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tinuous, and unbounded shocks is presented. These survival-functions14

are the product of their ordered and individually transformed argu-15

ments. The involved transformations may depend on the specific order16

of the arguments and must fulfill a monotonicity condition. Conversely,17

every survival function of that very form can be constructed using18

an exogenous shock model with independent and non-homogeneous19

shocks.20
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1 Introduction23

This work is concerned with the analytical characterization and probabilistic24

construction of multivariate probability laws of random vectors (τ1, . . . , τd)25

on Rd+ arising from a fatal-shock construction. The seminal model of this26

kind was presented in [20]. Marshall and Olkin’s main objective was to lift27

the lack-of-memory property to the d-variate case, an ansatz implying a28

distinct family of survival functions that can be constructed using a fatal-29

shock model involving 2d − 1 independent and exponentially distributed30

shocks. More precisely, the failure time of component i ∈ {1, . . . ,d} =: [d] is31

defined as32

τi := min{ZI : {i} ⊆ I ⊆ [d]}, i ∈ [d], (1)

where ZI, ∅ 6= I ⊆ [d], are independent exponentially distributed random33

variables with rates λI, ∅ 6= I ⊆ [d].34

Taking the eponymous Marshall–Olkin construction Eq. (1) as a starting35

point, various generalizations are possible1. Firstly, the operation ‘min’36

might be altered,see [9, Chp. 4.6] for a general concept for constructing37

multivariate distributions based on a convolution-closed, infinitely divisible38

class of univariate distributions, which can be used to construct multivariate39

normal distributions as well as Marshall–Olkin distributions. Second, the as-40

sumption of shocks being independent can be dropped, leading for instance41

to the class of Archimax copulas, also called scale-mixtures of Marshall–Olkin,42

which assume an Archimedean dependence for the ZI, see [11]. Third, and43

this is the path we pursue, shock distributions other than the exponential44

law can be considered. This has been already considered for the bivariate45

case, see [3, 12] as well as for the exchangeable d-variate case, see [4, 17]. An46

interesting result, that was derived in [21], is that the class of distributions,47

which is characterized by a modified lack-of-memory property, where the48

generic addition is replaced by a reducible and associative binary operator,49

is a subgroup of GMO distributions with shocks survival functions of the50

form exp{−λIH(t)}. In any of the above cases (or combinations thereof),51

the price to pay for the addition flexibility is a reduction in mathematical52

tractability. Deriving the survival function of a generalized d-variate fatal-53

shock model and analyzing its properties is a challenging task. Beyond that,54

the inverse membership-testing problem, i.e. deciding if a given survival55

function admits a shock-model representation, is much harder. Hence, it56

1The functional equation of the lack-of-memory property is another starting point for
generalizations, see [21].
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is not surprising that the bivariate case was investigated first, see [3, 19],57

followed by cases where the complexity is reduced by a reduction in the58

amount of considered shocks, see [4], or via some symmetry assumption,59

see [19, 22]. In [13], many properties of generalized Marshall–Olkin distri-60

butions, e.g. the corresponding copulae and coefficients of tail-dependence,61

are derived.62

The main achievement of the present manuscript is Thm. 1. It fully63

characterizes the class of survival functions arising as a particular instance64

of a fatal-shock model with independent shocks. This characterization is65

analytic one the one hand, translating the tedious d-increasingness property66

to a more convenient monotonicity property, and probabilistic on the other67

hand, establishing precisely how the 2d − 1 shock distributions must be68

selected to ultimately arrive at the model in concern.69

Closest to the present work is [22], where it is shown that an exchange-70

able function C mapping u ∈ [0, 1]d to [0, 1], defined via a permutation71

π ∈ Sd with uπ(1) 6 . . . 6 uπ(d), of the form72

C(u) = uπ(1) · δ2(uπ(2)) · . . . · δd(uπ(d)) (2)

is a copula if and only if the functions {δ2, . . . , δd} fulfill certain monotonicity73

conditions. This extends the bivariate case treated in [3]. Conversely, all cop-74

ulas of form Eq. (2) admit a stochastic representation as the survival-copula75

of an exchangeable exogenous shock model, i.e. the shock distribution is76

equal for any two shocks ZI and ZJ sharing the cardinality of their refer-77

encing sets |I| = |J|. In our analysis we work with survival functions and78

restrain ourselves from resorting to copulas, as Sklar’s separation, see [25],79

is not as natural in the case of non-exchangeable shock models as it is for80

exchangeable ones.81

To emphasize the relevance of the present study, let us stress that the82

Marshall–Olkin distribution, mostly due to its embedded lack-of-memory83

property, arises like a focal point of many inner-mathematical problems.84

Beyond that, it has been applied in different fields, see [5, 7, 14], most of85

the applications having a survival-time interpretation/model. For many86

real-world applications, however, the assumption of exponential shocks87

needs to be relaxed, see [2, 10], and the resulting model is of the very form88

that we classify with Thm. 1.89
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2 The Generalized Marshall–Olkin distribution90

The classical d-variate Marshall–Olkin distribution is parametrized by 2d− 191

constant hazard rates, λI > 0, ∅ 6= I ⊆ [d]. These parameters are used as92

intensities2 of the independent exponential shocks in construction Eq. (1),93

giving rise to the survival function94

P(τ1 > t1, . . . , τd > td) = F̄(t) = exp

−
∑

∅6=I⊆[d]

λImax
i∈I

ti

 . (4)

One way of generalizing the Marshall–Olkin distribution is to consider
time-dependent shock-intensities s 7→ λI(s), i.e.

P (ZI > t) = S̄I(t) = exp
{
−

∫t
0

λI(s)ds

}
, ∀t > 0,

where s 7→ λI(s) is a non-negative function such that the involved integral
is finite for all t > 0. In the following, this concept is slightly extended by
solely demanding that that cumulative hazard rates HI(t) := − log S̄I(t) are
strictly positive, non-decreasing, zero in t = 0, and continuous. Particularly,
atoms at infinity are allowed and the class of considered survival functions
is

Ḡ :=
{
S̄ : R+ → (0, 1] : S̄(0) = 1, S̄ ∈ C(0)(R+),dS̄ 6 0

}
.

For a set of survival functions S̄I ∈ Ḡ, ∅ 6= I ⊆ [d], with corresponding
(cumulative) hazard rate functions HI, fulfilling the (generalized) marginal-
finiteness condition∏

I⊇{i}

S̄I ∈ Ḡ1 :=
{
S̄ ∈ Ḡ : lim

t→∞ S̄(t)→ 0
}

, ∀i ∈ [d],

the corresponding survival function of a generalized Marshall–Olkin (GMO)95

distribution is96

F̄(t) =
∏

∅6=I⊆[d]

S̄I

(
max
i∈I

ti

)
= exp

−
∑

∅6=I⊆[d]

HI

(
max
i∈I

ti

) . (5)

2The interpretation λI = 0 ⇔ P(ZI =∞) = 1 requires the marginal-finiteness condition∑
I⊇{i}

λI > 0, ∀ i ∈ [d], (3)

to make the resulting vector (τ1, . . . , τd) well defined.
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Note, that, with the (generalized) marginal-finiteness condition, the function97

in Eq. (5) is indeed the survival function of a real, non-negative random vec-98

tor; this follows if an exogenous shock model with shock-survival-functions99

S̄I, ∅ 6= I ⊆ [d] is considered.100

The survival function in Eq. (5) has an alternative, more compact, repre-101

sentation: Let t > 0 and π ∈ Sd be a permutation such that tπ(1) > . . . >102

tπ(d); then, by reordering the factors appropriately, it follows that103

F̄(t) =

d∏
i=1

gπi (tπ(i)) =

d∏
i=1

g̃π({i,...,d})π(i)(tπ(i)), (6)

where for i ∈ [d] and π ∈ Sd as well as ∅ 6= I ⊆ [d] and m ∈ I

gπi (t) :=
∏

I:π(i)∈I⊆π({i,...,d})

