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Abstract

Metabolic Engineering is an emerging science aiming at the development of cellular factor-
ies for the overproduction of valuable chemicals. Target molecules can be either naturally
produced by endogenous metabolic pathways, or the host metabolism should be comple-
mented by a non-inherent metabolic pathway to enable their heterologous production. Over
the past decades, mathematical modeling of cellular metabolism for strain and process op-
timization has given rise to a more rational, model-based Metabolic Engineering science.
However, theoretical workflows providing advice on limitations and proper application of
the vast number of available mathematical tools are still scarce. Initially, we review the
application of mathematical methods to increase the production of succinate in engineered
strains. Succinate is an important building block whose biotechnological production has
gained much attention in the last decade. From this initial work, we conclude that direct
experimental implementation of model predictions (in silico knowledge) is not a straight-
forward process yet. One of the many reasons is the intrinsic complexity of living systems,
which cannot be fully captured by the simplicity of widely used stoichiometric models of
metabolism. Additionally, incongruences in the modeling process and the reporting of
experimental results hamper a proper assessment of the prediction power of current mod-
eling approaches. Motivated by these observations, we developed a theoretical workflow
for metabolic engineering, highlighting capabilities and limitations of each method. The
workflow considers the application of not only constraint-based methods like Flux Balance
Analysis (FBA), which have been traditionally used to understand optimality principles
shaping bacterial metabolism, but also of kinetic-based methods whose spread has been
hindered so far by limitations related to model parametrization and to high demand on
computational power required to analyze genome-scale kinetic models. While developing
the workflow, we paid special attention to consider the so-called metabolic burden, a phe-
nomenon presented in "loaded" cells and characterized by the reduction of both biomass
yield and critical growth rate for acetate secretion. The suggested protocol was mainly
applied to generate in silico knowledge, aimed to guide future experimental efforts towards
optimization of taxadiene production in Escherichia coli (E. coli) at the strain and process
level. Taxadiene is a precursor molecule for the anticancer drug taxol and its biotech-
nological production has gained much attention due to the low yields of the traditional
extraction process from the bark of the pacific yew tree. During the development of a flex-
ible taxadiene producing strain, simultaneous utilization of glucose and xylose by E. coli
was also analyzed. By applying various tools described in the protocol, metabolic load
and effects arising from simultaneous sugar uptake were assessed, especially focusing on
the production potential of each strain. This analysis should allow the selection of strain
candidates for further optimization.
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1. Introduction

Terpenes are naturally synthesized compounds formed by the ligation of activated iso-
prene molecules isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate
(DMAPP). In nature, IPP and DMAPP can be synthetized through two different meta-
bolic routes: the mevalonate (MVA) or the 2-C-methyl-D-erythritol 4-phosphate (MEP)
pathway. Terpenoids, i.e. functionalized terpenes, have a wide range of applications in the
food, cosmetic and pharmaceutical industry. Lycopene, taxol and artemisinin are some of
the most prominent examples of terpenoid molecules. Taxol, more specifically, is a potent
plant-derived drug, showing anticancer activity against various cancer types. It was first
isolated from the slow-growing pacific yew tree (Taxus brevifolia) and its early produc-
tion method required the processing of two to four adult trees to provide dosage for one
single patient [140]. Due to its structural complexity (see Figure 1.1.A), total chemical
synthesis approaches often require many steps and exhibit low total yields [101]. Current
large scale production methods encompass semi-synthetic approaches based on a plant de-
rived precursor (baccatin III, extracted from the needles of the European yew tree Taxus
baccata [140]) and plant cell cultures [43]. Since these methods still depend on plant-
based processes, they exhibit an inherent limited scalability and productivity. Moreover,
they offer only marginal economic benefits and are associated with several environmentally
hazardous processing steps. By contrast, biotechnological taxol production has been iden-
tified as a sustainable and economically interesting alternative to established production
methods. Potential advantages of the this approach include:

1. High productivity and scalability due to rapid microbial growth rate.

2. Conservation and preservation of natural resources because, in contrast to Taxus
brevifolia, bacterial host cells like E. coli can be sustainably produced in high quant-
ities.

3. Access to novel taxol derivatives by applying tools of synthetic biology and metabolic
engineering.

As schematically shown in Figure 1.1.B, the project SysBioTerp aims at the successive
production of taxol derivatives using an E. coli -based production platform. Taxadiene is
the first commited intermediate in the synthesis of taxol and therefore, the first molecule
to be produced and characterized. Sequential functionalization steps include acetylation,
hydroxylation, oxidation and benzylation. Since it has been reported that taxol derivatives
might have beneficial effects on human health, biological activity of novel taxoids produced
by metabolically engineered E. coli strains should be assessed in a final bio-screening step.

Due to the project complexity and scale, different research groups were involved, each
one working on different aspects of the project. The study at hand was performed at the
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1. Introduction
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Figure 1.1.: Motivation & Project’s Aim Motivation and project’s aim is shown. A. Taxol is a
potent plant-derived drug used to treat a number of types of cancer, including ovarian, breast,
lung, cervical, and pancreatic cancer. Before current production methods were developed,
producing enough taxol to provide dosage for one patient required the processing of two
to four adult, slow-growing Taxus brevifolia trees. B. The SysBioTerp project aims at
the development of a E. coli-based taxoid production platform, thus contributing to the
development of sustainable and environmentally friendly production processes. Additionally,
produced taxoids should undergo a bioactivity screening. More specifically, anticancer and
antimicrobial activity of each novel taxoid should be determined.

specialty division for systems biotechnology (SBT). The task of our group was the data-
driven development and implementation of modeling approaches on both the process and
microbial metabolism level. From this task, three goals are derived:

1. Reduction of metabolic burden caused by heterologous enzyme overexpression. Meta-
bolic burden is a phenomenon observed in microorganisms supporting plasmid-based
enzyme overexpression. It is characterized by a reduction of the overall cellular fit-
ness, which leads to a reduction of cellular growth rate, a reduction of biomass yield
and early acetate secretion [11,15,58]. Since the native E. coli metabolism has to be
expanded and re-directed by expressing a number of native and heterologous enzymes
to allow for taxoid production, it is expected that metabolic burden will be a major
factor limiting the production capabilities of the selected host E. coli . In a first step,
detrimental effect of enzyme overexpression on cellular fitness should be experiment-
ally characterized. Then, model-driven strategies aiming at the minimization of the
metabolic burden should be developed and if possible, experimentally validated.

2. Development of production strains through rational design. Over the past years, the
emerging science of Metabolic Engineering [7, 139] has allowed the construction of
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microbial cellular factories for the overproduction of many relevant target molecules.
The development of genome-scale metabolic reconstructions, which are mathematical
representations of the cellular metabolism, together with strain-design algorithms,
which employ metabolic reconstructions to identify genetic perturbations leading to
the overproduction of the target molecule, has given rise to the development of a
more rational, model-based Metabolic Engineering. Consequently, state of the art
mathematical tools and modeling approaches should be applied to guide the process
of strain development, which should ultimately lead to the construction of an optimal
taxoid production strain.

3. Optimization of bio-reactor parameters for maximal process performance. It is expec-
ted that optimal reactor parameters (production temperature, time point of culture
induction, aeration level, etc.) that maximize performance indicators, such as yield
or productivity, will be highly strain dependent and must therefore be independently
identified for each new production strain. Aiming at the reduction of this time-
consuming and costly experimental work, modeling approaches should be applied to
guide and accelerate experimental process optimization.

Taxoid ProductsMetabolic Burden

Genes for Taxol
Biosynthesis

E. coli 
Fermentation

+

Metabolic Modeling Process Modeling 

Strain Development Process Design

Figure 1.2.: Modeling Workflow. Interdependencies between our three main goals, minimization
of metabolic burden, strain development and process optimization, should be consistently
addressed during the modeling process in order to generate integral optimization strategies
leading to maximal overall process performance. Data provided by our cooperation partners
for model construction mainly consisted of concentration time courses for biomass, substrate,
acetate and product. Additionally, cellular metabolism of selected strains was elucidated
by means of 13C labeling experiments. Applied modeling approaches encompassed both
stoichiometric- and kinetic-based methods.

Figure 1.2 shows schematically each of these three goals and the interactions between
them. Clearly, all three task - minimization of metabolic burden, strain development and
process optimization - are interdependent. For instance, optimal process parameters will
necessarily depend on the production strain genotype. Additionally, strategies aiming at
reducing the metabolic burden caused by enzyme overexpression will certainly depend on
the extend and identity of the enzymes being overexpressed, which in turn is substantially
defined by the target molecule. These dependencies should be consistently addressed dur-
ing the modeling process in order to generate integral optimization strategies leading to
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1. Introduction

maximal process performance.

The work at hand is not the first model-driven optimization approach ever developed. The
same holds true for mathematical tools to be developed. Indeed, the number of existing
strain-design algorithms is vast [87]. However, with very few exceptions [170], existing
mathematical approaches have been mainly focused on single aspects - strain design, pro-
cess optimization or minimization of metabolic burden-. Additionally, theoretical work-
flows providing advice on limitations and proper application of these mathematical tools
are still scarce. Consequently, newly developed as well as existing computational methods
should be framed into a theoretical workflow addressing the issue of model-driven process
optimization in an integral fashion, considering all three previously mentioned aspects and
their interdependecies.

This thesis is divided into three parts. We start describing the theoretical methods used
in this work and propose a workflow for Metabolic Engineering. The results obtained from
the application of this workflow to the terpenoid production in E. coli are described in the
second and third part.
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Theory
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2. Metabolic Modeling & Strain
Engineering

Modeling the cellular metabolism provides a deep understanding of the cellular response to
environmental or genetic perturbations and enables the rational design of cellular factories.
The aim of strain engineering is to redirect the metabolism of these cell factories in order
to maximize the bio-synthesis of natural or non-natural target products. This is achieved
through genetic modifications of the host genotype or through adequate culture conditions,
i.e. medium composition, culture temperature, etc. Modeling the cellular metabolism can
be a challenging task. Additionally, the proper approach greatly depends on the level of
detail required for the specific application. Over the past decades, many mathematical
approaches have been proposed. Each method is based on different assumptions and con-
sequently, allows for different types of predictions. In general, the cellular metabolism can
be mathematically described by setting up a mass balance for all metabolites in the cell:

dc

dt
= S r − µ c, (2.1)

where r is the vector of fluxes through the reactions, µ is the growth rate, c is a vector
of intracellular metabolite concentrations and S represents the stoichiometric matrix of
the reaction network. The first term represents the rates of consumption or production of
a specific metabolite, while the second describes the dilution rate caused by cell growth.
Since the dilution rate is normally much lower than the reaction rates, the Equation (2.1)
can be simplified to:

dc

dt
= S r. (2.2)

At steady state, there is no accumulation of metabolites in the cell and Equation (2.2) can
be further simplified to:

0 = S r. (2.3)

In the following sections, the three most commonly used modeling approaches for analyzing
Equation (2.3) are presented, namely kinetic-, constraint- and elementary modes-based
methods.
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2. Metabolic Modeling & Strain Engineering

2.1. Constraint-based Methods

Since the stoichiometric matrix S of a real biological network is typically non-square, con-
taining more unknown rates than equations, it does not have an inverse. Consequently,
a flux vector r satisfying Equation (2.3) is not unique. Additional constraints on the flux
vector r can be applied to further reduce the number of allowable flux distributions [31].
Limits on the range of individual flux values can be used for this purpose: thermodynamic
constraints expressed as reaction reversibility can thus be included by setting one of the
boundaries of an irreversible reaction to zero [53]. In a similar way, maximum flux values
can be estimated based on enzymatic capacity limitations [13], or for the case of exchange
reactions (i.e. reactions that transfer mass between the culture medium and the cell), ex-
perimentally determined maximal uptake or production rates can be used. Regulation of
gene expression can also be considered in cases where the regulatory effects have a great in-
flucence on cellular behavior [32]. Usually, these constraints are not sufficient to reduce the
solution space to a single solution. Constraint-based models have been popularly used to
calculate a flux vector r that represents the cellular phenotype at steady-state using differ-
ent approaches. Flux Balance Analysis (FBA) has been the most widely applied method.
It consists of a linear programming formulation that, by imposing an objective function,
enables the calculation of a flux distribution that maximizes or minimizes that objective.
Typically, the objective function used coincides with an assumed cellular objective, such
as growth. Other commonly used cellular objectives include the sum of all intracellular
fluxes or ATP generation [128]. Mathematically, the FBA formulation reads:

Maximize Z = c r

subject to:
S r = 0

lb 6 r 6 ub,

(2.4)

where Z is the objective function resulting from a linear combination of selected reactions
of the flux vector r, as determined by the vector c. lb and ub are lower and upper flux
boundaries, respectively.

Due to redundancies in the architecture of the cellular metabolism, alternate optimal solu-
tions can exist. Mahadevan et al. [88] introduced the concept of Flux Variability Analysis
(FVA) to characterize this issue. The approach begins with determining the optimal value
of the objective function by solving the linear optimization problem outlined in Equation
2.4. From this solution, the range of variability that can exist in each flux in the net-
work due to alternate optimal solutions can be calculated through a series of optimization
problems. In each problem, the value of the original objective (Zoptimal) is fixed and each
reaction in the network is maximized (Equation 2.5) and minimized (Equation 2.6) to de-
termine the feasible range of flux values for each reaction. The mathematical formulation
of the FVA reads:
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2.1. Constraint-based Methods

Maximize ri
subject to:

c r = Zoptimal

S r = 0

lb 6r 6 ub,

(2.5)

Minimize ri
subject to:

c r = Zoptimal

S r = 0

lb 6r 6 ub,

(2.6)

If for a given reaction it holds that rmax = rmin (rmax and rmin are obtained from Equations
2.5 and 2.6 respectively), then no variability is allowed for that reaction and a unique flux
value associated to that reaction is required to obtain Zoptimal.

Constraint-based approaches have been very popular within the modeling community. This
popularity can be partly attributed to the simplicity of the mathematical tools required
(linear programming), but also to the availability of metabolic reconstructions for many
industrially relevant microorganisms [66]. For the specific case of E. coli , much work has
been done during the past decade towards the development of a comprehensive genome-
scale metabolic reconstruction. More specifically, Table 2.1 presents an overview of efforts
made by the laboratory of Bernhard Palsson at UC San Diego. Traditionally, metabolic
reconstructions have been limited to a stoichiometric description of the cellular metabolism
(S matrix in Equation 2.3). However, models have been growing in coverage to consider
additional aspects of cellular metabolism such as macromolecular expression [102] and
protein 3D structures [97]. In this work, we extensively used the E. coli core model [107]
as well as the iJO1366 genome-scale metabolic reconstruction [106].

Table 2.1.: Genome-Scale Metabolic Reconstructions for E. coli . The E. coli core
model was extensively used in this work. It encompasses central metabolic pathways like
glycolysis, pentose phospahte pathway, tricarboxylic acid cycle and pyruvate metabolism.
As the metabolic reconstructions grow in scope, it is possible to simulate more complex
genotypes. However, the analysis of associated flux distributions become more challenging.
The model iJO1366 was the last genome-scale reconstruction considering only a stoichiometric
description of the metabolism. All subsequent models consider additional features such as
macromolecular expression and protein 3D structures.

E. coli core [107] iJR904 [114] iAF1260 [41] iJO1366 [106] iML1515 [97]
Included genes 137 904 1260 1366 1515
Reactions 95 931 2077 2251 2719
Exchange reactions 20 143 298 329 338
Metabolites 72 761 1039 1136 1192

iML1515 additionally contains 1515 protein 3D stuctures and 1888 unique protein domains
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2. Metabolic Modeling & Strain Engineering

2.1.1. Dynamic Flux Balance Analysis

Equation 2.4 allows the calculation of steady state flux distributions for a given objective
function and set of constraints. Assuming that microorganisms are able to rapidly reach
steady state in response to changes in the extracellular environment (bio-reactor), it is
possible to couple the FBA formulation with a set of differential equations describing the
reactor dynamics to simulate time courses of extracellular species within the bio-reactor.
This approach is termed dynamic Flux Balance Analysis (dFBA) and is schematically
represented in Figure 2.1.

𝑞"#,%

𝑞&'(

Bacterial Metabolism 

Measured Rates
Calculated Rates

Reactor Dynamics

𝑟*"+

Figure 2.1.: Dynamic Flux Balance Analysis. Reactor dynamics can be coupled with bac-
terial metabolism to simulate concentration time courses of chemical species present in the
bioreactor. The coupling is done through the cellular growth rate µ and exchange rates reSi.
Refer to Equations 2.11 and 2.12

Equations 2.8, 2.11 and 2.12 fully describe the dynamics of reactor volume, biomass con-
centration and concentration of extracellular metabolites in the bioreactor, respectively.
Symbols used in these equations can be found in Table 2.2. Note that the coupling between
reactor dynamics and cellular metabolism occurs through the growth rate µ and exchange
rates reSi.

The equation describing the dynamic of reactor volume is determined as follows. We first
set up a mass balance equation for the bio-reactor:

dmR

dt
=
∑

qin,jρ− qout ρ (2.7)

If the density ρ can be assumed to be constant and since mR = VR ρ, it follows that:

dVR
dt

=
∑

qin,j − qout (2.8)

In order to model the biomass dynamics, it is assumed that any feed to the bio-reactor do
not contain cells. The differential equation describing the change of biomass in the reactor
reads:

dmB

dt
= µ mB − qout cB (2.9)
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2.1. Constraint-based Methods

Table 2.2.: Overview of Variables Used to Describe Reactor Dynamics. In order
to set up mass balance equations discussed in the main text, multiple volumetric feeds are
assumed (one for each substrate). By contrast, one single volumetric efflux is considered.
Note that cSi refers to the concentration of metabolite i in the reactor, while cinSi corresponds
to the concentration of metabolite i in the corresponding volumetric feed. gDW is used to
describe the concentration of biomass and refers to gram dry weight.

Name Symbol Units
Density ρ g/l
Reactor volume VR l
Growth rate µ 1/h
Volumetic feed qin,j l/h
Volumetric efflux qout l/h
Mass in reactor mR g
Biomass mB g
Mass of component i mSi g
Biomass concentration cB gDW/l
Concentration of component i in the reactor cSi g/l
Concentration of component i in the feed cinSi g/l
Molecular weight of component i wSi g/mol
Exchange reaction for component i reSi mol/gDW h

For convenience, the biomass dynamics is now expressed in terms of biomass concentra-
tion. This is done by expressing the biomass in the reactor as a function of the biomass
concentration and the reactor volume:

dmB

dt
=
d(VR cB)

dt
= VR

dcB
dt

+
dVR
dt

cB (2.10)

Substituting Equation 2.10 and 2.8 into Equation 2.9 and solving for biomass concentration
leads to:

VR
dcB
dt

+
dVR
dt

cB = µ mB − qout cB
dcB
dt

= µ cB −
∑
qin,j
VR

cB

(2.11)

The mass balance for chemical species (substrates/products) in the liquid phase is derived
in a similar way as for the biomass. In this case, exchange reactions reSi between the cell
and culture media have to be considered. Exchange rates will have a positive sign for
products secreted by the cell, whereas a negative sign refers to substrates absorbed by the
cell.
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2. Metabolic Modeling & Strain Engineering

dmSi

dt
= qin,j c

in
Si − qout csi + reSi cB VR wSi

dcSi
dt

=
qin,j
VR

cinSi −
∑
qin,j
VR

cSi + reSi cB wSi

(2.12)

The mass balance equations derived for biomass, reactor volume and components in the
liquid phase can be used to describe the dynamics of a continuous (qin,j 6= 0; qout 6= 0), a
batch (qin,j = qout = 0) , or a fed-batch process (qin,j 6= 0, qout = 0).

2.1.2. Experimental Determination of Reaction Rates

As stated before, experimentally determined reaction rates can be used to constrain the
space of allowable flux distributions satisfying the linear programming problem defined by
Equation 2.4. By doing so, the biological significance of the obtained flux distributions
can be increased. Since ordinary measurements of concentration time courses in the fer-
mentation broth allows the estimation of exchange rates (rates describing the exchange
of mass between the cell and the culture medium, that is substrate uptake, product and
by-product secretion rates), these are normally used to constraint the solution of Equation
2.4. Additionally, more complex data, such as the obtained in 13C labeling experiments
can also be used to estimate a number of intracellular rates. The methodology used in
this work to calculate both exchange and intracellular rates from experimental data will
be discussed in this section.

Determination of Exchange Rates

Concentration time courses for the substrate (or substrates) and the product are usually
available for modeling studies, because this data are routinely obtained during experimental
strain characterization to assess the production performance of a given strain. Time courses
for by-products like acetate, ethanol, pyruvate, lactate, etc. might also be available, since
their signals are normally contained in the chromatogram used to quantify the main carbon
source if a standard High Performance Liquid Chromatography (HPLC) method is used
for sugar quantification. Figures 2.2.A and 2.3.A show exemplary concentration time
courses for biomass and glucose, respectively. In the case of biomass, Optical Density (OD)
measurements along with a conversion factor have been traditionally used to determine
the biomass concentration in the culture in units of gram dry weight (gDW) per liter.
It has been shown that the gDW/OD conversion factor strongly depends on the genetic
background of the strain [83]. In this study, strain-specific conversion factors were used
to obtain biomass concentration in units of gDW/l. For the specific case shown in Figure
2.2.A, a conversion factor of 0.54 was used to calculate the biomass concentration in units
of gDW/l.

The first step to calculate any exchange rate is the determination of the cellular growth
rate µ. As shown in Equation 2.13, µ is a proportionality constant used to describe the
increase of the biomass concentration over time as a function of the biomass concentration
in a certain point in time:
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2.1. Constraint-based Methods

dcB
dt

= µ cB (2.13)

As defined in section 2.1.1, cB refers to the biomass concentration. Equation 2.13 is
obtained by setting

∑
qin,j to zero in Equation 2.11. This is true for a batch process or

when the total volumetric feed
∑
qin,j is low compared to the total volume of the reactor.

By assuming that µ is not a function of time, Equation 2.13 can be integrated to obtain:

ln(cB,f ) = µ(tf − to) + ln(cB,o). (2.14)

to and tf refer to the initial and final time points, while cB,o and cB,f represent the corres-
ponding biomass concentration. Note that the assumption of constant µ is generally valid
during the exponential growth phase. By plotting the natural logarithm of experimentally
measured biomass concentration as a function of time, it is possible to calculate µ as the
slope of the resulting straight line. Figure 2.2.B shows this procedure for the biomass
concentration time course shown in Figure 2.2.A. In this case, the analyzed culture had a
growth rate of 0.49 1/h.

0 2 4 6 8
Time, [h]

0

0.5

1

1.5

2

2.5

O
D

0 2 4 6 8
Time, [h]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

LN
(O

D
)

𝑦 = 0.49𝑥 − 2.71
𝑅- = 0.9997

A B

Figure 2.2.: Experimental Determination of Cellular Growth Rates. A. OD time
course B. Natural logarithm of OD measurements as a function of time. The slope of the
straight line corresponds to the cellular growth rate µ.

Once µ has been estimated from the experimental OD time course, exchange rates reSi
can be calculated. As indicated before, strain characterization normally occurs in batch
processes (shaking flask). By setting qin,j and

∑
qin,j to zero, Equation 2.12 can be

simplified to:

dcSi
dt

= reSicBwSi. (2.15)

Flux distributions are normally calculated in units of mmol/gDW h. By dividing Equation
2.15 by wSi (molecular weight), it is possible to change the units of the balance equation
for the metabolite Si from g/l to mol/l (or mmol/l). Combining Equations 2.15 and 2.13
and solving the resulting equation for reSi one obtains:

reSi = µ
dcSi
dcB

. (2.16)
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2. Metabolic Modeling & Strain Engineering

Equation 2.16 states that the exchange rate for metabolite reSi can be obtained by multiply-
ing the cellular growth rate µ by the slope of the curve obtained when plotting cSi against
cB. Figure 2.3.B exemplarily shows this procedure. The glucose uptake rate reGlucose can
be then calculated as: (−11.75mmol/gDW )(0.491/h) = −5.75mmol/gDWh. Note that
the slopes in Figures 2.2.B and 2.3.B were calculated using least-squares regression.
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Figure 2.3.: Experimental Determination of Glucose Uptake Rate. A. Concentration
time course for glucose. B. Glucose concentration is plotted against biomass concentration.
Note that the biomass concentration was obtained by multiplying OD measurements by a
conversion factor of 0.54 gDW/OD. The slope of this straight line corresponds to the term
dcSi
dcB

of Equation 2.16.

Determination of Intracellular Rates: 13C-Metabolic Flux Analysis

Even though exchange rates can be easily calculated from respective concentration time
courses for a number of by-products, they do not provide enough constraints to precisely
estimate all fluxes in complex biological systems containing reversible reactions, parallel
pathways and internal cycles [5, 127, 157]. 13C-Metabolic Flux Analysis (13C-MFA) offers
a means for the indirect estimation of a number of intracellular fluxes [157]. Typically,
cells are grown on 13C-labeled substrates until the isotope label is distributed throughout
the network. The cell reaches isotopic steady state when the labeling patterns do not
change over time. At this point, cells are harvested and Mass Spectromety (MS) or Nuc-
lear Magnetic Resonance (NMR) analysis are implemented to detect the 13C patterns of
either protein-bound amino acids or free metabolic intermediates. The analysis of protein-
bound amino acids is preferred because protein is stable and abundant. On the other
hand, free metabolic intermediates provides the richest source of information, but high
turnover and very low concentrations of intermediates poses serious technical challenges to
sample preparation, separation and analytical sensitivity [167]. Specific labeling patterns
occur in the metabolic intermediates (free intermediates or protein-bound amino acids) as
a function of the particular distribution of fluxes in an organism [157]. Indirect estima-
tion means in the context of 13C-MFA that intracellular fluxes must be extracted from
measured labeling patters using a model-based approach. Comprehensive mathematical
models that describe the relationship between metabolite labeling patterns and fluxes are
used to simulate isotopic abundances of all metabolites in a network for any set of steady
state fluxes. Various mathematical approaches have been developed to describe the re-
lationship between flux distribution and labeling patterns. Usually, these models consist
of the complete set of isotopomer (isotope isomer [157]) balances, which may be derived
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2.1. Constraint-based Methods

using a matrix based method as described by Schmidt et al. [126]. Alternative modeling
strategies have been proposed based on the concept of cumomer balances [158], bundomer
balances [150] and Elementary Metabolite Units (EMU) [6]. Regardless of the approach
used, the flux distribution responsible for the measured labeling pattern is identified by
minimizing the difference between observed and simulated isotope spectra. In essence, flux
determination is a large-scale nonlinear parameter estimation problem:

Minimize Φ =(x(r)− xobs)TΣ−1
x (x(r)− xobs)

subject to:
S r = 0

(2.17)

where the objective function Φ is the covariance-weighted sum of squared residuals, x(r)
is the vector of simulated measurements (which is a function of the flux vector r), xobs

is the vector of experimental data containing both labeling measurements and exchange
rates measurements, and Σx is the covariance matrix, which contains variances of the
measurements on the diagonal. Note that the stoichiometric matrix S is a m× k matrix,
where m refers to the number of metabolites and k to the number of reactions.

During the iterative optimization process of Equation 2.17, not all flux values in the vector
r can be freely chosen by the solver. In fact, there are only k − rank(S) independent
variables, also referred to as free fluxes [126,158]. Independent fluxes can be obtained from
the general solution of Equation 2.3:

r = N u (2.18)

Where, N is the null space matrix of S and u is the vector of independent fluxes. In
order to reduce computational time, one can introduce Equation 2.18 into Equation 2.17
to obtain a new optimization problem in terms of the free fluxes vector u:

Minimize Φ =(x(u)− xobs)TΣ−1
x (x(u)− xobs)

subject to:
N u ≥ 0

(2.19)

Reversible reactions are usually simulated as two independent reactions. Consequently,
the constraint N u ≥ 0 requires that all fluxes are non-negative.

Calculating Confidence Intervals for Reactions

Confidence intervals for intracellular fluxes obtained from Equation 2.19 are useful to estim-
ate the precision of a certain reaction flux given a certain set of labeling data. Confidence
intervals have been calculated from estimated local standard deviations, but it has been
shown that these intervals may not accurately describe the true uncertainty due to inherent
nonlinearities of isotopomer balances [5]. In this work, we calculate confidence intervals for
fluxes using the approach developed by Antoniewicz et al. [5], in which for each reaction,
the sensitivity of the minimized sum of squared residuals is determined as a function of
the flux value. The approach starts by stating that the difference between the objective
function evaluated at the optimal solution û and the objective function when one flux is
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fixed follows a χ2-distribution with one degree of freedom:

(Φ(u)|ri=ri0 − Φ(û)) ∼ χ2(1), (2.20)

where Φ(u)|ri=ri0 indicates the value of the objective function when the flux i is fixed at ri0
and the other degrees of freedom are used to minimize the objective function. The 1 − α
confidence interval for flux i is given by the flux values for which following statement is
true:

Φ(u)|ri=ri0 ≤
(
Φ(û) + χ2

1−α(1)
)
. (2.21)

Note that α reffers to the probability of error. The threshold values for χ2
1−α(1) corres-

ponding to 80%, 90%, 95% and 99% confidence intervals of fluxes are 1.64, 2.71, 3.84 and
6.63, respectively [5]. Thus, in order to obtain accurate confidence intervals we need to
determine the minimized sum of squared residuals as a function of the flux value. Small
sensitivities of the objective function with respect to changes in a certain flux indicate
that that flux cannot be estimated precisely. Conversely, large sensitivities indicate that
the flux is well determined [5]. Figure 2.4 illustrate the three-step implementation of this
approach for the estimation of the reaction flux of the reaction catalyzed by the enyzme
pyruvate dehydrogenase (PDH) and its confidence interval.

1. Generate multiple initial flux distributions by sampling free fluxes. Then, solve the
optimization problem described by Equation 2.19. Note that not all flux distribu-
tions will converge to the same value of the objective function. The optimal flux
distribution is the one exhibiting the lowest objective function among all sampled
initial flux distributions [48]. See Figure 2.4.A

2. In order to estimate the confidence interval for a given reaction, increase and decrease
the flux through that reaction starting from the optimal solution obtained in the
previous point. For each perturbed flux distribution, solve the optimization problem
described by Equation 2.19. See Figure 2.4.B

3. Values for the upper and lower bound of the confidence interval can be identified by
applying Equation 2.21. See Figure 2.4.C

All confidence intervals reported in this work were calculated using an α of 5% (95%
confindence intervals). The number of sampled initial flux distributions varied between
500 and 1000.

2.2. Elementary modes-based Methods

As discussed before, the number of flux vectors r satisfying Equation (2.3) is infinite.
Elementary mode analysis calculates all the solutions of Equation (2.3) by adding a non-
decomposability or genetic independence constraint to the reaction directionality constraint
introduced by the FBA formulation. Genetic independence implies that enzymes catalyzing
the reactions in one solution, represented by flux vector r1 are not a subset of another flux
vector r2 [68, 130]. If this condition is satisfied, the flux vectors r1 and r2 belong to the
set of elementary modes e. Through this definition all feasible flux distributions r can be
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Figure 2.4.: Constraint-based Assessment of Production Capabilities. A. Due to the
non-convex nature of the objective function, the problem must be solved several times using
different sets of free fluxes. Each one of the 1000 data points in the figure represents a flux
distribution. The flux distribution reaching the minimum value of the objective function is
considered to be the solution of the problem described by Equation 2.19. B. The sensitivity
of the objective function with respect to the flux through the reaction PDH is calculated
as explained in the main text. C. 95 and 99% confidence intervals for the PDH reaction is
calculated using Equation 2.21 and are given in the Figure. Lower and upper boundaries
were calculated by linear interpolation. Note that the flux through the PDH providing the
best match to the labeling data corresponds to 21.95 mmol/gDW h.

represented by non-negative linear combinations of the elementary modes:

r =

n∑
i=1

ai ei ai ≥ 0. (2.22)

In contrast to constraint-based approaches, no assumptions on a cellular objective function
are required for flux calculation using elementary mode-based methods. As a consequence,
these approaches are classified as unbiased, while constraint-based approaches are classi-
fied as biased. Other unbiased approaches for the analysis of metabolic networks include
Monte Carlo sampling and extreme pathway analysis [122, 125]. Elementary mode based
methods have typically been limited to the analysis of small networks, because the enu-
meration of all elementary modes is computationally expensive. However recent advances
in computational algorithms have extended the applicability of elementary mode based
methods to the genome scale [18]. Refer to the original publication for more details on the
mathematical definition of elementary modes and their identification [130].

An interesting characteristic of the definition of the elementary modes is that they can
be interpreted in terms of biochemical functions [130]. Knowing the set of elementary
modes existing in a metabolic network allows, among other things, the identification of the
pathway with the highest product yield and the assessment of network stability and func-
tionality after gene deletions [129,147]. The concepts of elementary modes were successfully
applied for the first time to engineer a bacterial strain by Liao et al. [76], who engineered
an E. coli strain for the high-efficient production of aromatic amino acid precursors.
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2.3. Kinetic-based Methods

Kinetic models can describe the rates of intracellular reactions as a function of enzyme de-
pendent kinetic parameters as well as metabolite and enzyme concentrations participating
in the reaction. The rate expressions are then used to describe concentration changes by a
set of ordinary differential equations. In terms of Equation (2.2), this means that the rate
vector r has the form: r = f(p, c), where p represents kinetic parameters and c metabolite
concentrations.

Usually, kinetic approaches have been used to describe the dynamics of small to medium
size systems, such as the central metabolism of E. coli [14,22,69]. Despite the high poten-
tial of kinetic based methods for strain development, the construction of large-scale kinetic
models has been hindered by many difficulties mainly related to unambiguous parameter
estimation. This is due to the need for big sets of kinetic parameters and the fact, that
the values of individual kinetic parameters and even the form of the kinetic rate laws may
need to be adjusted in response to genetic or environmental perturbations [63]. These dif-
ficulties have been tackled by many authors [4,21,82,146] and call for alternative modeling
strategies which require less parameters or no parameters at all: ’Qualitative and quant-
itative understanding and corresponding methodologies for designing desired properties of
many complex systems have been successfully achieved in the fields of chemistry, physics,
and the associted engineering disciplines without knowing all aspects of systems structure
and certainly without knowing all parameter values involved. The same must be possible
for biology.’ [8]. Two approaches popularly used in metabolic engineering that requires
no exhaustive knowledge of kinetic parameter values and rely only on the knowledge of
the stoichiometry of the reactions in the network, i.e. the stoichiometric matrix S, were
already presented in sections 2.2 and 2.1. In this section, we summarize some of the main
aspects of the pioneering work done by the laboratory of James Liao at the University of
California (UC) Los Angeles to overcome the issues related to unknown parameter values
in large-scale kinetic models. In Chapter 5, 6 and 9, we demonstrate the prediction power
of some of these tools and develop new applications based on the theoretical foundation of
the Ensemble Modeling approach of metabolic networks [71,74,144,146].

2.3.1. Ensemble Modeling Approach of Metabolic Networks

In a first paper, Tran et al. [146] applied the idea of Ensemble Modeling (EM) to the central
metabolism of E. coli . The approach builds an ensemble of dynamic models that reach the
same reference steady state in terms of flux distribution and metabolite concentrations.
Within the ensemble, all models share the same kinetic structure but differ in the specific
parameter values. Rate laws for each reaction can be assigned to match known mechanisms
and regulations [146] or can be automatically generated based in rules involving the number
of substrates, products and reversibilities [71, 74, 144] by applying the concept of modular
rate laws developed by Liebermeister et al. [78, 79].

The idea of building an ensemble of models instead of using one single model to describe
complex dynamic systems is not entirely new. In fact, ensemble forecasting is commonly
used in numerical weather prediction [12, 23, 96, 168], where an ensemble of typically 50
models are used to account for mainly two sources of uncertainty, namely errors introduced
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by the use of imperfect initial conditions and errors related to imperfections in the model
formulation, such as the approximate mathematical methods to solve the equations [12].
Figure 2.5 illustrates the application of ensemble forecasting for path prediction of the
hurricane Irma, one of the strongest hurricanes ever observed in the Atlantic. For a given
time point, a set of models is parameterized based on the actual hurricane location and
satellite data available at that moment (see point 1 in Figure 2.5). Then, a set of traject-
ories is generated, each representing the potential path of the hurricane. In the ideal case,
the future location of the hurricane is contained within the prediction of the ensemble (see
point 2 in Figure 2.5).

1

2

Figure 2.5.: Application of Ensemble Forecasting for Path Prediction of Hur-
ricane Irma. A set of models is parameterized based on experimentally measured initial
conditions (point 1 ). Typically, weather models employ up to 107 observations per day to
derive physically consistent initial conditions [12]. Each model generates a forecast regarding
the path of the hurricane. In the ideal case, the future path of the hurricane is contained
within the ensemble prediction (point 2 ).

In the case of metabolic systems, the ensemble can be parameterized using experimental
steady state flux data determined for a certain strain. As discussed in Section 2.1.2, ex-
change fluxes can be easily determined from measured concentration time courses for meta-
bolites absorbed or secreted by the cell. Using experimentally determined exchange fluxes
to constrain the FBA formulation described by Equation 2.4, it is possible to generate a
first estimate for the intracellular flux distribution. If more advanced equipment and ex-
pertise is available, labeling experiments along with the computational methods previously
described can be applied to obtain more accurate estimates of the intracellular flux dis-
tribution. Since labeling data obtained using one single tracer - usually uniformly labeled
13C ([U-13C]) glucose - does not suffice to precisely resolve all fluxes in the central meta-
bolism, more advanced techniques, like parallel labeling experiments [75] can be applied.
In any case, uncertainties related to the reference flux distribution can be addressed by
constructing different ensembles of metabolic models, each using a representative reference
flux distribution to populate the ensemble. In order to obtain ensembles with biological
significance, a variety of objective functions may be applied (depending on culture con-
ditions) to obtain reference flux distributions [128]. This approach is briefly illustrated
in Section 9.3, where two similar objective functions are used to populate two different
ensembles and generate predictions.

Once a biologically feasible ensemble has been constructed, mathematical methods can
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be applied to assess the effect of genetic perturbations on the cellular metabolism. At
steady state, the concentration of intracellular metabolites does not change over time and
we obtain:

dc

dt
= S r(css, p) = F (css, p) = 0, (2.23)

where css refers to a vector of steady state metabolite concentrations. Equation 2.23 is
analogous to Equations 2.2 and 2.3. The only difference is the definition of the function
F (css, p). Since F (css, p) = 0, it follows that the total derivative with respect to p is also
zero:

dF

dp
=

∂F

∂css

dcss
dp

+
∂F

∂p
= 0. (2.24)

Solving Equation 2.24 for dcss
dp yields:

dcss
dp

= −
(
∂F

∂css

)−1 ∂F

∂p
. (2.25)

Starting from a reference steady state, Equation 2.25 describes the effect of parameter
perturbations (for instance enzyme concentration) on the vector of steady state metabolite
concentrations css. Since the calculation of the inverse of the matrix ∂F

∂css
is necessary to

solve Equation 2.25, it is crucial to detect the point where this matrix becomes singular.
Interestingly, this points is also a bifurcation point, beyond which the system no longer
reaches a stable steady state [74].

So far, two methods have been developed that analyze different aspects of Equation 2.25.
The first method is termed Ensemble Modeling for Robustness Analysis (EMRA) [74] and
was designed to estimate the robustness of non-native pathways towards perturbations. By
perturbing the activity of a certain enzyme in the pathway and calculating the percentage
of models in the ensemble that remained stable, the robustness of the pathway/enzyme
can be assessed. In the original publication [74], the robustness of two synthetic central
metabolic pathways that achieve carbon conservation (non-oxidative glycolysis [17] and
reverse glyoxylate cycle [90]) was compared. In a subsequent paper [144], experimental data
of three different cell-free enzymatic systems were used to demonstrate the existing link
between production performance (product end titer, productivity) and system robustness.
As predicted by EMRA, unstable systems exhibited a lower production performance.

A second method, termed Kinetically Accessible Yield (KAY), uses the maximal flux value
through a given pathway before the metabolic system loses stability (or any metabolite
concentration becomes negative) to estimate experimentally measured product yields. In
the original publication, Lafontaine Rivera et al. [71] used the KAY formulation to success-
fully predict the isobutanol yield of three different genotypes. Interestingly, the authors
demonstrated that KAY can be calculated by either flux or kinetic parameter integration.
In both cases, the calculated KAY value is the same [71]. Throughout this work, KAY
values were calculated using flux integration. In this case, no specific knowledge of re-
action kinetics of the production pathway is required. Instead, a single lumped reaction
representing the whole production pathway is used as input.
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Metabolic Reconstructions for the Ensemble Modeling Approach

One of the main advantages of the EM approach is that it allows for a kinetic-based
analysis of available metabolic reconstructions (refer to Table 2.1). These reconstructions
have been manually curated and are frequently updated, thus becoming more accurate and
complete over the years. Instead of automatically generating the metabolic network from
the EcoCyc [60,61] database, as done by Lafontaine Rivera et al. [71], we adapted already
existing metabolic reconstructions to make them suitable inputs for the EM approach as
follows:

1. Check exchange reactions. Exchange reactions are required to have positive flux val-
ues within the EM framework for both uptake and export reactions. By contrast,
traditionally used metabolic reconstructions (refer to Table 2.1) exhibit negative flux
values for uptake reactions and positive flux values for export reactions. There-
fore, uptake reactions must be converted from the form “metabolite −→ ” into
“ −→ metabolite”. This can be simply done by multiplying the column i of the
stoichiometric matrix S by -1. i refers to the reaction(s) responsible for the uptake
of a given substrate(s).

2. Split reaction describing biomass production. Biomass formation is represented within
the EM approach by a set of efflux reactions [71]. By contrast, cellular growth
is mathematically described by one single reaction in traditionally used metabolic
reconstructions. While a stoichiometric representation of a reaction involving over
100 substrates is straightforward, a kinetic representation of such a reaction would
not be practical. For that reason, the metabolic reconstruction should be modified
by splitting the biomass reaction into many reactions involving one single substrate.
Alternative strategies, in which related substrates are grouped in a single reaction
are also possible, for instance to represent DNA formation.

For all kinetic-based analyses, we used an extended version of the E. coli core metabolism
[107]. Refer to Appendix B.1.1 for more details on model modification. Since the EM
framework allows to incorporate known substrate-level regulation of enzyme activity, we
used the regulatory interactions contained in Table 2.3 for the construction of rate laws for
all ensembles. Additionally, we used the rate law described by Equation 2.26 to describe
the flux through the phosphotransferase system (PTS) system, as suggested by Lafontaine
Rivera et al. [71]. Note that the rate law described in the Equation 2.26 includes known
regulatory interactions, such as flux control through the PEP/Pyruvate ratio [22, 33, 109]
and product inhibition by glucose-6-phosphate [22,29,59].

rPTS =
Vm,PTS CPEP /CPY R CGLC

(km,1 + km,2 CPEP /CPY R + km,3 CGLC + CGLC CPEP /CPY R)(1 + CG6P /ki,G6P )
. (2.26)

Parallelization Strategies in Large Multi-core Computers and Computer Clusters

EM-based analyses are computationally expensive. Luckily, the process of ensemble con-
struction by parameter sampling and the analysis itself of each model within a given
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Table 2.3.: Substrate-level Enzyme Regulation Considered for the E. coli Core
Model. Regulatory interactions were obtained from reference [71] and were used during
the automatized rate law construction within the EM framework.

Pathway Enzyme Reaction Regulators

Pyruvate
Metabolism

Acetaldehyde dehydrogenase (acetylating) ACALD AMP[1], NAD[2]
D-lactate dehydrogenase LDH_D ATP[1], PYR[4]
Phosphotransacetylase PTAr ADP[1], ATP[1], NADH[1],

NADPH[1], PEP[2], PYR[2]

Citric Acid
Cycle

Citrate synthase CS AKG[1], ACCOA[4], ATP[1],
NADH[3]

Fumarase FUM CIT[1]
Isocitrate dehydrogenase (NADP) ICDHyr OAA[1], PEP[3]

Glycolysis/
Gluconeogenesis

Fructose-bisphosphate aldolase FBA CIT[2], PEP[2]
Fructose-bisphosphatase FBP ADP[1], AMP[1], PEP[1]
Glyceraldehyde-3-phosphate dehydrogenase GAPD PEP[1]
Pyruvate dehydrogenase PDH NAD[1], NADH[1], PYR[1]
Phosphofructokinase PFK ADP[4], ATP[3], FRDP[1],

F6P[4], PEP[3]
Glucose-6-phosphate isomerase PGI PEP[1]
Phosphoenolpyruvate synthase PPS AKG[1], ADP[1], AMP[1],

OAA[1], PEP [1]
Pyruvate kinase PYK AMP[4], ATP[1], F6P[4],

SUCCOA[1]
Hexokinase HEX1 PEP[1]

Pentose Phosphate
Pathway

Glucose 6-phosphate dehydrogenase G6PDH2r NADH[1], NADPH[1]
Ribose-5-phosphate isomerase RPI AMP[1]

Glutamate
Metabolism

Glutamine synthetase GLNS AMP[1]
Glutamate dehydrogenase (NADP) GLUDy GLN[1]

Anaplerotic
reactions

Isocitrate lyase ICL PEP[1], G3P[1]
Malic enzyme (NADP) ME2 ACCOA[3], ACTP[2],

FUM[1], G6P[2], NADH[3],
NADP[1], OAA[3]

Phosphoenolpyruvate carboxylase PPC ACCOA[4], FDP[4], MAL-
L[3]

Substrate-level enzyme regulation is coded as follows: [1]: competitive inhibition; [2]: non-competitive inhibition;
[3]: allosteric inhibition; [4]: allosteric activation.
Substrate abbreviations as follows: AKG: 2-Oxoglutarate; PYR: Pyruvate; CIT: Citrate; OAA: Oxaloacetate;
FRDP: D-Fructose 1,6-biphosphate; F6P: Fructose 6-phosphate; MAL-L: L-Malate; FUM: Fumarate; ACTP: Acetyl
phosphate; G6P: Glucose 6-phosphate; G3P: Glyceraldehyde 3-phosphate; GLN: Glutamine; SUCCOA: Succinyl-
CoA;
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ensemble are highly parallelizable. This means that the computation time can be dra-
matically reduced through the implementation of either multi-core computers or computer
clusters (See Figure 2.6). In this work, both parallelization strategies were applied to
perform kinetic-based analysis. Therefore, we will briefly discuss both strategies using a
Matlab implementation of the EM approach. In the case of large multi-core computers,
parallelization can be achieved within the code, by simply replacing the for-command
with a parfor-command. By doing so, Matlab will automatically use all available cores to
analyze the ensemble. When using computer clusters, a similar strategy can be applied.
The only difference is that instead of running the EM code on a single computer, it is run
on multiple multi-core nodes (see Figure 2.6). This is conveniently done by instructing
Simple Linux Utility for Resource Management (SLURM) to run the EM code on k differ-
ent nodes. Consequently, each node will independently sample and analyze n/k models.
Here, n refer to the total number of models in the ensemble. There are two peculiarities
of this approach that require special attention.
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Figure 2.6.: Parallelization Strategy in Linux Cluster. A. Computational strategy for
large multi-core computers. Parallelization is achieved easily by using the Matlab command
parfor B. Computational strategy for computer clusters with multiple or single cores. Notice
that the command rng(’shuffle’) is necessary to guarantee that each model has a unique set
of kinetic parameters. Also, an additional step to merge individual results from each node
into one single result might be necessary.

1. Control random number generation. Place the command rng(’shuffle’) before the
ensemble is populated by randomly sampling the parameter space to ensure that
each node is generating and analyzing unique models. Failure to do so will cause all
nodes to sample exactly the same parameter values. As a consequence, the effective
size of the ensemble will be reduced from n to n/k unique models.

2. Individual results need to be merged. When using the parallelization strategy shown in
Figure 2.6 for computer clusters, an additional step is required to merge the results
from k different nodes into one single result. Depending on the kind of analysis
being performed, this step might require a large amount of Random Access Memory
(RAM). Consider using the hugemem partition of the LRZ Linux Cluster, which
offers up to 240 GBytes in a single shared memory node.
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2.4. Strain Design Algorithms

One of the main goals of constructing mathematical models of cellular metabolism is the
identification of non-intuitive genetic interventions aiming at the over-production of a tar-
get molecule. OptKnock [20] was one of the first algorithms developed to systematically
identify gene knockout candidates for strain optimization. This strain design algorithm
identifies growth-coupled, non-intuitive reaction deletions strategies by solving a bi-level
optimization problem using the linear programming duality theory. Many strain design
algorithms were developed based on the ideas introduced by OptKnock during the past
decade. Table 2.4 presents an overview of some of those and other strain design algorithms.
Interestingly, all these approaches used the overproduction of succinate as a case study.
Since there is a large body of successful experimental optimization strategies to overproduce
succinate in various strains, this knowledge has been repetitively used to test the predic-
tions of newly introduced strain design algorithms. Table 2.4 was reproduced from [149].
For more information on additional strain design algorithms, refer to Machado et al. [87]
or Maia et al. [89]

Table 2.4.: Theoretical Approaches Used in the in silico Strain Optimization for
the Succinate Overproduction. A total of 26 theoretical studies were performed
in the period of time from year 2003 to 2016.

Model type Algorithm
Name

Year Organism Description Ref.

Kinetics-
based

k-OptForce 2014 E. coli

k-OptForce integrates available kinetic informa-
tion with stoichiometric metabolic models. It en-
ables identification of both enzymatic parameter
changes and reaction flux changes. Data for model
parametrization can limit the prediction capabil-
ities of the algorithm.

[28],
[62]

Constraint-
based

OptKnock 2003 E. coli

OptKnock identifies growth-coupled, non-
intuitive gene deletion strategies for the over-
production of target chemicals by solving a
bi-level optimization problem using the linear
programming duality theory.

[20]

OptGene 2005 S. cerevisiae

OptGene is an evolutionary programming based
algorithm that permits solving large gene knock-
out problems in relatively short computational
time. It allows the optimization of non-linear ob-
jective functions, such as the productivity.

[108]

GDLS 2005 E. coli

GDLS overcomes the computational burden of bi-
level optimization problems, such as OptKnock,
by employing an heuristic approach based on local
search with multiple search paths. [85]
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Table 2.4 Continued from previous page

Model type Algorithm
Name Year Organism Description Ref.

MOFBA 2009 E. coli

MOFBA is a multiobjective flux balance analysis
method. The non-inferior set estimation method
is used to generate an approximation of the pareto
curve for conflicting objectives. MOFBA re-
duces the computation time required to obtain the
pareto curve and its analysis.

[104]

RobustKnock 2010 E. coli

RobustKnock accounts for the presence of com-
peting pathways in the metabolic network. This
method extends OptKnock to identify reactions
that should be removed so that the production
of the desired product becomes an obligatory
byproduct of growth.

[143]

OptForce 2010 E. coli

OptForce makes use of available flux measure-
ments for the wild-type strain. The algorithm
ultimately identifies sets of fluxes that must act-
ively be forced through genetic manipulations in
order to ensure the overproduction of the target
molecule.

[112]

SimOptStrain 2011 E. coli

SimOptStrain is a bi-level strain design approach
that uses mixed-integer programming. The ap-
proach simultaneously considers gene deletion and
non-native reaction addition, which enabled the
identification of novel strategies with higher pre-
dicted production levels.

[64]

EMILiO 2011 E. coli

EMILiO uses successive linear programming to in-
crease the scope of strain design. The algorithm
can quantitatively predict the optimal flux ranges
that maximize production. EMILiO was used to
generate over 200 strain designs for sucinate pro-
duction.

[161]

BAFBA 2012 E. coli

BAFBA is an hybrid approach of the Bees Al-
gorithm and Flux Balance Analysis. The al-
gorithm prevents falling into local minima while
searching for optimal strain designs. [25]

GDMO 2012 E. coli

GDMO is a heuristic and combinatorial multi-
objective optimization method that globally
searches for genetic manipulations that optimize
multiple cellular functions. The algorithm imple-
ments a genetic algorithm to find pareto-optimal
solutions.

[30]

GDBB 2012 E. coli

GDBB is an approach developed to find near-
optimal gene knockout strategies. It implements
an adaptation of the branch and bound algorithm
and can be applied to find near-optimal solutions
in seconds to minutes instead of days or more.

[35]

OptSwap 2013 E. coli

OptSwap is a computational method which identi-
fies optimal modifications of the cofactor specifit-
ies (NAD(H) and NADP(H)) of oxidoreductase
enzymes and complementary reaction knockouts. [65]
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Table 2.4 Continued from previous page

Model type Algorithm
Name Year Organism Description Ref.

ReacKnock 2013 E. coli

ReacKnock is a computational algorithm that
uses the Karush-Kuhn-Tucker method to reformu-
late a bilevel linear programming to a single level
programming problem. The algorithm does not
return a single solution but all alternative dele-
tion strategies.

[159]

MOMAKnock 2013 E. coli

MOMAKnock is a bi-level optimization frame-
work that identifies knockout strategies under the
MOMA flux distribution approximation, which
considers that knockout mutants do not reach a
steady state with maximum growth rates.

[115]

DySScO 2013 E. coli

DySScO integrates dynamic flux balance analysis
with existing strain design algorithms. This al-
lows to consider process-level variables such as
productivity and titer in the optimization process. [170]

FastPros 2013 E. coli

FastPros is an iterative screening algorithm that
is based on shadow price analysis. It allows fast
identification of strain designs with a large num-
ber of reaction knockouts.

[105]

DBFBA 2014 E. coli

DBFBA improves the performance of BAFBA by
using a differential evolution algorithm. DBFBA
has shorter computational time and identifies
strain designs with higher production yields.
DBFBA was validated with OptKnock.

[27]

FSA 2015 E. coli

Flux-Sum Analysis (FSA) aims at identifying en-
gineering targets from a metabolite-centric per-
spective. The idea is to identify metabolites that
will force the overproduction of a target molecule
after attenuation or intensification of their corres-
ponding turnover or "flux-sum".

[72]

BHFBA 2015 E. coli

Bees Hill Flux Balance Analysis (BHFBA) is an
hybrid of Hill climbing and the neighborhood
searching strategy of BAFBA [25]. It integ-
rates optKnock for automatic results validation.
BHFBAmaximizes the production yield of desired
phenotypes while sustaining the growth rate.

[26]

HyMeP 2016 Synechosystis
sp. 6803

Hybrid Metabolic Pathway Design (HyMeP) al-
lows exogenous reactions to be considered in the
optimization process. It selects individual can-
didate reactions from the metabolic reactions in
the Kyoto Encyclopedia of Genes and Genomes
(KEGG) to construct a computerized metabolic
model of a hybrid cell.

[137]
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2.4. Strain Design Algorithms

Table 2.4 Continued from previous page

Model type Algorithm
Name Year Organism Description Ref.

SolveME 2016 E. coli

A Metabolism and macromolecular Expression
(ME) model describes not only the metabolic net-
work but also the transcription and translation
machinery associated with the genes considered
in the model. ME models enable the computa-
tion of proteome allocation at different conditions
and predict the macromolecular composition of
the cell.

[162]

Elementary
Modes-
based

CASOP 2010 E. coli

CASOP is based on reaction importance meas-
ures derived from weighted elementary modes.
The method allows the identification of knockout
and overexpression candidates considering expli-
citly the product yield and network capacity.

[51]

CASOP GS 2010 E. coli

CASOP GS is an improvement of the CASOP
method and allows it to be used in genome-scale
networks. CASOP GS uses a sampling proced-
ure of the elementary flux modes to estimate the
CASOP-scores at the genome-scale.

