasoning. The concept relies on the usage of ontological compo-
nents, e.g., types, attributes, and relations; and overcomes limitations of description logics, which
are normally used in ontological reasoning, by adding operations for arithmetical reasoning. As
mentioned above, each ontological component can be associated with corresponding text phrases
using annotations.

1.2. Research Questions

The key objective of this thesis can be derived from the problem statement and formulated as
specific research questions. The main contribution is intended to narrow the gap between the
relevant and most recent research directions from legal informatics and state-of-the-art software
engineering, which leads to the following research hypothesis:

Research hypothesis: A collaborative software environment can support the se-
mantic annotation of legal documents, using text analytics components to design
and formalize computational models within ontological decision structures.

The hypothesis can be divided into different research questions allowing a structured approach
to address the overall objective. The following research questions are addressed and answered
within this thesis:

Research question 1: What is the state-of-the-art in software-supported analysis
of textual documents in the legal domain focusing on legislative and judicial texts?

The state-of-the-art in software-supported analysis is elaborated with an overview of relevant
literature considering recent publications and projects in the field of legal informatics. A dif-
ferentiated analysis of the legal systems, such as civil and common law, needs to be taken into
account. The focus of the literature overview is to show the potentials of semantic analysis of
legal documents with regard to different use cases and scenarios (see Section 2.1). In addition, an
investigation of implemented software frameworks and platforms was performed and evaluated
in Section 3.

Research question 2: What are the methods and tools to formalize ontological
decision structures emerging from statutory texts?

In order to investigate the potentials of representing interpreted decision structures in formalized
and computable models, the most common methods and tools need to be investigated (see
Section 2.3). The main focus is to understand the potentials of formalizing statutory texts,
such as laws and statutes among others. Not only the tools and formal calculus but also the
processes of how these decision structures can be derived, i.e., interpretation methods, are taken
into account .

Research question 3: What could a reference process, considering activities, roles,
artifacts, and software tools, for the software-supported semantic analysis of legal
documents look like?

4

1. Introduction

Based on the consideration of the state-of-the-art for the semantic analysis of legal documents, a
reference process is defined (see Section 3.1). The process is subdivided into different activities.
In addition to the activities, central roles within the interdisciplinary reference process are
identified. The reference process also takes into account artifacts, e.g., documents, type systems,
etc. The activities are the base line for the identification, conceptualization and implementation
of the software services and tools.

Research question 4: What are the design principles and components of a soft-
ware architecture enabling a collaborative environment for information extraction
processes from legal documents?

As modern software engineering heavily relies on the principle of reusing software and com-
ponents, a state-of-the-art software has to be designed to support this principle is supported.
The architecture and design, as proposed in Section 3.4 and Section 3.5, has been developed
to take this into account. Components are loosely coupled and well-defined interfaces ensure
the modularity of the overall system. This needs to be considered for the management of legal
documents, including the data model and central data storage, and their semantic processing;
including a generic but robust, e.g., a thread-safe pipeline architecture.

Based on existing implementations for software architectures to perform information extraction
processes, the implications for the design of a collaborative legal data science environment are
investigated. The question focuses on the design of a software architecture to manage and
semantically analyze legal documents. In addition, the collaborative part is considered by the
system, as the processing of documents and modeling of decision structures can be performed
simultaneously by different users.

Research question 5: What are the elements of a reference process with the aim
of formalizing statutory texts into computational decision structures?

Similar to the reference process model for the interdisciplinary legal data science a reference
process model for the analysis and interpretation of statutory texts is defined (see Section 4.1).
Based on commonly accepted interpretation methods from legal theory the process model iden-
tifies different activities following the analysis of statutory texts, their interpretation, and finally
their application in terms of legal decision-making. The software support for the individual
activities is discussed. The subdivision into different phases allows for a better structure of the
software support.

Research question 6: What are the components of an ontological reasoning frame-
work modeling the computational semantics and connecting the interpreted legal
texts with the corresponding model element?

Based on the semantic analysis of legal documents and the literature on the formalization of
statutory text into computational models, knowledge engineering approaches, i.e., ontological
concepts, and legal reasoning are combined in Section 4. The model-based reasoning differen-
tiates between the structuring of the legal knowledge and an executable part, so reasoning is
possible based on the provided facts and on evidence (see Section 4). The information extracted
from the legal text and stored as annotations can be linked to each model component to maintain
the source of the interpretation from the textual documents.

5

1. Introduction

In addition, the full-stack design and concept for the decision support system is developed based
on the reference process (see Section 4.3). Subsequently, the user support for the analysis and
inspection of the decision structures is discussed (see Section 4.4).

Research question 7: Which degree of accuracy can be achieved during informa-
tion extraction and norm classification in judicial and statutory texts? What are the
limitations and emerging research directions?

Finally, the quality of information extraction components and the modularity of software archi-
tecture of the environment need to be assessed. For this purpose, different aspects of the system
are investigated individually: the suitability of the architecture to support editorial staff by
extracting particular information from tax law documents (see Section 6.2), the classification of
legal norms with rule-based and active machine learning approaches (see Sections 6.3 and 6.4),
and the formalization of one particular decision structure in Germany’s tenancy law (see Sec-
tion 6.5). This assessment facilitates a detailed discussion about the potentials and limitations
of the semantic analysis and formalization, based on which subsequent research directions can
be derived.

Against the background of this explicit formulation of the research questions, the research design
can be chosen in order to adequately address and approach the overall research hypothesis can
be selected.

1.3. Epistemological Position and Research Design

An adapted Information Systems Research (ISR) research framework (originally proposed by
Hevner et al. (2004)) has been modified for the thesis at hand. Figure 1.1 depicts the research
paradigms and consists of the following main elements:

∙ Environment: The phenomenon of interest is embedded into the problem space, which
is defined as the environment. For the field of ISR, people, organizations, and their tech-
nologies are subsumed therein.

∙ Business Needs: The goals, tasks, and problems define the business needs. These are
assessed and evaluated within the context of organizational strategies, structures, and
existing business processes.

∙ IS Research: Design science aims at building and evaluating an artifact to meet the
previously determined business needs. The goal of design science is utility. The assessment
of the artifacts results in an identification of weaknesses of the artifact and in the need to
refine and reassess it.

∙ Knowledge Base: The knowledge base provides the raw materials from and through
which ISR is accomplished. The knowledge base consists of foundations and methodologies,
prior IS research and results from theories, frameworks, models, and methods used in the
develop phase.

6

1. Introduction

∙ Applicable Knowledge: The applicable knowledge emerges from the knowledge base.
It influences the design and implementation of the artifact, and its assessment.

Organizations
• Industry Partners

• Datev eG
• SINC GmbH

• Processes
• Editorial Analysis
• Legal Search
• Interpretation
• Decision-making

• …

Technology
• Infrastructure

• (Open) Data
• Applications

• Meta-model-based IS

Foundations
• Theories

• Knowledge Representation
• Legal Theory

• Frameworks
• Meta-model based IS
• Apache Spark
• Apache UIMA
• DKPro
• UIMA Fit

• …
Methodologies
• Data Analysis

• (Legal) Data Science
• Formalisms

• Deductive Reasoning
• Model-based reasoning

IS Research Knowledge BaseEnvironment

Business
Needs

Applicable
Knowledge

Design and prototypical
implementation of an IS
enabling collaborative
data science on legal

documents and
computational reasoning

on interpreted legal
norms

Multiple iterations with
different evaluation methods

A
ss

es
s R

efine

Application in the
Appropriate Environment

Additions to the
Knowledge Base

Relevance Rigor

Figure 1.1.: Adapted information systems research framework proposed by Hevner et al. (2004).

According to Hevner et al. (2004), “design science is inherently a problem-solving process”. They
derived seven fundamental principles, i.e., guidelines, of design-science research that structure the
knowledge and understanding of a design problem and its solution. The design-science process
heavily relies on designing, building, and applying an artifact. The following considerations
discuss the applicability of design-science for this thesis to address the problem statement and
research questions stated above.

Guideline 1 “Design as an Artifact”: The most important entity within the research process
is the artifact which needs to be built. According to (Hevner et al., 2004, p. 82), “the result
of design-science research in IS is, by definition, a purposeful IT artifact created to address an
[...] organizational problem. It must be described effectively, enabling its implementation and
application in an appropriate domain.”. In the scope of this thesis, the artifact is a collaborative
web application that enables its users to apply state-of-the-art text analytics tools to semantically
analyze legal documents. This analysis should ultimately support the interpretation and creation
of computable representations of legal decision structures.

Guideline 2 “Problem Relevance”: Supporting the research problem by proving its relevancy
for a business problem is a main motivation of design-science: “[...] to develop technology-based
solutions to important and relevant business problems.” (Hevner et al., 2004, p. 83). The
problem of the textual analysis of legal documents is commonly accepted in the field of legal
informatics as discussed by Ashley (2017) and in Bench-Capon et al. (2012). In addition, the
commercial relevancy is discussed, e.g., by Susskind (2013).

Guideline 3 “Design Evaluation”: Once a design artifact has been built, its utility and

7

1. Introduction

efficacy must rigorously be shown via established evaluation methods. The methods that can be
used are manifold, but need to be in line with the commonly accepted methodologies, such as
case studies, or analytical approaches. The research prototype developed in this thesis was used
within a case study with an industry partner (see Section 6.2), and the overall performance was
demonstrated in two complementary quantitative evaluations (see Sections 6.3 and 6.4).

Guideline 4 “Research Contribution”: According to Hevner et al. (2004, p. 83), effective
design-science research “[...] must provide clear and verifiable contributions in the areas of the
design artifact [...]”. This highlights the importance of clarifying the distinction achieved through
the research. The contribution made by creating and developing a new artifact needs to show
an advancement regarding the epistemological increase of knowledge. The contribution of this
thesis are the prototype, a reference process models for interdisciplinary legal data science (see
Section 3), and a reference process model for the interpretation and formalization of statutory
texts (see Section 4).

Guideline 5 “Research Rigor”: A research gap was determined by analyzing related literature
on the analysis of legal documents with particular focus on statutory texts for the German
domain. Main challenges during the conceptualization of the framework were the design and
implementation of a modular framework fostering collaborative data science while preserving
the particularities of German legal documents, e.g., a data model for efficiently representing
statutory texts. The computational modeling for model-based reasoning on interpreted legal
norms does not only take into account existing reasoning approaches, e.g., ontological reasoning
with description logic.

Guideline 6 “Design as a Search Process”: The IT artifact developed has continuously been
evaluated, extended, and improved. Thereby, more and more software components have been
added to allow an elaborate semantic analysis of legal documents. The functionality of the overall
system increased steadily, while desirable design principles were preserved, such as software
modularity and loose coupling among the components. The concepts and implementations in
the present thesis present can be considered to be a detailed description of the current state of
the search process, on which more generate/test cycles (see Hevner et al. 2004, p. 89) can be
performed.

Guideline 7 “Communication of Research”: Finally, the research prototype as well as
selected functionalities have to be presented to appropriate audiences, focusing on either tech-
nology or use-case scenarios. Figure 1.2 summarizes the main publications authored during the
research this thesis is based on.

Based on the considerations for design-science in information systems research, the main con-
tribution and the results of the thesis were established. The next section provides more details
about the remainder of the thesis in more detail.

1.4. Outline of the Thesis

This thesis is organized by seven chapters describing the research and its contribution. Fig-
ure 1.2 shows the structure of the thesis and outlines the chapters II–VII. The figure is divided

8

1. Introduction

into four different pillars: chapters, research questions, research results & artifacts, and main
publications. This serves as an overview of the different parts and pieces and to show how they
are interconnected and built on top of each other.

Waltl et al., 2017a
Waltl et at., 2017d

Waltl et al., 2015a
Waltl et al., 2016a
Waltl et al., 2017a

Waltl et al., 2017b
Waltl et al., 2017c

1, 2 3, 4 5, 6 4, 6Research
Questions

7 7

Chapters
(II – VII)

Research
Results &
Artifacts

Processing of
Legal

Documents

Model-based
Reasoning
Framework

Main
Publications

ConclusionImplementation
Evaluation

and
Assessment

Reference Process for
Interdisciplinary DS

Annotations and
Annotation Types

Architecture for
Mgmt. of Legal Docs

Architecture for
Processing of Docs

Terminology and
Overview

State-of-the-art
Analysis

Research Gap

Collaborative Data
Science Framework

Text Analysis Engine

Active ML
Implementation

Implementation of
the MBR Framework

Reference Process to
Formalize

Legal Documents

Concept of
Model-based

Reasoning (MBR)
Framework

Design and
Requirements

Analysis and
Explanation Comp.

Summary

Critical Reflection

Outlook

Case Study: Support
of Editorial Processes

Performance Eval.:
Rule-based Text

Classification

Performance Eval.:
Active ML for Text

Classification

MBR Formalization:
Tenancy Termination

Active Machine
Learning Architecture

Waltl et al., 2015a
Waltl et al., 2016a– –

Foundations
and

Related Work

Figure 1.2.: Structure, outline, and main contribution of this thesis.

The following paragraphs briefly outline the individual chapters.

Chapter 2 “Foundations and Related Work” summarizes the main publications relevant
for the research hypothesis and research questions. The main body of academic research papers
has been published by the legal informatics community. This is particularly relevant, as the
problem at hand is a genuinely interdisciplinary research problem. The related work section
differentiates between the problem of legal text analytics and the formalization of statutory
legal documents. The main contribution thereof is the clarification of terminology and the
identification of a research gap.

Chapter 3 “Semantic Analysis and Annotation of Legal Documents” continues with
an extensive discussion of how legal documents are processed. Thereby, an interdisciplinary
reference process model is proposed which was evaluated within a case study. The role of
annotations and annotation types is discussed and the relevancy for the domain of legal text
analytics is explicated. The chapter also introduces the concept for managing legal documents
within a collaborative web application. The main contribution is the architecture for processing
legal documents in a Pipes & Filters architecture, fostering the reuse and modularity of software
components. The role of different components, such as rule-based information extraction, is

9

1. Introduction

discussed, and their importance for the legal domain is shown. In addition, the role of Active
Machine Learning is detailed and its architectural integration is described.

Chapter 4 “Concept and Design of a Model-based Reasoning Framework” contributes
the formalization of statutory texts into model-based decision structures. At the beginning it
proposes a reference process model describing four different iterative activities that are per-
formed during the analysis and interpretation of a statutory text. The process model also shows
the potential of software & tool support. Based on these considerations, an example shows
the limitations of current ontological reasoning structures, e.g., description logic. The main
requirements for the reasoning framework are derived and the role of analysis and explanation
components within legal decision support systems is discussed.

In Chapter 5 “Implementation” , the prototypical implementation is shown by highlighting
the main parts of the concrete software. Important and illustrative parts of the implementation
are discussed in detail to show the necessity of a well-structured software architecture and their
contribution to the overall software artifact. The implementation chapter is organized along three
different categories: legal text analytics, active machine learning, and model-based reasoning.

Finally, in Chapter 6 “Evaluation and Assessment” , the research artifact is evaluated. For
this purpose, four different evaluation phases were conducted using three different methods: case
study with an industry partner, quantitative analysis of the information retrieval components,
and a proof-of-concept for the generalization of the formalization method.

In Chapter 7 “Conclusion” , the contributions of this thesis are summarized and critically
reflected. The initially formulated research questions are reconsidered, and answers are provided.
Based on these considerations, limitations are identified and open questions for future research
are proposed.

10

CHAPTER 2

Foundations and Related Work

This chapter constitutes the foundation for the concept, design, and implementation as described
in this thesis. It provides an overview of the state-of-the-art in different but related domains
investigating legal text analytics and computational models of legal reasoning in the German
legal system.

The chapter is divided into three main sections:

∙ Section 2.1 “Legal Text Analytics and Software Engineering” summarizes the main aspects
of text analytics and Natural Language Processing with a particular focus on the legal
domain. It takes into account concepts from the domain of computational linguistics and
software engineering.

∙ Section 2.2 “Representing the Structure of Legal Documents” introduces the most common
and widely accepted concepts to technically represent legal documents. The purpose is
to provide a differentiated view on modeling the structure and the semantics of a legal
document.

∙ Section 2.3 “Computational Models of Legal Reasoning” describes the main research re-
sults from the domain of legal reasoning into formalized models. Different aspects from
a logical, computational, and practical point of view are considered. The focal point is
analyzing the approaches and contributions for reasoning on formalized statutes and civil
law jurisdictions.

11

2. Foundations and Related Work

2.1. Legal Text Analytics and Software Engineering

2.1.1. Foundations of Text Analytics

Natural Language Processing (NLP) has a long tradition and the main advances have been made
the field of computational linguistics. The main objective thereby is to develop concepts and
algorithms to process human (natural) speech and language. This section will introduce the
main concepts and highlight the knowledge base of text analytics with a particular emphasis on
processing legal texts.

Recognition of
named entities

POS - tagging

Stop word
removal

Segmentation

Tokenization

Unstructured Information

Structured Information

Crawling of text

Streaming of tokens

Import of different
document types

Normalization of
named entities

Stemming

Lemmatization

Dependency
parsing

Constituency
parsing

Extraction of
auxiliary sentences

Recognition of
subjects, objects, etc.

Semantic
role labeling

Extraction of
relations

Determination of
functional types

Creation of controlled
natural language

Normalization
of text

Formal representation
of concepts

Creation and reuse
of ontologies

Lexical
Phase

Morphological
Phase

Formalization
Phase

Syntactic
Phase

Semantic
Phase

Raw Text
Phase

Figure 2.1.: Transition from unstructured to structured information using computational linguis-
tics (based on Ide and Pustejovsky (2017); Jurafsky and Martin (2014); Manning
and Schütze (1999); Bishop (2006)).

Based on existing literature, a main goal of NLP and text mining could be described as processing
unstructured information, i.e., text, by extracting the inherent structures (Jurafsky and Martin,
2014). The ultimate goal is to formalize the unstructured information into in a computational
format. Figure 2.1 presents an overview on how the transition from text to a formal specification
is performed. In this process, various tasks and phases exist in which different operations can be
applied to extract knowledge from the text or to assign an additional meaning, i.e., semantics,
to the text. It briefly outlines the main understanding of NLP that underlies this thesis, namely
the use of several procedures and techniques to subsequently provide more and more structure
for initially unstructured information.

Further information about different components, how these are designed, implemented, and

12

2. Foundations and Related Work

trained were summarized by Jurafsky and Martin (2014) or Manning and Schütze (1999). The
next sections will focus on the concepts and applications of NLP for the legal text analytics, as
defined by Ashley (2017).

2.1.2. Text Mining to Extract Concepts from Legal Documents

The application of NLP within the legal domain is very appealing and numerous approaches
using different technologies and specific objectives exist. The foundations discussed for this
thesis particularly focuses on the usage of NLP to extract legal concepts from legislative texts
to support legal document interpretation.

In essence, three main streams can be observed: legal text analytics for legislative texts (see
Biagioli et al. 2005; Savelka et al. 2015), for judicial texts (see Wyner et al. 2010; Wyner and
Peters 2010a; Grabmair et al. 2015; Walker et al. 2017), and for contracts (see Chalkidis et al.
2017).

Ashley (2017, p. 233) states two main roles of text analytics for the legal domain, namely
capturing the role of sentences in legal documents, e.g., arguments, and supporting conceptual
information retrieval in legal information systems. Having a legal document semantically ana-
lyzed and annotated with functional information could to re-rank search results, e.g., Grabmair
et al. (2015), could help users and applications form arguments or hypothesis, and potentially
predict the outcome of legal cases. Although Ashley (2017) clearly focalizes the analysis of legal
documents for common law jurisdictions, he emphasizes the role of NLP as assistance during the
extraction of information from statutory texts. In Ashley (2017, p. 260), he identifies and sum-
marizes the potentials in the extraction and classification or norms (e.g., functional categories),
texts (e.g., topics of law), or legal rules (including antecedents and consequents).

The collection of publications in Francesconi (2010) provides a good overview on the semantic
processing of legal documents. The contributions cover different topics and emphasize the role
of ontologies for legal knowledge representation and structuring. The collection of publications
shows a variety of applications and use cases to be performed at the intersection between law
and informatics. The legal text analytics contributions focus on named entity recognition and
extraction of legal terms, i.e., keywords. Only one contribution explicitly investigates the analysis
of statutory text, namely the classification of functional types of norms Maat and Winkels (2010),
which is discussed in depth in Section 2.1.3.

Savelka et al. (2015) processed statutes with the aim to determine the relevancy of a statutory
provision given a specific case. Based on two datasets, consisting of 4,022 individual provisions
and 1,532 individual provisions respectively, the authors used an interactive machine learning
framework to determine the binary classification (relevant vs. non-relevant). They used a
support vector machine with a linear kernel and as features, unigram representations of the
provisions were used. The experiment showed that interactive machine learning is superior to
classical machine learning and that the classification can support during relevancy assessment.
However, the overall performance reached an 𝐹1 = 0.50, and 𝐹1 = 0.61 respectively. Which does
not seem to be too promising at a first glance, but given the complexity of the task this can be
considered as a remarkable result.

13

2. Foundations and Related Work

In addition to the approaches to analyze statutory texts, legal informatics structures the infor-
mation contained in judicial texts, i.e., judgment, cases, court decisions, etc. The publication
Wyner et al. (2010) describes an attempt to automatically mine arguments and legal case factors
from legal cases. Different corpora were used and the processing was done using context-free-
grammars, i.e., rule-based pattern matching. Based on a set of 20 cases from the European
Court of Human Rights (ECHR), the extraction could be performed with an 𝐹1 score reaching
from 0.64 to 1, depending on the argumentation type.

Also based on the analysis of judicial documents, Grabmair et al. (2015) investigated the re-
ranking of search results using annotations which reflected particularly significant textual phrases
in a document corpus. The gold standard consisted of 35 case documents and the textual phrases
were annotated on the sentence level focusing on the argumentation in judicial decisions. They
were able to show that annotation the a sentence level, as additional information to re-rank
the search results, improves the performance compared to the baseline, which was the standard
search function of WestlawNext1, a common legal information provider. The sentences were
classified using a combination of rule-based and supervised machine learning approach.

The research group published an approach on a similar, very convincing idea of annotating
sentences in judicial texts with regard to their semantic role and functional type (see Walker et al.
2017). Therefore, ten different semantic roles have been identified, e.g., “evidence sentence or
clause”, “rule-based-reasoning sentence or clause”, etc. Based on a document corpus of veterans’
disability claims (55,713 by 2015), the computational reasoning on these claims will be supported.
The main idea is to assigning the semantic types to the sentences of this corpus. The overall
goal is to “make claims processes more transparent, efficient and accurate” (Walker et al., 2017).
The paper can be considered as the theoretical foundation and the results of the classification
are going to be created subsequently.

Little research has been done focusing on the analysis of German legal documents. The research
conducted by Walter (2010) is worth to be mentioned. In his dissertation, he focused on the
extraction of definitions from cases decided by the German constitutional court, which is known
to be very challenging. The labeling was done on the sentence level; the training data consisted
of 3,757 sentences, form which 138 defining sentences were determined manually. The overall 𝐹1

score was very low, but slightly varied, depending on different techniques. However, it was never
above 0.14, or 0.40 respectively. Walter has chosen a rule-based approach, but did not use any
context-free grammar. Instead he used an implementation in SQL, respectively XPATH, which
does not support the reuse of his results and research. Nonetheless, this approach focused on
German legal documents, which are hardly studied in the domain of legal informatics.

Recently an approach to classify Chinese judgments was performed by Lei et al. (2017). They
manually labeled 6,735 documents into 13 different categories representing the industry division
to which a particular judgment was relevant, e.g., pharmaceutical, textile and garment, trans-
portation, etc. With an experiment they compared different parameter settings and classifiers,
namely naive bayes, decision trees, random forests, and a support vector machine. They showed
that SVM performs best (𝐹1 = 0.87) but also requires the most time in training, i.e., more than
15h. The remaining classifiers were trained in less than 5 minutes. They show the overall prob-
lem very well, as 70,000 new judgments are indexed in the Chines online system every day. This

1https://next.westlaw.com/, accessed on September 3, 2018

14

2. Foundations and Related Work

increases the appeal to focus on this domain and jurisdiction. More research can be expected in
this particular field.

An approach regarding the the analysis of contracts was performed by Chalkidis et al. (2017).
They used a mixture of hand-written rules and linear classifiers to extract elements from con-
tracts, such as contract title, contracting parties, start date, etc. They intelligently combined
zoning information and reached a performance of over 0.90 in terms of 𝐹1 in a variety of different
contract elements. Although their approach showed impressing values for a large set of contract
elements, some elements, such as “Value”, i.e., price, salary, etc., could only be extracted with a
𝐹1 score of 0.64. Their training data consisted of 3,500 contracts. The analysis of contracts is
highly attractive, especially for commercial initiatives. However, as this thesis mainly investi-
gates the analysis of legislative texts, no in-depth literature analysis has been performed on the
research available for the analysis of contracts.

This overview on the state-of-the art in the analysis of judicial and legislative texts using methods
from computational linguistics emphasizes the relevancy, but also the diverse use cases and
scenarios that exist in the field. The next section will focus on the classification of legal norms
within statutory texts in particular.

2.1.3. Text Mining to Classify Legal Norms

An early contribution for the classification of norms in legislative texts has been published by
Biagioli et al. (2005). The authors differentiate between the “formal partition”, i.e., structure,
and the semantic units of a regulation. They shared the idea, that the semantic annotation
“can make the [information] retrieval easier”, which is still relevant today (Ashley, 2017). In
order to classify legal norms, the authors distinguish eleven different types, which are assigned
to paragraphs. In an experiment, where they manually labeled 582 paragraphs, they used a
multi-class support vector machine. Overall, they achieved an average 𝐹1 measure of 0.80,
whereas the precision and recall values for different classes where quite diverse, scaling from
𝐹1 = 0.35 for permission to 𝐹1 = 0.97 for substitutions. Francesconi and Passerini (2007)
evaluated the classifiers, naive bayes, and a support vector machine by determining the same
eleven functional types. They showed that the support vector machine outperforms naive bayes
in the classification task.

Various attempts to classify legal norms have been made using Dutch legislative texts. Maat
and Winkels (2007) discern different rule types. In their model, they follow the distinction
between primary and secondary rules, originally proposed by Hart and Green (2012). Whereas
the primary rules describe the main sources of normative regulation, such as rights and duties,
secondary rules subsume norms that regulate the management of rules, such as their applicability
and transitional provisions.

Based on this model of legal norms, they implemented two different approaches to automati-
cally classify norms in Dutch legislative texts. Maat and Winkels (2010) followed a knowledge
engineering approach by extracting typical text patterns that identify the category of a given
norm. The patterns were coded into regular expressions and applied to a corpus of 18 Dutch
legislative texts (Income Tax Act). (Maat and Winkels, 2010, pp. 175) also discussed the prob-

15

2. Foundations and Related Work

lem of finding the right granularity for the classification, but finally used the sentence level. The
shortest document consisted only three sentences, whereas the longest document contained 166
sentences. In total, they derived 87 patterns to classify the sentences into 15 different categories.
Using this approach, they reached an average 𝐹1 score of 0.91. They also analyzed the patterns
that they originally determined and how they contributed to the overall result. Their investiga-
tion showed that out of the 87 patterns, only 44 actually triggered a classification, whereas the
remaining ones where not used at all; or at least not in the document corpus that was used for
testing.

Maat et al. (2010) extended the research performed with a knowledge engineering, i.e., rule-
based information extraction, by applying a machine learning classifier. This makes it a very
interesting and valuable contribution to research, as hardly any attempts exists to perform a
structured comparison between a knowledge-engineered approach and a machine learning-based
approach. The accuracy rates have again reached the high level of 0.94. They carried out various
different parameter studies and showed that binary term weight, with the removal of stop words
and a minimal term frequency of 2, performed best. In an informal discussion about potential
errors, they identified the “skewness” as a potential source of errors. This means, that classes of
norms, that hardly occur throughout legislative texts, tend to be classified less likely, compared
to those classes that occur more often.

Wyner and Peters (2010b) also used a rule-based approach to extract elements from statutory
texts. They selected a passage from the “US Code of Federal Regulations, US Food and Drug
Administration, Department of Health and Human Services regulation” for blood banks on test-
ing requirements for communicable disease agents in human blood, title 21, part 610, section 40.
The document contains 1,777 words and is therefore relatively small. However, their approach
did not concentrate on the analysis of the norms, but they did a much finer granular analysis
using the Java Annotation Patterns Engine grammar. They focused on analysis with regard to
deontic rules. Their analysis model included deontic modals and verbs, agents and themes, and
conditional sentences with antecedents and consequences. They reached an average 𝐹1 score of
0.79. However, many of their deontic concepts were extracted without any error (𝐹1 = 1). The
potential sources of errors are discussed extensively. The main challenge is the syntactic position
of subject, object, and by-phrases and the usage of active and passive sentences.

The related work above delimits the research area and summarizes the state-of-the-art in liter-
ature on semantically analyzing legal document. However, few equivalent attempts have been
made in the German domain and rarely did researchers focus on the provision of a more generic
framework to foster the semantic annotation of these documents, instead of having stand-alone
solutions that do not allow for the reuse of training data, trained linguistics models, and rules.
Furthermore, none of the approaches above fosters collaboration of data scientists over a common
platform or environment.

The next section illustrates the role of software architectures for legal text analytics. Based on
the different use cases and scenarios that have been implemented, the technology used will be
discussed. The commonalities are highlighted, so that the importance and the feasibility of a
common platform become evident.

16

2. Foundations and Related Work

2.1.4. Software Architectures for Legal Text Analytics

Various attempts have carried out to analyze legal documents using software components. How-
ever, as a close look at the knowledge base shows, none of the attempts focused on the provision
of a more generic software framework that could serve as a base line for further approaches
in legal text analytics. Instead, most research projects start with the re-implementation of a
various of software components. Depending on the concrete research, these cover almost the
whole spectrum of text analytics as shown in Figure 2.1.

The remarkable work on the analysis and classification of norms from laws in the Dutch legis-
lation by Maat and Winkels (2007); Maat et al. (2010); Maat and Winkels (2010) mainly used
regular expressions and stand-alone machine learning packages, e.g., Weka (see Section 3.5).
They manually extracted text patterns that can be used to classify norms and provision in legal
texts. These patterns were transformed into regular expressions. Admittedly, that main focus
of their research was not to design and implement a software framework that could easily be
expanded to new research questions. However, this would certainly foster innovation and the
reuse of their implementations and patterns. This can be applied to many of the attempts within
the domain of legal text analytics. Without questioning their success, their solutions lack the
potential reuse, thus preventing their achievements from a wider adoption.

The approaches from Grabmair et al. (2015) and Walker et al. (2017) are interesting from the
legal perspective, but also from the software technology aspect: The underlying software frame-
work for the analysis is based on the Apache UIMA framework, which will be discussed in detail
in Section 3.5. This robust and widely adopted software architecture allows for the reuse of
implemented software components, and it also fosters their exchange among the scientific com-
munity. The interchange of trained models, software components, and extracted patterns, can be
highly recommended, not at least due to the expensive tasks underlying the implementation.

Another framework that is widely adopted within the domain of legal text analytics is the so-
called General Architecture for Text Engineering (GATE). This framework was, for example
used by Wyner et al. (2010) and Wyner and Peters (2010a). It also supports the reuse of
software components, which are organized within processing pipelines. General Architecture
for Text Engineering will be discussed in depth in Section 3.5. It comes along with a powerful
rule language (JAPE grammar) that allows the specification of complex linguistic and textual
patterns.

In Section 3, the problem and challenges for text analytics frameworks in an interdisciplinary
and collaborative setting will be addressed in depth. Based on the considerations from exist-
ing research, a recommendation and prototypical implementation of an Apache Unstructured
Information Management Architecture (UIMA) framework will be carried out to show its appli-
cability for legal text analytics. As recent studies in the field of computational linguistics have
shown (see Ide and Pustejovsky 2017) no standard framework has emerged throughout the field.
For the small domain of legal text analytics however, this seems to be a desirable goal, as the us-
age of a standardized format for semantic analysis would foster and integrate the approaches in
semantic analysis. Throughout the community, pre-processing, and training phases would only
need to be performed once, since others could rely on the progress made by the community.

17

2. Foundations and Related Work

2.2. Representing the Structure of Legal Documents

To harmonize the processing within a common software framework the legal documents, in-
cluding legislative, judicial, and contractual texts, need to be represented by a common data
structure. Different attempts to generate this common data structure have already been carried
out. Overall, Extensible Markup Language (XML) seems to emerge as a de-facto standard for
managing the legal documents and for structuring their content.

The most advanced standard for specifying the structure of legal documents is provided by the
OASIS committee on LegalDocumentXML. It is an XML vocabulary2 that provides a generic
structure for various legal documents: “The LegalDocumentXML Specifications provide a com-
mon legal document standard for the specification of parliamentary, legislative, and judicial
documents, for their interchange between institutions anywhere in the world, and for the cre-
ation of a common data and metadata that allows experience, expertise, and tools to be shared
and extended by all participating peers, courts, parliaments, assemblies, congresses, and ad-
ministrative branches of governments.” (Palmirani et al., 2017). The standard forms a superset
of all possible and known document formats and differentiates between different elements and
attributes on a very fine granular level. Two main objectives address the interoperability of
documents, and two levels of interoperability are distinguished:

∙ Semantic interoperability should ensure the understandability of the well-defined mean-
ing of information for any entity receiving the data, i.e., a person or application.

∙ Technical interoperability should ensure that applications, systems, and interfaces are
based on a shared set of technologies, languages, and technical requirements decreasing
the complexity to exchange data, access data, and the reuse of competencies and tools.

The LegalDocumentXML is a generic mark-up language that can, due to the fine granular
differentiation, no longer be considered as a light-weight format in formalizing the interchange
format of legal documents.

In addition to the LegalDocumentXML standard of Akomo Ntoso, the CEN MetaLex standard
exist, which describes itself as “an interchange format, a lowest common denominator for other
standards, intended not to replace jurisdiction-specific standards and vendor-specific formats in
the publications process but to impose a standardized view on legal documents for the purposes
of information exchange and interoperability in the context of software development.” (Boer
et al., 2002). The MetaLex standard was published earlier than the LegalDocumentXML and is
used by the legislators in the UK legislation3. The standard essentially defines the basic struc-
ture of documents and standardizes the usage of attributes and elements throughout legislative
documents. Therefore, five different main requirements where considered for the implementa-
tion:

1. Schema extension

2. Adding metadata
2http://docs.oasis-open.org/legaldocml/akn-core/v1.0/cs01/part1-vocabulary/akn-core-v1.0-cs01-part1-

vocabulary.pdf, accessed on September 3, 2018
3http://www.legislation.gov.uk/, accessed on September 3, 2018

18

2. Foundations and Related Work

3. Cross referencing

4. Constructing compound documents

5. Basic naming conventions

Currently, the implementation of this standard across different governments lags behind. Na-
tional governments still use their own schemata for the (online) publishing of legal documents.
The German legislator publishes laws on a federal level using a XML format that does not
adhere to the existing international standards. The schema is defined as a Document Type
Definition (DTD) and can publicly be retrieved4. The only objective that the schema pursues,
is to standardize the structure of the laws that are published online. The standard was created
in 2012 and defines a small set of metadata and the information on how documents can be
nested.

Besides all the attempts on formalizing the structure in a commonly accepted XML schema,
the challenge remains that most NLP components cannot deal with XML, but prefer plain text.
This thesis will discuss this challenge and develop a light-weight data model (see Section 5.1.2),
which represents documents with their meta-information and nested structure, so that it can
easily be processed by NLP components.

2.3. Computational Models of Legal Reasoning

2.3.1. A Short Introduction to Legal Expert and Decision Support Systems

Legal Expert Systems (LES) are still highly attractive for academic research, but also for indus-
trial applications and, according to Leith, these are reasons for it:“[...] making the knowledge and
expertise easily replicated, readily distributed, and essentially immortal.” (Leith, 2010). Legal
Expert System (LES) are well-studied throughout the domain of artificial intelligence and law.
Various attempts have been made, which lead to different and valuable concepts and imple-
mentations (see Bench-Capon et al. 2012). Early concepts and implementations of reasoning,
e.g., logic engines, focused on the provision of systems that allow the reasoning on propositional
logic. Highly tailored to the legal domain, the usage of those systems was left up to experts with
knowledge in both legal sciences and computer science. The provision of those logic systems is
very attractive in civil law countries, such as Germany (see Jandach 1993). Legal systems with
a predominant case law, such as the United States, have maintained a stronger focus on systems
supporting case based reasoning (see Ashley 2002).

The reasoning within legal expert systems, which is discussed since decades, can be subdivided
into several categories, such as

∙ deductive reasoning (rule-based), e.g., Prakken and Sartor (2015),

∙ ontological reasoning (model-based), e.g., Casellas (2011); Sartor et al. (2011a),

∙ deontic reasoning, e.g., Jones and Sergot (1992); Sartor (2005),

4http://www.gesetze-im-internet.de/dtd/1.01/gii-norm.dtd, accessed on September 3, 2018

19

2. Foundations and Related Work

∙ case-based reasoning, e.g., Ashley and Rissland (1988); Modgil and Prakken (2014); Grab-
mair (2016),

∙ abductive reasoning, e.g., Walton (2014),

∙ defeasible reasoning, e.g., Sartor (1995),

∙ probabilistic reasoning, e.g., Gerathewohl (1987); Timmer et al. (2015), and

∙ statistical reasoning (machine learning-based), e.g., Katz (2012); Grabmair (2016).

In countries with civil law jurisdictions the use of rule-based systems is highly attractive, because
there are strong arguments for the assumption that those rules can — to a large degree — reflect
statutory texts (see also Prakken and Sartor 2015). Rule-based systems represent the deductive
nature of laws and regulations in civil law jurisdictions.

2.3.2. Rule-based Reasoning on Laws and Statutes

Reasoning on laws and statutes using rule-based systems has been studied by Sergot et al.
(1986) in formalizing the British Nationality Act (BNA). The BNA is an excellent example for
the translation into a logic program, because it embodies all characteristics of statutes, namely
syntactic complexity, vagueness, and references to previously enacted legislation. Their formal-
ization was carried out in Prolog. The BNA already contained a couple of very interesting vague
phrases, such as “being a good character” or “having sufficient knowledge of English” (Sergot
et al., 1986, p. 370). Although the BNA was relatively self-contained (i.e., not many depen-
dencies to other laws and statutes), the authors describe severe problems in representing the
knowledge and the knowledge elicitation, which is “the most important of the central problems of
artificial intelligence research” and “the critical bottleneck.” (Sergot et al., 1986, p. 382). Their
final implementation consisted of approximately 500 rules and was executable by any Prolog
engine. Based on their experiences, they already derived three requirements for the knowledge
representation, which needs to be

1. easy for both laymen and experts to understand;

2. easy to modify (e.g., to correct errors, to enhance, and to reflect changes that occur over
time);

3. capable of allowing the inference procedure to interact naturally with the human user and
to explain its conclusions.

Susskind (1987) summarized the different approaches that were already undertaken to design
and implement LESs at that time. He described many such attempts and derived more abstract
principles and implementation guidelines. Most use cases of formalizing focused on the imple-
mentation into a canonical logical representation using logic programming, e.g., Prolog. During
the analysis of 25 different approaches to formalize legal knowledge into a LES “There can be
little doubt, then, that the successful construction of expert systems in law will be of profound
theoretical and practical importance to all those whose concern is the law.” (Susskind, 1987, p.
194). He emphasized the importance of LESs, not only to computer scientists but especially

20

2. Foundations and Related Work

to those working in the field of law. One drawback he identified at that time was the lack of
systems that sufficiently support analogies and indeterminacy within statutes.

Based on the requirement to support legal reasoning on analogies, the work of Rissland and
Skalak (1989) set a milestone. They addressed the challenge to automate statutory interpreta-
tion, which to a large degree consists of interpreting “under-defined” terms. They combine the
groundbreaking results from Case-based Reasoning (CBR) (see Ashley and Rissland 1988; Ash-
ley 1991) with rule-based reasoning in a system called “CABARET” (CAse-BAsed REasoning
Tool). The main idea is to use CBR, where formal expressions of conditions cannot be applied
due to imprecise words or phrases. It becomes clear that rule-based reasoning, and CBR and
LES are complementary methods with pros and cons.

At the same time when the LES were most highly in demand, there were several approaches in
Germany, summarized by Jandach (1993). He not only constructively differentiated between the
approaches that have been made, e.g., HYPO, CABARET, TAXMAN, etc., but also provided
a methodological framework for the construction of LES. Jandach summarized different main
(software) components required to comply with the modern understanding of a system that
represents formally modeled legal knowledge.

Meanwhile the scientific field on the rule-based inference for legal reasoning has evolved, and
rule-based systems in industrial applications are omnipresent. Two main software tools were
established over the last years: i) the Oracle Policy Automation (OPA) from the commercial
vendor Oracle Inc. (2017), and ii) Drools from the open-source community redhat Inc. (2017).
Especially the OPA is used to formalize large decision structures for governments and public
institutions. In addition, some attempts by smaller companies have been made to provide a
formalization of decision structures focusing on legal reasoning, e.g., Neota Logic5.

In addition to approaches to improve the performance of rule-based reasoning engines, successes
were achieved in improving legal reasoning on a formal representation of legal knowledge. So-
called legal ontologies were used to more adequately reflect legal knowledge (see Wyner 2008;
Casellas 2011; Sartor et al. 2011a). Improvements in knowledge representation led to the usage of
ontologies, not only to structure the domain knowledge within legal systems, i.e. taxonomies, but
also to provide means to describe the types, i.e. concepts, with their attributes and relationships.
Expressing logical constraints and relationships between those knowledge objects can be done
with description logics, e.g., Web Ontology Language (OWL). OWL allows define constraints
and axioms in ontologies. Many prior attempts used the W3C standard for modeling ontologies,
are based on the Resource Description Framework (RDF) and OWL. OWL lacks the possibility
to formalize arithmetical or complex logic operations. Since OWL is an description logic, it was
not designed to be used for arithmetical expressions or to express higher order predicates.

2.3.3. User-oriented Decision and Reasoning Systems

Enabling users to understand, analyze, and model relevant use cases, e.g., user stories, has
become an important paradigm in the domains of software engineering. Therefore, the focus
lies on providing modeling languages, i.e., notations, that are expressive enough to capture all

5https://www.neotalogic.com/, accessed on September 3, 2018

21

2. Foundations and Related Work

relevant issues of a particular domain, while remaining simple enough to be used by users.
Well-known examples of those user-oriented modeling languages are Unified Modeling Language
(UML) (Object Management Group, 2011b), Business Process Modeling Notation (BPMN)
(Object Management Group, 2011a), Case Management Modeling Notation (CMMN) (Object
Management Group, 2014), or Decision Modeling Notation (DMN) (Object Management Group,
2015).

UML has become a de facto standard in modeling and representing (software) systems. Various
static diagrams, such as class diagrams and dynamic diagrams, e.g., data flow diagrams, are avail-
able to capture the different semantics of a software system (Object Management Group, 2011b).
There have been several attempts to enrich UML with formalized and executable rules (Leon,
2001). However, UML is was never designed for modeling complex processes and work flows.
Consequently, BPMN was developed. It focuses is on business modeling and specification (Ob-
ject Management Group, 2011a). Many efforts have been made to adapt the BPMN to enable
automated compliance checks regarding pre-defined executable rules (Sadiq and Governatori,
2015). The most recent standards provided by the Object Management Group (OMG) have
a more specific focus on supporting modeling decision structures in work flows, e.g. business
processes or adaptive cases. Both CMMN and the DMN, provide users with functionalities to
specify complex decision structures, such as decision tables (Object Management Group, 2015,
Clause 8). DMN furthermore specifies a Friendly Enough Expression Language (FEEL) (Object
Management Group, 2015, Clause 9-10), which is a side-effect-free, i.e. functional, expression
language based that implements a simple data model (numbers, dates, strings, lists, and con-
texts) and a ternary logic. The intended purpose of the simple syntax is to address a wide
audience, i.e., users (Object Management Group, 2015, pp. 85).

This brief sketch of the development shows how important the user orientation and empowerment
has been for the success of modeling notations. It also shows, that the provision of executable
semantics has always been an important part of the standardizations efforts. Within the last
years, the efforts to formalizing work flows and decision structures have intensified. This heavily
increases the transparency of business processes and adaptive cases, therefore allowing optimizing
and leveraging of efficiency and effectiveness.

In this thesis however, the integration for end-users plays a minor role with regard to visual-
izations and modeling notations. The main focus is to explore the potentials that arise during
the support of interpretation on semantically annotated legal texts, which is of fundamental
significance for the subsequent representation in one of the mentioned notations. As UML is an
accepted standard for modeling of complex systems and can also be used to model ontological
aspects, it will be applied throughout the thesis to visualize and structure the models used for
computational reasoning.

2.4. Summary

Based on this overview, the relevancy of decision support systems is once again underpinned and
the combination of state-of-the-art legal text analytics software and a legal reasoning framework
is established. This thesis is as an additional contribution to narrow the gap between the textual

22

2. Foundations and Related Work

representation of decision structures on the one hand, and formal representation to allow legal
reasoning on the other hand. The overview identifies the research potential at the intersection
of legal informatics and software engineering, focusing on the legal domain in Germany. This
potential can be identified in three complementary fields:

∙ Text analytics and classification of legal norms: From the set of available technolo-
gies, frameworks, and software architectures this thesis investigates which one should be
used for legal text analytics. Thereby, the focus lies on supporting the various use cases
that are relevant within the field of legal informatics, especially the extraction of informa-
tion from various legal documents and the classification of legal norms. A main concern
is to foster the reuse of software components and trained analytics models.

This thesis investigates different platforms and concepts of how modern applications for
text analytics are designed and concludes by recommending the use of an open-source
framework, namely Apache UIMA. However, to fulfill the particularities of the German
legal domain, the design decision, with regard to the data model and type system needs
to be explicated and addressed.

∙ Computational models of legal reasoning on German statutes: The creation of
computational decision structures that capture the semantics, as they are described in
German statutes, can partially be done using ontologies. The standards in modeling
ontologies lack several functionalities, such as arithmetical reasoning, which are identified
and addressed by this thesis. In addition, it is important that the decision structure reflects
— to the largest degree possible — the content as provided in the statutory text.

This thesis uses the well-studied base line of ontologies on structure and reason on legal
knowledge. However, Web Ontology Language (OWL) does not suffice for the representa-
tion of the semantics of legal norms in a computational manner. The usage of description
logic can be considered as an acceptable step for knowledge representation, but is not
adequate for more comprehensive reasoning structures.

∙ Synthesis of text analytics and computational models: The integration of text
analytics components and a full-stack implementation of a system that allows reasoning on
model-based decision structures offers possibilities to link parts of the computational model
directly with its interpreted source in the legal document. This synthesis contributes to the
well-studied problem of isomorphism. The usage of automatically and manually created
annotations that explicate the semantics of statutes allow their linkage to corresponding
parts in computable decision structures.

This thesis describes the continuous spectrum of structuring the unstructured content in
German statutes by automatically adding additional semantics, and by explicating how
this semantics lead to computational decision structures that are linked to the textual
parts from which they emerged. These links increase the transparency of the decision
structure and allow for plausibility checks with regard to the semantic equivalence of the
text and the computational model.

The next chapter will introduce the methods and components for legal text analytics in detail
and will discuss their role and particularities for the analysis of German legal documents.

23

24

CHAPTER 3

Semantic Analysis and Annotation of Legal Documents

This chapter describes semantic analysis and annotation of legal documents using software.
A reference process is proposed for this purpose which has successfully been validated in an
industry project. The reference process describes the interaction between software engineers,
legal experts, and software services in order to semantically annotate legal documents in an
interdisciplinary setting (see Section 3.1).

The semantic analysis of legal documents is a complex and challenging task. This task requires
interdisciplinary capabilities throughout the entire process. This holds true, although the tech-
nological possibilities have dramatically increased over the last decades. It is still important to
not only implement and conceptualize what can be done using modern tools and software com-
ponents, but to investigate the human aspect concurrently. This includes especially the people
with their skills. In the field of legal informatics in particular, the semantic analysis is primarily
done for humans who later on consume the information acquired by the system.

Based on these considerations for interdisciplinary legal data science, the role of semantic entities
and annotation types are introduced. This can be regarded as a theoretical framework for the
analysis of legal documents since it elaborates on entity types that can be extracted from legal
documents. It differentiates between basic, named, and legal entities (see Section 3.2). The
understanding of semantic entities within the legal domain is highly relevant since it influences
subsequent implementations and requirements for a software framework that enables the analysis
of text regarding these properties.

A technical introduction of strategies to annotate legal documents is provided in Section 3.3.
It distinguishes between two basic strategies, namely the manual and the automated process of
annotating texts. The section also elaborates on the technical implementation of two different
annotation formats: stand-off and in-line annotations.

25

3. Semantic Analysis and Annotation of Legal Documents

The software support for semantic analysis is comprehensively discussed in Section 3.4. It
introduces different software services from computational linguistics and investigates their roles
for the analysis of legal documents. It also describes the functionality in terms of different
components and illustrates their applicability, but also their limitations.

Finally, Section 3.5 provides a detailed overview of existing software frameworks that allow
the reuse of components for processing legal documents but also to apply machine learning
techniques for the analysis of textual documents. The extensive evaluation shows that the two
frameworks Apache UIMA and Apache Spark are well-suited to be re-used.

3.1. Process Model for Software-supported Semantic Analysis

Investigating different technologies that are (freely, e.g., open-source) available and can poten-
tially be used to perform a software-supported semantic analysis, a vast number of software
libraries can be found. But it is also obvious, and especially well-studied the intersection be-
tween law and IT well-studied (cf. Bench-Capon et al. (2012); Ashley (2017)), that the challenge
is not only to implement, parameterize, or adapting the right software-component, but also to
integrate the people with proper skills and capabilities. Within our research we have investigated
the process of software-supported semantic analysis of legal documents and have formalized it
based on the Rationale Unified Process (RUP) by Kruchten (2004), which allows for iterations
during the proceedings and differentiates between several elements, such as:

Activities: An activity summarizes a unit of work that must be performed. The outcome results in
the creation or update of artifacts, e.g., documents, datasets, or models, pattern definitions,
training data, test data.

Roles: Individuals or groups performing activities of the process. In addition, roles are respon-
sible for the artifacts that are the outcome of their activities, e.g., the legal data scientist.

Artifacts: The input and output of activities are called artifacts. They are created, modified,
and used by the roles during the procedure and are either the final product, parts of it, or
intermediate results, e.g., documents, models, pattern definitions.

Services, and Tool support: The software-support heavily relies on the tools and services that are
used during the different activities. Operating on a given input, these create outputs that
either become the input for other tools and services or for the humans involved within
their responsibilities (roles) along the process.