S̄I(t) (7a)

and

g̃I,m(t) :=
∏

J:I∩J={m}

S̄J(t). (7b)

Furthermore, it follows that the factors gπi as well as g̃I,m, respectively, are104

in the class of admissible survival functions Ḡ and gπ1 as well as g̃[d],m,105

respectively, are in the respective subclass with no atoms at infinity Ḡ1.106

The conclusion from the previous paragraph is, that survival functions107

of GMO-distributed random vectors are the product of their ordered, and108

individually transformed arguments, i.e. functions of the form as presented109

in Eq. (6). The following theorem shows, among other things, that a survival110

function of this kind implies a stochastic representation as an exogenous111

shock model.3112

Theorem 1. Let F̄ : Rd+ → R be a continuous function having a representation as113

in Eq. (6) for an arbitrary family of functions {gπi : i ∈ [d],π ∈ Sd}. If additionally114

• gπ1 ∈ Ḡ1 ∀π ∈ Sd and115

• gπi (0) = 1 ∀i ∈ [d],π ∈ Sd,116

then the following statements are equivalent:117

3For readability, the necessary conditions on the transformations gπi are omitted here and
the reader is referred to the full statement in Thm. 1.
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1. F̄ is the survival function of a multivariate random vector τ ∈ Rd+.118

2. For all I1, I2 ⊆ [d] with I1 ∩ I2 = ∅ and I2 6= ∅, let {πJ}J⊆I2 ⊆ Sd be a119

family of permutations on [d] which fulfills for each J ⊆ I2 the following120

conditions121

(a) πJ ({1, . . . , |I1|}) = I1 (if I1 6= ∅),122

(b) πJ ({|I1|+ 1, . . . , |I1 ∪ J|}) = J , and123

(c) πJ ({|I1 ∪ J|+ 1, . . . , |I1 ∪ I2|}) = I2\J .124

Define for s > t > 0125

G
{πJ}J⊆I2
I1,I2

(s, t) :=
∑
J⊆I2

(−1)|J|
|J|∏
j=1

g
πJ
|I1|+j

(s)

|I2\J|∏
j=1

g
πJ
|I1∪J|+j(t). (8)

Then G
{πJ}j⊆I2
I1,I2

does not depend on the specific family {πJ}J⊆I2 chosen; there-126

fore, write GI1,I2 . Furthermore, GI1,I2(s, t) is non-negative and continuous127

in s and t.128

3. For all I1, I2 ⊆ [d] with I1 ∩ I2 6= ∅ and I2 6= ∅ define for m ∈ I2129

S̄mI1,I2(t) :=

|I2|∏
i=1

 ∏
J⊆I2

|J|=i,m∈J

g̃J∪I1,m(t)


(−1)i−1

, t > 0. (9)

Then S̄mI1,I2 does not depend on the choice of m, i.e. S̄mI1,I2 ≡ S̄I1,I2 , and130

S̄I1,I2 ∈ Ḡ.131

4. For all ∅ 6= I ⊆ [d] and m ∈ I define132

S̄mI (t) :=

|I|∏
i=1

 ∏
J⊆I

|J|=i,m∈J

g̃J∪([d]\I),m(t)


(−1)i−1

, t > 0. (10)

Then S̄mI does not depend on the choice of m, i.e. S̄mI ≡ S̄I, and S̄I ∈ Ḡ.133

Due to the length of the required notation and the complexity of the134

theorem, giving an intuitive interpretation is appropriate before providing135
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the proof. Therefore, the following paragraph provides detailed interpreta-136

tions for the statements in Thm. 1. To avoid an overflow of phrases like “let137

. . . be” or “If . . . is fulfilled, then . . . ,” it is assumed that all objects are used138

as stated in the theorem and that statement 1. is fulfilled.139

The first part of statement 2. was added to avoid confusion over the
choice of {πj}J⊆I2 . However, as a direct consequence of F̄ having a well-
defined representation as in Eq. (6), it is mathematically redundant. The

function G
{πJ}J⊆I2
I1,I2

in Eq. (8) has the interpretation of

G
{πJ}J⊆I2
I1,I2

(s, t) = P (τi ∈ [t, s) ∀i ∈ I2 | τi > s ∀i ∈ I1) .

As it is well-known, see e.g. [24], a multivariate function F : Rd → [0, 1] is a
distribution function if and only if it fulfills the three conditions of “having”
margins, groundedness, and non-negative F-volume for all d-boxes (a,b],
a < b. The last property guarantees, that all (d-dimensional) rectangles
have a non-negative probability, which can be represented with F using the
principle of inclusion and exclusion. Particularly, the property reads∑

c∈×di=1{ai,bi}
(−1)|ai=ci|F(c) > 0.

Moreover, using the principle of inclusion and exclusion, it follows that a
function F̄ is a (multivariate) survival function if the corresponding (hypo-
thetical) distribution function, which is defined by

F(x) = 1+
∑

∅6=I⊆[d]

(−1)|I|F̄

(∑
i∈I

xi~ei

)
,

is a proper multivariate distribution function. In that spirit, the second part
of statement 2. has the interpretation of an “F̄-volume”-condition. Due
to the specific form of the survival function, however, it suffices that the
F̄-volumes of some special sets are non-negative. For the exchangeable case,
this aspect was further investigated in [22], where an alternative proof of
“statement 1. ⇔ statement 2.” was shown on the copula-level: Each rectangle
with non-increasing lower boundaries admits a partition into so called d-
boxes of the form×m−1

i=1 (ti, si]× (t, s]d−m+1 such that t1 > . . . > tm−1 > t
and tm−1 > s. The special form of the representation in Eq. (6) allows
to expand each F̄-volume of a d-box into the product of the F̄-volume of
×m−1
i=1 (ti, si]×Rd−m+1

+ and GI1,I2(s, t), where I1 and I2 are arbitrary sets

6
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with cardinality m− 1 and d−m+ 1,4 respectively:

P(τπ(i) ∈ (ti, si] ∀i ∈ [m− 1], τπ(i) ∈ (t, s] ∀i > m)

= P(τπ(i) ∈ (ti, si] ∀i ∈ [m− 1]) ·Gπ([m−1]),[d]\π([m−1])(s, t).

Hence, the question of non-negative F̄-volume can be reduced inductively140

to statement 2. For the bivariate case, the remaining sets, which have to be141

tested for non-negativity, are sketched in Fig. 1. The last part in statement 2.142

merely reflects the choice of possible shock-distributions, i.e. the class Ḡ.143

Evidently, the statements 3. and 4. are closely linked, as the latter is144

a special case of the former. The last statement contains the formula,145

how the survival functions of the original shocks can be retrieved from the146

multivariate survival function of a GMO distribution. Hence, the implication147

“statement 4. ⇒ statement 1.” can be paraphrased as:148

If the formula in Eq. (10), for retrieving the survival functions of the shocks, yields149

admissible survival functions of class Ḡ, then F̄ is the survival function of an ESM150

with shock survival functions S̄I.151

The interpretation of the third statement is a little bit more involved.
Given a d-variate model for an ESM and a resulting random vector τ, an
important observation, which follows directly from the construction via
the min-operator, is that (multivariate)-margins of τ have a shock model
representation, too. Note, that the survival functions of the shocks, corre-
sponding to the marginal model are different, but can be inferred, from
those of the full (d-variate) model. To see this, let ∅ 6= K ( [d] be a proper
subset of [d], preferably with a cardinality bigger than one. Then

τi = min {min {SJ : J∩K = I} : i ∈ I ⊆ K} , i ∈ K.