[18]

iStruF 2013 E. coli and S.
cerevisiae

iStruF introduces the concept of structural fluxes
as good predictors of in vivo flux measurements.
The algorithm is able to find growth-coupled
strain designs while considering optimal and sub-
optimal routes and their efficiencies.

[138]

SSDesign 2014 E. coli

The Solution Space Design (SSDesign) algorithm
identifies growth-coupled and non-growth-coupled
strain designs. SSDesign permits to visually set
the desirable solution space in advance and iden-
tifies the necessary knockouts.

[145]

For the sake of simplicity, we have categorized the algorithms presented in Table 2.4 into
three main categories: kinetic-, constraint- and elementary modes-based methods. In real-
ity, this distinction is not always practicable, since there are many algorithms combining
different types of methods. For instance, thermodynamics-based methods can be embedded
into constraint-based approaches to generate thermodynamically feasible flux distributions
on a genome scale. This is done by considering an additional set of linear thermodynamic
constraints [56]. More recently, a method called thermodynamic elementary flux modes
analysis (tEFMA) was introduced to avoid the enumeration of thermodynamically infeas-
ible elementary flux modes [46]. In this way, tEFMA strongly reduces memory usage
and overall computational time of the enumeration process, while focusing on biologically
relevant elementary flux modes.

The development of frameworks integrating constraint-, kinetic- and thermodynamic-based
methods is becoming popular. For instance, the Ensemble Modeling (EM) approach
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2. Metabolic Modeling & Strain Engineering

[141,142,146], which introduced an elegant solution for difficulties related to unambiguous
parameter estimation of large-scale kinetic models, has the potential to integrate constraint-
based methods like FBA to identify biologically meaningful steady-state flux distributions,
if no 13C-labeling data is available. Additionally, thermodynamic constraints can be ap-
plied not only to complement FBA calculations [56], but also to perform thermodynamic-
ally safe parameterization using independent parameter sets [77–79]. In this way, kinetic
parameters will satisfy Haldane relationships and Wegscheider conditions, necessary to en-
sure thermodynamical consistency of the kinetic model [79]. In a more recent work, Sehr
et al. [135] proposed a modeling workflow that integrates FBA with Thermodynamic Feas-
ibility Analysis [94]. The results of both approaches are then translated to parameters for
a dynamic model. The dynamic model is then formulated and analyzed according to Bio-
chemical Systems Theory [118–120] and Mathematically Controlled Comparison [3, 121].
The authors used this approach to analyze three different case studies. We refer interested
readers to the original publication for further details on mathematical implementation and
results [135].

2.5. Computational Tools

As shown in Table 2.1, the size of the stoichiometric matrix S [metabolites x reactions] of
commonly used metabolic reconstructions can rapidly increase as the metabolic reconstruc-
tion becomes more comprehensive. In order to effectively handle the size and complexity
of genome-scale metabolic reconstructions, many computational approaches have been de-
veloped. Some prominent examples are listed in Table 2.5. Out of those methods, the
COnstraint-Based Reconstruction and Analysis (COBRA) Toolbox has emerged as one of
the preferred modeling tools. The COBRA toolbox consist of a compilation of various Mat-
lab scripts designed to allow for a rapid implementation of basic and advanced analyses.
The current functionality allows for network gap filling analysis, determination of intra-
cellular flux distributions by analyzing 13C labeling data, implementation of strain design
algorithms, omics-guided analysis, visualization of calculated flux distributions, among
others.

Throughout this work, the functionality provided by the COBRA Toolbox v2.0 [124] was
extensively implemented. For instance, FVA was used in Chapter 4 to identify changes
in by-product secretion pattern as the substrate uptake rate was increased. In the same
chapter, relative quality for various substrates was quantitatively assessed by calculating
the maximal flux through the ATPM reaction of the E. coli core model [107]. In Chapter
5, the OptKnock implementation provided by the COBRA toolbox was used to analyze
the effect of oxygen availability on genetic targets improving taxadiene production. In
order to demonstrate the simplicity of application of the COBRA toolbox, we show how
the maximal theoretical taxadiene yield on glucose can be calculated using some basic
commands. The code shown encompasses the following steps:

1. Load a metabolic reconstruction. In this case, we use the E. coli core model. See
code line 2.

2. Expand the scope of the metabolic reconstruction by adding a set of new reactions.
In this case, 12 new reactions along with their corresponding substrates and products
are added to the model. See code lines 6 to 46.
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2.5. Computational Tools

Table 2.5.: Commonly Used Computational Tools for the Analysis of Metabolic
Networks. Due to the implementation of a large number of different constraint-based ana-
lysis, the COBRA toolbox has been widely used within the metabolic modeling community.

Toolbox Description Reference
COBRA for Matlab Matlab package for implementing COBRA

(constraint-based reconstruction and analysis)
methods to simulate, analyze and predict a variety of
metabolic phenotypes using genome-scale models.

[55, 124]

COBRA for Python Python package that provides support for basic CO-
BRA methods. COBRApy includes parallel processing
support for computationally intensive processes.

[34]

CellNetAnalyzer Matlab toolbox that provides a graphical user interface
and various computational methods and algorithms for
exploring structural and functional properties of meta-
bolic, signaling and regulatory networks.

[67]

SNA: Stoichiometric
Network Analysis Interactive, high-performance toolbox for analyzing

steady-state behavior of metabolic networks. The tool-
box is mainly implemented in Mathematica.

[148]

YANA Platform-independent, dedicated toolbox for meta-
bolic networks with graphical user interface to calcu-
late, edit, visualize, centralize and compare elementary
flux modes.

[131]

3. Set an objective function. Since we are interested in calculating the maximal tax-
adiene yield, the taxadiene export reaction is set as objective function. See code line
49.

4. Constrain exchange reactions to reflect medium composition or experimentally de-
termined rates. In this case, we set the glucose uptake rate to a value of 1 mmol/gDW
h and allow the network an unlimited oxygen availability. See code line 52 and 53.

5. Calculate flux distribution optimizing the objective function set in step 3. Since we
constrained the glucose uptake rate to a value of 1 mmol/gDW h, the maximal value
of the objective function would correspond to the maximal theoretical taxadiene yield
on glucose. See code line 57.

1 % Load E. c o l i core metabol ic r e c on s t ru c t i on
2 model=readCbModel ( ’ ecol i_core_model . xml ’ ) ;
3
4 % Add Non−Mevalonate Pathway :
5 % Reaction 1 . − dxs
6 model=addReaction (model , ’ dxs ’ , ’ pyr [ c ] + g3p [ c ] + h [ c ] −> dxyl5p [ c ] + co2 [ c ] ’ ) ;
7
8 % Reaction 2 . ispC
9 model=addReaction (model , ’ ispC ’ , ’ dxyl5p [ c ] + nadph [ c ] + h [ c ] −> nadp [ c ] + 2me4p [ c ] ’ ) ;

10
11 % Reaction 3 . ispD
12 model=addReaction (model , ’ ispD ’ , ’ 2me4p [ c ] + atp [ c ] + h [ c ] −> 4c2me [ c ] + 2 pi [ c ] ’ ) ; %E i g en t l i c h

i s t d i e Reaktion mit CTP.
13
14 % Reaction 4 . ispE
15 model=addReaction (model , ’ ispE ’ , ’ 4c2me [ c ] + atp [ c ] −> 2p4c2me [ c ] + adp [ c ] + h [ c ] ’ ) ;
16
17 % Reaction 5 . ispF
18 model=addReaction (model , ’ ispF ’ , ’ 2p4c2me [ c ] −> 2mecdp [ c ] + amp [ c ] ’ ) ;
19
20 % Reaction 6 . ispG
21 model=addReaction (model , ’ ispG ’ , ’ 2mecdp [ c ] + nadh [ c ] −> h2mb4p [ c ] + h2o [ c ] + nad [ c ] ’ ) ;
22
23 % Reaction 7 . ispH
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24 model=addReaction (model , ’ ispH ’ , ’ h2mb4p [ c ] + nadh [ c ] + h [ c ] −> dmpp [ c ] + h2o [ c ] + nad [ c ] ’ ) ;
25
26 % Reaction 8 . ispH2
27 model=addReaction (model , ’ ispH2 ’ , ’ h2mb4p [ c ] + nadh [ c ] + h [ c ] −> ipdp [ c ] + h2o [ c ] + nad [ c ] ’ ) ;
28
29 % Reaction 9 . i d i
30 model=addReaction (model , ’ i d i ’ , ’ dmpp [ c ] <=> ipdp [ c ] ’ ) ;
31
32 % Add Taxadiene Synthes i s :
33 %Reaction 10 . − Geranyl diphosphate formation .
34 model=addReaction (model , ’DMATT’ , ’ dmpp [ c ] + ipdp [ c ] −> grdp [ c ] + 2 pi [ c ] ’ ) ;
35
36 %Reaction 9 . − Farnesy l diphosphate formation
37 model=addReaction (model , ’GRTT’ , ’ grdp [ c ] + ipdp [ c ] −> frdp [ c ] + 2 pi [ c ] ’ ) ;
38
39 %Reaction 10 . − GGPP formation
40 model=addReaction (model , ’ ggpps ’ , ’ f rdp [ c ] + ipdp [ c ] −> ggpp [ c ] + 2 pi [ c ] ’ ) ;
41
42 %Reaction 11 . − Taxadiene formation
43 model=addReaction (model , ’ txs ’ , ’ ggpp [ c ] −> txdn [ c ] + 2 pi [ c ] ’ ) ;
44
45 %Reaction 12 . − Taxadiene export
46 model=addReaction (model , ’ txdnx ’ , ’ txdn [ c ] −> ’ ) ; %txdn [ e ]
47
48 % Set Taxadiene export as ob j e c t i v e func t i on .
49 model=changeObject ive (model , ’ txdnx ’ ) ;
50
51 % Set a v a i l a b i l i t y o f g luco s e and oxygen .
52 model=changeRxnBounds (model , ’EX_glc ( e ) ’ ,−1 , ’ l ’ ) ;
53 model=changeRxnBounds (model , ’EX_o2( e ) ’ ,−100 , ’ l ’ ) ;
54
55 % Solve the l i n e a r problem . Flux through taxadiene export r e a c t i on
56 % corresponds to molar y i e l d on g luco s e .
57 s=optimizeCbModel (model ) ;

Although the COBRA toolbox offers an implementation for dFBA simulations, this code is
not suitable for large-scale calculations due to its limited speed. Many computational tools
have been introduced to perform dFBA analysis [47,92,124,169]. Among those, we used the
Matlab-based DFBALAB [47] code to perform all dFBA simulations presented in Chapter
8 due to its velocity and simplicity of use. Similarly, even though COBRA also offers
an implementation for 13C-MFA, it requires the use of the commercial nonlinear solver
TOMLAB/SNOPT. For that reason, we implemented the 13CFlux2 software instead [155],
which uses the large-scale nonlinear open source solver Interior Point OPTimizer (IPOPT)
[153]. Refer to Appendix A.2.4 for an exemplary model used for 13C-MFA calculations
using the 13CFlux2 software. As for all EM analyses implemented in this work, the Matlab
code provided in the reference [71] was used.
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3. Theoretical Workflow for Metabolic
Engineering

One of the main objectives of this work was the development a theoretical workflow for
Metabolic Engineering. Here, we propose such a workflow, incorporating state of the art
constraint- and kinetic-based modeling approaches along with the concept of metabolic
burden. Our workflow consist of two main steps. The first one covers model-guided devel-
opment of production strains, while the second step targets model-driven process optim-
ization, as shown in Figure 3.1. Even though the proposed workflow exhibits a sequential
nature, with strain engineering preceding process development, other scenarios are also
conceivable. For instance, process parameters, e.g., medium composition, production tem-
perature, aeration levels, etc., could be previously fixed so that strain optimization should
be performed to reach high strain performance under such conditions. The workflow was
designed to reflect current trends of rational strain engineering and systems biotechno-
logy [73, 117], characterized by cyclic steps of modeling (dry-lab) and experimental work
(wet-lab). In line with the main structure of the workflow, this thesis consist of two results
parts, one for strain engineering - Part II - and one for process optimization - Part III -,
each being comprised of three chapters. Note that the application of the methods described
in each chapter is not limited by its assignment to one of the two main topics, meaning
that some model predictions can be applied to guide both strain and process optimization.

3.1. Model-guided Strain Engineering

The workflow starts with the selection of a metabolic reconstruction for the organism
of interest. In the case of E. coli , different models of diverse scope and complexity are
available. Some of the most commonly used are listed in Table 2.1. Once a metabolic
reconstruction has been chosen, adapted or constructed, an initial in silico strain charac-
terization can is performed. By calculating theoretical maximum product yield on single
carbon sources or substrate mixtures, optimal medium composition for the synthesis of
the desired product can be identified. Analogously, constraint-based approaches can also
be applied to aid pathway selection, when more than one metabolic routes are available
for the desired bio-transformation. The results of this initial in silico characterization can
be applied to inform following steps: decide whether the selected host strain meets min-
imum requirements on product yield to allow for an economically viable process; guide the
selection of initial process parameters for process optimization and, define experimental
conditions in early steps of strain characterization. Refer to Chapter 7 for more details
on the specific application of these methods to the taxadiene overproduction in E. coli .
The results of an initial experimental strain characterization are then used to construct a
strain-specific metabolic model. This is done by updating model boundaries of exchange
reactions corresponding to substrate uptake, by-products secretion and if available, product
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formation. Stoichiometric coefficients of the reaction describing biomass synthesis can also
be updated if protein, DNA, RNA or lipids content measurements are available. Calcu-
lations regarding in silico medium optimization can be repeated and, if necessary, actual
medium composition should be adjusted. Additionally, constraint- and kinetic-based strain
design algorithms can be implemented to guide genetic interventions aiming at the over-
production of the molecule of interest. Refer to Chapters 5 and 6 for more details on the
specific application of these methods to the taxadiene overproduction in E. coli . The next
step is experimental strain construction and characterization. Here, genetic interventions
suggested by strain design algorithms are experimentally implemented and the resulting
strain is characterized to assess its production performance. If the mutant strain meets
performance requirements, it is categorized as optimal production strain and the process
of strain engineering can be concluded. In the case that strain production performance
is not satisfactory, predictive power of the algorithms and methods used for strain design
needs to be reviewed. This can be done by thoroughly comparing model predictions with
actual strain behavior. The idea is to identify and correct potential model flaws causing
discrepancies between in silico and in vivo behavior. Once model and methods have been
reviewed, new predictions are generated. The process of hypothesis generation and ex-
perimental validation is repeated until generated mutant strains meet minimal production
performance and an optimal production strain is generated.

3.2. Model-guided Process Optimization

In the first step of the model-driven process optimization workflow, the production perform-
ance of a given production strain is experimentally assessed in a fermentation system for
the first time, using a non-optimal initial set of process parameters (e.g., medium compos-
ition, production temperature, time point of system induction, growth rate/dilution rate,
etc.). The choice of concrete process parameter values can be guided by theoretical tools
described in this work. More specifically, the cellular growth rate during the production
phase can be selected to consider theoretical aspects related to minimization of metabolic
burden (refer to Chapter 4) and/or optimal biomass yield resulting in a maximal product
yield (refer to Chapter 9). Empirical models can also be applied for process optimization,
as demonstrated in Chapter 8. In this case, a simple model, based on the dynamic flux
balance framework, allowed the identification of optimal production temperature and time
point of induction, which in silico increased the maximal taxadiene productivity by 25%.
Additionally, theoretical studies regarding optimal carbon source can be used to guide the
process of medium composition optimization, as described in Chapter 7. If observed
strain performance does not fulfill minimal production requirements, an iterative process,
similar to the one applied for strain optimization, can be applied, in which metabolic mod-
els are updated so that their predictions match experimental data. Strain performance is
then characterized using an improved set of process parameters and the optimization cycle
is repeated until strain performance meets minimum production requirements.
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Figure 3.1.: Workflow for Model-based Metabolic Engineering. The proposed workflow covers both model-guided strain engineering and model-
driven process optimization. Cutting edge constraint- and kinetic-based modeling approaches are implemented in each stage. The workflow was
designed to reflect current trends of rational strain engineering and systems biotechnology, characterized by cyclic steps of modeling (dry-lab) and
experimental work (wet-lab).
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Results: Strain Engineering
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The second part of this thesis is composed of three chapters, which cover topics related to
model-driven strain optimization. Chapter 4 analyzes the effect of plasmid-based foreign
gene expression on strain performance. It is known that loaded cells, i.e., supporting
heterologous gene expression, exhibit a decreased growth rate and biomass yield. This
phenomenon is commonly termed Metabolic or Protein Burden. We start by describing the
concept of acetate and biomass yield lines and by showing how it can be used to monitor the
effect of the load on cellular metabolism. Subsequently, we extend this concept and apply it
to develop strategies to overcome the metabolic burden caused by heterologous gene over-
expression. In Chapter 5, we analyze 13C labeling data for different taxadiene production
strains and use them to generate reference flux distributions for each strain, which are
subsequently used as input to a kinetic-based approach we termed optEM. OptEM allowed
the identification of genetic targets for strain engineering. Finally, in Chapter 6 we
analyze simultaneous utilization of glucose and xylose by E. coli. To this end, six different
strains exhibiting two different genetic backgrounds were experimentally characterized. All
strains were subsequently assessed regarding production potential, metabolic burden and
sugar co-uptake level by applying constraint- and kinetic-based approaches.
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In order to analyze the detrimental effect that gene over-expression has on strain perform-
ance, our cooperation partner Sabine Wagner at Fachgebiet Systembiotechnologie (SBT)
designed, constructed and experimentally characterized three strains, each of which exhib-
ited a different protein load, as shown in Figure 4.1. Strain cultivation was conducted in
shaking flasks. Five different carbon sources were used to obtain a relatively wide range
of growth rates, ranging from approximately 0.2 1/h for acetate, to almost 0.5 1/h for
glucose. We used a constraint-based approach to qualitatively reproduce observed acetate
secretion patterns in the three strains. As previously described [11], acetate lines can be
used as an indicator of cellular fitness. We found a connection between biomass yield
lines and acetate lines. The point where the slope of the biomass yield line is decreased
for the first time defines a threshold beyond which cellular growth is always accompanied
by acetate secretion under aerobic conditions. By analyzing acetate secretion patterns of
strains exhibiting different burden levels, we hypothesize that cells growing below a cer-
tain threshold can fulfill the imposed burden, while simultaneously growing with wild-type
yields. Our in silico analysis also suggests that acetate lines do not have a unique slope
as initially suggested, but are rather composed of at least two straight lines with different
slopes.

4.1. Strains & Experimental Data

Main genetic features of the strains analyzed in this chapter are shown in Figure 4.1. The
strains were designed by Sabine Wagner to exhibit an increasing protein burden. The
fluorescent protein mCherry was used as a monitor of the cellular capacity, by placing the
transcription of the mCherry gene under the control of a constitutive promotor. On the
other hand, the protein eGFP was used to load the cell. Since both mCherry and eGFP are
fluorescent proteins, their synthesis can be easily determined by measuring light emission
at different wavelengths.

Five different carbon sources - glucose, mannose, fructose, galactose and acetate - were
used to allow for the analysis of the metabolic burden (caused by plasmid-based heterolog-
ous gene expression) at different growth rates. Experimental strain characterization was
conducted in shaking flask at 37°C and 200 revolutions per minute (rpm). Additional to
light emission at mCherry- and eGFP-specific wavelengths, time courses for OD, substrate
and acetate concentration were experimentally determined (see Appendix A.1.3 for raw
data). Calculated rates for glucose as carbon source are exemplarily provided in Table 4.1.
Refer to Appendix A.1.3, Table A.6 for a complete overview of the results.

In order to analyze the effect of gene over-expression on growth rate and biomass yield,
we plot growth rates versus substrate uptake rates for all strains and substrates (Figure
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Strain ID 31 3150 3152
Plasmid Content 1 2 2

Antibiotics Kanamycin Kanamycin
Gentamycin

Kanamycin
Gentamycin

Inducer 1 mM 3-MB 1 mM 3-MB 1 mM 3-MB

Protein Load

Figure 4.1.: Main Genotypic Characteristics of Strains Used for the Character-
ization of the Metabolic Burden. Plasmid present in strain 31 correspond to a
medium copy number plasmid. Additional plasmid in strain 3150 is a high copy number
plasmid. Amino acid sequences of proteins encoded in each plasmid are given in Appendix
A.1.2. 3-methylbenzoate (3-MB) was used to induce eGFP expression in strain 3152. In
order to guarantee identical medium composition for all strains, the culture medium was
always supplemented with 1 mM 3-MB

Table 4.1.: Experimentally Calculated Exchange Rates for Three Strains.
Growth on Glucose. Rates for growth, substrate uptake and acetate secretion were
calculated from measured time courses as described in Chapter 2.1.2.

Strain
31 3150 3152

µ, [1/h] 0.487 0.111 0.086
ruptake, [mmol/gDW h] 14.111 4.449 4.540
racetate, [mmol/gDW h] 6.074 4.707 3.336

4.2). For a fixed uptake rate of a given substrate, for instance galactose (symbol * in
Figure 4.2), we observe a reduction of growth rate as the protein load is increased, as
denoted by the grey arrow. One can explain this observation from a stoichiometric point of
view. Heterologous protein production directly competes with cellular growth by reducing
the amount of effective substrate available for biomass production. Thus, a reduction of
the growth rate will be expected, if heterologous protein production increases at a given
constant substrate uptake rate. Of course, mass balance is not the only explanation for the
observed behavior. Heterologous protein production can also reduce cellular growth rate
by reducing the effective amount of ribosomes available for production of host protein.
Additionally and depending on the amino acid composition and identity of the foreign
protein, cellular metabolism can be directly affected. For instance, the intracellular pool
of a given amino acid can be dramatically reduced or toxic pathway intermediates can
accumulate as a consequence of the enzymatic activity of the heterologous protein. In
both cases, one would observe a reduction in the cellular growth rate.

Considering the results for strain 31, Figure 4.2 evidences an unexpected, inverse rela-
tionship between growth rate and substrate uptake rate: as the value of substrate uptake
rate increases, the growth rate seems to decrease. Taking a closer look at Figure 4.2, one
can conclude that this behavior mainly arises due to the data point for acetate (symbol
+). This observation suggests that in order to properly analyze the correlation between
substrate uptake rate and growth rate, we need to standardize the substrate uptake rate,
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Figure 4.2.: Growth Rate vs. Substrate Uptake Rate for Three Strains and Five
Substrates. Black symbols correspond to strain 31, green symbols to strain 3150 and
blue symbols to strain 3152. Substrate symbols are as follows: +: acetate, ◦: fructose, *:
galactose, �: glucose, �: mannose.

to consider differences in the molecular weight and quality of the various substrates used.

4.2. Substrate Quality

A real-life analogy for the concept of substrate quality is presented to justify its introduction
and to understand its utility. Let us imagine for a moment we are interested in analyzing
the correlation between the Gross Domestic Product (GDP) of a given group of countries
and the life expectancy of their citizens. One option to graphically analyze this relationship
would be to plot the two variables for all countries and determine the slope of the resulting
line. Figure 4.3.A shows this relationship for six different countries. Data were collected
from the webpage of the World Bank for the year 2016.

Based on Figure 4.3.A, one would conclude that living in rich countries, where the GDP
per capita is high, reduces life expectancy. From the figure, we also observe that Colombia
appears to be the richest country. Since we know this is not the case, we conclude we first
need to standardize the data, more specifically the currency of the GDP per capita, before
we can perform any kind of analysis. Figure 4.3.B shows the data after converting the
GDP per capita from each local currency to US dollars. After data standardization, we
obtain the expected relationship between GDP and life expectancy: the richer the country,
the higher the life expectancy. This real-life analogy points out the necessity of adequate
conversion factors for each member of the data set. In this case, exchange rates allowed
a correct data analysis by adjusting the value of the GDP per capita so that it became
comparable within the group. Note that the conversion to another currency different from
US$ is also possible.
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Figure 4.3.: Real-Life Analogy for Concept of Substrate Quality. A. Life expectancy
vs. GDP in local currency. An inverse, unexpected relationship between these variables is
observed. B. Life expectancy vs. GDP in US$. As expected, there exist a direct relationship
between the two variables

4.2.1. Conversion Factors for Substrate Uptake Standardization

After taking a closer look at the data for strain 31 (Figure 4.2, black symbols), we hypo-
thesize that expressing the substrate uptake rate of each substrate in units of “mmol/gDW
h” does not allow a correct data analysis. This is because energy and mass content (or
number of carbon atoms) per millimol (mmol) differ for each substrate, especially when
acetate is compared with the other substrates. Inspired by this observation, we define three
different criteria to describe substrate quality: mass content, carbon content and energy
content. In a following step, we set up a theoretical framework to assess the utility of each
criterion. In this section, we refer to substrate quality as the potential of a given substrate
to allow growth.

Determination of Energy Content Using Linear Programming

Conversion factors for the first two quality criteria (molecular weight and carbon content)
are solely defined by the chemical identity of each substrate, i.e., they do not depend
on culture conditions, for instance, oxygen availability. On the other hand, energy con-
tent is a function of both chemical identity of the substrate and oxygen availability. We
make use of constraint-based modeling to calculate the energy content of each substrate
for various oxygen availability levels by simply maximizing the flux through the ATPM
reaction of the iJO1366 model [106]. This reaction describes the dephosphorylation of
ATP: ATP + H2O ADP + Pi + H+. Calculations were performed using the COBRA
toolbox and gurobi 5 as the linear solver. Refer to section 2.5 for an overview of the
main commands. A constant uptake rate of 1 mmol/gDW h was set for each substrate,
while the oxygen uptake rate was varied to obtain oxygen ratios ranging from zero to 20.
Throughout this work, we will use the term ATP content to refer to the ratio between
the flux through the ATPM reaction and the substrate uptake rate. Strictly speaking,
this ratio rather refers to the number of high-energy phosphoanhydride bonds that can be
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Figure 4.4.: Energy Content As a Function of Oxygen Availability for Five Sub-
strates. The E. coli metabolic reconstruction iJO1366 was used for all calculations. En-
ergy content is represented by the potential of each substrate to generate energy in form of
ATP. Note that anaerobic energy production from acetate is not possible.

Table 4.2.: Conversion Factors for Three Quality Criteria. Conversion factors for energy
content as quality criteria correspond to maximal ATP content for each substrate, as shown
in Figure 4.4. Factors for carbon content correspond to the number of carbon atoms in each
molecule and factors for mass content correspond to molecular weight of each substrate in
units of g/mmol

Energy Content
[mmol ATP/mmol Substrate]

Carbon Content
[C-mmol/mmol Substrate]

Mass Content
[g/mmol Substrate]

Acetate 6.25 2 0.06005
Fructose 23.5 6 0.18016
Galactose 23.25 6 0.18016
Glucose 23.5 6 0.18016
Mannose 23.5 6 0.18016

be generated from the given substrate [80]. However, since these phosphate bounds are
contained in form of ATP, the term ATP content is equally precise.

Figure 4.4 shows the energy content of all five carbon sources. As expected, the ATP
content strongly depends on the identity of the substrate and oxygen availability. For all
substrates, the ATP content exhibits a saturation behavior as a function of the oxygen ratio.
Fructose, galactose, glucose and mannose all reach the same ATP content at an oxygen
ratio of 10 mmol O2/ mmol substrate, while acetate reaches its maximal ATP content at
a oxygen ratio of 2 mmol O2/mmol substrate. Assuming that the cell strives to maximize
the amount of produced energy by aerobically metabolizing the absorbed substrate, the
maximal ATP content should serve as a proper conversion factor when considering energy
content as quality criterion. The validity of this assumption will be discussed in section
4.2.2. Table 4.2 contains all conversion factors for the previously defined quality criteria.

Note that for the three quality criteria considered, the conversion factor for acetate is
always the lowest out of the five substrates tested. This suggests that the cell should
absorb a comparatively higher amount of acetate (measured in mmol/gDW h) in order to
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4. Metabolic Burden

support a given growth rate. Considering energy as quality criterion, the cell will have to
absorb acetate with a rate 3.76 times higher than the corresponding rate for glucose. This
trend is visible for the strain 31 in Figure 4.2, with acetate exhibiting the highest uptake
rate. However, this trend is not as clear in strains 3150 and 3152. Having defined three
different quality criteria, the natural question following is: which of these criteria is the
most suitable to perform standardization of the substrate uptake rate?

Assessing the Suitability of Different Quality Criteria

To answer this question, we designed a constraint-based algorithm to assess the suitability
of the different quality criteria. The rationale is the following: if uptake rates of a given set
of substrates can be correctly standardized by a potential quality criterion, then a given
standardized value of substrate uptake rate should lead to a single growth rate, no matter
the nature of the substrate. In other words, we require the biomass yield, calculated as
the ratio between growth rate and standardized substrate uptake rate, to have the same
numerical value for all substrates. The proposed algorithm consist of the following steps:

1. Select a quality criterion and determine its corresponding conversion factors. Refer
to Table 4.2.

2. Define a numerical value for the standardized uptake rate. For instance, 117.5 mmol
ATP/ gDW h.

3. Using corresponding conversion factors, convert the standardized uptake rate, into
an uptake rate having units of “mmol substrate/gDW h”. In this case, 117.5 mmol
ATP/gDW h correspond to: 18.8 mmol acetate/gDW h; 5.05 mmol galactose/gDW
h and 5 mmol/gDW h for all other substrates.

4. Set upper and lower boundaries for the uptake reaction of a defined substrate in a
given stoichiometric model, for instance iJO1366, and calculate the maximal growth
rate supported by this substrate using linear programming.

5. Repeat step 4. for all other substrates to generate a growth vector containing growth
rates for all substrates.

6. Calculate the maximal error in the growth vector as max(growthvector)−min(growthvector)
min(growthvector)

7. Repeat step 1. to 6. for each quality criterion and select the one with the lowest
error.

After applying these steps, we obtain the results shown in Figure 4.5. Additionally to the
previously mentioned quality criteria, this figure also contains the assessment of a negative
control (Figure 4.5.A), where no standardization is used. From Figure 4.5 it results clear
that energy content (expressed as ATP) represents the best quality criterion for uptake rate
standardization, exhibiting an error of only 1.78%. The performance of mass and carbon
content as quality criteria is identical under the tested conditions. An unlimited oxygen
supply, id est (i.e.), completely aerobic metabolism, was used to calculate all growth rates
shown in Figure 4.5. If the oxygen availability is reduced (from 20 mmol O2/ gDW h to 5
mmol O2/ gDW h), different results are obtained, as shown in Figure 4.6. While the error
of the negative control is reduced to 189%, the error of the three quality criteria becomes
identical and increases to 185%.
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Error = 314%  Error = 28.4%  

Error = 28.4%  Error = 1.78%  

A B
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Figure 4.5.: Assessment of Three Different Quality Criteria for Data Standard-
ization. High Oxygen Availability. A maximal oxygen uptake rate of 20 mmol
O2/gDW h was used for all calculations. Uptake rates used to estimate growth rates via
linear programming can be extracted from Table 4.3. All calculations were performed using
the E. coli metabolic reconstruction iJO1366. At a relatively high oxygen to substrate ratio,
standardization using energy content as quality criterion seems to be the most accurate ap-
proach for standardizing the substrate uptake rate. A. Negative control. All substrates had
a substrate uptake rate of 5 mmol/gDW h. B. Standardization using carbon content as qual-
ity criterion C. Standardization using mass content as quality criterion D. Standardization
using energy content as quality criterion.

Table 4.3.: Substrate Uptake Rates Used to Assess Quality Criteria. Substrate up-
take rates were calculated using conversion factors listed in Table 4.2 and assuming following
input fluxes: Negative control: 5 mmol/gDW h for all substrates; Carbon content: 30 C-
mmol/gDW h; Mass content: 0.9008 g/ gDW h; Energy content: 117.5 mmol ATP/gDW h.
These reference fluxes were selected so that after conversion into molar flux, 5 mmol glucose/
gDW are obtained. All uptake rates are given in units of mmol substrate/ gDW h.

Negative
Control

Carbon
Content

Mass
Content

Energy
Content

Acetate 5 15 15.00030 18.8
Fructose 5 5 5 5
Galactose 5 5 5 5.0538
Glucose 5 5 5 5
Mannose 5 5 5 5

45



4. Metabolic Burden

Error = 189 %  Error = 185 %  

Error = 185 %  Error = 185 %  

A B
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Figure 4.6.: Assessment of Three Different Quality Criteria for Data Standard-
ization at Low Oxygen Availability. A maximal oxygen uptake rate of 5 mmol
O2/gDW h was used for all calculations. Uptake rates used to estimate growth rates via
linear programming can be extracted from Table 4.3. All calculations were performed us-
ing the E. coli metabolic reconstruction iJO1366. At a relatively low oxygen to substrate
ratio, none of the three standardization approaches tested seems to reduce the error, when
compared to the error of the negative control. A. Negative control. All substrates had a
substrate uptake rate of 5 mmol/gDW h. B. Standardization using carbon content as qual-
ity criterion C. Standardization using mass content as quality criterion D. Standardization
using energy content as quality criterion.
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Figure 4.7.: Standardized versus Raw Experimental Data. Black symbols correspond to
strain 31, green symbols to strain 3150 and blue symbols to strain 3152. Substrate symbols
are as follows: +: acetate, ◦: fructose, *: galactose, �: glucose, �: mannose. A. Raw
experimental data B. Substrate uptake rate was standardized using mass content as quality
criterion C. Substrate uptake rate was standardized using energy content (ATP) as quality
criterion. Note that the relative position of the acetate data point is the only appreciable
difference between standardization using mass (B.) or energy content (C.)

4.2.2. Data Standardization

As previously shown, oxygen availability, commonly expressed as oxygen to substrate ratio,
has a big impact on numerical values of conversion factors, when energy content is used as
quality criterion (refer to Figure 4.4). As it turned out, oxygen availability also impacts the
performance of a given set of conversion factors, no matter which quality criteria was used
(refer to Figure 4.5 and Figure 4.6). In order to understand the nature and implication of
these observations, consider one more time the real life-analogy presented at the beginning
of section 4.2. The relative value of a given currency to another, that is, its exchange rate,
is normally determined by market forces of supply and demand, which in turn depend on
plenty of factors. In an ever-changing world, exchange rates are constantly changing to
represent the relative value of a given currency accurately. Trying to predict their exact
behavior has proven to be a challenging, if not impossible endeavor. Contextualizing these
observations, we infer that in the case of energy as quality criterion, conversion factors
need to be adjusted in order to reflect the effect of variable factors like for instance, oxygen
availability. However, oxygen availability is normally unknown, especially when culturing
in shaking flasks. Additionally, it has been shown that factors like medium composition,
specific growth rate or heterologous protein over-expression also have a profound effect
on the overall cellular fitness, consequently affecting the amount of oxygen that the cell
can absorb and effectively use to fully metabolize the absorbed substrate (refer to [11]
and [110], Figure 6 therein). In other words, the calculation of conversion factors should
not only be process-specific, but also strain-specific. Due to the impossibility of an accurate
determination of conversion factors using energy content as quality criterion, we opt for
choosing mass content as quality criterion.

Figure 4.7 (B and C) shows the effect that standardizing substrate uptake rate has on
data interpretation. By changing the units in which substrate uptake rate is plotted,
the correlation between growth rate and substrate uptake rate went from being negative to
become positive. Note that although the numerical value for the uptake rate is changed for
all substrates as a consequence of standardization, the data point for acetate underwent
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4. Metabolic Burden

the biggest change in its relative position. Acetate, exhibiting the highest uptake rate
before standardization, became the substrate with the second lowest uptake rate after
standardization. This behavior is valid for strain 31, however, strains 3150 and 3152 show
a similar pattern.

4.3. Yield, Acetate and Formate Lines

From previous constraint-based analysis, in which the dependence of growth rates on gluc-
ose uptake rates at varying oxygen levels was investigated, we learned that at a constant
oxygen availability, an increase in the glucose uptake rate is always followed by an increase
in growth rate. Similarly, at a constant glucose uptake rate, a decrease in the oxygen ratio
is accompanied with a reduction in the growth rate, as shown in Figure 4.8.B and .D. We
refer to the lines shown in both figures as yield lines, since their slopes correspond to the
biomass yield. A comparison between experimentally obtained yield lines for strains 31,
3150 and 3152 (Figure 4.8.A and .C) with in silico generated ones - using glucose as carbon
source at different oxygen levels - evidences an intriguing similarity (compare Figure 4.8.A
with .B and Figure 4.8.C with .D). Thus, we venture to hypothesize that heterologous
protein over-expression in strains 3150 and 3152 might originate a load-induced oxygen
limitation, which is experimentally evidenced as a downward displacement of the biomass
yield lines.

One of the advantages of metabolic modeling is that it allows the analysis of complex
responses of the cellular metabolism to changes in culture conditions. We used FVA
in combination with a core metabolic model [107], describing the central metabolism of
E. coli , to investigate the reason for the systematic reduction of biomass yield at higher
substrate uptake rates observed in Figure 4.8.B and .D. For our analysis, we focused on one
specific in silico yield line, shown in Figure 4.9. This yield line is divided into three phases,
with each phase exhibiting decreasing slopes (biomass yield) as the substrate uptake rate
increases. The analysis was performed as follows:

1. Select a combination of growth and substrate uptake rate lying in one of the three
phases.

2. Fix the flux through those reactions in the model by adjusting lower and upper
boundaries correspondingly.

3. For each reaction in the model, calculate the maximal and minimal flux supported,
while fulfilling constraints set in the previous step.

4. Repeat step 1 to step 3 for the other two phases.

5. Compare flux distribution ranges for all three phases, paying special attention to
by-product secretion patterns.

This analysis identified clear differences in the by-product secretion patterns of the three
phases. While CO2 is the sole by-product secreted in the first phase, its secretion is com-
plemented by acetate in the second phase and by acetate and formate in the third phase
(refer to Appendix A.1.4, Figures A.2 to A.4, for a detailed overview of results). The
changing by-product secretion pattern can be understood as a consequence of decreasing
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Figure 4.8.: Load-induced Oxygen Limitation. A. and C. correspond to standardized ex-
perimental data using mass and energy content as quality criteria, respectively. B. and D.
correspond to in silico simulations using glucose as carbon source and the E. coli core model.
Growth rates were calculated using constraint-based modeling with maximization of growth
rate as the objective function for glucose uptake rates ranging from 0 to 14 mmol/gDW
and three different oxygen levels. Black symbols correspond to strain 31, green symbols to
strain 3150 and blue symbols to strain 3152. Substrate symbols are as follows: +: acetate,
◦: fructose, *: galactose, �: glucose, �: mannose.
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Figure 4.9.: Relationship between Biomass Yield, Acetate and Formate Lines. In
silico yield line for glucose as carbon source is shown. Maximal oxygen uptake rate was set
to 7 mmol/gDW h. Yield line is divided into three phases, denoted by I, II and III. Each
phase is characterized by a single biomass yield and by-product secretion pattern, as shown
in the adjacent table.

oxygen to substrate ratios. This is because the substrate uptake rate increases from phase
I to phase III, while the maximal oxygen uptake rate, allowed to the cell to use, is kept con-
stant. Since the substrate uptake rate in phase I is comparatively low, the cell has enough
oxygen to allow for a complete oxidation of the substrate to CO2 via tricarboxylic acid
(TCA) cycle and electron transport chain. As the substrate uptake rate keeps increasing,
while the capacity of the electron transport chain is kept constant (since O2 availability is
kept constant), the cell cannot completely redirect the formed pyruvate to the TCA cycle
and part of the pyruvate is fermented to form acetate in the second phase and acetate
and formate in the third phase. Thus, we extend our analysis to the in silico acetate and
formate secretion patterns.

Figure 4.10 directly compares in silico calculations with experimental data. Upper row
correspond to in silico predictions, while lower row corresponds to experimental data. In
silico calculations were performed using the E. coli core metabolic reconstruction along
with the COBRA toolbox. Glucose uptake rate was varied from 0 to 14 mmol/gDW h,
while just two oxygen levels were considered: 4 and 7 mmol/gDW h, corresponding to the
black and green line of the upper row of Figure 4.10, respectively. Growth rate was used as
the objective function and was maximized using linear programming. For a given pair of
substrate uptake rate (rsubstrate) and growth rate (µ), FVA analysis was used to estimate
acetate secretion (racetate) by minimizing and maximizing flux through the acetate export
reaction in the E. coli core model, while keeping rsubstrate and µ fixed. Formate secretion
was estimated in a similar way, by maximizing and minimizing the flux through the formate
export reaction, while keeping rsubstrate, µ and minimal racetate constant.

As previously inferred, transitions between different phases of the yield lines are accom-
panied by changes in the by-product secretion pattern. Consider for instance the black
in silico yield line of Figure 4.10. As the growth rate increases, cellular metabolism un-
dergoes a transition, from phase I to phase II. This is accompanied by a reduction in the
biomass yield and acetate secretion for the first time (4.10.B, point 1 ). The growth rate in
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Figure 4.10.: Qualitative Comparison Between Experimental Data and in silico
Calculations. A. to C. represent in silico calculations. Upper boundary for oxygen
uptake rate was constrained to 7 mmol/gDW h for the black lines and to 4 mmol/gDW h
for the green lines. 1 and 2 corresponds to transitions from phase I to II and from phase
II to III, respectively (see Figure 4.9). Thin lines correspond to maximal acetate secretion
rates, while thick lines correspond to minimal acetate secretion rates. D. to F. represent
experimental data. In line with a previous publication [11], we refer to the lines shown in
B. and E. as acetate lines. Analogously, we introduce the concept of formate line to refer
to the line shown in F. Legend: black symbols correspond to strain 31, green symbols to
strain 3150 and blue symbols to strain 3152. Substrate symbols are as follow: +: acetate,
◦: fructose, *: galactose, �: glucose, �: mannose.
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which this transition occurs is termed critical growth rate for acetate, µacetate, and corres-
ponds in this case to 0.19 1/h. As the growth rate continues to increase, acetate secretion
keeps linearly increasing. At a certain point ( 2 ), cellular metabolism undergoes a second
transition, accompanied again, by a reduction in the biomass yield and a change in the
by-product secretion pattern. In this case, formate is secreted for the first time (4.10.C,
2 ). Analogously, we refer to the growth rate in which the second transition occurs as the
critical growth rate for formate, µformate, which in this case corresponds to 0.28 1/h. Inter-
estingly, the transition from phase II to phase III is not only characterized by a reduction
in the biomass yield, but also by differing minimal and maximal acetate secretion values,
as shown in Figure 4.10.C by the thin line. A similar behavior during phase transitions is
observed for the green in silico yield line.

Initially, similarities between experimental and in silico yield lines at different oxygen
levels led to the hypothesis formulation of load-induced oxygen limitation (Figure 4.8)
and motivated the previous analysis of secretion patterns in silico. Figure 4.10.E und .F
shows experimental acetate and formate secretion for all strains as a function of growth
rate. A comparison between experimental and in silico secretion patterns reveals further,
interesting resemblances. First, we observe a parallel, downwards displacement of the
acetate line for strains 3150 and 3152, when compared to the parent strain 31 (Figure
4.10.E). Remarkably, the same behavior can be obtained in silico by reducing the maximal
oxygen uptake rate, as shown in Figure 4.10.B for low acetate secretion rates. Second, the
existence of formate lines is predicted by our in silico analysis, as shown in Figure 4.10.C.
Experimentally, this can be qualitatively confirmed for strain 31, as shown in Figure 4.10.F.
Missing formate lines for strains 3150 and 3152 could be explained by low growth rates
exhibited by these strains. As a consequence, experimentally observed metabolic states
might be limited to phase I and II. Since actual values for oxygen uptake rate and level for
each of the three strains are unknown, mentioned similarities have only a qualitative nature.
However, we believe that the proposed hypothesis of load-induced oxygen limitation is
supported by our experimental observations and partly by experimental evidence presented
by Peebo et al. [110], as discussed in Section 4.5.

4.4. Process-level Strategy to Reduce Detrimental Effects of
Metabolic Burden

One of the objectives motivating the analysis of the metabolic burden generated by het-
erologous protein over-expression in E. coli was the development of strategies to reduce its
negative effect on biomass yield and acetate secretion. Here, we propose a process-level
strategy designed to recover the wild-type biomass yield by adjusting the growth rate dur-
ing heterologous protein production. By using different substrates, it was possible to study
gene over-expression at various growth rates in shaking flasks. Assuming that standardiza-
tion of substrate uptake via molecular weight is reasonably accurate, it is possible to draw
straight lines representing experimental yield and acetate lines for all strains as, shown in
Figure 4.11.

Our in silico analysis suggests that yield lines of a given reference strain and a loaded strain
should converge into one single yield line at a sufficiently low growth rate (see 4.10.A). In
our specific case, yield lines of the two loaded strains (3150 and 3152) seem to converge with

52



4.4. Process-level Strategy to Reduce Detrimental Effects of Metabolic Burden

0 0.5 1 1.5 2 2.5 3
Substrate Uptake Rate, [g/gDW h]

0

0.1

0.2

0.3

0.4

0.5

G
ro

w
th

 R
at

e,
 [1

/h
]

0 2 4 6 8
Acetate Secretion Rate, [mmol/gDW h]

0

0.1

0.2

0.3

0.4

0.5

G
ro

w
th

 R
at

e,
 [1

/h
]

Wild-type biomass yield 
A B

∆	= 𝑓(𝑙𝑜𝑎𝑑)

Figure 4.11.: Process-level Strategy to Reduce Metabolic Burden. A. Experimental
yield lines. B. Experimental acetate lines. Dashed lines were obtained using linear re-
gression. Black symbols correspond to strain 31, green symbols to strain 3150 and blue
symbols to strain 3152. The metabolic burden (∆), defined as a reduction in µAcetate, is
a function of the load exerted on the strain. We predict that by modulating the load in
strain 3152, burden-free eGFP expression (blue region) can occur at higher growth rates,
when compared to current load level. Substrate symbols are as follows: +: acetate, ◦:
fructose, *: galactose, �: glucose, �: mannose. Critical growth rates for acetate secretion
are: µ31

Acetate = 0.33, µ3150
Acetate = 0.03, µ3152

Acetate = 0.022 1/h.

the reference strain (31) at the same point into one single yield line, as shown in Figure
4.11.A. The growth rate at which yield lines converge can also be obtained from Figure
4.11.B and corresponds to µAcetate of loaded strains. In theory, µAcetate for a given strain
defines the transition from phase I to phase II, as discussed in section 4.3. Experimentally
determined µAcetate for strains 3150 and 3152 (y-intercept of acetate lines shown in Figure
4.11.B) are in accordance with their respective transition phases, obtained from Figure
4.11.A. This observation provides further support for our load-induced oxygen limitation
hypothesis. Additionally, in silico predictions generated by this analysis can be used to
guide the design of a fed-batch process by providing a threshold for cellular growth rate
that should not be exceeded during the production phase, once the plasmid-based system
has been induced. In this way, cells producing heterologous proteins will not secrete acetate
and their biomass yield will be consequentially identical to that of the wild-type or the
reference strain. The range of growth rates allowing protein over-expression with no burden
is highlighted in blue in Figure 4.11.A. For the concrete case of the eGFP over-production
in strain 3152, a critical growth rate for acetate of 0.022 1/h might cause this burden-free
zone be too small to be technically and economically feasible. A potential solution to this
problem would be to modulate the load imposed by the eGFP expression by using low-copy
plasmids [58] and by tuning the strength of promoter and ribosome biding site. As a result,
µ3152
Acetate should increase, allowing a burden-free eGFP expression at much higher growth

rates than the current system.

53



4. Metabolic Burden

4.5. Discussion

The concept of acetate lines and its relationship with metabolic burden is not entirely
new. Basan et al. [11] experimentally showed that increasing LacZ overexpression levels
caused parallel shifts of the acetate line, thus leading to a reduction of corresponding val-
ues of µAcetate in E. coli strains. The authors explained this behavior using a proteomic
resource allocation model. The model assumes a limited proteomic capacity, which the au-
thors divided into three fractions. The first fraction is dedicated to biomass synthesis and
linearly depends on the growth rate, while the other two fractions are used for energy bio-
synthesis via respiration and fermentation, respectively. The authors rationalized, under
the assumption of growth rate maximization, that at high carbon uptake rates, it is more
advantageous for the cell to generate energy by the more proteome-efficient fermentation
pathway. In this way, a higher fraction of the proteome can be used to support growth.
By contrast, at low carbon uptake rates, the cell should use the more carbon-efficient
respiration pathway, so that more carbon flux can be used for biomass synthesis. Since
heterologous protein over-expression reduces the effective proteome fractions available for
biomass synthesis and energy production, loaded cells should exhibit higher acetate secre-
tion rates at fixed growth rates, which was indeed experimentally observed by the authors
(refer to Figure 3.A in reference [11]). Here, we used a constraint-based approach to qualit-
atively account for the same phenomenon of overflow metabolism. Our modelling strategy
is similar to the approach used by Varma et. al [151] to understand glucose catabolism in
E. coli under various oxygenation rates. By constraining the upper boundary for oxygen
uptake rate to a given value, independently of the numerical value of the substrate uptake
rate, our constraint-based approach reproduces experimental observations of acetate secre-
tion at high substrate uptake rates. The observed increase in acetate secretion, exhibited
by protein-overproducing strains, is reproduced in our model by reducing the numerical
value of the oxygen uptake rate constraint, as shown in Figure 4.12. In this figure, orange
lines represent the growth behavior of a wild-type strain, while all other lines qualitatively
represent strains exhibiting an increasing metabolic burden.

Note that constraining the upper boundary for oxygen uptake directly limits the maximal
flux through the respiratory chain, as represented by a saturation-like behavior of the cyto-
chrome bd oxidase activity (Figure 4.12.C). Interestingly, a similar saturation behavior has
been experimentally observed for the enzyme ATP synthase, when its expression cost is
plotted as a function of the growth rate (refer to Figure 6.A in reference [110]). The same
study reported acetate secretion when the ATP synthase reached its maximal expression
cost. Both observations provide experimental evidence supporting the key assumption of
our constraint-based approach, i.e., that a constraint in the maximal flux through the
respiratory chain, implemented in our model by constraining the maximal oxygen uptake
rate and experimentally observed by Peebo et al. [110] as a limited ATP synthase expres-
sion, gives rise to acetate lines. The work by Peebo also provides indirect experimental
evidence to our load-induced oxygen limitation hypothesis. The authors reported that
cells grown in amino acids (AA) supplemented medium can support higher ATP synthase
expression costs, compared to cells grown in medium without amino acids supplement-
ation. Consequently, µAcetate in the AA supplemented medium increases from 0.35 (no
AA supplementation) to 0.55 1/h (refer to Figure 1.A in reference [110]) Applying the
proteomic resource allocation theory, used by Basan et al. [11] to explain overflow meta-
bolism in E. coli , one can rationalize that a higher ATP synthase expression is possible
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Figure 4.12.: Emergence of Yield and Acetate Lines By Constraining Flux
Through Respiratory Chain. The effect of constraining the upper boundary
for oxygen uptake rate on biomass yield (A.); acetate lines -thin and thick lines corres-
pond to maximal and minimal acetate secretion, respectively- (B.) and the flux through
respiratory chain (C.) is shown. Simulations were performed using the E. coli core model
and a varying upper boundary for the oxygen uptake rate, as follows: green lines: 4
mmol/gDW h; black lines: 7 mmol/gDW h; blue lines: 14 mmol/gDW h; orange lines:
20 mmol/gDW h. CYTBD refers to the enzyme cytochrome bd oxidase, which produces
a proton motive force in the E. coli core model by reducing oxygen to water as follows:
2 h[c] + 1

2 o2[c] + q8h2[c] 2 h[e] + h2o[c] + q8[c]. q8h2 and q8 represent reduced and
oxidized ubiquinone pools, respectively. Note that constraining the upper boundary of the
oxygen uptake reaction directly limits the maximal flux through the enzyme CYTBD. In-
terestingly, the growth rate at which the maximal CYTBD activity is reached correspond
to the transition from phase I to phase II. This point is exemplarily marked for the blue
lines 1 . Since the maximal respiration capacity is exhausted, the cell starts using ferment-
ation pathways to generate energy. As a consequence, acetate is secreted and the biomass
yield is reduced.
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4. Metabolic Burden

because amino acid supplementation increases proteomic resources by reducing the frac-
tion of the proteome that is dedicated to amino acid biosynthesis. Conversely, heterologous
protein overexpression would decrease proteomic resources available for biomass synthesis
and energy generation, thus leading to a relative decrease in the maximal ATP synthase
expression capacity and a consequent reduction in the flux through the respiratory chain.

Note that our simple constraint-based approach provides a flux-based explanation of the
overflow metabolism in E. coli and allows for the generation of multiple testable hypothesis:

1. Acetate lines are not always composed of a single straight line. Basan et al. [11]
reported that plotting growth rates against acetate secretion rates leads to a straight
line, which the authors termed acetate line. Here, we showed that this is only the
case, if acetate is the only fermentation product, i.e., cellular metabolism is confined
to phase II (refer to Figure 4.9 and 4.10). Experimental evidence reported by Peebo
et al. [110] (refer to Figure 1.A therein) supports this hypothesis.

2. Protein over-expression originates a load-induced oxygen limitation, as discussed in
Section 4.3.

3. There exist a relationship between biomass yield, acetate and formate lines, as dis-
cussed in Section 4.3 and evidenced in Figure 4.10.A to .C.

4. Burden-free protein over-expression should possible for growth rates lower than µAcetate.
Consequently, a process-level strategy, as discussed in Section 4.11, can be developed
to minimize or eliminate the metabolic burden, expressed as a decrease in biomass
yield along with an increase in acetate secretion rate.

Further experimental studies can be designed to test the above mentioned hypothesis.
Since oxygen uptake rate plays a central role in both defining the cellular metabolic state
(phase I, II or III) and estimating conversion factors used to standardize substrate uptake
rates of different carbon sources when energy content is used a quality criterion, its ex-
perimental determination should be prioritized. Similarly, experimental determination of
protein content in loaded strains should be also considered in order to accurately describe
the effect of protein over-expression on oxygen uptake capacity and proteome allocation.
Finally, it is recommended that modeling efforts are only conducted on high-quality, re-
producible data. Only under this circumstances the design-build-test-learn cycle can be
optimally executed.
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5. Strain Design Algorithms for Target
Identification

The EM approach developed by the James Liao group at the UC, Los Angeles was used
as framework to develop a strain design algorithm that we refer to as optEM. This al-
gorithm uses EM to build an ensemble of kinetic models that fulfill a given reference flux
distribution. optEM facilitates the maximization of complex user-tailored objective func-
tions, for instance the weighted sum of volumetric productivity (mmol/l h), product yield
(mmol/mmol) and production rate (mmol/gDW h). The kinetic nature of the optEM al-
gorithm allows for consideration of typically inaccessible design parameters such as enzyme
over-expression level, overall system stability and metabolite concentration pattern after
enzyme perturbation. Using the optEM approach, we identified many genetic targets that
were already reported in the literature to have beneficial effects on taxadiene yield, thus
confirming the prediction power of our approach. We also identified targets not reported
in the literature yet [37].