Based on the RUP we have developed an interdisciplinary process fostering the semantic anal-
ysis of legal documents. The process has been refined during a case study (cf. Section 6.2).
The process does not only take different stakeholders into account, but also the support that
technology, e.g., software tools and services, are integrated and can potentially contribute. This
deepens the understanding of how humans and technology can interact to solve a particular
data-intensive problem in the domain of software-supported semantic analysis of legal docu-
ments. The required skills in humans and the capabilities that need to be provided by software

26

3. Semantic Analysis and Annotation of Legal Documents

vary throughout the operation, since the activities that need to be performed and the artifacts
differ along the process.

3.1.1. Reference Process

Activities

Roles

Import Analysis

Data, files,
documents, etc.

Indexed documents, linguistic models & annotation types,
trained models & pattern definitions, training & test data, etc.

Application

Legal data scientist,
SW engineer

Legal data scientist, legal practitioner,
and legal scientist

Legal practitioner,
legal scientist

Artifacts

Transformation and
operationalization of the model

Evaluation of
operationalized model

Refinement and
creation of model

Annotations, annotated
documents, quality measures

Importing & indexing
software

Data and text mining engineServices &
Tools

Information system,
views, and visualizations

Figure 3.1.: Reference process for software-supported semantic analysis of legal documents based
on Waltl et al. (2017a).

Figure 3.1 shows a visualization of the process. The illustration is structured into four different
rows, namely “Activities”, “Roles’, “Artifacts”, and “Services & Tools”. The four rows are divided
into three subsequent main activity columns, namely “Import”, “Analysis”, and “Application”.

3.1.2. Activities

Activities represent the different actions performed in order to achieve a certain objective, i.e.,
semantic analysis of legal documents. These actions are not necessarily performed sequentially,
but can be performed in iterative cycles and in parallel.

Import: The whole process starts with an import phase, in the course of which the documents
stored at a specific location, e.g., URL, hard-disk drive, are retrieved. Besides the physical
position of a document, the logical format, i.e., data-format, of the document needs to be
read and normalized. The extraction of information from documents of various formats is
still challenging. Although more data is becoming digitally available, not every document
is necessarily machine-readable.

Analysis: Once the data is stored within the system and efficiently accessible, the analysis phase
starts. Within this phase, the actual text mining and natural language processing oper-
ations are performed. In addition, the analysis phase has to be divided into sub-phases

27

3. Semantic Analysis and Annotation of Legal Documents

that are performed as an iterative cycle. The iteration subsequently refines the results of
the text mining phase and are required to ensure the quality demands of the text analytics
process. This cycle needs to be performed at least once and consists of three different
stages:

1. Creation and refinement of the model: First, the objective of the semantic
analysis needs to be clear and well-defined. As discussed in Section 2, many differ-
ent notions of semantic analysis exist. Therefore, it is necessary to create a model
that fulfills the requirements and the overall objective, such as classification of text,
classification of norms, extraction of named entities or extraction of references and
dependencies, etc. (cf. Section 2.1).

2. Transformation and operationalization of model: Once a model has been cre-
ated, it needs to be transformed into a representation, such that it is accessible by text
analytics software components. This can either be a formal pattern definition, such as
annotators for Pipes&Filters architectures (see Section 3.5.2), or complex models that
can serve as input for (supervised) machine learning components (see Section 3.5.5).
This operationalization is an important but challenging step. It is analogous to a
translation process where abstract model descriptions need to be transformed into
representations that can be read and understood by algorithms.

3. Evaluation and quality assurance: Finally, when the model has been loaded by
the software and has been applied to concrete textual information, the results need
to be inspected. The results can either be inspected manually (by humans), or the
results are automatically compared to an existing gold standard. This inspection
leads to quality measures, e.g., accuracy, precision, recall, etc., and may contribute
to the decision whether an additional iteration needs to be performed. This decision
must not necessarily be decided on fixed quality thresholds, but rather depends on
different factors and the intended use case.

If the cyclic process has stopped the analysis phase comes to its end. The result of the
cycle is a set of indexed documents, annotation types, and annotations, which reflect the
extracted information (cf. Section 3.2 in combination with Section 3.3).

Application: Once the desired information is extracted and the annotations are persistently stored
so that they can be accessed, the various use cases can be applied within legal information
systems or search databases. The application in legal information systems includes using
algorithms to apply artificial intelligence, e.g., legal reasoning (cf. Section 4). In doing
so, this additional semantic information can improve the analysis and interpretation of
legislative texts.

3.1.3. Roles

Throughout the reference process, different roles are required. These cover the full-stack imple-
mentation: from technological adaptations, linguistic modeling, and operationalization of the
model to designing the end-user application.

28

3. Semantic Analysis and Annotation of Legal Documents

Software engineer: The import phase mostly requires this for the adaption and development of
new software components to retrieve the information from the documents. Whenever the
documents at hand are already in a machine-readable format, such as XML or Hypertext
Markup Language (HTML), the integration is much easier as the integration of highly
unstructured documents or of documents with internal structures not primarily designed
to represent textual information, e.g., images or pictures. Within these documents, the
textual layer must be extracted, e.g., via Optical Character Recognition (OCR), before it
can be imported and indexed. OCR is known to be non-trivial and prone to errors (cf.
Mori et al., 1999). However, if a new set of documents is going to be imported, adaptations
in the import procedures have to be implemented.

Legal data scientist: Due to the peculiarities of data science for the legal domain, so-called legal
data scientists, are important during the semantic analysis. The are experts in the domains
of data science and analytics. In addition, they are aware of the structure and the language
of legal documents and able to combine these two expertises. This is an essential profile,
since it ensures the operationalization, i.e., practical implementation, of the model.

Legal scientist: In order to derive a proper and useful model applicable for legal texts, it is
necessary to deeply understand what is contained in the text and what the potential entities
are that can be extracted. These entities cannot be defined by the software engineer, but
require expertise in the particular legal field at hand. Therefore, the legal scientist serves
as domain expert.

Legal practitioner: Just as the legal scientist, the legal practitioner is a domain expert and po-
tential user of the application. He ensures the practicability of the implemented solution
and states additional requirements that need to be met to successfully analyze the docu-
ments. In general, legal practitioners are more interested in the quality of the results, the
performance of the system, and the usability of the application, rather than in the legal
theory.

3.1.4. Artifacts

The process is performed on a set of digital assets, which are either the input or the output of
an activity.

Data, files, and documents: The process can be considered very document-centric. It starts by
importing documents and subsequently applies various operations on them. These opera-
tions are required to identify, extract, and attach additional information, which allows to
recognize more complex semantics behind a particular word, phrase, sentence, section or
document.

Indexed documents: Documents need to be normalized, so that they can be accessed effi-
ciently. Once they have been brought into a machine-readable, form they are stored in
an Elasticsearch (ES) database, that allows for an efficient access.

Linguistic models and annotation types: The desired information that should automatically be
extracted from the documents needs to be formalized according to linguistic models and

29

3. Semantic Analysis and Annotation of Legal Documents

annotation types. This heavily depends on the use case to be realized using the soft-
ware. Use cases can reach from very-low level extraction of the nouns and keywords of
a document, to identifying norm categories in statutory texts, such as legal definitions,
obligations, prohibitions (see Section 3.2).

Training data & test data: The procedures used during the semantic analysis mostly need train-
ing and test data sets. These are needed to either train supervised machine learning
procedures (see Section 3.5.5), or to test and measure the quality of the applied proce-
dures.

Pattern definitions & trained models: During the analysis phase, models are created, applied, and
constantly refined. These models are used to create extract the desired information from
the documents. The concrete technical implementations of these models vary. Whereas
rule-based text analytics models consist of a set of potentially nested rules, more complex
models for machine learning consist of state representations of trained algorithms. These
representations are no longer readable or maintainable by humans.

3.1.5. Services & Tools

As already mentioned, the process can be considered document-centric. One of the key elements
are the software tools and services that assist and automatically perform the semantic analysis
on these documents.

Importing & indexing software: The software requires a powerful and extensible import compo-
nent. The generic platform for legal data analytics should be able to cope with documents
from various sources and data types. This functionality is implemented using a generic
import structure. Thereby, the different documents are normalized into one common for-
mat that is flexible enough to fully reflect the different document content structures, such
as meta-data, text, footnotes, chapters, and sub-chapters. Besides this flexibility, it is
necessary to have one common interface through which the different components of text
analytics can be applied. This fosters the modularity of the system and the reusability of
the components.

Data and text mining engine: One of the most central components of the process is the data and
text mining engine. It logically groups the different software components required for text
analytics. It does not only consist of the various components, but also has a flexible and
generic architecture that allows to efficiently process the documents and create annotation
based on the textual data contained therein. The engine takes into account textual data
from the documents, but also structural data from the texts and meta-data that is attached
to the documents, such as document type, creation date, author. A detailed description
of the engine can be found in Section 3.5.

Database: During the process, the data that needs to be stored so that it can be efficiently
accessed. In our implementation, all data is stored within an Elasticsearch database.
Elasticsearch handles large amounts of textual data very efficiently and allows for fast bulk
operations on the data. In addition, it supports the generic data model that underlies the
process and is part of the technical implementation (see Section 3.5).

30

3. Semantic Analysis and Annotation of Legal Documents

Information System: To ensure the accessibility from the results of the semantic analysis process,
it is necessary to embed it into an information system. Basically, it would be possible
to query the database directly, but this would be an inefficient and inconvenient way
to retrieve the results and to benefit from software-supported semantic analysis of legal
documents. The information system provides an intuitive front-end that can be used by
users, e.g., legal practitioners, to consume the information. In addition, it allows the
provision of alternative representations of the textual data, and it supports navigation,
exploration and search processes in large document corpora.

3.2. Annotations, Annotation Types, and Semantic Entities

Obviously, the quality of the support during the aforementioned process depends on the different
artifacts that are created, manipulated, or analyzed in the course of the activities. In addition,
the overall objective, for which the semantic analysis is performed, has a significant impact on
the process. Different objectives require different artifacts.

The analysis of German statutory texts, for example, requires the availability of these documents
in a digital format. Trivially, documents that are not present, or not in a valid format, cannot be
investigated using information extraction methods. The same argument holds for information
that is not contained within the documents. This circumstance is often overseen by critiques;
but enthusiasts also forget about this obstacle fact from time to time. How the presence or
absence of information is interpreted, is a different question.

As discussed in Section 3.1.2, every process requires a linguistic model, that formalizes and
codifies the objectives of the analysis to be performed. The concrete implementation of this
model can have different notions, and it depends on the underlying system with its capabilities
and architecture. However, it is necessary to create a linguistic model that specifies the semantic
entities that should be contained within the documents. These semantic entities reflect the model
and are not supposed to be a stable set, but they are rather flexible and need to be adapted.

The main factors that influence the adoption of models lie in the very nature of the models
themselves, which can be derived from Stachowiak (1973):

1. Domain: Different domains require different semantic objects. On a semantic level,
analyzing statutory texts differs from the analysis of contracts or emails. There might are
be commonalities, but the entities that are contained within cannot be reused without
reflection and adaption.
Examples for domains could be: statutory texts, judgments, emails, and contracts.

2. Objective: Different objectives require different semantic objects. Every semantic analy-
sis process is performed for a particular reason. If the reason changes, the linguistic model
needs to be adapted. In the case studies of our evaluation, we will show (see Section 6),
that the semantic analysis to support the editorial staff of a company differs from providing
interpretation support for legal experts.
Examples for objectives could be: risk analysis (in contracts), support of editorial staff,
extraction of definitions in judgments (e.g., Walter 2010).

31

3. Semantic Analysis and Annotation of Legal Documents

3. Time: As documents, language, structure, or the way how textual information is expressed
in general changes over time, e.g., by introducing new words or concepts, the model needs
to be adapted.
An example could be the analysis of time series data in which the language has changed
over time.

Based on these three influence factors, we can conclude that a model always depends on the
context of its usage. The reuse of a model does not pose a problem per se, but requires thorough
assessment of validity and applicability.

Several attempts have been made to provide an abstract and generally acceptable model of
entities within legal texts (see Hoekstra et al. 2007; Casellas 2011; Sartor et al. 2011a). However,
these models have hardly been adopted and they can only partially be re-used. This lack of reuse
can be traced back to the above mentioned drawbacks and concerns. The lack of a general re-
use for linguistic models lies in the very nature of models themselves and was already observed
by Stachowiak (1973) decades ago. He showed that models are always

1. mapping the variety of the real world,

2. reducing the complexity of the real world, and

3. created to serve a pragmatic purpose.

Based on these considerations, the creation of models is always preliminary to a certain degree.
However, models are the base line for semantic analysis and we will propose a technological
framework and architecture providing end-users with the full flexibility to represent linguistic
models with their particularities.

3.2.1. Annotations and Annotation Types

The recognition and extraction of semantic types, e.g., obligations, prohibitions, definitions, etc.,
in legal documents is technically done using annotations: a particular region of the document,
e.g., text, images, etc., is addressed and additional information is attached (see Section 3.3.4).
For larger documents and advanced information extraction processes, the amount of annotations
attached to one document can grow very quickly. Therefore, an efficient way of handling these
annotations needs to be implemented. For this management of documents, the UIMA (see Fer-
rucci et al. 2009) seems to emerge as a standard in the industry1 and sciences (see Grabmair
et al. 2015).

However, the UIMA only handles the internal (technical) representation but does not create
annotations by itself nor does it create or recommend annotation types. This input is domain
dependent and has to be provided by a domain expert, such as a legal scientist, a legal practi-
tioners, a (legal) data scientist, or a linguist (see Section 3.1).

Within our research, we use two terms that need to be differentiated, namely:

1https://www.ibm.com/developerworks/data/downloads/uima/index.html, accessed on September 3, 2018

32

3. Semantic Analysis and Annotation of Legal Documents

Definition: Annotation
An annotation is an object which attaches additional information, i.e., meta data, to
a particular region of the subject of analysis by containing the assigned information
in a structured format and unambiguously referring to the intended region within the
subject of analysis.

Definition: Annotation Type
An annotation type is an object that is associated with an annotation and defines its
semantic role on an abstract level.

The excerpt below shows an annotation of the type “Definition” and the annotated text which
is the first sentence from Section 90 of the German civil code. This is an abstract example of
an annotation and the corresponding annotation type.

Example
Annotation Type: Definition
Annotated Text: Only corporeal objects are things as defined by law.
Annotated Region: §90 German Civil Code, Sentence 1

The concept behind annotations and annotation types is rather simple and can be explained
using another example as shown in Figure 3.2. In the textual representation, displayed in the
middle section, each part of the text to which an annotation exists is highlighted. In a subsequent
processing step, algorithms have analyzed the text. An annotation for sentence that is a legal
definition was created. These annotations belong to the annotation type “Legal Definition”.
The list of determined annotation types can be seen on the left side of the screenshot. The
front-end differentiates between “Linguistic Entities” (see Section 3.2.2), “Named Entities” (see
Section 3.2.3), and “Legal Entities” (see Section 3.2.4).

To handle complex named entities and legal entities, annotations are subsequently combined
and aggregated. Starting with the detection of basic and linguistic entities, e.g., extraction of
tokens and sentences, the system can detect noun phrases and names of, for example of persons
and organizations. Based on that, rather complex legal entities, such as legal definitions, rights,
obligations or permissions, can be determined.

It should be explicitly noted that multiple annotations can refer to the same lexical unit. For
example, “house” is a token, a word, and a noun. which can lead to three different annotations.
Consequently, annotations do not have strict order, e.g., hierarchically or sequentially, but can
arbitrarily overlap. The next section will elaborate on different basic and legal entities that can
be found in legal documents.

3.2.2. Basic and Linguistic Entities

Basic and linguistic entities are formed by various kinds of rather technical and low-level an-
notation types. Typically, these are intermediate results and contribute to a semantically more

33

3. Semantic Analysis and Annotation of Legal Documents

Figure 3.2.: View of an automatically annotated German law (left: annotation type selection
using check boxes; middle: annotated and highlighted text; right: labels visualizing
the annotations separately).

advanced entity. The raw outcome of basic software components used during the annotation
process belong to this type.

Representatives are:

∙ Punctuation

∙ Special characters (e.g., §, $, &)

∙ Tokens

∙ Words

∙ Significant words and phrases (e.g., stop words, auxiliary sentences)

∙ Sentences

∙ Part-of-speech tags (e.g., nouns, verbs, adjectives, adverbs)

∙ Paragraph

∙ Document

Basic and linguistic entities are very important. They can be considered the foundation for
more complex annotations. The name “basic entities” should not be misleading. Although their
extraction and annotation might seem to be easy (or very low level), achieving the highest
performance is not trivial, considering that heterogeneous datasets, variations in language or
spelling, erroneous text in digital documents, etc. have a negative effect on the recognition
rate.

34

3. Semantic Analysis and Annotation of Legal Documents

3.2.3. Named Entities

The recognition of information units with a particular names is an essential part in the domain
of information retrieval. There is no commonly accepted notion of the “named entities” (see
Nadeau and Sekine 2007). During the last years, the term “named entity” has broadly been
applied in information retrieval and natural language processing.

Representatives are:

∙ Persons

∙ Organizations

∙ Geographical names and locations

∙ Expressions of time

∙ Quantities

∙ Monetary values

∙ Percentages

∙ References and citations

∙ Docket numbers

The recognition of named entities is extensively discussed in Section 3.4.1.4.

3.2.4. Legal Entities

Semantically analyzing legal documents requires the specification of legal entity types, or, in
short, legal entities. These form the third group of annotation types, which is particularly
tailored to the legal domain, whereas the other entity types are, more or less, domain-agnostic.

Different attempts exist to generally and ultimately define legal entities. These models are either
very abstract, or only partially applicable (see Hoekstra et al. 2007). A more general discussion
can be found at the beginning of this section.

However, depending on the data and the objective of the semantic analysis, the representatives
of legal entities as defined by Hoekstra et al. (2007) are:

∙ Norms: Describe on an abstract level generic situations and define a specific state or
action. Their description is qualified by a deontic term.

∙ Permissions: Are a special type of a norm, as they allow allow something, but do not
prohibit anything.

∙ Prohibitions: Are a special type of a norm, as they prohibit certain qualified actions or
situations.

∙ Obligations: Are a special type of a norm, as they make certain qualified actions or
situations mandatory.

35

3. Semantic Analysis and Annotation of Legal Documents

∙ Rights: Are norms that assign and grant certain qualified actions or situations.

A recent and comprehensive taxonomy, plus a detailed description of entities, i.e., “semantic
types”, for the analysis of US case law was provided by Walker et al. (2017):

∙ Citation (sentence or clause): A citation sentence is a sentence whose primary function
is to reference legal authorities or other materials.

∙ Legal-rule (sentence or clause): A legal-rule sentence is a sentence that primarily
states one or more legal rules, without stating whether the conditions of the rule(s) are
satisfied in the case being decided.

∙ Legal-policy (sentence or clause): A legal-policy sentence is a sentence that primarily
states one or more legal policies, principles or objectives.

∙ Policy-based-reasoning (sentence or clause): A policy-based-reasoning sentence is a
sentence that primarily applies legal policies to decide legal issues.

∙ Ruling or holding (sentence or clause): A sentence that states a ruling or holding is
a sentence that primarily states, “as a matter of law”, whether some particular legal rule
is satisfied in the case.

∙ Rule-based-reasoning (sentence or clause): A sentence that states rule-based-
reasoning is a sentence that reasons from a foundation of legal rules and facts to a ruling
or holding as a matter of law (i.e., a conclusion of a law).

∙ Evidence (sentence or clause): An evidence sentence is a sentence that primarily states
the content of the testimony of a witness, states the content of documents introduced into
evidence, or describes other evidence.

∙ Finding-of-fact (sentence or clause): A finding-of-fact sentence (an evidence-based-
finding sentence, or simply, a finding sentence) is a sentence that primarily states an
authoritative finding, conclusion or determination of the trier of fact.

∙ Evidence-based-reasoning (sentence or clause): An evidence-based-reasoning sen-
tence is a sentence that primarily reports the trier of fact’s reasoning in making the findings
of fact.

∙ Procedural-fact (sentence or clause): A procedural-fact sentence is a sentence that
primarily states one or more procedural facts about the specific case, such as what motions
were led or the disposition of the case at the trial level.

It becomes evident that different research groups will end up with different findings and a
different set of legal entities, depending on their objective and data.

This work aims to support to provide a software architecture that allows for the integration
of all the different linguistics models. The applicability and the success of this approach have
already been shown by Grabmair et al. (2015) through the introduction of LUIMA, an adapted
version of UIMA, to support the creation and maintenance of annotations within the legal
domain. Whereas Grabmair et al. focused on the improvement of search results ranking using
annotations, they did not publish an in-depth study of the software architecture and components

36

3. Semantic Analysis and Annotation of Legal Documents

that are required for the extraction of legal entities and the formalization in computational
decision structures, which are linked to the text source from which they emerged. This gap is
addressed by the work at hand.

3.3. Annotating Legal Documents

Performing semantic analysis of textual documents has many facets that differ in the method-
ology, technology, and objective. In Section 2.1, we have investigated the different existing
notions of semantic analysis. Based on that, we can draw the conclusion, that different tasks
in the spectrum of semantic analysis have different inputs and produce different outputs. In
general, the different analytical tasks have different requirements for the text to be processed
and need additional resources, such as (pre-trained) models, dictionaries, pattern descriptions,
knowledge bases. During the processing step, the text is analyzed and additional information is
attached.

In information systems, this additional and attached information has to be technically repre-
sented in a technical way (cf. Section 3.4). For this purpose, the concept of annotations is
well-studied and commonly accepted (Wilcock, 2009). This does not only hold for computa-
tional linguistics, but for the semantic analysis of documents in general. Annotations include
information about the exact position of the original document to which they refers. Depending
on the technical implementation, different solutions exist to store the exact position of an an-
notation (cf. Section 3.3.4). This basic information is required to identify the part of the text
that is enriched with meta-information. The additional value of the annotation lies in the sup-
plemental information that is attached to a region of the text. An annotation can for example
hold unstructured information, e.g., a comment, or structured information about a given type
that the covered text belongs to, e.g., date or money value, reference.

Basically, two different ways of creating, updating, and deleting annotations exist:

1. Manually added annotations: Texts that are read and interpreted by humans can be
annotated to include an additional piece of information in the text. In this case, the reader
creates the annotation.

2. Automatically added annotations: Algorithms can be programmed and trained to
create annotations to given input text (cf. Section 2.1). In this case, the algorithm creates
the annotation.

Handling different types of annotations while supporting their creation, deletion and updating
is a fundamental prerequisite for the semantic analysis of legal documents.

37

3. Semantic Analysis and Annotation of Legal Documents

3.3.1. Manually Annotating Legal Documents

During the interpretation and reading of a particular legal document, humans can create as-
sociations that are induced or caused by a concrete piece of text. These interpretations might
be valuable to other readers or to the same reader at a different point in time. In the analo-
gous world, the reader would take a pen or a marking pencil and write the annotation on the
sheet of paper. This straight-forward process has to be represented by the system in order to
enable manual annotation of legal documents. During the reading of a document, users have
the possibility to mark a particular piece of text and subsequently attach additional information
(represented by annotations).

Figure 3.3.: Manually highlighted text to be annotated.

Figure 3.3 shows a screenshot of the implemented system and how manual annotations are
created. By enabling the “interactive mode” (see right side), the user can select the text from
the middle part, to which an annotation is going to be created. The system automatically
determines the proper offsets and covered text to unambiguously assign and keep the annotated
region of the legal document.

Figure 3.4 shows the next step in the workflow of manual annotation. Once a text has been
selected a pop-up appears which allows the user to provide additional information. The user
can either create a comment as a free text information, or the user assigns an annotation type
to the covered text. These types are explicit meta information that classify the covered text as
a particular semantic type, e.g., reference, money value, date value, legal definition. Possible
annotation types are introduced in Section 3.2.

38

3. Semantic Analysis and Annotation of Legal Documents

Figure 3.4.: Pop-up allowing the annotation of the selected text with freetext information or by
assigning a semantic type.

3.3.2. Automatically Annotating Legal Documents

Beside the possibility to manually create annotations, the option to automatically annotate
legal documents is more relevant. In Section 2.1, we introduced several technologies that can
(semi-)automatically analyze textual information and recognize and extract relevant textual
parts.

Although text mining components perform different tasks using distinct techniques, the un-
derlying workflow remains the same — at least from a technical perspective: Based on given
textual data and an optional pre-trained model, the text mining component analyzes the text
and creates a set of annotations that directly or indirectly refer to the input data.

Different software architectures exist for this purpose, enabling the automated processing of
documents and meeting the highest standards in performance, modularity, and usability. We
have made an extensive study of different existing software architectures (see Section 3.5) and
have chosen the open source software architecture UIMA, which is part of the Apache Software
Foundation.

Figure 3.5 shows a screenshot of an annotated legal document. Therein, the textual represen-
tation of the original text is enriched with annotations, rendered as colorful boxes surrounding
the textual phrase to which an annotation belongs. Different annotation types are distinguished
with different colors. In our implementation the colors are determined by the name of the an-
notation type; the title of an annotation type is hashed and then mapped into the RGB space.
This procedure assigns a color to an annotation type. The chance that two different annotations
share the same color is very unlikely, since the hash function uses String.hashCode() function

39

3. Semantic Analysis and Annotation of Legal Documents

Figure 3.5.: An example of an automatically annotated German law (excerpt from the product
liability act).

of JavaScript. This ensures the immediate, visually pleasing feedback of the annotated content
and allows users to instantly check the annotation’s validity.

3.3.3. Collaborative Maintenance of Annotations

The implemented system allows for basic features of a collaborative information system. As
discussed in Section 3.3.1, users can manually add new annotations and thereby create an anno-
tated document. However, due to its implementation as a web application, the system enables
multiple different users to not only share, but also to maintain the different annotations together.
The annotations inserted by another user can be accessed and manipulated, i.e., deleted.

Figure 3.6 shows the pop-up that appears if an annotation box is clicked at the front-end. Within
the pop-up, different information is shown: given a specific annotation, it shows some general
information about the semantic entity, i.e., annotation type, that is selected. In the mentioned
Figure, this is “Fiktion”. In addition, it shows the covered text. To support the exploration of
the indexed documents and to determine potentially relevant dependencies, the system shows
recommended annotations. These are determined using two different technologies: i) “More-
Like-This” functionality of the underlying database, i.e., ES2, and ii) Locality-sensitive hashing,
as described by Leskovec et al. (2014).

2https://www.elastic.co, accessed on September 3, 2018

40

3. Semantic Analysis and Annotation of Legal Documents

Figure 3.6.: Annotations can also be deleted (see the button in the lower part of the pop-up).

3.3.4. Annotating Legal Documents: a Technical Perspective

From at technical point of view there are two fundamentally different ways to attach this addi-
tional piece of information, as discussed by Grass (2014) and Wilcock (2009):

1. In-line annotation: Additional information is embedded directly into the text. This is
the basic mechanisms of standard mark-up languages, such as XML or HTML.

2. Stand-off annotation: Additional information is a separate object attached to the orig-
inal text. In this case, the annotation object contains the information required to resolve
the mapping towards the original text.

Both approaches have advantages and disadvantages, which have been subject to extensive
studies (e.g., Grass 2014).

Criteria In-line Stand-off
Adding semantic information +++ +++
Interoperability with other formats (CSV, JSON, etc.) ++ +++
Non-manipulation of original text ++ +++
Allowance of overlapping annotations - +++
Self-containing (no separate file) +++ -
Analytics of annotations ++ +++
Machine-readability of annotations +++ ++
Coping with changes within original text +++ +

Table 3.1.: Comparison of the in-line and stand-off annotation methods.

Table 3.1 summarizes the advantages and disadvantages based on seven criteria. These mainly
target the operationalization of annotations within a web application focusing on the semantic
analysis of textual documents. Especially the lack of overlapping annotations hinders the usage

41

3. Semantic Analysis and Annotation of Legal Documents

of in-line annotations. The tree-like structure of XML is perfectly suited to work on annotations
that fully contain each other, such as:

1 <?xml version="1.0" encoding="UTF−8"?>
2 <sentence>
3 A B C <phrase> D E F </phrase> G.
4 </sentence>

However, annotations that overlap each other, which could occur in manually added annotations,
e.g., comments, but also in automatically added annotations, e.g., POS–tags, linguistic phrases,
norm types, etc. lead to inconsistencies within the XML format and consequently to invalid
XML. An occurrence of overlapping annotations is provided in the following example:

1 <?xml version="1.0" encoding="UTF−8"?>
2 <sentence>
3 A <comment> B C <phrase> D E </comment> F </phrase> G.
4 </sentence>

During a syntax-check of XML validity3 the listing above produces an error. XML validators
will check the nestedness of the XML elements and would produce an “error on line 2 at column
52: Opening and ending tag mismatch: phrase line 0 and comment”. The listing closes the
phrase tag with a comment tag, which is not valid for in-line annotations. However, this is a
constraint that cannot be accepted during the enrichment of textual data.

There are several strategies to cope with that issue, such as resolving the overlapping annotation
by properly inserting opening and closing tags:

1 <?xml version="1.0" encoding="UTF−8"?>
2 <sentence>
3 A <comment> B C </comment> <phrase> <comment> D E </comment> F </phrase> G.
4 </sentence>

The listing above shows valid XML, but introduces additional complexity in creating and inter-
preting the XML document. Within the implemented system, the annotation object is one of
central objects that is either going to be created manually (cf. Section 3.3) or automatically by
NLP technology (cf. Section 3.3.2). Based on these studies, we decided to build our prototypi-
cal implementations using stand-off annotations. The impact of this decisions, especially for the
data model, is thoroughly discussed in Section 3.4.

3.4. A Software Architecture for Managing Annotated Legal
Documents

The importance of annotations and their role during the software-supported semantic analysis
was explored in Section 3.2. The focus of this investigation was set on the variety of different an-
notation types that can exist when it comes up to the analysis of legal documents. These either
fully reflect the particularities of legal documents, such as annotations of legal definitions, pro-
hibitions, obligations, or they are of more general or technical nature, such as tokens, sentences,

3https://www.w3schools.com/xml/xml_validator.asp, accessed on September 3, 2018

42

3. Semantic Analysis and Annotation of Legal Documents

or references. The subsequent Section 3.3 has elaborated on the maintenance of annotations
and the different ways of doing so; namely their manual and automatic creation, deletion, and
manipulation of annotation, were discussed.

This section introduces a software architecture capable of handling the various operations for
annotating legal documents. Therefore, the focus has explicitly been set on the provision of
a generic framework, that is easily extensible (see Section 3.4.1). The framework, a fully im-
plemented research prototype, is called LEXIA, which is the acronym for Legal Information
Analysis, Exploration, and Reasoning Platform. It consists of loosely coupled software compo-
nents that interact with each other via well-defined interfaces. The requirement of extensibility
does not only hold for the components, but also to the data model. The system has been de-
signed to follow a modular structure that allows for the seamless integration of new document
types.

3.4.1. Software Components for Semantic Analysis

The Legal Information Analysis, Exploration, and Reasoning Platform (LEXIA) has been under
development since 2014 and is primarily designed to support various forms of semantic analy-
sis for German legal documents. We extended the functionality in different proof-of-concepts
and case studies (see Section 6). The main architecture was published in two peer-reviewed
article: Waltl et al. (2015) and Waltl et al. (2016).

Complex pattern recognizer
(Apache Ruta)

Active
machine
learning

component
Pattern

definitions

Exporter

Dependency
parser

POS tagger

Metric calc.
component

Named entity
recognizer

Splitter Stemmer

Lemmatizer Subject tagger

Tokenizer

User interface

Exploration

Text analysis engine

Navigation

Thesauri

Importer

Database and search-engine

Knowledge
bases

Data access layer

Information extraction component

Figure 3.7.: Overview of LEXIA’s system architecture with the main components (originally
published in Waltl et al. 2016).

LEXIA is a web application integrating basic concepts of collaborative information systems.
LEXIA’s back-end is a Java-based web framework, namely the Play Framework. The Play

43

3. Semantic Analysis and Annotation of Legal Documents

Framework is an established web application framework that claims to be a “lightweight, state-
less, web-friendly architecture” (see Play Framework 2017). It is released under the Apache 2
License and follows a Model View Controller (MVC) design principle. The front-end is imple-
mented using JavaScript and AngularJs.

Figure 3.7 shows the overall high-level architecture with the different components. It also shows
the main information flow between the components. The details about each of the component
are provided in the subsequent Sections 3.4.1.1 – 3.4.1.5.

3.4.1.1. Importer and Exporter

The importing structure maps the documents that need to be parsed and indexed, and which
can be of any data type (PDF, XML, etc.), into the data model of our system. For this purpose,
the importer has to be flexible enough to support various digital formats.

«interface»
HTMLImportInterface

«interface»
PDFImportInterface

«interface»
XMLImportInterface

PDFJudgmentImporter HTMLJudgmentImporterPDFLawImporterXMLLawImporter

«abstract»
JudgmentImporter

«abstract»
LawImporter

«abstract»
Importer

Figure 3.8.: Import architecture to flexibly support different documents types, e.g., laws, judg-
ments, and document formats, e.g., XML, PDF, and HTML (see Waltl et al. 2016).

Thus, we propose the architecture as shown in Figure 3. The inherited classes LawImporter
and JudgmentImporter differentiate between two document types we currently support in our
system. Those again serve as base classes for the concrete importing mechanisms, responsible
for the parsing and transformation, e.g., XMLLawImporter, PDFJudgmentImporter. Due to
the inheritance, a logical separation has been achieved, so this architecture does not only allow
to easily extend to new documents types, but also to new data sources and data channels (e.g.,
REST API, open data resources).

To standardize the different file format importers, we have provided interfaces for each file for-
mat. If, for example, a new component is required to import judgments from XML files, this new
component would be derived from the JudgmentImporter class and simultaneously implement

44

3. Semantic Analysis and Annotation of Legal Documents

the XMLImportInterface. This would standardize the access to this particular component and
the remaining importing procedures, i.e., storing in the database, would be performed automat-
ically.

The exporter component provides interfaces for other applications (e.g., REST API) to use
and reuse the information stored. In addition, the implementation provides methods to create
data dumps (CSV) that can for example be used to conduct advanced (statistical) analysis of
the analyze document corpus in appropriate tools, e.g., Matlab, or R. Both components, the
importer and the exporter, support bulk operations.

3.4.1.2. Data Storage

The importing structure inserts extracted data directly into the data storage, which consist of
an Elasticsearch database (see Elasticsearch 2017). Elasticsearch is a distributed search engine
which was developed in Java and released under the terms of the Apache License. According
to international rankings it is one of the most popular search engines4. Elasticsearch supports
multitenancy and near real-time search. It can distribute the stored data over multiple hosts,
and maintains the records in so-called primary and replicated shards. Rebalancing of the records
as well as routing between hosts is done automatically.

Elasticsearch is accessed via a REST API and provides a ready-to-use Java API. The data can
be retrieved using real-time Hypertext Transfer Protocol (HTTP) GET requests. Elasticsearch
is considered to be a NoSQL datastore.

In our implementation Elasticsearch serves as datastore and as full-text search index. Due to
its native support of complex queries, it decreases the effort of integrating full-text search in the
user interface. In addition, it allows to easily add convenience features, such as faceted search,
and auto-suggestions. As shown in Section 3.6, it also offers an out-of-the-box recommendation
component, namely More-Like-This.

3.4.1.3. Data Access Layer

All operations on the data storage, i.e., create, read, update, and delete, that are initiated in the
user interface or in the text analysis engine, are handled by the data access layer. Parts of the
business logic and the data model (see also Section 5.1.2) are implemented therein. The data
access layer accesses the REST API of Elasticsearch and maps the documents stored within into
Java objects. In addition, it also provides methods transforming Java objects into JavaScript
Object Notation (JSON) objects, so they can be handled on the user interface, i.e., front-end.

Furthermore, the data access layer provides methods to access Elasticsearch-specific functional-
ities such as full-text search, faceted search, and More-Like-This.

The data access layer also provides an interface for bulk operations. These allow the simultaneous
manipulation, i.e., insertion, creation, update, and deletion, of a set of documents, and ensure
efficient handling of larger data sets by the text analysis engine.

4www.db-engines.com, accessed on September 3, 2018

45

3. Semantic Analysis and Annotation of Legal Documents

3.4.1.4. Text Analysis Engine

The text analysis engine is considered to be the core of the implementation. It contains
various software components required to perform the semantic analysis of legal documents.
These components are either fully written in Java and contained in the system, or accessed via
an Application Programming Interface (API). This section gives a brief overview of the different
components and their basic functionalities. It provides a static view on the systems architecture.
The description of the processing is provided in Section 3.5.

Knowledge Base, Thesauri, and Pattern Definitions

Although many NLP software components are self-contained, i.e., do not required additional
information input from an external knowledge base, there are several components that still need
to get input from external sources, e.g., dictionaries, or require explicit training, e.g., pattern
definitions.

LEXIA handles different kinds of these components. On the one hand, it is possible to access
open-data knowledge bases, such as Wiktionary5 or Wikipedia6. On the other hand, resources
that require access to information that is locally stored on the server, e.g., dictionaries, and rule
definitions, can also be handled by our system. Thereby, the system allows to flexibly maintain
these resources via the user interface.

The resources are shared with everyone who has access to the system. This fosters the collabora-
tive creation and maintenance of resources. Currently, the system does not have any restrictions
regarding access control management.

The systems has pattern descriptions for the following components:

∙ LawInboundReferencePattern

∙ LawOutboundReferencePattern

∙ LawSegmentationPattern

∙ LawArticleHeaderPattern

∙ JudgmentReferencePattern

∙ JudgmentSegmentationPattern

∙ LeitsatzPattern

∙ ZitatPattern

5https://www.wiktionary.org, accessed on September 3, 2018
6https://www.wikipedia.org, accessed on September 3, 2018

46

3. Semantic Analysis and Annotation of Legal Documents

3.4.1.5. Information Extraction Component

The information extraction component handles various core components of NLP. These compo-
nents are mostly implemented as UIMA components, so that they fit seamless into the structure
and Pipes & Filters architecture (see Section 3.5.2).

The next paragraphs introduce the main components and describe their core functionalities.
Most of the components have not been implemented within this research project, but rely on
publicly available and open source implementation. A large collection of components can be
found at the repository of DKPro7.

Splitter

During the splitting process, the document is divided into different sections and logically con-
nected parts. The splitter deals with document content that also contains XML mark-up. De-
pending on the concrete use case, the size of the different parts may vary. In most of our use
cases, we split the text into sentences (see Figure 3.9), which can be tokenized afterwards. Other
use cases may require a splitting into paragraphs or larger sections, e.g., chapters.

Figure 3.9.: An example of splitting article 1 of the product liability act on the sentence level.

Although this task seems to be a straight-forward operation, recent research (see Savelka and
Ashley 2017) has shown that the accuracy of software in performing tokenization and sentence
splitting hardly reaches 1, i.e., 100%.

There are different strategies to split the document into sentences. Our implementation supports
the usage of context free grammars, e.g., regular expressions. Splitting the document into its
logical structure is done during the import, since this task depends on the given input format,
e.g., XML, Portable Document Format (PDF).

7https://dkpro.github.io/, accessed on September 3, 2018

47

3. Semantic Analysis and Annotation of Legal Documents

Tokenizer

Tokenization is the process of dissecting a string of characters into fine granular sections of e.g.,
words and characters. These tokens serve as input for subsequent processing steps.

Figure 3.10.: An example of tokenizing article 2 of the product liability act.

The term token actually has a rather technical meaning within NLP. It can be a word, single
characters, or a group of characters that logically belong together, such as enumeration items,
e.g., “(a)”, “i)”, or “1)”. Our implementation consistently treats words (including compound
nouns such as “Produkthaftung”) as tokens. Remaining characters, such as enumeration items
or punctuation marks, are treated as tokens as well.

There are different strategies to split a string into words. Our implementation supports the
usage of context-free grammars, e.g., regular expressions.

Stemmer

Once the tokens are extracted from the documents, the stream of characters contains words, and
other tokens, e.g., punctuation marks. Natural language is characterized by the phenomenon
that words can be inflected, depending on their meaning within the context and grammatical
usage. Stemming performs the reduction of a word into its root stem (see Lovins 1968). Thereby,
different strategies exist to reduce a word to its stem.

Produkts ↦→ Produkt
Herstellers ↦→ Hersteller
Produkte ↦→ Produkt

Entschädigungen ↦→ Entschädigung

(3.1)

In Listing 3.2 different stems of a word are shown, which have automatically been detected. The
first two lines show the mapping of a word in the linguistic case genitive to its nominative. The
remaining two lines show the mapping of two words in plural form to their singular form.

Stemming can usually be performed very quickly and does not require the attachment of ad-
ditional knowledge sources, such as databases or dictionaries. Naive solutions are so-called
suffix-stripping algorithms, that remove word ends, such as “s”, “e”, “en”, etc. However, these
operations can be performed very quickly and efficient, they come along with a limited function-
ality of reducing a word to its stem, e.g., “better” (see Hull 1996). To address these limitations
more elaborated techniques are required, which are implemented in the so-called lemmatizer.

48

3. Semantic Analysis and Annotation of Legal Documents

Lemmatizer

After the reduction of a word to its stem, the task of lemmatization ensues. Thereby, a word is
not only reduced to its base form, but the context of the appearance of a word is also taken into
account, which allows for more advanced reduction. For example, a stemmer cannot reduce the
word “better” to “good”, since this would required a dictionary look-up.

aufgehoben ↦→ aufheben
besser ↦→ gut

besserer ↦→ gut
Geschädigten ↦→ Geschädigter

(3.2)

In Listing 3.2, different lemmas of a word are shown, which have automatically been detected.
Each of them is correct. Note, that the lemmatizer recognizes the occurrence of the word “besser”
(engl. “better”) and maps it to “gut” (engl. “good”). This mapping could not be performed by
looking at the given (inflected) form of the word.

During the extraction of the lemma for a given token, modern implementations of lemmatizers
provide additional information about a word and its linguistic features, such as

∙ gender information (i.e., masculine, feminine, neutrum),

∙ part-of-speech (e.g., noun, verb, adjective), and

∙ case (i.e., nominative, genitive, dative, accusative).

Stemmer and lemmatizer are widely used in processing search queries to narrow or broaden
the search queries. These operations are known as search query expansion and search query
refinement (see Peng et al. 2007).

Subject tagger

We have developed an additional tagger, which is tailored to German legal documents and
especially to statutory texts (e.g., laws), to extract the subject of a sentence. In general, the
detection of the subject of a sentence or phrase is not trivial, computationally complex, and
prone to errors. From a linguistic point of view, the subject of a sentence has to fulfill particular
grammatical requirements. Within the German language, simple parameters exist that indicate
the subject of a given sentence or auxiliary sentence.

One of these requirements is that the subject is a noun that has to be present in the linguis-
tic nominative case to be considered as a noun. This linguistic phenomenon is known as the
“Nominativkasus” and is widely accepted for the German language (see Dudenredaktion 2013).
Especially in within a particular set of sentences, e.g., those not containing auxiliary sentences,
it serves as a fast (but not very reliable) indicator for the subject of a sentence.

More reliable components to detect the subject of a phrase or a sentence are so-called dependency

49

3. Semantic Analysis and Annotation of Legal Documents

Figure 3.11.: An example of subject tagging according to the “Nominativkasus” rule.

or constituency parsers. The functionality of a dependency parser is introduced within this
Section (see below).

Token POS tag Case Gender Subject
Gesetz noun nominative neuter yes
Produkte noun accusative neuter no
Inkrafttreten noun dative neuter no
Verkehr noun accusative masculine no

Table 3.2.: Four nouns with their automatically extracted linguistic features.

An exemplary extraction of the subject is shown in Figure 3.11. Within this sentence four
different nouns exist: “Gesetz”, “Produkte”, “Inkrafttreten”, and “Verkehr”. The automatically
extracted features, in this case the POS tag, linguistic case, and gender, for these four nouns are
shown in Table 3.2. The functionality of this simple decision structure is implemented in the
subject tagger component.

POS tagger

The POS tagger is a common component in computational linguistics. The POS tagger analyzes
a stream of words within a given context, e.g., a sentence, and assigns the information on the
part-of-speech to them. Different implementations vary in the level of detail to which the POS
tags are assigned. The STTS8 as well as the Penn Treebank9 are the most commonly used POS
tag sets.

Figure 3.12 shows an example of POS-tagged sentences from the German product liability act,
in which the different words are highlighted according to the assigned POS tag. The screenshot
highlights nouns in blue, cardinal numbers in dark green, verbs in gray, articles in light green,
adverbs and adjectives in cyan. These assignments are internally handled as annotations (see
Section 3.3).

8http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-table.html, accessed on Septem-
ber 3, 2018

9https://www.anc.org/penn.html, accessed on September 3, 2018

50

3. Semantic Analysis and Annotation of Legal Documents

Figure 3.12.: An example of POS-tagging article 1 of the product liability act.

Metric Calculation Component

Beside the software components to annotate the text and to parse the natural language, the
system provides functionalities to measure the lexical and semantic properties of each document
that is imported into the data storage. These measures can be used to explore large datasets
and to retrieve quantitative information, e.g., via distant reading (see Moretti (2013)).

Currently, the system supports the measurement of nine different quantitative indicators:

Name Abbreviation Indicated Complexity
Paragraph Count # § Linguistic & Structural
Sentence Count # S Linguistic & Structural
Word Count # W Linguistic & Structural
Structural Depth D Structural
Number of Outgoing References (internal) INT Structural
Number of Outgoing References (external) EXT Structural
Vocabulary Variety V Linguistic
Indeterminacy I Linguistic
Readability (Flesch-Reading-Ease) FRE Linguistic

Table 3.3.: Quantitative indicators for the complexity of legal texts as presented in Waltl and
Matthes (2014).

The automated determination of the indicator shown in Section 3.3 allows the quantitative
analysis of legal documents on the micro, meso, and macro levels. Micro-level inspection is
the analysis of one particular document, e.g., the readability for the consolidated version of the
German Civil Code. Meso-level inspection summarizes the analysis of a set of documents that
form a logical group, e.g., all judgments referring to one particular article. Finally, the macro
level contains the analysis of all available documents of a given type, e.g., all German laws.

51

3. Semantic Analysis and Annotation of Legal Documents

Named Entity Recognizer

The extraction of so-called “named entities” is a common task in NLP. Different named entities
can occur in written texts. These can also vary throughout different domains. Most commonly
accepted are the following different categories:

1. Persons

2. Organization

3. Locations

4. Expressions of time

5. Quantities

6. Monetary values

7. Percentages

This list can slightly change over time with respect to the documents to be analyzed and the
use cases that are going to be addressed. For the particular domain of legal texts, references
(links or citations) to other legal documents could be considered as named entities. These are
typical for the legal domain, but hardly occur in written texts in general. The same argument
holds for the types of particular job titles. Within legal documents it might be relevant to not
only extract a person’s name, but also their job title, such as lawyer, judge, CEO, secretary.

Figure 3.13.: An example of automatically recognized named entities in a German judgment.

Figure 3.13 shows the example of an annotated German judgment. On the screenshot three
different types of annotations are recognized and highlighted: references (brown), expression of
time (dark blue), and monetary values (light blue).

In general, four different strategies exist to automatically extract named entities from texts
(Glaser 2017):

Rule-based: The most straight-forward implementation is to create rules that can be executed
by software and that allow systems to determine named entities. These rules might be
expressed as regular expressions, as Apache Rule-based text annotation (Ruta)s, or by any
other declarative expression language.

Template-based: A given text is compared with a template, in which every occurrence of a named
entity is filled with a placeholder. Algorithms compare the given text with the template
and can extract the differences between the two documents. These differences are the
named entities.

52

3. Semantic Analysis and Annotation of Legal Documents

This is a trivial, but very effective measure to extract named entities. However, it relies
on the fact, that one can provide a template representing the document with placeholders.
This holds especially for documents that are highly-standardized, e.g., forms of rental
contracts, tables, as their layout structure can be used to extract named entities.

Knowledge-based: Due to the emergence of publicly and freely accessible data, e.g., Wiktionary10

and Wikipedia11, the recourse on these data sources can be used for named entity recogni-
tion. These knowledge bases can be queried in order to determine whether a text contains
a named entity that is described in an external data source or not. The hypothesis behind
this strategy the assumption that if an entity is mentioned and described in this external
source, it is most likely to be a candidate for a named entity, e.g., locations, persons,
companies.

Since the mentioned data sources are not only dictionaries or a flat list of lexical units,
but ontologies with an internal structure, logic, and semantic relationships, every record
provides insights about dependencies and its semantic type.

Typical implementations, such as DBpedia Spotlight by Mendes et al. (2011), perform four
different steps during the annotation: i) spotting, ii) candidate selection, iii) disambigua-
tion, and iv) annotation.

Machine Learning: The fourth method to extract named entities from documents is based on
Machine Learning (ML) technology. Within this framework, three different methods are
common: i) supervised ML, ii) semi-supervised ML, and iii) unsupervised ML.

Supervised ML (SML) approaches require a large annotated corpus to train internal al-
gorithms, such as conditional random fields (CRF), decision trees (DT), support vector
machines (SVM). The training data is analyzed to memorize a list of entities. This list
is transformed into an internal representation to detect such entities based on a set of
distinctive and discriminative features. The resulting decision structures are subsequently
applied to unknown documents (test data) in order to extract similar entities.

Semi-supervised ML (SSML) approaches start the learning process with a smaller set of
training data (bootstrapping). During the learning phase, the algorithm tries to identify
named entities, but retrieves user feedback steering the learning process. This is supposed
to decrease the training effort and therefore lowers the size of a required training data set.
The provision of a large and representative training set is still considered to be the main
reason for the lack of adoption of semi-supervised ML (see Hastie et al. 2009).

Unsupervised ML (USML) is a general clustering task which relies on data analytics meth-
ods to identify patterns and regularities. USML Named Entity Recognition (NER) algo-
rithms are focused on clustering entities regarding their content (covered text) and con-
text. USML is rarely used for NER, as it cannot achieve the performance of SML or SSML
(see Jurafsky and Martin 2014).

10https://www.wiktionary.org, accessed on September 3, 2018
11https://www.wikipedia.org, accessed on September 3, 2018

53

3. Semantic Analysis and Annotation of Legal Documents

Dependency parser

More elaborated components to extract and assign roles to tokens, words, and phrases of legal
texts require advanced grammatical information, such as relations between words and phrases.
A common operation is the parsing of the dependency grammar (see Nivre 2005). The operation
extracts the connections between words and phrases based on grammatical relations. This could
for example be used to extract the subject and object of a sentence, or to collect connected
phrases.

Figure 3.14.: Automatically extracted dependency grammar of a German legal sentence12.

Figure 3.14 shows the example of a parsed sentence and the extracted dependency relations
between the linguistic units, i.e., tokens. The parser used for the demonstration is an open source
software and freely accessible (see Sennrich et al. 2013 or Nivre et al. 2006). The visualization
shows dependencies between tokens and phrases. It extracts relations like “subj” (subject), “det”
(determiner), “pred” (predicate), and auxiliary sentences.