A calculation, which is very similar to the one used to prove that “statement
4. ⇒ statement 1.”, yields that

S̄I1,I2(t) =
∏

K⊆{1,...,d}\(I1∪I2)

S̄I2∪K(t),

which is the survival function of min{SJ : J ∩ (I1 ∪ I2) = I2}. Hence, state-152

ment 3, requires that statement 4. is fulfilled for every (theoretical) marginal153

model.154

4This reflects the exchangeability of F̄, which is assumed here.
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Figure 1: The reduced set of “test-rectangles” for d = 2, which have to
be tested for non-negative “2-volume” to verify the validity of a survival
function. The three graphs display the three cases, which can be generalized
to higher dimensions: (A) Squares, which are split in half by the diagonal,
(B) Infinitely expanding rectangles which touch one axis, and (C) Infinitely
expanding rectangles which touch the diagonal in one point.
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3 Proof of the characterization theorem155

The theorem will be proven in four steps. Particularly, it is proved that156

3⇒ 4⇒ 1⇒ 2⇒ 3.157

Remark 1. Under the assumptions of Thm. 1, particularly the representation
of F̄ in Eq. (6), the expression

gπi (t) =

∏i
j=1 g

π
j (t)∏i−1

j=1 g
π
j (t)

is invariant for different permutations with coinciding images of [i − 1]

and i. If the first statement of the theorem is fulfilled, then gπi has the
interpretation of a conditional probability, i.e.

gπi (t) = P
(
τπ(i) > t | τπ([i−1]) > t

)
.

Hence, the function gπi only depends on π([i− 1]) and π(i) and it is justified158

to work with g̃π([i]),π(i).159

Remark 2. Let the assumptions of Thm. 1 be fulfilled with F̄ being the survival160

function of a random vector τ. Then τ has a stochastic representation as an161

ESM with shock survival functions S̄I, i.e. if the ZI ∼ S̄I, ∅ 6= I ⊆ [d], are162

independent shocks and τ̃ is defined by Eq. (1), then τ d= τ̃.163

Proof of 3⇒ 4. First observe that 4. is a special case of 3., hence 3. ⇒ 4.164

follows directly.165

Proof of 4⇒ 1. Let 4. from Thm. 1 be fulfilled and define for independent
random variables ZI ∼ S̄I, ∅ 6= I ⊆ [d] the random vector τ by

τi := min {ZI : i ∈ I} , i ∈ [d].

For t > 0 and π ∈ Sd with tπ(1) > . . . > tπ(d), using the independence of
the shock variables and reordering the factors, it holds that

P (τ > t) =
∏

∅6=I⊆[d]

P

(
ZI > max

i∈I
ti

)

=

d∏
i=1

 ∏
I⊆π({i,i+1,...,d})

π(i)∈I

P
(
ZI > tπ(i)

).

9
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For i ∈ [d] and π(i) ∈ I ⊆ π({i, . . . ,d}), by assumption, the survival function
S̄I ≡ S̄π(i)I has a representation as in Eq. (10) with m = π(i) and∏

I⊆π({i,i+1,...,d})
π(i)∈I

P
(
ZI > tπ(i)

)

=
∏

I⊆π({i,i+1,...,d})
π(i)∈I

 ∏
J⊆I
π(i)∈J

(
g̃J∪([d]\I),π(i) (tπ(i)))(−1)|J|−1

.

Fix K ⊆ [d] with π ([i]) ⊆ K; then i 6 |K| = k 6 d and 1 6 j 6 k− i+ 1. The
expression g̃K,π(i)(tπ(i)) with an exponent of (−1)j−1 appears

(
k−i
j−1

)
times,

as there are exactly
(
k−i
j−1

)
possible choices for J with π(i) ∈ J ⊆ K\π([i− 1]).

Hence, the overall exponent of the expression g̃K,π(i)(tπ(i)) is

k−i+1∑
j=1

(−1)j−1
(
k− i

j− 1

)
=

k−i∑
j=0

(−1)j
(
k− i

j

)

= (1− 1)k−i =

{
1, k = i

0, k > i,

where the latter expression follows with the binomial formula. Finally, it
follows that

P (τ > t) =

d∏
i=1

g̃π([i]),π(i) (tπ(i)) = d∏
i=1

gπi
(
tπ(i)

)
.

166

In the following, I1, I2, {πJ}J⊆I2 , s and t (or a subset of these elements)167

fulfill the usual conditions if168

1. s > t > 0,169

2. I1, I2 ⊆ [d] with I1 ∩ I2 = ∅ and I2 6= ∅,170

3. for J ⊆ I2 one has171

(a) πJ ({1, . . . , |I1|}) = I1 (if I1 6= ∅),172

(b) πJ ({|I1|+ 1, . . . , |I1 ∪ J|}) = J,173

10
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(c) πJ ({|I1 ∪ J|+ 1, . . . , |I2|}) = I2\J.174

If only a specific permutation π is used, it is assumed that it fulfills this175

property for J = I2.176

Proof of 1⇒ 2. Let 1. in Thm. 1 be fulfilled and let I1, I2, {πJ}J⊆I2 , s and t177

fulfill the usual conditions. First assume that for arbitrary π ∈ Sd and i ∈ [d]178

the functions gπi are strictly positive on R+. Then179

G
{πJ}J⊆I2
I1,I2

(s, t) =

∑
J⊆I2 (−1)

|J|
∏|I1∪J|
j=1 g

πJ
j (s)

∏|I2\J|
j=1 g

πJ
|I1∪J|+j(t)∏|I1|

j=1 g
π∅
j (s)

, (11)

where it is used that by 1. the diagonal of marginal survival functions of τI1
can be represented with every π fulfilling π({1, . . . , |I1|}) = I1. Particularly,
it holds that

P (τi > s, i ∈ I1) =
|I1|∏
j=1

g
πJ1
j (s) =

|I1|∏
j=1

g
πJ2
j (s), J1, J2 ⊆ I2, s > 0.

Subsequently, the numerator of Eq. (11) can be rewritten using the principle
of inclusion and exclusion as

|I2|∑
i=0

(−1)i
∑

J⊆I2:|J|=i

|J∪I1|∏
j=1

g
πJ
j (s)

|I2\J|∏
j=1

g
πJ
|I1∪J|+j(t)

= P
(
AI1,I2
∅

)
−

|I2|∑
i=1

(−1)i+1
∑

J⊆I2:|J|=i

P

⋂
j∈J
AI1,I2
j


= P

(
AI1,I2
∅

)
− P

⋃
i∈I2

AI1,I2
i

 = P
(
AI1,I2

)
,

where

AI1,I2 := {τi > s ∀i ∈ I1, τi ∈ (t, s] ∀i ∈ I2} ,

AI1,I2
∅ := {τi > s ∀i ∈ I1, τi > t ∀i ∈ I2} , and

AI1,I2
i :=

 ⋂
j∈I1∪{i}

{τj > s}

∩
 ⋂
j∈I2\{i}

{τj > t}

 , i ∈ I2.
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It follows that

G
{πJ}J⊆I2
I1,I2

(s, t) = P (τi ∈ (t, s] ∀i ∈ I2 | τi > s ∀i ∈ I1)

and subsequently that G
{πJ}J⊆I2
I1,I2

(s, t) is non-negative and does not depend180

on the specific choice of {πJ}J⊆I2 .
5

181

Now, by induction over i, the strict positivity, continuity, and non-182

increasingness of gπi is proven for all π ∈ Sd. This implies that GI1,I2(s, t)183

is continuous in s and t. For i = 1 and π ∈ Sd, the assumptions of Thm. 1184

imply that gπ1 is strictly positive, continuous, and non-increasing. Let the185

claim be fulfilled for j < i, i.e. gπj is strictly positive, continuous, and186

non-increasing for j 6 i− 1 and π ∈ Sd.187

Right-continuity and left-limits: It is well known, see, e.g., [24, Chp. 6],
that copulae are Lipschitz-continuous with constant one. Hence, by exploit-
ing the copula/survival function decomposition, it holds that