5.1. Strains & Experimental Data

Five production strains were constructed and experimentally characterized by our cooper-
ation partner Monica Fuchs at IBK. Table 5.1 describes main genetic features of each of
the strains, which are schematically represented in Figure 5.1 for a better overview. All
strains are provided with a genetic makeup necessary to synthesize taxadiene. In strains
∆xylE_1p and ∆ptsG_1p, genes contained in plasmid pET28a_DS (ispF, ispD, idi and
dxs) were genomically integrated in the xylE and ptsG position, respectively. In contrast,
all enzymes required for the taxadiene biosynthesis are encoded in two plasmids in strains
∆xylE_2p and ∆ptsG_2p. Refer to Table 5.1 for plasmid description. Gene integration
aimed at the reduction of the metabolic burden caused by heterologous enzyme expres-
sion. Strain cultivation was performed in shaking flask (220 rpm) at 37°C using Riesenberg
medium with a mixture of 12C (4.5 g/l) and 13C (0.5 g/l) glucose as carbon source. Exper-
imental strain characterization was performed in duplicate and consisted of measurement
of concentration time courses for biomass, glucose and acetate. These data were processed
as described in Chapter 2.1.2 in order to calculate growth, substrate uptake and acetate
secretion rates, respectively. Exchange rates and their standard deviations are reported in
Table 5.2. Growth rates exhibit lower variability compared to acetate secretion rates (see
Figure 5.2). This is because growth rates were calculated based on OD time courses, whose
measurements require a less extent of experimental handling compared to the determina-
tion of glucose or acetate concentration time courses via HPLC measurements. Taxadiene
could not be detected in the culture medium for any strain, due to low production rates
exhibited by all strains combined with low sample volumes. Additional to concentration
time courses, 13C-labeling data were also available for all strains. These measurements
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5. Strain Design Algorithms for Target Identification

Table 5.1.: Taxadiene Producing Strains. Five different strains were constructed and experi-
mentally characterized in biological duplicates. All strains derive from E. coli HMS174(DE3).
Refer to table notes for a detailed plasmid description. Strains were grown in minimal me-
dium containing 0.5 g/l [U-13C] glucose and 4.5 g/l 12C glucose. Refer to Figures A.5 and A.7
in the Appendix for an overview of the non-mevalonate & the taxadiene production pathway,
respectively.

Strain ID Genotype Description
HMS_2p HMS174(DE3) + pET28a_DS +

pACY_MEP
HMS174(DE3) strain transformed with
two plasmids.

∆xylE_2p HMS174(DE3) ∆xylE + pET28a_DS
+ pACY _MEP

Gene xylE is knocked out from strain
HMS_2p

∆xylE_1p HMS174(DE3) ∆xylE + pET28a_DS Heterologous genes encoded in plas-
mid pACY_MEP are genomically in-
tegrated in the xylE position the con-
trol of a Trc promoter.

∆ptsG_2p HMS174(DE3) ∆ptsG + pET28a_DS
+ pACY _MEP

Gene ptsG is knocked out from strain
HMS_2p.

∆ptsG_1p HMS174(DE3) ∆ptsG + pET28a_DS Heterologous genes encoded in plas-
mid pACY_MEP are genomically in-
tegrated in the ptsG position under the
control of a Trc promoter.

pET28a_DS is a high copy number plasmid that contains genes encoding following enzymes:
kanamycin resistance, taxadiene synthase (txs) and geranylgeranyl diphosphate synthase (crtE ).
Expression of all genes is under the control of a T7 promoter.
pACY_MEP is a low copy plasmid that contains genes encoding a chlorampenicol res-
istance and selected enzymes of the non-mevalonate pathway: 2-C-methyl-D-erythritol 2,4-
cyclodiphosphate synthase (ispF ), 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (ispD),
isopentenyl-diphosphate isomerase (idi) and 1-deoxy-D-xylulose-5-phosphate synthase (dxs). Gene
expression is under the control of a T7 promoter.

were conducted by our cooperation partner Claudia Huber at Bio. Refer to Appendix
A.2.3 for raw data.

5.2. Reduction of Metabolic Burden Through Genomic
Integration

As mentioned before, the main objective of genomic integration conducted in strains
∆ptsG_1p and ∆xylE_1p was a reduction of the detrimental effect that plasmid-based
heterologous gene expression exerts on the host metabolism, experimentally evidenced as
a reduction in growth rate and yield. The success of this strategy can be assessed us-
ing the previously introduced concept of acetate lines (refer to Chapter 4). An acetate
line emerges when plotting growth rates against corresponding acetate secretion rates for
a given strain. By comparing the relative position of acetate lines between strains, one
can assess the effect that a certain perturbation (in genotype or culture conditions) has
on cellular fitness. A relative upwards displacement of the acetate line indicates that the
given perturbation increases cellular fitness, thus leading to a higher µAcetate. Since each of
the strains listed in Table 5.1 was experimentally characterized for one single growth rate,
additional information is needed to plot corresponding acetate lines. An interesting feature
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Figure 5.1.: Taxadiene Producing Strains. Each of the five taxadiene producing strains de-
scribed in Table 5.1 is schematically represented in this figure as follows: A. HMS_2p; B.
∆xylE_2p; C. ∆xylE_1p; D. ∆ptsG_2p; E. ∆ptsG_1p. Note that strains represented in
Figures C. and E. contain one single plasmid. In both cases, genes encoded in the plasmid
pACY_MEP were genetically integrated under the control of a Trc promoter in the xylE
and dptsG positions, respectively. The effect that the genomic integration of one plasmid
has on the metabolic burden can be nicely observed in Figure 5.2.

Table 5.2.: Taxadiene Producing Strains: Exchange Rates. Growth, substrate uptake
and acetate secretion rates were calculated from concentration time courses as described in
Section 2.1.2. Reported rates correspond to the average of two biological replicates. Errors
correspond to one standard deviation.

Strain Growth Rate Glucose Uptake
Rate

Acetate Secretion
Rate

HMS_2p 0.128 ± 2.20× 10−3 4.532 ± 4.242 3.013 ± 6.51× 10−1

∆xylE_2p 0.131 ± 4.20× 10−3 3.923 ± 5.27× 10−1 1.197 ± 1.99× 10−1

∆xylE_1p 0.185 ± 5.90× 10−3 8.527 ± 3.12× 10−1 1.024 ± 4.60× 10−2

∆ptsG_2p 0.076 ± 2.76× 10−2 5.686 ± 1.412 1.659 ± 4.45× 10−1

∆ptsG_1p 0.189 ± 1.00× 10−4 7.166 ± 5.49× 10−1 0.387 ± 1.03× 10−1

Growth rates are reported in 1/h; glucose and acetate rates are given in mmol/gDW h.
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Figure 5.2.: Acetate Lines for Taxadiene Producing Strains. Straight dotted lines cor-
respond to acetate lines for each strain. Each line was defined by experimental information
contained in Table 5.2 and by a constant slope, obtained as described in Appendix A.1.1.
The effect of genetic perturbations (genomic integration, gene knock-outs) on strain fitness
can be characterized comparing the relative possition of corresponding acetate lines. For
instance, orange arrows represent the positive effect that genomic integration of plasmid-
encoded genes has on cellular metabolism for both ∆ptsG and ∆xylE strain families. In
this specific case, the extent of burden reduction seems to be a function of the genetic
background.

of acetate lines is that under certain conditions, their slope remains constant. We make
use of this property to generate acetate lines for all strains, as shown in Figure 5.2. Note
that although all five strains contain the necessary genetic makeup to produce taxadiene,
the form in which this genetic information is introduced into the cell, i.e., plasmid-encoded
or genomically integrated, has an effect on the relative position of each acetate line, and
thus, on the relative metabolic burden. For instance, genomic integration of genes encoded
in plasmid pACY_MEP seems to relieve the metabolic burden by an extent that depends
on the host genetic background, as highlighted in Figure 5.2 by the two orange arrows.
The effect of gene knock-outs on metabolic burden can also be studied by comparing the
relative position of acetate lines for strains HMS_2p, ∆xylE_2p and ∆ptsG_2p, as shown
in Figure 5.2. While knocking out gene xylE in strain HMS_2p leads to a reduction of
metabolic burden, the effect of ptsG knockout is not completely clear due to large standard
deviations.
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5.3. Constraint-based Assessment of Taxadiene Production Potential

5.3. Constraint-based Assessment of Taxadiene Production
Potential

The main objective of constructing strains listed in Table 5.1 was to generate a pool of
production strain candidates. Experimental data generated during strain characterization,
including 13C-labeling data and concentration time courses for biomass, glucose and acet-
ate should now be used to identify strains exhibiting a superior production performance
for further engineering rounds. Since taxadiene concentration could not be experiment-
ally measured due to its presumably low concentration in the medium and to low sample
volume, our initial modeling efforts were focused on the estimation of production capabil-
ities of each strain. We start our analysis by calculating flux ranges for each reaction in the
E. coli central metabolism best matching experimentally measured amino acids labeling
patterns. For that, we used the software 13CFLUX2 [155] along with a modified version
of the E. coli metabolic model iRL2013 [75]. Refer to Section 2.1.2 for details on the
metabolic model and mathematical implementation. The procedure can be summarized
as follows:

for each strain in Table 5.1:

1. Generate input file for the software 13CFLUX2 containing experimentally determined
exchange rates, as summarized in Table 5.2 and labeling data (refer to Table A.8 in
the Appendix). An exemplary input file can be found in Appendix A.2.4.

2. Calculate intracellular flux distribution that minimizes squared sum of residuals for
labeling data.

3. Apply statistical workflow described in Section 2.1.2 in order to calculate flux ranges
for free reactions.

4. Calculate flux ranges for each reaction in the metabolic network using flux variability
analysis (FVA) considering experimentally determined exchange rates and flux ranges
for free reactions calculated in the previous step.

5. Calculate maximal theoretical taxadiene yield as the ratio between taxadiene pro-
duction rate and glucose uptake rate.

Calculated maximal theoretical taxadiene yields using the previously described steps are
plotted in Figure 5.3 for all strains. At this point, it is important to state that product
yields shown in Figure 5.3 are not experimental values, but rather a theoretical estimation
representing the potential of each strain to produce taxadiene with a certain product yield.
One can clearly observe that a reduction in the metabolic burden in strains ∆xylE_1P and
∆ptsG_1P, achieved by genomic integration of genes encoded in plasmid pACY_MEP,
leads to a marked increase in the taxadiene production potential.

5.4. Application of Strain-design Algorithms for Target
Identification

One valuable application of metabolic modeling is the possibility to in silico analyze the
effect of a large number of perturbations on cellular metabolism in a fast, efficient and
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Figure 5.3.: Constraint-based Assessment of Production Capabilities. FVA was ap-
plied on a extended version of the iRL2013 [75] to estimate the taxadiene production po-
tential of each strain. Shown are maximal theoretical yields, obtained by dividing maximal
theoretical flux through the taxadiene pathway by the glucose uptake rate. Refer to Table
A.9 in Appendix A.2.5 for an overview of minimal and mean production rates and yields.

cost-effective fashion. Such perturbations can be exerted at the process level (refer to
Part III of this work), by modifying medium composition, production temperature, time
point of culture induction, dilution rate, etc., or at the genetic level, by modulating the
expression of various genes. Product yield, titer and productivity are process parameters
commonly chosen for optimization during in silico studies. By using in silico generated
model-based predictions to guide the development of experimental strategies for strain
and process optimization, time and costs invested in experimental efforts can be greatly
minimized.

There are various mathematical approaches used to describe bacterial metabolism, some
of which were already presented in Section 2. Here, we apply both a traditionally used
constraint-based strain-design algorithm called optKnock [20] and a novel kinetic-based al-
gorithm, we termed OptEM, to identify genetic modifications aiming at the overproduction
of taxadiene in E. coli .

5.4.1. Constraint-based Methods: The OptKnock Algorithm

OptKnock [20] was the first constraint-based strain-design algorithm that used growth-
coupling as design principle to systematically identify reaction deletions leading to the
overproduction of a target molecule. The basic idea behind growth-coupling is to delete a
defined set of reactions, so that the synthesis of a given target molecule become obligatory
for the cell to be able to grow, as exemplarily shown in Figure 5.4.B. By deleting three
reactions (genes), the cell is forced to change its metabolism to produce taxadiene in order
to be able to grow. This is denoted by the arrow in Figure 5.4.B.

As recently reported by Kamp and Klamt [152], growth-coupling strategies can be identi-
fied for almost all metabolites in genome-scale metabolic models of five major production
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Figure 5.4.: Application of OptKnock to the Production of Taxadiene in E. coli :
Basic Idea. A. Maximal theoretical taxadiene yield is calculated and plotted as a
function of growth rate. A modified version of the E. coli core metabolic model was used
for all calculations (refer to Appendix B.1.1). Glucose and oxygen uptake rate were kept
at a constant value of 10 mmol/gDW h for all simulations. OptKnock was applied to
identify reaction deletion targets shown in B. After deleting selected reactions from the
network, the cell is forced to produce taxadiene along with biomass in order to maximize its
growth rate. Points 1 and 2 correspond to predicted cellular behaviors maximizing growth
in the wild-type (WT) and mutant, respectively. Genes ppc, pgi and pykAF encode for
the enzymes phosphoenolpyruvate carboxylase, glucose-6-phosphate isomerase and pyruvate
kinase, respectively.

organisms: E. coli , S. cerevisiae, Corynebacterium glutamicum, Aspergillus niger and Syn-
echocystis sp. PCC 6803, which demonstrates the wide applicability of growth-coupling
as design principle. In its original publication, optKnock was applied to identify different
E. coli genotypes exhibiting an increased succinate production in silico.

Here, we apply OptKnock to identify triple reaction deletion designs leading to growth-
coupled taxadiene overproduction. In a first step, an E. coli core metabolism model was
slightly modified to allow for taxadiene synthesis, as explained in Appendix B.1.1. Then,
deletion strategies were identified for various growth rates, ranging from 0 to 0.2 1/h,
in accordance with experimental data provided by Monika Fuchs (refer to Table 5.2).
Similarly, the upper bound for glucose uptake rate was updated to 10 mmmol/gDW h.
Since the oxygen uptake rate was not provided, two different rates were assumed in order to
consider both oxygen-rich and -poor conditions. All calculations were performed using the
Optknock script provided with COBRA-Toolbox [124]. Figure 5.5 shows the dependence
of OptKnock predictions on cellular growth rate and oxygen conditions.

While the set of reactions identified by OptKnock seems to remain constant over the
range of growth rates tested when oxygen-rich conditions are assumed (Figure 5.5.A),
the picture looks different when oxygen-poor conditions are assumed, as shown in Figure
5.5.B. In this case, cellular growth rate seems to affect OptKnock predictions. Figure 5.6
summarizes deletion targets for each condition. A stronger effect of growth rate at poor
oxygen conditions on the identity of the deletion targets is evidenced by the larger number
of different reactions presented in Figure 5.6.B. Although these results are not unexpected,
they suggest that neither growth rate nor oxygen supply alone suffice as scale-up criterion to
guarantee good large-scale performance of a production strain developed in the laboratory
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Figure 5.5.: Application of OptKnock to the Production of Taxadiene in E. coli :
Dependence on Growth Rate and Oxygen Availability. Deletion candid-
ates identified by OptKnock are shown in blue. A. Oxygen-rich conditions. Oxygen upper
boundary was set to 10 mmol/gDW h for all calculations. For a growth rate of 0.1 1/h, the
deletion targets identified by OptKnock correspond to pyruvate kinase (PYK), phosphoen-
olpyruvate carboxylase (PPC) and glucose-6-phosphate isomerase (PGI) B. Oxygen-poor
conditions. Oxygen upper boundary was set to 1 mmol/gDW h. For a growth rate of
0.1 1/h, the deletion targets identified by OptKnock correspond to transketolase (TKT2),
phosphoenolpyruvate carboxylase (PPC) and pyruvate formate lyase (PFL)

at a shaking flask scale. This point will be further analyzed in the discussion section.

Although predictions made by OptKnock have successfully guided a couple of experimental
metabolic engineering efforts [42,164], none of the best production strains was constructed
by the sole deletion of genes corresponding to reaction targets identified by OptKnock.
Complementary strategies, like adaptive evolution [42] or codon optimization along with
optimization of gene expression balance [164], were necessary to achieve the highest pro-
duction performance. In a recent review [149], our group identified a similar trend for
the overproduction of succinate. We found that while a total of 26 theoretical studies,
published between 2002 and 2016, reported different in silico strain design strategies for
the overproduction of succinate, only 10 studies experimentally implemented any kind of
the previously generated theoretical knowledge. Similar to the case of OptKnock, none
of these publications reported an exact application of the corresponding computational
predictions used to guide the strain design process.

Construction, characterization and adaptive evolution of mutant strains is a costly and
time consuming process. Aiming at the minimization of experimental efforts, in silico
predictions of alternative modeling approaches should be first generated, analyzed and
compared, before in silico identified production genotypes are experimentally implemented
towards the construction of actual production strain(s). For that reason, we now turn our
attention to the application of a kinetic-based approach to identify targets for taxadiene
overproduction in silico.
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Figure 5.6.: Application of OptKnock to the Production of Taxadiene in E. coli :
Targets. Deletion targets identified by OptKnock over the whole growth rate range are
summarized for each oxygen condition. The larger the number of reactions in each histo-
gram, the higher the effect of growth rate on deletion target identity A. Oxygen-rich condi-
tions. B. Oxygen-poor conditions. Abbreviations: PPC, phosphoenolpyruvate carboxylase;
PGI, glucose-6-phosphate isomerase; Pyk, pyruvate kinase; MALS, malate synthase; PFL,
pyruvate formate lyase; TKT2, transketolase; ACALD, acetaldehyde dehydrogenase; LDH,
L-lactate dehydrogenase; FUM, fumarase; FRD7, fumarate reductase; CS, citrate synthase.

5.4.2. Kinetic-based Methods: The OptEM Algorithm

In many cases, the modulation of native and heterologous gene expression in the form of
gene up- or down-regulation, rather than gene knockouts, is necessary to achieve optimal
strain performance [1,164]. Additionally, genetic perturbations can affect the dynamic sta-
bility of cellular metabolism, which in turn set limits on maximal productivity [144] and
maximal product yield [71]. Since a kinetic description of cellular metabolism is a prerequis-
ite to properly study these issues, constraint-based methods, like the previously discussed
OptKnock, overlook the potential detrimental effect that identified genetic interventions
could have on actual strain performance. As a consequence, further genetic interventions
are often necessary to achieve high experimental strain performance [42,149,164].

Rate laws represent a central component of kinetic models of metabolism. They describe
reaction fluxes as a function of metabolite and enzyme concentrations and allow the consid-
eration of metabolite-level enzyme regulation. Since rate laws and their associated kinetic
parameters are normally unknown for many enzymes, the application and development of
kinetic-based modeling approaches for strain design has been rather moderate [28,149].

Here, we lay the groundwork for OptEM, a novel kinetic-based strain design algorithm.
OptEM uses the Ensemble Modeling formalism EM [146] to build an ensemble of kinetic
models that fulfill a given reference flux distribution. OptEM facilitates the maximization
of complex user-tailored objective functions, for instance the weighted sum of productivity,
product yield and production rate. The kinetic nature of the optEM algorithm allows for
consideration of typically inaccessible design parameters such as enzyme over-expression
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Figure 5.7.: Overview of the Main Steps Comprising the OptEM Strain Design
Algorithm Ensemble Construction, Parameter Integration & Flux Calculation and Ob-
jective Function Evaluation are the three main steps comprising the OptEM algorithm. The
effect of genetic perturbations, defined by Upert, on strain performance can be assessed in
silico by evaluating an user-defined objective function Z. This input-output relationship is
shown by the orange arrows. Optimal strain design strategies can be identified applying a
brute force or a solver approach. Both options are discussed in the main text.

level, overall system stability and metabolite concentration pattern after enzyme perturba-
tion. The idea behind OptEM is described in Figure 5.7. For a given enzyme perturbation
vector Upert, the methodology calculates the corresponding value of an user-defined ob-
jective function. Since enzyme and metabolite concentrations are normalized to 1 for the
given reference flux distribution, values higher than 1 refer to enzyme overexpression. Ana-
logously, values lower than 1 represent enzyme downregulations. Depending on the size
of the metabolic reconstruction used and the number of perturbations allowed, OptEM
can extensively explore the design space by employing a brute force approach, as shown in
Figure 5.8. If a brute force approach is impractical due to limited computational resources,
a solver approach can be used, as explained in the next section.

The OptEM methodology can be summarized in three main steps, as indicated in Figure
5.7:

1. Ensemble Construction: this step requires four inputs, namely a reference flux
distribution (Vref ) for the strain being optimized; an associated metabolic recon-
struction consisting of a stoichiometric and a regulatory matrix (Net); rate laws or
"rules" to generate rate laws for each reaction in the metabolic reconstruction (Rules)
and the number of models to be generated (n). The output of this step is an ensemble
of n models, all fulfilling the given steady state flux distribution. Since metabolite
and enzyme concentrations are normally unknown, they are normalized to 1 during
the process of ensemble construction.

2. Parameter Integration & Flux Calculation: steady state metabolite concen-
trations are integrated over an enzyme trajectory, defined by Upert - Uinit [74]. Res-
ulting steady state metabolite concentrations can be transformed into fluxes using
rate laws generated in the step 1. Note that Uinit corresponds to a vector of all-ones
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of adequate size. Output of this step are the vectors Vpert, Xpert and Upert de-
scribing flux distribution, metabolite concentration and enzyme concentration, all of
them after conducting enzyme perturbation dictated by Upert, respectively. Variable
SSpert describes the percentage of models remaining stable after perturbation.

3. Objective Function Evaluation: output of step 2 can be used to evaluate an
user-defined objective function described by Z = f(Vpert, Xpert, Upert, SSpert ). By
doing so, the specific effect of the genetic perturbation described by Upert on strain
performance can be numerically assessed and compared with alternative genetic per-
turbations, thus leading to the identification of strain designs maximizing Z. Note
that the evaluation of the objective function should be performed for each model in
the ensemble. The effect of a given perturbation on the objective function Z can be
then characterized by calculating the median and 25th and 75th percentiles.

Objective Functions

The vast majority of Metabolic Engineering efforts to date have aimed at the optimization
of product yield. However, it has been recognized that not only high product yields but
also high volumetric productivity and product titer, strain robustness and the ability to
use low-cost substrates are key factors defining process viability and should therefore be
primary objectives for bio-process development [74, 86]. In line with this, OptEM was
developed to allow the optimization of user-tailored objective functions, considering the
most relevant process parameters. Table 5.3 lists various examples. While each of these
objective functions targets product yield maximization, they also maximize or minimize
secondary objectives like concentration of toxic pathway intermediates, strain robustness
and protein burden.

Brute Force Approach

In order to illustrate the probabilistic nature of OptEM predictions, the effect of single
enzyme up- and down-regulation on product yield for the strain ∆XylE_1p is exemplarily
shown in Figure 5.8. This particular strain was selected as case study out of all production
strain candidates (see Table 5.1) because of its superior taxadiene production potential, as
identified by a constraint-based analysis -see Figure 5.3 and refer to section 5.3 for details
on the estimation of production potential using 13C-labeling data-. The reference flux
distribution used to construct the ensemble of kinetic models was calculated assuming a
taxadiene yield of 2.860× 10−5 mol taxadiene/mol glucose, which corresponds to a mean
taxadiene production level, as shown in Table A.9 in Appendix A.2.5. This assumption is
justified by the fact that, as mentioned earlier, no experimental taxadiene concentration
was available for this set of strains.

As specified in Figure 5.8 by the arrows, the outcome of single up- or down-regulation
of a given enzyme with respect to the numerical value of the objective function can be
categorized into three different groups. The first group exhibits an increase of the objective
function for all models in the ensemble, as shown by the green arrows. In this case, the
25th percentile characterizing the effect of the given enzyme perturbation lies above the
basal level of the objective function. Conversely, the second group is characterized by
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Table 5.3.: Objective Functions for OptEM. The proposed algorithm allows for the optimiz-
ation of user-tailored objective functions. Some examples are provided below.

Rationale Objective Function

Product Yield. It is the simplest and most com-
monly used objective function in strain optimization
efforts. Product yield is defined as the amount of
product synthesized per amount of substrate con-
sumed. Depending on the units used to calculate this
ratio, product yield can be expressed on a molar, mass
or carbon basis, as discussed in Chapter 7.

Z =
V pert
txdn Ctxdn∑
i
V pert
i Ci

+ Minimization of Toxic Intermediates. Strain
designs can be found so that product yield is max-
imized, while intracellular concentration of toxic in-
termediates is minimized. For instance, toxicity of
high concentrations of phosphorylated pathway in-
termediates, e.g., isopentenyl pyrophosphate and di-
methylallyl pyrophosphate, during taxadiene overpro-
duction in E. coli has been experimentally observed
[93].

Z =
V pert
txdn Ctxd∑
i
V pert
i Ci

(
1∑

j
Xpert
j Toxj

)

+ Maximization Strain Robustness. Heterolog-
ous or native enzyme overexpression can generate fail-
ure of the metabolic system due to the disappearance
of a stable steady state [74]. In turn, this leads to cell
death and a reduced productivity [144]. System ro-
bustness can be quantitatively estimated as the prob-
ability of system failure in an ensemble of models.

Z =
V pert
txdn Ctxd∑
i
V pert
i Ci

SSpert

+ Minimization of Protein Burden. Enzyme
overexpression draws energy and biomass building
blocks from the cellular metabolism. Depending on
various factors, e.g., overexpression strength, enzyme
amino acid sequence, carbon source, etc., enzyme
overexpression can lead to a reduced cellular growth
rate and consequently, a reduced productivity. Strain
designs can be identified so that product yield is max-
imized, while the amount of enzyme invested is re-
duced.

Z =
V pert
txdn Ctxd∑
i
V pert
i Ci

(
1∑

k

Upert
k MWk

)

Vectors V pert, Xpert and Upert and variable SSpert are obtained during the second step of the OptEM
algorithm, as explained in the main text. V pert

txdn and Ctxdn represent taxadiene flux and number of carbon
atoms in a taxadiene molecule, respectively. Variables i, j and k define the set of uptake reactions for
carbon sources, toxic intracellular metabolites and perturbed enzymes, respectively. Finally, Ci, Toxj
andMWk correspond to the number of carbon atoms in the carbon source absorbed in reaction i, relative
toxicity index for metabolite j and molecular weight of enzyme k, respectively.
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Figure 5.8.: Effect of Single Enzyme Up- and Down-regulation Predicted by Op-
tEM for the Maximization of Taxadiene Yield in Strain ∆XylE_1p
via a Brute Force Approach. Effect of single enzyme up- (A.) and down-regulation
(B.) on taxadiene yield is shown. Ensemble of predictions for each perturbation is charac-
terized by calculating the median and the 25th and 75th percentiles. Product yield after
each enzyme perturbation is normalized to that of the wild-type strain, which in this spe-
cific case is assumed to exhibit a yield of 2.860× 10−5 mol taxadiene/mol glucose. Green
arrows exemplarily highlight perturbations increasing the value of the objective function,
while orange and black arrows mark perturbations decreasing and inconclusively affecting
the value of the objective function, respectively. Note that in this particular case, individual
enzyme identity is not relevant. Rather, we aimed at showing the nature of the outcome
that single enzyme perturbation might originate on the objective function, as predicted by
OptEM. The model used corresponds to a modified version of the core E. coli core [107],
containing the taxadiene production pathway and 17 efflux reactions representing biomass
synthesis. Ensemble size corresponds to 100 models.
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Table 5.4.: Enzyme Perturbations Identified by OptEM Leading to an Increased
Taxadiene Yield in Strain ∆XylE_1p. 100 models, three different flux distribu-
tions. Note that each genetic perturbation corresponds to a single strain design strategy.

Perturbation Target Reaction Name Reaction Details

Up dxs 1-deoxyxylulose-5-phosphate synthase Pyr + G3P DXYL5P + CO2
ispA Dimethylallyltranstransferase DMPP + IPP GRDP + 2Pi

Down PTAr Phosphotransacetylase AccoA + Pi ACTP + CoA
Pyk Pyruvate kinase ADP + PEP + H+ ATP + Pyr

Metabolites: ATP: adenosine triphosphate; ADP: adenosine diphosphate; Pyr: pyruvate; G3P: gly-
ceraldehyde 3-phosphate; DXYL5P: 1-deoxy-D-xylulose 5-phosphate; DMPP: dimethylallyl diphosphate;
IPP: isopentenyl diphosphate; GRDP: geranyl diphosphate; Pi: phosphate; AccoA: acetyl-Coa; ACTP:
acetyl phosphate; CoA: coenzyme A; PEP: phosphoenolpyruvate.

a decrease in the value of the objective function in all models, as shown by the orange
arrows. This outcome is characterized by a 75th percentile lying under the basal level of the
objective function. Finally, the third group has an undefined outcome. In this situation
and depending on model parametrization, a specific enzyme perturbation can increase
the objective function in some models, but also decrease it in others. This situation is
characterized by a 25th percentile lying under the basal level of the objective function,
while the 75th percentile lies above it. This analysis should help define rules for target
identification. In this specific work, a given enzyme perturbation is categorized as positive
only if the 25th percentile lies above the basal level of the objective function (first group).

As stated before, experimental concentration time courses for taxadiene were not available
for any strain described in this chapter. However, the identification of genetic targets is
still possible, if a specific taxadiene production rate is assumed that lies inside the intervals
calculated in Section 5.3. Clearly, experimental implementation of the identified genetic
designs will only lead to an increased taxadiene yield in vivo, if the assumption regarding
the taxadiene production level was more or less accurate. Since taxadiene production
ranges are rather wide -see Figure 5.3-, assuming a production rate accurately matching
the actual, unknown rate becomes a difficult task. A methodology to overcome this problem
and identify effective targets is presented as follows. For a strain in Table 5.1:

1. Identify a range of feasible production rates, as described in Section 5.3.

2. Sample the space of feasible production rates.

3. For each sample, use linear programming to generate a reference flux distribution that
fulfills the assumed production rate (or yield), experimentally measured exchange
rates and available 13C labeling data and, maximizes/minimizes a defined biologically
feasible objective function. ATP maximization or minimization of oxygen uptake rate
are some examples.

4. Apply the OptEMmethodology to identify genetic perturbations maximizing a defined
design objective function. Table 5.3 provides some examples.

5. Identify strain design strategies being independent on the assumed production rate.

Table 5.4 summarizes the results obtained for strain ∆XylE_1p after applying the method-
ology described above and assuming three different taxadiene production levels: 1.385× 10−7,
2.431× 10−4 and 4.26× 10−1 mmol taxadiene/gDW h, which correspond to the minimal,
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medium and maximal production rates, as identified by the constraint-based method de-
scribed in Section 5.3, respectively. OptEM suggests that the individual up-regulation of
the enzymes catalyzing the first step of two key pathways, namely non-mevalonate path-
way (dxs) and taxadiene synthesis (ispA), would lead to an increased taxadiene yield.
Interestingly, both genes are located in the same operon [81]. Experimental studies sup-
porting the positive effect of overexpressing dxs (encoding 1-deoxyxylulose-5-phosphate
synthase) and ispA (encoding a dimethylallyltranstransferase) on isoprenoid production
can been found in the literature [54, 58, 154, 166], thus confirming the prediction power of
the OptEM approach. Regarding down-regulation targets, the modulation of Pyk presum-
ably serves the purpose of balancing pool levels of glyceraldehyde 3-phosphate (G3P) and
pyruvate, the two precursors of the non-mevalonate pathway. Farmer et al. [39] reported
that the simultaneous knockout of genes pykF and pykA, coding for pyruvate kinase I and
II, respectively, increased the lycopene production 2.8-fold when compared to the control
strain. The study explored many strategies to balance the level of both metabolites and
concluded that: alterations in the central metabolism that redirect flux from pyruvate back
to G3P enhance lycopene production, while alterations that channel carbon flux away from
the G3P pool have the opposite effect, showing that G3P may be limiting in the biosyn-
thesis of lycopene. Since the synthesis of taxadiene and lycopene differs only in the last
reaction step, it can be expected that this observation holds true for taxadiene production
and more broadly, for the terpenoid production via the non-mevalonate pathway. The
second down-regulation target identified by OptEM corresponds to PTAr. This strategy
can be rationalized by the fact that down-regulating PTAr necessarily leads to a reduction
in the acetate production. Consequently, more carbon atoms are available for taxadiene
overproduction.

The same methodology was applied for all other strains listed in Table 5.1. dxs and
ispA were recurring up-regulation targets, additionally identified for strains HMS_2p
and ∆xylE_2p. Further up-regulation targets corresponded to idi for strain ∆xylE_2p
and pgi for strain ∆ptsG_2p. Regarding down-regulation targets, pgk was identified for
strain ∆ptsG_2p. Experimental evidence of the positive effect of idi amplification on
taxadiene [16] and lycopene [24] production can be found in the literature. Additionally,
pgi over-expression has also been reported to increase lycopene titers 2.3-fold compared
to respective control strains [24]. We did not find experimental evidence supporting the
positive effect of the pgk down-regulation on taxadiene synthesis. However, this strategy
can be understood using the rationale provided in the previously mentioned study by
Farmer et al. [39]. The gene product of pgk , phosphoglycerate kinase, catalyzes following
reaction: 3-phospho-D-glycerate + ATP 3-phospho-D-glyceroyl-phosphate + ADP.
Reducing the flux through this reaction would necessarily lead to a reduction in the up-
stream reaction catalyzed by the G3P dehydrogenase: D-glyceraldehyde 3-phosphate +
NAD+ + phosphate 3-phospho-D-glyceroyl-phosphate + NADH + H+. Thus, the
expected overall effect of pgk down-regulation is an increase of the G3P pool which, as
experimentally demonstrated by Farmer et al. [39], enhances terpenoid production.

Solver Approach

All strain designs previously discussed consist of one single genetic perturbation. How-
ever, experimental evidence strongly suggests that, very often, more than one genetic
perturbation must be conducted to efficiently redirect the cellular metabolism towards

71



5. Strain Design Algorithms for Target Identification

Table 5.5.: Strain Design Strategy Identified by OptEM for the Maximization
of Taxadiene Yield in Strain ∆XylE_1p Using a Solver Approach. A
down-regulation of enzymes ALCD2x and TALA along with up-regulation of IDI were identi-
fied by the OptEM approach to increase the taxadiene yield 1.4-fold in strain ∆XylE_1p. In
the case of ethanol secretion, the efficacy of experimentally down-regulating enzyme ALCD2x
is questioned by its wide flux range. Note that flux ranges for all reactions were identified
using 13C-labeling data and experimentally determined values for exchange reactions listed
in Table 5.2.

Reaction Reaction Stoichiometry Reference
Flux

Flux
Range

Reaction
Perturbation Fold

ALCD2x ETOH + NAD ACALD + H + NADH -11.088 [-15.5 ; 0] 0.1
TALA G3P + S7P E4P + F6P −1.815× 10−2 [−1.815× 10−2 ; 0] 0.19
IDI DMPP IPP −2.75× 10−3 [-1.353 ; 4.059] 2.21

Metabolites: ETOH: ethanol; ACALD: acetaldehyde; S7P: sedoheptulose 7-phosphate; E4P: D-Erythrose 4-phosphate;
F6P: D-Fructose 6-phosphate; G3P: glyceraldehyde 3-phosphate; DMPP: dimethylallyl diphosphate; IPP: isopentenyl
diphosphate;
Reactions (Enzymes): ALCD2x: alcohol dehydrogenase ; TALA: transaldolase ; IDI: isopentenyl-diphosphate delta-
isomerase.
Flux units are given in mmol/gDW h.

overproduction of the target molecule. For instance, the sole idi over-expression increased
the specific taxadiene titer 3.6-fold, from 0.5 mg/gDW in the control strain to 1.8 mg/DW
in the strain over-expressing idi. By contrast, when combined with ppk or sthA, idi
over-expression increased the specific taxadiene titer 11-fold, from 0.5 mg/DW in the con-
trol strain, to approximately 7 mg/DW [16]. A similar observation was made for studies
reporting the lycopene [24] and abietadiene [98] overproduction in E. coli . In both cases,
maximal product yield is reached after simultaneously perturbing two and three genes,
respectively.

Motivated by this observation, a Genetic Algorithm (GA) was employed along with the
OptEM approach to efficiently identify an enzyme perturbation vector maximizing an user
defined objective function, in this specific case, product yield. Unlike the extensive search
performed by the brute force approach to identify optimal single perturbations, the GA
selectively searches the parameter space. The algorithm was implemented using a GA
script, which contained nested FMINCON optimization routines. Figure 5.9 shows the
optimal genetic perturbation strategy, identified by the OptEM algorithm for the strain
∆XylE_1p, when a taxadiene production rate of 2.431× 10−4 mmol/gDW h is assumed
and an ensemble of 100 kinetic models is analyzed. In order to increase the success chance
of the experimental implementation of the enzymatic perturbation identified by OptEM in
silico, the objective function was adjusted to consider the 25th percentile of all responses
in the ensemble for the tested perturbation (refer to Figure 5.8, green arrows). Note that
alternative approaches, e.g., considering the median or mean response, are also possible.

Table 5.5 and Figure 5.9 summarizes the OptEM predictions for strain ∆XylE_1p. As
suggested by the algorithm, down-regulating enzymes ALCD2x and TALA 0.1- and 0.19-
fold respectively, together with 2.21-fold up-regulation of enzyme IDI, increased taxadiene
yield by at least 40% in 75% of the models encompassing the ensemble of 100 models.

Additional to the perturbation extend of each of the three enzymes, Table 5.5 also includes
the reference flux for each reaction used for ensemble construction and its corresponding
flux range. Provided flux ranges correspond to the 95% confidence interval calculated
using available 13C-labeling data and values for exchange reactions listed in Table 5.2.
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Figure 5.9.: Strain Design Strategy Identified by OptEM for the Maximization of
Taxadiene Yield in Strain ∆XylE_1p Using a Solver Approach. Model
used corresponds to the E. coli core metabolism (reactions contained in the blue rectangle),
which was extended to allow for taxadiene synthesis (reactions contained in the orange
rectangle). The model contains a total of 87 reactions and 69 metabolites. Reference flux
distribution was generated considering available 13C-labeling data, experimentally determ-
ined exchange rates and an assumed taxadiene production rate of 2.431× 10−4 mmol/gDW
h. Matlab scripts used correspond to the FMINCON and GA optimization routines. For
the GA, a population size of 10 was used, with a maximal number of 5 generations. Addi-
tionally, three reactions were allowed to be simultaneously up- and down-regulated 10- and
0.1-fold, respectively. Solver converged after 185 hours and identified strain design shown,
which improved the reference taxadiene production 1.4-fold.
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Refer to Section 2.1.2 for more details on the calculation of confidence intervals. Reaction
ALCD2x, representing ethanol production, has a large confidence interval for its rate.
In terms of experimental efficacy, a wide confidence interval for a given reaction suggest
that the outcome of perturbing its associated enzyme might not deliver results predicted
in silico. More specifically, in vivo knocking out the gene adhE, whose gene product
catalyzes the ALCD2x reaction, might not be even necessary, since the reaction ALCD2x, in
accordance with available experimental measurements, might also carry a flux of zero under
the experimental conditions tested. This rationale can be mathematically implemented by
modifying the objective function as follows:

Z =
V pert
txdn Ctxdn∑
i
V pert
i Ci

(
1∏

k

Vref
k,max−Vref

k,min

Vref
k

)

where V pert
txdn refers to the taxadiene production flux after enzyme perturbation and V pert

i to
the uptake rates of carbon sources. Ci and Ctxdn are weights used to transform rates from
molar flux (mmol/gDW h) to carbon or mass flux. Alternatively, if only one single carbon
source is used for production, weights can be ignored. Consequently, product yields are
calculated in a molar basis. Finally, Vref refers to the vector containing the reference flux
distribution. The count variable k defines the set of perturbed enzymes (reactions). Indices
min and max respectively refer to lower and upper bound of the confidence interval. By
using the objective function shown above, OptEM will mainly identify enzyme perturbation
strategies whose affected reactions exhibit tight confidence intervals. In this way, the effect
of uncertainties related to alternative flux distributions on target selection can be partly
diminished. Note that if Vref

k,max = Vref
k,min for a given reaction k, the objective function

should to be adjusted to avoid numerical problems. In this case, it suffices to replace the

expression
Vref
k,max−Vref

k,min

Vref
k

by an arbitrary high number.

5.5. Discussion

Our cooperation partner Monika Fuchs at IBK constructed and characterized five different
taxadiene producing strains. Necessary genes for optimal taxadiene synthesis were provided
by plasmids pET28a_DS and pACY_MEP. In strains ∆ptsG_1p and ∆XylE_1p, genes
contained in plasmid pACY_MEP were integrated into the E. coli genome, in the ptsG
and xylE position, respectively. Experimental characterization encompassed measurement
of concentration time courses for biomass, glucose and acetate. Additionally, 13C-labeling
patterns of protein-bound amino acids were also provided. Due to low production rates
and concentrations in the culture medium, determination of time courses for taxadiene
concentration was not possible for any strain for the low sample volume used.

Our first task was the characterization of the reduction of the metabolic burden in strains
∆ptsG_1p and ∆XylE_1p. Using the concept of acetate lines [11], we showed that gen-
omic integration of plasmid-coded genes reduced the metabolic burden. As suggested by
the position of the acetate lines for strains ∆ptsG_1p and ∆XylE_1p relative to their
corresponding parent strains ∆ptsG_2p and ∆XylE_2p, genomic integration seemed to
reduce the metabolic burden within strains carrying ptsG deletion in a bigger extent than
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within strains carrying ∆xylE deletion (Figure 5.2). Conversely, it holds that strains car-
rying a ptsG deletion exhibit a higher metabolic burden when loaded with plasmid-based
enzyme expression. Interestingly, this trend was also observed within strains used for sugar
co-utilization studies (refer to Figure 6.11.B in Chapter 6).

In order to assess the effect of metabolic burden reduction on taxadiene production, we
applied a constraint-based approach, namely FVA, on a modified version of the model
iRL2013 [75]. Note that this model-based analysis was necessary due to the missing tax-
adiene concentration time courses. For strains ∆ptsG_1p and ∆XylE_1p, FVA predicted
a higher maximal theoretical taxadiene yield, compared to their respective parent strains.
This observation suggests that a metabolic burden reduction can potentially increase tax-
adiene production. However, taxadiene production flux for all strains could also be almost
zero, as suggested by the lower boundary of the taxadiene export reaction. Refer to Table
A.9 in Appendix A.2.5.

One of our major tasks was the model-driven strain optimization. We first applied Op-
tKnock [20] to predict triple reaction knock-outs potentially improving taxadiene produc-
tion under two different oxygen levels. The motivation behind this was twofold:

1. Basan et al. [11] showed that loading the cells with plasmid-based enzyme expression
causes acetate secretion to occur at lower growth rates which, as we shown in Chapter
4, can be in silico modeled by reducing the maximal oxygen uptake rate of loaded
strains.

2. It has been recognized that oxygen supply is one of the most frequent problems
associated with usage of shaking flasks [19]. By contrast, on-line monitoring and
control of oxygen supply is possible in stirred bio-reactors.

Since both factors, genetic load and process scale-up (from shaking flask to stirred bio-
reactor) are relevant in the construction and screening of optimal production strains, the
effect of a variable oxygen supply on optimal reaction knock-outs needed to be assessed.
Interestingly, we observed that oxygen availability indeed had an effect on the set of deletion
candidates predicted by optKnock. This implies that a given strain design, optimized using
shaking flasks, might not exhibit the same optimal production phenotype in a large scale,
stirred bio-reactor. Moreover, this also suggests that additional optimization rounds might
be necessary if the level of metabolic load is changed, as plasmid-based enzyme expression
presumably affects the respiration capabilities of the cell.

In a recent publication [149], we showed that in spite of their multiple flaws, constraint-
based strain design algorithms, e.g. OptKnock, clearly outnumber kinetic-based strain-
design algorithms. Motivated by this fact, we developed OptEM, a kinetic-based strain-
design algorithm that makes use of the ensemble modeling approach to construct an en-
semble of kinetic models, all fulfilling a given reference flux distribution. We applied Op-
tEM to identify single and triple enzyme perturbations leading to an increased taxadiene
yield. Single enzyme perturbations were identified by a brute-force approach which extens-
ively explored the parameter space. Remarkably, identified single enzyme perturbations
strategies agreed well with reported in vivo strategies, suggesting a good prediction power
of our strain-design algorithm. The triple enzyme perturbation strategy identified by Op-
tEM for the strain ∆XylE_1p (refer to Table 5.5) can be rationalized in the context of the
specific flux distribution used for this strain to populate the ensemble of kinetic models.
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More specifically, down-regulation of reaction ALCD2x, responsible for ethanol formation,
aims at minimizing carbon loss. Note that the reference flux through this reaction cor-
responds to roughly 40% of the total carbon uptake. Down-regulation of TALA possibly
targets at an increase in the G3P pool. Finally, IDI up-regulation is consistent with many
experimental reports describing the positive effect of its over-expression on taxadiene [16]
and lycopene [24] production in E. coli . Its positive effect on terpenoids production pos-
sibly points at sub-optimal DMPP to IPP ratios under physiological conditions and to an
interdependence in the optimal expression levels of genes ispH, idi and ispA

The modeling approach used here to circumvent unknown kinetic parameters, a limitation
commonly associated with kinetic-based descriptions of the cellular metabolism, opens a
wide range of valuable applications. As shown in this chapter, one of these applications is
the identification of relevant enzyme perturbations increasing yield of a target molecule.
Another application, the assessment of production potential based on the flux distribution
of a reference strain, will be applied in Chapter 6 and validated in Chapter 9 using ex-
perimental data. While specific kinetic parameter values are not required for any of these
applications, computational power is mandatory in order to efficiently analyze large en-
sembles of kinetic models. Since computer clusters are not yet accessible for the majority
of the research community, new mathematical methods are required to efficiently sample
relevant parameter sets, thus shrinking the size of the model ensemble. Some options
include:

− Application of parallel 13C-labeling experiments to accurately estimate the reference
flux distribution [75] and thus reduce the scope of kinetic model.

− Consideration of thermodynamic constraints to reduce the space of feasible parameter
sets, as suggested by Liebermeister et al. [78, 79]

− Reducing the scope of sampled parameters by incorporating kinetic information of
well characterized enzymes.

Due to difficulties related to the impossibility of determining experimental taxadiene con-
centrations for low volume samples, and to a re-orientation of the SysBioTerp project,
none of the model-driven predictions made in this chapter were experimentally implemen-
ted. However, experimental data motivated the development of OptEM, a novel kinetic-
based strain-design algorithm, which as demonstrated, allows the identification of biolo-
gically feasible perturbation targets.
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6. Simultaneous Utilization of D-Xylose
& Glucose in E. coli

Enabling simultaneous utilization of glucose and D-xylose by E. coli for the production of
valuable chemicals is a key milestone towards a bio-based economy. Moving toward this
goal, six different strains exhibiting two different genetic backgrounds were constructed
and experimentally characterized by our cooperation partner Katarina Kemper at IBK.
All strains were assessed regarding sugar co-uptake level, metabolic burden and taxadiene
production potential by applying constraint- and kinetic-based approaches. In order to de-
scribe the extent of simultaneous sugar utilization, we introduced a parameter we termed
“% Carbon Xylose”. This parameter ranges from 0, when all carbon atoms absorbed by
the cell correspond to glucose, to 1 ,when all carbon atoms absorbed by the cell corres-
pond to xylose. Using this parameter in combination with constraint-based modeling, we
successfully predicted the effect of increasing co-substrate uptake on the biomass yield and
growth rate. We also analyzed the effect that the simultaneous sugar utilization had on
the cellular capacity via acetate lines. Based on experimental data, we hypothesized that
metabolic burden is a phenomenon not only limited to protein over-expression, but can also
arise due to a increasing usage of protein-expensive pathways, like the pentose phosphate
pathway. We observed an increase of total protein content as sugar co-uptake increased
and a downwards displacement of acetate lines as sugar co-uptake increased. Finally, we
generated a reference flux distribution for each strain using 13C labeling data, which we
used to construct an ensemble of models describing the cellular phenotype of each strain
and to estimate the taxadiene production potential using a kinetic-based method.

6.1. Strains & Experimental Data

All strains presented in this section were constructed and characterized by our cooperation
partner Katarina Kemper at IBK. Table 6.1 presents an overview of all strains, while Table
6.2 contains experimentally determined exchange rates, estimated as explained in Section
2.1.2. In total, six different strains were constructed and grouped into two strain families
for analysis. Strains HMS, HMS_p1x and HMS_p3x belong to the family we term HMS,
while all other strains belong to the family ∆ptsG, in which as its name suggests, the gene
ptsG has been knocked out.

In order to increase the degree of simultaneous utilization of glucose and D-xylose, a plasmi-
encoded XylE symporter is constitutively expressed in four of the strains listed in Table
6.1. Two different mutants of the XylE protein were implemented: the first enzyme variant
contained one single mutation in its amino acid sequence (p13-XylE1x), while the second
variant contained three mutations in its amino acids sequence (p13-XylE3x).
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6. Simultaneous Utilization of D-Xylose & Glucose in E. coli

Table 6.1.: Strains for Sugar Co-utilization Studies. Six strains were constructed and
experimentally characterized. The first two strains, HMS and ∆ptsG correspond to basis
strains for each of the two main strain families. p13-XylE1x refers to a plasmid-coded XylE
transporter with 1 mutation in its amino acid sequence, while p13-XylE3x refers to a plasmid-
coded XylE transporter containing 3 mutations in its amino acid sequence.

Strain ID Genotype Description
HMS Empty HMS174(DE3) + p13 Wild-type (WT) strain.
∆ptsG Empty HMS174(DE3), ∆ptsG + p13 WT background with deleted ptsG gene.
HMS p1x HMS174(DE3) + p13-XylE1x WT strain + plasmid constitutively expressing

XylE transporter mutated in 1 position.
HMS p3x HMS174(DE3) + p13-XylE3x WT strain + plasmid constitutively expressing

XylE transporter mutated in 3 positions.
∆ptsG p1x HMS174(DE3), ∆ptsG + p13-XylE1x ∆ptsG strain + plasmid constitutively expressing

XylE transporter mutated in 1 position.
∆ptsG p3x HMS174(DE3), ∆ptsG + p13-XylE3x ∆ptsG strain + plasmid constitutively expressing

XylE transporter mutated in 3 positions.

Table 6.2.: Experimental Characterization of Strains Used in Sugar Co-
utilization Studies. Reported rates correspond to the mean value of two biological
replicates. Errors represent one standard deviation. Numerical values for the exchange rates
were calculated as explained in Section 2.1.2 using experimental concentration time courses
provided in Table A.10 of the Appendix.

Strain Growth Rate Glucose Uptake Rate Xylose Uptake Rate Acetate Secretion Rate
HMS Empty 0.258 ± 2.88× 10−3 5.105 ± 2.92× 10−1 2.057 ± 3.45× 10−1 5.190 ± 7.26× 10−2

∆ptsG Empty 0.481 ± 1.42× 10−2 3.140 ± 1.46× 10−1 6.535 ± 6.60× 10−2 0.756 ± 3.22× 10−2

HMS p1x 0.487 ± 1.28× 10−2 5.659 ± 2.51× 10−1 2.211 ± 4.67× 10−1 6.559 ± 2.57× 10−1

HMS p3x 0.316 ± 9.53× 10−2 10.642 ± 7.28 11.691 ± 1.38× 101 3.735 ± 3.13
∆ptsG p1x 0.422 ± 4.29× 10−3 3.090 ± 6.45× 10−1 4.955 ± 6.74× 10−1 7.251 ± 5.78× 10−1

∆ptsG p3x 0.344 ± 1.32× 10−2 1.599 ± 2.34× 10−1 7.649 ± 6.77× 10−1 8.779 ± 5.51× 10−1

Growth rates are reported 1/h; glucose, xylose and acetate rates are given in mmol/gDW h.

Strains were experimentally characterized in duplicate. Experimental measurements con-
sisted of concentration time courses for OD, glucose, D-xylose and acetate (refer to Ap-
pendix A.3.1 for raw data). All strains were cultivated in Riesenberg medium containing
2.5 g/l D-xylose, 2 g/l glucose and 0.5 g/l uniformly labeled 13C-glucose. Samples for
labeling analysis were taken after 7 hours culture. Raw labeling data can be found in
Appendix A.3.2. Exchange rates shown in Table 6.2 were used to calculate three strain
performance parameters, namely % Carbon Xylose, total carbon uptake and biomass yield.
The first performance parameter quantifies the extent of sugar co-utilization exhibited by
each strain and is defined as follows:

% Carbon Xylose =
5 rxylose

5 rxylose + 6 rglucose

where rxylose and rglucose refer to uptake rates for xylose and glucose, respectively. These
rates are multiplied by 5 and 6 in order to obtain carbon fluxes (C-mmol/gDW h) for
each sugar. Clearly, % Carbon Xylose can take values between 0 and 1, and describes all
possible scenarios, from a sole glucose utilization to sole xylose utilization, respectively.
Strains listed in Table 6.2 exhibit a wide range of simultaneous sugar utilization, ranging
from 0.25 for the parent strain HMS to 0.8 for the engineered strain ∆ptsG p3x.

Figure 6.1 graphically shows the effect of increasing the extent of simultaneous xylose
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6.2. Constraint-based Characterization of Simultaneous Sugar Utilization

Table 6.3.: Strain Performance Parameters. Extent of sugar co-utilization is quantitatively
described by the variable % Carbon Xylose. Total carbon uptake was calculated as the
weighted sum of xylose and glucose uptake. Weights correspond to the sugar carbon content,
i.e. 5 and 6 respectively. Biomass yield was calculated as the ratio between growth rate
and the weighted sum of substrate uptake rate for xylose and glucose. In this case, weights
correspond to molecular weights of each substrate. Performance parameters were calculated
independently for each of the two biological replicates. Reported values correspond to the
mean value. Errors represent one standard deviation.

Strain % Carbon Xylose Total Carbon Uptake Biomass Yield
HMS Empty 0.250 ± 2.09× 10−2 40.912 ± 3.48 0.211 ± 1.56× 10−2

∆ptsG Empty 0.634 ± 8.44× 10−3 51.512 ± 1.21 0.311 ± 1.91× 10−3

HMS p1x 0.245 ± 4.74× 10−2 45.007 ± 8.26× 10−1 0.361 ± 1.61× 10−2

HMS p3x 0.380 ± 2.13× 10−1 122.308 ± 1.13× 102 0.170 ± 1.82× 10−1

∆ptsG p1x 0.574 ± 1.80× 10−2 43.316 ± 7.23 0.329 ± 5.16× 10−2

∆ptsG p3x 0.800 ± 9.32× 10−3 47.838 ± 4.79 0.240 ± 1.49× 10−2

Total carbon uptake rates are given in c-mmol/gDW h; biomass yields are given in g biomass/g
substrate.

and glucose utilization on biomass yield, growth rate and total carbon uptake. While the
total carbon uptake rate seems to be independent on the extent of sugar co-utilization,
both biomass yield and growth rate seem to decrease as the fraction of absorbed xylose is
increased. Note that the experimental data corresponding to the strain HMS p3x seems
to correspond to an outlier. This is confirmed by large standard deviations in all its
performance parameters.

The effect of the ptsG gene deletion and mutations in the transporter protein XylE on
the extent of xylose and glucose co-utilization can be evidenced and quantified using the
introduced variable % Carbon Xylose. Overall, the strain family ∆ptsG exhibited higher
levels of sugar co-utilization, with growth rates and biomass yields being comparable to
those of the HMS strain family. Expressing the single mutated transporter XylE1x does not
seem to increase sugar co-utilization levels, when compared to the respective control strain.
By contrast, expression of the triple mutated transporter XylE3x consistently increased
the extend of sugar co-utilization within the strain family ∆ptsG. Due to large standard
deviations in the experimental measurements for strain HMS p3x, the effect of expressing
the triple mutated transporter XylE3x cannot be precisely quantified. However, the mean
value of % Carbon Xylose for this strain suggests a positive effect on sugar co-utilization.
(see Figure 6.1)

6.2. Constraint-based Characterization of Simultaneous
Sugar Utilization

Our first modeling efforts are focused on a constraint-based description of the simultaneous
sugar utilization in E. coli . More specifically, experimentally obtained values for total
carbon uptake along with in silico estimated oxygen uptake rates are used to describe the
effect of increasing sugar co-utilization on growth rate and biomass yield. Then, the concept
of acetate lines presented in Chapter 4 is utilized to estimate the level of metabolic burden
in each strain and to unveil its connection with increasing levels of sugar co-utilization.
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Figure 6.1.: Strain Performance Parameters as a Function of Simultaneous Sugar
Co-utilization Extent. Effect of simultaneous glucose and xylose utilization on bio-
mass yield. Reported values correspond to the mean value of two biological replicates.
Error bars represent one standard deviation. (A.), cellular growth rate (B.) and total car-
bon uptake rate (C.). For strain families HMS and ∆ptsG, an increasing extent of sugar
co-utilization seems to reduce both the biomass yield and growth rate. By contrast, total
carbon uptake seems to be independent on the extent of sugar co-utilization. Experimental
data for HMS p3x seem to represent an outlier.