The extraction of this information is complex from a computational point of view. Software
components extracting this type of information typically require a lot of resources, e.g., process-
ing time and memory. In addition, the general extraction quality of these grammatical relations
for sentences in the German language is rather low. Highly specialized taggers are required to
reach the necessary quality for the legal domain. For a small dataset from the legal domain this
has been achieved by Sugisaki (2017).

Complex Pattern Recognizer

To extract complex linguistic patterns, while reusing the linguistic information of components
integrated into the text analysis engine, it was necessary to implement a pattern recognition com-
ponent, that is easy to integrate and extend. The used software architecture allows for the simple
integration of an existing open-source rule-based information extraction engine, namely Ruta.

Ruta can easily be integrated into UIMA and represents an imperative rule language where a
rule combines a pattern of annotations; see Klügl et al. (2016). The Ruta workbench is an
12Visualization created using https://pub.cl.uzh.ch/demo/parzu/, accessed on September 3, 2018

54

3. Semantic Analysis and Annotation of Legal Documents

Eclipse plugin which provides editing support with syntax highlighting and further features like
rule explanation, rule validation, and the automatic creation of the descriptors based on the
script containing the rules.

Figure 3.15.: Ruta script, that matches the specified named or semantic entities (e.g., legal
definitions) based on pattern matching when applied to a law text (see Waltl et al.
2016).

Figure 3.15 shows an exemplary Ruta script and its application to the German product liability
act. The script formalizes the language so it can be parsed and executed automatically, i.e., a
complex pattern recognizer (see Klügl et al. 2016). This method of extracting information is
called rule-based information extraction and is still predominantly used in the industry, as a
recent study by Chiticariu et al. (2013) has shown.

Pros Cons
Declarative Heuristics
Easy to comprehend Requires tedious manual labor
Easy to maintain
Easy to incorporate domain knowledge
Easy to trace and fix the cause of errors

Table 3.4.: Pros and cons of rule-based information extraction from a survey among 54 different
software vendors, as summarized by Chiticariu et al. (2013).

The findings of Chiticariu et al. (2013) are summarized in Table 3.4. As of 2017, rule-based
information is not en vogue any longer, since academic research is investigating machine-learning
based approaches. However, the authors state that the “academic NLP community needs to stop
treating rule-based IE [Information Extraction] as a dead-end technology” (Chiticariu et al.,
2013, p. 830), since 67% of the large software vendors are still purely working with rule-based
information extraction.

The UIMA Ruta and its role within the UIMA framework is described in Section 3.5.3.4.

55

3. Semantic Analysis and Annotation of Legal Documents

Implementation as UIMA Annotators

The different components of the text analysis engine are implemented in the programming
language Java and run at the server side of the web application. Their implementation follows
the design principle of modularity and interchangeability, which is fostered by the underlying
architecture of Apache UIMA.

Every component, except the indicator calculation component, consists of a single (or multiple)
UIMA annotator(s)13. The concrete implementation and relevant Java code are discussed in
Section 5.

The systems have UIMA annotators to integrate the following components:

JudgmentReferenceAnnotator and LawReferenceAnnotator: Based on regular expressions citations
and references are detected within legal documents. Since the lexical occurrence of these
references vary within different types of legal documents, e.g., laws and judgments, these
components handle the document types individually.

LeitsatzAnnotator: Given a particular judgment from a German court, this annotator extracts
the paragraphs indicating the “Leitsatz” (engl. guiding principle) of a judgment, based on
structural features. This can be considered as a short summary and contains the essence
of a judgment. The “Leitsatz” is created by the judges and is part of the official document.

StopwordAnnotator: Based on a given dictionary, this component marks German stop words.
Stop word removal is a basic operation in information retrieval, but needs to be applied
carefully, since the occurrence of a stop word can make a huge difference for the semantics
of a legal text, e.g., not, and, or.

ZitatAnnotator: Direct citations can be a valuable sources of information. Although these hardly
appear in laws, judgments tend to cite the content of documents to which they refer,
e.g., existing contract clauses, statements by witnesses, etc. These are indicated using
different tokens, such as quotation marks. The extraction of this citations is done with
this annotator.

SubjectAnnotator: The subject annotator is implemented as described in this section and the
linguistic phenomena of “Nominativkasus” is implemented using straight-forward Java con-
ditionals.

The annotators introduce different and more or less complicated functionalities. Each annotator
handles exactly one particular function and contributes this to the overall annotation set. Based
on their occurrence within the processing chain, they can reuse the (intermediate) results of a
prior annotator. The concrete functionality of the Pipes & Filters is discussed in Section 3.5.

Furthermore, this section describes the different modules and how they are logically separated
from each other. It also provides insights into the basic structure of the text analysis engine and
how it could be extended if additional functionality for the semantic analysis is required.

13https://uima.apache.org/doc-uima-annotator.html, accessed on September 3, 2018

56

3. Semantic Analysis and Annotation of Legal Documents

3.4.2. Active Machine Learning Classifier

In addition to the aforementioned software components that are mainly integrated as UIMA
annotators, we have also integrated a separate service, which is particularly designed to classify
named (legal) entities: an Active Machine Learning classifier.

The mentioned components, such as the complex pattern recognizer, dependency parser, or
named entity recognition component, cannot update their linguistic model during the usage of
the system. However, it is compelling to have a component that does not only creates annotations
based on a pre-trained model, but “learns” during the usage of the system and while creating
and deleting components. This is a suitable use case for supervised ML.

The component implemented uses a so-called AML technique to learn and adapt when the
system is used. The component has been designed and trained to determine legal entities from
statutory texts, such as obligations, prohibitions, legal definitions, etc. By incorporating the
immediate feedback from the user, whether the prediction was right or wrong, it extends the
existing functionality of the rather static and ex-ante specified and trained text analysis engine
that cannot adapt and refine its models.

ML, AML, the used framework and its conceptual and architectural integration are discussed in
Section 3.5.5.

3.5. Software Architecture for Processing Legal Documents

This section describes the design decisions made to implement a software architecture for se-
mantically processing legal documents. Based on the consideration in Foundations and Related
Work (Section 2) and the previous Sections 3.4.1 - 3.4, we assessed existing frameworks for the
processing of legal documents, the result of which are summarized in Section 3.5.1. The pro-
cessing architecture is described in detail in Section 3.5.2). We decided to reuse and adapt the
existing UIMA framework. The consequences on the analysis of legal documents are discussed
in Section 3.5.3.

For the implementation of the Active Machine Learning framework, we have chosen the same
procedure. In Section 3.5.4, we will elaborate on the outcome of an assessment of potential
candidates for our implementation. We discuss the general architecture in of the active machine
learning framework in Section 3.5.5. Finally, we will introduce the selected machine learning
framework Apache Spark in more detail (see Section 3.5.5.3).

3.5.1. Assessment of Processing Frameworks

In order to compare different processing frameworks on which a solution tailored to legal docu-
ments can be implemented, we have had a few basic requirements:

1. The framework shall support its usage within a web application.

2. The framework shall support the parallel processing of documents (thread-safety).

57

3. Semantic Analysis and Annotation of Legal Documents

3. The architecture of the framework shall foster the reuse of software components.

4. The processing engine of the frameworks shall use a standardized data format and struc-
ture.

Based on these basic considerations, Tobias Waltl (2015, pp. 29) conducted an extensive study
of existing software frameworks. Different frameworks were compared to each other. Taking this
into account, we have drawn our conclusion for the analysis framework on which we have built
our system.

3.5.1.1. An Overview of Natural Language Processing Frameworks

Apache UIMA: The concept of UIMA was developed by IBM with the main objective of providing
means to foster the reuse of components for linguistic software components (see Ferrucci
et al. (2009)). In 2006, IBM donated it to the Apache Foundation and since 2010, UIMA
has been a top-level Apache project14. The large UIMA ecosystem provides a variety of
features supporting language engineering, e.g., Eclipse plugins. The implementation of the
core is available in Java and in C++ .

The most central concept of UIMA is the so-called Common Analysis System (CAS) and
it follows a Pipes & Filters architecture (see Section 3.5.2). Throughout all the filters
the central information repository, i.e., CAS, keeps all the linguistic information about a
document. This object is instantiated once and is given to all components of a processing
pipeline. Consequently, the components cannot directly communicate with each other.
They retrieve their input from the CAS and the previous components and reinsert their
determined output into the CAS again. The main objects within the CAS are annotations.
The CAS can be accessed to utilize the information extracted along the pipeline. For the
Java implementation, this object is call JCas object and enables efficient and programmatic
access (see Gotz and Suhre 2004).

The core is a robust stand-alone component, which supports the usage within a multi-
thread environment. It is not only suitable for usage in web applications, but allows the
parallel processing of large document collections.

A considerable variety of software components exists that can easily be integrated into
the pipeline model. A well-known and active repository is DKPro15, which is mainly
maintained by the research group of the Ubiquitous Knowledge Processing Lab16 (UKP)
from the Technical University of Darmstadt.

For rule-based information extraction based on Common Pattern Specification Language
(CPSL), UIMA provides the so-called Ruta engine. Ruta consists of an imperative rule
language where a rule combines a pattern of annotations and further conditions. Based
on these conditions, actions are triggered which are executed if a given formal pattern

14https://uima.apache.org/, accessed on September 3, 2018
15https://dkpro.github.io/, accessed on September 3, 2018
16https://www.ukp.tu-darmstadt.de/ukp-home/, accessed on September 3, 2018

58

3. Semantic Analysis and Annotation of Legal Documents

matches; see Klügl et al. (2016). More information about the UIMA Ruta is provided in
Section 3.5.3.4.

GATE: Since 1995, the GATE has been developed by researchers and affiliates from the Univer-
sity of Sheffield. It is a widely used and mature software framework based on a TIPSTER
architecture (see below). The overall objective is the provision of an infrastructure for
the seamless integration of different NLP components. Its current version is 8.4.117 and
is still maintained by an active community18. It offers a mature IDE, a large collection of
compatible components, and a framework, which is called GATE embedded, allowing the
integration of these GATE components into a Java application utilizing them (see Cun-
ningham et al. 2011).

The architecture consists of three major elements:

1. GATE document manager (GDM)

2. Collection of reusable objects for language engineering (CREOLE)

3. GATE graphical interface (CGI)

The data model of the GDM is based on the TIPSTER and supports bulk processing
large collections of documents, i.e., corpora. The data model handles both: text and
annotations. The GDM is the central information repository and the component’s com-
mon interface for reading and writing linguistic information. Documents are processed
subsequently. The linguistic components are de-coupled, which means, that they do not
exchange information directly with each other. Information is shared via the data model
managed by the GDM. The CREOLE is the repository of NLP components. Within the
GATE framework, these are called processing resources.

Another very interesting functionality of GATE is the rule-based information extraction
engine based on CPSL. This follows from its ancestor TIPSTER. The engine is called Java
Annotation Patterns Engine (JAPE) and enables the specification of linguistic patterns
which are applied to a document corpus. Matches of these pattern definitions cause actions,
e.g., creating an annotation, or calling another operation or function.

GATE is a powerful framework that is widely used in software-supported analysis of textual
documents and NLP. It has an active user and developer community.

TIPSTER: An early architecture for processing of large document collections was proposed by
Grishman (1996). The concept of annotating documents was implemented as a combina-
tion of stand-off annotating and enhancing documents with attributes. The system was
developed in C, Common Lisp, and TCL. The system was not natively designed to be used
in an environment that enables collaboration, e.g., a web application.

Although TIPSTER is not longer available the basic ideas of document-centric processing
and of an efficient and lean implementation have been reused in modern system architec-
tures, such as Ellogon, LIMA, or GATE.

17Released on June 9, 2017
18https://gate.ac.uk/, accessed on September 3, 2018

59

3. Semantic Analysis and Annotation of Legal Documents

Ellogon: Ellogon19 (see Petasis et al. (2002)) has been developed based on TIPSTERs archi-
tecture. Its core was written in C and handles the storage of textual data as well as
the associated linguistic information, i.e., annotations. Annotations have four different
attributes, namely an id, a type, a set of spans (denoting the annotated textual data),
and a set of attributes (containing the linguistic information). Ellogon allows the reuse
of software components during complex linguistic analysis. In addition, it has a graphical
user interface to view configurations and results of processing pipelines.

Ellogon is still actively used by Greek research groups, for example by Katakis et al. (2016).

LIMA: Just like Ellogon, LIMA (Libre Multilingual Analyzer) is based on a TIPSTER-like ar-
chitecture. It is primarily designed to support multilingualism, diversity of applications,
extensibility, and efficiency. LIMA stores configurations of pipelines, processing units, re-
source definitions, and logging information in XML. It fosters the reuse of components
within processing pipelines. Parallel processing of documents is not yet implemented, but
was identified as a project for further research in Besancon et al. (2010). LIMA offers a
broad variety of tools to test and evaluate linguistics modules.

There is an active community supporting and developing LIMA, mainly working at the
CEA LIST20.

Whiteboard architecture: The integration of heterogeneous components for NLP was the main
design goal for the Whiteboard architecture. It was originally designed in 1994 and consists
of a central instance, the coordinator, that orchestrates the different components via so-
called managers. These managers encapsulate the components and “hide and transform”
their functionalities (see Boitet and Seligman 1994).

This architecture was essentially useful when hardly any standardized format of data
exchange between software components was established.

TALISMAN: In 1995, a multi-agent architecture for NLP has been proposed by Stefanini and
Demazeau (1995). They argue, that the sequential architecture does not allow the real
exchange between different software components. Based on the analysis of sentences they
showed the applicability of their approach using distributed artificial intelligence.

TALISMAN was inspired by the idea of distributed artificial intelligence, which was very
popular in the 90s. Thereby, no central authority orchestrates the data exchange between
components, as they are self-organized. However, the recent years have shown the ad-
vantages of well-defined unidirectional processing pipelines in terms of performance and
modularity.

TalLab: Based on the need for a software architecture aiming to “ease the work of software
engineers producing, deploying and monitoring the [NLP-based on-line] applications” the
TalLab architecture was developed (see Wolinski et al. 1998). In the main publication,
four requirements have been listed that were guiding their implementations: i) Providing
malleability to facilitate the evolution of applications, ii) maximizing openness to take ad-

19http://www.ellogon.org/, accessed on September 3, 2018
20http://www-list.cea.fr/en/, accessed on September 3, 2018

60

3. Semantic Analysis and Annotation of Legal Documents

vantage of foreign components, iii) increasing efficiency to extend the scope of applications,
and iv) ensuring exploitability to guarantee the integration of applications.

Similar to TALISMAN, TalLab was implemented “an OS-based multi-agents system” that
sends messages between the agents to inductively process a natural language based text.
And just like TALISMAN, these agent-based architectures have not been properly accepted
by the linguistic community. The creation of powerful sequential pipelines has distinct
advantages over a self-organized multi-agent system.

Heart of Gold: The Whiteboard architecture has been improved by introducing an additional
hybrid architecture called “Heart of Gold”. Heart of Gold is a middleware architecture
that “generalizes WHITEBOARD into various dimensions such as configurability, multi-
linguality and flexible processing strategies” (see Schaefer 2007, p. 3). It consists of three
main components, namely a modules package, an XSLT service, and a module communi-
cation manager. The modules perform actual NLP tasks, or encapsulate external services,
the XSLT service handles the exchange and mapping between the modules, whereas the
module communication manager orchestrates the pipelines, etc.

The annotations made by a module are stored as XML. The schema of the XML has
not been standardized, i.e., no DTD. The developers chose a light-weight XML format
supporting the “Robust Minimal Recursion Semantic” (see Copestake (2007)).

As stated above, an in-depth analysis of the different frameworks and their suitability was
carried out in Waltl (2015). Within this work, we will limit ourselves to present the aggregated
outcome.

3.5.1.2. Conclusion

In a recent book, Wilcock (2017) investigated the capabilities from a pure computational lin-
guistic perspective and concluded that the most promising software frameworks for analyzing
textual documents are UIMA and GATE. For a state-of-the-art NLP framework, he emphasized
the importance of four different criteria:

1. pipeline configuration,

2. platform independence,

3. graphical interface, and

4. stand-off XML mark up within modern linguistic annotation frameworks.

Wilcock states: “These developments [...] were successfully integrated into GATE and UIMA, the
main large-scale modern annotation frameworks.”. These results are in line with our independent
investigations and analyses, as summarized in Table 3.5. In addition to the four different criteria,
we have added another four dimensions, with particular focus on a flexible type system, as this
changes throughout the analysis of different document types and use cases. From a software
engineering perspective, we have also added the usage in a multi-threaded environment, e.g., a
web application.

61

3. Semantic Analysis and Annotation of Legal Documents

TIPSTER Ellogon LIMA Whiteboard
Architecture TALISMAN TalLab Heart of Gold GATE UIMA

Web application - - - - - - ++ ++ +++
Reuse of components - +++ ++ ++ + - ++ +++ +++
Type system ++ - - - - - + - ++
Common data format +++ +++ +++ - - - - +++ +++
Integration and
Interchangeability
(i.e., pipelines)

+ ++ - ++ - - ++ +++ +++

Parallel processing - - - +++ +++ +++ +++ - +++
Framework - +++ ++ - - - ++ +++ +++
Community - ++ + - - - - +++ +++

Table 3.5.: Framework comparison considering ten different language processing frameworks and
eight different categories.

The table lists the different frameworks (columns) and the evaluation criteria (rows). Each cell
contains the result of the degree of fulfillment, whereas ’-’ corresponds to “not fulfilled or not
applicable” and ’+++’ corresponds to the highest degree of fulfillment.

As shown in Table 3.5 – based on our criteria and objectives – the Apache UIMA has the
highest degree of fulfillment. Consequently, we have chosen the Apache UIMA for our imple-
mentations.

The next two Sections, 3.5.2 and 3.5.3, provide more details about the conceptual structure
behind Apache UIMA and the concept of Pipes & Filters, and their importance during the
analysis of legal documents.

3.5.2. Pipes & Filters Architecture

In software engineering, numerous different software architectures have been developed to sup-
port different needs and purposes. A very common architecture to perform the analysis of data
and data streams is the so-called Pipes & Filters architecture. A schematic overview of this
architecture is shown in Figure 3.16.

Pipes & Filters architectures consist of two main components:

1. Filters are the components that perform the processing, i.e., processing step.

2. Pipes are the connectors between two consecutive processing steps.

Within Figure 3.16, filters are shown as triangles and pipes are shown as lines connecting these
triangles. The data flow is from left to right and can be read straight-forward. The different com-
ponents and their concrete processing tasks from Figure 3.16 are described in Section 3.4.1.4.

A (legal) document is selected and inserted into the first step of the pipeline, which is the Splitter.
The Splitter divides the large document, e.g., the German Civil Code, into its sections. The set
of sections is forwarded to the Segmenter, which breaks up each section into a smaller subject
of analysis. This set is then forwarded into a Tokenizer, which separates the individual tokens,
e.g., words, punctuation, brackets, from each other.

After this stage, the large initial document has been disassembled into small portions of in-

62

3. Semantic Analysis and Annotation of Legal Documents

Splitter Segmenter Tokenizer Reference
Extractor

Document Sections Sentences Tokens	
(Words)

Sentence	
Classifier • Structured	Text	

• Named	Entities
• Classified	Sentences

Money	Value	
Extractor

Date	&	Time
Extractor

Named	
Entity	
Extractor

Figure 3.16.: Schematic overview of a Pipes & Filters architecture for the analysis of legal doc-
uments (extension of a pipeline model as introduced in Waltl et al. 2016).

formation, which can be analyzed individually or within their larger context. At this stage it
becomes clear that each filter continuously adds new information to the pool of information
objects, which consists of the document, sections, sentences, tokens, and POS tags. But this
is not necessarily the case. Filters could also be used to reduce and decrease the information
stored in the pool.

After the document has been split into fine granular pieces of information, different extraction
components, such as a reference extractors, a money value extractor, a date & time value extrac-
tor, and a named entity extractor, are applied. It does not matter for the pipeline components
which particular technology, e.g., context-free grammars, or machine-learning, is used within a
component. This complexity is encapsulated. From this architectural perspective, the different
components are black boxes.

Finally, a sentence classifier, e.g., a UIMA Ruta component or an active machine learning com-
ponent, performs a matching on top of the stream of available information to assign semantic
types.

This architecture has three main advantages that make it so attractive in the field of data
processing:

1. Simplicity: The overall idea is rather simple to implement and does requires the large
overhead of an “master module” orchestrating the whole process. Each filter is initiated
by its predecessor and the data pipe in between. In addition, the system can easily be
understood and analyzed by looking at the individual components.

2. Independence: Each filter works as a stand-alone component and does not (necessarily)
depend on the performance of the other filters. Trivially, the results generated by a filter
are in many cases reused by a subsequent component. For example the tokenizer could
still extract the different tokens and words from a text even though the sentence splitter
might have a very low precision rate. Consequently, to achieve a high overall accuracy, the
accuracy of the individual components needs to be high as well.

63

3. Semantic Analysis and Annotation of Legal Documents

3. Modularity: The different software components communicate over the pipes, which can
be considered as well-defined interfaces and objects that are passed through the pipeline.
Hence, the components can be replaced in their order or even by other more advanced
or specialized components. For example, if a new document needs to be processed, e.g.,
a statutory text from another legal domain or even legal system, in which the sentence
boundaries follows another logic, e.g., due to a large variety of enumerations and other
non-sentence-breaking punctuations, it is sufficient to provide another sentence splitter
whereas the remaining processing pipeline does not need to be changed.

Based on these considerations, the Pipes & Filters architecture is well-suited for a research
prototype with the target to analyze legal documents. Especially when it serves as a platform
for interdisciplinary data science that has to support the implementation of multiple use cases for
semantic analysis. The system needs to be flexible enough to support different document types
and formats. In addition, the platform needs to decrease the effort of adding new functionality
when needed.

Limitations and Critical Remarks

In addition to the main advantages, the Pipes & Filters architecture also has several limitations
and drawbacks:

1. Architectural overhead: The Pipes & Filters architecture introduces additional over-
head in terms of implementation effort. Additional java classes and objects are required
to define the structure of the pipeline and to add new filter classes that perform a desired
behavior. The linguistic components are wrapped into a pre-defined structure of interfaces,
so that those can be integrated easily and are compatible among each other.

2. Complex configuration: A pipeline needs to be configured. The sequence of the compo-
nents needs to be specified ex ante. The different components also need some configuration
in order to load the correct model, e.g., the language of the document. Depending on the
implementation and the feature this could also be done during runtime. However, the
configuration of many variables before pipeline execution adds additional complexity to
the Pipes & Filters architecture and the system, which uses it for processing of documents.

3. Dependencies within the pipeline: A main advantage is the modularity of the compo-
nents, which perform different tasks and produce different (intermediate) results that are
either used by another component or as part of the final result. From this circumstance,
a disadvantage also arises: the components can be dependent on each other. They are
relying on the results that another component has produced beforehand. For example,
the tokenizer in Figure 3.16 may rely on the sections, which are generated by the splitter
component. Using the tokenizer without the splitter does not work, as the tokenizer does
not get the input it requires. For simple pipelines that are statically pre-defined, this might
not be a problem, however, if users that are not most familiar it could have difficulties
during the parametrization.

4. Linear pipelines: As the pipelines have dependencies among the components, and to
keep the complexity and execution manageable, the pipelines are executed sequentially

64

3. Semantic Analysis and Annotation of Legal Documents

and do not allow for forks or concurrent execution of components. This is also, as we
will later see in Section 3.5.3.1, due to the fact that robust implementations, such as the
Apache UIMA, share one common data object to store and forward information along
the pipeline. Managing the access to this object becomes challenging due to concurrent
manipulation, especially if the pipeline is used in multi-threaded environments.

5. Memory: The dependencies among the components and the sequential usage of the inter-
mediate results of a component require a common data object that is passed through each
and every component. One of the main challenges is to keep the data object maintainable
because it is usually designed to constantly grow during the pipeline execution phase. The
continuous growth could be mitigated if a component cleared would the common data
object. This would be possible from a technical point of view, however, since it does not
know which operations are performed afterwards, data that is required in a subsequent
phase might be deleted.

The limitations and drawbacks should be taken into account during the architectural decision-
making process. The architecture that was reused within our system was the Apache UIMA,
which was already briefly introduced in Section 3.5.1. The following Section elaborates in detail
on the architecture, the type system, the pipeline model, the available (linguistic) components,
and on how they can be reused and adapted for the legal domain.

3.5.3. Apache UIMA

The Apache UIMA was used as the base framework for our implementations. The UIMA project
claims to be divided into three different main areas21:

1. Frameworks

2. Infrastructure

3. Components

“Frameworks” are different implementations which encapsulate the integration of the components
within different environments, such as C++ or Java, or scale-out frameworks for their usage
within large computing clusters. “Infrastructure” covers the provision of tools and work-benches
to support the adoption and efficient integration into language engineering workflows. Finally,
“components” describe the large collection and repository of reusable software components.

This section describes the main components of the Apache UIMA and provides a more detailed
description of the pipeline model and its implementation within Apache UIMA.

21https://uima.apache.org/, accessed on September 3, 2018

65

3. Semantic Analysis and Annotation of Legal Documents

3.5.3.1. Pipeline Model in Apache UIMA

Apache UIMA uses an advanced architecture to represent the Pipes & Filters architecture.
Figure 3.17 depicts the resulting and instantiated workflow. It is built on the studies provided
in Section 3.5.2.

Analysis
Engine

Analysis
Engine

Analysis
Engine

Analysis
Engine

Analysis
Engine

Splitter Segmenter Tokenizer Sentence
ClassifierDocument Sections Sentences Tokens Semantic Types

Tagger
POS Tags

JCAS

• Sections

JCAS

• Sections
• Sentence

JCAS

• Sections
• Sentence
• Tokens

JCAS

• Sections
• Sentence
• Tokens
• POS-Tags

JCAS

• Sections
• Sentence
• Tokens
• POS-Tags
• Semantic Types

Annotations Annotations AnnotationsAnnotations Annotations

Figure 3.17.: An aggregated analysis engine with integrated JCAS object.

The processing consists of three main objects that are implemented as Java classes. The objects
and their responsibilities during the process can be described as follows:

Analysis Engine: UIMA follows a component-based design principle. These components that are
used for processing of information, e.g., text, are called Analysis Engines. Each Analysis
Engine (AE) has an associated XML descriptor, which specifies the expected input and
the produced output. For example, the POS tagger requires a set of annotations from
the token type. The descriptor is tightly coupled with the AE. Changing the components
input or output typically implies changes within the descriptor.

To handle these changes more efficiently, another abstraction layer was introduced, which
is called called Apache uimaFIT (see Ogren and Bethard 2009). In this process, the AE are
extended with Java annotations that deliver a detailed description of the in- and output
of a component. Thus, with uimaFIT, it is possible to describe a component directly
in its Java implementation and therefore, do not have to create and maintain the XML
descriptors do no longer have to be created and maintained.

Interchangeability of two AE is given if the constraints regarding the in- and output re-
quirements are met. Trivially, if a component needs to have a text, segmented into its
sentences, it relies on the previous components to deliver these annotations. As the UIMA
is strongly typed, i.e., each annotation type is defined as a separated Java class and not
only as the description of some XML document, configuration file, or generic class, one
can rely on these definitions and must not expect conflicting annotations with the same
name. This is a common problem in other frameworks, e.g., GATE. More information
about the UIMA type system is provided in Section 3.5.3.3.

66

3. Semantic Analysis and Annotation of Legal Documents

Aggregate Analysis Engine: The overall object, handling the aggregation of the different analysis
engines, is called the Aggregate Analysis Engine (AAE). The AAE handles the CAS
object, by managing its complete life cycle. Its creation is initiated here, as well as the
creation of new objects, i.e., annotations. It holds various meta-data for the processing
pipeline, e.g., information about the order of the analysis components or the language
information. It allows parallelization and so-called flow constraints, which specifies the
routing of the CAS object during the processing. This is important to ensure concurrent
usage within multi-threaded environments, e.g., web applications.

In principle, AAE can be executed in parallel. Physically, an AAE is executed single-
threaded. For real multi-thread applications, UIMA Asynchronous Scaleout (AS)22 is
available. In addition to physical multi-threading, UIMA AS provides mechanisms allowing
for scaling on a cluster of machines. Standard UIMA components are executed within
UIMA AS without any code modifications. Static fields should be avoided, since these are
handled by the Java class-loader and are shared among multi-threaded components. The
UIMA AS creates multiple instances of UIMA components which ensures that each AE
instance is accessed by exactly one thread.

CAS and JCAS: The CAS and its wrapper for the Java, called Java Cover Classes based Object-
oriented CAS (JCAS), are the central information repositories within an AAE. The CAS is
an object that enables AEs to access a the document and metadata about that document.
Analysis components read from a CAS interface in order to perform their analyses and
may write new metadata back to the CAS interface.

At the time of the instantiation, the CAS will be initialized with main information about
a document, e.g., its content, and additional meta-data.

This section provided an introduction into the basic structure and involved components during
the analysis of a document within the Apache UIMA. The next section will add information
about available software components for the UIMA ecosystem that foster and accelerate the
process of language engineering.

3.5.3.2. Software Components for Apache UIMA

Although it is rather easy to implement a new custom annotator for the Apache UIMA, modern
software engineering heavily relies on the re-use of available software components. For the UIMA
ecosystem, a large variety of software components has already been implemented. A well-known
collection of these software components is the repository “DKPro” and was described in-depth by
de Castilho and Gurevych (2014). The core of DKPro offers 9423 different linguistic components,
that are either available as under the permission of an Apache License model or under the GNU
GPL.

22https://uima.apache.org/doc-uimaas-what.html, accessed on September 3, 2018
23Version 1.8.0, accessed on September 3, 2018

67

3. Semantic Analysis and Annotation of Legal Documents

The repository24 differentiates between 17 different categories of components for linguistic anal-
ysis:

1. Analytics components

2. Checker

3. Chunker

4. Coreference resolver

5. Language Identifier

6. Lemmatizer

7. Morphological analyzer

8. Named Entity Recognizer

9. Parser

10. Part-of-speech tagger

11. Phonetic Transcriptor

12. Segmenter

13. Semantic role labeler

14. Stemmer

15. Topic Model

16. Transformer

17. Other

The availability of these software components fosters the creation of applications with a partic-
ular focus on a domain, e.g., legal documents. Nevertheless, the domain adaptation, including
the provision of specific components (see Section 3.4.1.4), still needs to be done.

3.5.3.3. UIMA Type System

The Apache UIMA provides a very generic type system that allows the specification of annota-
tion types (see Section 3.2.1). These annotation types are called “types” and they support the
specification of attributes so-called “features”. The types follow a very strict naming conven-
tion, which is used to resolve the space of a type. This can be illustrated by the following two
examples:

de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Token

The first example shows a built-in annotation type from the DKPro framework. The annotation

24https://dkpro.github.io/dkpro-core/releases/1.8.0/docs/component-reference.html, accessed on September 3,
2018

68

3. Semantic Analysis and Annotation of Legal Documents

type is Token and its namespace is de.tudarmstadt.ukp.dkpro.core.api.segmentation.type. This is
a common naming convention in software engineering, wherever different workspaces exist and
a full qualifier to resolve this is required.

The attributes of the UIMA also follow this naming convention:

uima.tcas.AnnotationBase:sofa
uima.tcas.Annotation:begin
uima.tcas.Annotation:end

These three features exist in every type. They identify the “Subject of analysis” Sofa and the
region of the annotation. According to their namespace, they are within the package uima.tcas
and belong to the type Annotation, respectively AnnotationBase, and have the name sofa, begin,
and end.

The UIMA type system describes how the JCAS internally handles, addresses, and manages the
annotations. In our system, the complexity of internal and technical representation is reduced
after a successful processing. The type systems structure is mapped onto the Annotation object
of the data model that is kept within the local data storage.

The mapping of the UIMA type system preserves all types and features. However, our system
adds more additional information to each annotation that is stored, e.g., creationDate and id.

3.5.3.4. UIMA Ruta (Rule-based text annotation)

In order to provide an annotation technology that is fully supported and integrated into Apache
UIMA, we decided to integrate Ruta25, which consists of two main components:

1. An analysis engine (see Section 3.5.3.1) interpreting and executing the rule-based scripting
language.

2. A workbench providing end-user support for the development, maintenance, and evaluation
of these rules.

The UIMA Ruta language is an imperative rule language extended by scripting elements
(see Klügl et al. 2016). A rule consists of a pattern definition based on annotations and a
set of conditions. If this pattern matches, the specified actions are executed. The actions are
performed on the matching annotations.

A rule is composed of a sequence of rule elements and a rule element essentially consists of four
parts:

1. A matching condition which is the basic condition that needs to be fulfilled such that
the actions are executed. This basic conditions is usually evaluated in the text, or in a
region of the text, or in a set of existing annotations, of a given document.

2. A quantifier, which is optional and allows the specification of multiplicities on the match-

25https://uima.apache.org/ruta.html, accessed on September 3, 2018

69

3. Semantic Analysis and Annotation of Legal Documents

ing condition. It is possible to declare the conditions only to match if a given number of
subsequent matches is fulfilled.

3. A list of conditions provides an additional way to provide conditions beside the matching
condition that need to be fulfilled in order to to execute the actions.

4. A list of actions defines the actual operations that are performed if all prerequisites are
met. In most cases, these specify the creation of new annotations or the modification of
existing annotations.

In the following two examples, for simple Ruta rules are shown:
1 DECLARE SECTIONMARK;
2 DECLARE SECTIONNUMBER;
3

4 "§|§§" −> SECTIONMARK;
5

6 SECTIONMARK Token{REGEXP("[0−9]+[a−z]?") −> MARK(SECTIONNUMBER)};

The first rule marks each occurrence of the symbols ’§’ and ’§§’ in the text and annotates them
with the type SECTIONMARK. The second rule identifies combinations of numbers and one
optional character that occur immediately after a SECTIONMARK annotation. Thereby, the
action MARK(SECTIONNUMBER) is only executed on the token that is matched by the regular
expression, not for the SECTIONMARK annotation.

Figure 3.18.: An example of a highlighted text based on annotations by UIMA Ruta rules.

Executing this script snippet would annotate the section symbols and subsequent numbers, each
of which with a different annotation type. The result is illustrated in Figure 3.18; another
example was already shown in Figure 3.15.

It is important to mention that the UIMA Ruta allows to create annotation based on existing
annotations and on linguistic features. It is fully integrated into the type system of Apache
UIMA and allows to reuse the whole annotation functionality that is provided by any other
component within the AAE.

3.5.3.5. UIMA and its Adoption in the Legal Domain

Although from a software technical point of view, Apache UIMA is the most advanced and
mature framework for the semantic analysis of textual documents, its usage within the field of
the analysis of legal documents has been rather modest.

70

3. Semantic Analysis and Annotation of Legal Documents

A very promising — and to the best of our knowledge only — approach (beside ours) has been
presented by Grabmair et al. (2015). They have re-used the UIMA type system to support the re-
ranking of search results. Their approach was built on the analysis of vaccine injury decisions and
the usage of UIMA Ruta and Weka26 to extract and assign semantic types on the sentence and
sub-sentence level of the legal texts. Grabmair et al. used the UIMA framework to extract legal
concepts from the vaccine injury decisions. However, the focus of their research was the usage
of the framework to extract information to re-rank search results. The information extraction
component has not been the main focus of their published work. A detailed description of
the software components, especially of the computational linguistic operations, that have been
implemented and how they interact with each other is missing. The thesis at hand can be
considered as a contribution to close exactly this particular gap of describing and proposing a
generic software architecture that is powerful and modular and fosters the interoperability of
results from different research groups.

It is to be hoped that more research groups, especially in the field of legal informatics, recognize
the importance of performing data analysis on a common technological platform to foster the
exchange reproducibility, and reuse of results.

3.5.4. Assessment of Machine Learning Frameworks

Computer science has been studying the field of machine learning for many decades. This
extensive study has led to a vast variety of different methods, approaches, technologies, and
implementations 27. Especially for software engineering projects and implementations, the reuse
of components and libraries is essential. In order to implement the machine learning function-
ality, as stated in Section 3.4.1, we assessed different freely available frameworks. A few basic
considerations were driving our assessment:

1. The framework shall natively support machine learning for NLP tasks, such as classifica-
tion, and text representation.

2. The framework should be able to support active machine learning.

3. The framework should be freely available, e.g., open-source.

4. The framework should be maintained and supported by an active community.

Following these basic considerations, Muhr (2017, pp. 46) conducted an extensive study of
existing machine learning frameworks. Based on this assessment, we were able to draw the final
decision to re-use the existing framework of Apache Spark and the MLLib.

26https://www.cs.waikato.ac.nz/ml/weka/, accessed on September 3, 2018
27A collection of different implementations are collected here: https://github.com/josephmisiti/awesome-

machine-learning, accessed on September 3, 2018

71

3. Semantic Analysis and Annotation of Legal Documents

3.5.4.1. Framework Overview

MLLib: The Machine Learning Library, MLLib, is a component on top of the Apache Spark
ecosystem, which is a “fast and general engine for large-scale data processing”28. MLLib
extends Apache Spark with machine learning functionality, which is currently available in
version 2.229. It supports the data handling capabilities, iterative batching and continuous
streaming, of Spark, and is capable of handling large datasets.

Within the MLlib library, a variety of efficient and scalable implementations of common
ML technologies are seamlessly implemented, such as standard learning algorithms for clas-
sification (e.g., naive bayes, support vector machine, neural networks, logistic regression)
or clustering (e.g., k-means). Furthermore, the library offers basic methods to transform
the textual input data into representations that are suitable for text classification. These
include bag of words representation and feature set methods, such as TF-IDF.

A benchmark test in 2014 has proven the efficiency of Spark and MLlib. Assigned with
the task of sorting a large dataset (100TB) Spark was three times faster using ten times
fewer machines than the Hadoop MapReduce implementation. The sorting was performed
on HDFS and an average sort rate of 7.27 TB/sec was reached in average30. Considering
the execution of algorithms, Spark MLlib shows excellent performance and is continu-
ously under improvement. Meng et al. (2016) compared the machine-learning frameworks
Apache Mahout, using Hadoop MapReduce, and MLlib. They could show, that MLLib
has advantages in efficiency of resources and runtime.

The fast evolution of Apache Spark can be explained by the large number of contributors
and the support of an active community. Since 2009, more than 1,000 developers have
contributed to the ecosystem. Apache Spark and its functionalities are well-documented.
This includes code examples and details for the implementation of certain algorithms.

Mahout: Apache Mahout is an open-source project by the Apache software foundation. It was
originally designed to support MapReduce with a focus on recommender engines, cluster-
ing, and classification (see Owen et al. 2011).

With the release of version 0.10 in April 2015, the Mahout implementation shifted from the
focus to MapReduce, since the latest benchmarks have already shown better performance
measures for other data-processing concepts and implementations (see description about
Apache Spark and the MLLib). The focus has been set on a math environment called
Samsara, which provides statistical operations, linear algebra, and data structures. The
objective of Mahout-Samsara is to provide an extensible programming environment for
Scala to enable end-users to develop their own distributed algorithms, instead of providing
a machine-learning library with existing algorithms.

Currently, Mahout is available in version 0.13, released in April 2017. The latest doc-
umentation shows how the concept of Mahout has away from being a machine-learning

28https://spark.apache.org/, accessed on September 3, 2018
29https://spark.apache.org/docs/latest/ml-guide.html, accessed on September 3, 2018
30https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html, ac-

cessed on September 3, 2018

72

3. Semantic Analysis and Annotation of Legal Documents

library for classification to being an “add-on” for other processing engines. The three basic
classification algorithms of the original library31, namely logistic regression, naive bayes,
and hidden markov models, are deprecated. Currently, the system consists of an algebraic
backend-independent optimizer and a Scala domain-specific language (DSL) consolidating
the distributed and in-memory algebraic operators.

Hence, Mahout is an ML engine that requires deeper knowledge of both mathematical and
programming skills. Moreover, due to the many dependencies, the initial configuration
of Mahout may be difficult. The sparse documentation makes this even more challenging
(see also Muhr 2017, pp. 51).

Compared to Spark, and thus also to MLlib, community support is low with only 24
contributors.

Weka: The “Waikato Environment for Knowledge Analysis” is a general-purpose open-source
software workbench incorporating a variety of ML technologies. It was originally developed
as an internal project written in C at the university of Waikato in New Zealand and was
made publicly available in 1996 (see Holmes et al. 1994). In 1999, it was completely
rewritten in Java. Today, it is available as version 3.8 under the GNU General Public
License32.

Weka provides a comprehensive and mature collection of data-preprocessing tools and ML
algorithms (see Hall et al. 2009). One reason for the huge success is the graphical user
interface (e.g., explorer and workbench) that enables end-users to access ML functionality;
even if someone is not particularly familiar with programming. The UI allows for basic
descriptive and statistical analysis.

Weka is a large collection of machine learning libraries and offers an open Java interface to
foster the reuse in other applications. For the processing of textual information Weka pro-
vides implementations of common preprocessing steps (e.g., stemming, stop-word removal),
as well as unsupervised and supervised ML algorithms, such as naive bayes, perceptron
or support vector machines. For the evaluation of the classifier’s performance, common
measures such as precision, recall and F1 score, and the Receiver-Operator-Curves are
available.

Originally, Weka was not designed for text classification tasks, but it can process textual
data 33. The textual data must be pre-processed using available components, such as
the “StringToWordVector”. These convert the text into a word vector. Based on this
vector representation, further processing is possible. For example, using common TF-IDF
methods and inputing the resulting features into existing classification algorithms.

A benchmark examining the efficiency on classification tasks is not available. For larger
datasets, the efficiency decreases as the data has to be retrieved iteratively from exter-
nal storages. These shortcomings are addressed by wrappers allowing for the continuous

31http://mahout.apache.org/users/basics/algorithms.html, accessed on September 3, 2018
32https://www.cs.waikato.ac.nz/ml/weka/, accessed on September 3, 2018
33https://weka.wikispaces.com/Text+categorization+with+WEKA, accessed on September 3, 2018

73

3. Semantic Analysis and Annotation of Legal Documents

streaming of data. Weka provides extensive documentation about ML in general, and
about the implementations of these algorithms.

The Weka toolkit has already successfully been used in the context of legal text classifica-
tion (see Grabmair et al. 2015; Maat et al. 2010; Goncalves and Quaresma 2005) and in
an active machine learning environment by Cardellino et al. 2015.

Scikit-learn: The scikit-learn framework (see Pedregosa et al. 2011) is an open-source general-
purpose ML library for the Python programming language. The most current version is
0.19.034 under the permission of a Berkeley Software Distribution (BSD) license. The
project started in 2007 with the aim to make ML available to non-experts by providing a
reusable tool. This should foster its re-use in scientific and industrial contexts. Scikit-learn
is purely written in Python and does not provide a native support for Java.

Scikit-learn supports several options for data mining and machine learning. It has a large
variety of supervised (and unsupervised) algorithms for classification (e.g., support vector
machine, naive bayes), regression algorithms (e.g., logistic regression) and clustering (e.g.,
kNN). All scikit-learn classifiers support multiclass classification. This is implemented as
a one vs. all strategy (see Bishop 2006). To handle large datasets, an incremental loading
and training strategy has been implemented: only a small number of instances is loaded
into the main memory at one time and given to the classifier. This smaller batches are
easier to handle and require less memory.

Scikit-learn offers a several components for the analysis and processing of textual data.
Text is transformed into a feature vector (e.g., bag of words representation). Besides
simple word vectors, Feature Selection (FS) techniques, such as TF-IDF methods, are
supported. Several common components to perform basic preprocessing of text data,
such as stop-words removal and stemming are provided by the framework. Scikit-learn
has an integrated pipeline concept, in which different subsequent processing phases (e.g.,
conversion into feature vector, preprocessing, classification) can be combined.

In order to assess and evaluate the performance of algorithms and classifiers scikit-learn
integrates all common classification evaluation metrics such as accuracy, F1, precision and
recall, and Area Under the Curve (AUC).

Scikit-learn comes along with a detailed documentation covering the important parts of
the API, including code examples, explanations, and tutorials. Additionally, it describes
internal processes and architecture in detail, as well as common ML topics and algorithms.
With more than 100 contributors since 2010, scikit-learn has a remarkable and very active
community. The framework is also used for commercial purposes, e.g., Spotify.

Mallet: The MAchine Learning for LanguagE Toolkit (Mallet)35 “is a Java-based package for
statistical natural language processing, document classification, clustering, topic modeling,
information extraction, and other machine learning applications to text” McCallum (2002).

34http://scikit-learn.org/stable/, accessed on September 3, 2018
35http://mallet.cs.umass.edu/, accessed on September 3, 2018

74

3. Semantic Analysis and Annotation of Legal Documents

It was initially released in 2002 and is released under Common Public License36. Compared
to the frameworks mentioned before, Mallet is a small project.

Unlike the other general-purpose ML frameworks, Mallet is specifically designed for NLP,
particularly focusing on document classification, sequence tagging, topic modeling, and
numerical optimization. Mallet is written in Java and an easy-to-access API for exter-
nal Java applications is provided. Like the other frameworks, Mallet offers routines to
transform text documents into numerical representations (feature vectors), which serve as
input for the classifier implementations. Similar to Spark, Mallet offers a pipeline model
to configure preprocessing steps, for example the conversion into lowercase letters or the
removal of stop-words.

With respect to classification algorithms, Mallet does not have that large range of op-
tions compared to other frameworks. Of the classifiers described in detail in the previous
chapters, only NB is offered. Multi-label classification is not supported. However, for the
evaluation of classifiers, common measures like accuracy, precision and recall, and the F1
are available. In contrast to Spark or Mahout, and similarly to Weka, Mallet is generally
not aligned to import or process extremely large amounts of data.

On the website, one can find tutorial presentations about the concept Mallet implements.
Additionally, there is a brief developer guide demonstrating the classification process,
including some code snippets. Analyzing the code repository shows that the Mallet com-
munity (developers and users) is active ,but small compared to Apache Spark. In 201737,
27 active contributors could be counted on GitHub38.

3.5.4.2. Conclusion

Our investigations and analyses, summarized in Table 3.6, show a compact comparison of differ-
ent available and mature frameworks in ML. We have chosen to use Apache Spark and its MLLib
for the machine learning component in our text analysis engine. Although there are emerging
frameworks with a particular focus on deep learning, which becomes increasingly relevant in the
field of image recognition or NLP, Apache Spark fully reflects a modern and state-of-the-art ML
framework. This statement can be backed up with observations, that can be based on analyzing
recently published scientific articles: according to Google scholar, 326 different articles have
cited the main publication of Meng et al. (2016) since its appearance. This indicates the dy-
namics and relevance of Apache Spark for data mining and knowledge discovery tasks. Table 3.6
provides an additional overview and comparison referring to the high-level requirements stated
in Section 3.5.4, namely support of NLP tasks, active machine learning, open-source availability,
and community support.

The table lists the different frameworks (columns) and the evaluation criteria (rows). Each
cell contains the result of the degree of support and fulfillment. It shows, that the Apache
Spark with its MLLib has – based on our criteria and objectives and together with scikit-learn

36http://mallet.cs.umass.edu/about.php, accessed on September 3, 2018
37accessed on September 3, 2018
38https://github.com/mimno/Mallet, accessed on September 3, 2018

75

3. Semantic Analysis and Annotation of Legal Documents

– the highest degree of fulfillment. Due to the fact that the remaining framework LEXIA is
already implemented in Java, we have chosen Apache Spark as the framework in which the
ML functionality is going to be implemented. This would have not been necessary, since the
integration of the ML functionality is done via a service-oriented approach in which the NLP and
ML are consumed on a well-defined interface. However, remaining in the Java ecosystem seems
reasonable for maintenance and there was no main reason against this decision. The service-
oriented approach, which is extensively described in Section 3.5.5.3, also allows to consume other
frameworks or to easily change the machine learning framework used. Again the modularity
in terms of re-usable software components is ensured. Currently, different, highly specialized
frameworks for machine learning are developed and created. As it is unclear, in which direction
this trend will evolve, the service-oriented architecture seems reasonable for this technological
innovation. Additionally, separating the ML functionality in an individual service allows to scale
the infrastructure more easily. ML is known to be very resource intensive, therefore having a
service on a separate (physical) machine, e.g., server, facilitates independent scaling and faster
NLP and classification.

Section 3.5.5 introduces the active machine learning process in details It unveils the process and
the rationale, clarifies basic terms and their meaning, discusses its role in legal text classification
and the architectural integration into the overall semantic analysis framework.

76

3. Semantic Analysis and Annotation of Legal Documents
C

ri
te

ri
on

M
L
L
ib

M
ah

ou
t

W
ek

a
S
ci

ki
t-

le
ar

n
M

al
le

t
V

er
si

on
2.

2
0.

12
.2

3.
8

0.
19

2.
0.

8
L
ic

en
se

A
SF

A
F
S

G
P

L
B

SD
C

P
L

P
ro

ce
ss

in
g

P
la

tf
or

m
A

pa
ch

e
Sp

ar
k,

M
ap

R
ed

uc
e

A
pa

ch
e

Sp
ar

k
W

ra
pp

er
fo

r
Sp

ar
k

no
ne

no
ne

In
te

rf
ac

e
L
an

gu
ag

e
Ja

va
,S

ca
la

,P
yt

ho
n,

R
Sc

al
a,

Ja
va

Ja
va

,R
P

yt
ho

n
Ja

va
L
ar

ge
D

at
as

et
su

p
p
or

t
go

od
go

od
m

od
er

at
e

go
od

m
od

er
at

e
C

om
m

u
n
it
y

go
od

m
od

er
at

e
go

od
go

od
m

od
er

at
e

D
oc

u
m

en
ta

ti
on

go
od

m
od

er
at

e
go

od
go

od
m

od
er

at
e

T
ex

t
an

al
yt

ic
s

an
d

N
L
P

su
p
p
or

t
go

od
m

od
er

at
e

go
od

go
od

go
od

A
lg

or
it

h
m

s
fo

r
cl

as
si

fi
ca

ti
on

N
ai

ve
b
ay

es
X

X
X

X
X

S
u
p
p
or

t
ve

ct
or

m
ac

h
in

e
X

on
ly

vi
a

M
LL

ib
X

X
×

M
u
lt

i-
L
ay

er
p
er

ce
p
tr

on
X

on
ly

vi
a

M
LL

ib
X

X
×

M
u
lt

ic
la

ss
cl

as
si

fi
ca

ti
on

on
e

vs
.

al
l

on
ly

vi
a

M
LL

ib
on

e
vs

.
al

la
nd

on
e

vs
.

on
e

on
e

vs
.

al
la

nd
on

e
vs

.
on

e
×

M
u
lt

il
ab

el
cl

as
si

fi
ca

ti
on

on
e

vs
.

al
l

×
×

on
e

vs
.

al
l

×
P

ip
el

in
e

co
n
fi
gu

ra
ti

on
X

×
×

X
×

P
re

p
ro

ce
ss

in
g

S
te

m
m

in
g

X
×

X
X

X
S
to

p
w

or
d

re
m

ov
al

X
×

X
X

X
F
S

m
et

h
od

s
go

od
m

od
er

at
e

go
od

go
od

m
od

er
at

e
T
ex

t
re

p
re

se
nt

at
io

n
W

or
d

ve
ct

or
X

X
X

X
X

T
F
-I

D
F

X
×

X
X

×
E
va

lu
at

io
n

C
on

fu
si

on
m

at
ri

x
an

d
d
er

iv
ed

m
ea

su
re

s
X

X
X

X
X

R
ec

ei
ve

r
op

er
at

io
n

ch
ar

.
an

d
ar

ea
u
n
d
er

cu
rv

e
X

×
X

X
X

T
ab

le
3.