∣∣F̄(s1, . . . , sd) − F̄(t1, . . . , td)
∣∣ 6 d∑

i=1

∣∣F̄i(si) − F̄i(ti)∣∣ ∀t, s > 0
and right-continuity as well as left-limits of F̄ are inherited from the mar-
gins. For π ∈ Sd the survival function t 7→ P

(
minj6i τπ(j) > t

)
is right-

continuous with left-limits and with

gπi (t) =

∏i
j=1 g

π
j (t)∏i−1

j=1 g
π
j (t)

=
P
(
minj6i τπ(j) > t

)∏i−1
j=1 g

π
j (t)

,

right-continuity with left-limits for gπi follows with the induction hypothesis.188

Non-increasingness: For π ∈ Sd and s > t > 0 define the vector u(s, t) by

uπ(j)(s, t) :=


s , ∀j < i,
t , j = i,

0 , ∀j > i.
5The independence of the specific choice of {πJ}J⊆I2 can also be derived without resort-

ing to the probabilistic interpretation by using the assumption that F̄ has a well-defined
representation as in Eq. (6).
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Then, by monotonicity of the measure P, one has

P (τ > u(s, s)) 6 P (τ > u(s, t))

⇔ gπi (s)

i−1∏
j=1

gπj (s) 6 g
π
i (t)

i−1∏
j=1

gπj (s)

⇔ gπi (s) 6 g
π
i (t),

where the induction hypothesis, i.e. gπj is strictly positive for all j < i, is189

used.190

Strict positivity: Assume for π ∈ Sd that there exists a finite upper bound
s? for strict positivity of gπi , i.e. s? := inf {u > 0 : gπi (u) = 0} <∞, and as gπi
is right-continuous and non-increasing we have that gπi (s

?) = 0. For t < s?

we can choose I1 = π ({1, . . . , i− 2}) and I2 = π({i− 1, i}). Furthermore, let π̃
be the permutation which switches the positions of i− 1 and i in π, i.e. π̃ =

π(i− 1, i). Assume w.l.o.g. that s? 6 u? for u? := inf {u > 0 : gπ̃i (u) = 0} ∈
R̄+ (else switch the roles of π and π̃ and prove the contradiction for π̃ first).
Then, with the induction hypothesis it holds that gπj ,gπ̃j > 0 ∀j < i and, for
π∅ ∈ {π, π̃}, that

0
IH
6 GI1,I2(s

?, t) =
i∏

j=i−1

g
π∅
j (t) − gπi−1(s

?)gπi (t)

− gπ̃i−1(s
?)gπ̃i (t) +

i∏
j=i−1

gπj (s
?)

= g
π∅
i−1(t)g

π∅
i (t) − gπi−1(s

?)gπi (t) − g
π̃
i−1(s

?)gπ̃i (t)

=

{(
gπi−1(t) − g

π
i−1(s

?)
)
gπi (t) − g

π̃
i−1(s

?)gπ̃i (t), π∅ = π(
gπ̃i−1(t) − g

π̃
i−1(s

?)
)
gπ̃i (t) − g

π
i−1(s

?)gπi (t), π∅ = π̃.

(12)

The last expression in Eq. (12) becomes negative if t is sufficiently close to191

s?:192

1. If u? > s?, choose π∅ = π. Then for t ↗ s? Eq. (12) approaches193

−gπ̃i−1(s
?)gπ̃i (s

?−).194

As gπ̃i−1(s
?) > 0 by the induction hypothesis and gπ̃i (t) > 0 ∀t < u?

with s? < u? by the assumption made above it holds that

0 6 −gπ̃i−1(s
?)gπ̃i (s

?−) < 0.

13
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2. If s? = u? and gπ∅i (s?−) > g
π∅
i (s?) = 0 for at least one π∅ ∈ {π, π̃}, then195

for t↗ s? Eq. (12) approaches −g
π∅
i−1(s

?)g
π∅
i (s?−).196

As gπ∅i−1(s
?) > 0 by the induction hypothesis and gπ∅i (s?−) > 0 by the

assumption made above it holds that

0 6 −g
π∅
i−1(s

?)g
π∅
i (s?−) < 0.

3. Otherwise, as gπ∅j for j ∈ {i− 1, i} have left-limits by the induction
hypothesis, for every sequence tk ↗ s? with tk 6= s?, non-negative
sequences {a

π∅
j,k}k∈N with aπ∅j,k(s

? − tk) → 0 for k → ∞ can be found
s.t.

g
π∅
j (tk) = g

π∅
j (s?−)+ a

π∅
j,k(s

? − tk), j ∈ {i− 1, i}, k ∈N.

By the assumption on s?, it holds that aπ∅i,k > 0 for all k ∈ N and
π∅ ∈ {π, π̃}. If s? = u? and gπ∅i (s?−) = g

π∅
i (s?) = 0 for all π∅ ∈ {π, π̃},

it follows from Eq. (12) and (left-)continuity of gπ∅i−1 that

0 6

{
aπi−1,ka

π
i,k(s

? − tk)
2 − gπ̃i−1(s

?)aπ̃i,k(s
? − tk), π∅ = π

aπ̃i−1,ka
π̃
i,k(s

? − tk)
2 − gπi−1(s

?)aπi,k(s
? − tk), π∅ = π̃

or equivalently

0 6

a
π
i−1,k(s

? − tk)
aπi,k
aπ̃i,k

− gπ̃i−1(s
?), π∅ = π

aπ̃i−1,k(s
? − tk)

aπ̃i,k
aπi,k

− gπi−1(s
?), π∅ = π̃.

Now choose k sufficiently large and π∅ s.t. the fraction appearing in
the upper equation is smaller or equal to 1, then

0 6

{
aπi−1,k(s

? − tk) − g
π̃
i−1(s

?), aπi,k 6 aπ̃i,k
aπ̃i−1,k(s

? − tk) − g
π
i−1(s

?), aπi,k > a
π̃
i,k

< 0,

where it is used that the respective first summand converges for k→∞ to 0197

and the last summand is negative. Hence, a contradiction is found for each198

case and therefore gπi (t) > 0 ∀t ∈ R+.199
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Left-continuity: Let I1 and I2 as well as π, π̃, and π∅ be as above. Then,
for all s > t > 0 the function

P (τi ∈ (t, s], i ∈ I2 | τi > s, i ∈ I1) = GI1,I2(s, t)

has left-limits in t. Assume that there exists s† ∈ R×+ with gπi (s
†−) > gπi (s

†),
then

0
IH
6 lim
t↗s†

GI1,I2(s
†, t)

= lim
t↗s†

 i∏
j=i−1

g
π∅
j (t) − gπi−1(s

†)gπi (t) − g
π̃
i−1(s

†)gπ̃i (t)

+

i∏
j=i−1

gπj (s
†)


π∅=π̃,(?)