6.2.1. Biomass Yield & Growth Rate

We learned from experimental data that an increase in the degree of xylose and glucose
co-utilization, quantified via % Carbon Xylose, seems to reduce the cellular growth rate
and the biomass yield in both strain families (see Figure 6.1.A and .B). However, the
negative effect of increasing % Carbon Xylose vales on growth rate and biomass yield was
experimentally observed in a limited range of sugar co-utilization, i.e, from 0.24 to 0.38 for
strain family HMS and from 0.57 to 0.8 for the strain family ∆ptsG. In order to estimate
the effect of sugar co-utilization on growth rate and biomass yield in the whole range of
% Carbon Xylose, i.e. from 0 to 1, we employed experimentally determined exchange
rates listed in Table 6.2, along with the E. coli genome-scale metabolic reconstruction
iJO1366 [106].

We start by estimating the oxygen uptake rate for each of the six strains. For that, we
minimize the reaction representing oxygen import from the medium to the cell, while sim-
ultaneously constraining reactions in the iJO1366 model representing rates for growth,
glucose and xylose uptake, and acetate secretion to match experimentally determined val-
ues, as listed in Table 6.2. The estimated oxygen uptake rate for each strain is shown
in Figure A.8 (in Appendix A.3.3). Overall, we observe a decrease in the oxygen uptake
rate, as % Carbon Xylose increases. For strain HMS p3x, its unusually high substrate
uptake (refer to Figure 6.1.C) leads to an in silico oxygen uptake rate of zero. Since the
coefficients of determination R2 for the linear regression of oxygen uptake rate against %
Carbon Xylose have relatively low values, 0.62 for strain family HMS and 0.56 for strain
family ∆ptsG (for only three data points), we decide to consider two different case studies:

− Case study I: the oxygen uptake rate (rO2) is assumed to depend on % Carbon Xylose
(x), as described by the functions: rO2 = −35.57x+ 13.43 for strain family HMS and
rO2 = −12.02x+ 13.69 for strain family ∆ptsG.

− Case study II: rO2 is assumed to be independent from % Carbon Xylose and from the
strain family. Additionally, we assign it a constant value of 5.2 mmol O2/gDW h,
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Figure 6.2.: In silico Calculated Effect of Sugar Co-Utilization on Growth Rate
and Biomass Yield: Case Study I. Effect of simultaneous glucose and xylose
utilization on growth rate (A.) and biomass yield (B.) as predicted using a constraint-based
approach. For all calculations, the oxygen uptake rate (rO2) is assumed to depend on %
Carbon Xylose (x), as described by the functions: rO2 = −35.57x+ 13.43 for strain family
HMS and rO2 = −12.02x+ 13.69 for strain family ∆ptsG. Additionally, a constant total
carbon uptake rate of 45 mmol Carbon/gDW h was assumed. Given these two constraints
and assuming different sugar co-utilization levels, the maximal growth rate supported by the
E. coli metabolic reconstruction iJO1366 was calculated using the COBRA toolbox along
with the solver Gurobi.

which corresponds to the mean value of all estimated oxygen uptake rates, except
the one for strain HMS p3x, which is assumed to be a outlier.

The second step consists on the determination of the total carbon uptake rate. From Figure
6.1.C, we observe that the total carbon uptake rate seems to be independent from both
strain family and % Carbon Xylose. Ignoring the data point for strain HMS p3x, we obtain
a mean total uptake rate of 45 mmol Carbon/gDW h. Assuming a constant total carbon
uptake rate matching this value, one can estimate the effect of varying % Carbon Xylose
values on growth rate and biomass yield by means of linear programming. Calculations
are done for the two study cases previously introduced and shown in Figure 6.2 for case
study I and Figure 6.3 for case study II.

In both cases, a negative effect of increasing % Carbon Xylose values on growth rate and
biomass yield is predicted, in line with experimental observations (Figure 6.1.A and .B).
As for particular values for growth rate and biomass yield at a given degree of sugar co-
utilization, they are greatly influenced by the assumption made on the oxygen uptake rate
(rO2). When rO2 is assumed to be constant, regardless of the strain family and the degree
of sugar co-utilization (Case Study II, Figure 6.3), our constraint-based approach predicts
the strain family HMS to have higher growth rates and biomass yields than the strain
family ∆ptsG. This trend is reversed, when a dependency of rO2 on % Carbon Xylose is
assumed. Since the main objective of this in silico analysis was to determine the kind
of effect of sugar co-utilization on growth rate and biomass yield in the whole range of
% Carbon Xylose, rather than calculating specific values for these variables, we conclude
that, irregardless of the assumptions made on the oxygen uptake rate, increasing values of
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Figure 6.3.: In silico Calculated Effect of Sugar Co-Utilization on Growth Rate
and Biomass Yield: Case Study II. Effect of simultaneous glucose and xylose
utilization on growth rate (A.) and biomass yield (B.) as predicted using a constraint-based
approach. For all calculations, a constant oxygen uptake rate of 5.2 mmol O2/gDW h and
a constant total carbon uptake rate of 45 mmol Carbon/gDW h were assumed. Given these
two constraints and assuming different sugar co-utilization levels, the maximal growth rate
supported by the E. coli metabolic reconstruction iJO1366 was calculated using the COBRA
toolbox along with the solver Gurobi.

% Carbon Xylose decrease both growth rate and biomass yield. Additionally, we conclude
that experimentally measured oxygen uptake rates are indispensable to precisely calculate
growth rates and biomass yields as a function of % Carbon Xylose.

6.2.2. Acetate Lines & Metabolic Burden

Plasmid-based expression of two XylE mutants, XylE3x and XylE1x, was employed to
alter the degree of xylose and glucose co-utilization within two E. coli strain families. As
discussed in Chapter 4, protein expression can cause the reduction of cellular fitness, a
phenomenon commonly know as metabolic burden. Here, we aim at applying the concept
of acetate lines to assess potential fitness costs involved with an increased level of % Carbon
Xylose. Based on a high amino acid sequence similarity of both XylE mutants, whose amino
acid sequence only differ in 3 positions out of a total of 491 amino acid residues, one can
anticipate similar protein expression levels. In terms of relative position and number of
acetate lines, this means that the experimental data points for each strain family should
be confined to just two acetate lines; one for the parent strain carrying an empty plasmid
and one for the two strains supporting the plasmid-based XylE mutant expression. Figure
6.4 schematically shows the expected relative position of the acetate lines within a given
strain family.

Experimental acetate lines are obtained by plotting growth rates against acetate secretion
rates and employing the previously determined slope (refer to Figure A.1, Appendix A.1.1),
as shown in Figure 6.5.B. By plotting growth rate as a function of % Carbon Xylose in
the adjacent Figure 6.5.A, one can analyze the effect of simultaneous sugar co-utilization
on the localization of the acetate lines.
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Figure 6.4.: Expected Shift in Acetate Lines as a Result of Plasmid-based XylE-
Expression. A relative downwards shift of the acetate line is expected in strains support-
ing plasmid-based expression of XylE mutants, compared to the respective parent strains
carrying only an empty plasmid. Since the amino acid sequence of XylE1x and XylE3x only
differs in three amino acid positions, one would expect very similar protein expression levels.
Consequently, the data points for strains bearing plasmids p13-XylE1x and p13-XylE3x

should lie on the same acetate line.

Contrary to our expectations, we observe three acetate lines for each strain family instead
of just two, as previously hypothesized based on protein sequence similitude. For instance,
within strain family ∆ptsG, strains can be sorted by increasing burden levels, suggested
by the relative position of the corresponding acetate lines, as follows: ∆ptsG Empty <
∆ptsG p1x < ∆ptsG p3x. This observation suggests that an increased degree of sugar
co-utilization in strain ∆ptsG p3x might originate a metabolic burden that cannot be
explained by the sole effect of XylE expression, which corresponds to the shift of the
acetate line from ∆ptsG Empty to ∆ptsG p1x. This trend is not observed within the
strain family HMS, in which sorting by burden level leads to: HMS p1x < HMS p3x <
HMS Empty. By exhibiting the highest burden within its strain family, strain HMS Empty
does not fit the observed - and biologically reasonable - trend for the strain family ∆ptsG.
Consequently, we recommend our cooperation partner Katarina Kemper to experimentally
characterize the strain HMS Empty one more time.

Based on its high sugar co-utilization degree and relative position of its acetate line, strain
∆ptsG Empty represents an ideal production strain candidate. In order to confirm its
outstanding performance, this strain is also suggested for experimental re-measurement.
As can be observed in Figure 6.6, performance of strain ∆ptsG was experimentally re-
confirmed. By contrast, growth rate, acetate secretion rate and % Carbon Xylose of
strain HMS Empty were significantly affected by experimental strain re-measurement. New
experimental data cause the burden level in strain family HMS to match the one observed
in strain family ∆ptsG. Consequently, one can generalize the effect of XylE expression
and increased % Carbon Xylose on burden level as follows: Strain Empty < Strain p1x <
Strain p3x, where Strain refers to either HMS or ∆ptsG. Key aspects learned from Figure
6.6 can be summarized into two points:

1. Sugar co-utilization increases extent of metabolic burden. This is evidenced by a
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Figure 6.5.: Effect of Glucose and Xylose Co-utilization on Growth Rate and Its
Associated Metabolic Burden. The detrimental effect of increasing glucose and
xylose co-utilization levels on growth rate can be visualized by means of % Carbon Xylose
(A.). By plotting growth rate against acetate secretion rates (B.) the metabolic burden
associated with an increased sugar co-utilization can be assessed.
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Figure 6.6.: Effect of Glucose and Xylose Co-utilization on Growth Rate and Its
Associated Metabolic Burden. Re-measurement of Selected Strains
Experimental characterization of parent strains HMS Empty and ∆ptsG Empty is repeated
and represented by the black symbols labeled as HMS Empty2 and ∆ptsG Empty2, respect-
ively. Note that the denomination “Empty2” emphasizes that these data points represent
experimental repetitions.
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downwards displacement of the acetate line for strain HMS p3x and ∆ptsG p3x,
relative to the acetate line of the corresponding strain expressing the XylE transporter
with one single mutation. A tentative explanation for this observation is that xylose
metabolism should be associated with an increased expression of protein-expensive
pathways.

2. Strain family ∆ptsG does not seem to allow for robust plasmid-based protein expres-
sion. This is evidenced by the different extent in the response to protein expression
observed for the two different strain families. Consider for example the expression of
XylE1x. While the acetate lines for HMS Empty2 and HMS p1x are almost identical,
acetate lines for ∆ptsG Empty2 and ∆ptsG p1x are clearly differentiated, suggesting
that the extent of metabolic burden caused by XylE1x expression is much higher
in the strain family ∆ptsG than in the family HMS. Similar trends are observed
for the expression of XylE3x. Additionally, Figure 5.2 provides further experimental
evidence to this observation.

6.3. Assessing Taxadiene Production Potential

Does an increased degree of sugar co-utilization have a beneficial effect on taxadiene pro-
duction? Which strain has the highest taxadiene production potential? Here, we apply
both a constraint- and a kinetic-based approach to help answer these questions.

The calculation of maximal theoretical product yields by means of linear programming
represents the simplest approach to assess the production capabilities of a given metabolic
network under consideration of a given set of constraints. Here, we use the E. coli genome-
scale metabolic reconstruction iJO1366 along with experimentally determined total carbon
and estimated oxygen uptake rate to highlight the effect of increasing degrees of % Carbon
Xylose on maximal theoretical taxadiene yields. As shown in Figure 6.7, calculations are
done assuming two different growth scenarios. In the first case, a growth rate of zero is
assumed (Figure 6.7.A), while in the second case, the same reaction is constrained to have
an arbitrary value of 0.2 1/h for all % Carbon Xylose values (6.7.B). Regarding the oxygen
uptake rate, it is assumed to be independent from % Carbon Xylose values and the genetic
background (refer to case study II, Section 6.2.1). Additionally, a constant value of 7 mmol
O2/gDW h was assumed in order to ensure the existence of a flux distribution fulfilling all
constraints over the whole range of % Carbon Xylose.

Since E. coli does not naturally produce taxadiene, the stoichiometric matrix of model
iJO1366 is correspondingly expanded to allow for taxadiene biosynthesis from IPP and
DMAPP as pathway precursors (refer to Appendix B.1.1). By maximizing the flux through
the taxadiene export reaction, under consideration of constraints on growth rate and of
glucose, xylose and oxygen uptake rates, one can assess the maximal production capability
of the network. Usually, the production capability is expressed in terms of product yield.
In this case, since two carbon sources are considered, product yield is expressed on a carbon
basis:

Taxadiene Carbon Y ield =
20 rtxdn

5 rxylose + 6 rglucose
,

85



6. Simultaneous Utilization of D-Xylose & Glucose in E. coli

0 0.2 0.4 0.6 0.8 1
% Carbon Xylose

0.488

0.49

0.492

0.494

0.496

0.498
Ta

xa
di

en
e 

Yi
el

d,
 [c

-m
ol

/c
-m

ol
]

HMS
ptsG

0 0.2 0.4 0.6 0.8 1
% Carbon Xylose

0.67

0.671

0.672

0.673

0.674

0.675

0.676

0.677

0.678

0.679

Ta
xa

di
en

e 
Yi

el
d,

 [c
-m

ol
/c

-m
ol

]

A B

Figure 6.7.: Assessing Taxadiene Production Potential by a Constraint-based
Approach. The taxadiene production capability of the genome-scale metabolic recon-
struction iJO1366 was assessed by means of linear programming assuming a constant growth
rate (µ) of zero (A.) and of 0.2 1/h (B.). For all calculations, the upper boundary for oxygen
uptake was set to 7 mmol/gDW h. In line with experimental evidence, a constant, combined
carbon flux of 45 mmol C/gDW h was assumed. We observe a reduction in the maximal
theoretical taxadiene yield as % Carbon Xylose increases from 0 to 1, as follows: When µ=0
(A.); taxadiene yield exhibits a maximal reduction of 1.2% for strain family HMS and of
0.208% for strain family ∆ptsG. Similarly, when µ=0.2 1/h (B.), taxadiene yield exhibits a
maximal reduction of 1.68% for strain family HMS and of 0.28% for strain family ∆ptsG.
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Figure 6.8.: Assessing Taxadiene Production Potential by a Kinetic-based Ap-
proach. Taxadiene production potential was estimated as suggested in [71]. Lumped
reaction representing taxadiene synthesis is given in the main text. A total of 10.000 mod-
els were constructed based on 13C-labeling data and experimentally determined exchange
reactions. A modified version of the E. coli core model was used as input for the ensemble
modeling approach. Given KAY values correspond to the median. Note that error bars
represent 25th and 75th percentiles of KAY values within the ensemble.

where rtxdn corresponds to the maximal taxadiene production rate and rxylose and rglucose
to xylose and glucose uptake rate, respectively. Multiplication by 20, 5 and 6 is used
to transform respective rates from units mmol/gDW h into c-mmol/gDW h. Alternat-
ively, rates can be transformed into g/gDW h by multiplication with respective molecular
weights. Thus, obtained product yields would be on a mass basis.

Figure 6.7 reveals that for both strain families and the two growth regimes considered,
increasing levels of xylose and glucose co-utilization reduce the potential of the E. coli
metabolic network to produce taxadiene. However, the maximal reduction observed cor-
responds to just 1.69 %. Additionally, and for % Carbon Xylose values smaller than 1, our
constraint-based approach predicts a higher taxadiene production potential for the strain
family HMS. Finally, increasing growth rates at constant substrate uptake rate reduces the
maximal taxadiene yield that can be reached by the network. This last observation can be
rationalized from a mass balance perspective. As the growth rate increases at a constant
substrate uptake level, the amount of carbon atoms drawn from the cellular metabolism to
support biomass synthesis is incremented. Consequently, less carbon atoms are left that
can be potentially used for taxadiene.

Actual product yields of strains in early optimization stages are usually low. Therefore,
maximal theoretical product yields seldom allow an accurate assessment of production
performance.

It has been recently shown that the dynamic stability of a given metabolic network can
impose a further constraint on the maximal product yield that can be achieved by the net-
work. Lafontaine Rivera et al. [71] termed this yield “Kinetically Accessible Yield (KAY)”.
In order to estimate KAY for a given molecule, the authors calculated flux values through a
lumped reaction expressing the synthesis of the target molecule in one single reaction. Sub-
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Figure 6.9.: Dependence of Taxadiene Production Potential on % Carbon Xylose.
Production potential calculated by a kinetic-based approach is plotted against % Carbon
Xylose. Orange and blue arrows highlight the strain exhibiting the best production potential
for strain family HMS and ∆ptsG, respectively. Note that while vertical error bars represent
the 25th and 75th percentiles of KAY values within an ensemble of 10.000 models, i.e. they
are in silico generated values, horizontal error bars represent the standard deviation of the
experimental data.

sequently, product yields are calculated by dividing the flux through the lumped reaction
by the corresponding substrate uptake rates. KAY equals to the maximal product yield
that can be achieved before the network loses stability. The system is considered stable
as long as the real part of eigenvalues of the Jacobian matrix is negative. Since a kinetic
model describing cellular metabolism is needed for KAY calculations and, kinetic paramet-
ers associated with the particular kinetic model are typically unknown, Lafontaine Rivera
et al. calculated KAY for an ensemble of kinetic models, rather than for one single model.
The ensemble of kinetic models was constructed by sampling kinetic parameters so that
the obtained models fulfill a given reference flux distribution. This methodology was ap-
plied to accurately predict experimental isobutanol yields in three different E. coli strains.
Refer to Figure 5.B in [71] and to Section 2.3.1 for more details on the mathematical and
computational implementation of the KAY approach.

Here, we used available 13C labeling data and exchange rates listed in Table 6.2 to generate
a reference flux distribution for each strain using the software 13CFLUX2 [155] along with
the E. coli metabolic model iRL2013 [75]. We extended the iRL2013 model to consider
xylose uptake. Then, we estimated the production potential of each strain by calculating its
kinetically accessible taxadiene yield by maximizing the flux through the following lumped
reaction:

8 ATP + 4 G3P + 8H+ + 8NADH + 4NADPH + 4PYR 4ADP + 4CO2 + 8H2O +
8NAD + 4NADP + 16Pi + 4AMP + TXDN .

Results are summarized in Figure 6.8. Interestingly, sightly higher product yields are
predicted for the strain family HMS, in accordance with our constraint-based estimation
of production potential (see Figure 6.7). With a kinetically accessible yield of 0.109 c-
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Figure 6.10.: Dependence of Taxadiene Production Potential on Growth Char-
acteristics. Production Potential is plotted against growth rate (A.) and biomass yield
(B.). In both cases, the existence of a particular value for growth rate and biomass yield
maximizing the production potential is suggested by the data. Note that while vertical
error bars represent the 25th and 75th percentiles of KAY values within an ensemble of
10.000 models, i.e. they are in silico generated values, horizontal error bars represent the
standard deviation of the experimental data.

mol/c-mol, strain HMS p1x is predicted to have the highest taxadiene production potential
from all considered strains. Analogously and with a kinetically accessible yield of 0.037
c-mol/c-mol, strain ∆ptsG p1x is predicted to exhibit the highest production potential
within strain family ∆ptsG. In order to assess the effect xylose and glucose co-utilization
has on production potential, calculated KAYs are plotted against respective % Carbon
Xylose values, as shown in Figure 6.9. Orange and blue arrow highlight strains HMS p1x
and ∆ptsG p1x respectively. For strain family HMS, KAY increases from 0.07 c-mol/c-
mol (for strain HMS Empty2) to 0.109 c-mol/c-mol (for strain HMS p1x) as % Carbon
Xylose increases from 0.09 to 0.24 to then decreases to 0.012 (for strain HMS p3x) as %
Carbon Xylose keeps increasing to reach 0.38. As for strain family ∆ptsG, KAY exhibits
its maximum value of 0.037 c-mol/c-mol (for strain ∆ptsG p1x) at a % Carbon Xylose
value of 0.57 and decreases as % Carbon Xylose increases. We conclude from Figure 6.9
that for each strain family, an optimal value of % Carbon Xylose exists. Deviations from
this optimal point negatively affect the taxadiene production potential.

From Figure 6.2 we learned that increasing values of % Carbon Xylose led to a reduction in
growth rate and biomass yield. Since both of these variables are better suited to globally
describe the metabolic status of the cell, we analyze their effect on KAY, as shown in
Figure 6.10. Growth rate and biomass yield seem to affect KAY in a similar way. In
both cases, the data seem to suggest the existence of particular values for growth rate and
biomass yield that maximize KAY. Remarkably, optimal growth rate (or biomass yield)
for strain family HMS seems to coincide with optimal growth rate (or biomass yield) for
strain family ∆ptsG.
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6.4. Model-based Identification of Optimal Production Strain
Candidates

So far, we have independently

− analyzed the effect of XylE mutants expression in two different strain families on the
degree of sugar co-utilization using the variable % Carbon Xylose;

− characterized the effect of increasing levels of % Carbon Xylose on metabolic burden
using the concept of acetate lines and,

− assessed the taxadiene production potential for each strain using a novel kinetic-based
approach.

Now, we step forward to identify optimal production strain candidates considering these
three factors at the same time. As suggested by Figure 6.11, strain HMS p1x does not
only have the highest taxadiene production potential out of all strains, but it also exhibits
a moderate degree of sugar co-utilization and metabolic burden. In order to allow for
taxadiene production, strain HMS p1x must be further engineered by the introduction of
genes by means of plasmids or genomic integration. As a consequence of this additional
load, we expect a reduction in the growth rate of strain HMS p1x. As suggested by Figure
6.11.C, a reduction in its growth rate would even increase its KAY value for taxadiene,
since we expect the maximal KAY value to lie in the orange zone. If a strain with a higher
degree of sugar co-utilization is desired, strain ∆ptsG p1x can be used as parent strain
for further engineering rounds. Similarly to strain HMS p1x, we expect a reduction in
the growth rate of this strain due to an increased load. Assuming that the maximal KAY
value for this strain family lies in the blue zone, a reduction in its growth rate would lead
to an increase in the taxadiene production potential too. Note that the positive effect of
additional load and subsequent growth rate reduction does not always lead to an increased
KAY value. For instance, KAY values for strains ∆ptsG p3x and HMS p3x would probably
decrease due to the reduction in their growth rates, as suggested by Figure 6.11.C.

6.5. Discussion

Xylose and glucose are the two most abundant sugars present in lignocellulosic biomass, a
feedstock commonly regarded as renewable [40,52,100]. Unlike glucose-rich substrates such
as corn, wheat or sugar cane, plant biomass can be provided in large quantities without
ethical concerns related to food prices and land use. Efficient conversion of lignocellu-
losic hydrolysates requires simultaneous xylose and glucose utilization. However, in most
bacteria, carbon sources are used in a hierarchical manner. For instance, E. coli prefer-
ably metabolizes glucose over xylose. This carbon source preference arises from different
regulatory mechanisms, commonly referred to as Carbon Catabolite Repression (CCR).
CCR can occur at many levels, including transcription activation and repression, control
of translation and, inhibition of enzyme activity [49]. Many strategies have been developed
to deactivate CCR to allow for simultaneous sugar utilization in E. coli , including deactiv-
ation of the phosphotransferase system by knocking out the genes ptsH, ptsI and crr [44],
mutation of the gene ptsG [100], mutation of the global regulatory protein crp [163] and
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Figure 6.11.: Model-based Identification of Optima Production Strain Candid-
ates. Three different criteria, namely sugar co-utilization degree (A.), associated meta-
bolic burden (B.) and production potential (C.) are applied to identify optimal production
strain candidates. Error bars in Figures A. and B. represent one standard deviation of the
data. In Figure C., vertical error bars represent one standard deviation of the experimental
data, while horizontal values represent 25th and 75th percentiles of KAY values within an
ensemble of 10.000 models.

deletions of some metabolic genes [45,165]. In S. cerevisiae, another biotechnologically rel-
evant microorganism, the mutation of a XylE transporter lead to simultaneous xylose and
glucose utilization. All known xylose transporters are competitively inhibited by glucose.
Since the mutant XylE transporter exhibited no inbihition by glucose [40], xylose could be
transported into the cell by the mutant XylE in presence of glucose.

Our cooperation partner Katarina Kemper at IBK combined two strategies, namely knock-
ing out the gene ptsG and novel mutations in the xylose specific transporter XylE, to
achieve different levels of sugar co-utilization in six E. coli strains. We quantified the ex-
tent of glucose and xylose co-utilization in those strains by means of a variable we termed
% Carbon Xylose. As suggested by the experimental data (Figure 6.1) and confirmed
by a constraint-based approach (Figure 6.2 and 6.3), increased % Carbon Xylose levels
lead to a reduction in both the observed growth rate and biomass yield. Irregardless of
the level of sugar co-utilization, the combined carbon uptake remained constant under
the experimental conditions tested, at a level of 45 c-mmol/gDW h. This constant total
carbon uptake rate, along with the lower quality of xylose (refer to Figure 6.12) offer an
explanation for the decreased growth rates and biomass yields experimentally observed
as % Carbon Xylose values increases. Moreover, experimental data suggest a decrease in
the oxygen uptake rate as sugar co-utilization increases (refer to Figure A.8 in Appendix
A.3.3), which as shown in Figure 6.12, should decrease even more the quality of xylose as
substrate, expressed by its specific energy content.

For our strains, increased levels of xylose and glucose co-utilization come at the cost of an
increased metabolic burden. This is evidenced in Figure 6.11.B by the downwards shift
of the acetate line of a given strain, relative to its parent strain, as % Carbon Xylose
increased. Interestingly, strain family ∆ptsG, showing overall a higher extent of % Carbon
Xylose, seemed to exhibit a higher protein content than strain family HMS, presumably
necessary to support high levels of sugar co-utilization (refer to Figure A.9 in Appendix
A.3.4 for preliminary total protein content measurements supporting this hypothesis). As
a consequence, strains derived from the parent strain ∆ptsG Empty showed a stronger

91



6. Simultaneous Utilization of D-Xylose & Glucose in E. coli

Glucose Xylose
Substrates

0

5

10

15

20

25

AT
P 

Co
nt

en
t, 

[m
m

ol
 A

TP
/m

m
ol

 S
ub

st
ra

te
]

O2/Substrate=0
O2/Substrate=0.25
O2/Substrate=0.5
O2/Substrate=1
O2/Substrate=2
O2/Substrate=5
O2/Substrate=10
O2/Substrate=20

0 5 10 15 20
Oxygen to Substrate Ratio, [mmol O2/mmol Substrate]

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Q
ua

lity
 G

lu
co

se
/Q

ua
lity

 X
ylo

se

A B

Figure 6.12.: Substrate Quality: Glucose vs Xylose for Different Oxygen to Sub-
strate Ratios. Quality of glucose and xylose as substrates was assessed using energy
content as quality criteria for different oxygen to substrate ratios (A.). The energy content
ratio between glucose and xylose (B.) shows that glucose exhibits a higher substrate qual-
ity. However, this advantage over xylose greatly depends on the oxygen to substrate ratio.
All calculations were performed using the genome-scale metabolic reconstruction iJO1366,
as explained in Section 4.2.1.

downwards shift in its acetate lines, when compared to the shifts observed within the
strain family HMS (see Figure 6.11.B). Since the introduction of further genetic elements
into the strains and their expression is necessary to yield a strain capable of producing
taxadiene, strain response to an additional load should be considered for the selection of
optimal production strain candidates.

In order to accurately select optimal production strain candidates for further engineering
rounds and thus to contribute the reduction of in vivo experimentation, we applied both a
constraint- and a kinetic-based approach to quantitatively assess the taxadiene production
potential of all strains. The constraint-based approach indicated a linear reduction in the
theoretical maximal taxadiene yield as % Carbon Xylose increased for both strain families.
Additionally, strain family HMS exhibited a superior performance when % Carbon Xylose
< 1. Considering these predictions, the strain HMS Empty should be further engineered
into a production strain, as it exhibits the lowest % Carbon Xylose out of all strains.
On the other hand, the kinetic-based approach suggested a more complex relationship
between the kinetically accessible taxadiene yield and % Carbon Xylose. This method
predicted an overall higher taxadiene production potential for the strain family HMS, just
as the constraint-based approach did. However, unlike the constraint-based approach, the
kinetic based approach suggested the existence of a maximal taxadiene yield for each strain
family, located at % Carbon Xylose values different from zero. Remarkably, the kinetic-
based approach suggested that optimal taxadiene production was only indirectly defined
by % Carbon Xylose. The true variable determining the kinetically accessible yield for
taxadiene was the growth rate or the biomass yield. Experimental evidence supporting
this observation was provided by our cooperation partner Lars Janoschek at STT; refer to
Figure 9.3.A in Chapter 9. Based on three aspects, namely extent of sugar co-utilization, its
associated metabolic burden and taxadiene production potential, we suggest strain HMS
p1x for further engineering rounds towards the construction of an optimal production
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strain. Since a further load, exerted by additional genetic elements introduced to allow
taxadiene synthesis, is expected to reduce growth rate and biomass yield, we expect the
experimental taxadiene yield to surpass the predicted KAY value for this strain, as shown in
Figure 6.11.C. To the best of our knowledge, this work represents the first reported effort to
guide the selection of strain candidates potentially exhibiting high production performance
while considering concepts of metabolic burden and kinetically accessible yields.

At the moment of the submission of this work, experimental implementation of this model-
driven suggestion was still pending.
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Part III.

Results: Process Optimization
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The third part of this work is composed of three chapters. In Chapter 7 we address some
of the questions arising when designing a production process: what is the best substrate
(carbon source) for the production of a given target molecule? Which performance criteria
should be defined to identify optimal carbon source? If two different metabolic pathways
can be used for production, which one should be preferred? Does the pathway performance
depend on the selected carbon source? Then, in Chapter 8, experimental data (growth,
substrate uptake and production rates) of a semi-batch process for four different temper-
atures and time points of induction were analyzed. The aim was to develop a model to
estimate optimal values for these two process parameters. Finally, in Chapter 9, two
theoretical approaches for product yield prediction are compared: a constraint-based and
a kinetic-based approach. Traditionally, production potential of metabolic networks has
been assessed by constraint-based methods. By applying linear programming, it is possible
to calculate maximal theoretical yield on a defined carbon source and on a given metabolic
network. However, theoretical maximal yield is not an adequate proxy for experimental
product yield, especially when it comes to describing the production performance of strains
in early development stages. By contrast, a novel kinetic-based approach showed promising
results, even though numerical values of all kinetic parameters were unknown.
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Typically, the following questions are to be addressed in early design stages of a given
biotechnological production process: what is the best substrate for the production of the
target molecule? Which performance criteria should be applied to identify the optimal
carbon source? If two different metabolic pathways can be used for production, which one
should be preferred? Does pathway performance depend on the selected carbon source?
Here, we apply constraint-based modeling to answer these questions. First, we defined two
different performance criteria to assess the performance of various substrates, namely the
maximal profit and the maximal theoretical yield. We calculate theoretical yields using
three different bases: a carbon, a molar and a mass basis. Then, we used these criteria
to rank 180 different growth-supporting carbon sources. The underlying calculation is
the potential of the substrate to be transformed into taxadiene by the E. coli metabolic
network. Three-substrate mixtures were also considered in the calculations. Additionally,
aerobic and anaerobic optimal network performance was compared. Since taxadiene pro-
duction via the non-mevalonate pathway requires energy in the form of ATP and CTP,
our model-driven analysis suggests an aerobic production process. Surprisingly, no single
carbon source tested allowed a complete conversion into taxadiene, i.e., all substrates ex-
hibited a maximal theoretical yield lower than 1 c-mol taxadiene/c-mol substrate. The
largest maximal theoretical yield was obtained for ethanol as single carbon source, with
a value of 0.92 c-mol taxadiene/c-mol ethanol. By contrast, glucose exhibited a maximal
carbon yield of 0.65 c-mol taxadiene/c-mol glucose. An analysis of optimal flux distribu-
tions identified CO2 as the main source for carbon loss. Finally, we found out that the
endogenous non-mevalonate pathway allows for a higher theoretical yield than the hetero-
logous mevalonate pathway for glucose as the carbon source. However, this is not true for
all 180 carbon sources analyzed. When both pathways were active in an optimal ratio, we
observed a small degree of synergy (<6%) for some substrates, including glucose.

7.1. Performance Criteria for Substrate Selection

Before one can actually select the best substrate from a list of candidates, performance
criteria need to be defined. For biotechnological production processes, product yield has
been traditionally used to assess and to compare the production performance of different
substrates and strains. Product yield is defined as the ratio of product gained to substrate
consumed. Depending on the units used to calculate the ratio, one can express product
yield on three different bases: on a molar basis (mol product/mol substrate), on a carbon
basis (c-mol product/c-mol substrate) or on a mass basis (g product/g substrate). When
assessing the economic performance of a given set of substrates, profit can be used as a
performance criterion. We define profit as the ratio of US dollars gained to US dollars
invested.
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The choice of a particular performance criterion to identify the best carbon source depends
on the aim of the optimization process. Thus, if the process designer is interested in
maximizing revenue, the performance criterion to be applied seems obvious. On the other
hand, if network efficiency is to be optimized, product yield on a carbon or mass basis
should be preferred over product yield on a molar basis. This is because maximal values of
molar yield are not constrained to a defined interval, but rather depend on the substrate
used. This leads to difficulties while assessing a given product yield on a molar basis. For
instance, is a product yield of 0.1 mol taxadiene/mol glucose good enough? By contrast,
values for product yield expressed on a carbon or mass basis will always range from 0 to
1. Substrates exhibiting a product yield of 1 c-mol product/c-mol substrate allow for a
complete conversion of substrate into product. In other words, the network performance
is already optimal and can not be further improved.

7.1.1. Single Substrates

We start our constraint-based analysis by assessing 180 different growth-supporting sub-
strates, based on the performance criteria previously described. The E. coli metabolic
reconstruction iJO1366 [106] was used for all calculations. Growth-supporting refers to the
ability of the iJO1366 network to in silico grow on a given substrate. In order to calculate
maximal theoretical yields representing true upper boundaries, both the Non-growth Asso-
ciated Maintenance (NGAM) term and the cellular growth rate were set to 0. Additionally,
oxygen uptake rate was set to an artificially high value of 100 mmol/gDW h to ensure suf-
ficient oxygen availability. Since the E. coli metabolism does not allow for an endogenous
taxadiene production, the iJO166 model was extended by adding necessary reactions al-
lowing taxadiene production as shown in Appendix B.1.1. Following steps were applied
to calculate maximal profit and taxadiene yields using the endogenous non-mevalonate
pathway for precursor production.

1. Choose one of the 180 substrates listed in Table B.1 (see Appendix B.1.2).

2. Set a rate of 1 mmol substrate/gDW h by adjusting the lower and upper bound of
the respective uptake reaction.

3. Maximize flux through the taxadiene export reaction using linear programming.

4. The numerical value of the maximal flux calculated in previous step coincides with
the taxadiene yield on a molar basis, i.e. mol txd/mol substrate. This is because
substrate uptake rate was set to 1 mmol/gDW h. txd refers to taxadiene.

5. Calculate product yield on a carbon basis by multiplying yield obtained in step 4 by
the factor:

[ 20 c−mol txd
1 mol txd

x c−mol substrate
1 mol substrate

)
]
; x c−mol refers to the number of carbon atoms in the

substrate chosen in step 1.

6. Calculate product yield on a mass basis by multiplying yield obtained in step 4 by the

factor:
[ 272.48 g txd

1 mol txd
x g substrate

1 mol substrate

]
; x g substrate refers to the molecular weight of the substrate

chosen in step 1.
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7. Calculate profit by multiplying yield obtained in step 4 by the factor:
[ 128056.2 US$ txd

1 mol txd
x US$ substrate
1 mol substrate

]
;

x US$ substrate refers to current market price of the substrate chosen in step 1 per
mol.

Carbon content, molecular weight and market price for all carbon sources can be found in
Table B.2 in the Appendix. Figure 7.1 lists the substrate having the highest performance
for each criterion and glucose and glycerol along with their respective position in the
ranking. Refer to Table B.1 in the Appendix for a complete overview. From Figure 7.1 we
can easily conclude that there is no global optimal substrate exhibiting the highest value
for all performance criteria. Rather, optimal substrate differs according to the metrics
used. In the case of glucose and glycerol, it is interesting to observe that while glucose
seems to be superior when considering product yield on a molar basis, the trend is reversed
when product yield is considered on either a carbon or mass basis.

31. Glucose 
[0,69]

5. Glycerol 
[0,8]

1. Ethanol
[0,88]

52. Glucose 
[0,31]

21. Glycerol 
[0,35]

1. Phenylacetaldehyde
[0,57]

134. Glycerol 
[0,12]

71. Glucose 
[0,21]

1. Maltohexaose
[1,26]

23. Glycerol
[59,371]

10. Glucose 
[151,976]

1. Formaldehyde
[285,004]

A B DC

Figure 7.1.: Substrate Ranking via Four Different Performance Criteria Perform-
ance criteria considered are profit in units of US$ txd/US$ substrate (D.) and taxadiene
yield on a molar (A.), carbon (B.) and mass basis (C.). For each criterion, the substrate
exhibiting the highest performance is shown. Performance and relative position in the rank-
ing for glucose and glycerol is also provided. Profit and yield values are shown in the square
brackets. The model used was a modified version of iJO1366. Substrate uptake rate was set
to 1 mmol substrate/gDW h, oxygen uptake rate to 100 mmol/gDW h. Growth rate and
NGAM were set to zero.

Another interesting observation is the fact that no single substrate can support a complete
conversion into taxadiene. Ethanol allows with 0.88 c-mol txd/c-mol ethanol the highest
conversion efficiency. This value means that in the best case, 12% of all carbon atoms
absorbed by the network are lost in the form of by-products. At this point, it is important
to state that these values only represent the potential of the metabolic network to produce
taxadiene, without guarantee of biological feasibility. Due to regulatory or toxic effects
triggered by the substrate or pathway intermediates, which are not considered in maximal
theoretical yield calculations, we expect actual product yields to be significantly lower.
Nevertheless, theoretical yield calculations are useful to unravel the potential of a given
metabolic network.
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7. Model-based Medium Optimization

Table 7.1.: Metabolic Models Used for Synergy Studies. All three models are based
on the E. coli metabolic reconstruction iJO1366. All models were extended to allow for
taxadiene production. IPP and DMAPP are referred to as pathway precursors for taxadiene
synthesis.

Characteristics
Model 1 Mevalonate pathway is used for precursor biosynthesis
Model 2 Non-mevalonate pathway is used for precursor biosythesis
Model 3 Both mevalonate and non-mevalonate pathways are used for precursor biosynthesis

7.2. Synergy as Design Principle for Pathway Selection

Motivated by the impossibility to achieve a complete conversion of any carbon source into
taxadiene, we ask following question: can the simultaneous activity of both the mevalonate
(MVA) and non-mevalonate (MEP) pathway improve substrate conversion? We introduce
our approach to answer this question using glucose as the case study. Let us start by
considering three different metabolic models, as shown in Table 7.1. Then, let us calculate
the maximal theoretical yield for each of the three models. By comparing theoretical
product yields supported by each model, it is possible to identify synergistic effects arising
due to the simultaneous utilization of both pathways. Synergy exists, if the theoretical
product yield for Model 3 is higher than the theoretical product yield for Model 1 and
Model 2.

We quantify synergy as follows:

Synergy =
max(Y1, Y2, Y3)−max(Y1, Y2)

max(Y1, Y2)
,

where Yi refers to product yield of one of the three models introduced in Table 7.1. Note
that the basis used to express product yield (mol, mass or carbon) do not have an effect on
the numerical value of synergy. It is possible to identify optimal pathway usage originating
the observed synergy via constraint-based modeling, as shown in Figure 7.2. For that,
a new constraint, determining the fraction of carbon flux going through each of the two
pathways (mevalonate or non-mevalonate pathway), is set on the metabolic model. More
specifically, we modulate the activity of the MEP pathway by constraining the flux through
its first reaction, termed DXS in Figure 5.9 and DXPS in model iJO1366. By calculating
maximal taxadiene yields for various MEP activity levels, ranging from 0 to 1, it is possible
to identify an optimal flux fraction (MEPopt), as shown in Figure 7.2. Note that MEPopt

will not only depend on the identity of the substrate used, but also on the production
conditions. For glucose, it increases from 75% to 91% if the conditions are changed from
fully aerobic to fully anaerobic. This observation suggests that the performance of the
MEP pathway is less dependent on the value of oxygen uptake than the MVA pathway.
In fact, while the maximal taxadiene yield achieved via the MEP pathway is reduced by
roughly 15% as a consequence of oxygen deprivation, the maximal taxadiene yield achieved
via the MVA pathway drops by 55% (refer to downwards displacement of points 1 and 3
in Figure 7.2.A and .B). In order to analyze the effect of growth rate on maximal taxadiene
yields, synergy and MEPopt, we consider a growth rate of 0.2 1/h along with a glucose and
oxygen uptake rate of 10 mmol/gDW h. As shown in Figure 7.2.C, cellular growth reduces
the maximal taxadiene reached by the E. coli network. This results obvious from a mass
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7.2. Synergy as Design Principle for Pathway Selection

balance perspective. Since growth and taxadiene production compete for a limited supply
of carbon atoms, an increase in the growth rate will necessarily lead to a reduction in
the maximal taxadiene yield. Interestingly, MEPopt decreases from 75% to 70% if growth
is considered (compare Figure 7.2.C and .A). This trend continues if growth is increased
to 0.4 1/h. In this case, MEPopt amounts to 56%, suggesting that taxadiene production
via MVA pathway is less affected by growth than the MEP pathway (results not shown).
However, at a growth rate of 0.4 1/h, the synergy between the MEP and MVA pathway
only reaches 0.4 %.

Now, we extend synergy calculations to all carbon sources considering fully aerobic condi-
tions and setting NGAM and growth rate to 0. Figure 7.3 summarizes the synergy observed
for 180 substrates (refer to Table B.1 in the Appendix for a complete overview of the res-
ults). We observe that the simultaneous activity of the MEP and MVA pathway does not
lead to an increased taxadiene yield for all substrates, i.e. synergy amounts to 0%. In total,
57 carbon sources belongs to this group, almost the half of which (28 substrates) exhibit
higher taxadiene yield using the MEP pathway. With only 14 substrates having a synergy
higher than 2.5% but lower than 5.7%, we conclude that simultaneous activity of both
the MEP and MVA pathway does not lead to a substantial product yield improvement.
A closer look at obtained carbon yields (refer to column “MEP+MVA. Carbon Yield” in
Table B.1 in the Apendix) reveals that ethanol, with a carbon yield of 0.92 c-mol txd/c-mol
ethanol, still exhibits the highest carbon efficiency. Although the synergy between MEP
and MVA pathways increased the carbon yield for ethanol from 0.88 to 0.92 c-mol/c-mol,
network performance is not optimal yet, since still 8% of all carbon atoms are lost in the
form of by-products.

7.2.1. Three-Substrate Mixtures

Determined to find a network configuration that allows a complete substrate conversion
into product, we asked the question, if substrate mixtures can potentially increase network
performance. In order to keep the problem computationally tractable, we limited our
study to two- and three-substrate mixtures. In total, we tested 972,150 different medium
compositions:

(
180

1

)
+

(
180

2

)
+

(
180

3

)
=

180!

1! 179!
+

180!

2! 178!
+

180!

3! 177!

= 972, 150

As in section 7.1.1, we used a constraint-based approach along with the E. coli metabolic
reconstruction iJO1366 to obtain results shown in Figure 7.4. Since substrate mixtures are
considered, product yields calculated on a molar basis do not allow a direct assessment of
the network carbon efficiency. Consequently, product yields are reported on a carbon basis.
Calculations for profit and product yields on a mass basis can be performed analogously.
To guarantee that the maximal possible product yield is identified during calculations, both
pathways for precursor production (mevalonate and non-mevalonate) were introduced in
the model iJO1366. The applied procedure was the following:

103



7. Model-based Medium Optimization

0 0.2 0.4 0.6 0.8 1
MEP Activity

0.64

0.65

0.66

0.67

0.68

0.69

0.7

M
ax

im
al

 T
ax

ad
ie

ne
 Y

ie
ld

, [
c-

m
ol

/c
-m

ol
]

0 0.2 0.4 0.6 0.8 1
MEP Activity

0.4

0.45

0.5

0.55

0.6

0.65

M
ax

im
al

 T
ax

ad
ie

ne
 Y

ie
ld

, [
c-

m
ol

/c
-m

ol
]

0 0.2 0.4 0.6 0.8 1
MEP Activity

0.515

0.52

0.525

0.53

0.535

0.54

0.545

0.55

M
ax

im
al

 T
ax

ad
ie

ne
 Y

ie
ld

, [
c-

m
ol

/c
-m

ol
]

A B C

1

3

2

Glucose Taxadiene

+

IPP + DMAPP

MVA

MEP

Accoa

G3P Pyr

+

Synergy = 0.72%
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Figure 7.2.: Synergy as Design Principle for Pathway Selection. Glucose As a
Case Study. All calculations were performed using the model iJO1366. This model was
complemented with both the non-mevalonate (MEP) and the mevalonate (MVA) pathway.
As shown in the top of the figure, the MVA pathway draws three acetyl-CoA molecules to
produce one IPP molecule. By contrast, the MEP pathway draws a molecule of pyruvate
and a molecule of glyceraldehyde 3-phosphate to produce a mixture of IPP and DMAPP.
Refer to Figures A.5, A.6 and A.7 in the Appendix for a detailed overview of these two
pathways and the reactions required for taxadiene production. The activity through the
MEP pathway was in silico modulated from 0 to 1, which corresponds to its maximal flux.
Modulation was done by constraining flux trough the reaction DXPS, the first reaction of the
MEP pathway. Additional constraints were applied as follows: (A.) Fully aerobic taxadiene
production. Oxygen uptake rate was set to 100 mmol/gDW h, glucose uptake rate to 1
mmol/gDW h and NGAM to 0. (B.) Anaerobic taxadiene production. Rates were set as
(A.) but oxygen uptake rate was set to 0. (C.) Aerobic taxadiene production with a growth
rate of 0.2 1/h and NGAM of 3.15 mmol ATP/gDW. Synergy was calculated as explained in
the main text. Points 1 , 2 and 3 correspond to Model 1, 2 and 3 respectively (see Table
7.1). MEPopt defines the activity of the MEP pathway for which taxadiene flux is maximal.
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•Formate
•Pyruvate
•D-/L-Serine

0% Synergy
-> 57 Compounds

•Glycerol
•Glucose
•Succinate

0%<Synergy<2.5%
-> 109 Compounds

•L-Lactate
•Ethanol
•Threonine

2.5%<Synergy<5.7%
-> 14 Compounds

180 
Carbon 
Sources

MEP: 28 Compounds
MVA: 29 Compounds

Figure 7.3.: Synergy as Design Principle for Pathway Selection. 180 Substrates
Synergy was calculated as explained in the main text for 180 different carbon sources. Tax-
adiene yields were calculated considering no growth rate and a NGAM value of 0. All
calculations were made using the model iJO1366. Refer to Table B.1 in the Appendix for a
complete overview of the results.

1. Choose one of the 972,150 possible substrate mixtures (or single substrates).

2. Allow the model to consume these substrates by setting the upper bounds for re-
spective uptake reactions to 1 mmol substrate/gDW h.

3. Maximize flux through the taxadiene export reaction using linear programming.

4. Numerical value of product yield on a carbon basis can be calculated as follow:
20 rtxd∑n
i=1 ri ci

, where rtxd refers to taxadiene production rate, ri substrate uptake rate
for substrate i and ci carbon content of substrate i. Consequently,

∑n
i=1 ri ci refers

to the total carbon uptake.

5. Repeat step 1 to 4 for all remaining substrate mixtures.

Figure 7.4 reveals interesting features of the taxadiene production potential of the E. coli
metabolic network. In average, maximal product yield expressed on a carbon basis lies at
0.57 c-mol txd/c-mol substrate for the substrate mixtures analyzed (refer to Figure 7.4.A).
This means that on average, 43% of the absorbed carbon atoms of a given mixture are
lost in the form of by-products. Additionally, ethanol still exhibits the highest in silico
performance, with a product yield on carbon basis of 0.924 c-mol/c-mol (refer to Figure
7.4.B). In a last attempt to push the E. coli metabolic network to reach its production
limit in silico, we turned our attention to analyze by-product secretion during taxadiene
production. The motivation was not only to identify a medium composition leading to
complete carbon conversion, but also the identification of bottle necks in the taxadiene
production. Based on an analysis of optimal flux distributions, we noticed a significant
carbon leak towards CO2. In order to assess the extent of simultaneous taxadiene and
CO2 production, we calculated corresponding CO2 carbon yields for the 972,150 substrate
mixtures. Results are summarized in Figure 7.4.C. Interestingly, carbon leak in the form
of CO2 can amount to values up to 62% of the total carbon uptake. CO2 production
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Figure 7.4.: Maximal Product Yield for Three-Substrate Mixtures Maximal taxadiene
yields were calculated for 972,150 substrate mixtures considering both MEP and MVA for
taxadiene production. All yields were calculated on a carbon basis. Shown are histogram
of taxadiene yields (A.), zoomed histogram of taxadiene yields (B.) and CO2 yields (C.).
Vertical dotted line correspond to glucose. Calculations were done with the model iJO1366
considering fully aerobic taxadiene production. NGAM and growth rate were set to 0. CO2

yields were calculated using the CO2 export flux obtained for each of the 972,150 substrate
mixtures.

has many sources, including production of pathway precursors, e.g. acetyl-coA produc-
tion from glucose by the enzyme pyruvate dehydrogenase, NADH/NADPH regeneration
and the first and last reaction of the MEP and MVA pathway, respectively. Even though
production of acetyl-CoA and co-factor regeneration (NADH/NADPH) can occur without
concomitant CO2 production by clever substrate selection, CO2 production associated to
the MEP and MVA pathways cannot be avoided without engineering enzymes respons-
ible for CO2 release, namely 1-deoxy-D-xylulose-5-phosphate synthase (encoded by gene
dxs) and phosphomevalonate decarboxylase (encoded by gene mvaD), respectively (Refer
to Figures A.5 and A.6 in the Appendix for a detailed overview of the MEP and MVA
pathways). As far as we know, this has not been achieved yet. Thus we conclude that a
carbon neutral taxadiene production is not possible for any substrate or substrate mixture.

If CO2 production cannot be avoided, carbon fixation could offer a solution to the the CO2

challenge. Bar-even et al. [10] designed and analyzed different synthetic carbon fixation
pathways. The shortest possible fixation pathway identified by the authors corresponded
to a pathway fixing two CO2 molecules to produce glyoxylate, a two carbon compound.
Two glyoxylate molecules can be then assimilated by a bacterial-like glycerate pathway
to produce glyceraldehyde 3-phoshate (G3P) and one CO2 molecule. The carbon fixa-
tion and glyoxylate assimilation pathway can be lumped into a single reaction as follows:
3CO2 + 3ATP + 4NADPH G3P. In order to investigate if the introduction of a
synthetic CO2 fixation pathway would lead to increased taxadiene yields, we introduced
this pathway into the iJO1366 model. Then, we calculated the maximal taxadiene yield
supported by the network using glucose as carbon source and both MEP and MVA path-
ways. We observed no improvement in the taxadiene yield for glucose.
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7.3. Discussion

Even though the conclusion of the CO2 challenge is rather unsatisfactory, we generated an
extensive in silico knowledge regarding optimal carbon sources for taxadiene production.
As such, this knowledge can be used to optimize experimental medium composition by
employing substrates exhibiting high in silico performance values as carbon source. For
instance, substrates potentially increasing the taxadiene production performance of a given
main carbon source, for example glucose, can be rapidly identified and experimentally
tested. Additionally, profit as performance criterion can be used in early stage techno-
economic feasibility studies. By defining a minimum profit level that should be achieved
by the process, it is possible to determine if a given host microorganism and a determined
substrate have the potential to yield an economically feasible production process.

Many studies have assessed and compared the production potential of various substrates
using the MEP, MVA or both pathways in silico [1,50,95,162]. However, the work reported
here surpasses the scope of any of these studies, as we assessed and compared a total of
972,150 unique substrate mixtures. We demonstrated that it is impossible to convert any
single substrate or substrate mixture into taxadiene in a carbon neutral fashion. Ethanol,
with a taxadiene yield of of 0.924 c-mol/c-mol, was identified by our large-scale in silico
analysis as the substrate allowing the highest carbon efficiency. Interestingly, as identified
by Gruchattka et al. [50], ethanol along with the MVA pathway has allowed the highest
experimental terpenoid yield (on a carbon basis) reported to date (refer to Table 2 in
[50], for original publication refer to [156]). Even though the host microorganism was S.
cerevisiae and the terpenoid produced corresponded to artemisinic acid, this study strongly
points at the potential of ethanol as an efficient carbon source for taxadiene and in general,
for terpenoids production.

As for the synergistic effects arising from the simultaneous utilization of the MEP and MVA
pathway, a recent publication [160] experimentally reported an improvement in isoprene
yield, when both pathways were active in E. coli . Yield improvement amounted to 20-fold
and threefold respectively, compared to the sole usage of the MEP or the MVA pathway. In
the case of the fully aerobic taxadiene production in E. coli , our constraint-based approach
predicted an increment of 0.72% and 7.38%, compared to the sole performance of the MEP
and MVA pathways, respectively (refer to Figure 7.2.A). Even though the extent of the
synergy experimentally observed by Yang et al. [160] can not be directly compared to our in
silico simulations, his study suggests that synergy calculations based on sole stoichiometric
constraints do possess a predictive power. An additional study supporting the validity of
constraint-based assessment of pathway synergy was provided by Shen et al. [136]. The
authors showed that in silico predicted synergistic effects arising from the simultaneous
activity of two different pathways for the 1-propanol production, namely the threonine and
the citramalate pathway, could be also observed in vivo.