6.
:C

om
pa

ri
so

n
of

di
ffe

re
nt

fr
am

ew
or

ks
re

ga
rd

in
g

M
L

an
d

so
ft

w
ar

e
en

gi
ne

er
in

g
cr

it
er

ia
(e

xt
en

si
on

of
M

uh
r

20
17

).

77

3. Semantic Analysis and Annotation of Legal Documents

3.5.5. Active Machine Learning

Based on the comparison of potential frameworks, a decision for the ML component has been
made. We have chosen to implement the ML functionality using Apache Spark. This section will
provide a more detailed introduction into Active Machine Learning (AML) and describes the idea
and basic terms (see Section 3.5.5.1). In addition, the role of AML within the classification of
legal texts is discussed in Section 3.5.5.2. Based on these considerations, the questions remains
how this functionality can be integrated seamlessly into the overall process of semantically
analyzing and processing textual data. The conceptual integration and the interaction with the
implemented prototype are discussed in Section 3.5.5.3.

AML is a specific form of semi-supervised machine learning (see Settles 2010). It relies on the
integration of a domain expert, i.e., a human person, during the learning process. Recent studies
have shown, that this integration could significantly improve the learning behavior of the ML
classifier (Olsson 2009). Due to its nature, it is also called an “optimal experimental design”39.

The next section will briefly explain the general idea behind AML by providing an overview of the
overall process and introducing the basic concepts. In addition, we will describe its role within
the domain of legal text and legal entity classification. Finally, we will discuss the technological
concept in detail and its architectural integration into LEXIA.

3.5.5.1. Active Machine Learning: The Process and Foundations

Classifier

(e.g., naive bayes,
logistic regression,

perceptron)

Labeled norms

Unlabeled norms

Knowledge-engineer,
Domain expert

Labeled norms

Query strategy

Figure 3.19.: AML process for the classification of norms describing the interaction between
classifier, strategy, and domain expert (see Waltl et al. 2017b).

A general overview of AML is displayed in Figure 3.19. The process starts by providing two
different pools of instances. The figure already shows the adaption for the classification of legal
content, namely of norms. An existing dataset, e.g., a set of norms, exists which can be divided
into two categories: labeled and unlabeled. This dataset serves as the input for a machine
learning classifier.

39https://en.wikipedia.org/wiki/Active_learning_(machine_learning), accessed on September 3, 2018

78

3. Semantic Analysis and Annotation of Legal Documents

This classifier is a mathematical algorithm that learns how to recognize and predict unlabeled
instances based on the input data. The input data is mapped into a set of so-called features.
These features can be parsed by the classifier and stored within an efficient internal state, a
so-called model. A very common and simple feature representation, that is widely used in NLP
is the bag-of-words model. Thereby, the textual input data is separated and split into its words.
These words are stored within a multiset that does neither preserve the order nor information
about its grammar. It only keeps the number of occurrences for each word. This multiset is one
feature processed by the classifier and used to train and predict the labels of the instances.

For AML, a large variety of different classifiers can be used. In our implementation, we have
used three main classifiers, namely

∙ naive bayes,

∙ logistic regression, and

∙ a perceptron.

This selection covers main representatives from different learning strategies, namely discrimina-
tive vs. generative (see Ng and Jordan 2002). Naive bayes is known to be a famous representa-
tive for discriminative learning, whereas logistics regression belongs to the category of generative
learning classifiers. The last candidate in our list, the perceptron, was selected from the list of
neural networks. A more detailed description of machine learning classifiers has been provided
by Russell and Norvig (2009). Modern software frameworks for machine learning offer a large
variety of different classifiers, that can easily be re-used. In our implementation, we have used
the Apache Spark40 framework for machine learning. A detailed comparison of frameworks with
their advantages, disadvantages, and limitations was carried out by Muhr (2017).

Once the classifier has been selected and trained the instances, e.g., norms, are labeled. The
classifier assigns a label to each instance. This is done regardless of any confidence level or
threshold. Based on these labeled instances, a query strategy selects a pre-defined number of
instances from the pool of labeled data. The query strategy follows an mathematical principle
and is designed to select those candidates which are most beneficial to the classification if
they are labeled correctly. Different strategies exist for this purpose, which are summarized in
Table 3.7.

Table 3.7 shows only a selection of the query strategies and new strategies are constantly being
proposed. Currently, the field of AML is very vital and intensively studied. However, we have
made experiments to show the applicability of these query strategies to classify legal entities
(see Section 6).

Based on the batch size, which specifies how many instances are chosen by a query strategy,
a domain expert is involved into the learning round. The selected instances are shown to the
domain expert who needs to provide the labels for the instances that are shown he is shown. This
active integration of external knowledge, like an oracle, is the essence of AML. The classifier
is no longer thrown back to the training data it receives, but can “ask” a domain expert to
efficiently train and improve the classification process. Once the domain expert has finished

40https://spark.apache.org/, accessed on September 3, 2018

79

3. Semantic Analysis and Annotation of Legal Documents

Query Strategy Method Description
Uncertainty
Sampling (US)

Entropy Selection based on the average information con-
tent (Shannon entropy) of an instance.

Margin Sampling
(MS) Selection based on the output margin of the pre-

dicted outcomes with the highest probability.

Query by
Committee (QBC)

QBC Vote Entropy
(VE) Selection based on a committee of different QS

methods (ensemble with majority vote).
QBC Soft VE Selection based on a committee of different QS

methods (ensemble with majority vote, including
probabilities).

Table 3.7.: Query strategies for active machine learning (see Waltl et al. 2017b; Muhr 2017).

his labeling this set is incorporated by the classifier which then refines his decision model and
structure.

Using the updated classification model, the instances are re-classified and a new learning round is
performed. This iterative process is carried out until either all instances are labeled or another
stopping criterion is met. The performance of the scenario can be measured using conven-
tional measures for machine learning, such as precision, recall, Receiver Operator Characteris-
tics (ROC).

In the domain of legal text analytics, this approach can be used to decrease the number of
labeled instances in order to perform the classification of legal entities. The main concepts of
AML are summarized in Table 3.8.

3.5.5.2. Active Machine Learning: Legal Text Classification

According to Russell and Norvig (2009), machine learning has been used for text classification for
decades. Common approaches addressed the analysis of the sentiment within a given document
or the categorization of emails into two categories: spam or not-spam. Thereby, the usage
of simple representations of the documents are usually bag-of-words. One drawback of this
representation is, that the feature vector is very large and sparse. For example, if the overall
vocabulary consists of 1,000 different words, the vector for an email with 20 different words
consists of 1,000 entries with 980 zeros and 20 ones. Good spam detectors use more features
than just the unigrams, such as time of the message, sender’s address. Russell and Norvig (2009,
p. 866) conclude: “The choice of features is the most important part of creating a good spam
detector—more important than the choice of algorithm for processing the features.”

Based on this, it seems to be straight forward to reuse machine learning to differentiate not only
between spam and not-spam, but to train algorithms in supporting information extraction tasks
in legal texts. This has also been observed by Ashley (2017, p. 235): “Applying ML to legal
texts will play key roles in a legal app for cognitive computing. One goal in cognitive computing
is for ML algorithms to learn to identify patterns of textual features that are important for
human problem-solving.”

80

3. Semantic Analysis and Annotation of Legal Documents

Term Description
Scenario Describes how the instances are queried and labeled by the

user. This could be done sequentially (stream-based) or as
a bulk of instances (pool-based).

Learning round Describes a full iteration of an AML cycle, covering the la-
beling of instances by the classifier, querying instances by
a given strategy, labeling of instances by a domain expert,
and incorporating these into the training data set.

Classifier Algorithms that learn from a given set of labeled data (i.e.,
training data) and apply this to unlabeled data (test) and
predict their missing label.

Feature Measurable property or characteristic of an observed phe-
nomenon, such as words from the vocabulary, or other in-
formation from a document.

Batch size Describes the number of instances that are queried within
one learning round.

Seed set Describes the number of instances that are queried within
the first learning round.

Query framework and strategy Mathematically optimized functions determining how in-
stances are selected from the labeled pool of instances. A
common method is uncertainty sampling, which is based on
an entropy measure.

Stopping criterion Defines the conditions to start another learning round or to
stop the learning. By avoiding unnecessary learning rounds,
the effort of AML can be kept low.

Performance measure Learning curves based on the number of labeled instances,
as well as on traditional measures, e.g., precision and recall,
are applied to analyze the overall performance.

Table 3.8.: Basic terms and their descriptions in the context of AML (based on Muhr 2017).

Beside the challenge of extracting the features and setting up the technological platform enabling
this form of advanced legal data analytics the question remains what type of human problem-
solving should be supported. In Section 4, we will discuss the analysis of statutory texts in
Germany. Starting from the analogous process, which has been well-studied in legal theory,
we will derive and formalize a legal interpretation process connecting the formalization and
software-supported analysis of legal documents.

As described in Muhr (2017), we have performed a small proof-of-concept to automatically
categorize legal documents into three different categories: laws, judgments, and miscellaneous.
We used an annotated corpus of 132,000 documents from the domain of German tax law41

and randomly selected 1,000 documents to perform the experiment. To efficiently handle large
document corpora we selected the first 4,096 characters of each document, splitted the string into
tokens, removed stop-words, and represented them in a bag-of-words model. Within this proof-

41The corpus was created and annotated by an industry partner of the research group.

81

3. Semantic Analysis and Annotation of Legal Documents

of-concept, we used three different classifiers (naive bayes, logistic regression, and a perceptron).
We showed that the classification task can be performed very well: 𝐹1 = 0.96. Furthermore,
we showed that using AML significantly improves the learning curve of the classifiers. We set
up the experiment in such a way that the initial seed set covered 15 documents and in each
learning round, we provided the labels of another 15 documents. Overall, this resulted in 97
learning rounds. We measured the performance of the classifiers after each round and after 2-3
rounds, the AML set-up has always been superior to the classical ML, which used random query
strategy to train the classifier. The experiment shows the potential of AML in the domain of
document classification. As we will see in Section 4.1, the classification of documents is not
required during the analysis or interpretation of a legal text, but the classification of legal norms
and their semantic role within a statutory text is.

Savelka et al. (2015) have also described the experiment for a classification task. They have
used a binary classification task to train an AML classifier to determine (labels: relevant, not-
relevant) whether a provision is relevant or not with respect to a legal issue and given statutes.
They discuss the potential of their modest results as stated by Savelka et al. (2015, p. 10): “[...]
automating the process [of relevancy assessment] still seems quite distant.”

In Section 6.4, we will discuss the application of using AML to support the analysis of German
texts, by automatically classifying sentences statutory texts into functional categories, as they
are used during the analysis, interpretation, and application of legal norms.

3.5.5.3. Active Machine Learning: Concept and Architectural Integration

Complex pattern recognizer
(Apache Ruta)

Active
machine
learning

component
Pattern

definitions

Dependency
parser

POS tagger

Metric calc.
component

Named entity
recognizer

Splitter Stemmer

Lemmatizer Subject tagger

Tokenizer

Text analysis engine

Thesauri

Knowledge
bases

Information extraction component

Figure 3.20.: Black box overview of the AML component and its interaction with the information
extraction component.

As shown in Figure 3.20, the AML component is logically a part of the text analysis engine, but
implemented as a separate component. This component was realized as a separate service that
can be consumed via an interface. This is mainly due to the fact that the training and predicting
phases are resource-intensive tasks. This mainly concerns processing time and memory. To

82

3. Semantic Analysis and Annotation of Legal Documents

enable scaling to larger datasets, we have decided to implement this component in a way that it
can also run on another (distributed) infrastructure, e.g., physical server, and virtual machines.

Another benefit is that the modularity of the system is preserved. Once the AML components
changes, e.g., for the reason of technological innovation, the impact on the text analysis engine
system is minimal. Since the information extraction component consumes it, like every other
component as a black box. It does not depend on the internal structure or internal components.

The information extraction component exchanges data with the AML component via well-defined
Representational State Transfer (REST) interfaces. Thereby, the data flow mainly consists of
datasets (e.g., instances) towards the AML component and prediction results backwards. In
addition to the datasets, some information about the learning configuration, e.g., seed size,
batch size, learning rounds, are exchanged.

Figure 3.21 visualizes the AML component as white box view. This allows a more comprehensive
inspection of the implemented components and how they are interacting with each other.

Exporter

Query
strategies

Machine learning
core

Active learning engine

Data access
and storage

REST
API

AML component

Pattern
definitions

Text analysis engine

Thesauri

Knowledge
bases

Information
extraction

component

Figure 3.21.: White box view of the AML component and its integration into the text analysis
engine.

The AML was implemented as a stand-alone server component, which can be hosted on any
(distributed) infrastructure. It is again a web application and was developed using the Play
Framework42. The component consists of four, respectively six different components, which are
briefly described:

REST API: The API handles the data exchange between the information extraction component
and the AML component. It maps the data objects into JSON objects which are exchanged
using normal HTTP requests. The data flow mainly consists of the exchange of instances
from the information extraction towards the AML component. Training and test data sets
are received thereby. The API passes the results of an executed classification task, i.e.,
prediction, back to the information extraction component.

The parametrization of a concrete classification task can is also be done via the API.
42https://www.playframework.com/, accessed on September 3, 2018

83

3. Semantic Analysis and Annotation of Legal Documents

For the classification task, necessary information, such as the seed size, batch size, query
strategy, classifier instance, and the stopping criteria, are also exchanged.

Data storage: To store data locally, the AML component contains a separate data storage com-
ponent. This storage keeps the local configurations of trained models as well as training
and test data sets. For our implementation, a MongoDB43 was used. Storing data lo-
cally decreases the amount of data that needs to be exchanged between the information
extraction and the AML component.

Exporter: The exporter component logs information along the learning procedure. This informa-
tion is stored in Comma-separated values (CSV) files and can be analyzed and evaluated
to draw conclusions about the classifier performance. Depending on its parametrization,
it logs each learning round or the final result of the classifier.

Active learning engine: Whereas the REST API, the data storage, and the exporter are com-
ponents to set up a proper infrastructure, the concrete learning process, training of the
classifier, and predicting potential outcomes is performed in the active learning engine. It
consists of two main components: the machine learning framework and the query strate-
gies.

Machine learning core: In modern software implementations, it is no longer necessary to start
from scratch and to re-implement classifiers, such as naive bayes, logistic regression, or
a perceptron. A large variety of software frameworks exists, providing very efficient im-
plementation and ready-to-use APIs. These decrease the effort of using (active) machine
learning within an application.

We have analyzed different machine learning frameworks and assessed their suitability for
reuse within our environment (see Sections 3.5). Finally, we have decided to use and adapt
Apache Spark and the MLLib44 package.

Apache Spark is implemented within a Java web application environment, is a general-
purpose machine learning framework, and supports AML for text classification. The pre-
processing of the documents, e.g., importing, normalizing, segmenting, and the feature
selection is done by the information extraction component.

Query strategies: Beside the machine learning frameworks and basic implementation for handling
of data and instances, we provided several query strategies to compare these with each
other. The query strategies have already been discussed in Table 3.7. The strategies can
be used independently from the underlying classifier. They mathematically describe how
the instances to be labeled by a domain expert are selected. Based on formal specifications
and measurements, such as entropy and information gain, the most informative instances
are selected.

Decoupling the query strategies from the remaining machine learning components fosters
the modularity of the overall system and allows an easy integration of new strategies or
classifiers. The remaining system and workflow is hardly effected.

43https://www.mongodb.com/de, accessed on September 3, 2018
44Version 2.1.1. as of May 2, 2017

84

3. Semantic Analysis and Annotation of Legal Documents

3.5.6. Apache Spark

Apache Spark45 is shipped with a variety of libraries that fit together seamlessly. The main
components are shown in Figure 3.22.

Apache Spark

Shark (SQL) Spark Streaming GraphXMLLib

Figure 3.22.: Apache Spark stack including libraries for efficient data management (i.e., Shark
and Spark Streaming), machine learning (i.e., MLLib), and processing of graphs
(i.e., Graph).

As we are only interested in the ML components in our implementation we have adapted and
configured the MLLib for the classification of legal entities and used the core functionality of
Apache Spark for the preparation of data (i.e., DataFrames) and for the data exchange with
MLLib.

3.5.6.1. MLLib: Machine Learning with Apache Spark

As already stated above, the MLLib contains a large variety of functions and machine learning
components. For our purpose, namely the classification of text, the following methods are
implemented46:

Binary classification Multiclass classification Regression
linear SVM logistic regression linear least squares
logistic regression decision trees Lasso
decision trees random forests ridge regression
random forests naive bayes decision trees
gradient-boosted trees multilayer perceptron random forests
naive bayes gradient-boosted trees
multilayer perceptron isotonic regression

Table 3.9.: Overview of main classifiers supported by MLLib.

45http://spark.apache.org/, accessed on September 3, 2018
46MLLib version 1.3.0.

85

3. Semantic Analysis and Annotation of Legal Documents

Table 3.9 lists the different classifiers that are implemented in MLLib and differentiates them
according to their problem type: binary classifications, multiclass classification, and regression.

In our use case, only the classifiers supporting multiclass classification are relevant. Since binary
classifiers split a given instance into dichotomous classes (’0’ or ’1’), multiclass classification can
have multiple classes (i.e., semantic types) to which an instance could potentially belong. We
have selected

1. logistic regression,

2. naive bayes, and

3. multilayer perceptron

as classifiers for our active machine learning component. Logistic regression and naive bayes
are common classifiers for text and document classification, and the multilayer perceptron is a
simple form of a neural network, and we wanted to compare them. In addition, we cover the

Exporter

Query
strategies

Machine learning
core

Active learning engine

Data access
and storage

REST
API

AML component

Pattern
definitions

Text analysis engine

Thesauri

Knowledge
bases

Information
extraction

component

Spark ML
multiclass
evaluator

Spark ML
pipeline model

Multilayer
perceptron

Logistic
regression

Naive bayes

Classifier

Machine learning core

Figure 3.23.: The machine learning core, part of the active learning engine, based on MLLib.

86

3. Semantic Analysis and Annotation of Legal Documents

main learning strategies for machine learning classifiers, namely discriminative learning (e.g.,
naive bayes), and generative learning (e.g., logistic regression).

3.5.6.2. MLLib: The Machine Learning Core

The detailed integration of MLLib is shown in Figure 3.23. It visualizes the AML component
and its integration into the text analysis engine. The components REST API, data storage,
exporter, and query strategies have already been described in Section 3.5.5.

The machine learning core is based on MLLib and mainly consists of the mentioned set of clas-
sifiers, the Spark pipeline model, which allows the configuration of components within pipelines,
and the Spark ML multiclass evaluator, which allows a detailed assessment of the performance
within individual learning rounds.

Although this fine granular encapsulation increases the effort during the planning and concep-
tualization phase, it however fosters the reusability and modularity of the overall system and
allows for an easy integration of new components. Although we have made an extensive study of
available frameworks, it cannot be excluded — in fact: it is very likely — that new components
or libraries will be implemented that provide even better functionality and performance. The
overall system with its architecture and components could remain, whereas these new libraries
can easily be integrated.

3.6. Summary

This chapter described the concept of semantic analysis in general and its applicability within
the legal domain. It illustrated different notions and concepts for the software-supported linguis-
tic analysis of legal documents and provided the conceptual background for an interpretation
support for statutory texts.

A reference process has been developed that discusses the interaction between activities, roles,
and tools along three different activities: import, analysis, and application. The reference process
shows how text analytics can be integrated in this interdisciplinary field. The usage of software
is to support and assist during workflows and to meet the information needs of legal practitioners
and scientists more efficiently. The chapter discussed the importance of linguistic models and the
role of annotations and deepens the understanding of interaction between humans and software
in the challenging task of semantic analysis.

Based on the processes, this chapter clarified the meaning of semantic entities and annotation
types. Using a modeling perspective, it is discussed if and how it can be possible to assign a
semantic type to a region of text, i.e., annotation. Starting from basic, linguistic, and named
entities a more advanced notion of legal entities is introduced and discussed.

At this stage, the base line is set for the discussion how technology is now able to represent
this process and to provide concrete functionality achieving this overarching objective. It begins
with exemplifying the annotation of legal documents, which could either be done manually

87

3. Semantic Analysis and Annotation of Legal Documents

or automatically, and how these annotations are assigned to legal documents and properly
persisted.

A system that manages large document collections and manually and automatically created
annotations was built upon the prior considerations. The system’s architecture has the capa-
bility to import, store, analyze, and visualize documents and their annotations. In addition, it
contains an advanced and flexible text analysis engine fostering the reuse of components from
computational linguistics. An established baseline architecture has been used to implement the
system: Apache UIMA and Pipes & Filters architecture.

An additional ML component has been implemented that offers possibilities for supervised ma-
chine learning in order to constantly refine and improve the possibility of extracting legal entities.
Therefore, an open-source framework, namely Apache Spark, was seamlessly integrated. Using
so-called AML the classifiers are trained efficiently and enrich the text analysis engine.

Based on this conceptual consideration and the system, the next section is going to discuss the
interpretation of statutory texts in Germany. A reference process, specifying the analysis and
interpretation of statutory text, is introduced for this purpose. It discusses how legal norms
can be interpreted and how they can be transformed into model-based decision structures. The
process also elaborates on the role of software-supported analysis of legal documents.

88

CHAPTER 4

Concept and Design of a Model-based Reasoning Framework

This chapter describes the formalization of statutory texts from the German legal domain, i.e.,
laws. Thereby, the idea of model-based reasoning for legal texts is conceptualized and a logical
calculus is developed that enables end-users to capture the interpretation results as a formal
representation: a model. The process of analyzing and interpreting of German laws is studied
in detail, and developed on commonly accepted legal theory in Section 4.1.

Based on these considerations, the model-based reasoning is described in depth with a particular
focus on the provision of complementary representations, namely statically and dynamically (see
Section 4.2). It extends prior approaches of formalizing decision structures into legal ontologies
by introducing the Model-based Expression Language (MxL), a high-order expression language,
similar to description logic, allowing for reasoning on entities, relationships, and attributes. MxL
was particularly designed to support the end-user-enabled analysis of complex linked data as
introduced by Reschenhofer (2017).

On the foundation of the concept and the calculus, the role of software-supported semantic anal-
ysis of legal documents during the interpretation and formalization is elaborated in Section 4.3.
Thereby, user interaction, form-based usage, and execution of model-based decision structures
are evaluated. Finally, the potentials of analysis, inspection, and explanation of the formalized
models are shown in Section 4.4.

4.1. Reference Process to Formalize Statutory Texts

The formalization of statutes, e.g., laws, is known to be complex and challenging. A large
variety of complex concepts have been studied within the last decades. A good overview is
provided in Bench-Capon et al. (2012). Recently, Ashley (2017) summarized the most active

89

4. Concept and Design of a Model-based Reasoning Framework

and promising research areas within the field of artificial intelligence and law. It nicely shows
how researchers from different jurisdictions, e.g., common law, and civil law, have developed
different concepts addressing the particularities of their field of studies.

The main problem is the assurance of the semantical equivalence between a textual representa-
tion and a formalized representation. Whereas the latter can be executed by computer systems,
i.e., software, the former is still the predominant form of how legal information is published, this
holds from both sources of law: legislative and jurisdictional texts.

The problem of preserving the semantical equivalence is known as “isomorphism”1. The phe-
nomenon and potential criteria to allow for isomorphism were extensively described by Bench-
Capon and Coenen (1992). As of today, however, this issue has not sufficiently been solved and
there does not seem to be a solution for the problem and two related sub-problems:

1. Transferring a text into an executable representation, and

2. proofing its equivalence.

In the field of legal informatics, the isomorphism was reduced to something that could be called
“weak” isomorphism. Bench-Capon stated: “The important demand made by isomorphism is
that there is a clear correspondence between items to be found in the source material and items
to be found in the knowledge base.” (Bench-Capon and Coenen, 1992, p. 67) Reading this quote,
attention has to be drawn to the term “correspondence”. Bench-Capon followed the idea of Karpf
(1989), by reducing the isomorphism to a reference problem. Although this does not solve the
original problem, it seems to be a constructive and implementable contribution. Within our
research, we have adopted this idea of “weak” isomorphism and correspondence and applied it
to the domain of the analysis and formalization of German legislative texts.

We thoroughly analyzed the potential of model-based reasoning to formalize decision structures
that emerge from German statutes, i.e., laws. Based on legal theory, especially by Larenz and
Canaris (1995) and Hart and Green (2012), the process of the interpretation of legal texts has
been studied and formalized. We embedded the interpretation process int the software-supported
semantic analysis of legal documents and formalized it based on the Rationale Unified Process
by Kruchten (2004), which differentiates between the following elements (see also Section 3.1 for
a discussion of the RUP):

Activities: An activity summarizes a unit of work that must be performed.

Roles: Individuals or groups performing activities of the process.

Services and Tool support: Identifies the role of software, by supporting involved roles in their
activities, along the process.

Based on the RUP, we have developed an interdisciplinary process that integrates the activities
of analyzing and interpreting legal documents. The process reflects different activities, that are
performed subsequently or iteratively. This contributes to the domain knowledge required in
order to develop appropriate software-support. Beside the software support, we identified the
different stakeholders and roles in the process and the activities.

1from the Ancient Greek: isos "equal", and morphe "form" or "shape"

90

4. Concept and Design of a Model-based Reasoning Framework

4.1.1. Reference Process

Activities

Roles

Import Analysis

Import
and indexing Text mining engine Semantic

modeling engine
Executable

modeling engine

Interpretation

Creation of
semantic models

Creation of
executable models

Evaluation of
determined patterns

Determination of patterns

Refinement and creation of
patterns and linguistic models

Application

Execution and
reasoning engine

Legal data
scientist

Legal data scientist,
Legal practitioner,
Legal scientist

Legal data scientist,
Legal practitioner,
Legal scientist

Legal practitioner
Legal data scientist,
Legal practitioner,
Legal scientist

Services &
Tool support

Figure 4.1.: Reference process for software-supported interpretation and formalization of legal
documents (Waltl et al. 2017c).

Figure 4.1 visualizes the overall process. The process is structured into three different rows,
namely “Activities”, “Roles’, and “Services & Tool support”. The three rows are divided into three
subsequent main activities, namely “Import”, “Analysis”, “Interpretation”, and “Application”.
The activity “Interpretation” is divided into sub-phases, namely “Creation of Semantic Models”
and “Creation of Executable Models”. In addition, there are three phases that are iteratively
performed which connect the “Interpretation” and “Analysis” activity.

4.1.2. Activities

Import: The process starts with an import activity. During this phase, required documents are
imported and indexed into the tool. Although this phase seems to be straight forward,
and the task is certainly not special in the domain of legal documents, the large variety of
document types increases the effort that might have to be made. In addition, the required
documents are not necessarily available in a digitized format suitable for processing. Chal-
lenges of digitization, such as OCR, can significantly increase the complexity and effort
during this phase.

Analysis: During the analysis phase, the textual representation is enriched with semantic infor-
mation. This information added as annotations. This could either be done manually, by a
domain expert, or computer-supported (see Chapter 3). The rationale behind is to extract
sentences and phrases that support the subsequent interpretation phase. The reference
process does not specify the annotation types that need to be determined. This selection
and taxonomy is highly domain-dependent. This difference in logic potentially leads to
different semantic types. As we have already shown in Section 3.2.3, there is a huge differ-
ence between the semantic types for documents from US case law and laws from Europe.

91

4. Concept and Design of a Model-based Reasoning Framework

Consequently, one can expect a difference between the semantic types for tax law and
criminal law.

Subsequently, during the analysis phase, the manual and automated methods from NLP
are applied to the legal text to support the interpretation process.

Interpretation: The interpretation phase describes the most important part of the reference pro-
cess. This is when, based on the documents, the operationalization takes place. The text is
analyzed by humans and put into the context in which it should be applied. This “putting”
is essential. Based on the text, decisions are made and reasoning procedures are applied.
The exemplification of these procedures and capturing their results is exactly what should
be achieved within this phase. The overall goal is to make this process explicit, which is
implicitly carried out by a legal practitioner or legal scientist.

This explication is supported by the differentiation into two different, but complementary
representations: semantic and executable models (see also Section 4.2).

Creation of semantic models: During the interpretation phase, the knowledge required to fully
represent a legal issue needs to be structured. Based on the text within a statute and
documents required to interpret the text, such as articles, commentaries, the main factors
are modeled within an ontology. The ontology captures types, attributes, and the relations
between those types. The semantic mode formalizes the statute as it represents static
concepts.

Creation of executable models: The executable model is an additional layer for the semantic
model. Based on types, attributes, and the relations among types, the executable model
formalizes the dependencies between these entity types. So-called “derived attributes” (see
Section 4.2.6) are expressed as logical formulas, which can be automatically be evalu-
ated. Derived attributes operate on the semantic model and extends them with additional
functionality which allow for automated reasoning on legal interpretations of statutes.

Iterative analysis: The interpretation phase is constantly supported by results from the analysis
phase. It refines the annotations documents at hand with additional annotations, or by
removing unnecessary and wrong annotations.
The cycle consists of three feedback steps:

1. Refinement and creation of patterns and linguistic models

2. Determination of patterns

3. Evaluation of patterns

Application: Finally, the model integrating the executable semantics can be applied. Thereby,
the model is instantiated. This instantiation is done by providing concrete, real-world
facts. Based on the model’s information about reasoning procedures, it can automatically
derive new knowledge. One has to be careful to declare declare this new knowledge “a final
solution”, since it most probably requires more than a concrete value or decision between
“yes” or “no” in complex cases. There are however many intermediate results with exactly
this form. The decision-making process is supported, not automatized.

92

4. Concept and Design of a Model-based Reasoning Framework

Using this model, the application phase also allows for what-if analyses to get instant
feedback on the consequences of changes within the input parameters.

4.1.3. Roles

Throughout the reference process, different roles are required. These are responsible for the
document import, analysis of documents, as well as for the interpretation and for the related
the creation of the models.

Legal data scientist: Mostly, the import phases and the analysis of indexed documents require
technological background. During the import activity, the pre-processing of documents can
be required. Documents are not necessarily available in a digital format that is already
well-suited to be processed and analyzed automatically. Legal data scientists adapt the
imports and perform the pre-processing, so that imported documents are well-structured
and their content is fully indexed.

Legal practitioner & legal scientist: The domain expertise, which is required to interpret a statue
accordingly, is provided by legal practitioners and legal scientists. Based on the annotated
text, they create semantic and executable models. To formalize the models and the exe-
cutable parts of it accordingly, they are supported by the legal data scientist. They have
to interpret the written text with the ultimate goal of its final automated application.
They need to determine how the decision structures within a given statute is going to be
applied.

4.1.4. Services & Tool-Support

Some of the key elements are the software tools and services that assist in automatically per-
form the semantic analysis, support during the modeling, and the execution of the model-based
decision structure.

Importing and indexing software: This service was already described in depth in Section 3.1.5.
The particular role has not changed in the context of the interpretation and formalization
of legal documents: The ultimate goal is to import and normalize relevant documents of
different formats and types, if required. The normalization ensures the applicability of the
text analysis engine (see Section 3.4.1.4).

Text mining engine: The imported documents are annotated to provide additional information
during the interpretation activity. The text mining engine as well as the linguistic models
are trained to fully support legal scientists and practitioners. Ideally, the automatically
extracted semantic types reflect the information needed by the legal experts.

Semantic Modeling Engine: The required capabilities to capture the semantic model of a statute
are provided by the semantic modeling engine. The requirements are extensively discussed
in Section 4.3. The semantic modeling engine allows users to graphically create types with
attributes and relationships between them. Thereby, the graphical representation follows
the classical view of legal ontologies as common among ontology editors. Internally, the

93

4. Concept and Design of a Model-based Reasoning Framework

modeling engine stores the data efficiently and allows for subsequent manipulation, such
as updates.

To foster the above mentioned correspondence between text and semantic entities, the
model elements, i.e., types, attributes, and relations, are linked to the text. Consequently,
textual changes can automatically be determined and users can be notified to check po-
tential changes in the semantic model.

Executable Modeling Engine: In addition to the semantic modeling engine, the executable model
engine enables end-users to create expressions and constraints and assign them to derived
attributes. Thereby, the user is supported with an online code editor assisting with the
creation of expressions. The executable modeling engine is integrated into the overall
editor and interacts seamlessly with the semantic modeling engine in the user interface.
The requirements for this engine are discussed in Section 4.3.

The executable modeling engine also provides immediate feedback on derived attributes
as to whether they are well-formed or not. Reschenhofer (2017) has already shown that
even for technical tasks and technology-savvy users, the formalization into an expression
language is not trivial. In conclusion, enabling end-users to formalize decision structures
always requires some training and proper tool support.

Execution and Reasoning Engine: Once the decision structure is formalized into a model-based
representation, the execution and reasoning engine can reason on these structures. The
model can be considered as a template, which can be applied to different concrete legal
cases. Therefore, users have to provide a set of facts, which are inputed into automatically
created forms. Based on this set of facts, the outcome is determined.

This engine does not only determine the overall outcome of all specified derived attributes,
but also static views on the abstract syntax trees and data flows (see Section 4.4). This
is a step towards the explanation of the decision structures and can support the analysis
and inspection of decision structures.

4.2. Model-based Reasoning

4.2.1. Ontological Models and Limitations of Description Logics

Computational models of legal reasoning have been studied in the fields of artificial intelligence
and law since its emergence (see Ashley 2017, Part I). Whereas, the first approaches were called
Legal Expert Systems (LES), a more differentiated view exists today. Most modern approaches
focus on reasoning in legal argumentation: extracting, structuring, analyzing, or deriving new
knowledge on complex legal argument structures. This supports different use cases, such as
finding supporting or counter-arguments, automatically making an argument, or even predicting
the outcome of cases.

Especially in common-law jurisdictions, to mine arguments from cases and to provide a system
that supports during the above-mentioned use cases are considered to be very helpful. In civil law
systems, the statute is still the pre-dominant source of law (see discussion in Section 4.1). This

94

4. Concept and Design of a Model-based Reasoning Framework

is why this approach tries to formalize the interpretation of legal norms, as they are written
in statutes. The baseline are so-called ontologies, which are common in today’s information
systems.

The usage of ontologies within the domain of legal informatics for either knowledge representa-
tion or reasoning is widely accepted. Wyner (2008) defined an ontology as follows: “An ontology
is an explicit, formal, and general specification of a conceptualization of the objects and struc-
tural relations between those object in a given domain.”. According to this working definition,
ontologies are created in a particular domain for a specific reason. Consequently, ontologies are
designed to reflect a specific and well-defined domain. Ontologies serve different purposes: they
can be purely used for knowledge engineering and structuring of terms (e.g., WordNet by Miller
(1995), GermaNet by Hamp and Feldweg (1997)), or they are used in more elaborated scenarios
to enrich objects and relations with executable semantics, allowing automated reasoning.

State-of-the-art for reasoning within ontologies are description logics Krötzsch et al. (2012).
Krötzsch et al. (2012, p. 1) describe the purpose of description logics and their role within
ontologies as follows: “[...] allows humans and computer systems to exchange DL [description
logic] ontologies without ambiguity as to their meaning, and also makes it possible to use logical
deduction to infer additional information from the facts stated explicitly in an ontology - an
important feature that distinguishes DLs from other modeling languages such as UML.”. As of
today, there is no standard in description logics. Krötzsch et al. (2012, p. 1) offer a potential
explanation: “This is one of the reasons why there is not just a single description logic: the
best balance between expressivity of the language and complexity of reasoning depends on
the intended application.” (Krötzsch et al., 2012, p. 1) This can be applied to the field of
artificial intelligence and law, in which ontologies have been used to structure knowledge, but
also to enable reasoning. However, almost every approach relied on the W3C standard OWL
(see Sartor et al. 2011a). This standard is capable of deductive reasoning, but it lacks of the
possibility to express algorithmic semantics between objects and attributes. On the contrary,
this is essential in various fields in the legal domain, e.g., in tax law. It would be possible to
model a taxpayer and related objects that influence his tax duties, such as employment, salary,
etc. But description logic is not capable of expressing the arithmetical expression and to evaluate
the amount of taxes one has to pay. This is just not the purpose it was originally designed for.
In addition, the evaluation of these terms dramatically increases the computational complexity
of description logics (see Ohlbach and Köhler 1999).

In conclusion, ontologies are already well-studied, widely used and practicable within the field
of artificial intelligence and law. However, current artificial intelligence approaches focus on the
deductive inference and only partially on expressing arithmetical reasoning. Based on an illus-
trative example, the next sections will introduce the usage of ontological modeling to formalize
interpreted statutory texts, including the support of arithmetic expressions.

4.2.2. Formalization of Child Benefit

Within the tax law, a large variety of norms and regulations exists that govern the tax duties
or the rights of retrieving a benefit from the state. A well-known benefit within the German
tax law is the benefit that a taxpayer receives for his children, given his residence is on the

95

4. Concept and Design of a Model-based Reasoning Framework

German national territory, gets for his children. The amount of money someone will be granted
depends on the number of children entitled for this particular benefit. The calculation follows
a rather simple arithmetical formula. However, the clarification of the conditions that have to
be fulfilled, requires more additional parameters. At this stage, it is important to mention, that
the modeling and description of the interpreted law only serves illustrative purposes and does
not claim to fully reflect the content of the law or to be legally binding.

The first pre-requisite is, that a taxpayer2 must have his permanent residence3 on the national
territory of Germany. German citizens can, by law, have only one permanent residence. Living
abroad disqualifies him from retrieving child benefit4. A set of one or more children is required
for which the taxpayer can claim child benefit. These children must not necessarily be his own
children, but can also be the children of the spouse, grandchildren, or foster children. In addition,
each child has an employment5, which is either unemployed, job-seeking, education, in a so-called
interim period, or in a voluntary social year. There are also other forms of employment in the
German tax law, but they do not play a role in determining whether a child is qualified for
child benefit or not. A child has a date of birth and also the information of whether it has a
disability. This information is formalized in the semantic model of the child benefit regulation
of the German tax law (§§62 - 66).

The semantic model of the situation as described above is shown in a box-and-lines diagram,
following the UML notation for class diagrams, as shown in Figure 4.2. The model is subdivided
into four different types:

∙ Taxpayer

∙ Residence

∙ Child

∙ Employment

Each of these types has individual attributes reflecting the information required to determine
the resulting child benefit. For example, the taxpayer has the attribute “name”, which is of
the type “String”. Figure 4.2 also shows the relations between the types. The relations do not
only have names, indicating the semantics of the association, but also information about the
multiplicities. The “claimChildbenefit” association connects the taxpayer and the child and is
of the type one-to-many (1. . . n). The semantics can be interpreted as follows: each child has
exactly one taxpayer to which it is associated and a taxpayer can claim child benefit for an
arbitrary number of children.

Until now, only the static parts of the semantic model have been discussed. These parts are
common in classical knowledge engineering and can also be represented using semantic web
technologies, such as OWL. The remaining piece is of course the representation of the exe-
cutable semantics. This is expressed in so-called derived attributes. The taxpayer type also has
two attributes, which are separated from the “name” attribute with an additional line, namely

2dt. Steuerpflichtiger
3dt. Wohnort
4dt. Kindergeld
5dt. Beschäftigungsverhältnis

96

4. Concept and Design of a Model-based Reasoning Framework

Employment

-name: String
-isEmployed: Boolean
-isJobseeking: Boolean
-inEducation: Boolean
-inInterimPeriod: Boolean
-inVoluntarySocialYear: Boolean

Child

-name: String
-dateOfBirth: Date
-childOfSpouse: Boolean
-grandchild: Boolean
-firstDegreeRelative: Boolean
-fosterchild: Boolean
-isDisabled: Boolean

/age: Number
/isQualifiedChild: Boolean
/child§32: Boolean
/child§32.4.1: Boolean
/child§32.4.2: Boolean
/amountForChild: Number

Residence

-name: String

/isNationalTerritory: Boolean

Taxpayer

-name: String

/isQualified: Boolean
/sumChildbenefit: Number

isEmployedBy

1

1

claimsChildbenefitFor
1 1...n

res ides In

1...n

1

Figure 4.2.: Illustration of the German child benefit regulation in a semantic model.

“isQualified” and “sumChildbenefit”. The former is of the type Boolean, the latter one of the
type “Number”. Contrary to the “name” attribute, these two attributes are indicated with a ’/’
(slash) instead of a ’-’ (minus). This notation is used for derived attributes. The two types
child and residence also have derived attributes, as depicted in the diagram. A more detailed
discussion about derived attributes and their formalization is provided in Section 4.2.6.

Based on this illustration, the next Sections 4.2.3 – 4.2.6 introduce the logical calculus to for-
malize the executable semantics.

4.2.3. Types

Based on the foundation of the German tax law on regulating the claim for child benefit, the
logical calculus represents four different types:

𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟 (4.1)

𝐶ℎ𝑖𝑙𝑑 (4.2)

97

4. Concept and Design of a Model-based Reasoning Framework

𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 (4.3)

𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 (4.4)

Types represent the TBoxes6 in the model-based reasoning approach. They structure the domain
by describing the concept hierarchies. The instantiations of these types are called ABoxes7, and
are expressed as follows:

𝑡 : 𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟 =⇒ 𝑡 is instance of 𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟
𝑐 : 𝐶ℎ𝑖𝑙𝑑 =⇒ 𝑐 is instance of 𝐶ℎ𝑖𝑙𝑑

𝑟 : 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 =⇒ 𝑟 is instance of 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒

𝑒 : 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 =⇒ 𝑒 is instance of 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡

(4.5)

Consequently, ABoxes are concrete instances of the TBoxes. They instantiate the abstract types
and reflect facts or evidence within the model. For example, Equation 4.5 defines an ABox ’t’
which is of the type ’Taxpayer’. ABoxes and TBoxes reflect the structural properties of the
model, such as attributes and relations.

4.2.4. Attributes

Types can have attributes, thus allowing the specification of properties and states. Figure 4.2
already introduced different types and their attributes. Moreover, attributes have different data
types. The implemented approach supports seven different data types, namely:

∙ Integer

∙ String

∙ Boolean

∙ Date

∙ Float

∙ Double

∙ Link

While the first six data types in this list follow the classical semantics as in programming
languages, the ’Link’ data type reflects the relation between two types. A formalization of the
attributes that exist within a type looks as follows:

6terminological box
7assertional box

98

4. Concept and Design of a Model-based Reasoning Framework

𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟.𝑛𝑎𝑚𝑒 : 𝑆𝑡𝑟𝑖𝑛𝑔

𝐶ℎ𝑖𝑙𝑑.𝑑𝑎𝑡𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ : 𝐷𝑎𝑡𝑒
(4.6)

The ’.’ notation indicates the access of an attribute that belongs to a given type. The attributes
that are specified within the TBox exist in the corresponding ABox. Consequently,

𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟.𝑛𝑎𝑚𝑒 : 𝑆𝑡𝑟𝑖𝑛𝑔 =⇒ 𝑡.𝑛𝑎𝑚𝑒 : 𝑆𝑡𝑟𝑖𝑛𝑔

𝐶ℎ𝑖𝑙𝑑.𝑑𝑎𝑡𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ : 𝐷𝑎𝑡𝑒 =⇒ 𝑐.𝑑𝑎𝑡𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ : 𝐷𝑎𝑡𝑒
(4.7)

Given this specification, the following assignments are allowed:

𝑡.𝑛𝑎𝑚𝑒 = ”Daniel”
𝑐.𝑑𝑎𝑡𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ = ”05/12/2010”

(4.8)

Whereas an assignment of the variable 𝑐.𝑑𝑎𝑡𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ as follows would not be allowed:

𝑐.𝑑𝑎𝑡𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ
!
= ”Daniel” (4.9)

This would lead to an “incompatible types” error, since the types of date and string do not
match. In addition to types and attributes, relations are required, which will be introduced in
the next section.

4.2.5. Relations

The types are related to each other, which needs to be formalized. Therefore, the model con-
tains three different relations (see Figure 4.2). The relation between a taxpayer and his child
(4.10), between a taxpayer and his residence (4.11), and finally between a child and its employ-
ment (4.12).

𝑐𝑙𝑎𝑖𝑚𝑠𝐶ℎ𝑖𝑙𝑑𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐹𝑜𝑟 ⊆ 𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟 × 𝐶ℎ𝑖𝑙𝑑 :

(𝑡, 𝑐) ∈ 𝑐𝑙𝑎𝑖𝑚𝑠𝐶ℎ𝑖𝑙𝑑𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐹𝑜𝑟 =⇒ 𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟 𝑡 𝑐𝑙𝑎𝑖𝑚𝑠 𝑐ℎ𝑖𝑙𝑑 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑓𝑜𝑟 𝐶ℎ𝑖𝑙𝑑 𝑐
(4.10)

𝑟𝑒𝑠𝑖𝑑𝑒𝑠𝐼𝑛 ⊆ 𝑡𝑎𝑥𝑝𝑎𝑦𝑒𝑟 × 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 :

(𝑡, 𝑟) ∈ 𝑟𝑒𝑠𝑖𝑑𝑒𝑠𝐼𝑛 =⇒ 𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟 𝑡 𝑟𝑒𝑠𝑖𝑑𝑒𝑠 𝑖𝑛 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑟
(4.11)

99

4. Concept and Design of a Model-based Reasoning Framework

𝑖𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ⊆ 𝑐ℎ𝑖𝑙𝑑× 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 :

(𝑐, 𝑒) ∈ 𝑖𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝑏𝑦 =⇒ 𝐶ℎ𝑖𝑙𝑑 𝑐 𝑖𝑠 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 𝑏𝑦 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑒
(4.12)

The relations have been formalized using binary connectives, or predicates, of the form (𝑎, 𝑏),
whereas 𝑎 and 𝑏 are types. The calculus does not allow n-ary (for 𝑛 ≥ 3) predicates to specify
relations.

Using types, attributes, and relations it is possible to semantically model ontologies for self-
contained domains. The modeling approach supports a very flexible interpretation schema since
it does not make pre-assumptions or forces users to use templates or boilerplates. Based on the
UML notation, it should foster the creation and modeling of decision structures in a coherent
and interpretable way.

The remaining components are so-called derived attributes, which are introduced in the next
section.

4.2.6. Derived Attributes

Derived attributes are integrated on top of the existing modeling elements: types, attributes,
and relations. As discussed in Section 4.2.4, types can have different attributes, such as name,
birth date, etc. These atomic attributes can be facts or evidence given a formalized decision
structure.

Derived attributes are inferred from those atomic attributes and are expressed with a formal-
ized Domain-Specific Language (DSL) (see Section 4.2.7). Derived attributes are expressions,
containing the required information on how the attribute is determined. A simple example is
shown the following Equation 4.13:

𝑐.𝑎𝑔𝑒 = 𝑇𝑂𝐷𝐴𝑌 − 𝑐.𝑑𝑎𝑡𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ (4.13)

The Equation describes how the derived attribute “age”, which plays a central role within the
determination of child benefit, is defined. The “age” attribute is a classical example, since the
provision of “age” is not necessary if the date of birth is already known to the system. Using a
trivial mathematical operation, it is easy to determine a child’s age.

The following Equations 4.14 – 4.17 formalize the remaining derived attributes for the type
𝐶ℎ𝑖𝑙𝑑.

𝑐.𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑𝐶ℎ𝑖𝑙𝑑 = 𝑐.𝑐ℎ𝑖𝑙𝑑S32
∧(𝑐.𝑐ℎ𝑖𝑙𝑑𝑂𝑓𝑆𝑝𝑜𝑢𝑠𝑒

∨ 𝑐.𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑

∨ 𝑐.𝑓𝑖𝑟𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒

∨ 𝑐.𝑓𝑜𝑠𝑡𝑒𝑟𝑐ℎ𝑖𝑙𝑑)

(4.14)

100

4. Concept and Design of a Model-based Reasoning Framework

The Equation above logically links the individual preconditions that would qualify a child for the
benefit. Thereby, the logical connections are either between atomic attributes, or again refer to
another derived attribute. For example, this is the case in Equation 4.14. While, the attributes
𝑐ℎ𝑖𝑙𝑑𝑂𝑓𝑆𝑝𝑜𝑢𝑠𝑒, 𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑, 𝑓𝑖𝑟𝑠𝑡𝑑𝑒𝑔𝑟𝑒𝑒𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒, 𝑓𝑜𝑠𝑡𝑒𝑟𝑐ℎ𝑖𝑙𝑑 are atomic attributes, 𝑐.𝑐ℎ𝑖𝑙𝑑S32
refers to another derived attribute, which is defined in Equation 4.15.

𝑐.𝑐ℎ𝑖𝑙𝑑S32 = 𝑐.𝑎𝑔𝑒 < 18

∨ 𝑐.𝑖𝑠𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑑

∨ 𝑐.S32.4.1
∨ 𝑐.S32.4.2

(4.15)

Equation 4.15 formalizes the claim regarding article 32 of the German tax law. It connects the
arithmetical conditions 𝑐.𝑎𝑔𝑒 < 18 with the propositional elements 𝑐.𝑖𝑠𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑑 using straight
forward first-order logic. And again, the equation refers to two more derived attributes, which
are formalized in Equations 4.16 and 4.17.

𝑐.S32.4.1 = (𝑐.𝑎𝑔𝑒 > 18 ∧ 𝑐.𝑎𝑔𝑒 < 21)

∧ ¬𝑒.𝑖𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

∧ ¬𝑒.𝑖𝑠𝐽𝑜𝑏𝑠𝑒𝑒𝑘𝑖𝑛𝑔,
for (𝑐, 𝑒) ∈ 𝑖𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

(4.16)

𝑐.S32.4.2 = (𝑐.𝑎𝑔𝑒 > 18 ∧ 𝑐.𝑎𝑔𝑒 < 25)

∧(𝑒.𝑖𝑛𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛

∨ 𝑒.𝑖𝑛𝐼𝑛𝑡𝑒𝑟𝑖𝑚𝑃𝑒𝑟𝑖𝑜𝑑

∨ 𝑒.𝑖𝑛𝑉 𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦𝑆𝑜𝑐𝑖𝑎𝑙𝑌 𝑒𝑎𝑟),

for (𝑐, 𝑒) ∈ 𝑖𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

(4.17)

The Equations (4.14) – (4.17) specify the different conditions that are defined by law qualifying
a child to be considered in the calculation for child benefit. The claim can arise from different
articles in the tax law. This can be represented with the formalization. The example stated
above reflects the different sections, from which the decision structure was derived (interpreted),
using a naming convention. The example also shows how nesting can be used to reflect the
structure of the law, i.e., sections, in addition to its semantics.