=
(
gπi (s

†) − gπi (s
†−)
)
gπi−1(s

†) < 0,

where it is used in (?), that the first and third summand cancel out, when200

using that gπ̃i−1 is continuous under the induction hypothesis. This is a201

contradiction - hence gπi is left-continuous.202

203

Remark 3. The induction in the second part of the proof can be performed204

on the basis of statement 2. (instead of 1.) from Thm. 1 if the parts on205

right-continuity with left-limits and non-increasingness are replaced by the206

following lemma (as they rely on the survival function assumption of 1.). In207

particular, 2. implies gπi ∈ Ḡ for all i ∈ [d],π ∈ Sd.208

Lemma 1. Let 2. from Thm. 1 be fulfilled and gπj be right-continuous with left-209

limits, non-increasing, and strictly positive for all j 6 i− 1 and π ∈ Sd. Then gπi210

is right-continuous with left-limits and non-increasing for all π ∈ Sd.211

Proof. Let I1, I2, and π fulfill the usual conditions with |I2| = 2 and |I1| =212

i− 2 and define π̃ = π(i− 1, i).213
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Right-continuity: Let s+h > s > t > 0. As GI1,I2(s, t) is right-continuous
in s it holds that

0 = lim
h↘0

GI1,I2(s+ h, t) −GI1,I2(s, t)

IH
= gπi−1(s)︸ ︷︷ ︸

IH
>0

lim
h↘0

(gπi (s+ h) − g
π
i (s)),

where it is used that under the induction hypothesis all but two terms cancel214

out.215

Left-limits: Let s > s− h > t > 0. As GI1,I2(s, t) and gπ∅i−1(s), π∅ ∈ {π, π̃}
have left-limits in s and gπi−1 is positive by induction hypothesis it follows
that gπi has left-limits:

lim
h↘0

gπi (s− h)

= lim
h↘0

(
GI1,I2(s− h, t) − gπ̃i−1(t)g

π̃
i (t)

gπi−1(s− h)

−
−gπi−1(s− h)g

π
i (t) − g

π̃
i−1(s− h)g

π̃
i (t)

gπi−1(s− h)

)
.

Non-increasingness: Now, let I1, I2, and π fulfill the usual conditions
with I2 = {π(i)} and I1 = π([i− 1]). As GI1,I2 is non-negative, it holds for
all s > t > 0 that

0 6 GI1,I2(s, t) = g
π
i (t) − g

π
i (s).

216

Lemma 2. Assume that statement 2. of Thm. 1 is fulfilled and let I1 and I2 fulfill217

the usual conditions. Then for each m ∈ I2, S̄mI1,I2 is an R+-valued, positive, and218

continuous function on R+. Furthermore, S̄mI1,I2 does not depend on m ∈ I2, i.e.219

S̄m1

I1,I2
(t) = S̄m2

I1,I2
(t) ∀t > 0,m1,m2 ∈ I2. (13)

Proof. For π ∈ Sd, due to Rmk. 3 and Lem. 1, it follows that the functions220

gπi , i = 1, . . . ,d are positive, continuous functions on R+. Hence S̄mI1,I2 is an221

R+-valued, positive, and continuous function for every I1, I2 fulfilling the222

usual conditions with m ∈ I2.223

16

[ August 14, 2018 at 9:24 – Exogenous shock models ]



EXOGENOUS SHOCK MODELS

In the following, it is proven, by induction over |I2|, that Eq. (13) holds224

and furthermore, that for all I1 and I2 fulfilling the usual conditions225

|I2|∏
i=1

gπ̃|I1|+i(t) =

|I2|∏
i=1

gπ̂|I1|+i(t) ∀t > 0 (14)

for all π̃, π̂ ∈ Sd fulfilling π([|I1|]) = I1 and π([|I1 ∪ I2|]\[|I1|]) = I2 for
π ∈ {π̃, π̂}. For |I2| = 1 both claims are naturally fulfilled. Let both claims
be fulfilled for |I2| < p and let I1, I2 as well as π fulfill the usual conditions
with |I2| = p, m ∈ I2 as well as π(|I1|+ 1) = m, then for t > 0∏

∅6=J⊆I2

S̄
π(minj∈J π−1(j))

I1∪(I2\J),J (t)

(?)
=

|I2|∏
i=1

∏
J⊆π({|I1|+i,...,|I1∪I2|})

π(|I1|+i)∈J

S̄
π(|I1|+i)
I1∪(I2\J),J(t)

=

|I2|∏
i=1

∏
J⊆π({|I1|+i,...,|I1∪I2|})

π(|I1|+i)∈J

×
∏
L⊆J

π(|I1|+i)∈L

(
g̃L∪I1∪(I2\J),π(|I1|+i)(t)

)(−1)|L|−1
,

where the factors in (?) are regrouped in a similar sense as for the alternative226

representation for the GMO survival function.227

Now for i ∈ [d] fix π({1, . . . , |I1|+ i}) ⊆ K ⊆ I1 ∪ I2 and define k = |K| as
well as 1 6 l 6 k− |I1|− i+ 1. The expression g̃K,π(|I1|+i)

k (t) with exponent
(−1)l−1 appears

(
k−|I1|−i
l−1

)
times and the overall exponent for g̃K,π(|I1|+i)

k is

k−i−|I1|+1∑
l=1

(−1)l−1
(
k− i− |I1|

l− 1

)
=

{
1, k = |I1|+ i

0, else .

Hence, as it holds for k = |I1|+ i that K = π({1, . . . , |I1|+ i}) and

∏
∅6=J⊆I2

S̄
π(minj∈J π−1(j))

I1∪(I2\J),J (t) =

|I2|∏
i=1

gπ|I1|+i(t)

17
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or equivalently,228

S̄mI1,I2(t) =

∏|I2|
i=1 g

π
|I1|+i

(t)∏
∅6=J(I2 S̄

π(minj∈J π−1(j))

I1∪(I2\J),J (t)
. (15)

By induction, the factors of the denominator of the r.h.s. in Eq. (15),

S̄
π(minj∈J π−1(j))

I1∪(I2\J),J , are independent of π(minj∈J π−1(j)) and subsequently also
of m. Moreover, for arbitrary I1, I2 and {πJ}J⊆I2 fulfilling the usual condi-
tions and s > 0

|I2|∏
j=1

g
πI2
|I1|+j

(s) = (−1)|I2|

G{πJ}J⊆I2
I1,I2

(s, 0) −
∑
J(I2

(−1)|J|
|J|∏
j=1

g
πJ
|I1|+j

(s)

 .

By induction and assumption, the r.h.s. does not depend on the specific fam-229

ily {πJ}J⊆I2 chosen, therefore Eq. (14) holds for |I2| = p. In conclusion, the230

nominator in Eq. (15) does not depend on the specific π, and subsequently231

m, chosen and Eq. (13) holds for |I2| = p.232

Lemma 3. Let I1 and I2 fulfill the usual conditions and assume that S̄m1

I1∪I2\J,J =

S̄m2

I1∪(I2\J),J ∈ Ḡ for all ∅ 6= J ⊆ I2 and m1,m2 ∈ J. Then for s > t > 0

GI1,I2(s, t) = P (τ̌i ∈ (t, s] ∀i ∈ I2) ,

where
τ̌i := min

{
ŽJ : i ∈ J ⊆ I2

}
, i ∈ [d]

with independent random shocks ŽJ ∼ S̄I1∪I2\J,J for ∅ 6= J ⊆ I2.233

Proof. As in the proof of 4. to 1. one can derive analogously for t > 0

and π ∈ Sd with tπ(1) > . . . > tπ(d) as well as π ({1, . . . , |I1|}) = I1 and
π ({|I1|+ 1, . . . , |I1 ∪ I2|}) = I2 that

P
(
τ̌j > tj ∀j ∈ I2

)
=

|I1∪I2|∏
j=|I1|+1

gπj
(
tπ(j)

)
=

|Ǐ2|∏
j=1

ǧπ̌j
(
ťπ̌(j)

)
,

where for Ǐ2 = {1, . . . , |I2|}, π̌ ∈ S|I2| is defined by

π(|I1|+ j) = iπ̌(j) ∀j ∈ Ǐ2, I2 = {i1, . . . , i|I2|}

and ǧπ̌j := gπ
|I1|+j

as well as ťπ̌(j) := tπ(|I1|+j). Then, it holds for all 0 6 t < s
that

P
(
τ̌j ∈ (t, s] ∀j ∈ I2

)
= Ǧ∅,Ǐ2(s, t) = GI1,I2(s, t),

where Ǧ∅,Ǐ2 corresponds to Eq. (8) w.r.t. {ǧπ̌j }j∈Ǐ2,π̌∈S|I2|
.234
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The essence of the previous Lemma is the following: Let I1 and I2 fulfill
the usual conditions, ZI ∼ S̄I ∈ Ḡ, ∅ 6= I ⊆ [d], τ be defined as in Eq. (1), and
τ̌ ∈ R

|I2|
+ be defined by

τ̌i := min {min {ZJ : J∩ (I1 ∪ I2) = I} : i ∈ I ⊆ I2} .