Unlike our constraint-based calculations and additional reports [1,50,95] predicting a higher
in silico potential of the MEP pahtway over the MVA pathway for taxadiene production,
Yang et al. [160] experimentally demonstrated the superiority of the MVA pathway over
the MEP pathway for isoprene production. Since both taxadiene and isoprene production
depends on the DMAPP production flux, supported by either the MEP or MVA path-
way, the report by Yang et al. [160] clearly evidences one of the intrinsic limitations of
constraint-based modeling. Since pathway regulation at the transcription-, translation- or
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enzyme activity-level are poorly considered or not considered at all in genome-scale meta-
bolic reconstructions, biologically relevant aspects constraining flux through metabolic
pathways can be overseen. Since the MVA pathway is a non-native pathway in E. coli , the
flux through this pathway is not constrained by any regulatory elements. Consequently,
terpenoid yields using the heterologous MVA pathway have been repeatedly reported to
surpass the performance of the native MEP pathway [93, 98, 160]. In spite of its flaws,
constraint-based modeling represents a valuable modeling tool. This is because large scale
constraint-based analyses are computationally tractable (due to the efficiency of available
linear-programming solvers) and because high quality genome-scale metabolic reconstruc-
tions for many relevant industrial microorganisms are easily accessible to the research
community [66,123]. More importantly, the metabolism of all microorganisms is subjected
to mass balance constraints. Hence, theoretical yields calculated using constraint-based
approaches are true constraints, representing the maximal potential of a given host meta-
bolism.
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The performance of a plasmid-based production strain was experimentally assessed in a
semi-batch process at different temperatures and time points of induction. Available data
consisted of concentration time courses for biomass, substrate and product. The mod-
eling task was to identify optimal production temperature and time point of induction
in silico. To that end, we applied dFBA as modeling framework to describe the avail-
able experimental data. We used Arrhenius-like functions to mathematically describe the
temperature dependence of calculated rates (growth, substrate uptake and production).
Maximal productivity was used as the performance metric to be optimized by the model.
By perturbing both production temperature and time point of induction and analyzing the
system response, we identified a process setting that increased the maximal productivity
by 56% in silico [84]. Unfortunately, Experimental implementation of this model-based
prediction by our cooperation partner was not possible due to lacking reproducibility of
experimental results. This was potentially caused by strain/plasmid instability. However,
we believe that the proposed approach represents a valid proof of concept for process op-
timization using readily available experimental data in early stages of strain and process
development.

8.1. Strain & Experimental Data

The strain used in this work was constructed by our cooperation partner Max Hirte at IBK
and experimentally characterized by Lars Janoscheck at STT. Experimental strain char-
acterization was performed in a 1.5 liter bio-reactor and was limited to the measurement
of concentration time courses for glucose, biomass and taxadiene. Production was induced
by adding Isopropyl β-D-1-thiogalactopyranoside (IPTG) to the bio-reactor after a previ-
ously defined biomass concentration was reached. We termed this moment the induction
time point, tinduction. As shown in Table 8.1, this process parameter remained relatively
constant for all processes, ranging from 6.25 to 8.25 hours. Since the main objective of this
first characterization round was to identify an optimal production temperature, four dif-
ferent temperatures ranging from 16 to 37°C were tested. Note that while the production
temperature (Tproduction) was varied, the temperature before induction was kept constant
at a value of 37°C to ensure fast biomass formation. Figure 8.1 shows a schematic rep-
resentation of the process set-up and experimental time courses obtained for a production
temperature of 16 °C. Data for all other temperatures can be found in Tables B.3 to B.8,
in Appendix B.2.1. The effect of IPTG addition on taxadiene production can be clearly
observed in Figure 8.1.D. Shortly after induction, taxadiene is formed and its concentration
keeps increasing as the process continues.

In order to use provided experimental data to identify optimal process parameters (pro-
duction temperature and time point of induction), it is first necessary to develop a process
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Table 8.1.: Experimental Process Parameters for Six Semi-Batch Fermentations.
In order to identify optimal process conditions, six semi-batch fermentations were performed,
testing four different production temperatures and time points of induction. Refer to Tables
B.3 to B.8, in Appendix B.2.1 for experimental concentration time courses.

Process ID Temperature
before induction [°C]

Production
Temperature [°C]

Induction
Time Point [h]

Process
Duration [h]

1 37 16 8.5 76.5
2 37 16 7 73.75
3 37 22 7.25 75
4 37 37 7.25 75.25
5 37 22 6.25 74.75
6 37 27 6.25 74.75
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Figure 8.1.: Process Set-up and Experimental Data A production strain containing three
plasmids was characterized in a bioreactor using four different production temperatures.
During the process, glucose was added to the bioreactor in irregular time intervals to pre-
vent the culture from starving (A.). Strain characterization consisted of measurements of
concentration time courses for dry weight biomass (B.), glucose (C.) and taxadiene concen-
tration (D.). Dashed vertical line in Figure B. to D. represents the time point of plasmid
induction tinduction.

tInduction

G1

rproduction,1

G2
µ2, rglucose,2

µ3, rglucose,3

Process time

rproduction,2

G2p

µWT
rglucose,WT

“Growth uncoupled” 

Biomass Production (I)

Product Formation (I) Product Formation (II)

Biomass Production (II) Biomass Production (III)

Figure 8.2.: Modeling Experimental Data: Characteristic Process Times. Three
different biomass production phases arise when characteristic times G1 and G2 are intro-
duced. Analogously, two taxadiene formation phases are defined by G1 and G2p. Uncoupling
taxadiene formation phases from biomass production provided a better fit of experimental
data (results not shown). This is done by introducing G2p (with G2p 6= G2) to mark the end
of the first taxadiene formation phase. rglucose, rproduction and µ refer to glucose uptake,
taxadiene secretion and growth rates, respectively. µWT refers to the growth rate of the
wild-type.
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model capable of describing taxadiene production and its effect on biomass formation and
glucose consumption. To describe growth dynamics, we first divide the process time into
three different phases, defined by two characteristic times G1 and G2. The rationale behind
this strategy is the following: before the system is induced, cells grow with a rate defined
by temperature and substrate concentration. This two parameters were kept constant for
all six fermentations. Once the system is induced by IPTG, cellular growth is sharply
decreased, as the cell reallocates its limited transcription and translation machinery to
support the expression of genes encoded in the three plasmids. Thus, G1 defines the mo-
ment, in which a reduction in the growth rate can be experimentally observed. We refer
to the difference between tinduction and G1 as the time response. Since Taxadiene can be
produced after all necessary enzymes are synthetized by the cell, G1 also marks the mo-
ment in which taxadiene production begins. Due to the accumulation of toxic by-products
and diminishing growth-supporting substrates, the cellular growth rate should decreases
one more time as the process continues. We use the characteristic time G2 to describe this
moment. Analogously, G2p is introduced to describe the moment in which the taxadiene
production rate decreases or completely ceases. Figure 8.2 presents an overview of the
location of all characteristic process times.

8.2. Mathematical Identification of Characteristic Process
Phases and Rates Calculation

An optimization-based approach is introduced to guide the identification of characteristic
process times for biomass production as follows:

Find G1 and G2 maximizing Z:

Z =
3∑
i

ciR
2
i (G1, G2) = c1R

2
1 + c2R

2
2 + c3R

2
3,

with R2
i being the determination coefficient corresponding to the least squares regression

of the natural logarithm of dry weight measurements against time, for phase i (see Figure
8.3.A), and:

ci = 1 if #Points ≥ 3, else ci = 0.

#Points refers to the number of data points used for the linear regression.

Optimal G1 and G2 are identified using a brute force approach, in which Z values are
calculated for all possible G1 and G2 combinations within a predefined interval. Since
G1 is defined to be located shortly after tinduction, we scan for optimal Z values between
G1 = tinduction and G = tinduction+4 h. As for G2, preliminary calculations showed optimal
values to be located between 15 h and 60% of the total process time. Figure 8.3 shows
the results obtained after applying this methodology for the identification of characteristic
process times for batch 1. Optimal values for G1 and G2 can be obtained from Figure 8.3.B
or C. Additionally, Figure 8.3.C, suggests the existence of many combinations of G1 and
G2 values reaching at least 95% of the maximal Z value obtained for the whole simulation.

The identification of characteristic times implicitly allows the calculation of rates for
growth, glucose uptake and taxadiene production. Growth rate in each of the three bio-
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Figure 8.3.: Modeling Experimental Data: Mathematical Identification of Pro-
cess Phases Results are shown for batch 1. A. Natural logarithm of biomass dry weight
measurements (DW) is plotted against time. Our optimization-based approach identifies
characteristic times G1 and G2 such that the sum of the three resulting R2 is maximal. B.
Values of the objective function Z for different G1 and G2 combinations. C. Characteristic
process times achieving at least 95% of the maximal Z. As can be observed from this figure,
Optimal characteristic process time correspond to G1 = 8.5 h and G2 = 24.5 h.

Table 8.2.: Growth, Production and Substrate Uptake Rates for Different Pro-
cess Phases and Production Temperatures. Growth rates were calculated
as described in Section 2.1.2 for three different phases identified by the optimization-based
approach described in the main text. The same phases were used for the determination of
substrate uptake rates. By contrast, only two phases were used for the calculation of produc-
tion rates. Additionally, the identification of the characteristic time G2p was done manually.
However, an optimization-based approach could be analogously implemented.

Batch ID Charasteristic Times [h] Growth Rate [1/h] Glucose Uptake Rate
[mmol/gDW h]

Txd Production Rate
[mmol/gDW h]

tind G1 G2 G2p Phase I Phase II Phase III Phase I Phase II Phase III Phase I Phase II
1 8.5 8.5 24.5 52.5 3.402× 10−1 4.010× 10−2 4.320× 10−3 5.024 0.652 0.305 4.770× 10−5 0.000
2 7 7.5 23.8 26.5 2.983× 10−1 3.230× 10−2 3.030× 10−4 3.272 0.678 0.251 7.858× 10−5 1.114× 10−5

3 7.25 7.65 25.2 28.7 3.091× 10−1 6.149× 10−2 3.297× 10−3 6.636 1.486 0.347 4.412× 10−4 0.000
4 7.25 8 27.25 19.1 4.265× 10−1 3.070× 10−2 2.060× 10−3 4.675 2.569 1.022 8.401× 10−5 0.000
5 6.25 6.5 30.2 38 5.642× 10−1 2.220× 10−2 4.020× 10−3 5.878 0.474 0.216 1.280× 10−4 1.657× 10−5

6 6.25 6.9 24.2 29.7 4.807× 10−1 4.140× 10−2 3.840× 10−3 8.491 1.295 0.355 3.867× 10−4 0.000
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Figure 8.4.: Modeling Experimental Data: Results Experimental process set-up used for
semi-batch fermentations (A.). Measured time courses for biomass (B.), glucose (C.) and
taxadiene (D.) are compared with their respective in silico simulated time course for the
Batch 1. Dashed vertical line in Figure B. to D. represents the time point of plasmid
induction tinduction.
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8.3. Dependence of Model Parameters on Production Temperature

mass production phases equals the slope of the corresponding line shown in Figure 8.3.A.
Glucose uptake and taxadiene secretion rates are calculated by multiplying the growth
rate of each of the phases by the slope of the straight line that results from plotting the
glucose (or taxadiene) concentration as a function of biomass dry weight. Refer to Section
2.1.2 for more details on the calculation of rates from concentration time courses. Table 8.2
summarizes characteristic process times and respective rates for all six data sets. Note that
taxadiene production rate in the second product formation phase (see Figure 8.2) was set to
zero for Batches 1, 3 4 and 6. While this is a valid assumption in Batches 1 and 6 (refer to
Figures 8.4 and B.5, respectively) because the taxadiene concentration remains relatively
constant during this phase, we clearly observe a reduction in the taxadiene concentration
for Batches 3 and 4 (refer to Figures B.2 and B.3 in Appendix B.2.3). This means that
the taxadiene production rate in the second product formation phase should be negative
rather than zero. Since the number of experimental points for taxadiene concentration in
this phase is very limited, we assume a zero production rate to be more accurate than a
rate calculated using just two data points. Independently of the validity of this assump-
tion, it does not have an effect on predicted optimal Tproduction or tinduction values, as we
will discuss later.

Exchange rates and characteristic process times are parameters that allow for a complete
description of respective experimental concentration time courses. To demonstrate this,
we applied dFBA to generate in silico time courses for each semi-batch fermentation
process using parameters listed in Table 8.2 along with information regarding glucose
pulses and initial biomass and glucose concentrations for each batch (refer to Tables B.3
to B.8, in Appendix B.2.1 for numerical values). As explained in Section 2.1.1, dFBA
allows for the combination of reactor dynamics with cellular metabolism, thus allowing
the simulation of concentration time courses of extra-cellular metabolites in the reactor.
Figure 8.4 exemplarily shows the performance of dFBA simulations for batch 1 (refer to
Figures B.1 to B.5 in Appendix B.2.3 for a complete results overview). As observed, in
silico generated concentration time courses closely match experimental data (see Table
B.11 in Appendix B.2.3 for R2 values). All dFBA simulations reported in this work were
performed using MATLAB functions provided by DFBALab [47].

8.3. Dependence of Model Parameters on Production
Temperature

The main objective of the modeling effort presented in this chapter is the identification
of optimal values for two process parameters, namely production temperature and time
point of induction. So far, we have developed a modeling approach that allows the sim-
ulation of concentration time courses, closely matching experimental data. Since not all
parameters listed in Table 8.2 are directly accessible, meaning that their numerical values
cannot be freely adjusted experimentally, we venture to explore the effect of both produc-
tion temperature (Tproduction) and time point of induction (tinduction) on them. Note that
numerical values of growth and glucose uptake rate during the first production phase, µWT

and rglucose,WT in Figure 8.2, are considered to be constant, since strain, initial medium
composition and temperature in the first biomass production phase were not changed and
are not subject to optimization in this work.
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Figure 8.5.: Dependence of Characteristic Process Times on Temperature and
Time Point of Induction. The dependence of characteristic process times on tem-
perature is studied indirectly, by analyzing the relationship between duration of phases and
temperature. This approach would allow the estimation of characteristic process times ob-
tained at a non-measured Tproduction and tinduction.

We first study the dependence of characteristic process times on tinduction and Tproduction.
For that, we apply the schema shown in Figure 8.5. Instead of directly analyzing the
effect of Tproduction on G1, G2 and G2p, we analyze its effect on tresponse and the duration
of the second biomass production phase (tbiomass2) and first taxadiene formation phase
(tproduction1). Figure 8.6 shows these relationships. While tresponse linearly increases with
Tproduction, meaning that the cell needs more time to synthesize enzymes required for
taxadiene production at high temperatures, the duration of the main production phase,
tproduction1 linearly decreases as Tproduction increases. As for tbiomass2, we do not observe
a clear dependence on Tproduction. For that reason, we assume a constant value of 18.3 h,
which corresponds to the average duration of the second biomass formation phase, as
calculated from characteristic times listed in Table 8.2.
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Figure 8.6.: Modeling Experimental Data: Temperature Dependence of Dur-
ation of Process Phases Linear relationships are used to describe the effect of
Tproduction on tresponse (A.), on the duration of the second biomass production phase (B.)
and first product formation phase (C.).

The effect of tinduction on G1, G2 and G2p can be described as follows:

G1 = tresponse + tinduction

G2 = tbiomass2 + G1

G2p = tproduction1 + G1

Using these equations and the relationships shown in Figure 8.6, it is possible to calculate
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Figure 8.7.: Modeling Experimental Data: Temperature Dependence of Ex-
change Rates Rates shown for a Tproduction of 16 and 22°C correspond to average
values. A quadratic polynomial is used to mathematically describe the effect of temperature
on growth (A. and B.) and glucose uptake rates (C. and D.) in the second and third biomass
production phase. As for the taxadiene production rate in the first product formation phase,
an Arrhenius-like formula is applied to mathematically describe the observed temperature
dependency (E.). Plot F. shows taxadiene production rate obtained for each Tproduction.
Refer to Table B.10 in Appendix B.2.2 for more details on the formulas used for regression.

numerical values for G1, G2 and G2p for a given set of Tproduction and tinduction.

To describe the temperature dependence of growth and glucose uptake rate in the second
and third biomass production phases, we used a second-degree polynomial. This approach
was motivated by the work by Ratkowsky et al. [113], which suggested a linear relationship
between the square root of growth rate and temperature, as follows: √µ = b(T − To). As
shown in Figure 8.7 (plots A to D), a quadratic polynomial allows a good description of the
experimentally observed temperature dependence of both growth and glucose uptake rates.
Previous to the work by Ratkowsky et al. [113], Arrhenius-like formulas were suggested to
describe the effect of temperature on biological phenomena (growth and bacterial lumines-
cence) [36,57]. We use the formula suggested by Johnson et al. [57], developed to describe
the effect of temperature on cellular growth, to account for the effect of temperature on the
production rate during the first product formation phase. As evidenced in Figure 8.7.E,
this approach provides a good fit to the data.
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Figure 8.8.: Volumetric Productivity for Batches 2 and 5 Experimentally observed tax-
adiene productivity (circles) is plotted as a function of process time for Batches 2 (A.) and
5 (B.). Blue line represents predictions made with our dFBA-based approach.

8.4. In silico Optimization of Production Temperature and
Time Point of Induction

So far, we have identified numerical values for characteristic process times and exchange
rates (see Table 8.2), which used in combination with dFBA, allow the generation of
concentration time courses for biomass, glucose and taxadiene, closely matching experi-
mental data. Additionally, we introduced formulas to describe the effect of two process
parameters, namely Tproduction and tinduction, on them (characteristic process times and
exchange rates). In this way, it is possible to in silico generate concentration time courses
for Tproduction and tinduction values experimentally not tested so far and evaluate their im-
pact on a given performance metric. In this section, we show how the developed model
can be applied to identify values for Tproduction and tinduction that potentially increase
the maximal volumetric productivity of the process. This metric is defined as follows:
Pmax = max( txdconcentrationt ), where txdconcentration refers to a vector containing taxadiene
concentrations at certain time points, contained in the time vector t.

In order to reduce the simulation time and to provide a reliable prediction regarding optimal
process parameters, we assume that for a given batch process, Pmax is contained in the first
product formation phase. This assumption was done to avoid inaccuracies in the calculation
of the taxadiene time course during the second product formation phase, arising due to
the incapacity of accurately describe the observed decrease in the taxadiene concentration
during this phase for Batches 3 and 4 (refer to Figures B.2 and B.3, respectively). Taking a
look at the taxadiene time course for Batches 2 and 5 (Figures B.1 and B.4, respectively),
one might argue that this assumption negatively affects the prediction power of the model,
since the taxadiene concentration keeps increasing for both batches during the second
product formation phase. Interestingly, our simulations (see Figure 8.8) suggest that for
both batches, Pmax is indeed located within the first product formation phase, indicating
that our assumption is accurate and do not affect the prediction power of the model. A
similar behavior is observed for all other batches.

In order to identify numerical values for Tproduction and tinduction increasing Pmax we proceed
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Figure 8.9.: Model-based Optimization of Process Parameters A. 3D-View B. Top
view. Optimal conditions correspond to tinduction = 7.3 h and Tproduction = 32°C. Under
these conditions, Pmax amounts to 1.45× 10−3 mmol/l h.

as follows:

1. Generate a two dimensional grid for Tproduction ranging from 16 to 37 °C and tinduction
ranging from 0 to 13 hours, with a defined step, for instance 1°C for Tproduction and
0.1 h for tinduction. Each position in the grid represents a specific combination of
both process parameters.

2. For each position in the grid:

a) Calculate exchange rates and characteristic process times using formulas listed
in Table B.9 and B.10. Note that growth and glucose uptake rate during the
first biomass production phase are kept constant, and set to average observed
values: µ1=0.403 1/h; rglucose=5.662 mmol/gDW h (refer to Table 8.2)

b) Define initial concentrations. For instance 0.12 g/l biomass, 111 mmol/l glucose
and 0 mmol/l taxadiene.

c) Generate respective concentration time courses using dFBA.

d) Compute Pmax

3. Generate a three dimensional plot to evaluate the effect of Tproduction and tinduction
on Pmax

Figure 8.9 summarizes the results obtained after applying the procedure described above.
A total of 2882 unique combinations of Tproduction and tinduction were tested in silico.
As shown in the figure, a production temperature of 32°C and an induction time point
of 7.3 hours represent optimal process parameters. Under these conditions, a Pmax of
1.45× 10−3 mmol/l h is reached. Compared to the Pmax of 9.2615× 10−4 mmol/l h for
Batch 6, the highest Pmax experimentally observed for all batches, this represents an
increment of roughly 56 %.
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8.5. Discussion

In this chapter, we developed a dFBA-based model capable of reproducing experimentally
measured concentration time courses for biomass, glucose and taxadiene. Exchange rates
and characteristic process times (see Figure 8.2) were used as model parameters. By
expressing these parameters as a function of experimentally accessible process variables,
namely time point of induction (tinduction) and production temperature (Tproduction), we
were able to identify numerical values for these variables, which increased the maximal
process productivity, Pmax, by 56% in silico. Unfortunately and due to reproducibility
issues, possibly related to strain instability, our cooperation partner at STT was not able
to confirm our model predictions.

The introduction of characteristic process times and their associated phases represents a key
element of our modeling approach. In order to keep model complexity as low as possible, we
introduced three biomass production phases and two product formation phases. We believe
that this strategy considers the lowest possible number of phases, while allowing a correct
description of the data. Clearly, alternative models considering more phases for biomass
production and product formation are also possible. However, these approaches would
introduce unnecessary complexity, while at the same time complicating the interpretation
of model parameters from a biological point of view.

In order to identify characteristic process times, we applied an optimization-based method.
By maximizing an objective function Z, representing the goodness of fit of the biomass dry
weight time course, values for G1 and G2 could be identified. By contrast, characteristic
time G2p was obtained by visual inspection. Consequently, our model reproduced the
time course for biomass with increased accuracy, while the goodness of fit for glucose and
taxadiene was comparatively poor (see Table B.11, in Appenxid B.2.3). A possibility to
correct this drawback is to consider all characteristic times to maximize a more balanced
objective function ZTotal:

ZTotal(G1, G2, G2p) = ZBiomass(G1, G2) + ZGlucose(G1, G2) + ZTaxadiene(G2p),

where ZGlucose and ZTaxadiene are defined analogously to ZBiomass. This approach will
certainly allow for data description in a more balanced fashion. However, it will also
require more experimental information. In our opinion, this could compromise the bio-
logical significance of model parameters, since its determination would be exposed to an
increased degree of experimental error. The reason why we decided to only use the biomass
time course for the identification of characteristic process times was simple. As biomass
formation can be easily monitored through optical density measurements (OD), more data
points with less experimental error are available. To demonstrate the feasibility of using
OD time courses as input signals defining G1 and G2, we applied a similar approach to the
one described in this chapter to identify optimal process conditions. Our OD-based model
suggested a production temperature of 30.5°C and a time point of induction of 7.5 hours
as optimal, in line with the previously obtained optimal values using a dry weight-based
model (refer to Figure 8.9).

In spite of the mentioned drawbacks, numerical values for exchange rates identified by
our approach for each phase had a biological meaning. For instance, the detrimental
effect of system induction on cellular fitness can be evidenced by comparing the numerical
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values for growth and substrate uptake rate between Phase I and II (see Table 8.2). As
a consequence of taxadiene production, the cellular growth rate decreased by roughly one
order of magnitude. This behavior is in line with the phenomenon of metabolic burden,
discussed in Chapter 4. Additionally, the temperature dependence of growth, glucose
uptake and taxadiene production rates could be accurately described using established
models [36,57,113].

Even though we limited our analysis to the identification of optimal values for two different
process parameters, the spectrum of potential applications of the developed model is wide,
including among others:

1. Development of substrate feeding strategies. Using a model-based approach to sys-
tematically design feeding strategies, starving phases in the bioreactor along with
their associated negative impact on Pmax, can be minimized/eliminated. Refer to
Figure B.3 in Appendix B.2.3 for an illustration of this issue.

2. Estimation of optimal batch duration. After the maximal productivity (Pmax) has
been reached, additional process duration generates the process productivity to de-
crease (see Figure 8.8). Our model allows the identification of optimal values for this
process variable, so that no unnecessary production time is wasted.

3. Estimation of by-product secretion patterns. For each point of time during the pro-
cess, dFBA calculates flux distributions fulfilling certain constraints. In our specific
case, these constraints correspond to growth, glucose uptake and taxadiene produc-
tion rates for each phase. By maximizing and minimizing the flux through exchange
reactions of interest, for instance acetate secretion, concentration time courses for the
desired by-product can be estimated. A similar strategy can be applied to analyze
differences in the intracellular flux distributions for the various process phases, thus
allowing the identification of potential bottle necks limiting the production flux.
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9. Product Yield Prediction

A theoretical approach for accurate product yield prediction would reduce experimental
efforts during the development of optimal production strains. It would radically boost
the pace of the science of Metabolic Engineering. Traditionally, constraint-based methods
have been used to asses the production potential of metabolic networks. By applying
linear programming, it is possible to calculate the maximal theoretical product yield for a
defined carbon source and a given metabolic network (refer to Chapter 7). However, this
metric only serves as a maximal bound for product yield and does not always represent
an adequate proxy for experimental product yield. This is especially true when it comes
to describing the production performance of strains in early development stages (refer to
Table 2 in [50]).

Here, a kinetic-based approach was applied to predict experimental yields of six different
semi-batch processes. The method is based on the EM approach and was introduced by
the group of James Liao [71]. It requires three inputs: a metabolic network, a reference flux
distribution and a rate law for each reaction. Unknown kinetic parameters are sampled so
that the provided reference flux distribution is fulfilled. We observed that this method pre-
dicted experimental yields more accurately than its ad hoc constraint-based counterpart.
Since labeling data for the semi-batch experiments were lacking, reference flux distribu-
tions were estimated using constraint-based methods along with two different objective
functions: minimization of oxygen uptake and minimization of citrate synthase activity.
We observed a dependence of calculated yield values on the reference flux distribution.
However, regardless of the objective function used, predictions made by the kinetic-based
method were by up to two orders of magnitude more accurate than the constraint-based
method. We also adjusted traditionally used E. coli metabolic reconstructions [106, 107],
making them suitable inputs for the EM approach. Finally, we used the COBRA Tool-
box [124] to create required Matlab structures for the EM approach [70, 71, 74, 144, 146].
Thus, we created a missing bridge between widespread constraint-based and emerging
kinetic modeling platforms [91].

9.1. Strain & Experimental Data

Experimental data used correspond to experimental taxadiene yields obtained for the six
semi-batch fermentations introduced in Chapter 8. Taxadiene yields shown in Table 9.1
were calculated as the ratio of taxadiene production rate to glucose uptake rate for each
of the two production phases. Biomass yields were calculated analogously, as the ratio
between growth rate in each phase and corresponding glucose uptake rate. Refer to Section
8.1 and Table 8.2 for a description of experimental set-up and rates determination.

Since taxadiene production ceased during the second phase (between G2p and process end)
for the majority of the fermentations (batches 1, 3, 4, 6), we will focus our analysis on the
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Table 9.1.: Biomass and Product Yields for Six Semi-Batch Fermentations. Bio-
mass and Product yields are calculated for all phases. Yields are calculated as the ratio
between taxadiene secretion rate (or growth rate) and glucose uptake rate. When calculating
biomass yield, glucose uptake rate should be converted to units of g/gDW h.

Batch ID Biomass Yield [g/g] Txd Yield [mol/mol]
1 Phase 2 Phase 3 Phase 1 Phase 2 Phase

1 3.758× 10−1 3.413× 10−1 7.875× 10−2 7.313× 10−5 0.000
2 5.061× 10−1 2.644× 10−1 6.701× 10−3 1.159× 10−4 4.438× 10−5

3 2.585× 10−1 2.296× 10−1 5.274× 10−2 2.968× 10−4 0.000
4 5.064× 10−1 6.633× 10−2 1.119× 10−2 3.270× 10−5 0.000
5 5.328× 10−1 2.601× 10−1 1.031× 10−1 2.702× 10−4 7.657× 10−5

6 3.143× 10−1 1.775× 10−1 6.003× 10−2 2.987× 10−4 0.000

Table 9.2.: Average Biomass and Product Yields for Four Different Production
Temperatures. Yields were calculated for the respective phases after system induction.
Yield values for 16°C were calculated from average values of batches 1 and 2, while yield
values for 22°C were calculated from batches 3 and 5. Errors correspond to one standard
deviation. Since for production temperatures of 27 and 37°C only one single data set was
available, no errors can be reported.

Temperature
[°C]

Average Biomass Yield
[g/g]

Average Product Yield
[mol/mol]

16 3.029× 10−1 ± 5.434× 10−2 9.451× 10−5 ± 3.024× 10−5

22 2.449× 10−1 ± 2.157× 10−2 2.835× 10−4 ± 1.88× 10−5

27 1.775× 10−1 2.987× 10−4

37 6.633× 10−2 3.270× 10−5

first taxadiene production phase (refer to Figures 8.2 and 8.3 for phase definition). Table
9.2 shows the average taxadiene and biomass yield calculated for the respective phases
after system induction. Yield values for 16°C were calculated from batches 1 and 2, while
yield values for 22°C were calculated from batches 3 and 5.

9.2. Constraint-based Product Yield Prediction

Constraint-based modeling can be applied to calculate maximal theoretical product yields
for various carbon sources and genotypes, as already shown in Chapter 7. Due to the
simplicity of its calculation, maximal theoretical yield has been traditionally used to assess
and compare production potential under a variety of conditions. We start our analysis by
calculating maximal theoretical product yield for all six available data sets (corresponding
to four production temperatures) using experimentally measured growth and substrate
uptake rates (refer to Table 8.2) as constraints. The calculations were performed using an
expanded version of the E. coli core model (refer to Appendix B.1.1) as follows:

1. Select one of the six data sets.

2. Constraint the E. coli core model by setting numerical values of upper and lower
bounds of the growth and substrate uptake reactions to match experimentally meas-
ured rates. Refer to Table 8.2 for rate values.
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Figure 9.1.: Constraint-based Product Yield Prediction. Model used for constraint-based
product yield calculations was a modified version of the E. coli core model. The model was
constrained by setting growth and glucose uptake rates to corresponding experimental values.
Maximal theoretical yield was calculated using linear optimization.

3. Maximize flux through the taxadiene export reaction using linear programming.

4. Calculate taxadiene yield as the ratio between production flux calculated in the
previous step and experimentally measured substrate uptake rate.

Figure 9.1 compares experimental product yields with maximal theoretical product yields.
As it can be observed in the figure, in silico predictions differ by up to four orders of
magnitude from the experimental target yield.

9.3. Kinetic-based Product Yield Prediction

A kinetic-based approach was used to calculate the so-called KAY [71]. KAY is defined as
the maximal production flux that can be drawn from the host metabolic system before the
metabolic system becomes unstable or the intracellular concentration of any metabolite in
the system becomes negative. Dynamic system stability is evaluated by checking the eigen-
values of the system Jacobian matrix. Refer to [71] or Section 2.3.1 for details. Assuming
that production performance of the strain under consideration is mostly constrained by
kinetic stability issues, KAY should be a suitable proxy to describe observed experimental
yields. The mathematical definition of KAY implies that its numerical value depends on
the model kinetic structure used to simulate the host metabolism and on its associated
parameters. Since both model structure and kinetic parameters are normally unknown,
KAY can be calculated for an ensemble of kinetic models, built using the EM approach.
Consequently, KAY will not have a unique numerical value but will rather be constrained
into a range of probable values.

Here, we will assess the suitability of KAY to predict experimental product yield for six
semi-batch data sets. In a first step, an ensemble of models describing a given reference
flux distribution is built. Due to the process set-up used to generate experimental data,
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growth and substrate uptake rates after system induction correspond to the most suitable
experimental information to generate corresponding reference flux distributions by using
linear optimization. For that, two different objective functions were minimized: oxygen
uptake rate and citrate synthase activity. Both objective functions aim to describe a cellular
phenotype with limited respiratory capacity. The rationale behind the selection of these
objective functions is justified by experimental observations performed when analyzing
heterologous gene expression in E. coli , as discussed in Chapter 4. For each reference
flux distribution, an ensemble of 1000 kinetic models is built and KAY is calculated for
each model in the ensemble. For each ensemble, calculated KAY values are characterized
by 25th and 75th percentiles and a median value. The procedure can be summarized as
follows:

1. Select one of the six data sets.

2. Constraint the E. coli core model by setting numerical values of upper and lower
bounds of the growth and substrate uptake reactions to match experimentally meas-
ured rates. Refer to Table 8.2 for rate values.

3. Generate two reference flux distributions by minimizing either oxygen uptake rate or
citrate synthase activity.

4. For each reference flux distribution, apply the EM approach to build an ensemble of
1000 models.

5. Calculate KAY values for each ensemble as described in Section 2.3.1.

6. Characterize results by providing 25th and 75th percentiles and a median KAY value.

Figure 9.2 shows product yield predictions via KAY for all data sets and two objective
functions. For both objective functions, experimental product yields (see Table 9.1) are
within calculated ranges for KAY values in four out of six data sets. However, incorrectly
predicted product yields are different for each objective function. Considering both cases
simultaneously, KAY has the potential to correctly predict five out of six experimental
product yields. The maximal discrepancy between calculated KAY values and experi-
mental product yields does not exceed one order or magnitude. By contrast, product yield
prediction using maximal theoretical yield differed by up to four orders of magnitude from
the experimental target yield.

9.4. Application of KAY to Predict Optimal Biomass Yield
During Production

So far, the application of KAY has been limited to predict experimental product yields in
engineered strains [71]. Here, we explore further applications by using the KAY concept
to analyze the effect of biomass yield on production performance. This analysis was partly
motivated by the dependence between product and biomass yield shown in Figure 9.3.A.
There, a biomass yield seems to exist, for which product yield is maximal. Even though
the effect of varying temperatures on the observed product-biomass yield behavior can not
be completely ruled out, it is still interesting to compare in silico predictions made by both
constraint- and kinetic-based approaches.
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Figure 9.2.: Kinetically Accessible Yield (KAY) for Experimental Product Yield
Prediction. A. KAY for minimization of oxygen uptake rate as objective function. B.
KAY for minimization of citrate synthase activity as objective function.

We start our analysis by analyzing predictions made by the traditionally used constraint-
based approach. We used a modified version of the E. coli core model for all calculations
(refer to Appendix B.1.1), with glucose uptake rate set to 10 mmol/gDW h. Maximal
theoretical product yields supported by the network were calculated while simultaneously
considering cellular growth as an additional constraint. Growth rates ranged from 0 to
0.6 h−1. Results are represented in Figure 9.3.B by the orange line. As shown in the
Figure, the higher the growth rate (biomass yield), the lower the maximal theoretical
yield. In other words, if product yield is to be maximized, cells should be prevented from
growing. Such predictions will always be obtained when analyzing the effect of cellular
growth on the theoretical maximal product yield using constraint-based methods. The
rationale behind it is simple. Since constraint-based methods only considers mass balances,
any flux increase of a competing reaction (growth in this case) will necessarily lead to
a decrease in the production flux (and product yield), if the substrate uptake rate is
kept constant. Comparing this prediction with experimental observation shown in Figure
9.3.A, we conclude that it qualitatively describes experimental data only after the maximal
product yield is reached (for biomass yields higher than 0.2 g/g). While the constraint-
based approach suggests that the maximal product yield should be reached at a biomass
yield of zero (Figure 9.3.A), experimental maximal product yield is clearly reached at a
non-zero biomass yield (Figure 9.3.B).

Now, we turn our attention to the application of KAY to predict the dependence of product
yield on biomass yield. In order to keep predictions of both methods (constraint- and
kinetic-based) comparable, we used the same E. coli core model to generate an ensemble
of models, for which KAY is calculated. Reference flux distributions were generated by
minimizing oxygen uptake rate, while keeping substrate uptake rate at a constant value
of 10 mmol/gDW h. Growth rates were varied between 0 and 0.6 h −1. Refer to Seccion
2.3.1 for details on mathematical and computational implementation of KAY. Results are
represented in Figure 9.3.B by blue diamonds. There are three aspects in which the pre-
diction of the product yield vs. biomass yield relationship using a kinetic-based approach
fundamentally differs from the prediction made by the already discussed constraint-based
approach. First, the order of magnitude of the calculated KAY values is dramatically lower
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Figure 9.3.: Dependence of Maximal Product Yield on Biomass Yield Model used
was a modified version of the E. coli core model. Glucose uptake rate was set to 10 mmol
substrate/gDW h for all calculations. A. Experimentally observed dependence. B. In
silico calculated dependence using a constraint based approach (orange line) and the KAY
method (data points in blue). Error bars correspond to 25th and 75th percentiles. Diamonds
correspond to median KAY of the respective ensemble.

than maximal theoretical product yields and is therefore more in line with experimental
product yields (refer to Figure 9.3.A). Second, the kinetic-based approach predicts the max-
imal product yield to be located at a non-zero biomass yield of 0.11 g/g, surprisingly close
to the location of the maximal experimental product yield 0.17 g/g, especially considering
that no experimental information was used to generate reference flux distributions. Third,
the predicted relationship between product yield and biomass yield using the kinetic-based
method shows a non-linear trend, similar to the experimentally observed behavior. In
contrast, the constraint-based method predicted a linear relationship between these two
quantities. Overall, the consideration of a kinetic layer seems to improve the prediction
capabilities of the stoichiometric model, even though exact reference flux distributions and
corresponding parameter values were unknown.

9.5. Discussion

In Section 9.3, we successfully applied a kinetic-based approach to predict experimental
product yields of a semi-batch process. Exchange rates (growth and substrate uptake
rate) during production phase (after system induction) were used along with two different
objective functions to generate reference flux distributions needed to construct an ensemble
of models and subsequently calculate KAY values. We observed a dependence of calculated
KAY values on the used reference flux distribution (see Figure 9.2). This highlights the
importance of using appropriate reference flux distributions to obtain accurate product
yield predictions. Since unambiguous determination of reference flux distributions is in
many cases not possible due to technical or economical limitations (refer to Section 2.1.2),
an interesting, yet unexplored possibility is the consideration of an ensemble of ensembles.
Representative reference flux distributions (each used to populate one ensemble) can be
generated by either assuming different (biologically relevant) objective functions, as done in

126



9.5. Discussion

1
1
1
1
. .
0
1

E0, Initial Enzyme Vector

P

U
R

𝑓(𝜙')
𝑓(𝜙')
𝑓(𝜙')
𝑓(𝜙')
. .
𝜙'

𝑔(𝜙')

Ef, Final Enzyme Vector

𝑉+,

𝑉-,
𝑉.,

𝑉/,
. .
𝑉0,

𝑉+
𝑉-
𝑉.
𝑉/
. .
𝑉0

System Induction

System Induction

𝑑𝑐33
𝑑𝑝

= −
𝜕𝐹
𝜕𝑐33

9+ 𝜕𝐹
𝜕𝑝

Pr
ot

eo
m

e 
Pa

rti
tio

ni
ng

En
se

m
bl

e 
M

od
el

in
g

V0, Initial Flux Dist. Vf, Final Flux Dist. 

P

U
R

Figure 9.4.: Increasing the Utility of the KAY Concept The concept of proteome parti-
tioning can be used to calculate the vector of enzyme concentrations after system (plasmid)
induction (Ef ). By integrating Equation 2.25 between E0 and Ef , the vector of steady state
metabolite concentrations can be calculated. This vector can be used in a subsequent step
to calculate the corresponding flux distribution, which can be in turn used as input for a
KAY analysis. Note that in the wild-type strain (pie chart on left side of this figure), the
fraction of heterologous protein U amounts to zero. However, it is represented in the pie
chart to symbolize that this fraction gains importance as the induction level is increased.

Section 9.3, or by simply covering to some extent the space of mathematically feasible flux
distributions by sampling free (independent) fluxes (see Equation 2.18). In a second step,
all ensembles are merged into one single ensemble and one single prediction is generated.
Clearly, this approach would necessary require the implementation of computer clusters
and an efficient parallelization strategy. The approach presented in Figure 2.6.B could be
used as an initial cluster set-up.

Typically, experimental information regarding growth and substrate uptake rates during
the production phase are unavailable. However, these data are normally known for un-
induced strains or wild-types. In order to increase the utility of KAY calculations, the
procedure used in Section 9.3 can be extended to allow for product yield prediction start-
ing directly from the wild-type phenotype. In the original paper, Lafontaine Rivera et
al. [71] used this idea. Starting from an estimated flux distribution for the wild-type,
they successfully predicted the isobutanol yield for three different strains, one of which
exhibited three different gene deletions (∆adhE, ∆pta and ∆ldh). In order to assess the
production potential of that strain, the effect of gene deletions on the flux distribution was
first assessed. Then, a KAY analysis was performed using only models that retained sta-
bility after mathematically knocking out the three genes. The calculated KAY value was
consistent with the experimentally determined yield. A similar approach could be applied
to estimate the production potential of highly burdened strains. The idea is simple and is
motivated by the concept of proteome partitioning developed by the Hwa group at UC, San
Diego [132–134]. Consider the pie chart shown on the left side of Figure 9.4. The proteome
partitioning model introduced by Hwa and coworkers assumes that the microbial proteome
can be split into three different sectors: Q, P and R. Sector Q is fixed and does not depend
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on the cellular growth rate. R contains all ribosomal proteins and their affiliates, while
P represents all proteins responsible for nutrient influx and metabolism. Since the size of
the proteome is limited, the expression of an heterologous protein U effectively decreases
the fraction allocable to the P and R sectors, as represented in the pie chart on the left
side of Figure 9.4. If functions describing the fraction of sectors P (φP ) and R (φR) in
dependence of the heterologous fraction U (φU ) are known, then it should be possible to
estimate changes in the flux distribution as φU increases. For a given φU fraction, KAY
values can be then calculated using the calculated flux distribution as a starting point (Vf
in Figure 9.4) [91].

The results and outlook presented in this chapter evidences the huge potential of kinetic-
based modeling, more specifically, of EM-based methods. In our opinion, Figures 9.3 and
9.2 directly support the predictive power of EM-based methods like KAY itself and optEM
(see Section 5.4.2). Additional experimental work, including measurements of protein
content in both wild-type and induced strains, will be required to further extend and
validate the applicability of KAY as proposed in Figure 9.4. An interesting prediction of
KAY is the interdependence between biomass and product yield, shown in this Chapter (see
Figure 9.3) but also in Chapter 6 (refer to Figure 6.10.B). The validity of this relationship
and the ability of KAY to successfully describe it could be exploited not only for the
optimal design of fermentation processes but also for the calculation of optimal induction
levels, described by the fraction of heterologous protein φU .
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The coverage of this thesis is mostly limited to the taxadiene production in E. coli . How-
ever, a review on the application of computational methods to increase succinate pro-
duction in engineered strains evidenced interesting trends of the current model-based,
rational Metabolic Engineering. Even though the details of that review can be found else-
where [149], we will highlight some of the key lessons learned from that review in order to
understand the way how it motivated and guided parts of the in silico studies presented
here. Then, we will provide some conclusions and future perspectives concerning the main
results of this work.

10.1. Lessons From Succinate Production in Engineered
Strains

Biotechnological production of succinate has been one of the preferred case studies to test
predictions made by strain-design algorithms. Since the introduction of OptKnock in 2003
and until 2016, a total of 26 different strain-design algorithms in silico targeting the succin-
ate overproduction (refer to Table 1 in [149] or Table 2.4 of this work) have been published.
None of these studies was accompanied by an in vivo validation of the algorithm’s predic-
tions. Rather, the rich biological knowledge available, gained over decades of research in
succinate production in a variety of industrially relevant microorganisms, was used to test
the predictive power of the algorithms. An analysis of the nature of mathematical methods
used to develop these strain-design algorithms and the way how their predictions are used
to guide in vivo strain development leads to three key conclusions:

1. Constraint-based methods predominate. Roughly 80% of the 26 strain-design al-
gorithms targeting succinate overproduction have a constraint-based nature. This
observation is not surprising and is, in our opinion, mainly justified in the relative
simplicity of its mathematical formulation, availability of the required information
(a genome-scale metabolic reconstruction and an objective function), and its compu-
tational tractability.

2. Kinetic-based methods are underrepresented. Contrasting the predominance of constraint-
based methods, only one single method, out of 26 strain design algorithms reviewed,
had a kinetic-based nature. In our opinion, this evidences the difficulties associated
with kinetic descriptions of cellular metabolism. In addition to a stoichiometric layer,
kinetic information in form of rate laws, describing the flux through each reaction as
a function of enzyme-specific parameters and metabolite concentrations, are also re-
quired. Since this information is typically unavailable, the construction of large-scale
kinetic models have been hindered.
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3. In silico predictions are not always precise. We found out that only 10 studies re-
ported the model-guided construction of strains exhibiting an enhanced succinate
production (refer to Table 2 in [149]). Within these studies, only two used one of the
26 strain-design algorithms previously developed. All other studies reported the con-
struction of production strains based on knowledge gained from FBA calculations.
Additionally, none of the 10 studies reported an exact implementation of in silico
predictions. Often, complementary strategies like directed evolution were necessary
to achieve high succinate yields. Altogether, these observations point to a limited
predictive power of constraint-based methods, especially when aspects like fine tuning
of enzyme expression or dynamic stability of the system become important factors
determining the effectiveness of a given genetic intervention [1, 2].

10.2. Lessons From Taxadiene Production in E. coli

As previously mentioned, advantages of constraint-based methods over kinetic-based meth-
ods include the simplicity of use, while simultaneously offering a moderate predictive power.
Due to their computational tractability, constraint-based simulations can be performed on
a large-scale, thus allowing the identification of non-trivial network properties. In the
specific case of taxadiene production in E. coli , we demonstrated that a carbon-neutral
taxadiene production is not possible for any substrate or substrate mixture. This obser-
vation can be easily extended to the production any terpene. This is because carbon leak
in form of CO2 is concomitant to the formation of both IPP and DMAPP, the universal
terpene precursors, via either the mevalonate or the non-mevalonate pathway. Addition-
ally, our large-scale constraint-based analysis pointed at a synergy between the mevalonate
and the non-mevalonate pathway in silico (Chapter 7). Remarkably, this synergy was
experimentally observed, although in a greater extent, for the production of isoprene in
E. coli [160].

The predictive power of constraint-based modeling is increased, if biologically meaningful
constraints are used. In Chapter 4, we applied a constraint-based approach to simulate
the experimentally observed effect of protein load on by-product secretion. By reducing
the upper boundary of oxygen uptake rate as protein/plasmid load increases, we could
qualitatively reproduce the downwards shift of the acetate line experimentally observed in
loaded strains. Our assumption on decreasing respiratory capacity is in part justified by
proteomic measurements reported by Peebo et al. [110].

One of the main disadvantages of constraint-based methods, which paradoxically has its
origin in the simplicity of the mathematical formulation of constraint-based approaches,
is the omission of enzyme kinetics. As a consequence, important aspects such as dynamic
stability of the cellular metabolism, intracellular concentration of potentially toxic meta-
bolites, metabolite-level enzyme regulation and fine tuning of enzyme expression cannot be
adequately considered. By contrast, multiple studies have highlighted the importance of at
least one of these factors for the construction of terpenoids overproducing strains [1,2,38].
Motivated by this and by the fact that kinetic-based models are underrepresented despite
of their application potential in rational Metabolic Engineering, we ventured to explore the
utility of the ensemble modeling, an emerging approach for the construction and analysis
of kinetic models. The predictive power of the ensemble modeling approach was evaluated
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in Chapter 5 and 9. Even though kinetic parameters were sampled and reference flux dis-
tributions were calculated by means of constraint-based modeling using two experimental
exchange rates, namely growth and substrate uptake rate, predicted taxadiene yields using
the concept of KAY [71] agreed remarkably well with experimental data (Chapter 9). Ad-
ditionally, predicted targets by our EM-based strain-design algorithm optEM for increased
taxadiene production were in line with known, reported beneficial genetic perturbations
(Chapter 5). We also observed an interesting dependence of experimental taxadiene
yields on biomass yields, which, to the best of our knowledge, has not been described
before. Interestingly, this dependence could be reproduced using the concept of KAY. In
Chapter 6, we observed the same dependency for strains exhibiting varying levels of %
Carbon Xylose. We combined these predictions and the fact that biomass yield is likely
to decrease (as genetic elements necessary for taxadiene production should increase the
metabolic burden) to suggest that strain HMS p1x represents the best production strain
candidate for further optimization rounds.

Even though the ensemble modeling approach showed an unexpectedly high predictive
power and utility, its widespread in the community has been hindered, possibly by its high
computational burden. Clearly, this represents a challenge for small research facilities,
as computer clusters do not belong to standard equipment. As discussed in Chapter 5,
computational power can be reduced by increasing the amount of experimental information
used to define and characterize the reference state required to populate the ensemble of
kinetic models. A related issue is the existence of alternative flux distributions equally
fulfilling constraints imposed by experimentally determined exchange rates or available
13C-labeling data. The dependence of KAY predictions on the reference flux distribution
is exemplary shown in Figure 9.2, Chapter 9. An option to deal with this additional
uncertainty source is to sample the space of possible flux distributions and to perform
the desired ensemble modeling-based analysis (KAY [71], EMRA [74, 144] or OptEM)
independently. Then, the collective response can be characterized as usual, by providing
25th and 75th percentiles for the whole ensemble of ensembles. Certainly, this imposes an
even higher computational burden. Therefore, an optimal trade-off between uncertainty
and degree of experimental characterization should be individually found according to
equipment availability.

We envision the spectrum of ensemble modeling-related methods and applications to keep
widening. For instance, KAY could be used as a soft sensor, calculated in real-time from
online OD, substrate and oxygen concentration measurements. This is especially useful
when online experimental determination of product concentrations is not possible. By using
KAY as an accurate proxy for strain performance, it should be possible to dynamically
adjust process conditions such as stirrer velocity, substrate feeding and process time to
maximize production and profit. Further potential applications include combination of the
ensemble modeling approach with dynamic flux balance analysis for identification of strain
designs with increased productivity [170] and guidance while experimentally constructing
instability-prone genotypes [2].

High quality, reproducible experimental data play a crucial role in the efficient develop-
ment and validation of modeling approaches and more broadly, in the advance of science.
Nowadays, reproducibility issues do not represent the incapacity of isolated research groups
to reproduce own or other group’s results, but rather a generalized problem affecting the
whole research community, with an extent depending on the specific research field [9,99]. In
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this work, model-based improvement strategies for strains (Chapter 4 & 5) and a produc-
tion process (Chapter 8) were identified. Unfortunately and due to reproducibility issues,
none of these strategies could be validated. This limited the experimental implementation
of the theoretical workflow developed (refer to Chapter 3) and hindered the desired op-
timization of strains and their associated production processes through the implementation
of model-based predictions in an iterative fashion. However, various theoretical methods
for each of the steps of the workflow were developed and applied. Figure 10.1 provides an
overview of these methods and summarizes relevant input-output relationships used along
this work.

Chapter 6 was concluded by suggesting strain HMS p1x as an optimal production strain
candidate. After genetic elements allowing terpenoid production are introduced into this
strain, modifications in its metabolism leading to an increased production performance can
be identified by applying the tools discussed in Chapter 5. Once the desired production
performance has been reached, associated optimal process parameters can be identified as
shown in Chapter 8. As for culture medium composition, a similar procedure to the one
used in Chapter 7 can be applied to identify promising carbon sources. These steps are
illustrated in Figure 10.1 by the dashed lines and represent one possible implementation
of the workflow using all tools described in this work.

Two opposite approaches have been suggested to increase reproducibility of results, namely
standardization [111] and heterogenization of experimental conditions [116]. In either case,
future experimental efforts should aim to keep increasing confidence in experimental data.
On the modeling side, strategies should be developed to properly handle uncertainties and
experimental error, thus allowing the generation of predictions that are robust to noise.
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Figure 10.1.: Application of the Workflow to the Production of Taxadiene in E. coli : Conclusion. The proposed workflow,
covering both model-guided strain engineering and model-driven process optimization, was applied to the production of taxadiene in E. coli . Even
though model-based optimization strategies for strain and production process could not be experimentally validated due to reproducibility issues
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optimal terpenoid producing strain and the optimization of its performance in a bio-reactor.
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Acronyms

13C-MFA 13C-Metabolic Flux Analysis.

[U-13C] uniformly labeled 13C.

E. coli Escherichia coli .

CCR Carbon Catabolite Repression.

dFBA dynamic Flux Balance Analysis.

DMAPP dimethylallyl diphosphate.

EM Ensemble Modeling.

EMRA Ensemble Modeling for Robustness Analysis.

EMU Elementary Metabolite Units.

FBA Flux Balance Analysis.

FVA Flux Variability Analysis.

G3P glyceraldehyde 3-phosphate.

GA Genetic Algorithm.

GDP Gross Domestic Product.

gDW gram dry weight.

HPLC High Performance Liquid Chromatography.

i.e. id est.

IPOPT Interior Point OPTimizer.

IPP isopentenyl diphosphate.

IPTG Isopropyl β-D-1-thiogalactopyranoside.

KAY Kinetically Accessible Yield.
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Acronyms

MEP non-mevalonate.

mmol millimol.

MS Mass Spectromety.

MVA mevalonate.

NGAM Non-growth Associated Maintenance.

NMR Nuclear Magnetic Resonance.

OD Optical Density.

PTS phosphotransferase system.

RAM Random Access Memory.

rpm revolutions per minute.

SBT Fachgebiet Systembiotechnologie.

SLURM Simple Linux Utility for Resource Management.

TCA tricarboxylic acid.

UC University of California.

WT wild-type.
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A. Appendix for Strain Engineering

A.1. Metabolic Burden

A.1.1. Slope of Acetate Line

The slope of experimental acetate lines was determined for three different strains, namely
strain 31, 3150 and 3152. Refer to Table 4.1 for strain description. For strain 31, three
different data sets were available for the determination of its slope. Slope of acetate lines
was determined using standard linear least square regression for both growth rate as a
function of acetate and acetate as a function of growth rate, as shown in Figure A.1.
Since experimental acetate secretion rates normally exhibit higher standard deviations
than growth rates (refer to Figure 5.2 and 6.11), the slope of the lines acetate vs growth
rate is considered to describe more accurately the slope of the acetate lines. Since strains
31, 3150 and 3152 differ only by its metabolic load, the slope of their acetate lines should
be constant [11]. The average slope considering all acetate lines correspond to: 28.063 ±
3.587 mol acetate/gDW
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Figure A.1.: Determination of the Acetate Line Slope for E. coli HMS. Slope of
acetate lines for strains 31, 3150 and 3152 were determined using linear regression for
growth rate vs. acetate secretion rate (A.) and acetate secretion rate vs. growth rate (B.).
Values for coefficient of determination were: R2

31_1 = 0.79, R2
31_2 = 0.80, R2

31_3 = 0.97,
R2

3150 = 0.92, R2
3152 = 0.45. y31_i refers to the regression for one three different data sets.

Symbols are as follows: +: acetate, ◦: fructose, *: galactose, �: glucose, �: mannose.
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A. Appendix for Strain Engineering

A.1.2. Amino Acid Sequences

Protein sequences for eGFP, mCherry, antibiotic resistances and additional replication
proteins are given below. The mCherry-plasmid contains: mCherry, kanamycine resistance
and replication protein 237. The eGFP-plasmid contains: eGFP, gentamycine resistance,
replication protein 648 and protein XylS. These protein sequences can be used to construct
strain specific metabolic reconstructions.