Now the set of children has to be determined as the basis on which the calculation of the concrete
value, i.e., the amount of money, of the child benefit for a taxpayer can be carried out.

𝐶𝑡 = {𝑐 ∈ 𝐶ℎ𝑖𝑙𝑑 | (𝑡, 𝑐) ∈ 𝑐𝑙𝑎𝑖𝑚𝑠𝐶ℎ𝑖𝑙𝑑𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐹𝑜𝑟

∧ 𝑐.𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑𝐶ℎ𝑖𝑙𝑑} 𝑓𝑜𝑟 𝑡 ∈ 𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟
(4.18)

101

4. Concept and Design of a Model-based Reasoning Framework

𝑡.𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 = 𝑟.𝑖𝑠𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑒𝑟𝑟𝑖𝑡𝑜𝑟𝑦, (𝑡, 𝑟) ∈ 𝑟𝑒𝑠𝑖𝑑𝑒𝑠𝐼𝑛 (4.19)

The Equation (4.18) defines a set 𝐶𝑡 consisting of all children for which a taxpayer 𝑡 claims child
benefit. The additional constraint does exclude those children that are not qualified for child
benefit. Equation (4.19) ensures that the taxpayer lives on the national territory.

𝑎𝑚𝑜𝑢𝑛𝑡𝐹𝑜𝑟𝐶ℎ𝑖𝑙𝑑(𝑗) =

⎧⎪⎨⎪⎩
190 𝑖𝑓 1 ≤ 𝑗 ≤ 2

196 𝑖𝑓 3 ≤ 𝑗 ≤ 4

221 𝑖𝑓 5 ≤ 𝑗

(4.20)

𝑡.𝑠𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =

{︃∑︀𝑗≤|𝐶𝑡|
𝑗=1 𝑎𝑚𝑜𝑢𝑛𝑡𝐹𝑜𝑟𝐶ℎ𝑖𝑙𝑑(𝑗) 𝑖𝑓 𝑡.𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑

0 𝑖𝑓 ¬𝑡.𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑
(4.21)

The remaining two Equations (4.21) and (4.20) determine the amount of the child benefit, based
on the number of eligible children.

This section showed how a semantic model can be enhanced with an additional layer of exe-
cutable semantics. It relies on arithmetical and functional logic, as well as on the components of
the model. The model-based approach allows end-users to flexibly organize the decision struc-
ture with an additional level of abstraction, that is introduced with the knowledge engineering
component from the ontologies.

It was illustrated how the two approaches, namely the knowledge structuring and the logical
and arithmetical reasoning interact and complement each other. Until now, most approaches
focused on either the knowledge structuring aspect by formalizing legal domains in various
level of details and abstraction (e.g., upper- vs. lower-ontologies), or on the logical part (e.g.,
temporal or defeasible logics). Whereas the former lack of expressive rule engines that allow
the specification of dependencies and constraints beyond description logic, the latter one lacks
qualitative expressiveness in terms of structuring the semantic model within which the logical
derivation is performed.

4.2.7. MxL: Model-based Expression Language

The MxL as a type-safe Domain-Specific Language (DSL) was developed to support reasoning
within a generic meta-model-based information system that can be accessed via a REST API
(see Reschenhofer et al. 2014, 2016).

According to Reschenhofer et al. (2014), MxL version 2 was influenced by the Object Constraint
Language (OCL) and Microsoft’s Language Integrated Query (LINQ), and it integrates the
following main properties:

Functional programming: Expressions are the essence of MxL. Consequently, it follows the declar-
ative programming paradigm.

102

4. Concept and Design of a Model-based Reasoning Framework

High-order functions: MxL supports the development of high-order functions, i.e., functions that
allow other functions as parameters or return a function as a result.

Type-system: MxL is strongly typed. Validity of expression regarding the proper use of data
types is performed ex-ante.

Dynamic binding: Look-up and evaluation of attributes and methods are performed at runtime.

The meta-model-based information system incorporates the MxL for defining executable seman-
tics based on a semantic model. MxL empowers end-users to apply simple (e.g., arithmetic) and
higher-order functions (e.g., query operations), and to compose them as complex and nested
expressions. In addition, it allows the access to methods and operations implemented in Java
and can easily be extended by additional operators and functions.

An important property of MxL is its type-safety: It ensures that expressions are valid regarding
their static semantics and thus supports end-users in defining consistent expressions with respect
to the user-defined semantic model. Furthermore, MxL’s type-safety enables the system to
resolve dependencies between expressions, which in turn enables an automated adoption of
expressions if referenced elements of the semantic model change.

In order to enhance the usability of MxL, we implemented helpful UI features, e.g., syntax
highlighting for better readability, auto-completion including elements of the semantic model,
and error localization in case of syntactic and semantic errors.

In the following, two listings show concrete examples of MxL expressions:
1 (this.’#age’ > 18.0 and this.’#age’ < 21.0)
2 and
3 (not this.’isEmployedby’.isEmployed or not this.’isEmployedby’.isJobseeking)

The listing above is the implementation of Equation 4.16 within the context of 𝐶ℎ𝑖𝑙𝑑 (this). The
usage of the “this” operator (Lines 1 and 3) indicates the access of attributes in the context of a
child instantiation. Line 3 also shows the access of the associated employment object through the
relation “isEmployedby”. Within the employment object, the isEmployed and the isJobseeking
attributes are accessed (both of the type Boolean) and evaluated within the logic expression.

1 if not this.’isQualified’ then 0
2 else
3 let betrag = (children: Sequence) =>
4 if children.count() <= 2 then children.count() * 190
5 else if children.count() = 3 then 2 * 190 + 1 * 196
6 else 2 * 190 + 1 * 196 + (children.count() − 3) * 221
7 in betrag(find(Child).where(c => c.’isQualifiedChild’
8 and c.claimsChildBenefit.any(c => c = this)))

The listing above is the implementation of Equations 4.20 and 4.21 within the context of
𝑇𝑎𝑥𝑝𝑎𝑦𝑒𝑟 (this). If the taxpayer is not qualified for child benefit, the function returns 0. Oth-
erwise, the calculation is performed on the set of children. The arithmetic logic follows the
description in the tax law: For the first two children, 190 EUR (per child) are paid, the third

103

4. Concept and Design of a Model-based Reasoning Framework

child is rewarded with 196 EUR, and for every child after the third the taxpayer receives 221
EUR. This illustrates the usage of the MxL language and how it is integrated into the semantic
and executable modeling for child benefit.

The next section will elaborate on the different components for the model-based reasoning frame-
work and the basic requirements to support the process of import, analysis, interpretation, and
applications. It also describes the different components that have been implemented for the
decision support system and what the user interface looks like.

4.3. Design of a Model-based Reasoning Framework

This section describes the conceptual framework that is required for support during the import,
analysis, interpretation, and application of model-based reasoning. It constitutes the foundation
for implementations and is subdivided into the elicitation and specification of requirements (see
Section 4.3.1), the components of the decision support system (see Section 4.3.2), the extension
within the system architecture (see Section 4.3.3), the meta-model-based information system
(see Section 4.3.3), the interactive modeling interface (see Section 4.3.3), and the knowledge
acquisition component (see Section 4.3.3).

4.3.1. Requirements

The main requirements were elicited and described in Waltl et al. (2017c). Therein, the re-
quirements are classified into the four different phases along the process: import, analysis,
interpretation, and application.

Import

Requirement 1: Flexible import structure
The baseline for the analysis and interpretation is the consideration of literature and textual
documents (laws, judgments, contracts, commentaries, etc.) that is available in different
formats (XML, HTML, PDF, etc.).

Requirement 2: Mapping and indexing legal data
The legal literature has to be indexed and mapped to a data model that does not only pre-
serve the content, i.e., text and meta-data, but also structural properties, such as references
and nested content.

Analysis

Requirement 3: Preserving textual representation
Enables users to access the content, i.e., legal literature. The visualizations of legal literature
have to show the structural information, such as nestedness and links between articles and
documents.

104

4. Concept and Design of a Model-based Reasoning Framework

Requirement 4: Collaborative creation and maintenance of patterns
The creation, refinement, and deletion of the required pattern definitions should be done
collaboratively in the application, so that different users are able to share their knowledge
and contributions.

Requirement 5: Management of pattern descriptions and linguistic model
Support of the full lifecycle of the pattern specifications, namely creation, refinement, eval-
uation, and maintenance.

Requirement 6: Automated pattern detection
Automated identification of basic, linguistic, and semantic entities, e.g., obligations, prohi-
bitions, and permissions, through data and text mining components.

Requirement 7: Reuse of existing NLP components
Building of NLP pipelines that allow the easy reuse and sharing of highly specified software
components for NLP.

Requirement 8: Evaluation of annotation quality
Possibility to view the annotations, to examine precision and recall manually, or to export
this information to compare against a manually tagged corpus.

Requirement 9: Manually annotating and commenting legal texts
Users should be able to manually add relevant semantic information and comments to the
legal literature.

Requirement 10: Storing annotations
The system should permanently persist and index the automatically determined and manu-
ally added annotations.

Interpretation

Requirement 11: Creation of semantic and executable model elements
Stepwise definition of model elements (types, attributes, relations, and derived attributes)
for semantic and executable models.

Requirement 12: Lifecycle support for semantic models
Defining, maintaining, and persisting of semantic model elements, such as types, attributes,
and relations.

Requirement 13: Lifecycle support for executable models
Defining, maintaining and storing of executable model elements, such as derived attributes.

105

4. Concept and Design of a Model-based Reasoning Framework

Requirement 14: Correspondence of model elements with text phrases
Creation of connections between model entities and the relevant, i.e., interpreted, text.
Thereby, various parts of the text should be linkable to model elements, including words,
phrases, sentences, sections, and documents.

Requirement 15: Expressing executable semantics with a DSL
Specification of the operations and executable semantics of derive attributes with a functional
expression language supporting logical and algorithmic reasoning.

Application

Requirement 16: Access to existing models
Viewing and exploring semantic and executable models to retrieve the results of prior inter-
pretation processes.

Requirement 17: Application of models
Providing facts and executing the defined models through forms.

4.3.2. Components of the Model-based Decision Support System

The requirements are the base line of the decision support system in order to fully comply with
the formalization according to the schema as described in Section 4.2. Legal informatics has
dealt with the construction of software systems to support legal reasoning ever since. The idea
of letting an algorithm decide on low-level and data-driven decisions is still highly attractive in
the legal domain (see Ashley 2017).

Jandach (1993) analyzed different notions of LES with a particular focus the concepts and
characteristics that address LES for civil law systems, more specifically the legal system in
Germany. Several attempts have been made to implement decision structures, arising from
German legal texts, into rule-based systems. However, no attempt has been made to formalize
German laws using a model-based, i.e., ontological approach, with a reasoning engine that
enables users to define expressions and to infer knowledge using propositional logic, first-order
predicate logic, and arithmetical logic alike.

Jandach studied different parts of LES and described the main components that form a min-
imal set of a viable expert system. These components are: knowledge base, inference engine,
explanation component, knowledge caption component, and dialog component. Based on this,
we extended the idea and developed the conceptual model as shown in Figure 4.3.

The system’s components can be classified into three different groups, namely a model store,
a model execution component, and an interaction component. Each group is implemented by
multiple different software components. The following sections briefly introduce these with their
responsibilities in the model-based decision support system.

106

4. Concept and Design of a Model-based Reasoning Framework

In
te
ra
ct
io
n

co
m
po

ne
nt

M
od

el
	e
xe
cu
tio

n
co
m
po

ne
nt

Model	store
(Types,	attributes,	relations,	and

derived	attributes)

Fact	store
(Model	instances,	
and	typed	values)

Pe
rs
ist
en

ce
co
m
po

ne
nt

Inference	engine
(Attributes,	relations,	
derived	attributes)

Inference	analysis	
component

(dependency-,	and
inference	analysis)

Explanation	
dialog

(dependency-,	and	
inference	visualization)

Modeling	
component
(model-based	
expressions)

Knowledge
acquisition	
component

(types	and	attributes)

Figure 4.3.: Overview of a model-based reasoning system and its interactions grouped into three
components: model store, model execution, and interaction component.

Interaction Component

The improvements of modern software systems with regard to user experience can be considered
as one of the main successes of software engineering in the last decade. End-user development
and human-centered design thinking have become established methodologies in designing and
implementing software systems. Beside the provision of bare functionality, such as logical rea-
soning, LES need to offer user interfaces that do not overexert users. Instead it will be the
challenge for the legal informatics domain to enable end-users to use LES and to leverage the
full potential that they offer.

In our system, the modeling component is separated from the knowledge acquisition component
and the explanation dialog:

Modeling component: Users, e.g., legal data scientists or legal knowledge engineers, are supported
in the creation of the model with its attributes and relations by a modeling component
that renders a graphical view of the model. It offers functionalities to create, update, or
delete types of a model. The same operations are also offered for attributes and derived
attributes.

In this process, the users are supported with a graphical user interface that runs entirely

107

4. Concept and Design of a Model-based Reasoning Framework

as web application. The modeling component also allows to instantly access different legal
documents and their textual representations.

Knowledge acquisition component: The provision of facts is carried out in a separate component,
which has been exclusively designed for this purpose. Types, relations, and attributes, e.g.,
describing a legal case, can be added by the users. Due to the strongly typed expression
language, attributes are already type-checked in the interface as they are input. It is
not possible to insert incompatible types, such as text if a number is required. This
should decrease the error rate and allow for consistent input. The knowledge acquisition
component shows the inferred values of the derived attributes.

The component was developed within a web application, which allows the usage of modern
front-end technology and visualizations to lower the barrier of providing facts.

Explanation dialog: To reconstruct the conclusion that was inferred by the system, users need
a function to provide them with information about the reasoning procedures. This ex-
planation dialog visualizes the information from the inference analysis component. Given
a particular derived attribute, the user receives information about the underlying MxL
expression and the abstract syntax tree showing the different data values and operators
that contribute to the overall result.

The analysis of decisions and inferences is of high value within the domain of decision sup-
port systems for the legal domain. This increase of transparency of the reasoning process
increases the trust and reliability of the system and allows for detailed error analysis.

Model Execution Component

The model execution components are built on top of the model storage and accesses the database
of facts, i.e., instantiation of types with concrete values for the available attributes, and the
database containing the information about the schema, i.e., types, attributes, and relations.

Inference engine: The reasoning on the given facts considering the formalized rules requires ac-
cess to the database of facts and the storage holding the information about the expressions
required to determine the derived attributes. The inference engine is developed in a sepa-
rated service, which can be consumed via a REST API. The inference engine is developed
in Java and retrieves data from the meta-model-based information system. The MxL was
designed using “Beaver - a LALR Parser Generator”8. It is strongly connected to the per-
sistence component, which is a meta-model-based information system (see Section 4.3.3).

The inference engine offers end-users to define semantics of derived attributes in functional
expressions, and allows the expression of first and second order logic as well as the definition
of complex queries (projection, selection, and transformation).

Inference analysis: Closely connected to the inference engine is the inference analysis component.
This component allows the inspection of complex expressions. It allows for the retrieval of
the Abstract Syntax Tree (AST) information of an expression and it also enables users to

8http://beaver.sourceforge.net, accessed on September 3, 2018

108

4. Concept and Design of a Model-based Reasoning Framework

obtain an overview on the provided and derived facts in an object diagram-like visualization
(see Section 4.4).

The component offers functionality to view complex data flows, based on the input pa-
rameters, to inspect the resulting derived attribute. This enables the inspection of direct
and indirect influences that types, relations, and especially attributes have.

Persistence Component

The model storage component contains the definition of the model, i.e., ontological description,
and the facts provided by the end-user.

Model: A model is described by its types with their attributes, i.e., schemes, and the relations
between the types. Our implementation differentiates between two types of attributes:
atomic attributes and so-called derived attributes. Atomic attributes consist of concrete
values and have a basic data type, e.g., number, date, text, enumeration, Boolean, and
sequence. In contrary, derived attributes are expressed as rules, formalized in MxL, which
is a strongly typed and functional DSL.

Facts: The instantiation of a model is done through the provision of facts. Those facts are stored
as explicit records in the model store. Each model instance has a unique identifier and
name which is used for unambiguous identification. An instance does not need to assign a
value to each attribute. The attributes are optional and null-value (empty attributes) are
allowed.

The prototypical implementation is based on a meta-model-based information system to provide
the model storage component. This information system persists all the information about the
scheme of the ontology, i.e., model, as well as the instances, i.e., facts, of a concrete model.
The system allows the formalization of different models that are logically separated into disjoint
workspaces.

4.3.3. Extension of the System Architecture

The implementation of the model-based reasoning system has an impact on the overall archi-
tecture of the systems as introduced in Section 3.5. Figure 4.4 shows the extended system
architecture. Details regarding the text analysis engine and the database and search-engine are
omitted, as those are shown and discussed in Section 3.5.

The extension of the existing system impacted three different components. While one component
was just extended, i.e., user interface, two new components have been added to the system, i.e.,
the modeling component and the execution and reasoning engine. The principle of having one
harmonizing data access layer has been preserved. It encapsulates the access and data exchange
between the user interface, the modeling component, and the reasoning engine, which is accessed
as an external service.

109

4. Concept and Design of a Model-based Reasoning Framework

Model and fact
store

Knowledge
acquisition

Inference and
inference-analysis engine

Executable modeling
component

Semantic modeling
component

Modeling component

Execution and reasoning engine

Exporter

User interface

Text analysis engine

Importer

Database and search-engine

Data access layer

Modeling
component

Figure 4.4.: Overall system architecture including components for model-based reasoning.

Knowledge Acquisition Component

The view is structured into three different regions as shown in Figure 4.5.

On the left side, an overview of the model is displayed. In this interactive diagram, the attributes
are omitted to reduce the visual complexity. It shows the types and the relations among them.
This model allows to select one of the types, which changes the form-based knowledge acquisition
in the middle of the view. The canvas supports zooming and dragging.

In addition, below the model view on the left side, the actual instantiated model is visualized,
in following an UML object diagram notation. A larger view of this particular screen view is
shown in Section 4.4.1.

The middle part changes depending on the selected type and renders the available attributes,
references, and derived attributes. Figure 4.5 shows a taxpayer “Bernhard” who only has one
attribute, i.e., a unique name. He has two references: one to the residence type and one to the
child type. In the example shown, there is one reference to the residence “München” and two
references to the children “Isabel” and “Daniel”. According to his derived attributes, the taxpayer
is qualified for retrieving child benefit. In addition, the sum of child benefit, that he retrieves
is 380. This form is automatically generated, depending on the selected type. Changing this
selection changes the lists of available attributes.

The right part reflects the correspondence with the model type. During the creation of the
model, the user can select different parts of an indexed documents, e.g., whole documents, single
sections, or even single annotations, and attach them to a model type or attribute.

110

4. Concept and Design of a Model-based Reasoning Framework

Figure 4.5.: Knowledge acquisition interface organized in three areas: model and instance view
on the left, knowledge acquisition in the middle, and linked documents on the right.

Modeling component

The modeling component is separated from the knowledge acquisition component. It allows users
to add new types and to assign attributes to them. The concept does not allow for attributes
that are not assigned to any type, such as global variables. The user interface of the modeling
component is shown in Figure 4.6.

The view is structured into a left and right part. The left part allows users to read documents
that are already indexed in the system. The right part allows users to view and manipulate
the model. Having these two views side by side should help users to analyze the text and
immediately capture the interpretation result in the model. This activity should not require an
interruption of the workflow by constantly switching between the document and the model.

An new type can be added using the control elements above the model canvas. More details
about the types is shown in a pop-up, which appears by clicking on the type object in the
model canvas. An excerpt of a pop-up is shown in Figure 4.7. It depicts the attribute view
for the child type. In concrete, the attributes ’age’ and ’32.1’ are visualized. Both are derived
attributes, which is indicated by the ’MXL’ selection of the control. For derived attributes,
an editor is shown that allows the specification of the expressions. The editor supports auto-
completion and syntax highlighting. The two equations shown in Figure 4.7 are 4.13 and 4.16.
Each model element can be linked to the document (or to parts of it). These links are created
during the modeling process. For attributes, the links can be added by clicking on the ’show link’

111

4. Concept and Design of a Model-based Reasoning Framework

Figure 4.6.: Modeling interface organized into a document (left) and a model view (right).

Figure 4.7.: Attribute manipulation within the modeling component.

112

4. Concept and Design of a Model-based Reasoning Framework

button (see Figure 4.7). The linked documents are shown later on in the knowledge acquisition
component to help end-users understand the modeled reasoning structure in detail.

The model is stored in the model store by initiating the saving process. During this process,
the consistency of the model is automatically checked. Mistyped expressions or type failures are
determined and the model is not going to be stored. This decreases the error rate and the usage
of wrong models, but increases the effort for consistent modeling. The system does not check
the plausibility and the semantical correctness of the model-based decision structure, but only
its syntactical and well-formed model representation.

Execution and reasoning engine

The evaluation of the executable model elements, i.e., derived attributes, is done in a separate
component, which was described by Reschenhofer (2017). The component is accessed via a
REST API and is responsible for storing and persisting the model and instances of the model,
and for evaluating MxL expressions. The model is serialized into a JSON format, which is
created within the data access layer. The results of an evaluated expression are also wrapped
within a JSON document and sent back to the data access layer of the implemented system.

This section will briefly explain how expressions are evaluated and which particular steps are
performed to get a concrete value out of the expression. The measures are shown in Figure 4.8.
A detailed explanation about the different steps and their implementation has been published
by Reschenhofer (2013) and Reschenhofer (2017).

The expression is inserted as a plain string and is checked by the MxL scanner regarding its
syntactical correctness. The scanner was created using a LALR parser generator9. The scanner
is automatically created based on the specification of the grammar within the Extended Backus-
Naur form. Based on the tokens, the MxL Parser transforms the expression into a data structure,
which is called the AST. The AST is the formal representation of the expression and allows
additional contextual analysis, such as type checking, which is performed in the subsequent
step.

The MxL type checker accesses the model and fact store via a connector component. This
component encapsulates the access of the storage, which is a document-based NoSQL database.
In a first step the model information is retrieved. The model information is the specification of
types, attributes with their type information, and the relations with their multiplicities. Based
on this information, the type checker validates the different operations that should be executed
on a meta-level and ensures well-formed expressions with regard to the type information.

Finally, the typed expression tree is forwarded to the evaluation engine. The evaluation com-
ponent retrieves the information about the instances via the MxL connector. These facts have
been provided by the knowledge acquisition component and are persistently stored. The facts
are used as input values for the evaluation of the expression tree. The final result of the ex-
pression is determined by evaluating the leaves and subsequently aggregating the results of the
subtrees.

9Beaver - a LALR Parser Generator, http://beaver.sourceforge.net/, accessed on September 3, 2018

113

4. Concept and Design of a Model-based Reasoning Framework

MxL scanner

MxL parser

MxL type checker

Evaluation engine

Model and fact storeModel-based expression
evaluation

Tokens

AST

Typed expression tree

Evaluated expression

Expression as string

M
xL

co
nn

ec
to

r

Model
(schema)

Facts
(instances)

Figure 4.8.: The evaluation path of an MxL expression according to Reschenhofer (2013, p. 39).

4.4. Analysis and Explanation of Decisions and Decision
Structures

Formalizing the decision structure allows for a thorough inspection and to automatically de-
termine dependencies in attributes and types. The field of explainable artificial intelligence is
becoming increasingly popular. Within legal decision making however, it has been important
ever since. The components for the model-based decision support systems, namely the inference
analysis component and the explanation dialog, have already been discussed in Section 4.3.2.

This section provides a more illustrative account of explanation components and how these
provide additional information to understand and reconstruct automatically-made decisions.
Thereby, four different components, namely an instances and fact view, an AST for dependency
analysis, an explanation dialog component, and a data information flow inspection component,
are introduced.

114

4. Concept and Design of a Model-based Reasoning Framework

4.4.1. Instances and Fact View

Based on the model structure, it is possible to instantly combine the inserted facts and automat-
ically visualize a given case. The inspection of the concrete instances with their attributes and
relations with each other is another source of information and can provide additional insights
into a case.

Figure 4.9.: Automatically and instantly created object diagram visualizing types, attributes,
relations, and evaluated derived attributes from the model and fact storage.

Figure 4.9 shows an overview of a concrete case that was instantiated on the model for child
benefit determination of the German tax law. Four different instances exist in it: one of the
type “Residence” (blue box), one of the type “Taxpayer” (green box), two of the type “Child”
(pink boxes). The notation follows the UML notation for object diagrams. The first line of each
box indicates the instance name and the type. A line separates this general information about
an instance from its attributes. The attributes are rendered as a list, whereas each attribute is
assigned to a separate line. The lines contain the information about the attribute and separate
the concrete value of the attribute within this instances with a colon ’:’. For example, the
taxpayer Bernhard has two attributes, of which the latter one indicates, that he is eligible
to retrieve 380 (sumChildBenefit attribute). This can be reconstructed by analyzing the two
assigned children Daniel and Isabel, who are both qualified for child benefit.

The relations between the instances are also visualized as lines with an arrow. The names of
the relations are omitted.

4.4.2. Abstract Syntax Trees for Dependency Analysis

In order to examine the input parameters leading to a certain decision, i.e., value, the logical
expressions can be analyzed automatically. Basically, this analysis is performed each time an
expression is evaluated. However, the information about this analysis is not stored or persisted

115

4. Concept and Design of a Model-based Reasoning Framework

for every evaluation. This would be unnecessary overhead. This information can be retrieved
on request.

Figure 4.10.: Automatically determined AST for derived attribute §32.4.1 of the type child.

Figure 4.10 shows the AST for a derived attribute from the child type. The formal specification
is provided in Equation 4.16. The tree consists of two main branches: a condition for the age of
the child, which has to be between 18 and 21, and a logical operation on the employment and
“jobseeking” attribute.

The illustration shows the resolution of the nodes and leaves, which reflect either conditionals and
operations or attributes and constants. The attributes and constants are in the leaves, whereas
the operations are the nodes. Consequently, the leaves show the attributes that influence the
decision and the nodes reflect the logic and how values are processed.

The AST can be extracted during the evaluation process of an MxL expression. As shown in
Figure 4.8 the AST is the intermediate result of the second evaluation step after the parsing. The
rendering as shown in Figure 4.10 is carried out using a JavaScript10 component. Section 4.4.3
will introduce the integration of this view into the user interface of the knowledge acquisition
component.

10http://visjs.org/, accessed on September 3, 2018

116

4. Concept and Design of a Model-based Reasoning Framework

4.4.3. Explanation Dialog Component

The explanation dialog is the integration of the information that is available during the reasoning
process at the front-end. The information is requested from the inference analysis component
and rendered so that it can be accessed and interpreted by end-users.

Figure 4.11.: Information on the decision structure: type information, MxL expression, and
AST.

Figure 4.11 illustrates this integration within the knowledge acquisition component. Thereby,
each derived attribute is enriched with an additional button “?” that opens the explanation pop-
up for the selected derived attribute. The pop-up is initialized with the information from the
inference analysis component. It consists of three different information fields: type information,
reasoning expression, and abstract syntax tree and dependency information.

The type information is the data type from the evaluated value of an expression. It is determined
based on the MxL expression. As the expression language is strongly typed, this information
can provide a first insight on what to expect as the resulting value. The reasoning expression
is the logical and arithmetical formula and expresses the formalization. This is the string as
created during the modeling process. Finally, the AST allows the graphical inspection of the
dependencies within a given expression.

This view provides information about its generation and allows backward inspection of how
it was determined. It does not provide any insight of the attributes and decisions that are
influenced by its value. This analysis is done by the data information flow, which is introduced
in the next section.

117

4. Concept and Design of a Model-based Reasoning Framework

4.4.4. Data Information Flow Inspection

The data information flow inspection is an additional view, that is determined given a concrete
semantic model with executable elements. The inspection tracks the information flow between
types and attributes. In contrast to the AST, it does not analyze the decision structure on the
level of attribute, but qualitatively derives dependencies and how the information propagates
through the network.

Figure 4.12.: Overview of the types and the high-level data flows between model elements.

Figure 4.12 shows an overview of the data flows within the formalized semantic model of the
child benefit from the German tax law. It is automatically determined and contains four dif-
ferent model elements, indicated by blue rectangles: “Employment”, “Child”, “Residence”, and
“Taxpayer”. The overview aggregates the attributes of a type and groups them together. The ar-
rows between the types indicate how the information from one component is used within another
component, i.e., input of a derived attribute.

The data flow inspection can also be performed on a detailed level, differentiating between all
model elements that contribute to a final result: types, attributes, and derived attributes.

Figure 4.13 renders the automatically determined data flows between the model elements on a
fine granular level. The blue rectangles still group different attributes and derived attributes,
however, they are no long treated as black boxes, but as white boxes showing their internal
structure.

The figure shows atomic attributes as blue rectangles with a gray border. For example, the type
“Child” contains several atomic attributes, e.g., dateOfBirth, hasEmployment, etc. In addition,
the derived attributes are rendered as light green boxes. Again, the arrows indicate the data
flow direction and the reuse of atomic attributes within derived attributes. Trivially, blue boxes
cannot have ingoing edges, as they are atomic. On the contrary, the green boxes, i.e., derived
attributes, can have ingoing arrows from atomic and derived attributes. The already studied
example of the attribute “§32.1” is in the center of the child object and accesses information from
the derived attribute “age” and the “hasEmployment” attribute of the same instance, indicated

118

4. Concept and Design of a Model-based Reasoning Framework

Figure 4.13.: Data flows with fine granular resolution on the level of types, atomic attributes,
and derived attributes.

with the “this” keyword (see Figure 4.11). The attribute also accesses two attributes of the type
“Employment”, namely “isJobseeking” and “isEmployed”.

Although this is not the case within the shown figure, derived attributes can also exist without
having ingoing arrows. This would be the case if the derived attributes do not need any factual
information to provide their results. A scenario could be the determination of days passed since
a give date. In tax law, those deadlines are very common. However, the provided example does
not contain such a derived attribute. Just like Figure 4.12, only the dependencies and potential
influences are shown. This a qualitative inspection, as the concrete expressions and the logical
formula are not inspected. In addition, this is a static analysis on the decision structure and
does not allow for the analysis for concrete instances with real values, i.e., facts.

4.5. Summary

This chapter introduced a logical calculus to enable model-based reasoning on interpreted legal
norms. Based on legal theory and the interpretation of statutory texts, a reference process was
developed, which was divided into three different categories: activities, roles and services & tool-
support. It discusses if and how automated semantic analysis of legal documents can support
the interpretation of statutes and how these interpretations can be formalized into model-based
decision structures. Once formalized, these structures can be applied to reason on decision
structures, solely by providing the facts of a case. The decision structures do no longer need to
extracted from the text.

119

4. Concept and Design of a Model-based Reasoning Framework

Based on these foundations, 17 main requirements have been derived that need to be met in
order to implement the reference process within a software system. They have been divided into
four different groups reflecting the activities along the reference process:

1. Import

2. Analysis

3. Interpretation

4. Application

The basic idea of reasoning on models of the real-world, so-called ontologies, has already been
investigated in the field of Legal Expert System (LES)s with success. The approaches either
focused on either the knowledge engineering part or on the reasoning part, using standardized
description logics. Description logics, however, are not intended to support reasoning over
arithmetical expressions and are not designed to express the semantics of attributes of types.
They are rather used in defining constraints and axioms of an ontology. This limitation was
solved in the approach by introducing a Model-based Expression Language (MxL). The approach
overcomes this limitation by harmonically combining

1. modeling of interpreted ontological knowledge, and

2. reasoning on ontologies with higher-order logical and arithmetical operations.

The approach was illustrated in a case study from the German tax law, namely by modeling the
claim for child benefit. The model elements are either types, relations, attributes, or derived
attributes. The latter ones are MxL expressions and are that are automatically determined using
an inference engine. The inference engine is part of an overall system consisting of interaction
components, model execution components, and a persistence component. Each of them has been
implemented into the overall system.

The system does not only allow to formalize the models and to reason automatically, but it also
enables end-users to analyze and inspect the decisions and decision structures. The inference
engine is enhanced with an inference analysis component, that provides information for diverse
explanation dialogs. These dialogs offer information on the instances and facts that are stored,
about dependencies of derived attributes based on their Abstract Syntax Tree, and about the
overall data flow within the model.

120

CHAPTER 5

Implementation

This chapter describes the main aspects of the implementation for an environment that allows
to semantically analyze legal documents and to formalize the interpretation of statutory texts in
executable model-based decision structures. The environment has been implemented as a web
application and follows a classical model-view-controller pattern (see Section 5.1).

Within this framework, multiple different components are implemented or integrated, enabling
a broad spectrum of analysis tasks. Following the technological principles of modularity and
re-usage of software components, the system adapts the Apache UIMA with its Pipes & Filters
architecture. The components are logically grouped in the text mining engine. Concrete im-
plications for this architecture on the implementations are discussed in Section 5.2. Therein, a
particular focus is set on the extraction of information and annotations from legal documents.

Extending the components of Apache UIMA by the integration of AML is discussed in Sec-
tion 5.3. A particular focus is set on the data exchange between the text mining engine and the
AML component. The active learning engine is described in detail, as well as the implemented
query strategies, which are central components for differentiating the approach from supervised
machine learning without query strategies.

Based on the considerations for the analysis of legal documents, the main aspects regarding the
implementation of the model-based reasoning framework are described in Section 5.4. It follows
the structure of decision support systems as introduced in the previous section, namely the
persistence components, the model execution component, and the interaction component.

121

5. Implementation

5.1. Collaborative Data Science Environment

To enable collaboration within the semantic analysis of legal documents and the modeling of
executable model-based reasoning structures, the environment was implemented as a web appli-
cation. The established Play Framework (2017) served as the basic web application stack.

5.1.1. Framework

The Play Framework is open source and follows the model-view-controller architectural pat-
tern.

Controller

ViewModel

2) Process 3) Render

1) Http request

4) Http response

Figure 5.1.: Handling requests with the model-view-controller principle for the Play Framework.

This pattern splits the web application into two different tiers, namely a presentation and a model
tier, whereas the presentation tier is additionally divided into two layers, namely controller and
view layer.

Model

The model represents the domain-specific information on which the whole application operates.
It is the base line for the performance of additional logic and implements the specific data
model. The schema of the data model is implemented in the model layer, and the connection
and mapping to the data storage are also maintained within this layer.

In addition to the connection of data storages, the model contains the business logic. In LEXIA,
this means the whole processing pipeline and all the different components for the semantic
analysis are part of the model layer. Therefore, the model layer is not only the data access layer,
but also contains the functionality for the operations that are performed on the data.

122

5. Implementation

View

The view component usually provides the interfaces to access the functionality provided by the
model layer. In most cases, these are user interfaces to view the results of prior processing steps,
or to initiate the processing of a particular data element, e.g., a law. It is common to provide
more than one view for a model component.

In the LEXIA system, this is used for a separate view to visualize the annotated content of a
document, or to initiate a processing pipeline for a selected document. In modern web appli-
cations, views are mainly created to be represented and rendered in web browsers that support
various formats, e.g., HTML, XML or JSON.

Controller

The controller is a central layer connecting the user interactions or requests from outside the
system with the model layer to create responses. The events triggering the controller are typically
HTTP requests and are initiated by either user interaction or by algorithmic agents. Controllers
extract the information from the requests, such as query string parameters and request headers,
processes them, and forward the action to the model layer where the changes in the underlying
data are executed.

The LEXIA system consists of several different controllers, e.g., ImportController, Document-
Controller, and ModelController, which allows the logical separation between different interac-
tions and events that should be performed on the data. Consequently, the system can easily be
extended to provide additional features. These must not necessarily be consumed by humans,
but can also serve as service interfaces for other applications and frameworks as, for example,
in service-oriented architectures.

5.1.2. Model and Data Layer

This section describes the generic data model which was used internally to represent legal doc-
uments within the implemented framework. In addition, it introduces the basic notion of the
data access layer by explaining, on a concrete example, how the data objects are persisted and
mapped into the data storage.

Generic Data Model

This section describes the generic data model which was used to implement the framework to
internally represent legal documents. An UML diagram of the data model is shown in Figure 5.2
For the sake of simplicity, concrete attributes, properties, and methods of the classes have been
omitted. The main class LegalDocument is abstract and divided into three different classes
representing the supported document types: laws, judgments, and contracts.

The main attributes are stored as attributes of the classes. Key-Value-Maps support and do not
constrain the usage of additional attributes that might even be created at runtime, e.g., the text

123

5. Implementation

analysis engine. Each LegalDocument has a class Metadata attached, which holds additional
information and attributes about a document, e.g., author, created at, etc. The data model can
easily be extended to support new document types. Thereby, the new document type needs to
be derived from LegalDocument and the existing functionalities, including views, search, text
analysis engine, etc., can automatically be reused.

Annotation

Contracts

Metadata

SectionContainer

«abstract»
LegalDocumentContent

Section

JudgmentLaw

«abstract»
LegalDocument

1
*

11

c o n t a i n s

*

1

1

*

Figure 5.2.: Model for the internal representation of legal documents and annotations.

The content of the LegalDocument is implemented as a composite pattern, which was described
by Gamma et al. (1994):

LegalDocumentContent: The component is the LegalDocumentContent, which is divided into two
classes: SectionContainer and Section.

SectionContainer: The composite is implemented by the SectionContainer. This allows to rep-
resent the nested structure of German legal documents. For example, the German Civil
Code consists of two general parts (i.e., section containers), that are divided into multiple
chapters (i.e., section containers), and so forth. This nested structure is part of the law and
can be reused during the semantic processing of the legal text. Therefore, this “nestedness”
has to be preserved.

Section: The leaves are formed by the Section class. This class represents concrete articles of the
law. The Section also stores the textual information of the articles. They are enumerated,
so that the law can be represented accordingly.

Figure 5.3 shows the nested structure of the Geman Civil Code represented as an instantiated
composite pattern. The German Civil Code consists of six structural levels, and each of them
combines multiple objects, SectionContainers and Sections. The composite pattern efficiently
handles this “nestedness” and adapts to the structure of different laws. It is also open to other
document types, such as judgments and contracts. In general, these documents are not nested
into so many levels.

124

5. Implementation

...

...

...

...

...

Section2 : SectionSection1 : Section

Division2 : SectionContainer

Chapter2 : SectionContainerChapter1 : SectionContainer

Subtitle2 : SectionContainerSubtitle1 : SectionContainer

Title2 : SectionContainerTitle1 : SectionContainer

Division1 : SectionContainer

Book2 : SectionContainer

GermanCivilCode : Law

Book1 : SectionContainer

Figure 5.3.: Instantiated object diagram visualizing the nested structure of German laws, e.g.,
German Civil Code (only two objects per level; remaining objects omitted).

The Annotation class is associated with the Section. Consequently, each annotation belongs to
exactly one Section, and if the Section is removed or deleted, the annotation is removed as well.
A section can have multiple Annotation objects. The semantics, and how the annotation objects
are created, are described in Section 3.2 and 3.3. The main attributes of the Annotation class
are:

SectionId References to the Section with which an annotation is associated with.

AnnotationType Describes the annotation type of the instantiated annotation.

StartIndex The start offset of the region that is annotated with the referred Section.

EndIndex The end offset of the region that is annotated with the referred Section.

CoveredText The text that is covered by the region.

The implemented data model has intentionally been kept lean and simple. During the processing,
this decreases the effort of handling data objects by resolving references and dependencies. This
fosters bulk operations and enables fast serialization and mapping from Java objects into JSON
formats, as required by Elasticsearch.

125

5. Implementation

Data Access Layer and Mapping

Based on the data model the different data types are implemented. They are stored in the data
storage (Elasticsearch), which is a JSON-based search engine. Therefore, every object that is
persisted has to be transformed into a JSON object, as is exemplarily shown in the code listing
below.

1 package models;
2

3 // imports omitted
4

5 public class Law extends LegalDocument {
6

7 ...
8

9 @Override
10 public void deleteEntity() {
11 super.deleteEntity();
12 }
13

14 @Override
15 protected boolean saveEntityElasticsearch() {
16

17 Map<String, Object> attributes = new HashMap<>();
18

19 if (this.title != null && !this.title.isEmpty()) {
20 attributes.put("Title", this.title);
21 }
22

23 if (this.promulgationDate != null) {
24 attributes.put("PromulgationDate", this.promulgationDate);
25 }
26

27 // mapping of additional attributes omitted
28

29 if (this.isNewEntity()) {
30 String uid = ElasticsearchServer.insert(this.SC_TYPE(), attributes);
31 this.setID(uid);
32 } else {
33 ElasticsearchServer.update(this.SC_TYPE(), this.getID(), attributes);
34 }
35

36 //error handling omitted
37

38 return true;
39 }
40

41 ...
42 }

Listing 5.1: The law class overwriting the basic operations, i.e., save and delete.

Listing 5.1 shows two basic operations for the class Law, namely deleteEntity() and saveEntityE-
lasticsearch(). Both operations are derived from the superclass LegalDocument. The deleteEn-

126

5. Implementation

tity() function only calls the delete operation from the superclass. The saveEntityElasticsearch()
creates a map object and subsequently puts every attribute from the class into this object. The
listing only shows the mapping for two attributes, namely title and promulgationDate. In the
implementation, the remaining objects are handled therein as well. In addition, different pro-
cessing steps may be required to transform a data type into the expected format, e.g., dates or
arrays. An excerpt of the JSON object is shown in listing A.1. Finally, the procedure differen-
tiates whether the document is a new one or one that already exists with its value just being
updated (Lines 29 – 34).

This procedure is implemented for every data type that can be persisted in the database. It
allows to flexibly adapt the data model and the attributes. As Elasticsearch does not require for
a fixed schema definition in advance, the data model can also store attributes that are created
and determined at run-time.

5.1.3. Controllers and Request Handling

The controllers handle the HTTP requests. Thereby, different actions in the interface, i.e., the
graphical user interface or the REST API, are handled by different controllers. This allows of
a clear separation between the responsibilities and functionalities, such as retrieving documents
and annotations, searching within the corpus, or semantically analyzing documents.

1 package controllers.document;
2

3 // imports omitted
4

5 public class LawController extends BaseDocumentController {
6

7 ...
8

9 public static Result law(String lawId) {
10 Law law = LawDAO.lawForId(lawId);
11 SimpleDateFormat df = new SimpleDateFormat("dd.MM.yyyy");
12

13 JSONObject jsonDoc = new JSONObject();
14

15 jsonDoc.put("id", law.getID());
16 jsonDoc.put("title", law.title);
17 jsonDoc.put("titleShort", law.titleShort());
18 jsonDoc.put("documentType", law.getDocumentType());
19 jsonDoc.put("promulgationDateFormatted", df.format(law.promulgationDate));
20

21 JSONArray sectionContainers = new JSONArray();
22

23 for (SectionContainer ac : law.sectionContainers) {
24 sectionContainers.put(proceedSectionContainer(ac, 0));
25 }
26 jsonDoc.put("sectionContainers", sectionContainers);
27

28 return ok(jsonDoc.toString());
29 }
30

127

5. Implementation

31 ...
32 }

Listing 5.2: Excerpt of the law controller class, showing how requests are handled and how
responses are created.

The excerpt of the controller shown in Listing 5.2 handles the request of retrieving a particular
law. The law is identified via the lawId parameter, which is part of the HTTP request (Line 9).
The controller retrieves the law from the model layer in Line 10. The law variable is a plain java
object and mapped into a JSON (Lines 13 – 26) file to be sent back within the HTTP response
(Line 28).

The return value of the law function is of the type Result, which is a wrapper for the HTTP
response. Using the returned object, the Play Framework automatically creates the response
object and sends it back to the originator of the request.

As the controllers handle the requests, several controllers are required to handle the different
processing and retrieval tasks. In its current implementation, the system contains 19 different
controllers. The most important are:

1. ImportController: Handles the requests regarding the import and indexing of new
documents.

2. DocumentController: Handles the requests regarding operations on documents such
as retrieval, deletion, and update.

3. AnnotationController: Handles the requests regarding operations on annotations such
as retrieval, deletion, and update.

4. ModelController: Handles the requests regarding operations on semantic models such
as retrieval, deletion, and update.

5. UIMAPipelineController: Handles the requests regarding operations on processing
pipelines regarding UIMA related operations.

6. AMLPipelineController: Handles the requests regarding active machine learning op-
erations, such as configuration of pipelines, training and testing of labeled data, and pre-
dicting semantic labels.

5.1.4. User Interface and Views

The provision of a user interface to support complex tasks, such as text-intensive search or
processing, is known to be non-trivial, and has been studied intensively in computer science
and software engineering during the last decades (see Shneiderman et al. 1997; Hearst 2009;
Wilson 2011). The implemented system provides a REST API to access from the data storage.
This API is consumed by the front-end, which was developed in JavaScript and AngularJS, and
uses JSON as exchange format for data objects.

Different design patterns have been established to allows end-users access to the content stored
in information systems. We have developed individual views within the prototype to support

128

5. Implementation

each of these different tasks. Thereby, we differentiated between the three basic operations
as described by Shneiderman et al. (1997) and Hearst (2009): navigation, exploration, and
visualization.

Navigation

Users should have the possibility to access all the imported information by providing proper
components. These components include the listing of all the imported documents, navigation
menus, and side-bars. Modern frameworks, such as AngularJS, are compatible with software
libraries that can easily be reused to rapidly create visually pleasing user interfaces. In our
implementation, we reused components from Semantic UI1 and D3JS2.

1

3

2 4 5

6

Figure 5.4.: The basic view of a legal document.

Each legal document that is indexed by the data storage can be accessed and its original textual
representation is displayed. The view is structured into three different parts: left, middle, and
right. The middle part displays the content of the document. On the left and right sides,
interactive components are shown that can be used to meta-data of the documents, as well as
information about possible annotations. This view is shown in Figure 5.4. It mainly consists of
six different main control elements, which are:

1. The navigation bar holds a menu to access other views and documents. In addition,
it contains a search bar, which allows to perform an advanced full-text search within the
document corpus.

1https://semantic-ui.com/, accessed on September 3, 2018
2https://d3js.org/, accessed on September 3, 2018

129

5. Implementation

2. The bulk selection collapses and un-collapses every section contained in the document.
This helps to find and read particular sections, and is primarily useful within for larger
documents.

3. The annotation type selection can be selected and un-selected using check-boxes. An-
notations of the selected annotation type are highlighted within the content view.

4. The content view shows the title and the textual content of a document. It reflects the
document structure, i.e., articles, and highlights annotations, if selected.

5. The highlighting control is a convenience feature to efficiently search for a word or phrase
within the document. Every occurrence of a given keyword is automatically highlighted.

6. The meta-data panel shows additional content of the document, determined metrical
information (see Section 3.4.1.4), and separate highlights for annotations.

Exploration

1 2

Figure 5.5.: Full-text search results with options for search result refinement.

When it comes to data-intensive tasks in which text is the predominant format, an exploration
of the data room can be beneficial. Searching the whole document corpus and refining the search
with proper mechanisms, such as facets (Hearst, 2009), can easily be implemented using modern
data storages, e.g., ES.

The navigation bar component provides a search bar to start an advanced full-text search,
incorporating synonyms and search query processing.

130

5. Implementation

Figure 5.5 shows the result page of a full-text search query for “Hersteller”:

1. Facets allow the reduction of the search results according to different dimensions, e.g.,
document type, document, annotation type, or publishing date.

2. The result list shows the list of articles that match with the search query. It is enriched
with links to the document and links to the concrete section to fully explore the corpus.

Processing

The management and processing of documents can be performed with a graphical user inter-
face. Especially the processing allows the users to specify various parameters that should be
used during the application of the different software components for the linguistic and semantic
analysis of legal documents. The user interface supports the specification of many, but not all
of the parameters, as this would most probably lead to an information overload in the front-end
provides no additional use. Instead, the most promising configuration parameters can only be
set statically in the software code.

1

2

3

4

Figure 5.6.: The processing view of a legal document with its four configuration areas.

Figure 5.6 shows the processing page for the document “Gesetz über die Haftung für fehlerhafte
Produkte”3:

1. Pattern definitions are predefined linguistic rules, i.e., Apache Ruta, that can be selected
individually. The selected ones are applied within the Apache UIMA pipeline.

3Product liability act

131

5. Implementation

2. The segment selection offers the possibility for a fine granular specification of sections
that are going to be processed. This allows to apply different processing pipelines to a
whole document.

3. The classifier section lists all the available AML classifiers that are applied in addition
to the rule-based pattern definitions (if selected).

4. Finally, different predefined pipelines can be selected and be applied to the document
with the selected configuration.

5.2. Text Analysis Engine

The text analysis engine is the central component for processing and annotating legal docu-
ments. The main components are described in Section 3.5 and the overview has already been
discussed there. This section provides more technical details about the integration and concrete
implementations.

Complex pattern recognizer
(Apache Ruta)

Active
machine
learning

component
Pattern

definitions

Dependency
parser

POS tagger

Metric calc.
component

Named entity
recognizer

Splitter Stemmer

Lemmatizer Subject tagger

Tokenizer

Text analysis engine

Thesauri

Knowledge
bases

Information extraction component

Figure 5.7.: The text analysis engine with its annotators and components.

The next four sections will describe the implementation of the pipeline model using Apache
UIMA as baseline (see Section 5.2.1). Subsequently, different notions of annotators are intro-
duced in Section 5.2.2. Finally, the integration of external sources of information, including
knowledge bases, thesauri, and pattern definitions, is discussed in Section 5.2.3.

5.2.1. Processing Legal Documents

The processing of the legal documents is an essential part of the implementation. Therefore,
the processing pipelines need to be assembled and the sections, or articles, of a legal document
are subsequently processed.

132

5. Implementation

1 package informationExtraction.pipeline.pipelines;
2

3 // imports omitted
4

5 public class AdvancedPipeline extends Pipeline {
6

7 @Override
8 public AnalysisEngine assemblePipeline(String[] rutaScripts)
9 throws ResourceInitializationException, IOException, InvalidXMLException {

10 return super.assemblePipeline(
11 rutaScripts,
12 LawSentenceSegmenter.class,
13 OpenNlpPosTagger.class,
14 LawReferenceAnnotator.class,
15 ArticleHeaderAnnotator.class,
16 LeitsatzAnnotator.class,
17 ZitatAnnotator.class,
18 MoneyValueAnnotator.class,
19 DateAnnotator.class
20);
21 }
22

23 @Override
24 public void preArticle(Article article, String text) {
25 ArticleHeaderPattern.setHeader(article.getHeader());
26 super.preArticle(article, text);
27 }
28

29 }

Listing 5.3: A pipeline consisting of different software components for linguistic operations.