Then

P (τi ∈ (t, s] ∀i ∈ I2 | τi > s ∀i ∈ I2) = P (τ̌i ∈ (t, s] ∀i ∈ I2) ∀s > t > 0.

Lemma 4. Let I1 and I2 fulfill the usual conditions. Then, for a specific family

{πJ}J⊆I2 , the function G
{πJ}J⊆I2
I1,I2

depends on gπJi , |I1|+ 1 6 i 6 |I1 ∪ I2|, J ⊆ I2.
Therefore, write

G
{πJ}J⊆I2
I1,I2

≡ G
{
g
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J⊆I2

I1,I2
.

Assume that gπJi , |I1|+ 1 6 i 6 |I1 ∪ I2|, J ⊆ I2 are positive. Then it holds for all
s > t > 0 that

G

{
g
πJ
|I1|+1

,...,g
πJ
|I1∪I2|

}
J⊆I2

I1,I2
(s, t)

= ĝ
π∅
|I1|+1

(t) · gπ∅
|I1|+2

(t) · . . . · gπ∅
|I1∪I2|(t)

×
(
g
π∅
|I1|+1

(t)

ĝ
π∅
|I1|+1

(t)
−
g
π∅
|I1|+1

(s)

ĝ
π∅
|I1|+1

(s)

)
+
g
π∅
|I1|+1

(s)

ĝ
π∅
|I1|+1

(s)

×G
{
ĝ
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J⊆I2

I1,I2
(s, t)

(16)

for an arbitrary function ĝπ∅
|I1|+1

which is positive on R+, where

ĝ
πJ
|I1|+1

(s) :=
g
πJ
|I1|+1

(s)

g
π∅
|I1|+1

(s)
ĝ
π∅
|I1|+1

(s), J ⊆ I2, s > 0,

which are by definition positive functions on R+.235

Proof. Every summand corresponding to a non-empty interval ∅ 6= J ⊆ I2236

contains a term g
πJ
|I1|+1

(s). Therefore the result follows by multiplying GI1,I2237

with
g
π∅
|I1|+1

(s)

ĝ
π∅
|I1|+1

(s)
and its reciprocal, whereas the first summand in Eq. (16) is a238

correction term for the summand belonging to J = ∅.239
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Lemma 5. For k ∈ N0, j > 2, let the functions F̄1,k, . . . , F̄j,k : [0,∞) → (0, 1]
as well as F̄1,k+1, . . . , F̄j−1,k+1 : [0,∞) → (0, 1] be non-increasing with F̄l,k =
F̄l−1,k
F̄l−1,k+1

for l ∈ {2, . . . , j}. Then it holds that for s > t > 0

0 6 F̄j,k(t) − F̄j,k(s) 6

(
j−1∏
l=1

1

F̄l,k+1(s)

)(
F̄1,k(t) − F̄1,k(s)

)
.

Proof. This is a direct corollary of [17, lem. B.2 on p. 1295].240

Proof of 2⇒ 3. Let statement 2. in Thm. 1 be fulfilled, then due to Rmk. 3,241

Lem. 1 and Lem. 2:242

• For i = 1, . . . ,d and π ∈ Sd, it holds that gπi ∈ Ḡ .243

• For I1 and I2 fulfilling the usual conditions and m ∈ I2, the function244

S̄mI1,I2 is well-defined as well as positive and continuous. Moreover, it245

does not depend on the specific m ∈ I2 chosen, hence write S̄I1,I2 .246

It is left to prove that S̄I1,I2 is non-increasing for all I1, I2 fulfilling the usual247

conditions.248

The claim is proven by induction over |I2|. For I2 = {m}, let I1 and I2
fulfill the usual conditions, then S̄I1,I2 = g̃

I1∪I2,m ∈ Ḡ. Now let p > 1 and
assume that for all I1 and I2 fulfilling the usual conditions with |I2| < p it
holds that S̄I1,I2 ∈ Ḡ. Let I1, I2, {πJ}J⊆I2 , s, and t fulfill the usual conditions
and |I2| = p and define the function ĝ

π∅
|I1|+1

:= g
π∅
|I1|+1

/S̄I1,I2 , which is
continuous and positive. With Lem. 4 it follows that

0 6 G

{
g
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(s, t)

= ĝ
π∅
|I1|+1

(t)g
π∅
|I1|+2

(t) · . . . · gπ∅
|I1∪I2|(t)

×
(
S̄I1,I2(t) − S̄I1,I2(s)

)
+ S̄I1,I2(s)

×G
{
ĝ
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(s, t),

(17)

where ĝπJ
|I1|+1

:= g
πJ
|I1|+1

/S̄I1,I2 for J ⊆ I2.249

In light of Lem. 3, it makes sense to derive an exogenous shock model
from

{ĝ
πJ
|I1|+1

,gπJ
|I1|+2

, . . . ,gπJ
|I1∪I2|}J∈I2 .
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Hence one has to check, that for ∅ 6= J ⊆ I2 if ¯̂SI1∪I2\J,J ∈ Ḡ. Note that

¯̂SI1∪I2\J,J =

{
S̄I1∪I2\J,J, ∅ 6= J ( I2
1, J = I2.

As S̄I1∪I2\J,J ∈ Ḡ by the induction step for ∅ 6= J ( I2 and ¯̂SI1,I2 ≡ 1 ∈ Ḡ,
Lem. 3 can be used. Write for s > t > 0

G

{
ĝ
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(s, t) = P (τ̂i ∈ (t, s] ∀i ∈ I2) ,

where
τ̂i := min

{
ẐI : i ∈ I ⊆ I2

}
, i ∈ I2

with independent ẐI ∼ ĤI1∪I2\I,I for ∅ 6= I ⊆ I2. Let s > t > 0 and define

ÂI1,I2 :=
{
τ̂i ∈ (t, s] ∀i ∈ I2

}
.

Since ẐI2 =∞, there are at least two different sets ∅ 6= I, J ( I2 for which the
respective shocks ẐI, ẐJ are minimal for one of their components. Moreover,
this implies

ÂI1,I2 ⊆
⋃

∅6=I,J(I2:I 6=J

{
t < ẐI, ẐJ 6 s

}
.

From the sub-additivity of the probability measure P, it follows that

P(ÂI1,I2) = G

{
ĝ
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(s, t)

6
∑

∅6=I,J(I2
I 6=J

P
(
t < ẐI, ẐJ 6 s

)

6

(
2|I2| − 2

2

)
max
∅6=I(I2

(
S̄I1∪I2\I,I(t) − S̄I1∪I2\I,I(s)

)2,

where we used that for ∅ 6= I ( I2

P
(
t < ẐI 6 s

)
= S̄I1∪I2\I,I(t) − S̄I1∪I2\I,I(s).
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Note that for ∅ 6= J ⊆ I ( I2 and m,n ∈ J, m 6= n

S̄I1∪(I2\I),J(t) = S̄
m
I1∪(I2\I),J(t)

=
∏
∅6=L⊆J
m∈L

(
g̃L∪I1∪(I2\I),m(t)

)(−1)|L|−1

=

∏
∅6=L⊆J\{n}
m∈L

(
g̃L∪I1∪(I2\I),m(t)

)(−1)|L|−1
∏
∅6=K⊆J\{n}
m∈K

(
g̃K∪{n}∪I1∪(I2\I),m(t)

)(−1)|K|−1
=

S̄mI1∪(I2\I),J\{n}(t)

S̄m
I1∪(I2\I)∪{n},J\{n}(t)

=
S̄I1∪(I2\I),J\{n}(t)

S̄I1∪(I2\I)∪{n},J\{n}(t)
.