Amino acid sequence for eGFP
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQ

CFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGH

KLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKD

PNEKRDHMVLLEFVTAAGITLGMDELYK

Amino acid sequence for mCherry
MVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQF

MYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPV

MQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSH

NEDYTIVEQYERAEGRHSTGGMDELYK

Protein sequence for kanamycine resistance
MSHIQRETSCSRPRLNSNMDADLYGYKWARDNVGQSGATIYRLYGKPDAPELFLKHGKGSVANDVTDEM

VRLNWLTEFMPLPTIKHFIRTPDDAWLLTTAIPGKTAFQVLEEYPDSGENIVDALAVFLRRLHSIPVCNCPF

NSDRVFRLAQAQSRMNNGLVDASDFDDERNGWPVEQVWKEMHKLLPFSPDSVVTHGDFSLDNLIFDEGK

LIGCIDVGRVGIADRYQDLAILWNCLGEFSPSLQKRLFQKYGIDNPDMNKLQFHLMLDEFF

Protein sequence for gentamycine resistance
MLRSSNDVTQQGSRPKTKLGGSSMGIIRTCRLGPDQVKSMRAALDLFGREFGDVATYSQHQPDSDYLGNL

LRSKTFIALAAFDQEAVVGALAAYVLPKFEQPRSEIYIYDLAVSGEHRRQGIATALINLLKHEANALGAYVIY

VQADYGDDPAVALYTKLGIREEVMHFDIDPSTAT

Protein sequence for replication protein 237
MATQSREIGIQAKNKPGHWVQTERKAHEAWAGLIARKPTAAMLLHHLVAQMGHQNAVVVSQKTLSKLIG

RSLRTVQYAVKDLVAERWISVVKLNGPGTVSAYVVNDRVAWGQPRDQLRLSVFSAAVVVDHDDQDESLL

GHGDLRRIPTLYPGEQQLPTGPGEEPPSQPGIPGMEPDLPALTETEEWERRGQQRLPMPDEPCFLDDGEP

LEPPTRVTLPRR

Protein sequence for replication protein 648
MSNVASPPMVYKSNALVEAAYRLSVQEQRIVLACISQVKRSEPVTDEVMYSVTAEDIATMAGVPIESSYNQL

KEAALRLKRREVRLTQEPNGKGKRPSVMITGWVQTIIYREGEGRVELRFTKDMLPYLTELTKQFTKYALA

DVAKMDSTHAIRLYELLMQWDSIGQREIEIDQLRKWFQLEGRYPSIKDFKLRVLDPAVTQINEHSPLQVEW

AQRKTGRKVTHLLFSFGPKKPAKAVGKAPAKRKAGKISDAEIAKQARPGETWEAARARLTQMP

Protein sequence for protein XylS
MDFCLLNEKSQIFVHAEPYAVSDYVNQYVGTHSIRLPKGGRPAGRLHHRIFGCLDLCRISYGGSVRVISPGL

ETCYHLQIILKGHCLWRGHGQEHYFAPGELLLLNPDDQADLTYSEDCEKFIVKLPSVVLDRACSDNNWHKP

REGIRFAARHNLQQLDGFINLLGLVCDEAEHTKSMPRVQEHYAGIIASKLLEMLGSNVSREIFSKGNPSFERV

VQFIEENLKRNISLERLAELAMMSPRSLYNLFEKHAGTTPKNYIRNRKLESIRACLNDPSANVRSITEIALDY

GFLHLGRFAENYRSAFGELPSDTLRQCKKEVA
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A.1. Metabolic Burden

Table A.1.: Concentration Time Courses for Galactose as Carbon Source.
Time
[h]

Biomass, [g/l] Galactose, [mmol/l] Acetate, [mmol/l]
31 3150 3152 31 3150 3152 31 3150 3152

0 1.597E-02 1.903E-02 1.209E-02 2.346E+01 2.391E+01 2.302E+01 NaN NaN 7.980E-01
1.5 2.075E-02 1.930E-02 1.362E-02 2.322E+01 2.202E+01 2.150E+01 NaN 7.191E-01 7.597E-01
3 3.707E-02 3.004E-02 1.804E-02 2.088E+01 2.309E+01 2.129E+01 NaN 8.542E-01 7.326E-01
4.5 6.215E-02 3.806E-02 2.183E-02 2.076E+01 2.101E+01 2.125E+01 NaN 1.056E+00 8.901E-01
6 1.043E-01 3.933E-02 1.894E-02 2.016E+01 2.259E+01 2.100E+01 7.349E-01 1.534E+00 1.061E+00
7.5 1.710E-01 5.493E-02 2.462E-02 1.817E+01 2.076E+01 2.142E+01 7.137E-01 1.823E+00 1.205E+00

Table A.2.: Concentration Time Courses for Glucose as Carbon Source.
Time
[h]

Biomass, [g/l] Glucose, [mmol/l] Acetate, [mmol/l] Formate, [mmol/l]
31 3150 3152 31 3150 3152 31 3150 3152 31

0 1.506E-02 1.858E-02 1.660E-02 2.298E+01 2.029E+01 2.049E+01 NaN NaN 7.703E-01 NaN
1.5 2.697E-02 3.103E-02 2.291E-02 1.931E+01 1.877E+01 1.907E+01 7.026E-01 8.158E-01 7.973E-01 NaN
3 6.765E-02 2.904E-02 1.624E-02 1.819E+01 1.856E+01 1.921E+01 1.320E+00 9.096E-01 9.029E-01 NaN
4.5 1.410E-01 4.303E-02 2.435E-02 1.666E+01 1.861E+01 1.866E+01 2.461E+00 1.164E+00 1.080E+00 5.730E+00
6 3.114E-01 4.844E-02 3.292E-02 1.326E+01 1.885E+01 1.903E+01 4.919E+00 1.600E+00 1.390E+00 2.748E+01
7.5 4.991E-01 4.221E-02 3.031E-02 6.482E+00 1.873E+01 1.899E+01 6.485E+00 1.855E+00 1.466E+00 NAN

A.1.3. Concentration Time Courses

Experimental time courses for biomass, substrate, acetate and formate for growth on dif-
ferent carbon sources (galactose, glucose, mannose, fructose and acetate) are shown in
Tables A.1 to A.5. From these time courses, respective rates were calculated as explained
in Section 2.1.2 and are listed in Table A.6. Note that formate was only detected for strain
31, when grown fructose, mannose and glucose.

A.1.4. Flux Distribution Patters for Three Zones

FVA results for Phase I, II and III are shown in Figures A.2 to A.4, respectively. The E. coli
core model was used for all calculations. For each phase, glucose and oxygen uptake rate
were set to defined values then, maximal growth rate was calculated. After fixing the
growth rate to that value, minimal and maximal rates supported by each reaction in the
model was calculated. Three rules were used to identify biologically feasible fluxes:

1. minFlux==maxFlux and minFlux==0

2. minFlux==0 and maxFlux>900

3. abs(abs(minFlux)-abs(maxFlux))>900

reactions not fulfilling any of these rules are identified their flux ranges plotted for each
phase. Note that in each phase, exchange reactions are highlighted in blue.

Table A.3.: Concentration Time Courses for Mannose as Carbon Source.
Time
[h]

Biomass, [g/l] Mannose, [mmol/l] Acetate, [mmol/l] Formate, [mmol/l]
31 3150 3152 31 3150 3152 31 3150 3152 31

0 1.696E-02 2.580E-02 1.993E-02 1.987E+01 2.111E+01 2.054E+01 NaN NaN 1.038E+00 NaN
1.5 2.850E-02 2.688E-02 1.741E-02 2.122E+01 2.053E+01 1.847E+01 7.858E-01 7.244E-01 1.035E+00 NaN
3 5.737E-02 4.131E-02 1.984E-02 1.861E+01 2.053E+01 1.839E+01 1.217E+00 7.244E-01 1.165E+00 NaN
4.5 9.660E-02 4.266E-02 2.237E-02 1.827E+01 1.858E+01 1.874E+01 1.473E+00 9.470E-01 1.312E+00 NaN
6 1.792E-01 5.619E-02 2.246E-02 1.859E+01 2.083E+01 1.874E+01 2.121E+00 1.755E+00 1.312E+00 1.620E+01
7.5 2.859E-01 5.358E-02 2.950E-02 1.613E+01 1.917E+01 1.819E+01 1.913E+00 1.949E+00 1.405E+00 2.437E+01
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Table A.4.: Concentration Time Courses for Fructose as Carbon Source.
Time
[h]

Biomass, [g/l] Fructose, [mmol/l] Acetate, [mmol/l] Formate, [mmol/l]
31 3150 3152 31 3150 3152 31 3150 3152 31

0 1.497E-02 1.696E-02 7.487E-03 2.393E+01 2.245E+01 2.426E+01 NaN NaN 7.192E-01 NaN
1.5 2.517E-02 1.867E-02 9.471E-03 2.466E+01 2.378E+01 2.151E+01 9.693E-01 7.371E-01 7.626E-01 NaN
3 3.906E-02 2.426E-02 1.191E-02 2.147E+01 2.180E+01 2.198E+01 1.102E+00 9.476E-01 7.957E-01 NaN
4.5 8.966E-02 3.346E-02 1.768E-02 2.014E+01 2.166E+01 2.196E+01 1.539E+00 1.275E+00 9.296E-01 NaN
6 1.648E-01 3.987E-02 1.705E-02 1.694E+01 2.302E+01 2.121E+01 2.526E+00 2.231E+00 1.055E+00 1.683E+01
7.5 2.787E-01 4.970E-02 2.345E-02 1.429E+01 2.113E+01 2.206E+01 3.652E+00 1.797E+00 1.224E+00 2.798E+01

Table A.5.: Time Courses for Acetate as Carbon Source.
Time,
[h]

Biomass, [g/l] Acetate, [mmol/l]
31 3150 3152 31 3150 3152

0 1.335E-02 1.696E-02 1.146E-02 2.235E+01 2.357E+01 2.122E+01
1.5 1.633E-02 1.488E-02 1.795E-02 2.192E+01 2.139E+01 2.008E+01
3 2.426E-02 1.858E-02 1.479E-02 1.926E+01 2.026E+01 2.000E+01
4.5 3.310E-02 1.732E-02 1.786E-02 1.859E+01 2.034E+01 1.973E+01
6 4.221E-02 1.885E-02 1.651E-02 1.720E+01 2.037E+01 1.928E+01
7.5 6.621E-02 1.831E-02 2.318E-02 1.492E+01 2.048E+01 1.940E+01

Table A.6.: Exchange Rates for Three Strains and Five Sugars. Rates for growth, sub-
strate uptake and acetate secretion were calculated from measured time courses as described
in Chapter 2.1.2
Glucose Mannose Fructose Galactose Acetate
Strain Strain Strain Strain Strain

31 3150 3152 31 3150 3152 31 3150 3152 31 3150 3152 31 3150 3152
µ 0.487 0.111 0.086 0.384 0.112 0.054 0.402 0.152 0.150 0.328 0.146 0.090 0.213 0.019 0.066
ruptake 14.111 4.449 4.540 5.433 3.353 3.619 15.198 6.249 12.643 10.103 9.248 8.814 29.668 7.829 8.967
racetate 6.074 4.707 3.336 1.670 4.905 1.755 4.324 6.432 4.734 - 4.825 2.655 - - -

µ is given in 1/h; both substrate uptake (ruptake) and acetate secretion (racetate) rates are given in mmol/gDW h. ’-’ symbolizes
that no acetate secretion was detected.
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Figure A.2.: Flux Variability Analysis for Phase I. Upper boundary for glucose and oxygen
uptake rates were set to 0.75 and 4 mmol/gDW h, respectively. CO2 is the only carbon-
based by-product secreted by the cell.
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Figure A.3.: Flux Variability Analysis for Phase II. Upper boundary for glucose and oxygen
uptake rates were set to 2 and 4 mmol/gDW h, respectively. CO2 and acetate represent
carbon-based by-products secreted by the cell.

150



A.1. Metabolic Burden

-5 0 5 10 15
Flux, [mmol/ g BTM h]

acetate kinase
aconitase (half-reaction A, Citrate hydro-lyase)

aconitase (half-reaction B, Isocitrate hydro-lyase)
acetate reversible transport via proton symport

ATP maintenance requirement
ATP synthase (four protons for one ATP)

core E. coli biomass equation (Neidhardt Based with GAM, N metabolism)
CO2 transporter via diffusion

citrate synthase
cytochrome oxidase bd (ubiquinol-8: 2 protons)

enolase
Acetate exchange

CO2 exchange
Formate exchange

D-Glucose exchange
H2O exchange

H+ exchange
Ammonia exchange

O2 exchange
Phosphate exchange

fructose-bisphosphate aldolase
formate transport via diffusion

glucose 6-phosphate dehydrogenase
glyceraldehyde-3-phosphate dehydrogenase

D-glucose transport via PEP:Pyr PTS
glutamine synthetase

glutamate dehydrogenase (NADP)
phosphogluconate dehydrogenase

H2O transport via diffusion
isocitrate dehydrogenase (NADP)

NADH dehydrogenase (ubiquinone-8 & 3 protons)
ammonia reversible transport

o2 transport (diffusion)
pyruvate dehydrogenase

phosphofructokinase
pyruvate formate lyase

glucose-6-phosphate isomerase
phosphoglycerate kinase

 6-phosphogluconolactonase
phosphoglycerate mutase

phosphate reversible transport via symport
phosphoenolpyruvate carboxylase

phosphotransacetylase
pyruvate kinase

ribulose 5-phosphate 3-epimerase
ribose-5-phosphate isomerase

transaldolase
NAD(P) transhydrogenase

transketolase
transketolase

triose-phosphate isomerase
Phase III

Figure A.4.: Flux Variability Analysis for Phase III. Upper boundary for glucose and
oxygen uptake rates were set to 4 and 4 mmol/gDW h, respectively. CO2, acetate and
formate represent carbon-based by-products secreted by the cell.
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Figure A.5.: Non-Mevalonate Pathway (MEP). The non-mevalonate pathway consists of 8
different reactions. This pathway converts pyruvate and glyceraldehyde 3-phosphate into
the universal isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate.
All metabolite’s figures were taken from KEGG [103]

A.2. Strain Design Algorithms for Target Identification

A.2.1. Mevalonate, Non-Mevalonate & Taxadiene Formation Pathways

Terpenes are naturally synthesized compounds formed by the ligation of activated isoprene
molecules IPP and its isomer DMAPP. In nature, IPP and DMAPP can be synthetized
through two different metabolic routes: the mevalonate (MVA) or the non-mevalonate
(MEP) pathway. Figures A.5, A.6 and A.7 schematically show the non-mevalonate, the
mevalonate and the taxadiene production pathways, respectively.

A.2.2. Concentration Time Courses for Taxadiene Producing Strains

Table A.7 summarizes time courses for OD, glucose and acetate concentration for five
different strains. Concentrations were measured in duplicate.

A.2.3. 13C Labeling Data

Table A.8 provides labeling patterns for protein-bound amino acids for five different tax-
adiene producing strains. Measurements were kindly provided by Claudia Huber at Bio
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Figure A.6.: Mevalonate Pathway (MVA). The mevalonate pathway consist of 7 different reac-
tions. This pathway converts three molecules of acetyl-coA into one molecule of isopentenyl
diphosphate (IPP). Dimethylallyl diphosphate is produced via isomerization of IPP. All
metabolite’s figures were taken from KEGG [103]

Figure A.7.: Taxadiene Production Pathway. Three molecules of isopentenyl diphosphate
and one molecule of dimetylallyl diphosphate are converted in a serie of four reactions into
taxadiene -a diterpene-. All metabolite’s figures were taken from KEGG [103]
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Table A.7.: Concentration Time Courses for Taxadiene Producing Strains. Du-
plicate concentration time courses for five taxadiene producing strains are given.

Time, [h] OD Glucose, [mmol/l] Acetate, [mmol/l]
1 2 1 2 1 2

HMS 2p
0 0.574 0.582 25.186 38.874 0.512 0.648
1 0.644 0.650 15.407 36.665 0.940 2.098
3 0.894 0.903 19.173 13.076 1.959 1.767
5 1.113 1.188 23.574 28.184 5.747 0.868
7 1.374 1.392 21.489 20.248 8.232 6.831

∆ptsG 2p
0 0.582 0.574 29.437 37.734 0.514 0.451
1 0.631 0.615 26.627 37.706 0.687 0.765
3 0.795 0.735 28.390 19.556 1.431 0.929
5 0.933 0.747 27.945 27.710 2.308 1.961
7 1.134 0.873 16.959 26.575 1.940 4.500

∆ptsG 1p
0 0.561 0.564 29.276 44.400 0.412 0.404
1 0.696 0.692 27.753 24.874 0.455 –
3 1.149 1.167 29.740 24.838 0.403 –
5 1.398 1.518 22.468 18.646 1.058 0.895
7 2.208 2.124 14.830 22.124 1.354 1.834

∆xylE 2p
0 0.522 0.556 27.468 51.126 0.556 0.535
1 0.624 0.633 31.077 26.852 0.967 0.760
3 0.927 0.876 23.335 15.331 1.662 0.993
5 1.146 1.173 25.100 23.428 3.055 2.392
7 1.308 1.302 18.742 15.412 3.279 2.715

∆xylE 1p
0 0.540 0.561 28.647 34.630 0.552 0.501
1 0.622 0.621 31.239 18.537 1.131 4.820
3 0.945 0.972 28.533 17.004 2.124 1.317
5 1.413 1.377 21.021 15.139 4.266 3.044
7 1.971 1.917 6.947 8.740 2.889 3.148
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Table A.8.: 13C-labeling Data for Five Taxadiene Producing Strains. Labeling pat-
terns of protein-bound amino acids was experimentally determined in duplicate for five tax-
adiene producing strains.

Amino Acid Fragment HMS_2p ∆xylE_2p ∆xylE_1p ∆ptsG_2p ∆ptsG_1p
% σ % σ % σ % σ % σ

Ala-260 M+0 0.934 2.980E-03 0.944 1.315E-03 0.919 2.968E-03 0.931 3.617E-03 0.912 2.092E-03
Ala-260 M+1 0.009 2.564E-03 0.008 1.291E-03 0.016 2.732E-03 0.019 3.303E-03 0.019 1.962E-03
Ala-260 M+2 0.006 3.178E-04 0.006 6.089E-04 0.010 6.032E-04 0.010 6.044E-04 0.012 5.825E-04
Ala-260 M+3 0.050 6.413E-04 0.042 6.788E-04 0.055 5.422E-04 0.040 3.745E-04 0.057 7.258E-04
Asp-418 M+0 0.891 1.809E-03 0.909 9.501E-04 0.862 4.125E-03 0.888 1.894E-03 0.841 2.554E-03
Asp-418 M+1 0.048 1.843E-03 0.043 8.426E-04 0.064 4.174E-03 0.055 1.680E-03 0.081 2.810E-03
Asp-418 M+2 0.024 1.147E-03 0.020 5.316E-04 0.033 1.330E-03 0.033 2.134E-03 0.050 1.077E-03
Asp-418 M+3 0.035 3.678E-04 0.025 4.796E-04 0.037 8.487E-04 0.022 5.565E-04 0.025 5.196E-04
Asp-418 M+4 0.003 2.635E-04 0.002 3.231E-04 0.004 1.584E-04 0.002 3.570E-04 0.003 8.999E-05
Glu-432 M+0 0.854 2.631E-03 0.872 3.018E-03 0.820 4.462E-03 0.854 4.843E-03 0.804 2.166E-03
Glu-432 M+1 0.042 2.117E-03 0.045 3.079E-03 0.060 3.794E-03 0.054 3.564E-03 0.077 1.841E-03
Glu-432 M+2 0.082 1.566E-03 0.066 6.649E-04 0.095 1.916E-03 0.073 1.695E-03 0.096 2.225E-03
Glu-432 M+3 0.018 1.000E-03 0.013 6.943E-04 0.020 6.734E-04 0.015 6.820E-04 0.019 5.804E-04
Glu-432 M+4 0.003 3.735E-04 0.003 2.509E-04 0.004 4.178E-04 0.003 1.360E-04 0.004 3.837E-04
Glu-432 M+5 0.002 2.339E-04 0.001 6.043E-05 0.002 1.119E-04 0.001 7.015E-05 0.001 7.789E-05
Gly-246 M+0 0.936 6.189E-04 0.947 7.906E-04 0.924 6.366E-04 0.939 2.662E-03 0.918 1.091E-03
Gly-246 M+1 0.013 6.568E-04 0.011 6.325E-04 0.018 6.722E-04 0.019 2.531E-03 0.024 9.768E-04
Gly-246 M+2 0.051 6.939E-04 0.042 2.483E-04 0.058 5.347E-04 0.043 3.970E-04 0.058 3.015E-04
His-440 M+0 0.857 3.009E-03 0.881 1.877E-03 0.827 2.361E-03 0.862 2.795E-03 0.812 4.596E-03
His-440 M+1 0.055 4.232E-03 0.047 9.179E-04 0.071 3.330E-03 0.058 3.612E-03 0.079 4.839E-03
His-440 M+2 0.027 1.822E-03 0.022 2.179E-03 0.036 2.402E-03 0.027 1.590E-03 0.042 2.163E-03
His-440 M+3 0.038 1.244E-03 0.032 9.731E-04 0.046 2.021E-03 0.035 8.171E-04 0.048 1.866E-03
His-440 M+4 0.006 9.074E-04 0.005 7.217E-04 0.007 5.517E-04 0.006 1.471E-03 0.009 6.396E-04
His-440 M+5 0.016 6.389E-04 0.013 3.869E-04 0.014 4.941E-04 0.012 8.099E-04 0.011 4.956E-04
His-440 M+6 0.001 2.831E-04 0.001 2.520E-04 0.001 3.943E-04 0.000 3.612E-04 0.000 1.400E-04
Ile-200 M+0 0.859 1.114E-03 0.885 9.018E-04 0.826 1.307E-03 0.864 2.857E-03 0.807 9.733E-04
Ile-200 M+1 0.038 3.968E-04 0.034 5.744E-04 0.057 1.387E-03 0.050 2.182E-03 0.075 8.657E-04
Ile-200 M+2 0.082 7.766E-04 0.065 3.457E-04 0.094 4.016E-04 0.069 6.309E-04 0.097 6.888E-04
Ile-200 M+3 0.017 2.073E-04 0.013 1.061E-04 0.019 1.738E-04 0.014 3.132E-04 0.017 3.678E-04
Ile-200 M+4 0.003 1.375E-04 0.002 6.190E-05 0.003 7.314E-05 0.002 1.139E-04 0.003 1.291E-04
Ile-200 M+5 0.001 6.075E-05 0.001 4.236E-05 0.001 5.891E-05 0.001 6.891E-05 0.001 5.338E-05
Leu-274 M+0 0.842 8.555E-04 0.875 1.677E-03 0.813 2.007E-03 0.852 5.227E-03 0.809 2.346E-03
Leu-274 M+1 0.051 1.097E-03 0.041 1.899E-03 0.068 2.039E-03 0.056 4.421E-03 0.066 1.840E-03
Leu-274 M+2 0.092 6.231E-04 0.072 7.846E-04 0.101 5.817E-04 0.077 1.007E-03 0.107 8.957E-04
Leu-274 M+3 0.010 3.020E-04 0.009 1.679E-04 0.012 1.312E-04 0.010 4.354E-04 0.013 2.845E-04
Leu-274 M+4 0.004 9.750E-05 0.004 1.787E-04 0.005 1.364E-04 0.004 8.379E-05 0.005 1.128E-04
Leu-274 M+5 0.000 1.074E-04 0.000 6.585E-05 0.001 9.298E-05 0.000 9.645E-05 0.001 7.141E-05
Lys-431 M+0 0.846 1.740E-03 0.875 3.888E-03 0.812 3.891E-03 0.853 3.967E-03 0.794 2.218E-03
Lys-431 M+1 0.046 2.254E-03 0.042 4.034E-03 0.065 3.982E-03 0.056 5.255E-03 0.081 2.019E-03
Lys-431 M+2 0.055 2.517E-03 0.044 1.603E-03 0.063 3.038E-03 0.052 3.271E-03 0.072 1.546E-03
Lys-431 M+3 0.051 1.258E-03 0.039 1.256E-03 0.056 1.139E-03 0.038 1.399E-03 0.048 7.768E-04
Lys-431 M+4 0.001 5.495E-04 0.001 1.074E-03 0.002 4.057E-04 0.001 4.545E-04 0.003 1.205E-03
Lys-431 M+5 0.002 5.656E-04 0.001 5.356E-04 0.002 5.198E-04 0.000 2.647E-04 0.001 4.245E-04
Lys-431 M+6 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00
Met-320 M+0 0.915 1.005E-01 0.933 7.293E-02 0.814 6.578E-03 0.928 7.937E-02 1.000 4.419E-08
Met-320 M+1 0.052 7.160E-02 0.041 4.511E-02 0.102 9.025E-03 0.041 4.593E-02 0.000 4.486E-08
Met-320 M+2 0.010 1.222E-02 0.015 1.610E-02 0.040 6.690E-03 0.018 2.060E-02 0.000 1.359E-08
Met-320 M+3 0.011 1.810E-02 0.007 1.206E-02 0.038 4.471E-03 0.010 1.171E-02 0.000 0.000E+00
Met-320 M+4 0.004 6.758E-03 0.002 2.926E-03 0.004 3.451E-03 0.001 1.870E-03 0.000 0.000E+00
Met-320 M+5 0.008 9.015E-03 0.001 3.268E-03 0.001 1.837E-03 0.001 1.773E-03 0.000 0.000E+00
Phe-336 M+0 0.810 3.311E-03 0.850 2.089E-03 0.770 2.718E-03 0.807 1.068E-02 0.766 1.739E-03
Phe-336 M+1 0.040 3.024E-03 0.032 1.535E-03 0.061 2.605E-03 0.058 1.027E-02 0.056 1.596E-03
Phe-336 M+2 0.046 1.835E-03 0.036 1.319E-03 0.054 1.398E-03 0.044 1.098E-03 0.060 1.062E-03
Phe-336 M+3 0.067 6.878E-04 0.053 4.226E-04 0.074 1.529E-03 0.061 1.856E-03 0.075 9.133E-04
Phe-336 M+4 0.024 7.201E-04 0.020 7.191E-04 0.027 9.748E-04 0.020 5.691E-04 0.030 3.603E-04
Phe-336 M+5 0.006 2.895E-04 0.005 3.894E-04 0.007 2.821E-04 0.006 4.702E-04 0.007 4.034E-04
Phe-336 M+6 0.004 2.618E-04 0.003 2.484E-04 0.004 2.484E-04 0.003 1.238E-04 0.005 1.960E-04
Phe-336 M+7 0.002 2.171E-04 0.001 1.332E-04 0.002 1.873E-04 0.001 2.396E-04 0.002 1.276E-04
Phe-336 M+8 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 1.141E-05
Phe-336 M+9 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00
Pro-286 M+0 0.865 1.491E-03 0.884 1.626E-03 0.834 2.155E-03 0.867 1.683E-03 0.814 1.780E-03
Pro-286 M+1 0.045 1.421E-03 0.045 1.278E-03 0.062 2.114E-03 0.057 1.881E-03 0.081 1.202E-03
Pro-286 M+2 0.065 8.713E-04 0.052 9.787E-04 0.077 1.018E-03 0.056 1.961E-03 0.080 1.978E-03
Pro-286 M+3 0.020 6.241E-04 0.015 6.414E-04 0.021 7.249E-04 0.016 6.849E-04 0.019 6.094E-04
Pro-286 M+4 0.004 5.591E-04 0.003 3.881E-04 0.004 5.576E-04 0.003 5.908E-04 0.005 2.993E-04
Pro-286 M+5 0.001 2.546E-04 0.000 3.194E-04 0.001 2.386E-04 0.000 1.980E-04 0.001 2.314E-04
Ser-390 M+0 0.926 2.752E-03 0.945 2.232E-03 0.914 2.593E-03 0.934 4.186E-03 0.907 2.597E-03
Ser-390 M+1 0.022 2.837E-03 0.013 3.392E-03 0.027 2.418E-03 0.022 4.058E-03 0.033 2.747E-03
Ser-390 M+2 0.021 1.056E-03 0.015 1.349E-03 0.023 1.067E-03 0.018 1.440E-03 0.025 8.984E-04
Ser-390 M+3 0.031 5.418E-04 0.026 3.878E-04 0.036 6.687E-04 0.026 7.491E-04 0.035 7.691E-04
Thr-404 M+0 0.868 2.713E-03 0.888 1.778E-03 0.839 2.511E-03 0.861 8.432E-03 0.819 2.286E-03
Thr-404 M+1 0.068 2.081E-03 0.063 2.445E-03 0.087 3.752E-03 0.083 1.045E-02 0.101 1.860E-03
Thr-404 M+2 0.031 1.712E-03 0.028 1.288E-03 0.038 2.383E-03 0.035 2.951E-03 0.056 1.697E-03
Thr-404 M+3 0.032 1.453E-03 0.021 4.553E-04 0.036 1.413E-03 0.020 1.148E-03 0.024 1.016E-03
Thr-404 M+4 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00
Tyr-466 M+0 0.820 4.341E-03 0.858 3.717E-03 0.779 7.490E-03 0.827 4.299E-03 0.775 3.563E-03
Tyr-466 M+1 0.033 3.134E-03 0.027 4.244E-03 0.052 5.207E-03 0.045 4.067E-03 0.046 2.948E-03
Tyr-466 M+2 0.047 1.833E-03 0.036 1.934E-03 0.055 3.081E-03 0.041 1.624E-03 0.061 2.868E-03
Tyr-466 M+3 0.062 1.067E-03 0.050 1.449E-03 0.070 1.065E-03 0.054 2.127E-03 0.070 1.017E-03
Tyr-466 M+4 0.024 9.120E-04 0.018 6.356E-04 0.028 7.953E-04 0.021 1.052E-03 0.031 9.899E-04
Tyr-466 M+5 0.007 7.686E-04 0.007 8.202E-04 0.009 9.056E-04 0.007 6.027E-04 0.010 6.855E-04
Tyr-466 M+6 0.004 4.356E-04 0.003 4.505E-04 0.005 4.586E-04 0.004 2.627E-04 0.005 4.722E-04
Tyr-466 M+7 0.001 1.486E-04 0.001 3.328E-04 0.001 1.458E-04 0.001 4.547E-04 0.002 3.671E-04
Tyr-466 M+8 0.000 4.309E-05 0.001 3.921E-04 0.000 3.580E-04 0.001 2.226E-04 0.001 9.012E-05
Tyr-466 M+9 0.001 3.107E-04 0.000 3.071E-04 0.000 3.830E-04 0.000 3.040E-04 0.000 1.836E-04
Val-288 M+0 0.885 7.441E-04 0.907 1.625E-03 0.858 2.424E-03 0.887 4.239E-03 0.852 1.627E-03
Val-288 M+1 0.013 1.049E-03 0.012 1.206E-03 0.023 2.398E-03 0.026 3.544E-03 0.023 1.715E-03
Val-288 M+2 0.052 8.292E-04 0.042 5.884E-04 0.062 8.376E-04 0.047 1.112E-03 0.066 7.956E-04
Val-288 M+3 0.045 4.637E-04 0.035 1.714E-04 0.051 3.972E-04 0.036 3.035E-04 0.052 5.016E-04
Val-288 M+4 0.001 2.030E-04 0.001 1.200E-04 0.002 1.872E-04 0.001 1.739E-04 0.002 3.099E-04
Val-288 M+5 0.004 1.756E-04 0.003 9.497E-05 0.005 1.374E-04 0.003 1.761E-04 0.005 1.294E-04
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A.2.4. Metabolic Model Used for the Software 13CFlux2

An exemplary model for the analysis of 13C labeling data is provided below. All required
“.fml” files were generated using a Matlab script. All calculations were performed with the
software 13CFlux2 [155]. 13CFlux2 is a Linux-based software, which is operated via the
terminal command line. 13CFlux2 offers a great variety of functions. In this work, the
software was used to calculate the intracellular flux distribution best matching experiment-
ally determined exchange rates and labeling data. Five different 13CFlux2 functions were
used to estimate flux distributions. First, the “.fml” file must be signed using the function
fmlsign . The resulting file is then initialized using the function sscanner , which chooses
a set of free fluxes and initialize the flux values with the analytical center of the specified
constraints (exchange and growth rates). In a third step, the function ssampler is used
to sample uniformly distributed, random flux distributions from the stoichiometry of the
metabolic network given in the “.fml” file. Each sampled flux distribution is used as a start-
ing point for the optimization problem which is performed by the function multifitfluxes.
For each flux distribution, multifitfluxes generates a “.fwdsim” file, which contains the
fitted flux distribution. Finally, the function collectfitdata is used for collecting together
the results from multiple “.fwdsim” files into a single HDF5 file. Further analysis of the
fitted flux distributions is performed in Matlab using the generated HDF5 file. The pro-
cess described above was fully automatized using a series of python scripts and Matlab
workflows.

1 <?xml ve r s i on=" 1 .0 " encoding="utf−8"?>
2 <fluxml xmlns=" ht tp : //www.13 c f l ux . net / f luxml "><in f o><s igna tu r e>ICaVRZF1HhE6iJcMsbD7Xoj3+

GnQWeQkjZD6N9Cgwj+NjEGi9bHLJMxC4RF+6qQaVwhZru4bFW3s4/
B1R8Xhn1CPGR4Yjf6OIck9fogptEEN6NRmO4JVdgPNBrkyKNCG7y0VrlW/DEopJZiwNG/
XBNPKM6aH1IkYtVXxgbRnIestwpQ/d2UUfe9ESe4A7UIKrKqVVPeio5zsb1CEhbcA/
QDWgpwwY0P86PuU4tpEnvAFK4apMNEAX2zSiPrTMcN7bXdidY7lzZk2Kia+UkMOf766wf/XUj+4
tgapeRLLqHO9KCj3BBqVMbhD2ksWr4QMrvuAppIS3qA4RV2otf4dMQ==</ s i gna tu r e></ in f o>

3 <react ionnetwork>
4 <metabo l i t epoo l s>
5 <pool atoms="5" id="glu_DASH_L_c"/>
6 <pool atoms="3" id="pyr_c"/>
7 <pool atoms="4" id="succoa_c"/>
8 <pool id="atp_c"/>
9 <pool atoms="4" id="asp_DASH_L_c"/>

10 <pool id="nadph_c"/>
11 <pool atoms="7" id="26dap_DASH_M_c"/>
12 <pool atoms="4" id="succ_c"/>
13 <pool atoms="5" id="akg_c"/>
14 <pool atoms="6" id=" cit_c "/>
15 <pool atoms="6" id=" i c i t_c "/>
16 <pool id="nadh_c"/>
17 <pool atoms="1" id="co2_c"/>
18 <pool atoms="3" id="ala_DASH_L_c"/>
19 <pool atoms="5" id="gln_DASH_L_c"/>
20 <pool atoms="2" id="accoa_c"/>
21 <pool atoms="2" id="ac_c"/>
22 <pool atoms="6" id="arg_DASH_L_c"/>
23 <pool atoms="4" id="fum_c"/>
24 <pool id="nh4_c"/>
25 <pool atoms="4" id="asn_DASH_L_c"/>
26 <pool atoms="4" id="oaa_c"/>
27 <pool atoms="6" id="lys_DASH_L_c"/>
28 <pool atoms="6" id="2ddg6p_c"/>
29 <pool atoms="3" id="g3p_c"/>
30 <pool atoms="6" id="6pgc_c"/>
31 <pool atoms="1" id="co2_c_unlabeled"/>
32 <pool atoms="6" id="glc_DASH_D_e_ext"/>
33 <pool atoms="6" id="glc_DASH_D_e"/>
34 <pool id="nh4_c_ext"/>
35 <pool id="o2_c_ext"/>
36 <pool id="o2_c"/>
37 <pool id="so4_c_ext"/>
38 <pool id="so4_c"/>
39 <pool id="fadh2_c"/>
40 <pool atoms="6" id="fdp_c"/>
41 <pool atoms="3" id="dhap_c"/>
42 <pool atoms="4" id="mal_DASH_L_c"/>
43 <pool atoms="6" id="g6p_c"/>
44 <pool atoms="3" id="3pg_c"/>
45 <pool atoms="3" id="ser_DASH_L_c"/>
46 <pool atoms="2" id="gly_c"/>
47 <pool atoms="1" id="mlthf_c"/>
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48 <pool atoms="3" id="pep_c"/>
49 <pool atoms="6" id="glc_DASH_D_c"/>
50 <pool atoms="5" id="ru5p_DASH_D_c"/>
51 <pool atoms="1" id="10 fthf_c "/>
52 <pool atoms="5" id="prpp_c"/>
53 <pool atoms="6" id="his_DASH_L_c"/>
54 <pool atoms="2" id="glx_c"/>
55 <pool atoms="4" id="thr_DASH_L_c"/>
56 <pool atoms="6" id="ile_DASH_L_c"/>
57 <pool atoms="6" id="leu_DASH_L_c"/>
58 <pool atoms="1" id="methf_c"/>
59 <pool atoms="3" id="cys_DASH_L_c"/>
60 <pool atoms="5" id="met_DASH_L_c"/>
61 <pool atoms="6" id="f6p_c"/>
62 <pool atoms="4" id="e4p_c"/>
63 <pool atoms="9" id="phe_DASH_L_c"/>
64 <pool atoms="5" id="pro_DASH_L_c"/>
65 <pool atoms="5" id="r5p_c"/>
66 <pool atoms="5" id="xu5p_DASH_D_c"/>
67 <pool atoms="7" id="s7p_c"/>
68 <pool atoms="3" id="TA_C3_c"/>
69 <pool atoms="2" id="TK_C2_c"/>
70 <pool atoms="11" id="trp_DASH_L_c"/>
71 <pool atoms="9" id="tyr_DASH_L_c"/>
72 <pool atoms="5" id="val_DASH_L_c"/>
73 <pool atoms="6" id="glcU"/>
74 <pool atoms="6" id=" g l c0 "/>
75 <pool atoms="5" id="Xylose "/>
76 <pool atoms="5" id="Xylose_c"/>
77 </ metabo l i t epoo l s>
78 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="26dap_DASH_MSYN">
79 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
80 <reduct c f g="C#1@2 C#2@2 C#3@2" id="pyr_c"/>
81 <reduct c f g="C#1@3 C#2@3 C#3@3 C#4@3" id="succoa_c"/>
82 <reduct id="atp_c"/>
83 <reduct c f g="C#1@4 C#2@4 C#3@4 C#4@4" id="asp_DASH_L_c"/>
84 <reduct id="nadph_c"/>
85 <reduct id="nadph_c"/>
86 <rproduct c f g="C#1@4 C#2@4 C#3@4 C#4@4 C#3@2 C#2@2 C#1@2" id="26dap_DASH_M_c"/>
87 <rproduct c f g="C#1@3 C#2@3 C#3@3 C#4@3" id="succ_c"/>
88 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
89 </ r ea c t i on>
90 <rea c t i on b i d i r e c t i o n a l=" true " id="ACONTa_ACONTb">
91 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id=" cit_c "/>
92 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id=" i c i t_c "/>
93 </ r ea c t i on>
94 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="AKGDH">
95 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
96 <rproduct id="nadh_c"/>
97 <rproduct c f g="C#2@1 C#3@1 C#4@1 C#5@1" id="succoa_c"/>
98 <rproduct c f g="C#1@1" id="co2_c"/>
99 </ r ea c t i on>

100 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ALATA_L">
101 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
102 <reduct c f g="C#1@2 C#2@2 C#3@2" id="pyr_c"/>
103 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
104 <rproduct c f g="C#1@2 C#2@2 C#3@2" id="ala_DASH_L_c"/>
105 </ r ea c t i on>
106 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ArgSYN">
107 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
108 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="gln_DASH_L_c"/>
109 <reduct c f g="C#1@3" id="co2_c"/>
110 <reduct id="atp_c"/>
111 <reduct id="atp_c"/>
112 <reduct id="atp_c"/>
113 <reduct id="atp_c"/>
114 <reduct id="atp_c"/>
115 <reduct id="nadph_c"/>
116 <reduct c f g="C#1@4 C#2@4" id="accoa_c"/>
117 <reduct c f g="C#1@5 C#2@5 C#3@5 C#4@5" id="asp_DASH_L_c"/>
118 <rproduct c f g="C#1@4 C#2@4" id="ac_c"/>
119 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#1@3" id="arg_DASH_L_c"/>
120 <rproduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="akg_c"/>
121 <rproduct c f g="C#1@5 C#2@5 C#3@5 C#4@5" id="fum_c"/>
122 </ r ea c t i on>
123 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ASNN">
124 <reduct id="atp_c"/>
125 <reduct id="atp_c"/>
126 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="asp_DASH_L_c"/>
127 <reduct id="nh4_c"/>
128 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="asn_DASH_L_c"/>
129 </ r ea c t i on>
130 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ASPTA">
131 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
132 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2" id="oaa_c"/>
133 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
134 <rproduct c f g="C#1@2 C#2@2 C#3@2 C#4@2" id="asp_DASH_L_c"/>
135 </ r ea c t i on>
136 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ATPM">
137 <reduct id="atp_c"/>
138 </ r ea c t i on>
139 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="CS">
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140 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="oaa_c"/>
141 <reduct c f g="C#1@2 C#2@2" id="accoa_c"/>
142 <rproduct c f g="C#4@1 C#3@1 C#2@1 C#2@2 C#1@2 C#1@1" id=" cit_c "/>
143 </ r ea c t i on>
144 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="DAPDC">
145 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1 C#7@1" id="26dap_DASH_M_c"/>
146 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="lys_DASH_L_c"/>
147 <rproduct c f g="C#7@1" id="co2_c"/>
148 </ r ea c t i on>
149 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EDA">
150 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="2ddg6p_c"/>
151 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="pyr_c"/>
152 <rproduct c f g="C#4@1 C#5@1 C#6@1" id="g3p_c"/>
153 </ r ea c t i on>
154 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EDD">
155 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="6pgc_c"/>
156 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="2ddg6p_c"/>
157 </ r ea c t i on>
158 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EX_ac_LPAREN_e_RPAREN_">
159 <reduct c f g="C#1@1 C#2@1" id="ac_c"/>
160 </ r ea c t i on>
161 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EX_co2_LPAREN_e_RPAREN_">
162 <reduct c f g="C#1@1" id="co2_c"/>
163 </ r ea c t i on>
164 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EX_co2_LPAREN_e_RPAREN__unlabeled">
165 <reduct c f g="C#1@1" id="co2_c_unlabeled"/>
166 <rproduct c f g="C#1@1" id="co2_c"/>
167 </ r ea c t i on>
168 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EX_glc_LPAREN_e_RPAREN_">
169 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glc_DASH_D_e_ext"/>
170 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glc_DASH_D_e"/>
171 </ r ea c t i on>
172 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EX_nh4_LPAREN_e_RPAREN_">
173 <reduct id="nh4_c_ext"/>
174 <rproduct id="nh4_c"/>
175 </ r ea c t i on>
176 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EX_o2_LPAREN_e_RPAREN_">
177 <reduct id="o2_c_ext"/>
178 <rproduct id="o2_c"/>
179 </ r ea c t i on>
180 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="EX_so4_LPAREN_e_RPAREN_">
181 <reduct id="so4_c_ext"/>
182 <rproduct id="so4_c"/>
183 </ r ea c t i on>
184 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="FADR_NADH_CYTBD_HYD_ATPS4r">
185 <reduct id="fadh2_c"/>
186 <reduct id="fadh2_c"/>
187 <reduct id="o2_c"/>
188 <rproduct id="atp_c"/>
189 <rproduct id="atp_c"/>
190 </ r ea c t i on>
191 <rea c t i on b i d i r e c t i o n a l=" true " id="FBA">
192 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="fdp_c"/>
193 <rproduct c f g="C#3@1 C#2@1 C#1@1" id="dhap_c"/>
194 <rproduct c f g="C#4@1 C#5@1 C#6@1" id="g3p_c"/>
195 </ r ea c t i on>
196 <rea c t i on b i d i r e c t i o n a l=" true " id="FUM">
197 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="fum_c"/>
198 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="mal_DASH_L_c"/>
199 </ r ea c t i on>
200 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="G6PDH2r_PGL">
201 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="g6p_c"/>
202 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="6pgc_c"/>
203 <rproduct id="nadph_c"/>
204 </ r ea c t i on>
205 <rea c t i on b i d i r e c t i o n a l=" true " id="GAPD_PGK">
206 <reduct c f g="C#1@1 C#2@1 C#3@1" id="g3p_c"/>
207 <rproduct id="nadh_c"/>
208 <rproduct id="atp_c"/>
209 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="3pg_c"/>
210 </ r ea c t i on>
211 <rea c t i on b i d i r e c t i o n a l=" true " id="GHMT2r">
212 <reduct c f g="C#1@1 C#2@1 C#3@1" id="ser_DASH_L_c"/>
213 <rproduct c f g="C#1@1 C#2@1" id="gly_c"/>
214 <rproduct c f g="C#3@1" id="mlthf_c"/>
215 </ r ea c t i on>
216 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="GLCptspp">
217 <reduct c f g="C#1@1 C#2@1 C#3@1" id="pep_c"/>
218 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2 C#6@2" id="glc_DASH_D_e"/>
219 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="pyr_c"/>
220 <rproduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2 C#6@2" id="g6p_c"/>
221 </ r ea c t i on>
222 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="GLCt2pp">
223 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glc_DASH_D_e"/>
224 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glc_DASH_D_c"/>
225 </ r ea c t i on>
226 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="GLNS">
227 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
228 <reduct id="atp_c"/>
229 <reduct id="nh4_c"/>
230 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="gln_DASH_L_c"/>
231 </ r ea c t i on>
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232 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="GluSYN">
233 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
234 <reduct id="nh4_c"/>
235 <reduct id="nadph_c"/>
236 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
237 </ r ea c t i on>
238 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="GND">
239 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="6pgc_c"/>
240 <rproduct c f g="C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="ru5p_DASH_D_c"/>
241 <rproduct c f g="C#1@1" id="co2_c"/>
242 <rproduct id="nadph_c"/>
243 </ r ea c t i on>
244 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="HEX1">
245 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glc_DASH_D_c"/>
246 <reduct id="atp_c"/>
247 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="g6p_c"/>
248 </ r ea c t i on>
249 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="HisSYN">
250 <reduct c f g="C#1@1" id="10 fthf_c "/>
251 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="prpp_c"/>
252 <reduct c f g="C#1@3 C#2@3 C#3@3 C#4@3 C#5@3" id="gln_DASH_L_c"/>
253 <reduct id="atp_c"/>
254 <reduct id="atp_c"/>
255 <reduct id="atp_c"/>
256 <reduct id="atp_c"/>
257 <reduct c f g="C#1@4 C#2@4 C#3@4 C#4@4" id="asp_DASH_L_c"/>
258 <rproduct id="nadh_c"/>
259 <rproduct id="nadh_c"/>
260 <rproduct c f g="C#5@2 C#4@2 C#3@2 C#2@2 C#1@2 C#1@1" id="his_DASH_L_c"/>
261 <rproduct c f g="C#1@3 C#2@3 C#3@3 C#4@3 C#5@3" id="akg_c"/>
262 <rproduct c f g="C#1@4 C#2@4 C#3@4 C#4@4" id="fum_c"/>
263 </ r ea c t i on>
264 <rea c t i on b i d i r e c t i o n a l=" true " id="ICDHyr">
265 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id=" i c i t_c "/>
266 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
267 <rproduct id="nadph_c"/>
268 <rproduct c f g="C#6@1" id="co2_c"/>
269 </ r ea c t i on>
270 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ICL">
271 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id=" i c i t_c "/>
272 <rproduct c f g="C#5@1 C#4@1 C#3@1 C#6@1" id="succ_c"/>
273 <rproduct c f g="C#1@1 C#2@1" id="glx_c"/>
274 </ r ea c t i on>
275 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="IleSYN">
276 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
277 <reduct c f g="C#1@2 C#2@2 C#3@2" id="pyr_c"/>
278 <reduct id="nadph_c"/>
279 <reduct c f g="C#1@3 C#2@3 C#3@3 C#4@3" id="thr_DASH_L_c"/>
280 <rproduct c f g="C#1@3 C#2@3 C#2@2 C#3@3 C#4@3 C#3@2" id="ile_DASH_L_c"/>
281 <rproduct c f g="C#1@2" id="co2_c"/>
282 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
283 <rproduct id="nh4_c"/>
284 </ r ea c t i on>
285 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="LeuSYN">
286 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
287 <reduct c f g="C#1@2 C#2@2 C#3@2" id="pyr_c"/>
288 <reduct c f g="C#1@3 C#2@3 C#3@3" id="pyr_c"/>
289 <reduct id="nadph_c"/>
290 <reduct c f g="C#1@4 C#2@4" id="accoa_c"/>
291 <rproduct id="nadh_c"/>
292 <rproduct c f g="C#1@4 C#2@4 C#2@2 C#2@3 C#3@3 C#3@2" id="leu_DASH_L_c"/>
293 <rproduct c f g="C#1@2" id="co2_c"/>
294 <rproduct c f g="C#1@3" id="co2_c"/>
295 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
296 </ r ea c t i on>
297 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="MALS">
298 <reduct c f g="C#1@1 C#2@1" id="glx_c"/>
299 <reduct c f g="C#1@2 C#2@2" id="accoa_c"/>
300 <rproduct c f g="C#1@1 C#2@1 C#2@2 C#1@2" id="mal_DASH_L_c"/>
301 </ r ea c t i on>
302 <rea c t i on b i d i r e c t i o n a l=" true " id="MDH">
303 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="mal_DASH_L_c"/>
304 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="oaa_c"/>
305 <rproduct id="nadh_c"/>
306 </ r ea c t i on>
307 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ME1">
308 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="mal_DASH_L_c"/>
309 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="pyr_c"/>
310 <rproduct c f g="C#4@1" id="co2_c"/>
311 <rproduct id="nadph_c"/>
312 </ r ea c t i on>
313 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ME2">
314 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="mal_DASH_L_c"/>
315 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="pyr_c"/>
316 <rproduct id="nadh_c"/>
317 <rproduct c f g="C#4@1" id="co2_c"/>
318 </ r ea c t i on>
319 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="MetSYN">
320 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="succoa_c"/>
321 <reduct id="atp_c"/>
322 <reduct c f g="C#1@2" id="methf_c"/>
323 <reduct c f g="C#1@3 C#2@3 C#3@3 C#4@3" id="asp_DASH_L_c"/>
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324 <reduct id="nadph_c"/>
325 <reduct id="nadph_c"/>
326 <reduct c f g="C#1@4 C#2@4 C#3@4" id="cys_DASH_L_c"/>
327 <rproduct c f g="C#1@4 C#2@4 C#3@4" id="pyr_c"/>
328 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="succ_c"/>
329 <rproduct c f g="C#1@3 C#2@3 C#3@3 C#4@3 C#1@2" id="met_DASH_L_c"/>
330 <rproduct id="nh4_c"/>
331 </ r ea c t i on>
332 <rea c t i on b i d i r e c t i o n a l=" true " id="MlthfSYN">
333 <reduct c f g="C#1@1 C#2@1" id="gly_c"/>
334 <rproduct id="nadh_c"/>
335 <rproduct c f g="C#1@1" id="co2_c"/>
336 <rproduct c f g="C#2@1" id="mlthf_c"/>
337 <rproduct id="nh4_c"/>
338 </ r ea c t i on>
339 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="MTHFC">
340 <reduct c f g="C#1@1" id="mlthf_c"/>
341 <rproduct c f g="C#1@1" id="10 fthf_c "/>
342 <rproduct id="nadph_c"/>
343 </ r ea c t i on>
344 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="MTHFD">
345 <reduct id="nadh_c"/>
346 <reduct c f g="C#1@1" id="mlthf_c"/>
347 <rproduct c f g="C#1@1" id="methf_c"/>
348 </ r ea c t i on>
349 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="NADH_CYTBD_HYD_ATPS4r">
350 <reduct id="nadh_c"/>
351 <reduct id="nadh_c"/>
352 <reduct id="o2_c"/>
353 <rproduct id="atp_c"/>
354 <rproduct id="atp_c"/>
355 <rproduct id="atp_c"/>
356 <rproduct id="atp_c"/>
357 </ r ea c t i on>
358 <rea c t i on b i d i r e c t i o n a l=" true " id="NADTRHD_THD2pp">
359 <reduct id="nadh_c"/>
360 <rproduct id="nadph_c"/>
361 </ r ea c t i on>
362 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="PDH">
363 <reduct c f g="C#1@1 C#2@1 C#3@1" id="pyr_c"/>
364 <rproduct id="nadh_c"/>
365 <rproduct c f g="C#2@1 C#3@1" id="accoa_c"/>
366 <rproduct c f g="C#1@1" id="co2_c"/>
367 </ r ea c t i on>
368 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="PFK">
369 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="f6p_c"/>
370 <reduct id="atp_c"/>
371 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="fdp_c"/>
372 </ r ea c t i on>
373 <rea c t i on b i d i r e c t i o n a l=" true " id="PGI">
374 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="g6p_c"/>
375 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="f6p_c"/>
376 </ r ea c t i on>
377 <rea c t i on b i d i r e c t i o n a l=" true " id="PGM">
378 <reduct c f g="C#1@1 C#2@1 C#3@1" id="3pg_c"/>
379 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="pep_c"/>
380 </ r ea c t i on>
381 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="PheSYN">
382 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="e4p_c"/>
383 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="glu_DASH_L_c"/>
384 <reduct id="nadph_c"/>
385 <reduct id="atp_c"/>
386 <reduct c f g="C#1@3 C#2@3 C#3@3" id="pep_c"/>
387 <reduct c f g="C#1@4 C#2@4 C#3@4" id="pep_c"/>
388 <rproduct c f g="C#1@3 C#2@3 C#3@3 C#2@4 C#3@4 C#1@1 C#2@1 C#3@1 C#4@1" id="phe_DASH_L_c"/