The creation of a pipeline is shown in Listing 5.3. Therein, a class named AdvancedPipeline is
defined. This class extends the superclass Pipeline, which is the base line for all pipelines and
supports the integration into Apache UIMA. The main functions of the Pipeline class are shown
in Listing 5.4.
The AdvancedPipeline overrides two methods from the superclass:

Lines 7 – 21: AnalysisEngine assemblePipeline (String[] rutaScripts): The method specifies a list
of annotators that are subsequently within the pipeline. From Lines 12 to 19, the an-
notators are specified: LawSentenceSegmenter, OpenNlpPosTagger, LawReferenceAnnotator,
ArticleHeaderAnnotator, etc. In doing so, the method from the superclass is called (see
Listing 5.4). The pipeline also allows the specification of Ruta scripts that are passed as
parameters. The parameter is a list of Strings to specify the path to the files containing
the Ruta scripts, i.e., rules.

The return value is of the type AnalysisEngine, which is a class from the package
org.apache.uima.analysis_engine and therefore natively supported by Apache UIMA.

Lines 23 – 27: void preArticle (Article article, String text): This method is called before an article
is processed and allows the specification of information that is particularly relevant for an
article. In this case, as the ArticleHeaderAnnotator is applied, the header, i.e., title, of

133

5. Implementation

an article is added to the list of patterns. This ensures that the occurrence of the article
header within the article text is annotated accordingly.

As each configuration of a pipeline is derived from the superclass Pipeline the superclass is highly
relevant during the analysis phase. Listing 5.4 shows the main components of the Pipeline objects.

1 package informationExtraction.pipeline;
2

3 // imports omitted
4

5 public abstract class Pipeline {
6 protected AnalysisEngine pipe;
7 protected JCas jCas;
8

9 ...
10

11 protected abstract AnalysisEngine assemblePipeline(String[] rutaScripts) throws
ResourceInitializationException, IOException, InvalidXMLException;

12

13 protected static AnalysisEngine assemblePipeline(String[] rutaScripts, Class<?
extends AnalysisComponent>... c) throws ResourceInitializationException,
IOException, InvalidXMLException {

14 AnalysisEngineDescription[] d = new AnalysisEngineDescription[c.length];
15

16 for (int i = 0; i < c.length; i++) {
17 d[i] = createEngineDescription(c[i]);
18 }
19

20 AnalysisEngineDescription componentsDesc = createEngineDescription(d);
21 AnalysisEngineDescription rutaDesc;
22 AnalysisEngineDescription completeDesc;
23 if (rutaScripts != null && rutaScripts.length > 0) {
24 rutaDesc = createEngineDescription(UimaUtil.createRutaDescriptions(

rutaScripts));
25 completeDesc = createEngineDescription(componentsDesc, rutaDesc);
26 } else
27 completeDesc = componentsDesc;
28 return createEngine(completeDesc);
29 }
30

31 public void setup(LegalDocument legalDocument, String[] rutaScripts) throws
ResourceInitializationException, IOException, InvalidXMLException, CASException
{

32 pipe = assemblePipeline(legalDocument, rutaScripts);
33 initCas(legalDocument, rutaScripts);
34 }
35

36 protected void initCas(LegalDocument legalDocument, String[] rutaScripts)
throws ResourceInitializationException, IOException, InvalidXMLException,
CASException {

37 jCas = UimaUtil.produceJCas(rutaScripts);
38 jCas.setDocumentLanguage(legalDocument.getLanguage());
39 }
40

134

5. Implementation

41 public PipelineResult process(Article article, String text) throws
AnalysisEngineProcessException {

42 pipe.process(jCas);
43 return createAnnotationStructures(article);
44 }
45

46 ...
47

48 }

Listing 5.4: The pipeline object handling the assemby of software components and the
initialization of different components.

The Pipeline class is abstract and specifies several methods. The most important ones for pro-
cessing legal documents are shown in Listing 5.4 and can be described as follows:

Line 11: AnalysisEngine assemblePipeline (String[] rutaScripts): This method is abstract and
needs to be provided by every subclass. Within this method, the annotators that need to
be applied are specified. In addition, Ruta scripts that are going to be applied to the text
are passed as parameters.

Lines 13 – 29: AnalysisEngine assemblePipeline (..., Class<? extends AnalysisComponent>... c):
The static implementation of the assemblePipeline method retrieves the specified anno-
tators and creates the AnalysisEngine. Thereby, it iterates over each AnalysisComponent
(see lines 16 to 18) and creates AnalysisEngineDescriptors. The Ruta components have to
be handled slightly differently, as for each script file, a separate AnalysisEngineDescriptor
needs to be created (see Lines 21 to 27). This does not apply if no scripts are provided.
Finally, the AnalysisEngine object is created.

Lines 31 – 34: void setup (LegalDocument legalDocument, String[] rutaScripts): This method
calls the assemblePipeline method from the subclass and initializes the pipe object, which
is the central object during the processing phase. At this stage, as every annotator is
specified, the Cas object is initialized.

Lines 36 – 39: void initCas (LegalDocument legalDocument, String[] rutaScripts): The jCas ob-
ject is created based on the provided scripts. This is required, since the information for
each annotator is specified in the annotator class itself (see Section 5.2.2) but as the scripts
may introduce new annotation types, this information has to be injected into the jCas
object upfront. The Cas object is passed from annotator to annotator and subsequently
enriched with annotations.

Lines 41 – 44: PipelineResult process (Article article, String text): The process method is called
for every article of the legal document. The jCas object is already instantiated at this
time and the pipeline object is created based on the information provided in the assem-
blePipeline method. The function as shown does not use the text parameter. Instead, it
only calls the process method for the pipe object, which applies all the annotators and
creates the annotations in the jCas object.

Finally, a PipelineResult object is created, which extracts the annotations from the jCas

135

5. Implementation

object and maps them into the annotation structure as shown in the data model (see
Section 5.1.2).

This section showed the implementation of the pipeline functionality and how different annota-
tors are combined. The next section provides a detailed introduction on how custom annotators
are implemented.

5.2.2. Information Extraction Components

The information extraction components are the central parts of the text mining engine. The
components are structured into different and independent modules to foster the reuse and the
modularity. The next sections will elaborate on the design decisions and exemplify the concrete
implementation of a custom annotator.

Reuse of existing annotator components

In Section 5.2.1 and especially in Listing 5.3, the implementation of a pipeline was shown.
Accordingly, it became clear that the pipeline manages the interaction between the different
annotator components, e.g., sentence splitter, tokenizer, POS–tagger, etc. This includes the
exchange of information between those components, e.g., the POS–tagger relies on the token
and sentence information that are provided by prior components. This information is stored
in the jCas object which is created for Subject of analysis (Sofa). The listings already showed
work exclusively on the section level, i.e., the article. Consequently, for each section a new jCas
object is created for each section.

As shown in Figure 5.7 and discussed in Section 3.5, a variety of different components have been
reused, mainly from freely accessible repositories, such as DKPro4.

Beside the reuse of components, the pipeline structure is also flexible in that it supports differ-
ent semantic analysis tasks. The components can be rearranged to extract different semantic
types for various purposes. While the main focus of within this research has been set on the
analysis of semantic types on a sentence level, it could also be adapted to support the analysis of
semantic information on a sub- oder super-sentence level, such as argument mining or detection
of conditional phrases.

Implementation of custom annotators for regular expressions

The implementation of a concrete annotator is discussed by ways of an example, namely the
extraction of outbound references from legal texts using regular expressions. An excerpt of the
class ReferenceAnnotator is shown in Listing 5.5.

1 package informationExtraction.semanticAnalysis.uimacomponents.annotator;
2

3 // imports omitted

4https://dkpro.github.io/, accessed on September 3, 2018

136

5. Implementation

4

5 @TypeCapability(
6 inputs = {"de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Sentence"},
7 outputs = {"informationExtraction.lexiaTypes.InternalReference",
8 "informationExtraction.lexiaTypes.OutgoingReference"})
9 public class ReferenceAnnotator extends SegmenterBase {

10

11 ...
12

13 @Override
14 protected void process(JCas aJCas, String text, int zoneBegin) throws

AnalysisEngineProcessException {
15

16 ...
17

18 List<Pattern> outgoingReferencePatterns =
19 LegalOutgoingReferencePatterns.getExternalReferencePatterns();
20

21 for (Pattern p : outgoingReferencePatterns) {
22 Matcher m = p.matcher(text);
23 while (m.find()) {
24 if (checkAnnotationAlreadyFound(foundAnnotations, m.start()))
25 continue;
26

27 Annotation outgoingReference =
28 createOutgoingReference(aJCas, m.start(), m.end());
29 }
30 }
31 ...
32 }
33

34 ...
35

36 protected OutgoingReference createOutgoingReference(JCas aJCas, final int
aBegin, final int aEnd) {

37 int[] span = new int[]{aBegin, aEnd};
38 trim(aJCas.getDocumentText(), span);
39 if (!isEmpty(span[0], span[1]) && isWriteSentence()) {
40 OutgoingReference intRef =
41 new OutgoingReference(aJCas, span[0], span[1]);
42 intRef.addToIndexes(aJCas);
43 return intRef;
44 } else {
45 return null;
46 }
47 }
48 }

Listing 5.5: A custom annotator accessing regular expressions and applying them to the text of
a section.

The ReferenceAnnotator class is annotated to specify the input and output types (see Lines 5
– 8). This information is parsed by the UIMA and defines the interface between the different
components. The input type as shown in the listing is of the type Sentence, and valid output

137

5. Implementation

types are InternalReference and OutgoingReference. Other methods that are implemented within
the class are omitted, while the process and the createOutgoingReference methods are shown.
These perform the main operations during the application of the annotator. The application
starts by calling the process function. This is done by the UIMA framework. The process func-
tion retrieves the jCas object, the text of the article, and some zoning information. It retrieves
the pattern definitions as regular expressions from the class LegalOutgoingReferencePatterns in
Line 17.

The pattern definitions are applied to the text via standard Java functionality of regular expres-
sions (see Lines 20 to 29). Once a pattern matches, a new annotation object outgoingReference
is created (see Line 26 and 27). Thereby, the method createOutgoingReference is called, which
creates a new annotation object based on the position information of the matched text (Lines 40
and 41) and adds it to the jCas (Line 42). The annotation object of the type OutgoingReference
contains the exact position of a matched string in terms of character position (offset). Based
on this information, it can automatically retrieve the covered text information by applying a
string operation. This operation is provided by the UIMA framework and is implemented as
straight-forward substring method: text.substring(getBegin(), getEnd()) in Line 128 of the class
org.apache.uima.jcas.tcas.Annotation5.

5.2.3. External Resources: Pattern Definitions, Thesauri, and Dictionaries

As some of the annotators require access to additional resources, such as pattern definitions, or
information from a dictionary, these dependencies are implemented as well.

Pattern Definitions

The pattern definitions are either stored as Ruta scripts or as a collection of regular expression.
The latter ones are stored either in a file or in static Java classes, such as those shown in
Listing 5.5 Line 19. If the expressions are stored in a separate file, it can be manipulated via a
file system. This is an advantage, but can also be considered as a disadvantage, since it is more
vulnerable to corruption.

Ruta scripts are stored in separate files. This is necessary due to the overall architecture of
Apache Ruta. The script files are created within the user interface and can be applied while
processing a legal document (see Figure 5.6).

Thesauri and Dictionaries

Thesauri and dictionaries can be integrated into the overall system to enable a clear distinction
between the logic of the applied rules the lexical information, such as vocabularies for synonyms.
This is a common design principle in text analysis engines. Within the GATE framework, these
dictionaries are called gazetteers. The thesauri and dictionaries usually contain a list of entities,
such as cities, organizations, days of a week, etc. However, they can also contain more and

5https://uima.apache.org/, accessed on September 3, 2018

138

5. Implementation

semantic information such as dependencies between terms, e.g., synonyms, or hypernyms. These
lists can be accessed via wrapper classes written in Java. Therefore, the information is available
to the annotators in the processing phase.

5.3. Active Machine Learning Component

The AML component is part of the text analysis engine and allows the creation of annotations
for phrases and sentences based on machine learning functionality. The main functionality was
discussed in Section 3.5. This section provides more technical details about its integration and
the implementation of its main parts.

Exporter

Query
strategies

Machine learning
core

Active learning engine

Data access
and storage

REST
API

AML component

Pattern
definitions

Text analysis engine

Thesauri

Knowledge
bases

Information
extraction

component

Figure 5.8.: The text analysis engine with its annotators and components.

The next five sections describe the implementation of the pipeline model using Apache Spark
as the baseline. For instance, the interaction with the information extraction component is dis-
cussed in Section 5.3.1. The main parts are the configuration and training of the models (see
Section 5.3.2), the persisting of models (see Section 5.3.3), and the prediction of instances (see
Section 5.3.4). As query strategies are essential for AML, their role and a concrete implementa-
tion are discussed in Section 5.3.5.

5.3.1. Interaction Between Information Extraction and AML Component

This section describes the interaction between a user, i.e., domain expert, the information extrac-
tion component, and the active machine learning component. The overall process is subdivided
into four different phases:

1. Configuration

2. Training

3. Evaluation

139

5. Implementation

4. Prediction

An overview of the process is shown as a sequence diagram in Figure 5.9. It consists of three
different interacting entities, namely the domain expert, the information extraction, and the
AML component.

Configuration: The configuration phase is required to set up the initial parameters that are used
in the machine learning task. It starts with creating an AML pipeline. The pipeline is
parametrized with the labels that are available during the classification task. This input
has to be provided by the domain expert, as the AML is a subtype of supervised machine
learning. The remaining parameters for the AML have to be configured, such as the size
of the seed set, the amount of learning rounds, the query strategy, etc.

Finally, a legal document can be selected with content that will be classified using the
defined parameters. The document is split into its Sofas by the information extraction
component. These do not necessarily have to be sentences, but could also be phrases or
tokens. In this research project, the main focus was however set on the classification of
sentences.

Training: The training phase starts by initializing the AML procedures by the domain expert,
who is provided with proper user interfaces. This triggers the information extraction
component, which in turn triggers the AML component. Since the AML component runs
as a stand-alone service, it is accessed via a REST interface. To start the training of the
model, the configuration is loaded from the store and the parameters for learning pipelines
are set.

The training process starts by labeling a first, randomly selected set of instances, i.e., a
seed set. Based on this set of instances, the AML trains the model for the first time and
calculates the next training instances using its query strategy. After this first training, the
learning rounds are executed (red function in Figure 5.9). Within this function, sentences,
i.e., instances, are subsequently delivered to the AML, which in turn returns the next
instances, that need to be labeled. The repetition of learning rounds is halted once the
stopping criterion is reached.

Evaluation: The evaluation phase is optionally performed after the training. Therein a test set
is passed to the AML component, which predicts a label for each of the instances. The
predictions are returned as result and compared to a pre-defined gold standard. Based on
this comparison the confusion matrix can be determined and common evaluation metrics,
such as precision and recall, are calculated.

In the experiment to evaluate the overall performance (see Section 6.4), the evaluation
phase is performed after each learning round. This allows the assessment of the learning
behavior and the impact of query strategies.

Prediction: The prediction phase is a straight-forward machine learning task. The information
extraction component passes instances to the AML module. In doing so, labels are pre-
dicted based on the trained model. No interaction with the domain expert is required
during this phase, i.e., no training is performed.

140

5. Implementation

Prediction

:AML:IE:DomainExpert

Evaluation

Training

Configuration

return next instances return next instances
label sentences

label sentences

label
predict unknown sent.

compare with
gold standard

labeled test set
predict test set

check stopping crit.
return

repeat*

return next instances
return next instances

label seed
label seed

return
return

init AML
init AML

return
return

import sentences
select legal document

return
return

specify AML param.
specify AML param.

return
return

create labels
create labels

return
return

create AML pipeline
create AML pipeline

Figure 5.9.: Configuration, training, evaluation, and prediction of instances, such as sentence
types, with AML.

141

5. Implementation

5.3.2. Configuration and Training of Models

The configuration of the models is carried out by the domain expert who provides the required
information via the user interface, i.e., REST API. The proper method in the AML component
is shown in Listing 5.6. The listing shows how different parameters are subsequently extracted
from the configuration as provided in the HTTP request (see Line 1). In this process, five main
phases are performed and finally the pipeline configuration is saved:

1. Instantiation of active learning pipeline ins Line 4 and 5

2. Select classifier in Lines 8 and 9

3. Select query strategy from Lines 12 to 14

4. Select seed set size in Lines 17 and 18

5. Learning round configuration from Lines 21 to 26

1 JsonNode configurations = request.get("alPipelineConfigurations");
2

3 // load pipeline configurations
4 ALPipeline pipeline = ALPipeline.getALPipelineCurrentStatus(pipelineName);
5 ConfigurationPipeline configurationPipeline = new ConfigurationPipeline();
6

7 // set classifier as specified in http request
8 String classifier = configurations.get("classifier").asText();
9 configurationPipeline.setClassifier(pipeline, classifier);

10

11 // set query strategy as specified in http request
12 String queryStrategy = configurations.get("queryStrategy").asText();
13 pipeline.getAlPipelineConfigurations()
14 .setQueryStrategy(QueryStrategyFactory.getQueryStrategy(queryStrategy));
15

16 // set seed set size as specified in http request
17 int seedSet = configurations.get("seedSet").asInt();
18 configurationPipeline.setSeedSet(pipeline, seedSet);
19

20 // set learning round parameters as specified in http request
21 int minRound = configurations.get("stoppingCriteria").get("minRound").asInt();
22 int maxRound = configurations.get("stoppingCriteria").get("maxRound").asInt();
23 int querySize = configurations.get("querySize").asInt();
24

25 configurationPipeline.setStoppingCriteria(pipeline, minRound, maxRound);
26 configurationPipeline.setQuerySize(pipeline, querySize);
27

28 pipeline.save();

Listing 5.6: Configuration based on information provided by the REST interface.

The classifier is selected as string from the user, but internally, it is handled differently. In
Line 9 of Listing 5.6, the classifier of the pipeline is set. This is done choosing one of the
pre-defined classification models. Currently, three different classifiers are implemented, namely,
MultinomialNaiveBayes, LogisticRegression, and MultilayerPerceptron.

142

5. Implementation

The Listing 5.7 illustrates the prototypical implementation of the DefaultLogisticRegression based
on the existing implementation of LogisticRegression6. Thereby, the mllib parameters are set to
pre-defined default values.

1 package processing.classifier;
2

3 // imports omitted
4

5 public class DefaultLogisticRegression implements IClassifier,
IProbabilisticClassifier {

6

7 public static LogisticRegression get() {
8

9 return new LogisticRegression()
10 .setMaxIter(10)
11 .setElasticNetParam(0.8)
12 .setRegParam(0.001);
13 }
14 }

Listing 5.7: Implementation of Logistic Regression with exemplary parameters.

Once the configuration of the active learning is stored and the classifier is selected, the training
phase is initiated. Thereby, a TrainingPipeline object is created, which retrieves all the required
information from the previously specified ALPipeline object. The relevant code parts are shown
in Listing 5.8.

The method preparePipeline sets the internal parameters and fields according to the passed
ALPipeline object (see Lines 13 – 18). This includes the stages, i.e., learning rounds, the training
and test data set parameters, and the parameters regarding the unlabeled data.

The TrainingPipeline class has a method called label, which iterates over the provided training
records and adds them to the set of labeled instances (see Lines 20 – 33). Once the instances
are added, the pool of training instances is cleared and the pipeline is saved (see Lines 31 and
32).

1 package processing.pipeline;
2

3 // imports omitted
4

5 public class TrainingPipeline {
6

7 private Dataset<Row> trainingData = null;
8 private Dataset<Row> unlabeledData = null;
9 private PipelineModel model = null;

10

11 // other methods omitted
12

13 public void preparePipeline(ALPipeline pipeline) {
14 setStages(pipeline);
15 createTrainingAndTestSet(pipeline);

6https://spark.apache.org/docs/2.2.0/mllib-linear-methods.html#logistic-regression, accessed on September 3,
2018

143

5. Implementation

16 setUnlabeledData(pipeline);
17 pipeline.save();
18 }
19

20 public void label(Map<String, String> idLabelMap, ALPipeline pipeline) {
21 for (Map.Entry entry : idLabelMap.entrySet()) {
22 Integer label = getLabelKey(pipeline.getLabelMap(), (String) entry.

getValue());
23 for (Row row : pipeline.getTrainingsData().getDataToLabelNext()) {
24

25 if (row.get(0).equals(entry.getKey())) {
26 pipeline.getTrainingsData().getLabeledData().add(RowFactory.

create(row.get(0), (double) label, row.get(1)));
27 break;
28 }
29 }
30 }
31 pipeline.getTrainingsData().getDataToLabelNext().clear();
32 pipeline.save();
33 }
34 }

Listing 5.8: The training pipeline is built upon the ALPipeline object and encapsulates the
required methods for the labeling of instances.

The TrainingPipeline separates the responsibilities and functionalities of the ALPipeline object
from the remaining tasks, such as configuring and predicting. Once a model has been configured
and was trained, it can be used to predict the semantic type, i.e., label, of a new instance.

5.3.3. Persistence of Models

Once a model is trained, or even after each learning round, the model is persisted. This has two
main advantages:

1. Decoupling of learning rounds

2. Load trained model for prediction

Since the model is safely stored after a learning round, the different rounds can be carried out
over a large period of time. They need not necessarily be performed immediately one after
another. The learning process can be interrupted and resumed after a learning round, as soon
as the domain expert has free resources, e.g., time, available. Additionally, this allows to reuse
the already trained model for prediction tasks. Persisting the trained model is common and the
main use case to perform a prediction on unlabeled data.

1 package processing.pipeline;
2

3 // imports omitted
4

5 public class TrainingPipeline {
6

7 // other methods omitted

144

5. Implementation

8

9 public void saveModel(ALPipeline pipeline) {
10 FileUtils.deleteDirectory(new File("sparkModels/" + pipeline.getName()));
11 model.save("sparkModels/" + pipeline.getName());
12 pipeline.setModelPath("sparkModels/" + pipeline.getName());
13 pipeline.save();
14 }
15 }

Listing 5.9: The model of a classification pipeline is persisted.

Each TrainingPipeline can be persisted and the main method is shown in Listing 5.9. Thereby, two
different saving operations need to be differentiated, saving the configuration into a document-
oriented database (see Line 25) and persisting the trained model to the file system (see Lines
28 – 33). Storing the trained model on the file system is a common procedure, as the model
can be very large and might not be handled efficiently by databases. Additionally, these models
are binaries and treated as Binary Large Objects (BLOBs), which are per se hard to handle for
databases.

5.3.4. Predicting of Instances

Just like the TrainingPipeline, the prediction task is also encapsulated within a separate class,
namely PredictionPipeline. The main methods are shown in Listing 5.10. Thereby, the task
is orchestrated within the method executePrediction (see Lines 13 – 19). The model is loaded
from the storage (Line 14 and Section 5.3.3) and the instances are transformed into the required
internal structure (Line 15).

The actual prediction of the labels for instances is performed with the applyModel method.
Calling the transform operation for the model (see Line 26) applies the specified configuration.
The results can be collected in a subsequent loop for each instance.

1 package processing.pipeline;
2

3 // imports omitted
4

5 public class PredictionPipeline {
6

7 private List<Row> data = new ArrayList();
8 private Dataset<Row> dataset = null;
9 private PipelineModel model = null;

10

11 // other methods omitted
12

13 public ArrayNode executePrediction(ALPipeline pipeline) {
14 loadModel(pipeline.getModelPath());
15 createDataFramePrediction(pipeline);
16 ArrayNode results = applyModel();
17 cleanUp();
18 return results;
19 }
20

145

5. Implementation

21 public void loadModel(String modelPath) {
22 this.model = PipelineModel.load(modelPath);
23 }
24

25 public ArrayNode applyModel() {
26 // perform prediction operations on the dataset
27 Iterator predictions = this.model.transform(dataset).cache().toJSON().

collectAsList().iterator();
28

29 // collect information, ie labels, about instances and return them
30 ArrayNode result = Json.newArray();
31 while (predictions.hasNext()) {
32 result.add(Json.parse(predictions.next().toString()));
33 }
34 return result;
35 }
36

37 }

Listing 5.10: The application of a model and classifier using the Apache Spark framework.

Finally, Apache Spark expects a method call, which allows to free allocated resources. This is
recommended for very resource-intensive tasks, e.g., the labeling of large document sets.

5.3.5. Query Strategies

Query strategies, as described in Section 3.5.5, are used to determine those training instances
which are most informative and therefore increase the learning performance of classifiers. To
illustrate their mode of operation, an example is shown in Listing 5.11.

1 package processing.queryStrategy.uncertaintySampling;
2

3 // imports omitted
4

5 public class MostUncertainEntropyStrategy
6 extends AbstractEntropy
7 implements IQueryStrategy {
8

9 @Override
10 public List<Row> getInstancesToLabelNext(List<Dataset<Row>> predictionsList) {
11

12 List<Row> uncertainRows = new LinkedList<>();
13 Dataset<Row> predictions = predictionsList.get(0).cache();
14

15 // analyse each available predicted instance
16 for (Row row : predictions.collectAsList()) {
17

18 int probability = row.fieldIndex("probability");
19 int prediction = row.fieldIndex("prediction");
20 int path = row.fieldIndex("path");
21 int text = row.fieldIndex("text");
22 Vector probVector = (Vector) row.get(probability);
23 Double selectedLabel = row.getDouble(prediction);

146

5. Implementation

24 double confidence = probVector.apply(selectedLabel.intValue());
25

26 // determine entropy measure for each instances
27 double entropy = calculateEntropy(probVector.toArray());
28

29 uncertainRows.add(RowFactory.create(
30 row.get(path),
31 selectedLabel,
32 confidence,
33 entropy,
34 row.get(text)));
35 }
36 return uncertainRows;
37 }
38 }

Listing 5.11: Implementation of the query strategy “most uncertain entropy”.

The class MostUncertainEntropyStrategy is derived from the base class AbstractEntropy, which
provides methods to determine the entropy measures of a given probability vector, as used in
Line 24. The class consists of one method, namely getInstancesToLabelNext. The method obtains
a list of all the predicted instances and is called at the beginning of a learning round. During
the method, each instance is analyzed and for each instance, a row record is created (see Lines
26 – 31) that contains information about the instance and the determined entropy measure (see
Lines 17 – 24). Finally, the list of records is returned and the calling method can extract those
instances, which are most informative according to this entropy criterion.

5.4. Implementation of the Model-based Reasoning Framework

The concept and the design of the model-based reasoning system were already described in
Section 4. Figure 5.10 provides an overview of the system architecture with the three extensions
on the user interface, modeling component, and the reasoning engine. The integration of these
components is discussed within this section. In addition, main implementations and architectural
and design decisions are described.

As shown in Figure 5.10, the modeling component is divided into two sub-components, namely
for the semantic modeling, including the representation and handling of types, attributes, and
relations; and for the executable modeling, focusing on the specification of derived attributes
as MxL expressions. The user interface has been extended so that both parts of a model
can be formalized accordingly. In addition, the knowledge acquisition component enables the
application of models by providing facts and by instantiating the models (see also Section 4.3.2).
The explanation capability, as provided by the execution and reasoning engine, is integrated into
the knowledge acquisition component, as main parts focus on providing an explanation for the
derivation of an attribute.

The next five sections describe the implementation of the main parts of the model-based rea-
soning framework. First, the interaction between domain experts, the modeling component,
and the reasoning engine is introduced as a sequence diagram in Section 5.4.1. The modeling

147

5. Implementation

Model and fact
store

Knowledge
acquisition

Inference and
inference-analysis engine

Executable modeling
component

Semantic modeling
component

Modeling component

Execution and reasoning engine

Exporter

User interface

Text analysis engine

Importer

Database and search-engine

Data access layer

Modeling
component

Figure 5.10.: System architecture focusing on the components that enable model-based reason-
ing.

component, including a discussion on the mapping of the data model with the reasoning engine,
is provided in Section 5.4.2. Based on these considerations, the access of the reasoning engine is
described in Section 5.4.3. The main methods for storing instances and facts from the knowledge
acquisition component are investigated in Section 5.4.4. Finally, the process of retrieving the
explanation for an derived attribute is described in Section 5.4.5.

5.4.1. Domain Experts, Modeling Components, and a Reasoning Engine

This section describes the interaction between a user, i.e., domain expert, the information extrac-
tion component, and the active machine learning component. The overall process is subdivided
into three different phases:

1. Modeling

2. Application

3. Explanation

An overview of the process is shown as a sequence diagram in Figure 5.11. It consists of four
different interacting agents, respectively components, namely the domain expert, the modeling
component, the knowledge acquisition component, and the model storage.

Modeling: The process starts by formalizing the semantic model. Thereby, the domain expert
creates types, attributes, and relations. The requests from the front-end and user interface
are processed by the modeling component. Minor consistency checks are already performed

148

5. Implementation

:KnowledgeAcqComponent

Explanation

:Storage:ModelingComponent:DomainExpert

Application

Modeling

return

request
data flow information

return

request
instance information

return

request
information

return instances
and attributes

initiate reasoning

return

insert facts as attributes
and relations

return

instantiate types

check
consistency

request data flow information

return

return

request instance information
for object diagram

return

request abstract syntax tree

execute
MxL

return instances
and attributes

initiate reasoning

return

provide facts

return

create links to
documents

return

persist modelpersist model

return

return

create types

return

specify derived attributes

return

create types, attributes
and relations

Figure 5.11.: Interaction between domain experts and the software services and tools.

at this stage, either by the user interface or by the modeling component. After all the

149

5. Implementation

static model elements are defined, the derived attributes need to be specified. Based on
the types, attributes, and relations, the derived attributes define the executable semantics.

The model elements are optionally linked to the text, the interpretation of which led to the
creation of the model element. These links are associations between documents, sections,
or annotations.

Once every model element is defined, the user initiates persisting the model into the model
store. The modeling component maps the data elements to the structure as required by
the model store and wraps them in proper REST calls. The storage retrieves this data,
checks its consistency, and — in case of success — persistently stores the model elements.

After the modeling phase, the modeling component is no longer required during the process.

Application: The application phase is initiated by the end-user via the knowledge acquisition
component. He creates instances of the types and inserts the facts, i.e., evidence, into the
instantiated model. The knowledge acquisition component wraps this information into the
required format and passes it forward to the model storage, where the facts are stored
along with the model information (see also Section 4.3.2).

The user can initiate the reasoning by requesting the value of a derived attribute from
the storage. The reasoning engine within the model storage executes the MxL expressions
and determines the concrete values of an attribute. This deductive reasoning process
illustrates how new knowledge is derived from existing facts using the predefined rules,
i.e., expressions.

Explanation: Once an end-user has created the model and received the information about con-
crete reasoning on provided facts he has the possibility to retrieve explanations about
concrete derivations. These three models include an overview of the instances and their
attributes as object diagrams (see Section 4.4.1), information about the underlying de-
cision structure as formalized in the AST (see Section 4.4.2 and 4.4.3), and a data flow
inspection of the dependencies and influences of attributes (see Section 4.4.4).

For each of the three information requests, the interaction sequence follows the same path:
The information request is initiated by the user and received by the knowledge acquisition
component. The component in turn processes the request and forwards it to the model
storage and reasoning engine.

5.4.2. Modeling and Knowledge Acquisition

In order to handle the communication and the transfer of information between the user, the
modeling environment, and the reasoning engine, the data as entered in the user interface needs
to be wrapped and mapped. The mapping of the model elements is essential to access the
functionality as provided by the model storage and reasoning engine. Both components are used
as external services and accessed via the REST API. The components have been developed
independently from this particular research but have been adapted accordingly (see Reschenhofer
et al. 2016).

150

5. Implementation

Semantic model element Model and fact store
Model ↦→ Workspace
Type ↦→ EntityType
Atomic attribute ↦→ AttributeDefinition
Relation ↦→ AttributeDefinition (as Link)
Derived attribute ↦→ DerivedAttributeDefinition

Table 5.1.: Mapping to meta-model based IS (see Neubert 2012).

The system is a meta-model-based information system. The data model of the system is highly
flexible and enables modeling tasks. The mapping of model elements is shown in Table 5.1.
The table illustrates the elements of the semantic model-based reasoning approach with the
information system that serves as a model and fact store.

The graphical representation of Table 5.1 is provided in Figure 5.12. The left side of the figure
shows the elements of the semantic model store. A model has many different types and each
type can have multiple attributes. For sake of simplicity, the relations and derived attributes
are not explicitly modeled, but subsumed as attributes. The meta-model of the information
system that was adapted for this purpose consists of workspaces and EntityTypes, which refer to
models and types respectively. The AttributeDefinition object reflects the definition of attributes

REST API

Semantic model element Model and fact storage

AttributeDefinition

Workspace

EntityType

Attribute

Model

Type

has

1

1..n

has

1

1..n

has

1

1..n

has

1

1..n

Figure 5.12.: Simplified data model to illustrate the mapping (see Oppmann 2016).

151

5. Implementation

for an EntityType. The AttributeDefinition allows for a specification of different data types, such
as Boolean, string, MxL, but also for links, i.e., relations, which refer to other EntityTypes.

5.4.3. Accessing the Model and Fact Store

The actual access model and fact store are carried out using a visitor pattern. The visitor
pattern is a well-known behavioral pattern in the field of software engineering and is considered
as an efficient implementation to perform operations on potentially nested data structures. As
the user-created model potentially consists of multiple elements, the visitor pattern allows to
efficiently iterate over each of these elements and to perform an operation. Listing 5.12 illustrates
the concrete implementation that was used in the implemented prototype.

1 public void convertModel (JsonNode node, Model graphModel) {
2

3 JointJSGraph graph = mapper.readValue(node.toString(), JointJSGraph.class);
4

5 //sort the cell list: first the types are created, thenrelations
6 Collections.sort(graph.getCells(), new CellBeforeLinkComparator());
7 graph.setGraphModel(graphModel);
8

9 //visitor for persisting entity types with attributes and links
10 graph.accept(new MetaModelVisitor());
11

12 //visitor for persisting the derived Attributes Definition (MXL)
13 graph.accept(new DerivedAttributesVisitor());
14

15 //save the graph because the IS ids have been added
16 graphModel.setJsonModelDefinition(Json.toJson(graph).toString());
17 graphModel.saveEntity();
18

19 }

Listing 5.12: Visitor pattern to save the nested structure of a semantic model.

The method convertModel retrieves the information about the model from the front-end visual-
ization component. The information as modeled by the user is stored in the variable node and
mapped into the graph object in Line 3. In Line 6, the model components are sorted, since
the storage needs to get the information about types first, then attributes, and finally links.
The visitor pattern execution is initiated in Lines 10 and 13. This initiates an iteration over all
elements of the graph and performs an action according to the type. Basically, every element is
persisted in the information system via the REST API. First, the basic elements are persisted,
and then the derived attributes. Finally, the model is also stored locally to keep the information
for the visualization in the front-end (lines 16 and 17).

5.4.4. Knowledge Acquisition Component

The knowledge acquisition component retrieves data from the user interface and inserts the data
into the fact storage. In the front-end the model information is rendered, so that the user has the

152

5. Implementation

possibility to insert and update data in a form-based dialog (see Section 4.3.3). The front-end
already prevents invalid input types. For example, if an attribute is of the type Boolean, the
front-end offers the user the selection of “true” and “false”.

Once the user saves his input, the back-end functionality is triggered, which receives the data
in a JSON format. The JSON object is parsed, mapped to the data format of the fact storage,
and persistently saved. The main methods are show in Listing 5.13.

1 public void saveInstancesInIS(JsonNode node, Model graphModel) {
2

3 JointJSGraph graph = mapper.readValue(node.toString(), JointJSGraph.class);
4

5 // the order matters: types, attributes, relations, mxl
6 Collections.sort(graph.getCells(), new LinkBeforeCellComparator());
7 // persist in fact store
8 graph.accept(new PartialUpdateVisitor(graphModel));
9

10 graphModel.setJsonModelDefinition(Json.toJson(graph).toString());
11 graphModel.saveEntity(); // store meta−information in local database
12 }
13

14 public void deleteAllInstanceData (JsonNode node, Model graphModel) {
15

16 JointJSGraph graph = mapper.readValue(node.toString(), JointJSGraph.class);
17

18 //delete all data facts
19 graph.accept(new DeleteInstancesVisitor());
20

21 graphModel.setJsonModelDefinition(Json.toJson(graph).toString());
22 graphModel.saveEntity(); // store meta−information in local database
23 }

Listing 5.13: Persisting and deleting instances and facts.

Listing 5.13 shows two main methods for the interaction between an end-user and the fact
store. The saveInstancesInIS retrieves the JSON node object from the front-end and maps it
into a graph representation (see Line 4). The elements of the graph are sorted as the fact
store requires it. First, types and attributes are persisted, then relations, and finally derived
attributes. This ensures consistency during the insertion of data, as the fact store automatically
checks the dependencies and therefore, needs atomic attributes first.

In Line 8, the visitor pattern is used to persist all the model elements in the fact store. Each
model element and its value is visited and stored in the remote fact storage. Lines 10 and 11
are executed to persist the current status of the model in the local database. It is important
to note that no information about facts is stored locally, but only meta-information about the
model and the model elements, which are required to map the model elements accordingly.

The deleteAllInstanceData method performs the analogous procedure for the deletion of infor-
mation. The main difference is the visitor operation that is called: DeleteInstanceVisitor (Line
18).

153

5. Implementation

5.4.5. Explanation Component

The explanation component consists of four different and complementary parts:

∙ Instance and Fact View(see Section 4.4.1)

∙ Abstract Syntax Tree for Dependency Analysis (see Section 4.4.2)

∙ Explanation Dialog Component (see Section 4.4.3)

∙ Data Information Flow Inspection (see Section 4.4.4)

This section illustrates how the explanation for a given attribute is retrieved from the reasoning
engine. Thereby, the reasoning engine is accessed via the REST API.

1 // ModelController.java
2 public static Result validateMXLExpression() {
3

4 JsonNode data = request().body().asJson();
5 String entityId = data.get("entityId").asText();
6 String mxlExpression = data.get("mxlExpression").asText();
7

8 String result = ISController.evaluateMXLExpression(entityId, mxlExpression);
9

10 return ok(result);
11 }
12

13 // ISController.java
14 public static String evaluateMXLExpression(String entityId, String mxlExpression) {
15

16 // ... remain code omitted
17

18 String url = "entities/" + entityId + "/mxlValidation";
19

20 ObjectNode node = Json.newObject();
21 node.put("expression", mxlExpression);
22

23 HttpURLConnection connection = connectionForPostRequest(url);
24

25 // ... remain code omitted
26 }

Listing 5.14: Retrieving explanations from the reasoning engine.

The main procedures for the retrieval is shown in Listing 5.14. The main methods are vali-
dateMXLExpression and evaluateMXLExpression. The validateMXLExpression is called from the
front-end upon user request. The MxL expression and the data that identifies an attribute are
loaded (Lines 4 – 6). Using this information, the reasoning engine is accessed (see Lines 18 – 23).
Thereby, the entity is unambiguously identified, using its URL with the mxlValidation extension
(Line 18). The information that is collected during the execution of the expression is aggregated
with in a JSON object, which is forwarded to the front-end (Line 10). The front-end parses it
and creates the visualization, i.e., tree structure.

154

5. Implementation

5.5. Summary

This chapter described the implementation of the concepts as introduced in Chapter 3 and
Chapter 4. The main focus was set on the providing technical details and design decisions that
have been made during the software technical implementation. The chapter is subdivided into
four different parts, which follow the main implementation areas of the prototype:

1. Collaborative Data Science Environment

2. Text Analysis Engine

3. Active Machine Learning Component

4. Model-based Reasoning Framework

The basic principle for the collaborative data science environment was the implementation to
a web application. The application follows a Model-View-Controller pattern, which allows to
pursue a modular system architecture and to separate different software components with regard
to their function. A generic data model was used to support the adaption to different document
types, such as laws, judgments, and contracts. Additionally, the mapping between the database
objects and the objects as required by the Java framework, and the JavaScript front-end was
introduced. Main parts of the front-end were shown in detail to illustrate how end-users can
access the information and functionality.

A main part of the back-end implementation is the so-called text analysis engine, which contains
the functions and methods to semantically process and annotate legal documents. The docu-
ments are processed in a Pipes & Filters architecture, which allows the subsequent application of
different software components. These components can either be existing software modules that
are freely accessible, or newly implemented components, which provide a highly specified func-
tionality of information extraction and annotation. Along this processing pipeline, information
is exchanged via the JCAS object.

The active machine learning components extends the text analysis engine by additional machine
learning functionality to classify semantic types within legal documents. The component is
implemented as a stand-alone service, but coupled to the information extraction component via
a standardized interface. Using this interface, the main phases of the AML can be parametrized
and initiated, namely configuration, training, evaluation, and prediction. Trained models are
persisted so that they can be reused without resource intensive training. This persistence requires
an additional store.

To not only support the textual analysis of legal documents, but also the computational legal
reasoning on interpreted legal norms, a model-based reasoning framework was implemented. It
combines the functionality of a meta-model based-information system with the requirements
for model-based reasoning on interpreted legal norms. The implementation includes a user
interface and the adoption of the existing system, which is solely accessed using its REST API.
The chapter describes the three phases, namely modeling, application, and explanation, and
specifies the main methods that are required to achieve the overall functionality. Important
design decisions and code listings illustrate the implementation.

155

5. Implementation

Based on the concept, the design, and the implementation, the next chapter describes the
evaluation of the different parts of the system and discusses its performance and limitations.

156

CHAPTER 6

Evaluation and Assessment

6.1. Evaluation Approach

In the previous chapters, the main contribution of this work was introduced. Initially, Chapter 3
described the concepts and basic framework for the textual analysis of legal documents, includ-
ing rule-based and active machine learning-based components. In the following Chapter 4, a
logical framework, namely model-based reasoning, was introduced to extend classical knowledge
engineering by ontologies, with the possibility to define logical and arithmetical expressions.
These models and the formalizations are the results from the interpretation of statutory texts.
Chapter 5 discussed various aspects of the software technology aspects, as well as the most
central implementations in detail.

For design science in information systems research, Hevner et al. (2004) mentioned different
evaluation strategies, including and twelve concrete methods to evaluate an implemented pro-
totype or research artifact. Based on the evaluation framework in Hevner et al. (2004) and
Peffers et al. (2007), the prototype is assessed in different aspects of performance, including case
studies (see Eisenhardt 1989), standard information retrieval metrics (see Salton 1989), and
functionality studies (see Gregor 2006).

The evaluation of the full-stack implementation was performed on three aspects, namely on
the usage within an interdisciplinary data science project to support editorial processes on tax
law documents, the information extraction performance, and on the formalization of a decision
structure from the German tenancy law.
The aspects are covered by four evaluation set-ups:

1. Support of editorial processes

2. Text analysis: rule-based

157

6. Evaluation and Assessment

3. Text analysis: active machine learning-based

4. Formalizing termination notice periods of Germany’s tenancy law

The first three evaluation approaches are mainly empirical and assess the applicability of the
framework. They also serve as a base line for discussions about the limitations and challenges for
the integration of the framework for practical use cases (see Section 6.2). The fourth evaluation
assesses the adaptability of the formalization of model-based reasoning. While, evaluation set-
ups two and three focus on the textual and linguistic semantics of the German tenancy law
(see Sections 6.3 and 6.4), the formalization, including the semantic and executable model
(termination notice periods), is discussed in this fourth evaluation task (see Section 6.5).

6.2. Case Study: Analysis of Fiscal Court Cases to Support
Editorial Processes

Background and Motivation

In 2016, a joint research project was performed with the German industry partner, namely Datev
eG1. Datev eG is “a software company and IT service provider for tax consultants, auditors, and
lawyers as well as their clients”2. As of December 31𝑠𝑡, 2016, the Datev eG had more than
7,005 employees and a turnover of approx. 928 million Euros. Datev eG is an association, i.e.,
cooperative, with more than 40,000 members.

In Germany, the company is known for their IT services that are offered to its members and
customers. Its service portfolio includes a legal information database, called LEXInform3. This
database provides access to information on various topics that are relevant for legal practitioners
and scientists. The main focus, however, is in the legal domain of tax law.

The documents are not only produced by Datev eG, but also official documents from legislation,
and jurisdiction. These documents must be pre-processed, so they can be indexed accordingly.
Thereby, different information has to be extracted from the document, and meta-data has to be
attached.

The task, which should be performed using the prototype developed in this thesis, was to support
this manual extraction process with rule-based information extraction methods. The focus was
set on the extraction of a particular piece of information from tax law cases. The information
that needed to be extracted was the Year of Dispute (YoD)4. The YoD is particularly relevant for
the tax law domain, as it indicates which version of the German tax law was applied in a given
case. As the tax law changes regularly, including minor and larger revisions, this information is
essential during the litigation process. However, editorial staff of official courts does not assign
this information.

1https://www.datev.com, accessed on September 3, 2018
2see official web page Datev eG (2017)
3https://www.datev.de/dnlexom/client/app/index.html, accessed on September 3, 2018
4dt. Streitjahr

158

6. Evaluation and Assessment

Objective

Given a large set of tax law cases, functionalities were implemented and the research prototype
was adapted, so that the software could support during the extraction of the YoD within any
case document. The YoD must not necessarily be one specific year, but it can also be a set of
years, i.e., a timespan. This set must not necessarily be subsequent.

The extraction task was reduced to an annotation problem, as most of the cases contain this
information within their textual information. Case files which do not contain the information
about the YoD have not been considered during the evaluation. The objective was to automatize
— as far as possible — the extraction of this particular information.

Roles

The task was performed by two researchers from the academic research group. Part of this small
research group were two legal data scientists, one with a technical software engineering back-
ground, and the other with a legal practice background. The industry partner had three persons
involved: two from the “Department for Portals and Collaboration”, i.e., legal data scientists,
and one from the “Department for Content - Taxes and Law”, i.e., a legal practitioner.

Data and Import

The document corpus provided by the Datev eG consisted of more than 130,000 different doc-
uments related to the German tax law. The documents covered a time span of almost 100
years. The oldest documents within the corpus were from 1919, whereas the latest document in
the corpus was published in July 2016. The corpus was fully digitized (no OCR required) and
available in XML, while each document was represented by a single file.

The corpus consists of more than 40 different types, such as judgments5, articles6, and laws7,
etc. The corpus is a selection of the documents stored in the Datev eg legal information database
LexInform. Within this task, the corpus was restricted to judgments. This led to the overall
amount of 47,359 different case documents. The distribution over time is shown in Figure 6.1.

Processing and Approach

The process as introduced in Section 3.1, was used for the analysis task:

Import The first task was to import and index the documents within the prototype. This could
be performed straight-forward, by adapting the import structure and proper methods (see
Section 3.4.1.1).

5dt. Urteile
6dt. Aufsätze
7dt. Gesetze

159

6. Evaluation and Assessment

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Year

Figure 6.1.: Judgments in the tax law document corpus provided by Datev eG (Σ 47,359 docs).

Analyze Once the documents had been imported and the index structure was updated, the anal-
ysis was performed. Thereby, a zoning strategy was used to constrain the search space
in which the information about YoD occurs. The YoD is described within the section
“statement of facts”8, so the algorithm only analyzes this particular section of a case.
This restriction of the search space decreased the false positive rate and therefore con-
tributed to the accuracy of the overall approach, which is described in the following steps:

1. Constrain search space to section “statement of facts”

2. Determine dates within the text

∙ Differentiate between specific dates, e.g., “21.10.2010” or “21. September 2010”,
dates referring to a whole year, e.g., “2010”, and a timespan “2000 bis 2009”.

3. Determine indicating sentences, such as “Antragssätze”

∙ If those sentences contain whole years or timespans, mark those as year of disputes

8dt. Tatbestand

160

6. Evaluation and Assessment

4. Determine contexts that allow conclusions about the YoD, based on particular lin-
guistic patterns expressed in Apache Ruta.

∙ Pre-Indicators: Linguistic features, i.e., tokens, words, patterns, indicating that
the following date is likely to be the year of dispute.
Examples: “auf die im Streitjahr 2006 zugeflossenen Erstattungszinsen”, “den
Einkommensteuerbescheid 2006 vom 11.12.2007”, “die Kindergeldfestsetzung für
den Zeitraum von Oktober 2003 bis Dezember 2004 und von Januar 2006 bis
Juni 2006”, etc.

∙ Post-Indicators: Linguistic features, i.e., tokens, words, patterns, indicating that
the date mentioned before is likely to be the year of dispute.
Examples: “Erwerbsunfähigkeitsrente im Jahre 2005 (Streitjahr)”

∙ Clamp-Indicators: Linguistic features, i.e. tokens, words, patterns, indicating
that the date mentioned between two features is likely to be the year of dispute.
Examples: “ab Januar 2008 Kindergeld zu bewilligen”, “Bescheid für 1997 und
1998 über Einkommensteuer”

5. Extract and annotate the literal indicating the YoD.

6. Evaluate and assess the performance of the analysis.

The analysis phase was performed iteratively. This iteration included steps 2 – 6.

Application The YoD have been extracted using the methodology as shown above. The resulting
annotations were persisted and highlighted in the text view of the document.

Extraction Performance

During the evaluation phase, 100 different case documents were randomly selected and verified.
The results are shown in Table. Note that a case can have multiple years of dispute.

Predicted Outcome
YoD No YoD

Actual Outcome YoD 186 21
No YoD 11 -

Table 6.1.: Quality assessment of YoD extraction in 100 randomly selected cases.

Based on the evaluation and the confusion matrix (see Table 6.1) precision values of 0.94 and
a recall of 0.90 could be determined. Hence, the F1 measure is approximately 0.92 for the
extraction.

Discussion and Critical Reflection

This result could be improved even further by providing a more comprehensive set of rules and
vocabulary. For many cases, this approach is sufficient and reliable to extract the YoD, but there

161

6. Evaluation and Assessment

F1 =
2 * 186
372 + 32

=
372

404
≈ 0.92

Precision =
186

186 + 11
=

186

197
≈ 0.94

Recall =
186

186 + 21
=

186

207
≈ 0.90

Table 6.2.: Quality metrics calculated from the confusion matrix of Table 6.1.

are boundary cases that do not allow to fully extract the desired information on the linguistic
level with high confidence. Within the corpus, cases exist, in which many different facts are
described over several years, so that the algorithm using the rule-based annealing approach
easily makes mistakes and provides wrong or insufficient results. Against this background, the
approach can support extraction processes by an editorial staff, rather than making autonomous
decisions.

The main challenge posed by the extraction of the year of dispute from case documents is the
linguistic variety in which this information is lexically and syntactically encoded; especially the
huge time span and different types of German courts that are publishing the documents.

The process used was well-suited for this interdisciplinary task and the activities import, anal-
ysis, and applications have subsequently been performed. This task showed the necessity of an
interdisciplinary and interacting project group when it comes up to the analysis of legal docu-
ments with the objective to analyze documents to extract a specific piece of information.