Writing b :=
(
2|I2|−2
2

)
and using Lem. 5 for ascending sequences ∅ 6= J1 (250

. . . ( J|I| = I ⊆ I2 with |JI| = |I| as well as251

1. F̄|Jl|,|I1∪(I2\I)| ≡ S̄I1∪(I2\I),Jl for l ∈ [|I|] and252

2. F̄|Jl|,|I1∪(I2\I)∪(Jl+1\Jl)| ≡ S̄I1∪(I2\I)∪(Jl+1\Jl),Jl for l ∈ [|I|− 1]253

it follows that

P(ÂI1,I2) 6 b max
∅6=I(I2

∅6=J1(...(J|I|
J|I|=I

(
S̄I1∪(I2\I),J1(t) − S̄I1∪(I2\I),J1(s)∏|I|−1
l=1 S̄I1∪(I2\I)∪(Jl+1\Jl),Jl(s)

)2

= b max
∅6=I(I2

∅6=J1(...(J|I|=I
J1={m}

(
g̃I1∪(I2\I)∪J1,m(t) − g̃I1∪(I2\I)∪J1,m(s)∏|I|−1

l=1 S̄I1∪(I2\I)∪(Jl+1\Jl),Jl(s)

)2
.

Now let ∅ 6= I ( I2, k = |I1 ∪ (I2\I)|, J1 = {m} and π ∈ Sd be a
permutation fulfilling π ({1, . . . ,k}) = I1 ∪ (I2\I), π(k + 1) = m. Denote
with π̃ the permutation, which switches the positions of m and π(k), i.e.
π̃ = π(k,k+ 1). Then

0 6 GI1∪(I2\I)\{π(k)},{m,π(k)}(s, t)

=

1∏
j=0

gπ̃k+j(t) − g
π
k(s)g

π
k+1(t) − g

π̃
k(s)g

π̃
k+1(t) +

1∏
j=0

gπk+j(s)

= gπ̃k+1(t)
(
gπ̃k(t) − g

π̃
k(s)

)
− gπk(s)

(
gπk+1(t) − g

π
k+1(s)

)
,
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which is equivalent to

gπk+1(t) − g
π
k+1(s) 6

gπ̃k+1(t)

gπk(s)

(
gπ̃k(t) − g

π̃
k(s)

)
.

This yields inductively the following inequality

gπk+1(t) − g
π
k+1(s) 6

k∏
l=1

g̃π({1,...,l})∪{m},m(t)

g̃π({1,...,l}),π(l)(s)

×
(
g̃{m},m(t) − g̃{m},m(s)

)
.

Subsequently,
P(ÂI1,I2) 6 bpI1,I2(s, t)qI2(s, t)

with

pI1,I2(s, t) := max
∅6=I(I2

∅6=J1(...(J|I|=I
π∈ΠI1 ,I2 ,I
J1={m}

{
1∏|I|−1

l=1 S̄I1∪(I2\I)∪(Jl+1\Jl),Jl(s)

×
|I1∪(I2\I)|∏
l=1

g̃π({1,...,l})∪{m},m(t)

g̃π({1,...,l}),π(l)(s)


2

,

where ΠI1,I2,I is the set of permutations fulfilling the conditions stated above
and

qI2(s, t) := max
m∈I2

{
g̃{m},m(t) − g̃{m},m(s)

}2
.

For s0 > s > t > t0 > 0, the non-increasingness of the functions
S̄I1∪(I2\I)∪(Jl+1\Jl),Jl(s), g̃

π({[l]})∪{m},m(t), and g̃π({[l]}),π(l)(s) implies

pI1,I2(s, t) 6 pI1,I2(s0, t0) ∀t < s, for t, s ∈ [t0, s0].

Define for s > t > 0

µI2(s, t) =
∑
m∈I2

g̃{m},m(t) − g̃{m},m(s).

As g̃{m},m,m ∈ I2 are non-negative and non-increasing and qI2(s, t) > 0 all
summands are non-negative and

µI2(s, t) >
√
qI2(s, t) > 0, s > t > 0.
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Hence

0 6 G

{
ĝ
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(s, t)

6 bpI1,I2(s0, t0)qI2(s, t)

6 bpI1,I2(s0, t0)µI2(s0, t0)2 ∀t, s ∈ [t0, s0], t < s.

Now, the proof proceeds analogously as for copulas in the exchangeable254

case [see 17, pp. 1296 sq.] or bivariate exchangeable case [see 3, p. 67].255

The function S̄I1,I2 splits in positive and negative powers in the product
terms and

S̄I1,I2(t) =

|I2|∏
i=1

 ∏
J⊆I2

|J|=i,m∈J

g̃J∪I1,m(t)


(−1)i−1

=

∏b(|I2|−1)/2c
i=0

(∏
J⊆I2

|J|=2i+1,m∈J
g̃J∪I1,m(t)

)
∏b|I2|/2c
i=1

(∏
J⊆I2

|J|=2i,m∈J
g̃J∪I1,m(t)

)

(?)

6

∏b(|I2|−1)/2c
i=0

(∏
J⊆I2

|J|=2i+1,m∈J
g̃J∪I1,m(t0)

)
∏b|I2|/2c
i=1

(∏
J⊆I2

|J|=2i,m∈J
g̃J∪I1,m(s0)

)
=: pI1,I2

max (s0, t0),

where the monotonicity of g̃I,m is used in (?). Assume that S̄I1,I2 is not256

non-increasing, i.e. there exists s0 > t0 > 0 s.t. S̄I1,I2(s0) > S̄I1,I2(t0).257

Case qI1(s0, t0) = 0: From Eq. (17) we get258

0 6 G

{
g
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(s0, t0)

= ĝ
π∅
|I1|+1

(t0)g
π∅
|I1|+2

(t0) . . . g
π∅
|I1∪I2|(t0)︸ ︷︷ ︸

>0

(
S̄I1,I2(t0) − S̄I1,I2(s0)

)︸ ︷︷ ︸
<0

< 0

which is a contradiction.259
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Case qI1(s0, t0) > 0: Let

a(s0, t0) :=
S̄I1,I2(s0) − S̄I1,I2(t0)

µI2(s0, t0)
> 0

then we can write

S̄I1,I2(t0) − S̄I1,I2(s0) = −a(s0, t0)µI2(s0, t0)

For all k > 1, one can find sk, tk ∈ [t0, s0] with sk > tk and260

µI2(sk, tk) =
µI2(s0, t0)

k
(18)

as well as
S̄I1,I2(tk) − S̄I1,I2(sk) 6 −a(s0, t0)µI2(ss, tk).

This can be seen by setting t(0,k) := t0, t(k,k) := s0, and

t(j,k) :=

∑
m∈I2

g̃{m},m

← (x(j,k)) , j ∈ {1, . . . ,k− 1},

where← denotes the generalized inverse for non-increasing functions6 and
for k ∈ {0, . . . ,k}

x(j,k) :=
k− j

k

∑
m∈I2

g̃{m},m(t0) +
j

k

∑
m∈I2

g̃{m},m(s0).

As g̃{m},m are continuous and non-decreasing the generalized inverse is a
right-inverse 7 and

µI2

(
t(j,k), t(j−1,k)

)
=
∑
m∈I2

g̃{m},m
(
t(j−1,k)

)
︸ ︷︷ ︸

=x(j−1,k)

−
∑
m∈I2

g̃{m},m
(
t(j,k)

)
︸ ︷︷ ︸

=x(j,k)

=
1

k
µI2(s0, t0).