>
389 <rproduct c f g="C#1@4" id="co2_c"/>
390 <rproduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="akg_c"/>
391 </ r ea c t i on>
392 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="PPC">
393 <reduct c f g="C#1@1 C#2@1 C#3@1" id="pep_c"/>
394 <reduct c f g="C#1@2" id="co2_c"/>
395 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#1@2" id="oaa_c"/>
396 </ r ea c t i on>
397 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="PPCK">
398 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="oaa_c"/>
399 <reduct id="atp_c"/>
400 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="pep_c"/>
401 <rproduct c f g="C#4@1" id="co2_c"/>
402 </ r ea c t i on>
403 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ProSYN">
404 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
405 <reduct id="atp_c"/>
406 <reduct id="nadph_c"/>
407 <reduct id="nadph_c"/>
408 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="pro_DASH_L_c"/>
409 </ r ea c t i on>
410 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="PRPPS">
411 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="r5p_c"/>
412 <reduct id="atp_c"/>
413 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="prpp_c"/>
414 </ r ea c t i on>
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415 <rea c t i on b i d i r e c t i o n a l=" true " id="PTAr_ACKr_ACS">
416 <reduct c f g="C#1@1 C#2@1" id="accoa_c"/>
417 <rproduct id="atp_c"/>
418 <rproduct c f g="C#1@1 C#2@1" id="ac_c"/>
419 </ r ea c t i on>
420 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="PYK">
421 <reduct c f g="C#1@1 C#2@1 C#3@1" id="pep_c"/>
422 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="pyr_c"/>
423 <rproduct id="atp_c"/>
424 </ r ea c t i on>
425 <rea c t i on b i d i r e c t i o n a l=" true " id="RPE">
426 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="ru5p_DASH_D_c"/>
427 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="xu5p_DASH_D_c"/>
428 </ r ea c t i on>
429 <rea c t i on b i d i r e c t i o n a l=" true " id="RPI">
430 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="ru5p_DASH_D_c"/>
431 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="r5p_c"/>
432 </ r ea c t i on>
433 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="SERAT_CYSS">
434 <reduct id="atp_c"/>
435 <reduct id="atp_c"/>
436 <reduct id="atp_c"/>
437 <reduct c f g="C#1@1 C#2@1 C#3@1" id="ser_DASH_L_c"/>
438 <reduct id="so4_c"/>
439 <reduct c f g="C#1@2 C#2@2" id="accoa_c"/>
440 <reduct id="nadph_c"/>
441 <reduct id="nadph_c"/>
442 <reduct id="nadph_c"/>
443 <reduct id="nadph_c"/>
444 <rproduct c f g="C#1@2 C#2@2" id="ac_c"/>
445 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="cys_DASH_L_c"/>
446 </ r ea c t i on>
447 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="SerSYN">
448 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
449 <reduct c f g="C#1@2 C#2@2 C#3@2" id="3pg_c"/>
450 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
451 <rproduct id="nadh_c"/>
452 <rproduct c f g="C#1@2 C#2@2 C#3@2" id="ser_DASH_L_c"/>
453 </ r ea c t i on>
454 <rea c t i on b i d i r e c t i o n a l=" true " id="SUCCOAS">
455 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="succoa_c"/>
456 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="succ_c"/>
457 <rproduct id="atp_c"/>
458 </ r ea c t i on>
459 <rea c t i on b i d i r e c t i o n a l=" true " id="SUCDi">
460 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="succ_c"/>
461 <rproduct id="fadh2_c"/>
462 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="fum_c"/>
463 </ r ea c t i on>
464 <rea c t i on b i d i r e c t i o n a l=" true " id="TALA">
465 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1 C#7@1" id="s7p_c"/>
466 <rproduct c f g="C#4@1 C#5@1 C#6@1 C#7@1" id="e4p_c"/>
467 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="TA_C3_c"/>
468 </ r ea c t i on>
469 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="THRD_GLYAT">
470 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="thr_DASH_L_c"/>
471 <rproduct id="nadh_c"/>
472 <rproduct c f g="C#1@1 C#2@1" id="gly_c"/>
473 <rproduct c f g="C#3@1 C#4@1" id="accoa_c"/>
474 </ r ea c t i on>
475 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ThrSYN">
476 <reduct id="atp_c"/>
477 <reduct id="atp_c"/>
478 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="asp_DASH_L_c"/>
479 <reduct id="nadph_c"/>
480 <reduct id="nadph_c"/>
481 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="thr_DASH_L_c"/>
482 </ r ea c t i on>
483 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="TKT1a">
484 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1 C#7@1" id="s7p_c"/>
485 <rproduct c f g="C#1@1 C#2@1" id="TK_C2_c"/>
486 <rproduct c f g="C#3@1 C#4@1 C#5@1 C#6@1 C#7@1" id="r5p_c"/>
487 </ r ea c t i on>
488 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="TKT1a1">
489 <reduct c f g="C#1@1 C#2@1" id="TK_C2_c"/>
490 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="r5p_c"/>
491 <rproduct c f g="C#1@1 C#2@1 C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="s7p_c"/>
492 </ r ea c t i on>
493 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="TKT1b">
494 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="f6p_c"/>
495 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="TA_C3_c"/>
496 <rproduct c f g="C#4@1 C#5@1 C#6@1" id="g3p_c"/>
497 </ r ea c t i on>
498 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="TKT1b1">
499 <reduct c f g="C#1@1 C#2@1 C#3@1" id="TA_C3_c"/>
500 <reduct c f g="C#1@2 C#2@2 C#3@2" id="g3p_c"/>
501 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#1@2 C#2@2 C#3@2" id="f6p_c"/>
502 </ r ea c t i on>
503 <rea c t i on b i d i r e c t i o n a l=" true " id="TKT2a">
504 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="xu5p_DASH_D_c"/>
505 <rproduct c f g="C#1@1 C#2@1" id="TK_C2_c"/>
506 <rproduct c f g="C#3@1 C#4@1 C#5@1" id="g3p_c"/>
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507 </ r ea c t i on>
508 <rea c t i on b i d i r e c t i o n a l=" true " id="TKT2b">
509 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="f6p_c"/>
510 <rproduct c f g="C#3@1 C#4@1 C#5@1 C#6@1" id="e4p_c"/>
511 <rproduct c f g="C#1@1 C#2@1" id="TK_C2_c"/>
512 </ r ea c t i on>
513 <rea c t i on b i d i r e c t i o n a l=" true " id="TPI">
514 <reduct c f g="C#1@1 C#2@1 C#3@1" id="dhap_c"/>
515 <rproduct c f g="C#1@1 C#2@1 C#3@1" id="g3p_c"/>
516 </ r ea c t i on>
517 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="TrpSYN">
518 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="e4p_c"/>
519 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="gln_DASH_L_c"/>
520 <reduct id="nadph_c"/>
521 <reduct c f g="C#1@3 C#2@3 C#3@3 C#4@3 C#5@3" id="r5p_c"/>
522 <reduct id="atp_c"/>
523 <reduct id="atp_c"/>
524 <reduct id="atp_c"/>
525 <reduct c f g="C#1@4 C#2@4 C#3@4" id="ser_DASH_L_c"/>
526 <reduct c f g="C#1@5 C#2@5 C#3@5" id="pep_c"/>
527 <reduct c f g="C#1@6 C#2@6 C#3@6" id="pep_c"/>
528 <rproduct c f g="C#1@6 C#2@6 C#3@6" id="pyr_c"/>
529 <rproduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="glu_DASH_L_c"/>
530 <rproduct c f g="C#3@3 C#4@3 C#5@3" id="g3p_c"/>
531 <rproduct c f g="C#1@5" id="co2_c"/>
532 <rproduct c f g="C#1@4 C#2@4 C#3@4 C#2@3 C#1@3 C#3@5 C#1@1 C#2@1 C#3@1 C#4@1 C#2@5" id="

trp_DASH_L_c"/>
533 </ r ea c t i on>
534 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="TyrSYN">
535 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1" id="e4p_c"/>
536 <reduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="glu_DASH_L_c"/>
537 <reduct id="nadph_c"/>
538 <reduct id="atp_c"/>
539 <reduct c f g="C#1@3 C#2@3 C#3@3" id="pep_c"/>
540 <reduct c f g="C#1@4 C#2@4 C#3@4" id="pep_c"/>
541 <rproduct id="nadh_c"/>
542 <rproduct c f g="C#1@3 C#2@3 C#3@3 C#2@4 C#3@4 C#1@1 C#2@1 C#3@1 C#4@1" id="tyr_DASH_L_c"/

>
543 <rproduct c f g="C#1@4" id="co2_c"/>
544 <rproduct c f g="C#1@2 C#2@2 C#3@2 C#4@2 C#5@2" id="akg_c"/>
545 </ r ea c t i on>
546 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="ValSYN">
547 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="glu_DASH_L_c"/>
548 <reduct c f g="C#1@2 C#2@2 C#3@2" id="pyr_c"/>
549 <reduct c f g="C#1@3 C#2@3 C#3@3" id="pyr_c"/>
550 <reduct id="nadph_c"/>
551 <rproduct c f g="C#1@3" id="co2_c"/>
552 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="akg_c"/>
553 <rproduct c f g="C#1@2 C#2@2 C#3@2 C#2@3 C#3@3" id="val_DASH_L_c"/>
554 </ r ea c t i on>
555 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="uptU">
556 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glcU"/>
557 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glc_DASH_D_e_ext"/>
558 </ r ea c t i on>
559 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="upt0">
560 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id=" g l c0 "/>
561 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1" id="glc_DASH_D_e_ext"/>
562 </ r ea c t i on>
563 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id="Pentose_Uptake">
564 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="Xylose "/>
565 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="Xylose_c"/>
566 </ r ea c t i on>
567 <rea c t i on b i d i r e c t i o n a l=" f a l s e " id=" Xylu lok inase ">
568 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="Xylose_c"/>
569 <reduct id="atp_c"/>
570 <rproduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1" id="xu5p_DASH_D_c"/>
571 </ r ea c t i on>
572 <rea c t i on id="BM_phe_DASH_L_c">
573 <reduct c f g="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1 C#6@1 C#7@1 C#8@1 C#9@1" id="phe_DASH_L_c"/>
574 </ r ea c t i on>
575 <rea c t i on id="BM_mlthf_c">
576 <reduct c f g="C#1@2" id="mlthf_c"/>
577 </ r ea c t i on>
578 <rea c t i on id="BM_oaa_c">
579 <reduct c f g="C#1@3 C#2@3 C#3@3 C#4@3" id="oaa_c"/>
580 </ r ea c t i on>
581 <rea c t i on id="BM_lys_DASH_L_c">
582 <reduct c f g="C#1@4 C#2@4 C#3@4 C#4@4 C#5@4 C#6@4" id="lys_DASH_L_c"/>
583 </ r ea c t i on>
584 <rea c t i on id="BM_atp_c">
585 <reduct id="atp_c"/>
586 </ r ea c t i on>
587 <rea c t i on id="BM_ser_DASH_L_c">
588 <reduct c f g="C#1@5 C#2@5 C#3@5" id="ser_DASH_L_c"/>
589 </ r ea c t i on>
590 <rea c t i on id="BM_g3p_c">
591 <reduct c f g="C#1@6 C#2@6 C#3@6" id="g3p_c"/>
592 </ r ea c t i on>
593 <rea c t i on id="BM_tyr_DASH_L_c">
594 <reduct c f g="C#1@7 C#2@7 C#3@7 C#4@7 C#5@7 C#6@7 C#7@7 C#8@7 C#9@7" id="tyr_DASH_L_c"/>
595 </ r ea c t i on>
596 <rea c t i on id="BM_pep_c">
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597 <reduct c f g="C#1@8 C#2@8 C#3@8" id="pep_c"/>
598 </ r ea c t i on>
599 <rea c t i on id="BM_met_DASH_L_c">
600 <reduct c f g="C#1@9 C#2@9 C#3@9 C#4@9 C#5@9" id="met_DASH_L_c"/>
601 </ r ea c t i on>
602 <rea c t i on id="BM_g6p_c">
603 <reduct c f g="C#1@10 C#2@10 C#3@10 C#4@10 C#5@10 C#6@10" id="g6p_c"/>
604 </ r ea c t i on>
605 <rea c t i on id="BM_akg_c">
606 <reduct c f g="C#1@11 C#2@11 C#3@11 C#4@11 C#5@11" id="akg_c"/>
607 </ r ea c t i on>
608 <rea c t i on id="BM_glu_DASH_L_c">
609 <reduct c f g="C#1@12 C#2@12 C#3@12 C#4@12 C#5@12" id="glu_DASH_L_c"/>
610 </ r ea c t i on>
611 <rea c t i on id="BM_gln_DASH_L_c">
612 <reduct c f g="C#1@13 C#2@13 C#3@13 C#4@13 C#5@13" id="gln_DASH_L_c"/>
613 </ r ea c t i on>
614 <rea c t i on id="BM_r5p_c">
615 <reduct c f g="C#1@14 C#2@14 C#3@14 C#4@14 C#5@14" id="r5p_c"/>
616 </ r ea c t i on>
617 <rea c t i on id="BM_f6p_c">
618 <reduct c f g="C#1@15 C#2@15 C#3@15 C#4@15 C#5@15 C#6@15" id="f6p_c"/>
619 </ r ea c t i on>
620 <rea c t i on id="BM_pyr_c">
621 <reduct c f g="C#1@16 C#2@16 C#3@16" id="pyr_c"/>
622 </ r ea c t i on>
623 <rea c t i on id="BM_gly_c">
624 <reduct c f g="C#1@17 C#2@17" id="gly_c"/>
625 </ r ea c t i on>
626 <rea c t i on id="BM_thr_DASH_L_c">
627 <reduct c f g="C#1@18 C#2@18 C#3@18 C#4@18" id="thr_DASH_L_c"/>
628 </ r ea c t i on>
629 <rea c t i on id="BM_asp_DASH_L_c">
630 <reduct c f g="C#1@19 C#2@19 C#3@19 C#4@19" id="asp_DASH_L_c"/>
631 </ r ea c t i on>
632 <rea c t i on id="BM_nadph_c">
633 <reduct id="nadph_c"/>
634 </ r ea c t i on>
635 <rea c t i on id="BM_cys_DASH_L_c">
636 <reduct c f g="C#1@20 C#2@20 C#3@20" id="cys_DASH_L_c"/>
637 </ r ea c t i on>
638 <rea c t i on id="BM_3pg_c">
639 <reduct c f g="C#1@21 C#2@21 C#3@21" id="3pg_c"/>
640 </ r ea c t i on>
641 <rea c t i on id="BM_val_DASH_L_c">
642 <reduct c f g="C#1@22 C#2@22 C#3@22 C#4@22 C#5@22" id="val_DASH_L_c"/>
643 </ r ea c t i on>
644 <rea c t i on id="BM_ala_DASH_L_c">
645 <reduct c f g="C#1@23 C#2@23 C#3@23" id="ala_DASH_L_c"/>
646 </ r ea c t i on>
647 <rea c t i on id="BM_ile_DASH_L_c">
648 <reduct c f g="C#1@24 C#2@24 C#3@24 C#4@24 C#5@24 C#6@24" id="ile_DASH_L_c"/>
649 </ r ea c t i on>
650 <rea c t i on id="BM_asn_DASH_L_c">
651 <reduct c f g="C#1@25 C#2@25 C#3@25 C#4@25" id="asn_DASH_L_c"/>
652 </ r ea c t i on>
653 <rea c t i on id="BM_his_DASH_L_c">
654 <reduct c f g="C#1@26 C#2@26 C#3@26 C#4@26 C#5@26 C#6@26" id="his_DASH_L_c"/>
655 </ r ea c t i on>
656 <rea c t i on id="BM_leu_DASH_L_c">
657 <reduct c f g="C#1@27 C#2@27 C#3@27 C#4@27 C#5@27 C#6@27" id="leu_DASH_L_c"/>
658 </ r ea c t i on>
659 <rea c t i on id="BM_accoa_c">
660 <reduct c f g="C#1@28 C#2@28" id="accoa_c"/>
661 </ r ea c t i on>
662 <rea c t i on id="BM_arg_DASH_L_c">
663 <reduct c f g="C#1@29 C#2@29 C#3@29 C#4@29 C#5@29 C#6@29" id="arg_DASH_L_c"/>
664 </ r ea c t i on>
665 <rea c t i on id="BM_pro_DASH_L_c">
666 <reduct c f g="C#1@30 C#2@30 C#3@30 C#4@30 C#5@30" id="pro_DASH_L_c"/>
667 </ r ea c t i on>
668 <rea c t i on id="BM_trp_DASH_L_c">
669 <reduct c f g="C#1@31 C#2@31 C#3@31 C#4@31 C#5@31 C#6@31 C#7@31 C#8@31 C#9@31 C#10@31 C#11

@31" id="trp_DASH_L_c"/>
670 </ r ea c t i on>
671 </ react ionnetwork>
672 <con s t r a i n t s>
673 <net>
674 <tex tua l>BM_phe_DASH_L_c=0.0882992;BM_mlthf_c=0.2222531;BM_oaa_c=0.170578;

BM_lys_DASH_L_c=0.1635542;BM_atp_c=16.6800199;BM_ser_DASH_L_c=0.1028485;BM_g3p_c=0.0647193;
BM_tyr_DASH_L_c=0.0657227;BM_pep_c=0.0255867;BM_met_DASH_L_c=0.0732482;BM_g6p_c=0.1028485;
BM_akg_c=0.0436479;BM_glu_DASH_L_c=0.125425;BM_gln_DASH_L_c=0.125425;BM_r5p_c=0.3782818;
BM_f6p_c=0.0356207;BM_pyr_c=0.0416411;BM_gly_c=0.2919894;BM_thr_DASH_L_c=0.1209097;
BM_asp_DASH_L_c=0.1148893;BM_nadph_c=2.6906171;BM_cys_DASH_L_c=0.0436479;BM_3pg_c=0.3105523;
BM_val_DASH_L_c=0.2016834;BM_ala_DASH_L_c=0.2448296;BM_ile_DASH_L_c=0.1384692;
BM_asn_DASH_L_c=0.1148893;BM_his_DASH_L_c=0.045153;BM_leu_DASH_L_c=0.2147276;BM_accoa_c
=1.259267;BM_arg_DASH_L_c=0.1409777;BM_pro_DASH_L_c=0.105357;BM_trp_DASH_L_c=0.0270918;
EX_co2_LPAREN_e_RPAREN__unlabeled &l t ;=20</ tex tua l>

675 </net>
676 <xch>
677 <tex tua l />
678 </xch>
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679 </ con s t r a i n t s>
680 <con f i gu r a t i on name=" de f au l t ">
681 <comment>Eine Belegung bla bla</comment>
682 <input pool=" g l c0 " type=" isotopomer ">
683 <l ab e l c f g="110111">0.0016</ l a b e l>
684 <l ab e l c f g="011111">0.0016</ l a b e l>
685 <l ab e l c f g="101111">0.0016</ l a b e l>
686 <l ab e l c f g="111101">0.0016</ l a b e l>
687 <l ab e l c f g="111111">0.9904</ l a b e l>
688 <l ab e l c f g="111110">0.0016</ l a b e l>
689 <l ab e l c f g="111011">0.0016</ l a b e l>
690 </ input>
691 <input pool="glcU" type=" isotopomer ">
692 <l ab e l c f g="000100">0.0107</ l a b e l>
693 <l ab e l c f g="000000">0.9358</ l a b e l>
694 <l ab e l c f g="000001">0.0107</ l a b e l>
695 <l ab e l c f g="000010">0.0107</ l a b e l>
696 <l ab e l c f g="001000">0.0107</ l a b e l>
697 <l ab e l c f g="010000">0.0107</ l a b e l>
698 <l ab e l c f g="100000">0.0107</ l a b e l>
699 </ input>
700 <input pool="Xylose " type=" isotopomer ">
701 <l ab e l c f g="00000">0.9462</ l a b e l>
702 <l ab e l c f g="10000">0.01076</ l a b e l>
703 <l ab e l c f g="01000">0.01076</ l a b e l>
704 <l ab e l c f g="00100">0.01076</ l a b e l>
705 <l ab e l c f g="00010">0.01076</ l a b e l>
706 <l ab e l c f g="00001">0.01076</ l a b e l>
707 </ input>
708 <input pool="co2_c_unlabeled" type=" isotopomer ">
709 <l ab e l c f g="0">0.989</ l a b e l>
710 <l ab e l c f g="1">0.011</ l a b e l>
711 </ input>
712 <input pool="so4_c_ext"/>
713 <input pool="nh4_c_ext"/>
714 <input pool="o2_c_ext"/>
715 <measurement>
716 <model>
717 <label ingmeasurement>
718 <group id="ms_group_1" s c a l e="auto">
719 <tex tua l>ala_DASH_L_c[1 ,2 ,3 ]#M0,1 , 2 , 3</ tex tua l>
720 </group>
721 <group id="ms_group_2" s c a l e="auto">
722 <tex tua l>asp_DASH_L_c[1 ,2 ,3 ,4 ]#M0,1 , 2 , 3 , 4</ tex tua l>
723 </group>
724 <group id="ms_group_3" s c a l e="auto">
725 <tex tua l>glu_DASH_L_c[1 ,2 ,3 ,4 ,5 ]#M0,1 , 2 , 3 , 4 , 5</ tex tua l>
726 </group>
727 <group id="ms_group_4" s c a l e="auto">
728 <tex tua l>gly_c [1 ,2 ]#M0,1 , 2</ tex tua l>
729 </group>
730 <group id="ms_group_5" s c a l e="auto">
731 <tex tua l>his_DASH_L_c[1 ,2 ,3 ,4 ,5 ,6 ]#M0,1 , 2 , 3 , 4 , 5 , 6</ tex tua l>
732 </group>
733 <group id="ms_group_6" s c a l e="auto">
734 <tex tua l>ile_DASH_L_c[2 ,3 ,4 ,5 ,6 ]#M0,1 , 2 , 3 , 4 , 5</ tex tua l>
735 </group>
736 <group id="ms_group_7" s c a l e="auto">
737 <tex tua l>leu_DASH_L_c[2 ,3 ,4 ,5 ,6 ]#M0,1 , 2 , 3 , 4 , 5</ tex tua l>
738 </group>
739 <group id="ms_group_8" s c a l e="auto">
740 <tex tua l>lys_DASH_L_c[1 ,2 ,3 ,4 ,5 ,6 ]#M0,1 , 2 , 3 , 4 , 5 , 6</ tex tua l>
741 </group>
742 <group id="ms_group_9" s c a l e="auto">
743 <tex tua l>met_DASH_L_c[1 ,2 ,3 ,4 ,5 ]#M0,1 , 2 , 3 , 4 , 5</ tex tua l>
744 </group>
745 <group id="ms_group_10" s c a l e="auto">
746 <tex tua l>phe_DASH_L_c[1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]#M0,1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9</ tex tua l>
747 </group>
748 <group id="ms_group_11" s c a l e="auto">
749 <tex tua l>pro_DASH_L_c[1 ,2 ,3 ,4 ,5 ]#M0,1 , 2 , 3 , 4 , 5</ tex tua l>
750 </group>
751 <group id="ms_group_12" s c a l e="auto">
752 <tex tua l>ser_DASH_L_c[1 ,2 ,3 ]#M0,1 , 2 , 3</ tex tua l>
753 </group>
754 <group id="ms_group_13" s c a l e="auto">
755 <tex tua l>thr_DASH_L_c[1 ,2 ,3 ,4 ]#M0,1 , 2 , 3 , 4</ tex tua l>
756 </group>
757 <group id="ms_group_14" s c a l e="auto">
758 <tex tua l>tyr_DASH_L_c[1 ,2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]#M0,1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9</ tex tua l>
759 </group>
760 <group id="ms_group_15" s c a l e="auto">
761 <tex tua l>val_DASH_L_c[1 ,2 ,3 ,4 ,5 ]#M0,1 , 2 , 3 , 4 , 5</ tex tua l>
762 </group>
763 </ label ingmeasurement>
764 <fluxmeasurement>
765 <ne t f l ux id="fm_Glucose">
766 <tex tua l>EX_glc_LPAREN_e_RPAREN_</ tex tua l>
767 </ ne t f l ux>
768 <ne t f l ux id="fm_Xylose">
769 <tex tua l>Pentose_Uptake</ tex tua l>
770 </ ne t f l ux>
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771 </ fluxmeasurement>
772 </model>
773 <data>
774 <datum id="fm_Glucose" stddev=" 0.2552 ">5.8296</datum>
775 <datum id="fm_Xylose" stddev=" 0.48 ">2.277</datum>
776 <datum id="ms_group_1" stddev=" 0.0098765 " weight="0">0.8623</datum>
777 <datum id="ms_group_1" stddev="0.00092696 " weight="1">0.015</datum>
778 <datum id="ms_group_1" stddev=" 0.0009844 " weight="2">0.0123</datum>
779 <datum id="ms_group_1" stddev=" 0.0079651 " weight="3">0.1105</datum>
780 <datum id="ms_group_2" stddev=" 0.0082325 " weight="0">0.7323</datum>
781 <datum id="ms_group_2" stddev=" 0.0017888 " weight="1">0.1086</datum>
782 <datum id="ms_group_2" stddev=" 0.0024468 " weight="2">0.0894</datum>
783 <datum id="ms_group_2" stddev=" 0.002975 " weight="3">0.0586</datum>
784 <datum id="ms_group_2" stddev=" 0.0010218 " weight="4">0.0111</datum>
785 <datum id="ms_group_3" stddev=" 0.0083226 " weight="0">0.6666</datum>
786 <datum id="ms_group_3" stddev=" 0.0034515 " weight="1">0.1053</datum>
787 <datum id="ms_group_3" stddev=" 0.0028649 " weight="2">0.1687</datum>
788 <datum id="ms_group_3" stddev=" 0.0017457 " weight="3">0.0432</datum>
789 <datum id="ms_group_3" stddev="0.00014063 " weight="4">0.0118</datum>
790 <datum id="ms_group_3" stddev="0.00040113 " weight="5">0.0045</datum>
791 <datum id="ms_group_4" stddev=" 0.0076784 " weight="0">0.8572</datum>
792 <datum id="ms_group_4" stddev="0.00088828 " weight="1">0.0243</datum>
793 <datum id="ms_group_4" stddev=" 0.0067902 " weight="2">0.1185</datum>
794 <datum id="ms_group_5" stddev=" 0.020841 " weight="0">0.7336</datum>
795 <datum id="ms_group_5" stddev=" 0.007452 " weight="1">0.1165</datum>
796 <datum id="ms_group_5" stddev=" 0.0040407 " weight="2">0.0376</datum>
797 <datum id="ms_group_5" stddev=" 0.0054956 " weight="3">0.0625</datum>
798 <datum id="ms_group_5" stddev="0.00064921 " weight="4">0.0124</datum>
799 <datum id="ms_group_5" stddev=" 0.003035 " weight="5">0.034</datum>
800 <datum id="ms_group_5" stddev="0.00016856 " weight="6">0.0034</datum>
801 <datum id="ms_group_6" stddev=" 0.011413 " weight="0">0.6671</datum>
802 <datum id="ms_group_6" stddev="0.00015775 " weight="1">0.1072</datum>
803 <datum id="ms_group_6" stddev=" 0.0081215 " weight="2">0.1689</datum>
804 <datum id="ms_group_6" stddev=" 0.0020657 " weight="3">0.0428</datum>
805 <datum id="ms_group_6" stddev="0.00078686 " weight="4">0.0098</datum>
806 <datum id="ms_group_6" stddev="0.00028126 " weight="5">0.0043</datum>
807 <datum id="ms_group_7" stddev=" 0.015476 " weight="0">0.6597</datum>
808 <datum id="ms_group_7" stddev=" 0.001692 " weight="1">0.1075</datum>
809 <datum id="ms_group_7" stddev=" 0.010628 " weight="2">0.1851</datum>
810 <datum id="ms_group_7" stddev=" 0.0019916 " weight="3">0.0306</datum>
811 <datum id="ms_group_7" stddev="0.00085108 " weight="4">0.0147</datum>
812 <datum id="ms_group_7" stddev="0.00031291 " weight="5">0.0024</datum>
813 <datum id="ms_group_8" stddev=" 0.011261 " weight="0">0.6487</datum>
814 <datum id="ms_group_8" stddev=" 0.0010794 " weight="1">0.1045</datum>
815 <datum id="ms_group_8" stddev=" 0.0035929 " weight="2">0.1243</datum>
816 <datum id="ms_group_8" stddev=" 0.0042259 " weight="3">0.0965</datum>
817 <datum id="ms_group_8" stddev=" 0.001673 " weight="4">0.016</datum>
818 <datum id="ms_group_8" stddev="0.00068325 " weight="5">0.0088</datum>
819 <datum id="ms_group_8" stddev=" 6.5616 e−06" weight="6">0.0012</datum>
820 <datum id="ms_group_9" stddev=" 0.0057048 " weight="0">0.6414</datum>
821 <datum id="ms_group_9" stddev="0.00021786 " weight="1">0.1828</datum>
822 <datum id="ms_group_9" stddev="0.00067911 " weight="2">0.0943</datum>
823 <datum id="ms_group_9" stddev=" 0.0033826 " weight="3">0.0622</datum>
824 <datum id="ms_group_9" stddev=" 0.0013483 " weight="4">0.0178</datum>
825 <datum id="ms_group_9" stddev=" 7.7032 e−05" weight="5">0.0015</datum>
826 <datum id="ms_group_10" stddev=" 0.020755 " weight="0">0.6167</datum>
827 <datum id="ms_group_10" stddev=" 0.0018601 " weight="1">0.0558</datum>
828 <datum id="ms_group_10" stddev=" 0.0053606 " weight="2">0.0902</datum>
829 <datum id="ms_group_10" stddev=" 0.0074037 " weight="3">0.1525</datum>
830 <datum id="ms_group_10" stddev=" 0.0027818 " weight="4">0.0406</datum>
831 <datum id="ms_group_10" stddev=" 0.0018944 " weight="5">0.0224</datum>
832 <datum id="ms_group_10" stddev="0.00071459 " weight="6">0.0145</datum>
833 <datum id="ms_group_10" stddev="0.00047423 " weight="7">0.0061</datum>
834 <datum id="ms_group_10" stddev="0.00012597 " weight="8">0.0008</datum>
835 <datum id="ms_group_10" stddev="0.00013908 " weight="9">0.0003</datum>
836 <datum id="ms_group_11" stddev=" 0.0068072 " weight="0">0.6718</datum>
837 <datum id="ms_group_11" stddev=" 0.0014376 " weight="1">0.1094</datum>
838 <datum id="ms_group_11" stddev=" 0.0031831 " weight="2">0.1562</datum>
839 <datum id="ms_group_11" stddev=" 0.0013378 " weight="3">0.0445</datum>
840 <datum id="ms_group_11" stddev="0.00053207 " weight="4">0.0138</datum>
841 <datum id="ms_group_11" stddev="0.00031655 " weight="5">0.0044</datum>
842 <datum id="ms_group_12" stddev=" 0.0073209 " weight="0">0.8249</datum>
843 <datum id="ms_group_12" stddev="0.00059233 " weight="1">0.0503</datum>
844 <datum id="ms_group_12" stddev="0.00095619 " weight="2">0.05</datum>
845 <datum id="ms_group_12" stddev=" 0.0057724 " weight="3">0.0748</datum>
846 <datum id="ms_group_13" stddev=" 0.0064421 " weight="0">0.7055</datum>
847 <datum id="ms_group_13" stddev="0.00033316 " weight="1">0.1371</datum>
848 <datum id="ms_group_13" stddev=" 0.0021757 " weight="2">0.0856</datum>
849 <datum id="ms_group_13" stddev=" 0.0038007 " weight="3">0.0661</datum>
850 <datum id="ms_group_13" stddev="0.00079882 " weight="4">0.0057</datum>
851 <datum id="ms_group_14" stddev=" 0.026183 " weight="0">0.632</datum>
852 <datum id="ms_group_14" stddev=" 0.0036002 " weight="1">0.0422</datum>
853 <datum id="ms_group_14" stddev=" 0.0067108 " weight="2">0.1012</datum>
854 <datum id="ms_group_14" stddev=" 0.0077757 " weight="3">0.1343</datum>
855 <datum id="ms_group_14" stddev=" 0.0048849 " weight="4">0.0439</datum>
856 <datum id="ms_group_14" stddev=" 0.0011994 " weight="5">0.0247</datum>
857 <datum id="ms_group_14" stddev="0.00091415 " weight="6">0.0145</datum>
858 <datum id="ms_group_14" stddev=" 0.0006957 " weight="7">0.0055</datum>
859 <datum id="ms_group_14" stddev="0.00012668 " weight="8">0.0016</datum>
860 <datum id="ms_group_14" stddev="0.00019422 " weight="9">0.0001</datum>
861 <datum id="ms_group_15" stddev=" 0.0076514 " weight="0">0.7464</datum>
862 <datum id="ms_group_15" stddev=" 0.001291 " weight="1">0.0185</datum>
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863 <datum id="ms_group_15" stddev=" 0.0044788 " weight="2">0.1155</datum>
864 <datum id="ms_group_15" stddev=" 0.003517 " weight="3">0.1017</datum>
865 <datum id="ms_group_15" stddev=" 0.00026097 " weight="4">0.0021</datum>
866 <datum id="ms_group_15" stddev=" 0.0006857 " weight="5">0.0158</datum>
867 </data>
868 </measurement>
869 <s imula t i on>
870 <va r i a b l e s />
871 </ s imula t i on>
872 </ con f i gu r a t i on>
873 </ f luxml>

A.2.5. Constraint-based Assessment of Taxadiene Production Potential

Table A.9 contains confidence intervals for the taxadiene export reaction, calculated using
the method described in Section 2.1.2

Table A.9.: Confidence Intervals for Taxadiene Production Flux Calculated Con-
sidering 13C Labeling Data and Exchange Rates. Minimal and maximal
production flux were calculated using an iterative approach. Taxadiene flux was increased
(or decreased) until the squared sum of residuals (SSR) surpassed a boundary defined by
the minimal SSR + 3.84. Refer to Section 2.1.2 for details. Mean taxadiene production rate
was calculated as follows: 10(log10(min)+log10(max))/2. min and max refer to the minimal and
maximal taxadiene flux, respectively.

Production Rate
[mmol/gDW h]

Production Yield
[mol/mol]

min mean max min mean max
HMS_2p 1.464× 10−7 1.824× 10−5 2.273× 10−3 3.240× 10−8 4.037× 10−6 5.030× 10−4

∆xylE_2P 1.739× 10−7 2.551× 10−5 3.741× 10−3 3.068× 10−8 4.500× 10−6 6.600× 10−4

∆xylE_1P 1.385× 10−7 2.431× 10−4 4.267× 10−1 1.629× 10−8 2.860× 10−5 5.020× 10−2

∆ptsG_2P 1.433× 10−7 2.421× 10−5 4.092× 10−3 2.528× 10−8 4.272× 10−6 7.220× 10−4

∆ptsG_1P 1.412× 10−7 7.279× 10−5 3.751× 10−2 1.977× 10−8 1.019× 10−5 5.250× 10−3

A.3. Simultaneous Utilization of D-Xylose and Glucose in
E. coli

A.3.1. Concentration Time Courses for All Strains

Concentration time courses for biomass, glucose, xylose and acetate for six different strains
are shown in Table A.10. Measurements are provided in duplicates. Table A.11 contains
experimental re-characterization of parent strains ∆ptsG Empty and HMS Empty.

A.3.2. 13C Labeling Data

13C Labeling data for the six strains used in the sugar cu-utilization studies is given in
Table A.12. Experimental data was kindly provided by Claudia Huber at Bio.
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Table A.10.: Concentration Time Courses For Six Strains
Time, [h] OD Glucose, [mmol/l] Xylose, [mmol/l] Acetate, [mmol/l]

1 2 1 2 1 2 1 2
HMS p1x

0 0.079 0.067 13.138 12.901 17.205 17.057 0.000 0.000
3 0.338 0.288 11.559 11.841 17.015 17.220 2.597 2.276
5 0.912 0.824 7.483 8.499 16.072 16.638 7.978 6.811
7 2.204 2.120 0.000 0.000 11.306 13.110 15.569 15.335

HMS p3x
0 0.088 0.092 12.928 12.895 17.201 17.096 0.000 0.000
3 0.204 0.136 11.798 12.479 16.849 17.310 1.988 1.386
5 0.474 0.232 9.884 11.877 16.179 17.197 4.351 2.807
7 1.308 0.544 4.606 0.046 14.260 0.063 9.370 1.944

∆ptsG p1x
0 0.053 0.051 12.916 12.825 17.009 17.057 0.000 0.000
3 0.156 0.152 12.415 12.549 16.692 16.694 0.930 0.959
5 0.386 0.354 11.511 11.770 15.295 15.387 3.125 2.808
7 1.048 0.980 8.906 10.034 11.063 12.359 8.606 7.348

∆ptsG p3x
0 0.082 0.079 12.817 12.772 16.654 16.593 0.000 0.000
3 0.168 0.175 12.713 12.300 16.446 15.812 1.148 1.277
5 0.352 0.378 12.308 11.820 14.766 13.920 3.267 3.747
7 0.868 0.952 11.499 10.921 10.205 8.678 7.939 9.109

HMS Empty
0 0.097 0.098 13.847 14.173 18.277 18.701 0.000 0.000
3 0.239 0.240 12.077 11.781 16.592 16.261 1.008 1.086
5 0.373 0.379 10.870 10.704 16.425 16.341 2.663 2.751
7 0.586 0.610 9.025 8.653 16.301 15.993 4.871 5.141

∆ptsG Empty
0 0.096 0.086 12.580 12.698 16.428 16.386 0.000 0.000
3 0.405 0.389 12.195 12.155 14.577 14.892 0.767 0.830
5 1.120 1.120 10.652 10.530 10.014 10.415 1.468 1.870
7 2.518 2.593 5.919 5.578 1.889 1.842 1.838 1.944

Table A.11.: Concentration Time Courses For Parent Strains: Re-measurements.
Time,

[h]
OD Glucose, [mmol/l] Xylose, [mmol/l] Acetate, [mmol/l]

1 2 3 1 2 3 1 2 3 1 2 3
HMS Empty2

0 0.107 0.111 0.109 13.222 13.197 13.106 16.681 16.719 16.419 0.000 0.000 0.000
1 0.155 0.158 0.161 – – – – – – – – –
2 0.268 0.273 0.278 – – – – – – – – –
3 0.511 0.519 0.543 10.646 10.676 10.645 15.936 16.007 15.981 2.530 2.363 2.363
4 0.921 0.935 0.934 – – – – – – – – –
5 1.464 1.424 1.520 4.220 3.784 3.950 15.508 15.356 15.378 6.406 6.340 6.541
6 2.105 2.138 2.123 – – – – – – – – –
7 2.910 2.830 3.090 0.000 0.000 0.000 5.977 5.632 5.914 8.728 8.857 10.051

∆ptsG Empty2
0 0.064 0.066 0.060 13.037 13.104 13.156 16.318 16.399 16.354 0.000 0.000 0.000
1 0.080 0.076 0.069 – – – – – – – – –
2 0.105 0.101 0.092 – – – – – – – – –
3 0.150 0.147 0.138 12.514 12.449 12.492 15.329 15.207 15.322 0.000 0.000 0.000
4 0.242 0.240 0.216 – – – – – – – – –
5 0.383 0.360 0.216 11.530 11.514 11.584 12.468 12.740 12.698 0.981 0.705 0.644
6 0.533 0.573 0.331 – – – – – – – – –
7 0.930 0.927 0.535 8.852 9.004 9.178 6.660 6.785 7.072 2.412 2.327 1.924
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Table A.12.: 13C-labeling Data for Strains Used in Sugar Co-Utilization Studies.
Labeling patterns of protein-bound amino acids was experimentally determined in duplicate
for six strains exhibiting different values for % Carbon Xylose.

Amino Acid Fragment HMS Empty ∆ptsG Empty HMS p1x HMS p3x ∆ptsG p1x ∆ptsG p3x
% σ % σ % σ % σ % σ % σ

Ala-260 M+0 0.857 4.434E-04 0.923 6.815E-04 0.862 7.822E-03 0.872 1.802E-02 0.911 2.463E-03 0.949 3.479E-03
Ala-260 M+1 0.014 4.323E-04 0.010 8.531E-04 0.015 1.615E-03 0.014 3.245E-03 0.012 1.212E-03 0.008 2.467E-03
Ala-260 M+2 0.012 1.982E-04 0.008 1.599E-04 0.012 9.147E-04 0.011 1.547E-03 0.009 8.427E-04 0.006 6.036E-04
Ala-260 M+3 0.117 2.618E-04 0.059 4.262E-04 0.110 6.218E-03 0.104 1.341E-02 0.068 1.532E-03 0.037 6.941E-04
Asp-418 M+0 0.759 2.173E-03 0.859 2.004E-03 0.732 6.553E-03 0.779 3.910E-02 0.839 6.984E-03 0.904 4.880E-03
Asp-418 M+1 0.094 1.504E-03 0.065 2.056E-03 0.109 2.235E-03 0.085 1.946E-02 0.069 5.482E-03 0.045 4.081E-03
Asp-418 M+2 0.085 1.220E-03 0.047 8.150E-04 0.089 1.916E-03 0.070 1.188E-02 0.051 1.532E-03 0.031 1.856E-03
Asp-418 M+3 0.053 4.046E-04 0.026 2.757E-04 0.059 2.413E-03 0.057 5.596E-03 0.038 6.172E-04 0.020 7.195E-04
Asp-418 M+4 0.010 1.885E-04 0.002 2.194E-04 0.011 9.798E-04 0.009 2.474E-03 0.003 4.629E-04 0.001 2.560E-04
Glu-432 M+0 0.668 9.711E-04 0.817 2.135E-03 0.667 7.060E-03 0.711 3.916E-02 0.794 6.844E-03 0.873 4.763E-03
Glu-432 M+1 0.102 1.104E-03 0.066 2.763E-03 0.105 3.219E-03 0.080 1.564E-02 0.066 3.889E-03 0.042 2.586E-03
Glu-432 M+2 0.168 7.077E-04 0.097 7.856E-04 0.169 2.894E-03 0.155 1.501E-02 0.113 2.302E-03 0.073 2.099E-03
Glu-432 M+3 0.043 3.788E-04 0.016 6.368E-04 0.043 1.735E-03 0.039 6.558E-03 0.021 1.352E-03 0.011 8.033E-04
Glu-432 M+4 0.014 4.510E-04 0.003 1.425E-04 0.012 6.841E-04 0.010 1.588E-03 0.004 4.772E-04 0.002 2.362E-04
Glu-432 M+5 0.004 1.502E-04 0.001 9.422E-05 0.004 4.350E-04 0.004 6.825E-04 0.001 1.345E-04 0.001 9.866E-05
Gly-246 M+0 0.855 4.280E-04 0.925 6.503E-04 0.857 6.000E-03 0.871 1.728E-02 0.914 1.366E-03 0.950 8.671E-04
Gly-246 M+1 0.029 2.275E-04 0.016 6.754E-04 0.024 7.335E-04 0.023 3.172E-03 0.017 1.098E-03 0.011 8.399E-04
Gly-246 M+2 0.116 3.736E-04 0.059 3.171E-04 0.119 5.296E-03 0.106 1.414E-02 0.069 1.574E-03 0.039 4.329E-04
His-440 M+0 0.733 1.901E-03 0.884 2.267E-03 0.734 1.688E-02 0.755 3.538E-02 0.862 4.877E-03 0.924 5.207E-03
His-440 M+1 0.101 1.907E-03 0.061 2.900E-03 0.117 7.659E-03 0.100 1.684E-02 0.073 5.377E-03 0.040 4.246E-03
His-440 M+2 0.047 6.245E-04 0.010 8.228E-04 0.038 3.513E-03 0.039 5.358E-03 0.011 3.966E-03 0.005 1.542E-03
His-440 M+3 0.066 5.609E-04 0.034 7.664E-04 0.063 4.311E-03 0.056 7.779E-03 0.034 7.729E-04 0.020 8.922E-04
His-440 M+4 0.014 8.053E-05 0.003 2.328E-04 0.012 6.548E-04 0.011 2.713E-03 0.004 4.954E-04 0.002 2.723E-04
His-440 M+5 0.035 1.938E-04 0.009 1.505E-04 0.034 2.394E-03 0.035 3.920E-03 0.016 6.045E-04 0.009 3.208E-04
His-440 M+6 0.005 2.197E-04 0.000 8.030E-05 0.003 4.935E-04 0.004 8.892E-04 0.001 2.352E-04 0.000 9.922E-05
Ile-200 M+0 0.696 5.368E-04 0.822 2.101E-03 0.667 8.884E-03 0.718 4.259E-02 0.800 5.154E-03 0.880 1.920E-03
Ile-200 M+1 0.091 6.325E-04 0.065 7.628E-04 0.107 8.431E-04 0.080 1.733E-02 0.065 2.342E-03 0.044 1.495E-03
Ile-200 M+2 0.159 1.729E-04 0.095 1.175E-03 0.169 6.299E-03 0.152 1.673E-02 0.110 1.869E-03 0.065 1.264E-03
Ile-200 M+3 0.038 7.809E-05 0.015 1.918E-04 0.043 1.695E-03 0.038 6.337E-03 0.020 9.163E-04 0.010 1.771E-04
Ile-200 M+4 0.011 9.602E-05 0.002 5.270E-05 0.010 6.609E-04 0.009 1.558E-03 0.003 1.829E-04 0.001 4.447E-05
Ile-200 M+5 0.004 7.405E-05 0.001 1.921E-05 0.004 2.223E-04 0.004 6.733E-04 0.001 4.360E-05 0.000 3.346E-05
Leu-274 M+0 0.686 1.351E-03 0.815 1.756E-03 0.660 1.238E-02 0.699 3.836E-02 0.787 6.876E-03 0.872 2.491E-03
Leu-274 M+1 0.091 1.444E-03 0.063 1.025E-03 0.108 2.958E-03 0.090 1.214E-02 0.072 4.123E-03 0.048 2.318E-03
Leu-274 M+2 0.174 7.278E-04 0.110 1.024E-03 0.185 8.551E-03 0.168 2.012E-02 0.123 2.135E-03 0.074 2.662E-03
Leu-274 M+3 0.031 5.213E-04 0.008 3.440E-04 0.031 1.790E-03 0.027 3.714E-03 0.012 7.280E-04 0.004 3.840E-04
Leu-274 M+4 0.015 1.254E-04 0.004 1.005E-04 0.015 7.352E-04 0.013 2.049E-03 0.005 5.188E-04 0.002 2.012E-04
Leu-274 M+5 0.003 5.968E-05 0.000 3.242E-05 0.002 2.514E-04 0.002 4.332E-04 0.001 8.311E-05 0.000 6.790E-05
Lys-431 M+0 0.684 2.154E-03 0.814 3.905E-03 0.649 9.282E-03 0.706 4.289E-02 0.786 5.965E-03 0.878 4.303E-03
Lys-431 M+1 0.088 1.194E-03 0.065 2.772E-03 0.104 3.735E-03 0.078 1.464E-02 0.067 3.613E-03 0.041 2.937E-03
Lys-431 M+2 0.115 9.071E-04 0.071 8.617E-04 0.124 3.645E-03 0.106 1.270E-02 0.081 2.679E-03 0.049 1.403E-03
Lys-431 M+3 0.087 4.226E-04 0.049 6.542E-04 0.097 3.485E-03 0.089 9.894E-03 0.061 8.854E-04 0.036 7.789E-04
Lys-431 M+4 0.016 3.977E-04 0.001 2.095E-04 0.016 1.410E-03 0.013 4.230E-03 0.003 8.854E-04 0.000 0.000E+00
Lys-431 M+5 0.009 1.788E-04 0.001 3.152E-04 0.009 6.625E-04 0.008 1.241E-03 0.002 3.143E-04 0.000 1.804E-04
Lys-431 M+6 0.001 1.761E-04 0.000 0.000E+00 0.001 1.732E-04 0.001 5.612E-04 0.000 0.000E+00 0.000 0.000E+00
Met-320 M+0 0.688 6.278E-03 0.810 1.531E-03 0.641 6.083E-03 0.699 4.676E-02 0.779 2.572E-03 0.867 4.377E-03
Met-320 M+1 0.157 2.158E-03 0.110 8.997E-04 0.183 2.847E-03 0.153 2.554E-02 0.122 3.064E-03 0.077 3.042E-03
Met-320 M+2 0.085 1.476E-03 0.050 7.271E-04 0.094 2.713E-03 0.075 1.216E-02 0.055 1.376E-03 0.034 2.034E-03
Met-320 M+3 0.054 2.044E-03 0.026 5.467E-04 0.062 3.083E-03 0.056 7.303E-03 0.038 9.150E-04 0.020 6.745E-04
Met-320 M+4 0.014 1.527E-03 0.004 1.150E-04 0.018 1.157E-03 0.016 3.445E-03 0.006 4.056E-04 0.002 6.650E-04
Met-320 M+5 0.001 4.198E-04 0.000 1.472E-04 0.002 2.520E-04 0.003 3.385E-03 0.001 2.205E-04 0.000 1.371E-04
Phe-336 M+0 0.642 1.271E-03 0.803 2.399E-03 0.617 1.612E-02 0.654 4.447E-02 0.767 4.030E-03 0.859 1.993E-03
Phe-336 M+1 0.052 1.013E-03 0.030 2.031E-03 0.056 1.962E-03 0.050 5.393E-03 0.038 1.818E-03 0.029 8.042E-04
Phe-336 M+2 0.082 8.989E-04 0.056 1.319E-03 0.090 4.457E-03 0.082 9.137E-03 0.064 1.558E-03 0.039 8.560E-04
Phe-336 M+3 0.133 7.613E-04 0.087 8.181E-04 0.152 5.832E-03 0.135 1.564E-02 0.101 2.051E-03 0.060 5.451E-04
Phe-336 M+4 0.046 3.019E-04 0.014 8.085E-04 0.041 2.258E-03 0.040 7.047E-03 0.017 6.505E-04 0.010 6.233E-04
Phe-336 M+5 0.022 2.690E-04 0.006 2.474E-04 0.022 1.509E-03 0.020 3.410E-03 0.008 2.644E-04 0.003 1.027E-04
Phe-336 M+6 0.015 2.696E-04 0.003 2.875E-04 0.014 6.457E-04 0.013 2.487E-03 0.004 2.963E-04 0.001 1.151E-04
Phe-336 M+7 0.007 2.078E-04 0.001 1.386E-04 0.006 3.811E-04 0.006 1.305E-03 0.001 7.124E-05 0.000 7.881E-05
Phe-336 M+8 0.001 1.836E-04 0.000 0.000E+00 0.001 1.154E-04 0.001 2.278E-04 0.000 0.000E+00 0.000 0.000E+00
Phe-336 M+9 0.000 5.768E-05 0.000 0.000E+00 0.000 1.492E-04 0.000 2.029E-04 0.000 0.000E+00 0.000 0.000E+00
Pro-286 M+0 0.701 3.194E-03 0.824 5.201E-03 0.672 6.054E-03 0.725 4.085E-02 0.800 5.682E-03 0.876 2.853E-03
Pro-286 M+1 0.095 1.727E-03 0.067 1.498E-03 0.109 3.772E-03 0.083 1.548E-02 0.072 2.381E-03 0.049 1.832E-03
Pro-286 M+2 0.147 1.163E-03 0.084 2.745E-03 0.156 3.015E-03 0.137 1.675E-02 0.098 3.110E-03 0.059 1.723E-03
Pro-286 M+3 0.039 6.929E-04 0.017 5.813E-04 0.045 2.061E-03 0.039 6.088E-03 0.023 1.004E-03 0.012 2.514E-04
Pro-286 M+4 0.015 4.270E-04 0.006 9.635E-04 0.014 6.830E-04 0.012 1.992E-03 0.006 2.702E-04 0.004 1.736E-04
Pro-286 M+5 0.004 3.393E-04 0.001 2.084E-04 0.004 3.092E-04 0.004 6.673E-04 0.001 1.323E-04 0.000 4.366E-05
Ser-390 M+0 0.851 2.035E-03 0.915 4.296E-03 0.825 6.231E-03 0.844 1.950E-02 0.903 2.932E-03 0.951 3.158E-03
Ser-390 M+1 0.030 1.424E-03 0.024 3.353E-03 0.050 2.335E-03 0.044 6.015E-03 0.025 2.248E-03 0.010 2.810E-03
Ser-390 M+2 0.027 6.824E-04 0.022 1.241E-03 0.050 1.969E-03 0.044 5.218E-03 0.025 1.007E-03 0.015 9.845E-04
Ser-390 M+3 0.091 5.789E-04 0.039 3.264E-04 0.075 4.658E-03 0.068 9.498E-03 0.047 1.092E-03 0.024 9.457E-04
Thr-404 M+0 0.748 2.060E-03 0.854 2.469E-03 0.706 5.359E-03 0.757 3.921E-02 0.820 5.313E-03 0.884 3.150E-03
Thr-404 M+1 0.107 2.375E-03 0.075 1.708E-03 0.137 1.468E-03 0.109 2.137E-02 0.091 4.376E-03 0.070 3.007E-03
Thr-404 M+2 0.086 9.052E-04 0.051 1.410E-03 0.086 2.303E-03 0.068 9.309E-03 0.052 9.058E-04 0.033 2.075E-03
Thr-404 M+3 0.056 5.606E-04 0.027 5.265E-04 0.066 3.540E-03 0.063 6.060E-03 0.041 7.682E-04 0.021 5.521E-04
Thr-404 M+4 0.003 2.105E-04 0.000 0.000E+00 0.006 9.944E-04 0.003 2.804E-03 0.000 0.000E+00 0.000 0.000E+00
Tyr-466 M+0 0.633 1.863E-03 0.797 9.147E-04 0.632 2.031E-02 0.663 4.609E-02 0.772 4.795E-03 0.865 2.872E-03
Tyr-466 M+1 0.046 1.459E-03 0.027 1.489E-03 0.042 3.027E-03 0.039 6.364E-03 0.027 3.973E-03 0.018 2.979E-03
Tyr-466 M+2 0.092 5.484E-04 0.064 1.033E-03 0.101 5.269E-03 0.093 9.656E-03 0.076 1.009E-03 0.047 1.577E-03
Tyr-466 M+3 0.123 5.727E-04 0.082 1.102E-03 0.134 6.144E-03 0.120 1.457E-02 0.092 2.246E-03 0.054 1.725E-03
Tyr-466 M+4 0.048 7.538E-04 0.014 3.424E-04 0.044 3.848E-03 0.043 7.657E-03 0.018 6.630E-04 0.010 3.478E-04
Tyr-466 M+5 0.023 2.528E-04 0.007 3.071E-04 0.025 1.051E-03 0.022 4.055E-03 0.010 3.860E-04 0.005 2.842E-04
Tyr-466 M+6 0.015 3.942E-04 0.003 2.138E-04 0.014 8.053E-04 0.013 2.526E-03 0.004 3.445E-04 0.002 2.499E-04
Tyr-466 M+7 0.006 9.654E-05 0.000 3.239E-04 0.006 6.301E-04 0.005 1.250E-03 0.001 2.321E-04 0.000 0.000E+00
Tyr-466 M+8 0.002 3.199E-04 0.001 2.073E-04 0.002 1.771E-04 0.001 3.939E-04 0.000 1.766E-04 0.000 2.294E-04
Tyr-466 M+9 0.011 1.191E-03 0.004 1.561E-03 0.000 1.992E-04 0.000 3.418E-04 0.000 0.000E+00 0.000 0.000E+00
Val-288 M+0 0.762 9.275E-04 0.866 1.169E-03 0.746 6.127E-03 0.776 2.854E-02 0.840 3.709E-03 0.911 5.684E-04
Val-288 M+1 0.012 1.179E-03 0.011 8.885E-04 0.019 1.040E-03 0.012 1.968E-03 0.015 2.079E-03 0.009 1.205E-03
Val-288 M+2 0.109 8.820E-04 0.064 6.511E-04 0.115 3.756E-03 0.104 1.338E-02 0.075 1.592E-03 0.043 1.093E-03
Val-288 M+3 0.098 7.817E-04 0.054 3.638E-04 0.102 2.878E-03 0.091 1.161E-02 0.063 8.085E-04 0.035 6.843E-04
Val-288 M+4 0.002 1.895E-04 0.001 8.993E-05 0.002 6.047E-04 0.002 4.148E-04 0.001 1.915E-04 0.000 1.252E-04
Val-288 M+5 0.017 1.678E-04 0.004 5.224E-05 0.016 6.222E-04 0.014 2.237E-03 0.005 2.256E-04 0.002 8.943E-05
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A.3. Simultaneous Utilization of D-Xylose and Glucose in E. coli

0.2 0.3 0.4 0.5 0.6 0.7 0.8
% Carbon Xylose

-1

0

1

2

3

4

5

6

7

8

O
xy

ge
n 

U
pt

ak
e 

R
at

e 
[m

m
ol

/g
D

W
 h

]

HMS p1X

HMS p3X

ptsG p1X

ptsG p3X

HMS Empty

ptsG Empty

𝑦∆#$%& = −12.018𝑥 + 13.688
𝑅3 = 0.56

𝑦567 = −35.57𝑥 + 13.427
𝑅3 = 0.62

Figure A.8.: Estimation of Oxygen Uptake Rate as a Function of Sugar Co-
Uptake. Overall, we observe a decrease in the oxygen uptake rate, as % Carbon Xylose
increases. For strain HMS p3x, its unusually high substrate uptake (refer to Figure 6.1.C)
leads to an in silico oxygen uptake rate of zero.

A.3.3. Dependency of Oxygen Uptake Rate on Sugar Co-Utilization

Figure A.8 shows the dependence of in silico estimated oxygen uptake for strain famil-
ies HMS and ∆ptsG on the extent of experimentally determined xylose and glucose co-
utilization. Oxygen uptake rate for each strain is estimated by minimizing the reaction
representing oxygen import from the medium to the cell, while simultaneously constraining
reactions in the iJO1366 model representing rates for growth, glucose and xylose uptake,
and acetate secretion to match experimentally determined values, as listed in Table 6.2.
The biological feasibility of minimization of oxygen uptake as objective function is discussed
in Chapter 4.