6.3. Performance Evaluation: Classifying Legal Norms with
Rule-based Information Extraction

Motivation

Due to several reasons, the classification of norm sentences is an attractive research area within
legal informatics. First of all, assigning semantic types allows the differentiation of a norm’s
function and thus supports subsequent interpretation. Second, the semantic type can be embed-
ded into search and exploration tasks in legal information databases and can therefore support
search and exploration tasks within legal documents. And finally, it can be considered as an
additional step to extract references and dependencies between legal norms.

With regard to the state-of-the-art in information extraction, rule-based approaches are still
predominantly used in the industry Chiticariu et al. (2013). Although rule-based approaches
are known to require tedious manual labor, they are comparably easy to comprehend and to
maintain. In addition, it is much easier to incorporate domain knowledge from domain experts,
which widely exists in the legal domain.

Classification of legal norms can be addressed from different perspectives: Classification with

162

6. Evaluation and Assessment

regard to the content and the topics addressed by a norm, or with regard to its functional aspects.
For this evaluation, a classification regarding functional aspects was chosen. Functional classes
of norms address the role of a norm within a given legal statute, such as obligations, permissions,
or prohibitions. These classes were derived bottom-up and harmonized within a taxonomy.

Objective

The objective of this evaluation was to assess the performance of rule-based information ex-
traction to classify legal norms from German statutory text regarding their semantic type, i.e.,
functional class. The publicly available data was used for this purpose, namely German federal
laws from the domain of civil law.

The rule-based information extraction approach was chosen in order to set a base line for the
classification of legal norms and to compare it against a more advanced approach by using active
machine learning. The rule-based approach was performed on a taxonomy, which was created
by a domain expert, i.e., legal expert, and was derived bottom-up. The rules have been created
in a standard language for pattern-based information extraction, namely Apache Ruta. Four
iterations have been performed, in which the rules have subsequently been refined to increase
the performance of the classification task.

Data

For the first attempt of a functional classification, nine different semantic types of legal norms
have been identified: duty, indemnity, permission, prohibition, objection, continuation, conse-
quence, definition, and reference. Table 6.3 gives an overview of the different classes, including
a description for each type. Thereby, the description focuses on the primary function of a legal
norm. It is clear that long norms may have multiple functions, such as duty, reference, and def-
initions. However, the classification only took into account the main functional aspect. For the
subsequent classification task using active machine learning, the taxonomy was extended even
further, taking into account a more differentiated perspective on the functional categorization
of legal norms in German civil law documents (see Section 6.4).

Table 6.4 shows concrete examples for each semantic type. The examples are extracted from the
Title 5 “Lease, usufructuary lease” - Subtitle 1 “General provisions for leases” from the German
Civil Code9. The table lists the German sentences and their official translations and provides
an illustrative approach to the abstract definition of possible semantic types. It also shows
that norms could potentially fall in to two (or more) categories, such as the example for the
consequence, which could also be interpreted as a reference type. However, the classification
focused on the primary function of a sentence, which would be the consequence. Obviously, the
demarcation is rather fuzzy and requires clear definitions and illustrative examples.

In order to prepare a dataset, which serves as gold standard, for the norm classification exper-
iment, one legal expert assigned a semantic type to every sentence of the tenancy law section
in the German civil code (§535 - §595) published on March 1st, 2017. The taxonomy has been

9https://www.gesetze-im-internet.de/englisch_bgb/englisch_bgb.html, accessed on September 3, 2018

163

6. Evaluation and Assessment

Table 6.3.: Semantic types of norms in German civil law statutes.
Semantic Type Description

I Duty The primary function of a duty is to stipulate actions, inactions or
states.

II Indemnity The primary function of an indemnity is to clarify that, resp. under
which conditions a duty does not exist.

III Permission The primary function of a permission is to authorize actions, in-
actions or states.

IV Prohibition The primary function of a prohibition is to forbid or disallow ac-
tions, inactions or states.

V Objection The primary function of an objection is to define that, resp. under
which circumstances an existent claim may not be asserted.

VI Continuation The primary function of a continuation is to extend or limit the
scope of application of a precedent legal statement.

VII Consequence The primary function of a consequence is to stipulate legal effects,
without ordering or allowing character as far as the legal conse-
quence part is concerned.

VIII Definition The primary function of a definition is to describe and clarify the
meaning of a term within the law.

IX Reference The primary function of a reference is to cite another norm with
the aim of total or partial application transfer or non-application.

designed so that a norm can be mapped on exactly one label. In case of conflicts, e.g., when a
could be assigned to multiple labels, it was assigned to the class to which it primarily belongs.
For example, if a statement is a right and a legal definition, the legal expert decided which was
the primary role of the norm regarding it functional type and usage within interpretation.

The overall task resulted in a gold standard consisting of 601 labeled sentences with nine different
labels, as shown in Table 6.5. The table shows that the support of the different semantic
types varies throughout the dataset. This variation is not unusual for real datasets, but causes
challenges during the experiment and especially in machine learning approaches, where separate
strategies exist to deal with unbalanced datasets.

Experimental Setup

The approach was done considering the reference process as described in Section 3.1. The
German Civil Code was imported into the application, then split with regard to its sections and
sentences. Based on the sentence information, four iterations of writing rules and applying them
to the indexed document were performed. The rules were written directly in the implemented
system, which it also persisted, and applied it to the text.

After each iteration, the performance of the rules has been evaluated. Based on the results of
the evaluation the rules have been adapted and improved. This adaption was carried out by a
domain expert, who thoroughly analyzed the errors of the rules, and by a legal data scientist

164

6. Evaluation and Assessment

Table 6.4.: Examples of semantic types of norms from the German Civil Code.
Semantic Type Example (German) Example (English)

I Duty Der Mieter ist verpflichtet,
dem Vermieter die vereinbarte
Miete zu entrichten.

The lessee is obliged to pay
the lessor the agreed rent.

II Indemnity Veränderungen oder Ver-
schlechterungen der Mi-
etsache, die durch den
vertragsgemäßen Gebrauch
herbeigeführt werden, hat der
Mieter nicht zu vertreten.

The lessee is not responsible
for modifications to or deteri-
oration of the leased property
brought about by use in con-
formity with the contract.

III Permission Die Vertragsparteien können
eine andere Anlageform vere-
inbaren.

The parties to the contract
may agree on another form of
investment.

IV Prohibition Ferner kann der Vermieter
sich nicht auf eine Verein-
barung berufen, nach der das
Mietverhältnis zum Nachteil
des Mieters auflösend bedingt
ist.

In addition, the lessor may not
invoke an agreement by which
the lease is subject to a condi-
tion subsequent to the disad-
vantage of the lessee.

V Objection Eine zum Nachteil des Mieters
abweichende Vereinbarung ist
unwirksam.

A deviating agreement to the
disadvantage of the lessee is
ineffective.

VI Continuation Dies gilt nicht, wenn der Mi-
eter gekündigt hat.

This does not apply if the
lessee has given notice of ter-
mination.

VII Consequence Kennt der Mieter bei Ver-
tragsschluss den Mangel der
Mietsache, so stehen ihm die
Rechte aus den §§ 536 und
536a nicht zu.

If the lessee knows of the de-
fect when entering into the
agreement, then he does not
have the rights under sections
536 and 536a.

VIII Definition Ein Mietspiegel ist eine Über-
sicht über die ortsübliche Ver-
gleichsmiete, soweit die Über-
sicht von der Gemeinde oder
von Interessenvertretern der
Vermieter und der Mieter
gemeinsam erstellt oder an-
erkannt worden ist.

A list of representative rents is
a table showing the reference
rent customary in the locality,
if the table has been jointly
produced or recognized by the
municipality or by representa-
tives of lessors and lessees.

IX Reference § 551 Abs. 3 und 4 gilt
entsprechend.

Section 551 (3) and (4) apply
with the necessary modifica-
tions.

165

6. Evaluation and Assessment

Table 6.5.: Manually labeled dataset consisting of sentences extracted from the German tenancy
law.

Semantic Type Occurrence rel. Occurrence
I Duty 117 19%

II Indemnity 8 1%
III Permission 148 25%
IV Prohibition 18 3%
V Objection 98 16%

VI Continuation 21 3%
VII Consequence 117 19%

VIII Definition 18 3%
IX Reference 56 9%

Σ 601 100%

(the author of this thesis), who implemented the changes and their implications on the rules. In
total, four iterations were performed. The evaluation was done using standard metrics for the
quantitative assessment of information extraction tasks, which is described in the next section
in detail.

Evaluation

The objective of this experiment was to evaluate the degree to which legal norms in legal texts
can be classified with regard to the functional categorization as shown above. Thereby three
main issues have been analyzed:

1. The accuracy to which legal norms can be classified using rule-based information extrac-
tion.

2. The continuous improvement using multiple iterations and providing the performance mea-
sures as feedback to the domain expert after each iteration.

3. The trade-off between precision and recall in classifying legal norms with regard to the
effort that is made to create and maintain the rules for the classification.

The quantitative performance has been assessed by evaluating the results of the rules in four
iterations. To compare the performance standard, the following evaluation metrics were used:

1. Precision

2. Recall

3. F1

The evaluation as shown in Table 6.6, depicts the nine semantic types of legal norms within
the table. For each semantic type, the precision, recall, and F1 are determined within each of

166

6. Evaluation and Assessment

Table 6.6.: Four iterations of rule-based norm classification in German tenancy law.

Semantic Type Iterations
I II III IV

I Duty
Precision 0.673 0.658 0.630 0.634
Recall 0.497 0.626 0.839 0.839
F1 0.571 0.642 0.720 0.722

II Indemnity
Precision 0.194 0.194 0.715 0.714
Recall 0.375 0.375 0.385 0.385
F1 0.255 0.255 0.500 0.500

III Permission
Precision 0.886 0.854 0.822 0.822
Recall 0.531 0.530 0.831 0.831
F1 0.664 0.654 0.827 0.827

IV Prohibition
Precision 0.327 0.286 0.857 0.857
Recall 0.500 0.100 0.316 0.316
F1 0.395 0.148 0.462 0.462

V Objection
Precision 0.895 1.000 0.990 0.983
Recall 0.298 0.048 0.893 0.922
F1 0.447 0.091 0.939 0.951

VI Continuation
Precision 0.947 0.947 0.947 0.950
Recall 0.514 0.545 0.600 0.633
F1 0.667 0.692 0.735 0.760

VII Consequence
Precision 0.406 0.242 0.824 0.832
Recall 0.211 0.238 0.748 0.748
F1 0.278 0.240 0.784 0.788

VIII Definition
Precision 0.146 0.127 0.157 0.295
Recall 0.250 0.400 0.381 0.520
F1 0.185 0.193 0.222 0.377

IX Reference
Precision 0.783 0.833 0.833 0.833
Recall 0.771 0.873 0.696 0.696
F1 0.777 0.853 0.759 0.759

Arithmetic
Mean (weighted)

Precision 0.697 0.674 0.798 0.803
Recall 0.435 0.427 0.771 0.781
F1 0.518 0.465 0.773 0.782

167

6. Evaluation and Assessment

the four iterations. The overall weighted arithmetic mean improved from 0.518 (after the first
iteration) to 0.782 (after the fourth iteration).

The results show the general performance of the classifier improves, but by incorporating the
feedback of the domain expert, it also occurred that the F1 score of certain classes significantly
dropped. For example, this happened for the classes “Prohibition” after the first iteration (F1:
from 0.395 to 0.148) or for “Objection” (F1: from 0.447 to 0.091). A possible explanation can
be given by inspecting the strategy how rules are induced and created. If the domain expert
realizes that a rule is too broad and applies for too many norms, which diminishes the precision,
the scope of the rule is narrowed. In a subsequent application, the rule may then be too narrow
and misses many right classifications. This is a pattern that we constantly observed during the
experiment.

Critical Reflection

The evaluation used established methods in information extraction to classify the semantic type
of a legal norm Chiticariu et al. (2013). Within the experiment, a domain expert specified pat-
terns, which were coded into a formal pattern description language. The evaluation showed that
there are certain classes, which could be extracted accurately, such as “Objection” or “Permis-
sion”. However, several limitations were identified during the process and the implementation
of the rules.

The evaluation already showed huge differences among the categories in terms of their classifica-
tion accuracy. As mentioned above, classes such as “Objection” ,”Permission”, or “Consequence”
were identified with a reasonable 𝐹1 score. In addition, there are classes with a lower 𝐹1 score,
but with a high precision, e.g., “Continuation”, or recall, e.g., “Duty”. Interestingly, while creat-
ing the rules there is a tradeoff between precision and recall in many cases. One can formulate
the rules in such a way that it applies for a large set of norms, which increases the recall, but
decreases the precision and vice versa.

The main problem with rule-based information extraction is the large linguistic variety of natural
language. The attempt to formalize the expressiveness in patterns is very challenging and
requires a careful and methodological approach. Patterns are formalized and once applied they
either match or do not match a given textual phrase. However, if the text just slightly differs
from the specified pattern, there will be no match. Those near misses cause problems because
the existence of a single word, i.e., token, that does not change the semantics of a phrase can
cause such a near miss.

Another challenge for the rules is the so-called domain portability. Usually, those rules are
created for an information extraction task within a particular domain, e.g., tenancy law. In
general those rules cannot be applied to another domain without major adaptations. However,
within this research no attempt has been made to test the domain portability of the rules as
formalized for the tenancy law.

Although the definition of the rules is a labor-intensive and tedious task, the efficiency with
which those rules could be applied to the legal text was good. The classification was performed
almost in real time without considerable latency or delays.

168

6. Evaluation and Assessment

6.4. Performance Evaluation: Classifying Legal Norms with
Active Machine Learning

Motivation

The analysis of statutory texts with regard to the semantic types of legal norms, is a desirable
objective for the domain of legal informatics. Making the knowledge of domain experts explicit
is required in order to enable computational legal reasoning and the extraction of legally rele-
vant information from documents. In addition to the existing approaches on the classification
of semantic types of norms using rule-based approaches, applying machine learning allows to
extend the usage of technology even further. Although rule-based information extraction is still
a commonly used technique for industry and sciences, the advances in machine learning are
supposed to contribute to the negative aspects of rule-based information extraction and may
help to diminish them.

Classification of legal norms can be addressed from different perspectives, e.g., from the philo-
sophical, the legal-theoretical or, a the constructive one. With the stated motivation, a classifi-
cation regarding functional aspects has been chosen. Functional classes of norms address the role
of a norm within a given legal statute. These classes were derived bottom-up and harmonized
within a taxonomy.

Objective

The objective of this evaluation is to assess the performance of active machine learning to
classify legal norms from German statutory text regarding their semantic type, i.e., functional
class. Thereby, the publicly available data was used, namely German federal laws from the
domain of civil law.

The active machine learning approach was chosen in order to extend the rule-based information
extraction and to contrast both approaches for information extraction. In addition, the active
machine learning approach was compared against supervised machine learning without query
strategies (random selection). This showed that using a query strategy is — at least for certain
classifiers — superior to random selection strategies.

Data

The functional classification system divides legal norms into four types of statements: normative,
auxiliary, legal-technical, legal-mechanism. The taxonomy differentiates normative statements
into the following categories: statutory duty, statutory right, shall-do rule, and two types of con-
sequence rules, namely positive and negative ones. Table 6.7 shows an overview of all classes.

The category of statutory duties further divides the subclasses order and prohibition. The class
of statutory rights is decomposed into subclasses of permission and release. Auxiliary statements
are divided into statements about terms and statements about norms. The first category can be
divided further into explanatory, extending and limiting statements, in which the explanatory

169

6. Evaluation and Assessment

Normative statement

Statutory duty Order
Prohibition

Statutory right Permission
Release

Shall-to-do rule Shall-to-do rule

Legal consequence Legal consequence positive
Legal consequence negative

Auxiliary statement

Statement
about terms

Explanatory
statement

Definition
Specification

Extension and limitation

Statement
about norm

Legal validity Legal validity and
non-validity

Scope of
application

Temporal
Personal
Factual

Area of
application

Extension
Limitation
Definition

Modification

Legal-technical statement Reference
Continuation

Legal-mechanism statement Procedure
Objection

Table 6.7.: Functional type classification of statutory legal norms for German legislative
texts (Waltl et al., 2017b). The table is organized as hierarchy of types being more
general on the left and more specific on the right.

statements subsume the subcategories of definition and specification statements. The latter
category is subdivided into modifications, legal validity, scope, and area of application categories.
Norms, which are mainly legal-technical or legal-mechanism, were further differentiated into the
categories of references and continuation, and into the categories of procedure and objection in
the second case. The taxonomy was developed for German statutory legal norms focusing on
civil law by two legal experts. The 22 different functional types and their hierarchical structure
are shown in Table 6.7. The support of the different types varies heavily throughout the classes.
The focus was to provide a comprehensive functional classification.

In order to prepare a suitable dataset for the norm classification experiment, one legal expert
assigned a semantic type to every sentence of the tenancy law section in the German civil code
(§535 - §595), published on March 1st, 2017. As every sentence was assigned to exactly one
class, potential multi-labels have not been assigned. A norm was assigned to the class to which
it primarily belongs. For example, if a statement is a right and a legal definition, the legal expert
decided which was the primary role of the norm regarding its functional type and usage within
the interpretation.

The overall task resulted in a gold standard consisting of 532 labeled sentences with 16 different

170

6. Evaluation and Assessment

labels. As 14 of the 22 labels had less than 1,2% support, they were removed from the dataset
used. The 504 remaining sentences were each assigned to one of the eight remaining classes.
The classes and their distribution and within the gold standard is illustrated in Table 6.8.

Type (German) Type (English) Occurrences Support
Recht statutory right 126 25,00%
Pflicht statutory duty 109 21,63%
Einwendung objection 92 18,25%
Rechtsfolge legal consequence 50 9,92%
Verfahren procedure 49 9,72%
Verweisung reference 46 9,13%
Fortführungsnorm continuation 19 3,77%
Definition definition 13 2,58%

Σ 504 100,00%

Table 6.8.: Semantic types and their distribution within the manually labeled dataset.

This dataset was split into a test and a training data set. The test set consisted of 126 sentences
(25%), which were randomly but representatively selected. The remaining 378 sentences (75%)
were used as training set and iteratively provided to the active machine learning classifiers. The
features provided to the classifiers were the tokens, in a bags-of-word representation and the
corresponding POS information for each token.

Experimental Setup

The instances for the first learning round, i.e., the seed set, were randomly queried from the
unlabeled training set. They have been labeled automatically according to the gold standard
and used for training the classifier in the first round. For every subsequent learning round, the
five most informative instances according to the query strategy were used. After each round, the
trained model was applied to the test data to evaluate the performance of the current model.
This process was repeated until all instances of the training set were labeled (72 learning rounds
in total).

To compare the performance with the random selection of instances, the classifiers have been
trained subsequently over 72 rounds. In each round, a randomly selected set of labeled instances
was added to the training set. The training was implemented in such a way that the sequence
in which the training data was provided was preserved.

The classifier NB was used with standard parametrization of MLLib. Due to performance
reasons, the number of iterations for LR was decreased from 100 (default) to 10. The MLP had
four layers, while the number of nodes on the two intermediate layers was 20 and 10, respectively.
The size of the input layer was 213 and the size of the output layer eight (i.e., number of types).
The size of the seed set was 18 instances for each iteration.

171

6. Evaluation and Assessment

Evaluation

The objective of this experiment was twofold, focusing on assessing

1. the overall quality of legal norm classification in German legislative texts using machine
learning and to evaluate

2. machine learning performance using query strategies compared to the absence (random)
selection strategies.

This was achieved by evaluating the model’s performance by testing it after each learning
round. To compare the performance of the ~acAML approach, standard evaluation metrics
were used10:

1. Precision

2. Recall

3. F1

4. Accuracy

Additionally, the performance was logged after each round to monitor and visualize the learning
progress.

Each classifier was tested with each of the four implemented query strategies (see Section 3.5.5.1).
No query strategy has been significantly superior compared to the others. Thus, the average
accuracy was calculated combining the result of all query strategies. This was done for the
classifiers Naive Bayes (NB), logistic regression (LR), and a multilayer perceptron.

The first result of the evaluation is shown in Figure 6.2. There, the x-axis indicates the learning
progress as the number of instances labeled (relatively to the overall amount of training instances
available), and the y-axis depicts the average accuracy of the classifier. It shows the performance
of classifiers applying query strategies opposed to random selection machine learning.

Figure 6.2 shows that using query strategies is clearly superior to random instance selection
when using NB and LR. The usage of query strategies boosted the learning behavior, so that
classifiers are trained faster or with less instances required. In addition, they also resulted in a
higher overall accuracy obtained during the classification process.

For the classifiers, the average accuracy was up to 10% higher compared to the random ap-
proach after a short “discovery phase”. This can be observed for the NB and LR classifiers in
the region between 20%-70% labeled instances. Additionally, the accuracy obtained was higher
for all instances and, beside a few exceptions, never below the random selection machine learn-
ing. Within an increasing number of active machine learning rounds, the chance of overfitting
increases as well. As one would expect the difference between the approaches diminishes after
a large number of labeled instances (approx. 70%-95%). Finally, all the classifiers result in the
same accuracy for both approaches: with and without query strategies.

The results in Figure 6.2 furthermore show the importance of having a "high quality seed". As
10Note: no binary classification

172

6. Evaluation and Assessment

the seed set in this study was created randomly throughout different experiments, the learning
differs significantly within the initial phases. After a discovery of the version space (so-called
discovery phase), AML was significantly superior to classifiers using a random selection strategy.
An improved coverage of the version space resulted in a higher accuracy while only a small set
of the instances was labeled. In addition, the maximum accuracy of about 75% was achieved
having labeled only 40% of the instances. This an increase of more than 6% requiring only 35%
of the training instances.

A detailed inspection of the results is shown in the Figure 6.3. In this overview, the F1 measure is
depicted and differentiated by the individual classes. The detailed graphs are only shown for the
best performing classifier, namely LR. For the analysis of the performance of individual classes,
consolidated evaluation measures (averaging the results of all four query strategies) obtained by
the LR are used. Figures 6.4 and 6.5 show the consolidated curves for the evaluation metrics
precision and recall.

Several conclusions can be drawn from this qualitative inspection. While norm sentences be-

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Labelled instances in %

A
cc

ur
ac

y

NB NB rand.
LR LR rand.

MLP MLP rand.

Figure 6.2.: Average accuracy of classifiers against random learning. Comparison of Naive Bayes
(NB), logistic regression (LR), and multilayer perceptron classifiers (MLP).

173

6. Evaluation and Assessment

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

F
1

right obligation
objection definition

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Labeled instances in %

F
1

procedure reference
continuation legal consequence

Figure 6.3.: Average 𝐹1 per type using logistic regression classification.

longing to the semantic type objection are recognized very well, having an F1 of almost 0.90 after
0.40 of training, norms referring to the type definition or procedure can hardly be classified. The
reason for the low end-value for the type definition might be the lack of sufficient support within
the selected training set (less than 3%). This results in a very small training set. In contrary, the
training set for the type continuation contains only two more instances, and this type has an F1

value of more than 0.80. This indicates that the classifier the lack of precision and recall is also
due to other facts, such as a large linguistic variety or lack of proper features for this semantic
type. Interestingly, the precision for the detection of definitions is very high, the recall is never
above 50% and drops down to 22% towards the end of the learning. Seemingly, interferences
with other types diminish the detection rate of definitions. A more detailed analysis on reasons
for this phenomenon has not been performed within this evaluation.

However, considering the intermediate results, the types continuation and legal consequence have
a very high precision and a good recall. The reason for the worsening results is more likely caused
by the overfitting or interference with other semantic types. Overfitting can also be observed
by inspecting the learning behavior for the type procedure. Although the overall performance
is never very good (F1 approx. 0.50 maximum), the performance is best during 40% to 65% of
labeled instances. After all learning rounds, type shows the worst results, having both a low
precision and recall. Although the number of training instances is high for the type obligations,

174

6. Evaluation and Assessment

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

right obligation
objection definition

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Labelled instances in %

P
re

ci
si

on

procedure reference
continuation legal consequence

Figure 6.4.: Average precision per type using logistic regression classification.

the classifier only achieves an overall performance of F1 approx. 0.60. The norm type right had
the highest recall towards the end (95%), but a rather low precision (0.68).

Critical Reflection

This evaluation showed the performance of analyzing legal norms on the sentence level by clas-
sifying them into different categories with respect to their semantic type. Thereby, the semantic
type follows the functional role of a norm with in a legislative text. The assessment revealed
that AML using query strategies is superior to ML without query strategies. However, several
open questions remain that have not been addressed with this evaluation.

The dataset was taken from a sub-domain of Germans civil law, namely tenancy law. It only
consisted of 504 sentences, which have been labeled by one legal expert. The phenomenon of
inter-annotator agreement has not been studied. With one domain expert labeling the data, the
likelihood of consistency throughout the classes is increased. However, the dataset remains very
limited. Having a small data set as used in this evaluation excludes a couple of machine learning
techniques that are very common today, including artificial neural networks.

175

6. Evaluation and Assessment

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

right obligation
objection definition

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Labelled instances in %

R
ec

al
l

procedure reference
continuation legal consequence

Figure 6.5.: Average recall per type using logistic regression classification.

The portability of the trained classifiers into another domain has not been studied either. It re-
mains open whether the classifiers, trained for the tenancy law, works similarly well on predicting
the class types of other, related legal domains, e.g., contract law or family law.

Regarding the analysis of the performance in the tenancy law, a more detailed error-analysis is
required to improve the classifiers. The system has the possibility to provide more features for
each norm, such as the context in which a sentence occurs, or additional linguistic features. Due
to the complexity, these investigations have been left open for future research. This includes an
analysis of decisive features, but also of parameters of classifiers and query strategies.

Beside to the open questions and potential directions for deeper analysis, the overall approach
is a good completion to the rule-based approach of classifying legal sentences into different
categories and types. Combining them, as conceptually proposed by Waltl et al. (2017b) seems
to be a way forward in semantically analyzing legal norms.

176

6. Evaluation and Assessment

6.5. Formalizing Termination Notice Periods of Germany’s
Tenancy Law

Background and Motivation

The German tenancy law is part of the civil law and codified in the German Civil Code §§ 535 –
597. The law regulates the legal framework based on which rental of goods, i.e., lease, can be
agreed on. These are basically bilateral agreements between a lessor and a lessee. Just as both
parties agree on the applying terms and conditions both parties have the right to terminate the
lease. To settle this the German legislator has specified a couple of legal norms that state the
conditions that need to be considered. This case study formalized a particular set of conditions,
namely the termination notice periods of leases for an indefinite period of time. These are highly
relevant for German citizens, as the agreement on renting residential space for an indefinite period
of time is very common.

Within the German Civil Code, the appropriate norms are in the second book, title 5 “Lease,
usufructuary lease”, chapter 5 “termination of the lease”, subchapter 2 “leases for an indefinite
period of time”: §573 and §573c. An excerpt of the sections is stated below.

German Civil Code §573: Notice of termination by the lessor

(1) [...] termination for the purpose of increasing the rent is excluded.

(2) A justified interest of the lessor in the termination of the lease exists, without
limitation, in cases where

1. the lessee has culpably and non-trivially violated his contractual duties,

2. the lessor needs the premises as a dwelling for himself, members of his family or
members of his household, or

3. the lessor, by continuing the lease, would be prevented from making appropriate
commercial use of the plot of land and would as a result suffer substantial disadvan-
tages; the possibility of attaining a higher rent by leasing the residential space to others
is disregarded; [...]

German Civil Code §573c: Termination notice periods

(1) Notice of termination is allowed at the latest on the third working day of a
calendar month to the end of the second month thereafter. The notice period for the
lessor is extended, by three months in each case, five and eight years after the lessee
is permitted to use the residential space.

The essence of the two norms, namely to decide whether a termination is valid or not, can be
formalized into a model-based decision structure to foster its operationalization and execution.

177

6. Evaluation and Assessment

Objective

The objective of this case study is to show the feasibility of model-based reasoning to formalize
complex decision structures of German legislative texts. The implemented model should be
applicable and executable to support during decision-making processes on deciding whether a
termination is valid or not.

Models are always intended to serve a particular purpose. Based on this case study, different
conceptual decisions, such as the granularity of modeling, and the modularity of types, and
strategies to deal with uncertainties and vagueness within legal texts are discussed.

Formalization

The two sections of the German civil code state different conditions that need to be fulfilled for
a termination to be valid. These conditions can either be evaluated as true or false, i.e., Boolean
values, or can be represented as numerical expression on date values. In a manual process, the
semantics is captured into a model based on the representation consisting of types, attributes,
and relations.

Semantic Model

NoticePeriod

/ withinThirdDayOfMonth: Boolean
/ noticePeriodInMonth: Boolean

Reason

- id: String
- dueToIncreasingRent: Boolean
- lesseeViolatedContractualDuties: Boolean
- lesserNeedsPremisesForHimself: Boolean
- lesserIsPreventedFromCommercialUse: Boolean

/ isValidReason: Boolean

Lease

- name: String
- startedLeasing: Date
- endLeasing: Date

/ isTemporary: Boolean

Termination

- id: String
- notificationDate: Date
- terminationDate: Date

/ hasValidReasons: Boolean
/ wasWithinLimits: Boolean
/ isValid: Boolean

not i f iedWi th in

0...1

0...1

 j u s t i f y i n g
0...1 0...1

 te rminat ionOf
0...10...1

Figure 6.6.: Facts focusing on termination periods and justification.

The semantic model of the situation for the termination of a lease by the lessor is shown in
Figure 6.6. Therein, four different types were identified:

1. Termination: The actual termination object, the validity of which should be confirmed
or rejected.

2. Lease: Describing the object that is leased including the information of agreed start and
end date.

178

6. Evaluation and Assessment

3. Reason: The termination has to be justified. Therefore, several reasons are legally valid,
while others are not. Among other issues, this serves to avoid arbitrariness of the lessor
and protects the lessee.

4. NoticePeriod: The time constraints that exist for the termination object. These depend
on the time a lessee has been leasing the lease object.

The relations among these objects are chosen in a way that the Termination type is central.
Lease, NoticePeriod, and Reason relate to these as they contribute to the overall validity of the
termination. The multiplicities are 0...1 in every direction, as no type must necessarily refer to
another type, but would make the termination invalid by default. For example, the absence of
reasons would automatically invalidate the termination.

The relations can be formalized as follows:

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑂𝑓 ⊆ 𝐿𝑒𝑎𝑠𝑒× 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

(𝑙, 𝑡) ∈ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑂𝑓 =⇒ 𝐿𝑒𝑎𝑠𝑒 𝑡 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑏𝑦 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑡

𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑𝑊𝑖𝑡ℎ𝑖𝑛 ⊆ 𝑁𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑× 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

(𝑛, 𝑡) ∈ 𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑𝑊𝑖𝑡ℎ𝑖𝑛 =⇒ 𝑁𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑 𝑛 𝑎𝑝𝑝𝑙𝑖𝑒𝑠 𝑡𝑜 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑡

𝑗𝑢𝑠𝑡𝑖𝑓𝑦𝑖𝑛𝑔 ⊆ 𝑅𝑒𝑎𝑠𝑜𝑛× 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 :

(𝑟, 𝑡) ∈ 𝑗𝑢𝑠𝑡𝑖𝑓𝑦𝑖𝑛𝑔 =⇒ 𝑅𝑒𝑎𝑠𝑜𝑛 𝑟 𝑗𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑠 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑡

(6.1)

Executable Model

In addition to the semantic model elements, the derived attributes formalize the executable
semantics of the model. They take into account the existing types, attributes, and relations; and
they reason over the instances and their attributes. Thereby, seven different derived attributes
were formalized:

𝑡 : 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =⇒ 𝑡 is instance of 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑙 : 𝐿𝑒𝑎𝑠𝑒 =⇒ 𝑙 is instance of 𝐿𝑒𝑎𝑠𝑒
𝑛 : 𝑁𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑 =⇒ 𝑛 is instance of 𝑁𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑

𝑟 : 𝑅𝑒𝑎𝑠𝑜𝑛 =⇒ 𝑟 is instance of 𝑅𝑒𝑎𝑠𝑜𝑛

(6.2)

The Equation 6.2 instantiates and assigns a concrete type to the variables 𝑡, 𝑙, 𝑛, 𝑟.

𝑙.𝑖𝑠𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 =

{︃
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑙.𝑒𝑛𝑑𝐿𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑠 𝑛𝑢𝑙𝑙

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6.3)

179

6. Evaluation and Assessment

𝑡.ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝑅𝑒𝑎𝑠𝑜𝑛𝑠 = 𝑟.𝑖𝑠𝑉 𝑎𝑙𝑖𝑑𝑅𝑒𝑎𝑠𝑜𝑛

for (𝑟, 𝑡) ∈ 𝑗𝑢𝑠𝑡𝑖𝑓𝑦𝑖𝑛𝑔

𝑡.𝑤𝑎𝑠𝑊𝑖𝑡ℎ𝑖𝑛𝐿𝑖𝑚𝑖𝑡𝑠 =

{︃
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑡.𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒− 𝑟.𝑛𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝐼𝑛𝑀𝑜𝑛𝑡ℎ ≥ 30

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

for (𝑛, 𝑟) ∈ 𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑𝑊𝑖𝑡ℎ𝑖𝑛

𝑡.𝑖𝑠𝑉 𝑎𝑙𝑖𝑑 = 𝑟.ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝑅𝑒𝑎𝑠𝑜𝑛𝑠 ∧ 𝑟.𝑤𝑎𝑠𝑊𝑖𝑡ℎ𝑖𝑛𝐿𝑖𝑚𝑖𝑡𝑠

(6.4)

𝑟.𝑖𝑠𝑉 𝑎𝑙𝑖𝑑𝑅𝑒𝑎𝑠𝑜𝑛 = ¬𝑟.𝑑𝑢𝑒𝑇𝑜𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑅𝑒𝑛𝑡

∨ 𝑟.𝑙𝑒𝑠𝑠𝑒𝑒𝑉 𝑖𝑜𝑙𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑎𝑙𝐷𝑢𝑡𝑖𝑒𝑠

∨ 𝑟.𝑙𝑒𝑠𝑠𝑒𝑟𝑁𝑒𝑒𝑑𝑠𝑃𝑟𝑒𝑚𝑖𝑠𝑒𝑠𝐹𝑜𝑟𝐻𝑖𝑚𝑠𝑒𝑙𝑓

∨ 𝑟.𝑙𝑒𝑠𝑠𝑒𝑟𝐼𝑠𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑𝐹𝑟𝑜𝑚𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙𝑈𝑠𝑒

(6.5)

𝑛.𝑤𝑖𝑡ℎ𝐼𝑛𝑇ℎ𝑖𝑟𝑑𝐷𝑎𝑦𝑂𝑓𝑀𝑜𝑛𝑡ℎ = 𝑡.𝑛𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒.𝑑𝑎𝑦 ≤ 3

for (𝑛, 𝑡) ∈ 𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑𝑊𝑖𝑡ℎ𝑖𝑛

𝑛.𝑛𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝐼𝑛𝑀𝑜𝑛𝑡ℎ =

⎧⎪⎨⎪⎩
8, 𝑖𝑓 𝑡.𝑛𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒.𝑌 𝑒𝑎𝑟 − 𝑙.𝑠𝑡𝑎𝑟𝑡𝑒𝑑𝐿𝑒𝑎𝑠𝑖𝑛𝑔.𝑌 𝑒𝑎𝑟 ≥ 8

5, 𝑖𝑓 𝑡.𝑛𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒.𝑌 𝑒𝑎𝑟 − 𝑙.𝑠𝑡𝑎𝑟𝑡𝑒𝑑𝐿𝑒𝑎𝑠𝑖𝑛𝑔.𝑌 𝑒𝑎𝑟 ≥ 5

2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

for (𝑛, 𝑡) ∈ 𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑𝑊𝑖𝑡ℎ𝑖𝑛 𝑎𝑛𝑑 (𝑙, 𝑡) ∈ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑂𝑓

(6.6)

The Equations 6.3 – 6.6 formalize the executable semantics between the attributes and derived
attributes. The formulas have been expressed in MxL to enable automated reasoning. In
addition, the formalization allows to access the AST for the inspection and analysis of the
decision structure.

The visualization of two explanations is shown in Figure 6.7. Thereby, the type information,
the reasoning expression, and the AST are depicted. The logical expressions for both derived
attributes follow a classical decision trees, in which the leaves are attributes and the nodes form
the logical connection between them.

Execution & Instantiation

Once the model is created, it can be executed, i.e., instantiated, via the knowledge acquisition
component. Therefore, the facts and evidence are provided to the reasoning component, based
on which the inference engine draws the conclusions for the concrete case.

180

6. Evaluation and Assessment

Figure 6.7.: Explanation for two derived attributes: isValid and isValidReason.

Figure 6.8.: Knowledge acquisition interface for the termination type.

Figure 6.8 shows the knowledge acquisition component for the termination type. The left part
of the system visualizes the model, the middle part creates the input fields to insert the facts,
and the right part provides text fields with recommended readings, which are basically the parts
of the legal document that was underlying the interpretation process.

The values in the figure refer to the termination type, with the name “Termination”. A user
has already inserted the notificationDate (01.11.2017) and the terminationDate (31.12.2017).
Additionally, the references to the lease type, the reason type, and the noticePeriod type have
been set. For the remaining types, which are not shown in the figure, the attributes have been
set as well.

181

6. Evaluation and Assessment

Figure 6.9.: Instantiation of the semantic model showing the atomic and derived attributes, as
well as relations among instances.

The full instantiation can be seen in Figure 6.9. The instantiation shows the four different
instantiated types:

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 : 𝑇𝑦𝑝𝑒

𝑇_𝑋𝑌 123 : 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛𝑠𝑡𝑟𝑎𝑠𝑠𝑒 : 𝐿𝑒𝑎𝑠𝑒

𝐹𝑎𝑐_𝑁𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝑠 : 𝑁𝑜𝑡𝑖𝑐𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝑠

𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝑅𝑒𝑎𝑠𝑜𝑛 : 𝑅𝑒𝑎𝑠𝑜𝑛

(6.7)

The values of the attributes, relations, and derived attributes are shown in the figure. The
inference engine determines the value for every derived attribute. It can be seen that the value
for the derived attribute “isValid” (see Equation 6.4) is “false”. Although the termination has
valid reasons (lesseeViolatedContractualDuties is true), the notice period as required by law has
not been considered adequately. The notification date for termination was within the first three
day of a month, however, the termination date lies only 3 months ahead, which is not allowed.
The lease object has been leased for seven years (since 01/01/2010, according to the facts), and
by law, after 5 years of leasing, the termination period has to be at least five months ahead.
Hence, the instantiation view, which is automatically created, gives an instant overview of all
the provided facts and their evaluation. It allows to validate and analyze a given case.

Based on this formalization of a small but highly relevant section of the German tenancy law,
the potential of model-based reasoning has been shown. It highlights the benefits of reasoning on

182

6. Evaluation and Assessment

logical and arithmetical expressions and combines these with structuring the domain knowledge
by applying techniques for knowledge representation, such as ontologies. However, a couple of
drawbacks and limitations exist within this approach, which will be investigated in the next
section.

Critical Reflection

The critical reflection for the modeling part is subdivided into three different areas, namely logic,
modeling, and functionality.

Logic

From a formal point of view, the MxL fulfills certain desirable properties, such as propositional
and arithmetical reasoning. In addition, it is a higher-order logic and can easily be extended
with custom Java functions.

However, it does not natively support temporal reasoning. Explicit expressions of time and
calculations, as well as comparisons are valid, but expressing propositions that need a qualified
temporal layer are not possible. These include classical temporal operations like “until” or
“release”.

In addition, defeasible reasoning, which is particularly relevant for argumentation logics, is also
not supported. The approach does not allow the specification of contradicting or conflicting
rules, unless their conflicts are explicitly resolved, for example in case differentiation.

Until now, the system is focusing on formalizing statutes and has not been extended for case-
based-reasoning. Support of case-based-reasoning would be highly relevant to provide decision
support for indeterminate or vague (legal) terms, which are widespread in German laws. Cur-
rently, vague attributes are modeled as explicit and their final value, e.g., true or false, needs to
be decided by the user providing the data within the knowledge acquisition phase.

Modeling

The fact that the basic structure always has to comply with the model-based approach, which
requires a matching with types, attributes, relations, and derived attributes, is a constraint that
must not be ignored. Pure logic programming, for example, allows for unconstrained decision
structures. The modeling approach as such does not contribute to the expressiveness of the
logical formalism as such, although it reflects real-world entities.

As models are always designed to fulfill a pre-defined purpose and as there are different design
decision during the modeling process, a text can be interpreted and formalized into different
models. Semantically equal models can look differently. For example, the formalization for the
notice of termination by the lessor as shown in Figure 6.6 uses a separate type for the notice
period. This would not be necessary, as all its derived attributes could also be expressed in
the termination type. The definition and analysis of best practices and patterns for semantic

183

6. Evaluation and Assessment

modeling has not been studied in the thesis at hand. However, interesting follow-up questions
arise instantly, which can be addressed by further research.

Separating the modeling process from its execution requires a sound and consistent model.
Contradictions in the model cannot occur, as expression language would not allow to express
them. Hence, consistency by design is enforced, which is an additional restriction for the overall
modeling approach.

Functionality

In terms of functionality it is difficult, and most likely impossible, to ex ante define all the
different functions that are required to fully formalize the German law. This includes functions
to determine certain properties or values, such as checking whether a given day is a weekday or
is within the first three working days of a month.

The determination of those functions and their subsequent implementations are left open for
further research. The systems modularity fosters the integration of new functions and offers the
expressiveness of the Java programming language for new functions and operators.

184

CHAPTER 7

Conclusion

This chapter reflects on the contribution of this thesis and summarizes its results. Addition-
ally, successive and emerging research questions for further research are briefly outlined and
discussed.

The chapter is structured in three parts: Section 7.1 summarizes the main outcome of the the-
sis and discusses the results with respect to the initially formulated research questions. The
critical reflection of the results is provided in Section 7.2. The limitations are analyzed in five
subsections, each of which focuses on a different aspect of the overall concept and implemen-
tation. Finally, Section 7.3 describes different follow-up research paths to be followed based on
this thesis. These cover technical approaches, but also challenges regarding legal science and
practice.

7.1. Summary

The overall objective of the thesis is summarized within the main research hypothesis, as stated
in Chapter 1:

Research hypothesis: A collaborative software environment can support the se-
mantic annotation of legal documents using text analytics components to design and
formalize computational models within ontological decision structures.

To verify (or falsify) this hypothesis was narrowed down into sub-problems, which could be han-
dled efficiently. This led to the structure reflected within the thesis: seven chapters, describing
different aspects and contributions of the overall research.

In Chapter 1, this thesis establishes the scientific problem of legal text analytics and of compu-

185

7. Conclusion

tational models for legal reasoning. Based on the reasonable assumption that the work of legal
experts, i.e., scientists and practitioners, is knowledge-, time-, and data-intensive, the chapter
established the use of technology as a means to support them in these processes. According to
commonly accepted literature studies and recent insights, two main research directions address
the analysis of legal documents using software and the representation of interpreted legal de-
cision structures for computational reasoning. Within this section the research hypothesis was
divided into eight different but connected research questions.

In order to understand the state-of-the art in software support for the legal domain, a summary
of previous research was provided in Chapter 2. The chapter described different approaches that
have successfully been applied to semantically analyze legal documents. The focus within this
section was not only to investigate different use cases, but also to describe the concrete software
technical implementations that have been applied. Based on this consideration, a main research
gap was derived, namely the lack of a generic data analysis framework for legal documents. Al-
though several different attempts have been made to extract and structure legal documents along
different criteria using software tools, the community lacks a framework that can be extended
to support different use cases, at the same time allowing the reuse of already implemented com-
ponents. This would decrease the effort of reimplementing frameworks and lower the barrier for
extensive research. The second main focus of Section 2 was to provide an overview of approaches
in model-based, i.e., ontological, legal reasoning to formalize of legal decision structures. Since
the adoption of the semantic web as a standard in structuring knowledge in the web, the idea to
create a formal representation for legal knowledge is highly attractive. The main contributions
were discussed and regarding their relevancy for this research, explained in detail.

Based on the prior scientific contributions and the identified research gap, the framework for col-
laborative data science, i.e., text analytics, for legal documents was conceptualized in Chapter 3.
The main focus was to describe an architecture to implement three main software technology
principles: i) modularity of components, ii) expandability regarding additional analysis function-
alities, and iii) the providing collaborative features. The collaborative aspects were covered via
the implementation of the framework within a Java web application. The architecture needed to
support the management of the legal documents, i.e., mainly composed of textual information,
and the processing of legal documents, i.e., application of software components for semantic
analysis, including the extraction of structured information from the text. For the manage-
ment of legal documents, a Java implementation with a generic data model was designed. The
extraction processes were performed within a modular Pipes & Filters architecture. Based on
the extensive analysis and comparison of different frameworks, the Apache UIMA was identified
to be the most suitable framework for this task. It allows an easy reuse of components and
the configuration of robust pipelines to analyze legal documents in a web application. Further-
more, the access for machine learning functionality was provided by an additional service, which
was built on Apache Spark. The focal point thereby was the creation of a system, that would
learn based on the interaction, i.e., supervised machine learning, with the system during manual
interpretation and analysis of legal documents.

In Section 4, the main idea of combining knowledge engineering and computational reasoning
was developed and extended beyond the current state-of-the-art. Whereas previous approaches
focus on the ontological modeling and the usage of description logic to formalize dependen-

186

7. Conclusion

cies among the entities and types, the proposed method extended this by adapting an existing
domain-specific language that allows for higher-order logical and arithmetical reasoning (see
Section 4.2). In doing so, a known limitation of description logics, such as OWL, was overcome.
The insights from knowledge engineering were incorporated by providing means to formalize
interpreted legal norms into computational models consisting of types, attributes, and relations.
During the interpretation phase, the user could formulate executable representations supporting
computational reasoning. The executable semantics was formalized as a Model-based Expres-
sion Language expression, which has extensively been studied in a research group since 2013
(see Reschenhofer 2013). The model-based reasoning approach was conceptualized for a full-
stack implementation, including a model-store, inference engine, and interaction components.
An extensive discussion of components to increase the transparency of automated decision mak-
ing was provided (see Section 4.4), resulting in the implementation of three different components
to analyze the formalized and instantiated decision structure: instance and fact view (see Sec-
tion 4.4.1), abstract syntax tree (see Section 4.4.2), and data flow (see Section 4.4.3).

Based on the conceptualization as provided by the Chapters 3 and 4, the concrete implemen-
tation was illustrated. It described the main parts of the implementation structured along the
three main contributions: the framework for processing of legal documents using a text analy-
sis engine (see Section 5.2); the active machine learning component, which is part of the text
analysis engine (see Section 5.3); and the model-based reasoning component, which is mainly
consisted of the provision of interaction components and the integration of an existing meta-
model based information system (see Section 5.4). The main challenge was to follow the design
principle of modularity to foster the implementation of new functionalities without unintended
changes in or side-effects of the existing methods. The technology used to integrate different
software components within a processing pipeline served as an example to display the modu-
larity. Along this pipeline, different semantic operations, such as tokenization, POS tagging,
or pattern detection, were performed. Each software component added information, which was
used by subsequent components. This modularity ultimately led to a generic software frame-
work, allowing components to be exchanged flexibly. This could be used to extend the analysis
either to new document types, or to documents written in another language. In addition, this
decreased the barrier of exchanging software components among research groups.

The evaluation Chapter 6 was structured into four different and complementing sections. The
main idea was to assess the quality and applicability of the prototype in the individual as-
pects. First, Section 6.2 described a case study, that was performed with an industry partner
on the software-supported analysis of tax law judgments to assist editorial processes on auto-
matically extracting information from legal documents. The results showed that for narrow and
well-defined use cases, a high precision (0.94) and recall (0.90) could be achieved (𝐹1 = 0.92).
Then, Section 6.3 describes the rule-based information extraction performance for classifying
legal norms into different functional categories. The usage of rules to extract information from
textual documents is still predominant in practice (see Chiticariu et al. (2013)); however, their
problems and limitations are hardly discussed in current academic research. Following these
considerations, legal norms, based on their functional role within the statutory text, were also
classified using a supervised (active) machine learning approach (see Section 6.4). We showed,
that active machine learning was superior to classical supervised machine learning in text clas-
sification. For several classes, i.e., rights and objections, a high accuracy (> 0.90) was achieved.

187

7. Conclusion

Classifiers showed problems with classes that rarely occurred among the training data set, e.g.,
legal definitions. Finally, the formalization of the legal decision structure was performed for a
small but relevant problem in the German tenancy law: the termination period for the cancella-
tion of a rented apartment (in Section 6.5). The potential of structuring the decision structure
into types, attributes, relations, and derived attributes was shown.

Based on the main objective of the thesis, the research hypothesis was divided into several
individual research questions, thus allowing a structured approach for the investigation. Those
eight different research questions were formulated that are subsequently addressed and answered
within this thesis. In the following, we recall these research questions, complemented by potential
answers that could be deducted from the results generated in this thesis:

Research question 1: What is the state-of-the-art in software-supported analysis
of textual documents in the legal domain focusing on legislative and judicial texts?

Based on scientific literature, the state-of-the-art analysis was assessed considering most recent
publications and projects in the field of legal informatics. The most common technological
frameworks used to semantically analyze legal documents are Apache UIMA or GATE. However,
in many research projects, no efforts are made at all to create an advanced legal text analytics
framework, that might serve as an ecosystem or platform for the analysis of legal documents. It
seems possible that research tries to avoid the “overhead” of creating such a platform, although
the effort would pay-off in the long term. From the technologies used, the application of a broad
variety of different methods from regular expression to neural networks can be observed (see
Section 2.1 and Section 2.2).

Research question 2: What are the methods and tools to formalize ontological
decision structures emerging from statutory texts?

Many different attempts have been made to formalize statutory texts, which showed the chal-
lenges and the great potential thereof. Regarding the formalization of decision structures, de-
ductive reasoning systems including non-monotonic and temporal reasoning, can be considered
state-of-the art. Ontologies are commonly accepted to structure legal knowledge, but there seem
to be no serious attempts to use description logic in order to perform advanced legal reasoning.
This is certainly also due to the lack of functionality as provided by description logic, e.g., no
temporal reasoning, no arithmetic reasoning. The latest trend focused on the provision of an
interchange format to describe legal knowledge, such as LegalRuleML (see Section 2.3).

Research question 3: What could a reference process, considering activities, roles,
artifacts, and software tools, for the software-supported semantic analysis of legal
documents look like?