A.3.4. Experimental Protein Content

Total protein content was experimentally determined in two rounds. In the first round,
strains carrying mutated XylE transporters were characterized. In a second round, total
protein content of respective parent strains carrying an empty plasmid was determined.
Results are shown in Figure A.9.A and B., respectively. Overall, we observe an increase
in the total protein content as % Carbon Xylose increases. Additionally, strain family
∆ptsG exhibits a higher total protein content compared to protein contents measured for
the strain family XylE. Since the 2-D Quant Kit (provided by GE Healthcare) used for
protein measurement is an indirect method, it requires the simultaneous measurement of a
protein standard. Thus, absolute protein content might vary between experimental rounds,
which is the case for protein levels within the strain family ∆ptsG. As such, we expect the
protein content within this family to follow the following trend: ∆ptsG Empty < ∆ptsG
p1x < ∆ptsG p3x. By contrast, the observed trend is as follows: ∆ptsG p1x < ∆ptsG
p3x < ∆ptsG Empty. Since it is very improbable that the parent strain ∆ptsG Empty
exhibits a higher protein content than both daughter strains, we conclude that observed
deviations are originated because protein content for strain ∆ptsG Empty was determined
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independently from ∆ptsG p1x and ∆ptsG p3x. Consequently, protein measurements
should be repeated for all strains using the same protein standard and experimental set
up.
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Figure A.9.: Protein Measurement. Total protein content for strains carrying XylE mutant
transporters in two different genetic backgrounds (A.) and corresponding parent strains
(B.). Protein content was determined using the 2-D Quant Kit provided by GE Healthcare
for the two strain groups separately.
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B. Appendix for Process Engineering

B.1. Model-based Medium Optimization

B.1.1. Extending Metabolic Models to Allow Taxadiene Synthesis

E. coli Core

The code shown below was used to extend the E. coli core model to enable taxadiene
production using the non-mevalonate pathway, the mevalonate pathway or both.

1 % Load core model .
2 model=readCbModel ( ’ ecol i_core_model . xml ’ ) ;
3
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 %
6 % Add r e a c t i on s o f the MEP pathway .
7 %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 % Reaction 1 . 1−Deoxylulose−5−phosphate s yn th e s i s from g3p and pyr .
11 model=addReaction (model , ’ dxs ’ , ’ pyr [ c ] + g3p [ c ] + h [ c ] −> dxyl5p [ c ] + co2 [ c ] ’ ) ;
12
13 % Reaction 2 . ispC
14 model=addReaction (model , ’ ispC ’ , ’ dxyl5p [ c ] + nadph [ c ] + h [ c ] −> nadp [ c ] + 2me4p [ c ] ’ ) ;
15
16 % Reaction 3 . ispD
17 model=addReaction (model , ’ ispD ’ , ’ 2me4p [ c ] + atp [ c ] + h [ c ] −> 4c2me [ c ] + 2 pi [ c ] ’ ) ; %E i g en t l i c h

i s t d i e Reaktion mit CTP.
18
19 % Reaction 4 . ispE
20 model=addReaction (model , ’ ispE ’ , ’ 4c2me [ c ] + atp [ c ] −> 2p4c2me [ c ] + adp [ c ] + h [ c ] ’ ) ;
21
22 % Reaction 5 . ispF
23 model=addReaction (model , ’ ispF ’ , ’ 2p4c2me [ c ] −> 2mecdp [ c ] + amp [ c ] ’ ) ;
24
25 % Reaction 6 . ispG
26 model=addReaction (model , ’ ispG ’ , ’ 2mecdp [ c ] + nadh [ c ] −> h2mb4p [ c ] + h2o [ c ] + nad [ c ] ’ ) ;
27
28 % Reaction 7 . ispH
29 model=addReaction (model , ’ ispH ’ , ’ h2mb4p [ c ] + nadh [ c ] + h [ c ] −> dmpp [ c ] + h2o [ c ] + nad [ c ] ’ ) ;
30
31 % Reaction 8 . ispH2
32 model=addReaction (model , ’ ispH2 ’ , ’ h2mb4p [ c ] + nadh [ c ] + h [ c ] −> ipdp [ c ] + h2o [ c ] + nad [ c ] ’ ) ;
33
34 % Reaction 9 . i d i
35 model=addReaction (model , ’ i d i ’ , ’ dmpp [ c ] <=> ipdp [ c ] ’ ) ;
36
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 %
39 % Add r e a c t i on s o f the MVA pathway .
40 %
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42
43
44 % Reaction 1 . − s yn th e s i s o f Acetoacety l .
45 model=addReaction (model , ’ atoB ’ , ’ 2 accoa [ c ] −> aacoa [ c ] + coa [ c ] ’ ) ;
46
47 %Reaction 2 . − s yn th e s i s o f HMGCoA.
48 model=addReaction (model , ’ pksg ’ , ’ aacoa [ c ] + accoa [ c ] + h2o [ c ] −> h [ c ] + coa [ c ] + hmgcoa [ c ] ’ ) ;
49
50 %Reaction 3 − s yn th e s i s o f MVA
51 model=addReaction (model , ’hmg1 ’ , ’ hmgcoa [ c ] + 2 nadph [ c ] + 2 h [ c ] −> 2 nadp [ c ] + coa [ c ] + mva [ c ] ’ ) ;
52
53 %Reaction 4 − s yn th e s i s o f MVAP
54 model=addReaction (model , ’mvak1 ’ , ’mva [ c ] + atp [ c ] −> adp [ c ] + h [ c ] mvap [ c ] ’ ) ;
55
56 %Reaction 5 − s yn th e s i s o f MVAPP
57 model=addReaction (model , ’mvak2 ’ , ’mvap [ c ] + atp [ c ] −> adp [ c ] + mvapp [ c ] ’ ) ;
58

171



B. Appendix for Process Engineering

59 %Reaction 6 − s yn th e s i s o f IPP
60 model=addReaction (model , ’mvad ’ , ’mvapp [ c ] + atp [ c ] −> adp [ c ] + co2 [ c ] + pi [ c ] + ipdp [ c ] ’ ) ;
61
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %
64 % Add taxadiene syn th e s i s from IPP ( ipdp ) and DMAPP (dmpp)
65 %
66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67
68 %Reaction 1 . − s yn th e s i s o f Geranyl diphosphate
69 model=addReaction (model , ’DMATT’ , ’ dmpp [ c ] + ipdp [ c ] −> grdp [ c ] + 2 pi [ c ] ’ ) ;
70
71 %Reaction 2 . − s yn th e s i s o f Farnesy l diphosphate
72 model=addReaction (model , ’GRTT’ , ’ grdp [ c ] + ipdp [ c ] −> frdp [ c ] + 2 pi [ c ] ’ ) ;
73
74 %Reaction 3 . − s yn th e s i s o f GGPP
75 model=addReaction (model , ’ ggpps ’ , ’ f rdp [ c ] + ipdp [ c ] −> ggpp [ c ] + 2 pi [ c ] ’ ) ;
76
77 %Reaction 4 . − s yn th e s i s o f taxadiene
78 model=addReaction (model , ’ txs ’ , ’ ggpp [ c ] −> txdn [ c ] + 2 pi [ c ] ’ ) ;
79
80 %Reaction 5 . − export r e a c t i on f o r taxadiene
81 model=addReaction (model , ’ txdnx ’ , ’ txdn [ c ] −> ’ ) ; %txdn [ e ]

E. coli iJO1366

The code shown below was used to extend the E. coli genome-scale metabolic recon-
struction iJO1366 to enable taxadiene production using the non-mevalonate pathway, the
mevalonate pathway or both. Note that the non-mevalonate pathway is an endogenous
pathway and thus already contained in the iJO1366 model. Reactions DXPIi, MEPCT,
CDPMEX, MECDPS, MECDPDH2, DMPPS, IPDPS should be deleted if theoretical cal-
culations using the mevalonate pathway for taxadiene synthesis are to be performed.

1 % Load Genome Sca l e Metabol ic Reconstruct ion .
2 model0=readCbModel ( ’ iJO1366 . xml ’ ) ;
3
4 %NGAM mod i f i c a t i on
5 model0=changeRxnBounds (model0 , ’ATPM’ ,0 , ’b ’ ) ;
6
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %
9 %Control a c t i v i t y o f endogeneous MEP Pathway .

10 %
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12
13 i f 1==0
14 rxnRemoveList={ ’DXPIi ’ , ’MEPCT’ , ’CDPMEX’ , ’MECDPS’ , ’MECDPDH2’ , ’DMPPS’ , ’IPDPS ’ } ;
15 model0=removeRxns (model0 , rxnRemoveList ) ;
16 end
17
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 %
20 %Add MVA Pathway . This pathway i s composed o f 6 r e a c t i o n s .
21 %
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23
24 i f 1==1 % MVA akt iv ?
25
26 %Reaction 1 . − s yn th e s i s o f Acetoacetyl−coA , i s a l ready conta ined in the
27 %model .
28
29 %Reaction 2 . − s yn th e s i s o f HMGCoA.
30 model0=addReaction (model0 , ’ pksg ’ , ’ aacoa [ c ] + accoa [ c ] + h2o [ c ] −> h [ c ] + coa [ c ] + hmgcoa [ c ] ’ ) ;
31
32 %Reaction 3 . − s yn th e s i s o f MVA
33 model0=addReaction (model0 , ’hmg1 ’ , ’ hmgcoa [ c ] + 2 nadph [ c ] + 2 h [ c ] −> 2 nadp [ c ] + coa [ c ] + mva [ c ] ’

) ;
34
35 %Reaction 4 . − s yn th e s i s o f MVAP
36 model0=addReaction (model0 , ’mvak1 ’ , ’mva [ c ] + atp [ c ] −> adp [ c ] + h [ c ] mvap [ c ] ’ ) ;
37
38 %Reaction 5 . − s yn th e s i s o f MVAPP
39 model0=addReaction (model0 , ’mvak2 ’ , ’mvap [ c ] + atp [ c ] −> adp [ c ] + mvapp [ c ] ’ ) ;
40
41 %Reaction 6 . − s yn th e s i s o f IPP
42 model0=addReaction (model0 , ’mvad ’ , ’mvapp [ c ] + atp [ c ] −> adp [ c ] + co2 [ c ] + pi [ c ] + ipdp [ c ] ’ ) ;
43
44 end
45
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 %
48 %Taxadiene Synthes i s
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49 %
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51
52 %Reaktion 1 . − s yn th e s i s o f GGPP from f a r n e s y l diphosphate and i s open t eny l
53 %diphosphate .
54 model0=addReaction (model0 , ’ ggpps ’ , ’ f rdp [ c ] + ipdp [ c ] −> ggpp [ c ] + ppi [ c ] ’ ) ;
55
56 %Reaktion 2 . − s yn th e s i s o f taxadiene from GGPP
57 model0=addReaction (model0 , ’ txs ’ , ’ ggpp [ c ] −> txdn [ c ] + ppi [ c ] ’ ) ;
58
59 %Reaktion 3 . − taxadiene export r e a c t i on
60 model0=addReaction (model0 , ’ txdnx ’ , ’ txdn [ c ] −> ’ ) ;

B.1.2. Ranking of 180 Substrates According to Yields

Table B.1 provides maximal theoretical taxadiene yields for 180 different growth supporting
carbon sources. Two different network configurations are considered. In the first case, IPP
and DMAPP synthesis can occur only via the non-mevalonate pathway. In the second case,
both the mevalonate and the non-mevalonate pathway are considered. For each substrate
and the non-mevalonate pathway, yields are reported in three different basis. When both
pathways are considered, only carbon yield is reported. Synergy is calculated as explained
in the main text.

Table B.1.: Maximal Taxadiene Yields Calculated for 180 Carbon Sources. The
E. coli metabolic reconstruction iJO1366 was used for all calculations. Yields are reported
for the non-mevalonate pathway (MEP). For synergy calculation, the iJO1366 model was
expanded to consider the mevalonate (MVA) pathway. Synergy was calculated as explained
in the main text. Refer to Section 7.2. Carbon yield for the simultaneous pathway usage
(MEP+MVA) is also provided. For all calculations, NGAM and growth rate were set to 0.

Nr Carbon Source Non-Mevalonate Pathway MEP+MVA.
Carbon Yield

Synergy,
[%]

Best
PathwayMolar Carbon Mass

1 Ethanol exchange 0.088 0.879 0.519 0.925 5.205 MEP+MVA
2 Glycerophosphoglycerol exchange 0.250 0.833 0.278 0.833 0.000 MEP
3 Glycerol 3-phosphate exchange 0.125 0.833 0.200 0.833 0.000 MEP
4 sn-Glycero-3-phosphoethanolamine ex-

change
0.204 0.815 0.258 0.828 1.699 MEP+MVA

5 Glycerol exchange’ 0.121 0.804 0.356 0.805 0.188 MEP+MVA
6 Glycerol 2-phosphate exchange 0.121 0.804 0.193 0.805 0.188 MEP+MVA
7 Putrescine exchange 0.159 0.793 0.479 0.793 0.000 MEP
8 (S)-Propane-1,2-diol exchange 0.113 0.755 0.405 0.765 1.275 MEP+MVA
9 Acetaldehyde exchange 0.074 0.742 0.459 0.798 0.000 MVA
10 D-Mannitol exchange 0.220 0.735 0.329 0.740 0.696 MEP+MVA
11 D-Sorbitol exchange 0.220 0.735 0.329 0.740 0.696 MEP+MVA
12 Galactitol exchange 0.220 0.733 0.328 0.740 1.016 MEP+MVA
13 Ethanolamine exchange 0.072 0.723 0.317 0.777 0.000 MVA
14 Propanal exchange 0.108 0.718 0.505 0.731 1.723 MEP+MVA
15 D-Glucose 6-phosphate exchange 0.213 0.711 0.225 0.714 0.420 MEP+MVA
16 D-Mannose 6-phosphate exchange 0.213 0.711 0.225 0.714 0.420 MEP+MVA
17 D-fructose 6-phosphate exchange 0.213 0.711 0.225 0.714 0.420 MEP+MVA
18 D-Glucosamine 6-phosphate exchange 0.213 0.711 0.225 0.714 0.420 MEP+MVA
19 Maltohexaose exchange 1.259 0.700 0.346 0.704 0.555 MEP+MVA
20 1,4-alpha-D-glucan exchange 1.259 0.700 0.346 0.704 0.555 MEP+MVA
21 D-Glyceraldehyde exchange 0.105 0.698 0.316 0.706 1.224 MEP+MVA
22 Glycerophosphoserine exchange 0.209 0.697 0.221 0.705 1.092 MEP+MVA
23 Maltopentaose exchange 1.044 0.696 0.343 0.700 0.600 MEP+MVA
24 Sucrose exchange 0.414 0.690 0.329 0.695 0.667 MEP+MVA
25 Trehalose exchange 0.414 0.690 0.329 0.695 0.667 MEP+MVA
26 Dihydroxyacetone exchange 0.104 0.690 0.313 0.695 0.667 MEP+MVA
28 Maltotriose exchange 0.621 0.690 0.335 0.695 0.667 MEP+MVA
27 Maltose exchange 0.414 0.690 0.329 0.695 0.667 MEP+MVA
29 Maltotetraose exchange 0.828 0.690 0.338 0.695 0.667 MEP+MVA
30 D-Glucose 1-phosphate exchange 0.207 0.690 0.218 0.695 0.738 MEP+MVA
31 D-Glucose exchange’ 0.207 0.690 0.313 0.695 0.738 MEP+MVA
32 D-Fructose exchange 0.207 0.689 0.312 0.695 0.871 MEP+MVA
33 D-Mannose exchange 0.207 0.689 0.312 0.695 0.871 MEP+MVA
34 D-Glucosamine exchange 0.207 0.689 0.312 0.695 0.871 MEP+MVA
35 Melibiose exchange 0.412 0.687 0.328 0.692 0.709 MEP+MVA
36 Lactose exchange 0.412 0.687 0.328 0.692 0.709 MEP+MVA
37 beta D-Galactose exchange 0.205 0.683 0.310 0.689 0.753 MEP+MVA
38 D-Galactose exchange 0.205 0.683 0.310 0.689 0.753 MEP+MVA
39 alpha-D-Galactose 1-phosphate exchange 0.205 0.683 0.216 0.689 0.753 MEP+MVA
40 L-Lyxose exchange 0.171 0.682 0.309 0.687 0.770 MEP+MVA
41 L-Xylulose exchange 0.171 0.682 0.309 0.687 0.770 MEP+MVA
42 L-Arabinose exchange 0.171 0.682 0.309 0.687 0.770 MEP+MVA
43 D-Xylose exchange 0.171 0.682 0.309 0.687 0.770 MEP+MVA
44 L-Rhamnose exchange 0.204 0.679 0.338 0.685 0.867 MEP+MVA
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Table B.1 Continued from previous page

Nr Carbon Source Non Mevalonate Pathway MEP+MVA.
Carbon Yield

Synergy,
[%]

Best
PathwayMolar Carbon Mass

45 L-Fucose exchange 0.204 0.679 0.338 0.685 0.867 MEP+MVA
46 4-Aminobutanoate exchange 0.134 0.672 0.355 0.672 0.000 MEP
47 D-Allose exchange 0.199 0.662 0.300 0.668 0.878 MEP+MVA
48 chitobiose exchange 0.528 0.660 0.339 0.672 1.712 MEP+MVA
49 D-Ribose exchange 0.164 0.657 0.298 0.663 0.866 MEP+MVA
50 alpha-D-Ribose 5-phosphate exchange 0.164 0.657 0.196 0.663 0.866 MEP+MVA
51 N-Acetyl-D-glucosamine(anhydrous)N-

Acetylmuramic acid exchange
0.623 0.656 0.355 0.667 1.575 MEP+MVA

52 N-Acetyl-D-glucosamine 1-phosphate ex-
change

0.262 0.654 0.238 0.672 2.646 MEP+MVA

53 N-Acetyl-D-mannosamine exchange 0.262 0.654 0.322 0.672 2.646 MEP+MVA
54 N-Acetyl-D-glucosamine exchange 0.262 0.654 0.322 0.672 2.646 MEP+MVA
55 N-Acetylmuramate exchange 0.355 0.646 0.331 0.665 2.963 MEP+MVA
56 2(alpha-D-Mannosyl)-D-glycerate exchange 0.290 0.644 0.295 0.649 0.838 MEP+MVA
57 Ornithine exchange 0.160 0.642 0.328 0.642 0.000 MEP
58 Phenethylamine exchange 0.254 0.635 0.566 0.661 4.111 MEP+MVA
59 Phenylacetaldehyde exchange 0.254 0.635 0.575 0.661 4.111 MEP+MVA
60 Agmatine exchange 0.159 0.634 0.327 0.634 0.000 MEP
61 D-Gluconate exchange 0.190 0.633 0.265 0.636 0.562 MEP+MVA
62 D-Alanyl-D-alanine exchange 0.190 0.632 0.322 0.654 3.427 MEP+MVA
63 N-Acetylneuraminate exchange 0.345 0.627 0.304 0.636 1.441 MEP+MVA
64 L-Idonate exchange 0.187 0.622 0.260 0.624 0.349 MEP+MVA
65 D-Alanine exchange 0.093 0.618 0.283 0.641 3.757 MEP+MVA
66 L-Alanine exchange 0.093 0.618 0.283 0.641 3.757 MEP+MVA
67 L-alanine-L-glutamate exchange’ 0.246 0.614 0.308 0.614 0.092 MEP+MVA
68 L-alanine-D-glutamate exchange 0.246 0.614 0.308 0.614 0.092 MEP+MVA
69 tetradecenoate (n-C14:1) exchange 0.430 0.614 0.519 0.660 0.000 MVA
70 hexadecenoate (n-C16:1) exchange 0.490 0.613 0.527 0.659 0.000 MVA
71 Propionate exchange 0.092 0.612 0.342 0.625 2.128 MEP+MVA
72 D-lactate exchange 0.092 0.612 0.281 0.625 2.128 MEP+MVA
73 octadecenoate (n-C18:1) exchange 0.551 0.612 0.533 0.658 0.000 MVA
74 L-Galactonate exchange 0.183 0.612 0.256 0.614 0.447 MEP+MVA
75 2-Dehydro-3-deoxy-D-gluconate exchange 0.183 0.612 0.282 0.614 0.447 MEP+MVA
76 D-Galactonate exchange 0.183 0.612 0.256 0.614 0.447 MEP+MVA
77 L-Threonine O-3-phosphate exchange 0.120 0.601 0.166 0.635 5.691 MEP+MVA
78 L-Threonine exchange 0.120 0.601 0.275 0.635 5.691 MEP+MVA
79 octadecanoate (n-C18:0) exchange 0.537 0.597 0.516 0.642 0.000 MVA
80 Hexadecanoate (n-C16:0) exchange 0.477 0.596 0.508 0.641 0.000 MVA
81 tetradecanoate (n-C14:0) exchange 0.416 0.594 0.498 0.639 0.000 MVA
82 Dodecanoate (n-C12:0) exchange 0.355 0.592 0.486 0.637 0.000 MVA
83 Decanoate (n-C10:0) exchange 0.295 0.590 0.469 0.634 0.000 MVA
84 octanoate (n-C8:0) exchange 0.234 0.586 0.446 0.630 0.000 MVA
85 L-Glutamate exchange 0.146 0.582 0.271 0.583 0.156 MEP+MVA
86 L-Glutamine exchange 0.146 0.582 0.271 0.583 0.156 MEP+MVA
87 Hexanoate (n-C6:0) exchange 0.174 0.579 0.411 0.623 0.000 MVA
88 Phenylpropanoate exchange 0.260 0.577 0.474 0.592 2.551 MEP+MVA
89 5-Dehydro-D-gluconate exchange 0.173 0.575 0.243 0.579 0.667 MEP+MVA
90 L-Proline exchange 0.144 0.575 0.340 0.575 0.047 MEP+MVA
91 L-Ascorbate exchange 0.171 0.571 0.265 0.579 1.472 MEP+MVA
92 Acetoacetate exchange 0.113 0.566 0.305 0.609 0.000 MVA
93 Butyrate (n-C4:0) exchange 0.113 0.566 0.354 0.609 0.000 MVA
94 L-Lactate exchange 0.085 0.564 0.258 0.586 3.940 MEP+MVA
95 L-Arginine exchange 0.169 0.563 0.262 0.563 0.000 MEP
96 D-Glucuronate exchange 0.168 0.561 0.237 0.565 0.720 MEP+MVA
97 D-Fructuronate exchange 0.168 0.561 0.237 0.565 0.720 MEP+MVA
98 D-Glucuronate 1-phosphate exchange 0.168 0.561 0.169 0.565 0.720 MEP+MVA
99 D-Galacturonate exchange 0.168 0.561 0.237 0.565 0.720 MEP+MVA
100 3-(3-hydroxy-phenyl)propionate exchange 0.246 0.547 0.406 0.560 2.446 MEP+MVA
101 dAMP exchange 0.273 0.546 0.226 0.549 0.431 MEP+MVA
102 Deoxyadenosine exchange 0.273 0.546 0.296 0.549 0.431 MEP+MVA
103 Deoxyinosine exchange 0.271 0.542 0.293 0.545 0.455 MEP+MVA
104 dIMP exchange 0.271 0.542 0.224 0.545 0.455 MEP+MVA
105 Reduced glutathione exchange 0.269 0.537 0.239 0.545 1.484 MEP+MVA
106 L-Prolinylglycine exchange 0.188 0.536 0.296 0.538 0.405 MEP+MVA
107 (R)-Glycerate exchange 0.080 0.536 0.208 0.536 0.143 MEP+MVA
108 3-hydroxycinnamic acid exchange 0.238 0.529 0.397 0.542 0.000 MVA
109 Acetate exchange 0.053 0.527 0.243 0.567 0.000 MVA
110 AMP exchange 0.263 0.527 0.208 0.527 0.084 MEP+MVA
111 2’,3’-Cyclic AMP exchange 0.263 0.527 0.219 0.527 0.084 MEP+MVA
112 3’-AMP exchange 0.263 0.527 0.208 0.527 0.084 MEP+MVA
113 Adenosine exchange 0.263 0.527 0.268 0.527 0.084 MEP+MVA
114 UDP-N-acetyl-D-glucosamine exchange 0.445 0.524 0.200 0.530 1.278 MEP+MVA
115 IMP exchange 0.262 0.523 0.206 0.524 0.106 MEP+MVA
116 Inosine exchange 0.262 0.523 0.265 0.524 0.106 MEP+MVA
117 Succinate exchange 0.105 0.523 0.245 0.530 1.326 MEP+MVA
118 Deoxyguanosine exchange 0.260 0.519 0.264 0.522 0.608 MEP+MVA
119 dGMP exchange 0.260 0.519 0.205 0.522 0.608 MEP+MVA
120 UDPglucose exchange 0.388 0.517 0.187 0.520 0.486 MEP+MVA
121 2,3-diaminopropionate exchange 0.078 0.517 0.201 0.532 0.000 MVA
122 D-Serine exchange 0.078 0.517 0.201 0.532 0.000 MVA
123 O-Phospho-L-serine exchange 0.078 0.517 0.115 0.532 0.000 MVA
125 L-Serine exchange 0.078 0.517 0.201 0.532 0.000 MVA
124 Pyruvate exchange 0.078 0.517 0.243 0.532 0.000 MVA
126 UDPgalactose exchange 0.386 0.515 0.186 0.517 0.530 MEP+MVA
127 2-Oxoglutarate exchange 0.127 0.509 0.241 0.518 1.791 MEP+MVA
128 3’-GMP exchange 0.250 0.500 0.188 0.500 0.000 MEP
129 2’,3’-Cyclic GMP exchange 0.250 0.500 0.198 0.500 0.000 MEP
130 Guanosine exchange 0.250 0.500 0.240 0.500 0.000 MEP
131 GMP exchange 0.250 0.500 0.188 0.500 0.000 MEP
132 Xanthosine exchange 0.248 0.496 0.238 0.498 0.274 MEP+MVA
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Nr Carbon Source Non Mevalonate Pathway MEP+MVA.
Carbon Yield

Synergy,
[%]

Best
PathwayMolar Carbon Mass

133 Xanthosine 5’-phosphate exchange 0.248 0.496 0.186 0.498 0.274 MEP+MVA
134 L-Asparagine exchange 0.098 0.491 0.202 0.498 1.387 MEP+MVA
135 L-Aspartate exchange 0.098 0.491 0.202 0.498 1.387 MEP+MVA
136 D-Glucarate exchange 0.147 0.489 0.192 0.494 1.008 MEP+MVA
137 D-Galactarate exchange 0.147 0.489 0.192 0.494 1.008 MEP+MVA
138 Citrate exchange 0.146 0.485 0.210 0.486 0.156 MEP+MVA
139 L-Malate exchange 0.096 0.480 0.198 0.487 1.537 MEP+MVA
140 Fumarate exchange 0.096 0.480 0.229 0.487 1.537 MEP+MVA
141 Cys-Gly exchange 0.120 0.478 0.183 0.492 0.000 MVA
142 L-Cysteine exchange 0.071 0.474 0.160 0.490 0.000 MVA
143 D-Cysteine exchange 0.071 0.474 0.160 0.490 0.000 MVA
144 UDP-D-glucuronate exchange 0.349 0.465 0.165 0.471 1.280 MEP+MVA
145 Fe(III)dicitrate exchange 0.278 0.464 0.174 0.464 0.000 MEP
146 Glycine exchange 0.046 0.459 0.166 0.469 2.128 MEP+MVA
147 D-Malate exchange 0.092 0.459 0.189 0.469 2.128 MEP+MVA
148 Deoxycytidine exchange 0.189 0.421 0.227 0.431 2.453 MEP+MVA
149 dCMP exchange 0.189 0.421 0.169 0.431 2.453 MEP+MVA
150 Deoxyuridine exchange 0.188 0.417 0.224 0.426 2.351 MEP+MVA
151 dUMP exchange 0.188 0.417 0.167 0.426 2.351 MEP+MVA
152 L-tartrate exchange 0.080 0.402 0.148 0.413 0.000 MVA
153 2’,3’-Cyclic CMP exchange 0.179 0.397 0.160 0.397 0.000 MEP
154 3’-cmp exchange 0.179 0.397 0.151 0.397 0.000 MEP
157 Cytidine exchange 0.179 0.397 0.200 0.397 0.000 MEP
159 Uridine exchange 0.179 0.397 0.199 0.397 0.000 MEP
158 2’,3’-Cyclic UMP exchange 0.179 0.397 0.159 0.397 0.000 MEP
155 UMP exchange 0.179 0.397 0.151 0.397 0.000 MEP
160 CMP exchange 0.179 0.397 0.151 0.397 0.000 MEP
156 3’-UMP exchange 0.179 0.397 0.151 0.397 0.000 MEP
161 D-tartrate exchange 0.078 0.391 0.144 0.401 0.000 MVA
162 L-alanine-D-glutamate-meso-2,6-

diaminoheptanedioate-D-alanine exchange
0.334 0.371 0.198 0.376 1.434 MEP+MVA

163 Thymidine exchange 0.183 0.367 0.206 0.376 2.339 MEP+MVA
164 dTMP exchange 0.183 0.367 0.156 0.376 2.339 MEP+MVA
165 Glycolate exchange 0.036 0.357 0.130 0.357 0.000 MEP+MVA
166 Formaldehyde exchange 0.017 0.345 0.156 0.345 0.000 MEP
167 fructoselysine exchange 0.203 0.338 0.179 0.341 0.840 MEP+MVA
168 psicoselysine exchange 0.203 0.338 0.179 0.341 0.840 MEP+MVA
169 L-alanine-D-glutamate-meso-2,6-

diaminoheptanedioate exchange
0.239 0.318 0.167 0.319 0.238 MEP+MVA

170 sn-Glycero-3-phosphocholine exchange 0.125 0.313 0.132 0.313 0.000 MEP
171 Adenine exchange 0.078 0.312 0.157 0.312 0.000 MEP
172 Hypoxanthine exchange 0.078 0.312 0.156 0.312 0.000 MEP
173 sn-Glycero-3-phospho-1-inositol exchange 0.125 0.278 0.102 0.278 0.000 MEP
174 Guanine exchange 0.069 0.276 0.125 0.276 0.000 MEP
175 butanesulfonate exchange 0.055 0.273 0.109 0.294 0.000 MVA
176 Xanthine exchange 0.068 0.271 0.121 0.271 0.000 MEP
177 UDP-N-acetyl-D-galactosamine exchange 0.179 0.210 0.080 0.210 0.000 MEP
178 Allantoin exchange 0.036 0.179 0.061 0.179 0.000 MEP+MVA
179 L-Tryptophan exchange 0.080 0.145 0.106 0.149 0.000 MVA
180 Formate exchange 0.003 0.060 0.018 0.061 0.000 MVA

B.1.3. Ranking of 180 Substrates According to Profit

Table B.2 provides a ranking of 180 different growth supporting substrates using profit as
performance criteria. Note that for 21 substrates, the molar price was not available.

Table B.2.: Maximal Profit Calculated for 180 Carbon Sources. The E. coli meta-
bolic reconstruction iJO1366 was used for all calculations. Profits are reported for the non-
mevalonate pathway (MEP). For all calculations, NGAM and growth rate were set to 0.
Additionally, molecular weight, prices on a molar basis and carbon content for each carbon
source are provided.

Nr Carbon Source Molecular Weight,
[g/mol]

Nr. Carbon
Atoms

Price,
[US$/mol]

Profit MEP,
[US$ Txd/US$ Substrate]

1 Formaldehyde exchange 30.026 1 7.75E-03 285,004
2 Maltohexaose exchange 990.870 36 7.07E-01 223,319
3 Ethanol exchange 46.069 2 5.10E-02 220,493
4 Maltose exchange 342.300 12 2.61E-01 203,365
5 Acetaldehyde exchange 44.053 2 5.21E-02 182,370
6 Hexadecanoate (n-C16:0) exchange 255.421 16 3.12E-01 167,338
7 D-Gluconate exchange 195.149 6 1.49E-01 163,707
8 octadecanoate (n-C18:0) exchange 283.475 18 3.72E-01 158,154
9 D-Sorbitol exchange 182.174 6 1.81E-01 155,600
10 D-Glucose exchange 180.158 6 1.74E-01 151,976
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Nr Carbon Source Molecular Weight,
[g/mol]

Nr. Carbon
Atoms

Price,
[US$/mol]

Profit MEP,
[US$ Txd/ US$ Substrate]

11 Propanal exchange 58.080 3 1.03E-01 133,928
12 Sucrose exchange 342.300 12 4.10E-01 129,244
13 tetradecanoate (n-C14:0) exchange 227.367 14 4.06E-01 112,776
14 Citrate exchange 189.102 6 1.70E-01 109,495
15 Decanoate (n-C10:0) exchange 171.260 10 3.47E-01 94,429
16 L-Lactate exchange 89.071 3 1.32E-01 81,920
17 Propionate exchange 73.072 3 1.46E-01 80,436
18 Ethanolamine exchange 62.092 2 1.21E-01 76,469
19 Butyrate (n-C4:0) exchange 87.098 4 1.88E-01 70,362
20 octanoate (n-C8:0) exchange 143.206 8 3.93E-01 66,879
21 Fumarate exchange 114.057 4 1.87E-01 65,709
22 Lactose exchange 342.300 12 8.63E-01 61,135
23 Glycerol exchange’ 92.095 3 2.60E-01 59,371
24 L-Threonine exchange 119.120 4 3.25E-01 47,386
25 Hexanoate (n-C6:0) exchange 115.152 6 4.39E-01 44,977
26 Succinate exchange 116.073 4 3.00E-01 44,687
27 D-Mannitol exchange 182.174 6 6.73E-01 41,920
28 L-Glutamate exchange 146.123 5 4.71E-01 39,532
29 D-Xylose exchange 150.131 5 5.57E-01 39,200
30 D-Fructose exchange 180.158 6 7.12E-01 37,175
31 Glycine exchange 75.067 2 1.88E-01 31,256
32 Phenylacetaldehyde exchange 120.151 8 1.08E+00 29,764
33 L-Alanine exchange 89.094 3 4.26E-01 27,872
34 L-Malate exchange 132.073 4 4.53E-01 27,148
35 L-Aspartate exchange 132.096 4 6.22E-01 20,215
36 Uridine exchange 244.204 9 1.34E+00 17,075
37 L-Ascorbate exchange 176.126 6 1.35E+00 16,278
38 L-tartrate exchange 148.072 4 6.51E-01 15,809
39 4-Aminobutanoate exchange 103.121 4 1.11E+00 15,437
40 L-Arginine exchange 175.211 6 1.65E+00 13,109
41 L-Glutamine exchange 146.146 5 1.52E+00 12,225
42 Glycolate exchange 75.044 2 3.97E-01 11,523
43 Formate exchange 45.018 1 3.53E-02 10,871
44 Pyruvate exchange 87.055 3 9.34E-01 10,640
45 Inosine exchange 268.229 10 3.68E+00 9,107
46 D-Mannose exchange 180.158 6 3.49E+00 7,591
47 Phenethylamine exchange 122.190 8 4.95E+00 6,564
48 Dodecanoate (n-C12:0) exchange 199.313 12 6.18E+00 6,355
49 Hypoxanthine exchange 136.113 5 1.75E+00 5,707
50 Allantoin exchange 158.117 4 8.97E-01 5,099
51 L-Cysteine exchange 121.160 3 1.79E+00 5,084
52 L-Serine exchange 105.094 3 2.13E+00 4,669
53 IMP exchange 346.193 10 8.38E+00 3,999
54 Adenine exchange 135.128 5 3.26E+00 3,061
55 L-Proline exchange 115.132 5 4.61E+00 2,947
56 Guanine exchange 151.128 5 3.12E+00 2,837
57 D-Ribose exchange 150.131 5 8.11E+00 2,594
58 Cytidine exchange 243.219 9 9.81E+00 2,332
59 D-Galactose exchange 180.158 6 1.28E+01 2,053
60 (S)-Propane-1,2-diol exchange 76.095 3 7.61E+00 1,906
61 2-Oxoglutarate exchange 144.084 5 1.02E+01 1,593
62 Ornithine exchange 133.171 5 1.29E+01 1,580
63 D-Alanine exchange 89.094 3 7.66E+00 1,549
64 L-Asparagine exchange 132.119 4 8.46E+00 1,487
65 D-Galactonate exchange 195.149 6 1.68E+01 1,400
66 D-lactate exchange 89.071 3 9.00E+00 1,307
67 D-Glucosamine exchange 180.181 6 2.05E+01 1,289
68 Guanosine exchange 283.244 10 2.52E+01 1,270
69 Putrescine exchange 90.169 4 1.65E+01 1,234
70 Adenosine exchange 267.245 10 2.78E+01 1,214
71 Galactitol exchange 182.174 6 2.35E+01 1,197
72 N-Acetyl-D-glucosamine exchange 221.210 8 3.05E+01 1,098
73 Dihydroxyacetone exchange 90.079 3 1.38E+01 962
74 L-Rhamnose exchange 164.158 6 3.09E+01 845
75 L-Tryptophan exchange 204.229 11 1.31E+01 781
76 D-Galactarate exchange 208.125 6 2.60E+01 722
77 D-tartrate exchange 148.072 4 1.85E+01 541
78 3-hydroxycinnamic acid exchange 163.153 9 5.86E+01 521
79 Trehalose exchange 342.300 12 1.22E+02 437
80 Glycerol 2-phosphate exchange 170.059 3 3.83E+01 403
81 D-Serine exchange 105.094 3 2.50E+01 397
82 Xanthine exchange 152.113 5 2.28E+01 380
83 AMP exchange 345.209 10 9.60E+01 352
84 Thymidine exchange 242.232 10 7.02E+01 334
85 CMP exchange 321.183 9 8.22E+01 278
86 D-Malate exchange 132.073 4 4.28E+01 275
87 Reduced glutathione exchange 306.320 10 1.33E+02 258
88 chitobiose exchange 424.405 16 2.81E+02 229
89 D-Cysteine exchange 121.160 3 5.15E+01 177
90 L-Arabinose exchange 150.131 5 1.27E+02 172
91 D-Glucose 6-phosphate exchange 258.122 6 1.86E+02 147
92 D-Mannose 6-phosphate exchange 258.122 6 1.86E+02 147
93 D-Glucose 1-phosphate exchange 258.122 6 1.81E+02 146
94 alpha-D-Galactose 1-phosphate exchange 258.122 6 1.81E+02 145
95 Deoxyuridine exchange 228.205 9 1.71E+02 140
96 (R)-Glycerate exchange 105.070 3 8.22E+01 125
97 butanesulfonate exchange 137.180 4 6.09E+01 115
98 D-fructose 6-phosphate exchange 258.122 6 2.52E+02 109
99 N-Acetylneuraminate exchange 308.265 11 4.10E+02 108
100 alpha-D-Ribose 5-phosphate exchange 228.095 5 1.98E+02 106
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Nr Carbon Source Molecular Weight,
[g/mol]

Nr. Carbon
Atoms

Price,
[US$/mol]

Profit MEP,
[US$ Txd/ US$ Substrate]

101 Melibiose exchange 342.300 12 5.51E+02 96
102 dIMP exchange 330.194 10 3.68E+02 94
103 L-Fucose exchange 164.158 6 2.77E+02 94
104 D-Galacturonate exchange 193.133 6 2.33E+02 92
105 D-Glucuronate exchange 193.133 6 2.33E+02 92
106 Deoxycytidine exchange 227.220 9 2.74E+02 88
107 L-Xylulose exchange 150.131 5 2.49E+02 88
108 Deoxyguanosine exchange 267.245 10 4.25E+02 78
109 Deoxyadenosine exchange 251.245 10 5.53E+02 63
110 D-Glucarate exchange 208.125 6 3.04E+02 62
111 UDP-N-acetyl-D-glucosamine exchange 605.343 17 9.56E+02 60
112 dAMP exchange 329.209 10 6.34E+02 55
113 3’-cmp exchange 321.183 9 4.23E+02 54
114 D-Glucosamine 6-phosphate exchange 258.145 6 5.28E+02 52
115 Maltotriose exchange 504.442 18 1.61E+03 49
116 sn-Glycero-3-phosphocholine exchange 257.224 8 3.40E+02 47
117 Deoxyinosine exchange 252.230 10 7.45E+02 47
118 dCMP exchange 305.184 9 5.88E+02 41
119 Glycerol 3-phosphate exchange 170.059 3 4.51E+02 35
120 N-Acetyl-D-mannosamine exchange 221.210 8 9.64E+02 35
121 L-Lyxose exchange 150.131 5 6.50E+02 34
122 2’,3’-Cyclic CMP exchange 304.176 9 7.75E+02 29
123 dTMP exchange 320.196 10 8.07E+02 29
124 D-Glyceraldehyde exchange 90.079 3 4.74E+02 28
125 2’,3’-Cyclic AMP exchange 328.201 10 1.37E+03 25
126 UDP-N-acetyl-D-galactosamine exchange 605.343 17 9.56E+02 24
127 UMP exchange 322.168 9 1.02E+03 22
128 3’-AMP exchange 345.209 10 1.78E+03 19
129 Agmatine exchange 132.209 5 1.29E+03 16
130 GMP exchange 361.208 10 2.03E+03 16
131 D-Allose exchange 180.158 6 1.74E+03 15
132 UDPglucose exchange 564.290 15 4.19E+03 12
133 L-Threonine O-3-phosphate exchange 197.084 4 1.36E+03 11
134 L-alanine-D-glutamate exchange 217.202 8 3.80E+03 8
135 UDPgalactose exchange 564.290 15 7.86E+03 6
136 dGMP exchange 345.209 10 5.29E+03 6
137 Acetoacetate exchange 101.082 4 2.98E+03 5
138 N-Acetylmuramate exchange 292.266 11 1.08E+04 4
139 Maltopentaose exchange 828.727 30 9.61E+04 1
140 Phenylpropanoate exchange 149.169 9 4.30E+04 1
141 O-Phospho-L-serine exchange 183.058 3 1.79E+04 1
142 D-Alanyl-D-alanine exchange 160.173 6 4.76E+04 1
143 beta D-Galactose exchange 180.158 6 5.55E+04 0
144 Acetate exchange 59.045 2 1.75E+04 0
145 5-Dehydro-D-gluconate exchange 193.133 6 5.95E+04 0
146 Maltotetraose exchange 666.585 24 2.91E+05 0
147 Xanthosine exchange 284.229 10 9.46E+04 0
148 Xanthosine 5’-phosphate exchange 362.193 10 1.04E+05 0
149 dUMP exchange 306.169 9 8.82E+04 0
150 D-Fructuronate exchange 193.133 6 8.29E+04 0
151 UDP-D-glucuronate exchange 577.266 15 1.78E+05 0
152 Glycerophosphoserine exchange 258.145 6 1.09E+05 0
153 2’,3’-Cyclic UMP exchange 305.161 9 9.40E+04 0
154 N-Acetyl-D-glucosamine 1-phosphate ex-

change
299.174 8 1.41E+05 0

155 2’,3’-Cyclic GMP exchange 344.201 10 1.46E+05 0
156 Cys-Gly exchange 178.212 5 6.99E+04 0
157 fructoselysine exchange 309.340 12 1.31E+05 0
158 3’-UMP exchange 322.168 9 1.38E+05 0
159 3’-GMP exchange 361.208 10 1.94E+05 0
160 L-Galactonate exchange 195.149 6 NA NA
161 D-Glucuronate 1-phosphate exchange 271.097 6 NA NA
162 1,4-alpha-D-glucan exchange 990.870 36 NA NA
163 2,3-diaminopropionate exchange 105.117 3 NA NA
164 2-Dehydro-3-deoxy-D-gluconate exchange 177.134 6 NA NA
165 3-(3-hydroxy-phenyl)propionate exchange 165.169 9 NA NA
166 L-alanine-D-glutamate-meso-2,6-

diaminoheptanedioate exchange
389.386 15 NA NA

167 L-alanine-D-glutamate-meso-2,6-
diaminoheptanedioate-D-alanine exchange

460.465 18 NA NA

168 L-alanine-L-glutamate exchange 217.202 8 NA NA
169 N-Acetyl-D-glucosamine(anhydrous)N-

Acetylmuramic acid exchange
477.446 19 NA NA

170 Fe(III)dicitrate exchange 434.050 12 NA NA
171 sn-Glycero-3-phosphoethanolamine ex-

change
215.143 5 NA NA

172 Glycerophosphoglycerol exchange 245.146 6 NA NA
173 sn-Glycero-3-phospho-1-inositol exchange 333.209 9 NA NA
174 hexadecenoate (n-C16:1) exchange 253.405 16 NA NA
175 L-Idonate exchange 195.149 6 NA NA
176 2(alpha-D-Mannosyl)-D-glycerate exchange 267.213 9 NA NA
177 octadecenoate (n-C18:1) exchange 281.459 18 NA NA
178 L-Prolinylglycine exchange 172.184 7 NA NA
179 psicoselysine exchange 309.340 12 NA NA
180 tetradecenoate (n-C14:1) exchange 225.351 14 NA NA
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Table B.3.: Concentration Time Courses for Batch ID 1. Glucose was added to the biore-
actor as follows: 2 g diluted in 4 ml after 14.5 hours; 1 g diluted in 2 ml after 56.5 hours.

Time
[h] OD DW

[g/l]
Glucose
[mmol/l]

Taxadiene
[mmol/l]

0 0.09 – 108.33 –
1 0.11 – - –
2 0.20 – – –
3 0.39 0.30 – –
4 0.68 0.50 110.56 –
5 1.13 – – –
6 1.72 1.20 103.89 –
6.5 2.00 – – –
7 2.34 – – –
7.5 2.90 – – –
8 3.48 1.67 83.33 –
8.5 3.72 – – 0.000
10.5 4.00 2.30 72.46 –
12.5 4.30 2.23 69.66 –
14.5 5.15 2.70 63.48 1.515 × 10−3

24.5 8.00 4.20 66.43 8.137 × 10−4

27.5 8.70 4.03 47.84 –
30.5 9.20 4.53 62.77 –
32.5 10.10 4.13 57.75 4.452 × 10−3

48.5 12.20 4.77 18.09 6.475 × 10−3

52.5 11.90 4.47 20.00 –
56.5 11.90 4.47 12.98 8.332 × 10−3

72.5 11.50 5.03 10.06 –
76.5 14.60 5.40 0.11 7.831 × 10−3

B.2. Model-based Fed-batch Optimization

B.2.1. Concentration Time Courses for Process Development

Concentration time courses for OD, glucose, and taxadiene for six different semi-batch
fermentations are provided in Tables B.3 to B.8.

B.2.2. Temperature Dependencies of Phases Duration and Exchange Rates

Tables B.9 and B.10 list all formulas used to describe the effect of Tproduction on phase
duration and exchange rates, respectively.

B.2.3. Modeling Concentration Time Courses for All Fermentations

Simulated concentration time courses for all six fermentation processes are shown in Figure
8.4 for batch 1 and in Figures B.1 to B.5 for all other batches. Determination coefficients
are calculated using following formula

R2 = 1−
∑

(Ei − Si)2∑
(Ei − Ē)2

, where Ē =
1

n

n∑
i=1

Ei.

E represents the experimental data set, containing n measurements, Ē is the mean of the
measured data and S is the simulated data set. Si is the corresponding predicted value of
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Table B.4.: Concentration Time Courses for Batch ID 2. Glucose was added to the biore-
actor as follows: 2 g diluted in 4 ml after 8.5 hours; 1.5 g diluted in 3 ml after 33.3 hours.

Time
[h] OD DW

[g/l]
Glucose
[mmol/l]

Taxadiene
[mmol/l]

0 0.07 – 115.61 –
2 0.26 – – –
4 0.78 – – –
5 1.47 – – –
5.5 2.04 1.27 103.27 –
6.5 3.60 – – –
7 1.00 – – 6.491 × 10−4

7.5 4.06 2.30 89.80 –
8.5 4.13 – – –

24.75 8.33 4.20 76.98 4.309 × 10−3

27.75 8.13 4.30 77.82 –
30.75 8.68 4.30 66.79 5.416 × 10−3

33.33 9.23 – – –
47 10.95 4.37 63.42 6.359 × 10−3

49.75 11.23 4.40 65.20 –
52.25 10.65 4.40 60.07 –
54.75 10.90 4.47 65.10 6.477 × 10−3

71.25 11.45 4.37 37.04 –
73.75 11.10 4.33 34.29 7.565 × 10−3

Table B.5.: Concentration Time Courses for Batch ID 3. Glucose was added to the biore-
actor as follows: 2.5 g diluted in 5 ml after 9.25, 27.17 and 47.25 hours; 5 g diluted in 10 ml after
55.5 hours.

Time
[h] OD DW

[g/l]
Glucose
[mmol/l]

Taxadiene
[mmol/l]

0.00 – 118.00 –
0.75 0.14 – 117.83 –
1.75 0.29 – – –
3.75 0.94 0.47 109.13 –
4.75 1.50 – – –
5.75 2.40 0.73 98.93 –
6.25 2.72 – – –
6.75 3.13 – – –
7.25 3.26 1.40 87.82 0.000
9.25 4.32 – – –
23.00 10.81 4.13 48.38 1.792 × 10−2

27.17 11.84 4.47 38.65 –
31.00 12.64 4.43 56.56 2.197 × 10−2

47.25 14.00 4.67 25.82 –
51.50 14.95 4.83 38.67 –
55.50 14.74 4.57 37.77 2.770 × 10−2

75.00 17.18 5.27 59.59 1.604 × 10−2
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Table B.6.: Concentration Time Courses for Batch ID 4. Glucose was added to the biore-
actor as follows: 5 g diluted in 10 ml after 23 hours; 2.5 g diluted in 5 ml after 27.3, 31.3 and 51.8
hours; 5 g diluted in 10 ml after 55.8 hours; 7.5 g diluted in 15 ml after 75.3 hours.

Time
[h] OD DW

[g/l]
Glucose
[mmol/l]

Taxadiene
[mmol/l]

0.00 0.06 111.01 –
1.00 0.18 0.09 101.92 –
2.00 0.30 – –
4.00 0.84 0.30 98.38 –
5.00 1.26 – –
6.00 1.85 0.83 92.93 –
6.75 2.62 – – –
7.25 3.21 1.17 89.80 0.000
9.50 6.22 – – –
10.50 7.89 2.43 42.04 1.922 × 10−3

23.00 12.81 – – –
27.25 13.13 3.47 24.93 –
31.25 12.28 2.67 31.31 1.830 × 10−3

47.50 12.60 2.87 0.00 –
51.75 14.20 3.80 0.00 –
55.75 13.00 3.87 20.86 7.340 × 10−4

75.25 12.97 4.10 0.00 –

Table B.7.: Concentration Time Courses for Batch ID 5. Glucose was added to the biore-
actor as follows: 2 g diluted in 4 ml after 9.8 hours; 5 g diluted in 10 ml after 30.3 hours and 1 g
diluted in 2 ml after 54.3 hours.

Time
[h] OD DW

[g/l]
Glucose
[mmol/l]

Taxadiene
[mmol/l]

0.00 0.10 111.11 –
0.50 0.15 – 112.23 –
1.50 0.24 – – –
2.50 0.44 – – –
3.50 0.80 0.49 116.46 –
4.50 1.54 – – –
5.50 3.00 1.51 105.80 –
6.25 3.80 – 92.76 –
7.25 4.25 – – –
8.25 5.44 2.87 – –
9.25 5.78 – – –
9.75 6.40 3.04 65.48 4.401 × 10−3

22.75 9.70 4.27 57.48 8.618 × 10−3

24.25 10.30 – – –
25.50 – – – –
27.00 11.10 4.56 64.93 1.116 × 10−2

30.25 10.80 4.53 55.46 1.377 × 10−2

47.00 13.20 5.07 74.61 –
50.75 – – – –
54.25 14.05 5.18 69.62 1.729 × 10−2

70.50 15.40 5.44 – –
74.75 15.55 5.44 – 1.827 × 10−2
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Table B.8.: Concentration Time Courses for Batch ID 6. Glucose was added to the biore-
actor as follows: 2 g diluted in 4 ml after 9.75 hours; and 5 g diluted in 10 ml after 30.25 and 54.25
hours.

Time
[h] OD DW

[g/l]
Glucose
[mmol/l]

Taxadiene
[mmol/l]

0.00 0.10 – 111.11 –
0.50 0.16 0.11 126.05 –
1.50 0.24 – – –
2.50 0.53 – – –
3.50 0.80 0.49 114.45 –
4.50 1.54 – – –
5.50 2.60 1.22 105.46 –
6.25 3.40 – 84.93 –
7.25 – – –
8.25 4.23 3.07 – –
9.25 5.76 – – –
9.75 5.97 3.24 74.97 2.075 × 10−3

22.75 6.40 4.49 39.55 1.303 × 10−2

24.25 11.60 – – –
25.50 12.50 – – –
27.00 13.00 4.76 26.63 1.614 × 10−2

30.25 14.10 5.16 12.39 2.802 × 10−2

47.00 17.50 5.62 31.19 –
50.75 18.85 – – –
54.25 19.35 5.93 8.11 3.578 × 10−2

70.50 22.20 6.24 34.54 –
74.75 23.50 6.51 – 3.598 × 10−2

Table B.9.: Formulas Used to Describe the Effect of Production Temperature on
Phase Duration. x represents Tproduction in °C.

Phase Symbol Equation R2

Response time tresponse 0.0257x− 0.1612 0.87
Duration of second biomass production phase tbiomass2 18.3 –
Duration of first product formation phase tproduction1 −0.9678x+ 47.59 0.98
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Table B.10.: Formulas Used to Describe the Effect of Production Temperature
on Exchange Rates.

Exchange Rate Symbol Equation R2

Growth µ2 −7.5724× 10−5x2 + 3.7440× 10−3x− 4.2090× 10−3 0.99
µ3 −1.5319× 10−5x2 + 7.9919× 10−4x− 6.5429× 10−3 0.99

Glucose Uptake rglucose2 0.0031x2 − 0.073x+ 1.06 0.99
rglucose3 0.0027x2 − 0.1066x+ 1.3083 0.99

Taxadiene Production rtxd1
c x e

−∆H̃
R x

1 + e
∆S
R e

−∆H
R x

0.85

rtxd2 0 –

x represents Tproduction in Celsius.
Parameter values for the Arrhenius-like equation providing a good fit to the data were calculated
as scaling factors modifying the original parameter values used in [57] as follows: c = 0.3612 e24.04

should be multiplied by 10.36; ∆H̃ = 15.000 should be multiplied by 1.54; R = 1.9872 (gas
constant); ∆S = 476.46 should be multiplied by 1.11; ∆H = 150.000 should be multiplied by 1.08.

Ei. Results are listed in Table B.11. Overall, concentration time courses for biomass are
better described by our model.
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Figure B.1.: Modeling Time Course Concentrations: Batch 2. Production condi-
tions corresponds to: Tproduction = 16°C, tinduction = 1 h. Pmax amounted to 1.7614 × 10−4

mmol taxadiene/l h
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Figure B.2.: Modeling Time Course Concentrations: Batch 3. Production conditions
corresponds to: Tproduction = 22°C, tinduction = 7.25 h. Pmax amounted to 7.7892 × 10−4

mmol taxadiene/l h
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Figure B.3.: Modeling Time Course Concentrations: Batch 4. Production conditions
corresponds to: Tproduction = 37°C, tinduction = 7.25 h. Pmax amounted to 1.8304 × 10−4

mmol taxadiene/l h
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Figure B.4.: Modeling Time Course Concentrations: Batch 5. Production conditions
corresponds to: Tproduction = 22°C, tinduction = 6.25 h. Pmax amounted to 4.5526 × 10−4

mmol taxadiene/l h
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Figure B.5.: Modeling Time Course Concentrations: Batch 6. Production conditions
corresponds to: Tproduction = 27°C, tinduction = 6.25 h. Pmax amounted to 9.2615 × 10−4

mmol taxadiene/l h

Table B.11.: Determination Coefficients for All Batches. For average calculation, only
positive values are considered.

Batch ID Biomass Glucose Taxadiene
1 0.982 0.923 0.912
2 0.994 0.934 0.982
3 0.993 0.756 0.629
4 0.878 0.926 -0.634
5 0.991 0.794 0.809
6 0.862 0.770 0.627

Average 0.950 0.850 0.792
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