In order to fully exploit the potential of software-supported semantic analysis the thesis proposed
a reference process model that differentiates between activities, roles, artifacts, and software
support & tools (see Section 3.1). The process, with its iterative activities, allows a structured
approach by guiding through the different phases and by highlighting the importance of different
software components within them. The process has been used and refined within a case study
that was performed with an industry partner (see Section 6.2). The main activities are: import,
analysis, and application. The analysis phase consisted of three iterative activities, namely

188

7. Conclusion

“Refinement & creation of the model”, “Transformation and operationalization of the model”,
and “Evaluation of the operationalized model”.

Research question 4: What are the design principles and components of a soft-
ware architecture enabling a collaborative environment for information extraction
processes from legal documents?

Based on the reference process model, a modular software architecture for legal text analytics
was developed (see Section 3.4). The architecture allows the usage within a collaborative en-
vironment, i.e., a web application. The architecture consists of six different main components:
import, export, data storage, data access layer, user interface, and a text analysis engine. Each of
the main components is composed of other components. The exchange of information is handled
via well-defined interfaces to guarantee the modularity of the components. In order to ensure the
modularity of software components within information extraction processes a Pipes & Filters
architecture was used (see Section 3.5). Based on extensive comparison of software frameworks
the Apache UIMA was adopted for the usage within the research prototype. Apache UIMA
manages the configuration and application of processing pipelines, consisting of the subsequent
application of software components, i.e., annotators. The framework is robust and thread-safe,
which makes it particularly suited for the usage within a collaborative web application.

Research question 5: What are the elements of a reference process with the aim
of formalizing of statutory texts into computational decision structures?

Based on the semantic analysis of statutory texts, the interpretation, i.e., formalization, of
statutory texts should be supported. In analogy to the reference process model for semantic
analysis, a reference process model for the interpretation of statutory texts was derived. The
reference process differentiates between activities, roles, and tool-support; and it is organized in
four subsequent phases: import, analysis, interpretation, and application (see Section 4.1). The
interpretation of a statutory text is formalized within a model-based, i.e., ontological, decision
structure including types, entities, and relations among types.

Research question 6: What are the components of an ontological reasoning frame-
work modeling the computational semantics and connecting the interpreted legal
texts with the corresponding model element?

Reasoning on model-based, i.e., ontological, decision structures requires a modeling environment
that allows the creation of the ontological entities, namely types, attributes, relations and derived
attributes (see Section 4.2.1). For this purpose, an existing meta-model based information
system was used. The reasoning was done using a Domain-Specific Language (DSL), which
already existed but was adapted for the usage for reasoning. Every ontological entity can be
connected with the analyzed and interpreted legal texts, which allows provenance of particular
parts of the reasoning structure and tracing it back to the textual source in the law from which
it emerged. The connection is done using annotations, which are not only the result of the text
analytics process, but are also the central element in linking text with the decision structure
(see Section 4.3.2).

Research question 7: How can the implementation of a model-based reasoning

189

7. Conclusion

framework capturing computational semantics of interpreted statutory texts look
like?

The thesis describes a full-stack implementation of the model-based reasoning, consisting of
a model and fact storage, a model execution component, and an interaction component (see
Section 4.3). The model and fact storage persists the interpreted model in a representation that
is suitable for computational reasoning. The model execution component can operate on the
model and derive new knowledge. In addition, it allows for the analysis of dependencies and
inferences, which enables the system to provide an explanation for the inferred knowledge (see
Section 4.4). Finally, the interaction component allows to formalize an interpretation and to
add new knowledge, based on which the system can make inferences.

Research question 8: What accuracy can be achieved during information extrac-
tion and norm classification in judicial and statutory texts? What are the limitations
and emerging research directions?

The performance of rule-based information extraction and active machine learning to classify
sentences of German statutes according to their semantic type, i.e., functional role, showed that
the accuracy heavily varies throughout different semantic types (see Sections 6.3 and 6.4). High
linguistic variety and a very unbalanced training data set can be considered the main challenges
for the information extraction using (active) machine learning.
The applicability of the model-based reasoning approach was shown using proof-of-concept for
the child benefit regulation from the German tax law, and for the notice periods regarding the
termination of a rented object in the German tenancy law (see Section 6.5).

Based on the concrete answers for the research questions, that were formulated to answer the
overall research hypothesis, a critical reflection is provided in the next section.

7.2. Critical Reflection

Understanding the functionality of an implementation implies to understand the limitations of
a prototype, and of the research conducted and described within this thesis. This chapter is
dedicated to describing the main limitations; for this purpose, it is structured into four different
sections. In Section 7.2.1, the main limitations of the text analytics framework as implemented
are discussed. Section 7.2.2 reflects on the main limitations for the model-based reasoning
and formalization. In Section 7.2.3, the main concerns regarding the end-user applicability
are discussed. Based on these considerations, the evaluation as performed within this thesis is
critically discussed in Section 7.2.4. Finally, Section 7.2.5 reflects on the used research method,
namely the usage of design science within the thesis.

7.2.1. Functional Limitations of the Legal Text Analytics Frameworks

Due to the implementation several technical limitations for the text analytics framework exist.
These can either be considered as severe ones, for which the way the framework was implemented
does not offer a solution, or minor ones, for which — most likely — a solution can be found.

190

7. Conclusion

One main limitation that arises from the design decision to use the Apache UIMA framework
is that the UIMA is a document-centered analysis framework. The pipeline is configured and
instantiated for each document and the different documents are processed individually. This
offers the advantage that the system can scale very well and can be used in a multi-threaded
environment; however, if there is a task to determine dependencies between documents, these
cannot be established easily. It would require an additional resource, to be maintained outside
of UIMA, which could store the this additional, non-volatile information about a document.

The analytics components lack linguistic operations that would be very helpful during the anal-
ysis of legal documents. Two unavailable components (or insufficiently accurate) components
are the parsing of sentences (see Section 3.4.1.4) and a linguistic component to detect auxiliary
sentences. The latter ones are very common in statutory texts, but intensify the issue with
assigning a functional type to the sentence, as it may contain more than one semantic role.
In addition, it is not easy to determine the main subject of a sentence if it contains auxiliary
sentences.

As each pipeline is configured to subsequently apply annotators to achieve different annotations
tasks, such as sentence splitting, POS-tagging, or complex pattern matching, the annotators
cannot perform their tasks without errors. No annotator works at 100% precision and recall.
This fact constantly diminishes the overall precision and recall of the tasks, e.g., extraction of
meta-data as described in Section 6.2. Savelka and Ashley (2017) showed that even splitting of
sentences in texts from the legal domain cannot be solved at a very high accuracy. The same
holds for the components as implemented the prototype. However, no extensive evaluation was
performed to provide reliable numbers for the accuracy for every sub-component.

The third limitation of the text analytics component concerns the performance in terms of com-
putational complexity. As most of the annotators need some time for their annotation, at least
for sufficiently large documents, and since the UIMA framework adds additional management
overhead on top, the analysis can no longer be performed in real-time.

The last limitation of the prototype is its implementation in Java. Although this comes along
with the desirable qualities of having a large community and a huge number of frameworks and
libraries one can reuse, it is not easily possible to re-use latest implementations in the field of
ML as these are mainly composed in Python1.

7.2.2. Functional Limitations of the Model-based Formalization

The computational semantics is not only defined in statutory texts, i.e., laws, but requires the
consideration of additional literature, e.g., commentaries. Unfortunately, only a few laws are
written clear and unambiguous enough to be suitable for formalization. Surden (2012) describes
different requirements for computational law, one of them being data-orientation and shared
meaning of words. However, those requirements are hardly met in statutory texts. Instead, the
intrinsic vagueness and open-texturedness of normative texts intensifies the problem of formal-
ization. Formalization approaches in combination with the model-based approach unveil unclear
and vague regulations, and can make those explicit to the user. However, this does not solve

1see for example the scikit learn framework http://scikit-learn.org/, accessed on September 3, 2018

191

7. Conclusion

this issue for him. Interpretation is still required and might not be possible without assumptions
that go beyond the text as provided by the legislator.

The model-based expression language heavily depends on the subsequent modeling step. The
underlying model predetermines the structure consisting of types, attributes, derived attributes,
and relations. The system does not enable users to model intrinsic legal concepts, such as
deontological concepts.

In addition, the MxL is a functional expression language without side-effects, and it imperatively
defines exactly one derived attribute. Consequently, the inference engine follows a classically
deductive monotonic logic approach. At the current state, no operators are implemented into the
system supporting probabilistic reasoning (e.g., Bayesian Networks). How the system could be
improved in order to support probabilistic reasoning, focusing on the aspect of user enablement,
is a very interesting research question (see also Timmer et al. 2015).

The system has not been designed to reflect temporal logic. Instead, the system supports a
lifecycle management for the creation and maintenance of the models. This reflects the lifecycle
of textual documents that underlie the creation of models, i.e., interpretation. However, as MxL
supports reasoning on dates (as native datatype) and also has a NOW function, it is possible to
take a basic temporal dimension into account during the reasoning.

The system does not support abductive or other advanced reasoning principles that have been
investigated throughout the last decades and that are potentially relevant for legal reasoning
(see also Bench-Capon et al. 2012).

7.2.3. User Applicability

Throughout the thesis the user has always been taken into account. However, Ko et al. (2011)
state that “End-user development has been defined as a set of methods, techniques, and tools
that allow users of software systems, who are acting as non-professional software developers, at
some point to create, modify, or extend a software artifact”. For the contribution as provided
by this thesis, this would mean that, on the one hand, end-users can train and apply linguistic
models to process legal documents, thereby supporting them during reviewing and analysis. And
on the other hand end-users should be enabled to capture the interpreted decision structures in
computational models that can be executed.

In order to critically reflect on the end-user applicability for the legal text analytics framework
one has to admit that although the web application provides a user interface that enables end-
users to perform every task required to train and apply the linguistic model to a text this
might not be sufficient. As the training and application require knowledge from the domain
of computational linguistics, and as different experiments are required to assess the quality of
the result, one can hardly claim that end-users are capable to fully exploit the functionality
provided.

A similar argument can be raised for the formalization component. As computational modeling
is known to be nontrivial, and as it comes along with a high cognitive complexity, the objective
to enable untrained users might be very ambitious. The prototype provides a user interface to

192

7. Conclusion

create executable models and to define MxL expressions. The knowledge acquisition component
is easy-to-use and supports end-users with powerful visualizations to understand the outcome of
a reasoning process. However, a structured evaluation regarding the applicability for end-users
is up to future work. Based on the feedback of users, their role could be taken into account even
further. This would either strengthen the applicability of the overall system within a business
environment, or it would generate additional information based on which the system could be
improved.

7.2.4. Critical Reflection on the Evaluation

Although a critical reflection on the evaluation of the artifacts within this thesis was already,
at least partially, already provided within the evaluation Section 6, this section will briefly
summarize the main flaws and limitations of the evaluation as applied.

The case study that was performed with an industry partner within a joint research project
mainly focused on the analysis of legal documents to support editorial staff. The project was
performed within an interdisciplinary set-up, including the involvement of lawyers. However,
only two legal practitioners participated in the project, which is a rather limited number in
order to assess the quality of the service that can be provided. The use case was also rather
restricted namely the extraction of a particular data value, i.e., year of dispute. To fully assess
the performance of the data science framework more diverse use cases need to be implemented
and evaluated.

Two main points in the evaluation of the performance with regard to the classification of legal
norms could be improved as one could consider them as flaws. The first issue is a conceptual
limitation and addresses the classification of semantic types and functional roles on a sub- or
super-sentence level, i.e., phrases or paragraphs. Up to now, there is hardly any consensus among
the scientific community concerning the right level of annotation to support the interpretation
of legal documents. In the evaluation, the assessment has only been performed for sentences
within statutory texts.
The second drawback concerns the quantitative analysis of the rule-based and machine learning-
based approach. The gold standard for training and testing of the performance of the classifiers
was comparably small. Only 532 sentences have been used from a relevant, but also restricted
domain: German tenancy law. For more general statements, other legal domains and a larger
dataset need to be taken into account.

Finally, although the framework was developed with a strong focus on the end-user, now con-
trolled experiment has been conducted to assess whether the environment actually supports
end-users during the interpretation or analysis of legal documents. As already discussed by Figl
and Laue (2011), the modeling of business processes is known as a cognitive complex task and
requires familiarity with the modeling language and training. The same holds for the formaliza-
tion of interpreted legal decision structures. This evaluation as performed within thesis, does not
allow to make reliable statements on whether the system is supportive during the interpretation
task or not.

193

7. Conclusion

7.2.5. Critical Reflection on the Research Methodology

The usage of design science, as proposed by Hevner et al. (2004) is very common in informa-
tion systems research; however some flaws exist. The main and commonly accepted critique
certainly is that although it is very concrete in specifying the different phases for information
systems research, but very vague in terms of quality criteria for the designed and developed
artifacts. Österle et al. (2011) propose a simpler research process consisting of only four different
steps, but still, they state the underlying research principle more explicitly, namely abstraction,
originality, justification, and benefit. Their proposed method is consistently abstract, as they
admit that “Design-oriented IS research is not a non-judgmental scientific discipline, rather it is
normative, in a sense that the construction of artifacts is guided by the desire to yield a specific
benefit and to satisfy certain objectives.” (Österle et al., 2011, p. 3) .

The main advantage of using Hevner’s notion of design science is that it constitutes a structured
approach to perform the research. In addition, it is constructive and focusing on an artifact
appropriate for the work, as described in this thesis. However, it lacks a clear notion of the
properties of an artifact and how it can be formalized in such way that it can be assessed
accordingly. This problem manifests in during the derivation of the requirements for an artifact,
which is mainly done by describing the “business need”. However, this concept is rather vague
and prevents an exact comparison of different competing artifacts.

Methods to assess the quality of data analysis tasks, as performed in Section 6 and based
on Eisenhardt (1989) using standard information retrieval metrics (see Salton 1989), is much
more constructive and reliable in terms of reproducibility and expressiveness.

7.3. Outlook

The results and findings from this thesis provide manifold new opportunities for future work.
In this section, we focus on and briefly describe four possibilities for future research related to
the research prototype that are briefly described. The discussion of future research is centered
on the support of (business) processes or relevant use cases.

7.3.1. Legal Text Analytics to Support Business Processes

The prototype was designed and implemented to not only support the analysis of statutory
texts from the German legislation, but to allow the integration and analysis of other texts with
a particular focus on legal documents, i.e., laws, regulations, statutes, or judgments. A research
imposing itself is the extension of the system to more generally support businesses processes more
generally, where people work on legal documents in, either by reading, exploring or reviewing
them. For example, this is the case in different branches and domains of the industry where
compliance is particularly important. Whenever processes and workflows in companies need
to consider requirements that are contained in legal documents, e.g., laws, or regulations, the
system could help to review them more efficiently and integrate them into the internal process.

This research direction would require a more detailed understanding for the processes of re-

194

7. Conclusion

viewing documents for compliance purposes. Based on this investigation, concrete requirements
could be derived, focusing on the software supported analysis of these documents. The auto-
mated annotation could serve as a decision support tool highlighting the most relevant section
within a document or document corpus, with regard to its semantic role.

7.3.2. Legal Text Analytics in Other Domains

Similar to the research direction stated above, a follow-up project could also address the rel-
evancy of legal text analytics in other domains, such as the financial industry or insurance
industries. Within these domains, legally relevant documents, such as contracts or terms and
conditions, are highly relevant. The content of those documents is primarily unstructured, i.e.,
text. However, workflows of companies are affected by this content, for example during the
claims management process of a company in the insurance industry. Humans need to review the
documents received by their clients and compare them to the terms and conditions that apply.
A decision support system could determine the most relevant information within the claims
document and pre-structure it, so that the review process could be performed more efficiently.

The use cases for a generic framework to semantically analyze legal documents are manifold.
However, it is important to structure interdisciplinary legal data science projects along the
reference process model as developed and evaluated in this thesis. The differentiation into activ-
ities, roles, artifacts, and software-support can be applied to different domains and proactively
structures the tasks and their dependencies.

7.3.3. Legal Text Analytics to Support Drafting of Documents

Beside the reviewing and analyzing of legally relevant documents to support processes and
workflows, the system could also be adapted to support the drafting of new documents. The
main problem this thesis is dealing with, is to extract information from initially unstructured
documents. The framework could be adapted to create a new document and already enhance
it with information about semantics and structure. This would decrease the effort of extracting
information from the document at a later stage.

The framework could be adapted it a way that users receive immediate feedback on the semantic
structure of the content that they are writing. This would be applicable to numerous different
use cases and scenarios in which legal documents are created. However, the legal document to
be drafted needs to be considered within this feedback loop, as the structure and semantics of
legal documents differ significantly between different types, such as contracts and laws.

7.3.4. Representation and Modeling of Arguments

The system described a way to support the interpretation of statutory texts and to formalize
their computational model in an executable format. Although statutory texts are analyzed on
a sentence level, the transition from the text to the executable model may required additional
arguments that are not provided in the text. The current implementation does not support the

195

7. Conclusion

representation and the modeling of the arguments that lead to a certain decision structure. This
highly relevant information remains with the person who created the computational model.

A large community already approaches the representation and formalization of (legal) arguments.
Therefore, an interesting and relevant follow-up question would definitely be to address the
extension of the interpretation process with respect to codifying the arguments used during the
formalization. This would not only increase the transparency of the decision structure but also
their comprehensibility.

7.3.5. Formalization of Deontic Concepts, Events, and Actions

Although the system allows to formalize legal decision structures using an expression language
that supports propositional, predicate, and higher-order logic, the modeling process itself is still
rather static, as each expression defines a derived attribute, which has a pre-defined type, such
as Boolean, integer, string, etc. Deontic concepts, such as allowances, or obligations cannot be
represented with MxL. Events and actions cannot be modeled by the implementation either.
Representing and computationally reasoning on these concepts requires an advanced implemen-
tation and additional functionalities of the model and fact store.

It would be interesting to investigate the requirements and the concepts, as well as the impact
on the overall implementation of integrating of these deontic concepts. This does not only apply
for the software technical implementation, but also for the aspects of modeling, and for applying
these for users and for collaborative user interfaces.

196

Bibliography

Ashley, K. D. (1991). Reasoning with cases and hypotheticals in hypo. International Journal of
Man-Machine Studies, 34:753–796.

Ashley, K. D. (2002). An ai model of case-based legal argument from a jurisprudential viewpoint.
Artificial Intelligence and Law, 10:163–218.

Ashley, K. D. (2017). Artificial Intelligence and Legal Analytics: New Tools for Law Practice in
the Digital Age. Cambridge University Press, Cambridge.

Ashley, K. D. and Rissland, E. L. (1988). A case-based approach to modeling legal expertise.
IEEE expert, 3:70–77.

Bench-Capon, T., Araszkiewicz, M., Ashley, K. D., Atkinson, K., Bex, F., Borges, F., Bourcier,
D., Bourgine, P., Conrad, J. G., Francesconi, E., Gordon, T. F., Governatori, G., Leidner,
J. L., Lewis, D. D., Loui, R. P., McCarty, T. L., Prakken, H., Schilder, F., Schweighofer, E.,
Thompson, P., Tyrrell, A., Verheij, B., Walton, D., and Wyner, A. (2012). A history of ai and
law in 50 papers: 25 years of the international conference on ai and law. Artificial Intelligence
and Law.

Bench-Capon, T. and Coenen, F. P. (1992). Isomorphism and legal knowledge based systems.
Artificial Intelligence and Law, 1:65 – 86.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific american,
284:28–37.

Besancon, R., De Chalendar, G., Ferret, O., Gara, F., Mesnard, O., Laïb, M., and Semmar,
N. (2010). Lima: A multilingual framework for linguistic analysis and linguistic resources
development and evaluation. Proceedings Conference on Language Resources and Evaluation,
pages 3697 – 3704.

197

Bibliography

Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., and Soria, C. (2005). Automatic se-
mantics extraction in law documents. Proceedings of the International Conference on Artificial
Intelligence and Law, pages 133–140.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Boer, A., Hoekstra, R., and Winkels, R. (2002). Metalex: Legislation in xml. Proceedings of the
Jurix Conference on Legal Knowledge and Information Systems, pages 1 – 10.

Boitet, C. and Seligman, M. (1994). The whiteboard architecture: A way to integrate heteroge-
neous components of nlp systems. Proceedings of the Conference on Computational linguistics,
pages 426–430.

Cardellino, C., Villata, S., Alemany, L. A., and Cabrio, E. (2015). Information extraction with
active learning: A case study in legal text. Proceedings of the International Conference on
Computational Linguistics and Intelligent Text Processing, pages 483–494.

Casellas, N. (2011). Legal ontology engineering: Methodologies, modelling trends, and the ontol-
ogy of professional judicial knowledge. Springer Science and Business Media.

Chalkidis, I., Androutsopoulos, I., and Michos, A. (2017). Extracting contract elements. Pro-
ceedings of the International Conference on Artificial Intelligence and Law.

Chiticariu, L., Li, Y., and Reiss, F. R. (2013). Rule-based information extraction is dead! long
live rule-based information extraction systems! Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 827–832.

Copestake, A. (2007). Semantic composition with (robust) minimal recursion semantics. Pro-
ceedings of the Workshop on Deep Linguistic Processing, pages 73–80.

Cunningham, H., Maynard, D., and Bontcheva, K. (2011). Text processing with gate. Gateway
Press CA.

Datev eG (2017). https://www.datev.com/about-datev/. Last accessed on April 6th, 2018.

de Castilho, R. E. and Gurevych, I. (2014). A broad-coverage collection of portable nlp compo-
nents for building shareable analysis pipelines. Proceedings of the Workshop on Open Infras-
tructures and Analysis Frameworks for HLT, pages 1–11.

Di Ciccio, C., Marrella, A., and Russo, A. (2015). Knowledge-intensive processes: Character-
istics, requirements and analysis of contemporary approaches. Journal on Data Semantics,
4(1):29–57.

Dudenredaktion (2013). Duden Ratgeber - Rechtschreibung und Grammatik. Bibliograph. Instit.
GmbH.

Eisenhardt, K. M. (1989). Building theories from case study research. The Academy of Man-
agement Review, 14(4):532–550.

Elasticsearch (2017). Documentation. https://www.elastic.co. Last accessed on April 6th,
2018.

198

https://www.datev.com/about-datev/
https://www.elastic.co

Bibliography

Ferrucci, D., Lally, A., Verspoor, K., and Nyberg, E. (2009). Unstructured Information Man-
agement Architecture (UIMA) Version 1.0. Oasis Standard. OASIS, Tech. Rep.

Figl, K. and Laue, R. (2011). Cognitive complexity in business process modeling. Proceedings of
the International Conference on Advanced Information Systems Engineering, pages 452–466.

Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data.
Cambridge University Press, Cambridge.

Francesconi, E. (2010). Semantic processing of legal texts: Where the language of law meets the
law of language. Springer.

Francesconi, E. and Passerini, A. (2007). Automatic classification of provisions in legislative
texts. Artificial Intelligence and Law, 15:1–17.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: elements of
reusable object-oriented software. Pearson Education.

Gerathewohl, P. (1987). Erschließung unbestimmter Rechtsbegriffe mit Hilfe des Computers.
PhD thesis, University of Tübingen.

Glaser, I. (2017). Semantic Analysis and Structuring of German Legal Documents using Named
Entity Recognition and Disambiguation. Master’s thesis, Faculty of Informatics at the Tech-
nical University of Munich.

Goncalves, T. and Quaresma, P. (2005). Is linguistic information relevant for the classification
of legal texts? Proceedings of the International Conference on Artificial intelligence and law,
pages 168–176.

Gotz, T. and Suhre, O. (2004). Design and implementation of the uima common analysis system.
IBM Systems Journal, 43:476–489.

Grabmair, M. (2016). Modeling Purposive Legal Argumentation and Case Outcome Prediction
using Argument Schemes in the Value Judgment Formalism. PhD thesis, School of Arts and
Sciences.

Grabmair, M., Ashley, K. D., Chen, R., Sureshkumar, P., Wang, C., Nyberg, E., and Walker,
V. R. (2015). Introducing LUIMA: An Experiment in Legal Conceptual Retrieval of Vaccine
Injury Decisions Using a UIMA Type System and Tools. Proceedings of the International
Conference on Artificial intelligence and law.

Grass, T. (2014). Development of a Web Application to Manage and Edit Semantically Annotated
Texts. Master’s thesis, Faculty of Informatics at the Technical University of Munich.

Gregor, S. (2006). The nature of theory in information systems. MIS quarterly, 30:611–642.

Grishman, R. (1996). Tipster text phase 2 architecture design. Technical report, New York
University, New York.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The
weka data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):10–18.

199

Bibliography

Hamp, B. and Feldweg, H. (1997). Germanet - a lexical-semantic net for german. Proceed-
ings of the Workshop on Automatic Information Extraction and Building of Lexical Semantic
Resources for NLP Applications.

Hart, H. L. A. and Green, L. (2012). The concept of law. Oxford University Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). Overview of supervised learning. The
Elements of Statistical Learning, pages 9–41.

Hearst, M. (2009). Search user interfaces. Cambridge University Press, Cambridge.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information systems
research. Management Information Systems Quarterly, 28:75–105.

Hoekstra, R., Breuker, J., Di Bello, M., and Boer, A. (2007). The lkif core ontology of basic
legal concepts. Proceedings of the Conference on Legal Ontologies and Artificial Intelligence
Techniques.

Holmes, G., Donkin, A., and Witten, I. H. (1994). Weka: A machine learning workbench.
Proceedings of the Second Australian and New Zealand Conference on Intelligent Information
Systems, pages 357–361.

Hull, D. A. (1996). Stemming algorithms: A case study for detailed evaluation. Journal of the
American Society for Information Science, 47:70–84.

Ide, N. and Pustejovsky, J. (2017). Handbook of Linguistic Annotation. Springer.

Jandach, T. (1993). Juristische Expertensysteme: Methodische Grundlagen ihrer Entwicklung.
Springer-Verlag, Berlin.

Jones, A. J. I. and Sergot, M. (1992). Deontic logic in the representation of law: Towards a
methodology. Artificial Intelligence and Law, 1(1):45–64.

Jurafsky, D. and Martin, J. H. (2014). Speech and language processing, volume 3. Pearson
London.

Karpf, J. (1989). Quality assurance of legal expert systems. International Congress "Logica,
Informica, Diritto" Expert Systems in Law, pages 1–29.

Katakis, I. M., Petasis, G., and Karkaletsis, V. (2016). Clarin-el web-based annotation tool.
Proceedings of the International Conference on Language Resources and Evaluation.

Katz, D. M. (2012). Quantitative Legal Prediction – or – How I Learned to Stop Worrying
and Start Preparing for the Data Driven Future of the Legal Services Industry. Emory Law
Journal, 62:1–58.

Klügl, P., Töpfer, M., Beck, P.-D., Fette, G., and Puppe, F. (2016). Uima ruta: Rapid de-
velopment of rule-based information extraction applications. Natural Language Engineering,
22:1–40.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., and Myers, B. (2011). The state of the art in end-user software
engineering. ACM Computing Surveys (CSUR), 43:21.

200

Bibliography

Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley Professional.

Krötzsch, M., Simancik, F., and Horrocks, I. (2012). A description logic primer. arXiv preprint
arXiv:1201.4089.

Larenz, K. and Canaris, C.-W. (1995). Methodenlehre der Rechtswissenschaft. Springer, Berlin.

Lei, M., Ge, J., Li, Z., Li, C., Zhou, Y., Zhou, X., and Luo, B. (2017). Automatically classify
chinese judgment documents utilizing machine learning algorithms. Proceedings: International
Workshop on Database Systems for Advanced Application, pages 3–17.

Leith, P. (2010). The rise and fall of the legal expert system. European Journal of Law and
Technology, 1.

Leon, S. (2001). Executable Uml: How to Build Class Models. Prentice Hall PTR.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of massive datasets. Cambridge
university press.

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation and Com-
putational Linguistics, 11:22–31.

Maat, E. and Winkels, R. (2007). Categorisation of norms. Jurix: Conference on Legal Knowl-
edge and Information Systems, pages 79–88.

Maat, E. d., Krabben, K., and Winkels, R. (2010). Machine learning versus knowledge based
classification of legal texts. Jurix: Conference on Legal Knowledge and Information Systems,
pages 87–96.

Maat, E. d. and Winkels, R. (2010). Automated classification of norms in sources of law.
Proceedings of Workshop on Semantic Processing of Legal Texts, pages 170–191.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language processing.
MIT Press.

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Mendes, P. N., Jakob, M., García-Silva, A., and Bizer, C. (2011). Dbpedia spotlight: shedding
light on the web of documents. Proceedings of the 7th international conference on semantic
systems, pages 1–8.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D.,
Amde, M., and Owen, S. (2016). Mllib: Machine learning in apache spark. The Journal of
Machine Learning Research, 17(1):1235–1241.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communication of the ACM,
38(11):39–41.

Modgil, S. and Prakken, H. (2014). The aspic+ framework for structured argumentation: a
tutorial. Argument & Computation, 5(1):31–62.

Moretti, F. (2013). Distant reading. Verso Books.

201

Bibliography

Mori, S., Nishida, H., and Yamada, H. (1999). Optical character recognition. John Wiley &
Sons, Inc.

Muhr, J. (2017). Design, Prototypical Implementation, and Evaluation of an Active Machine
Learning Service in the Context of Legal Text Classification. Master’s thesis, Faculty of Infor-
matics of the Technical University of Munich.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30:3–26.

Nay, J. J. (2017). Predicting and understanding law-making with word vectors and an ensemble
model. PLOS ONE, 12(5).

Neubert, C. (2012). Facilitating Emergent and Adaptive Information Structures in Enterprise
2.0 Platforms. Dissertation, Technische Universität München, München.

Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. Advances in neural information processing systems, pages
841–848.

Nivre, J. (2005). Dependency grammar and dependency parsing. MSI report, 5133:1–32.

Nivre, J., Hall, J., and Nilsson, J. (2006). Maltparser: A data-driven parser-generator for
dependency parsing. Proceedings of the International Conference on Language Resources and
Evaluation, 6:2216–2219.

Object Management Group (2011a). Business Process Model and Notation (BPMN), Version
2.0.

Object Management Group (2011b). Unified Modeling Language (UML) 2.4.1 Infrastructure.

Object Management Group (2014). Case Management Model And Notation Version 1.0.

Object Management Group (2015). Decision Model and Notation Version 1.0.

Ogren, P. V. and Bethard, S. J. (2009). Building test suites for uima components. Proceedings of
the Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language
Processing, pages 1–4.

Ohlbach, H. J. and Köhler, J. (1999). Modal logics, description logics and arithmetic reasoning.
Artificial Intelligence, 109:1–31.

Olsson, F. (2009). A literature survey of active machine learning in the context of natural
language processing. SICS Report.

Oppmann, D. (2016). Possibilities and Limitations of the Structured Transposition of Normative
Texts in Functions on Typed Data Structures. Master’s thesis, Faculty of Informatics of the
Technical University of Munich.

Oracle Inc. (2017). https://www.oracle.com/applications/oracle-policy-automation/
index.html. Last accessed on April 6th, 2018.

202

https://www.oracle.com/applications/oracle-policy-automation/index.html
https://www.oracle.com/applications/oracle-policy-automation/index.html

Bibliography

Owen, S., Anil, R., Dunning, T., and Friedman, E. (2011). Mahout in Action. Manning Publi-
cations.

Palmirani, M., Sperberg, R., Vergottini, G., and Vitali, F. (2017). Akoma ntoso part 1: Xml
vocabulary. Version 01.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12:2825–2830.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A design science
research methodology for information systems research. Journal of management information
systems, 24(3):45–77.

Peng, F., Ahmed, N., Li, X., and Lu, Y. (2007). Context sensitive stemming for web search.
Proceedings of the International Conference on Research and Development in Information
Retrieval, pages 639–646.

Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopoulos, I., and Spyropoulos, C. D. (2002).
Ellogon: A new text engineering platform. arXiv preprint.

Play Framework (2017). Documentation. https://www.playframework.com/. Last accessed on
April 6th, 2018.

Prakken, H. and Sartor, G. (2015). Law and logic: a review from an argumentation perspective.
Artificial Intelligence, 227.

redhat Inc. (2017). DROOLS. http://www.drools.org/. Last accessed on April 6th, 2018.

Reschenhofer, T. (2013). Design and Prototypical Implementation of a Model-based Structure
for the Definition and Calculation of Enterprise Architecture Key Performance Indicators.
Master’s thesis, Faculty of Informatics at the Technical University of Munich.

Reschenhofer, T. (2017). Empowering End-users to Collaboratively Analyze Evolving Complex
Linked Data. Dissertation, Faculty of Informatics.

Reschenhofer, T., Bhat, M., Hernandez-Mendez, A., and Matthes, F. (2016). Lessons learned
in aligning data and model evolution in collaborative information systems. Proceedings of the
International Conference on Software Engineering.

Reschenhofer, T., Monahov, I., and Matthes, F. (2014). Type-safety in ea model analysis. IEEE
International Enterprise Distributed Object Computing Conference.

Rissland, E. L. and Skalak, D. B. (1989). Combining case-based and rule-based reasoning: A
heuristic approach. Proceedings of the International Joint Conference on Artificial Intelligence,
pages 524–530.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A modern approach. Pearson.

Sadiq, S. and Governatori, G. (2015). Managing regulatory compliance in business processes.
Spring Handbook on Business Process Management, 2:265–288.

203

https://www.playframework.com/
http://www.drools.org/

Bibliography

Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of
information by computer. Addison-Wesley.

Sartor, G. (1995). Defeasibility in legal reasoning, pages 119–157. Springer.

Sartor, G. (2005). Legal reasoning: A cognitive approach to the law. Springer, Dordrecht.

Sartor, G., Casanovas, P., Biasiotti, M., and Fernndez-Barrera, M. (2011a). Approaches to Legal
Ontologies: Theories, Domains, Methodologies. Springer Publishing Company, Incorporated.

Sartor, G., Palmirani, M., Francesconi, E., and Biasiotti, M. A. (2011b). Legislative XML
for the Semantic Web: Principles, Models, Standards for Document Management. Springer
Publishing Company, Inc.

Savelka, J. and Ashley, K. D. (2017). Using conditional random fields to detect different func-
tional types of content in decisions of united states courts with example application to sentence
boundary detection. Workshop on Automated Semantic Analysis of Information in Legal Texts.

Savelka, J., Trivedi, G., and Ashley, K. D. (2015). Applying an interactive machine learning
approach to statutory analysis. Jurix: International Conference on Legal Knowledge and
Information Systems.

Schaefer, U. (2007). Integrating deep and shallow natural language processing components: rep-
resentations and hybrid architectures. Dissertation, Institute of Informatics.

Sennrich, R., Volk, M., and Schneider, G. (2013). Exploiting synergies between open resources for
german dependency parsing, pos-tagging, and morphological analysis. Conference on Recent
Advances in Natural Language Processing, pages 601–609.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P., and Cory, H. T. (1986).
The british nationality act as a logic program. Communication of the ACM, 29:370–386.

Settles, B. (2010). Active learning literature survey. University of Wisconsin, Madison, 52:55–66.

Shneiderman, B., Byrd, D., and Croft, W. B. (1997). Clarifying search: A user-interface frame-
work for text searches. D-lib magazine, 3(1):18–20.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer.

Stefanini, M.-H. and Demazeau, Y. (1995). Talisman: A multi-agent system for natural language
processing. Brazilian Symposium on Artificial Intelligence, pages 312–322.

Sugisaki, K. (2017). Supertagging for domain adaptation: an approach with law texts. Pro-
ceedings of the 16th edition of the International Conference on Articial Intelligence and Law,
pages 249–252.

Surden, H. (2012). Computable contracts. UC Davis Law Review, 46.

Susskind, R. (2013). Tomorrow’s Lawyers: An Introduction To Your Future. Oxford.

Susskind, R. E. (1987). Expert systems in law: a jurisprudential inquiry. Clarendon.

204

Bibliography

Timmer, S. T., Meyer, J.-J. C., Prakken, H., Renooij, S., and Verheij, B. (2015). A structure-
guided approach to capturing bayesian reasoning about legal evidence in argumentation. Pro-
ceedings of the International Conference on Artificial Intelligence and Law.

Walker, V., Hae Han, J., Ni, X., and Yoseda, K. (2017). Semantic types for computational
legal reasoning: Propositional connectives and sentence roles in the veterans’ claims dataset.
Proceedings of the International Conference on Artificial Intelligence and Law.

Walter, S. (2010). Definitionsextraktion aus Urteilstexten. Dissertation, Saarland University.

Waltl, B., Landthaler, J., Scepankova, E., Matthes, F., Geiger, T., Stocker, C., and Schneider,
C. (2017a). Automated extraction of semantic information from german legal documents.
Jusletter IT.

Waltl, B. and Matthes, F. (2014). Towards measures of complexity: Applying structural and
linguistic metrics to german laws. Jurix: Conference on Legal Knowledge and Information
Systems.

Waltl, B., Matthes, F., Waltl, T., and Grass, T. (2016). Lexia: A data science environment for
semantic analysis of german legal texts. Jusletter IT.

Waltl, B., Muhr, J., Glaser, I., Bonczek, G., Scepankova, E., and Matthes, F. (2017b). Classi-
fying legal norms with active machine learning. Jurix: Conference on Legal Knowledge and
Information Systems.

Waltl, B., Reschenhofer, T., and Matthes, F. (2017c). Process and tool-support to collaboratively
formalize statutory texts by executable models. International Conference on Database and
Expert Systems Applications, pages 118–125.

Waltl, B., Zec, M., and Matthes, F. (2015). A data science environment for legal texts. Jurix:
Conference on Legal Knowledge and Information Systems.

Waltl, T. (2015). A web based Workbench for Interactive Semantic Text Analysis: Design and
Prototypical Implementation. Master’s thesis, Faculty of Informatics at the Technical Univer-
sity of Munich.

Walton, D. (2014). Abductive reasoning. University of Alabama Press.

Wilcock, G. (2009). Introduction to Linguistic Annotation and Text Analytics. Morgan &
Claypool Publishers, San Rafael.

Wilcock, G. (2017). The evolution of text annotation frameworks. Handbook of Linguistic
Annotation.

Wilson, M. L. (2011). Search user interface design. Synthesis lectures on information concepts,
retrieval, and services, 3(3):1–143.

Wolinski, F., Vichot, F., and Grémont, O. (1998). Producing nlp-based on-line contentware.
Natural Language Processing and Industrial Applications.

Wyner, A. (2008). An ontology in owl for legal case-based reasoning. Artificial Intelligence and
Law, 16(4).

205

Bibliography

Wyner, A., Mochales-Palau, R., Moens, M.-F., and Milward, D. (2010). Approaches to text
mining arguments from legal cases. Semantic processing of legal texts.

Wyner, A. and Peters, W. (2010a). Lexical semantics and expert legal knowledge towards the
identification of legal case factors. Jurix: Conference on Legal Knowledge and Information
Systems.

Wyner, A. and Peters, W. (2010b). On rule extraction from regulations. Jurix: Conference on
Legal Knowledge and Information Systems.

Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D., Krcmar, H., Loos, P., Mertens, P.,
Oberweis, A., and Sinz, E. J. (2011). Memorandum on design-oriented information systems
research. European Journal of Information Systems, 20(1):7–10.

206

Abbreviations

AE Analysis Engine

AAE Aggregate Analysis Engine

AML Active Machine Learning

API Application Programming Interface

AUC Area Under the Curve

AST Abstract Syntax Tree

BLOB Binary Large Object

BPMN Business Process Modeling Notation

CAS Common Analysis System

CBR Case-based Reasoning

CMMN Case Management Modeling Notation

CPSL Common Pattern Specification Language

CSV Comma-separated values

207

Bibliography

DMN Decision Modeling Notation

DSL Domain-Specific Language

DTD Document Type Definition

ES Elasticsearch

FS Feature Selection

FEEL Friendly Enough Expression Language

GATE General Architecture for Text Engineering

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IAAIL International Association for Artificial Intelligence and Law

ISR Information Systems Research

JAPE Java Annotation Patterns Engine

JCAS Java Cover Classes based Object-oriented CAS

JSON JavaScript Object Notation

LES Legal Expert System

LEXIA Legal Information Analysis, Exploration, and Reasoning Platform

LINQ Language Integrated Query

MVC Model View Controller

ML Machine Learning

MxL Model-based Expression Language

NER Named Entity Recognition

208

Bibliography

NLP Natural Language Processing

OCR Optical Character Recognition

OCL Object Constraint Language

OMG Object Management Group

OPA Oracle Policy Automation

OWL Web Ontology Language

PandF Pipes & Filters

PDF Portable Document Format

RDF Resource Description Framework

REST Representational State Transfer

POS Parts-of-Speech

ROC Receiver Operator Characteristics

RUP Rationale Unified Process

Ruta Rule-based text annotation

Sofa Subject of analysis

UIMA Unstructured Information Management Architecture

UML Unified Modeling Language

XML Extensible Markup Language

YoD Year of Dispute

209

210

APPENDIX A

Appendix

A. Requirements Table for the Model-based Reasoning
Framework

Import
1 Flexible import

structure
Baseline for the analysis and interpretation is the consideration
of different literature (laws, judgments, contracts, commentaries,
etc.) that is present in various sources (xml, html, pdf, etc.).

2 Mapping and
indexing of legal
data

The legal literature has to be indexed and mapped to a data model
that does not only preserve the content, i.e. text and metadata, but
also structural properties, such as references and nested content.

Analysis
3 Preserving

textual
representation

Enabling users to access the content, i.e. legal literature. The vi-
sualizations of legal literature have to show the structural informa-
tion, such as nestedness and links between articles and documents.

4 Collaborative
creation and
maintenance of
patterns

The creation, refinement, and deletion of the required pattern def-
initions should be done collaboratively in the application, so that
different users can share their knowledge and contributions.

5 Lifecycle
management of
pattern
descriptions

Support of the full lifecycle of the pattern specifications, namely
creation, refinement, evaluation, and maintenance.

6 Automated
pattern detection

Automated identification of linguistic and semantic patterns
through data and text mining components.

211

A. Appendix

7 Reuse of existing
NLP components

Building of NLP pipelines that allow the easy reuse and sharing of
highly specified software components for NLP.

8 Evaluation of
annotation
quality

Possibility to view the annotations, to examine precision and re-
call manually, or to export this information to compare against a
manually tagged corpus.

9 Manually
annotating and
commenting of
legal texts

Users should be able to manually add relevant semantic informa-
tion and comments to the legal literature.

10 Storing of
annotations

Storing and indexing the automatically determined and manually
added annotations.

Interpretation
11 Creation of

semantic and
executable model
elements

Stepwise definition of model elements (types, attributes, relation-
ships, operators) for semantic and executable models.

12 Lifecycle support
for semantic
models

Defining, maintaining, and storing static model elements, such as
types, attributes, relationships.

13 Lifecycle support
for executable
models

Defining, maintaining, and storing executable model elements,
such as types, relationships, operators.

14 Correspondence
of model elements
with text phrases

Creation of connections between model entities and the relevant
(interpreted) text. Various levels of the interpreted text should
be linkable to model elements, such as words, phrases, sentences,
sections, and documents.

15 Domain-specific
language (DSL)
to express
executable
semantics

Specification of the operations and executable semantics of rela-
tionships with a model-based expression language.

Application
16 Access to existing

models
Viewing and exploring of semantic and executable models to re-
trieve the results of prior interpretation processes.

17 Application of
models

Executing the defined models through intelligent form-based or
spreadsheet-based reasoning.

Table A.1.: Structured requirements to model the semantics of statutory texts.

212

A. Appendix

B. Law Object Mapped into a JSON Document

1 {
2 "_index": "default",
3 "_type": "Law",
4 "_id": "AV9asr7qJdT1sCIZ9dZX",
5 "_source": {
6 "StartDate": "2013-04-06T03:00:51.000Z",
7 "Abbreviation": "ProdHaftG",
8 "CreationDate": "2017-10-27T04:59:44.610Z",
9 "Language": "de",

10 "PromulgationDate": "2013-04-06T03:00:51.000Z",
11 "Title": "Gesetz über die Haftung für fehlerhafte Produkte",
12 }
13 }

Listing A.1: Simple JSON file for a law object.

213

A. Appendix

C. Implementation of Margin Sampling Query Strategy

1 package processing.queryStrategy.uncertaintySampling;
2

3 // imports omitted
4

5 public class MarginSamplingStrategy implements IQueryStrategy {
6

7 @Override
8 public List<Row> getInstancesToLabelNext(List<Dataset<Row>> predictionsList) {
9

10 List<Row> uncertainRows = new LinkedList<>();
11 Dataset<Row> predictions = predictionsList.get(0).cache();
12

13 for(Row row : predictions.collectAsList()){
14

15 int probability = row.fieldIndex("probability");
16 int prediction = row.fieldIndex("prediction");
17 int path = row.fieldIndex("path");
18 int text = row.fieldIndex("text");
19 Vector probVector = (Vector) row.get(probability);
20

21 Double selectedLabel = row.getDouble(prediction);
22 double confidence = probVector.apply(selectedLabel.intValue());
23 double margin = calculateMarginProbability(probVector);
24

25 uncertainRows.add(RowFactory.create(row.get(path), row.get(prediction)
,confidence, margin, row.get(text)));

26 }
27 return uncertainRows;
28 }
29

30 private double calculateMarginProbability(Vector probabilities){
31

32 // get highest probability
33 int maxIndex = probabilities.argmax();
34 double max1 = probabilities.apply(maxIndex);
35

36 // get second highest probability
37 double[] probabilitiesArray = probabilities.toArray();
38 probabilitiesArray[maxIndex] = 0.0;
39

40 int maxIndex2 = probabilities.argmax();
41 double max2 = probabilities.apply(maxIndex2);
42

43 return max1 − max2;
44 }
45 }

Listing A.2: Implementation of the query strategy “margin sampling strategy”.

214

	Table of Content
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Research Questions
	1.3 Epistemological Position and Research Design
	1.4 Outline of the Thesis

	2 Foundations and Related Work
	2.1 Legal Text Analytics and Software Engineering
	2.1.1 Foundations of Text Analytics
	2.1.2 Text Mining to Extract Concepts from Legal Documents
	2.1.3 Text Mining to Classify Legal Norms
	2.1.4 Software Architectures for Legal Text Analytics

	2.2 Representing the Structure of Legal Documents
	2.3 Computational Models of Legal Reasoning
	2.3.1 A Short Introduction to Legal Expert and Decision Support Systems
	2.3.2 Rule-based Reasoning on Laws and Statutes
	2.3.3 User-oriented Decision and Reasoning Systems

	2.4 Summary

	3 Semantic Analysis and Annotation of Legal Documents
	3.1 Process Model for Software-supported Semantic Analysis
	3.1.1 Reference Process
	3.1.2 Activities
	3.1.3 Roles
	3.1.4 Artifacts
	3.1.5 Services & Tools

	3.2 Annotations, Annotation Types, and Semantic Entities
	3.2.1 Annotations and Annotation Types
	3.2.2 Basic and Linguistic Entities
	3.2.3 Named Entities
	3.2.4 Legal Entities

	3.3 Annotating Legal Documents
	3.3.1 Manually Annotating Legal Documents
	3.3.2 Automatically Annotating Legal Documents
	3.3.3 Collaborative Maintenance of Annotations
	3.3.4 Annotating Legal Documents: a Technical Perspective

	3.4 A Software Architecture for Managing Annotated Legal Documents
	3.4.1 Software Components for Semantic Analysis
	3.4.2 Active Machine Learning Classifier

	3.5 Software Architecture for Processing Legal Documents
	3.5.1 Assessment of Processing Frameworks
	3.5.2 Pipes & Filters Architecture
	3.5.3 Apache UIMA
	3.5.4 Assessment of Machine Learning Frameworks
	3.5.5 Active Machine Learning
	3.5.6 Apache Spark

	3.6 Summary

	4 Concept and Design of a Model-based Reasoning Framework
	4.1 Reference Process to Formalize Statutory Texts
	4.1.1 Reference Process
	4.1.2 Activities
	4.1.3 Roles
	4.1.4 Services & Tool-Support

	4.2 Model-based Reasoning
	4.2.1 Ontological Models and Limitations of Description Logics
	4.2.2 Formalization of Child Benefit
	4.2.3 Types
	4.2.4 Attributes
	4.2.5 Relations
	4.2.6 Derived Attributes
	4.2.7 MxL: Model-based Expression Language

	4.3 Design of a Model-based Reasoning Framework
	4.3.1 Requirements
	4.3.2 Components of the Model-based Decision Support System
	4.3.3 Extension of the System Architecture

	4.4 Analysis and Explanation of Decisions and Decision Structures
	4.4.1 Instances and Fact View
	4.4.2 Abstract Syntax Trees for Dependency Analysis
	4.4.3 Explanation Dialog Component
	4.4.4 Data Information Flow Inspection

	4.5 Summary

	5 Implementation
	5.1 Collaborative Data Science Environment
	5.1.1 Framework
	5.1.2 Model and Data Layer
	5.1.3 Controllers and Request Handling
	5.1.4 User Interface and Views

	5.2 Text Analysis Engine
	5.2.1 Processing Legal Documents
	5.2.2 Information Extraction Components
	5.2.3 External Resources: Pattern Definitions, Thesauri, and Dictionaries

	5.3 Active Machine Learning Component
	5.3.1 Interaction Between Information Extraction and AML Component
	5.3.2 Configuration and Training of Models
	5.3.3 Persistence of Models
	5.3.4 Predicting of Instances
	5.3.5 Query Strategies

	5.4 Implementation of the Model-based Reasoning Framework
	5.4.1 Domain Experts, Modeling Components, and a Reasoning Engine
	5.4.2 Modeling and Knowledge Acquisition
	5.4.3 Accessing the Model and Fact Store
	5.4.4 Knowledge Acquisition Component
	5.4.5 Explanation Component

	5.5 Summary

	6 Evaluation and Assessment
	6.1 Evaluation Approach
	6.2 Case Study: Analysis of Fiscal Court Cases to Support Editorial Processes
	6.3 Performance Evaluation: Classifying Legal Norms with Rule-based Information Extraction
	6.4 Performance Evaluation: Classifying Legal Norms with Active Machine Learning
	6.5 Formalizing Termination Notice Periods of Germany's Tenancy Law

	7 Conclusion
	7.1 Summary
	7.2 Critical Reflection
	7.2.1 Functional Limitations of the Legal Text Analytics Frameworks
	7.2.2 Functional Limitations of the Model-based Formalization
	7.2.3 User Applicability
	7.2.4 Critical Reflection on the Evaluation
	7.2.5 Critical Reflection on the Research Methodology

	7.3 Outlook
	7.3.1 Legal Text Analytics to Support Business Processes
	7.3.2 Legal Text Analytics in Other Domains
	7.3.3 Legal Text Analytics to Support Drafting of Documents
	7.3.4 Representation and Modeling of Arguments
	7.3.5 Formalization of Deontic Concepts, Events, and Actions

	Bibliography
	Abbreviations
	A Appendix
	A Requirements Table for the Model-based Reasoning Framework
	B Law Object Mapped into a JSON Document
	C Implementation of Margin Sampling Query Strategy