6For a non-increasing function f, its generalized inverse is defined by f←(x) := inf{x :

f(x) 6 y} and for a non-decreasing function f, its generalized inverse is defined by f←(x) :=

inf{y : f(y) > x}.
7 If g is a continuous and non-increasing function, then g←(x) = (−g)←(−x), where the

generalized inverse on the l.h.s. is for non-increasing and on the r.h.s. for non-decreasing
functions. As (−g)← is a right-inverse of −g, see [6, p.425 sq., prop. 1 (4)], this implies that
g← is a right-inverse of g.
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Assume that for all j ∈ {1, . . . ,k} the following inequality holds

S̄I1,I2(t
(j−1,k)) − S̄I1,I2(t

(j,k)) > −a(s0, t0)µI2(t
(j,k), t(j−1,k)).

Then,

S̄I1,I2(t0) − S̄I1,I2(s0)

=

k∑
j=1

S̄I1,I2(t
(j−1,k)) − S̄I1,I2(t

(j,k))

> −a(s0, t0)
k∑
j=1

µI2(t
(j,k), t(j−1,k))

= −a(s0, t0)µI2(s0, t0),

which is a contradiction. Hence, with tk = t(j−1,k), sk = t(j,k) for some261

j ∈ {1, . . . ,k}, Eq. (18) is fulfilled and sk > tk.262

Combining Eq. (17) with these results gives for feasible tk, sk (chosen as
above)

0 6 G

{
g
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(sk, tk)

= ĝ
π∅
|I1|+1

(tk)︸ ︷︷ ︸
=
g
π∅
|I1|+1

(tk)

S̄I1 ,I2
(tk)

g
π∅
|I1|+2

(tk) · . . . · gπ∅|I1∪I2|(tk)

×
(
S̄I1,I2(tk) − S̄I1,I2(sk)

)︸ ︷︷ ︸
6−a(s0,t0)

µI2
(s0 ,t0)

k

+ S̄I1,I2(sk)G

{
ĝ
πJ
|I1|+1

,g
πJ
|I1|+2

,...,g
πJ
|I1∪I2|

}
J∈I2

I1,I2
(sk, tk)

6
g
π∅
|I1|+1

(s0)

pI1,I2
max (s0, t0)

g
π∅
|I1|+2

(s0) · . . . · gπ∅|I1∪I2|(s0)

×
(
−a(s0, t0)µI2(s0, t0)

1

k

)
+ bpI1,I2

max (s0, t0)pI1,I2(s0, t0)µI2(s0, t0)2
1

k2
.

In particular, if the latter inequality is multiplied by k and the limit k→∞
26
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is taken, then

0 6 −
1

pI1,I2
max (s0, t0)︸ ︷︷ ︸

>0

a(s0, t0)︸ ︷︷ ︸
>0

µI1,I2(s0, t0)︸ ︷︷ ︸
>0

|I2|∏
j=1

g
π∅
|I1|+j

(s0)︸ ︷︷ ︸
>0

< 0,

which leads to a contradiction.263

264

4 Applications and Outlook265

An additive subordinator is a stochastic process Λ = {Λ(t)}t>0 on the non-266

negative real line [0,∞], which starts at zero, is stochastically continuous,267

càdlàg, and has independent increments. Note that this implies that Λ has268

a.s. non-decreasing path. It can be shown, see [17], that the distribution269

of an additive subordinator Λ can uniquely be identified with a family270

of Bernstein functions8 {ψt(x)}t>0 via ψt(x) = − log E[exp{−xΛ(t)}] and it271

holds that272

(1) ψ0(x) = δ0(x), where δ0 is the Dirac-measure in zero,273

(2) x 7→ (ψs(x) −ψt(x)) is a Bernstein function for all s > t > 0,274

(3) t 7→ ψt(x) is continuous for all x > 0.275

It was shown in [17] that the random vector τ belongs to the class of ex-276

changeable generalized Marshall–Olkin distributions which have a stochastic277

representation as an exchangeable exogenous shock model, where278

τi := {t > 0 : Λi(t) > Ei} , i ∈ [d], (19)

Λi ≡ Λ is an additive subordinator, and {Ei}i∈[d] are iid unit exponential ran-279

dom variables independent ofΛ. Furthmore, ifψt(x) = − log E[exp{−xΛ(t)}],280

it holds for t > 0 and π ∈ Sd with tπ(1) > . . . > tπ(d) that281

P (τ > t) =

d∏
i=1

exp
{
−
(
ψtπ(i)(i) −ψtπ(i)(i− 1)

)}
. (20)

8A Bernstein function is a non-negative, infinitely often differentiable function ψ : [0,∞)→
[0,∞) with (−1)n+1ψ(n) > 0. Standard literature, see, e.g., [1, 23], states that the class
of Bernstein functions is represented as {x 7→ a1(0,∞)(x) + bx+

∫
0,∞(1− exp{−xs})ν(ds) :

a,b > 0,ν is a Lévy-measure}.
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This model is called exchangeable additive-frailty model (exAFM) and
Thm. 1, or its exchangeable version in [17], implies that τ has an alter-
native representation as an exchangeable exogenous shock model. The
exAFM can be generalized to produce non-exchangeable random vectors as
the following factor model construction shows: Assume that τ is defined
by Eq. (19), where Λi are additive subordinators from the convex cone
which is spanned by independent additive subordinators Υ(1), . . . ,Υ(n)

(independent of E1, . . . ,Ed), i.e.

Λi(t) = θ
′
iΥ, i ∈ [d],

for some n ∈ N and θi ∈ [0,∞)n\{0}, i ∈ [d]. A straightforward cal-282

culation, similar to the one in [17, Prop. 3.1], shows that for ψ(k)
t (x) =283

− log E[exp{−xΥ(k)(t)}], t > 0, and π ∈ Sd with tπ(1) > . . . > tπ(d)284

P (τ > t) =

d∏
i=1

n∏
k=1

exp

−

ψ(k)
tπ(i)

 i∑
j=1

Θπ(i),k


−ψ

(k)
tπ(i)

i−1∑
j=1

Θπ(i),k

 ,

(21)

where Θ = (θ1, . . . ,θn)′.285

This model can be used to define hierarchical models similar to those286

introduced in [16]. It follows with Thm. 1 that τ has a generalized Marshall–287

Olkin distribution, i.e. it has an alternative stochastic representation as an288

exogenous shock model and the shock distributions can be calculated from289

the Bernstein functions using the discrete difference operator: Let s > t > 0290

and ∅ 6= I ⊆ [d] with I = {i1, . . . , i|I|}; then the shock survival function H̄I291

fulfills292

H̄I(s)

H̄I(t)
= exp

{
(−1)|I|

n∑
k=1

∆Θi|I| ,k
. . . ∆Θi1 ,k

(
ψ

(k)
s −ψ

(k)
t

) ∑
j∈[d]\I

Θj,k

 .

(22)

This connection between the (hierarchical) additive-frailty model and
exogenous shock models can be used in multiple ways, e.g., as shown in the
following to calculate joint failure probabilities via numerical integration:
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Let (t, x) 7→ ψ
(k)
t (x) differentiable w.r.t. t and their partial derivatives w.r.t.

t be continuous in x and t. Then

P (τ1 = . . . = τd) = P

(
Z[d] < min

∅6=I([d]
ZI

)
= E

[
P

(
Z[d] < min

∅6=I([d]
ZI
∣∣Z[d]

)]
=

∫∞
0

F̄(z) ·
− ∂
∂zH̄[d](z)

H̄[d](z)
d z

=

∫∞
0

exp

−

n∑
k=1

ψ
(k)
z

 d∑
j=1

Θjk


×
[
(−1)d+1

∂

∂z

n∑
k=1

∆Θ1,k . . . ∆Θd,kψ
(k)
z (0)

]
d z,

(23)

where {ZI : ∅ 6= i ⊆ [d]} are independent shocks of a corresponding exoge-
nous shock model and the last step follows with Eqs. (21) and (22). One can
also use integration by parts to show that

P (τ1 = . . . = τd)

= F̄(z) ·
[
− logH[d](z)

]∣∣∞
0︸ ︷︷ ︸

(?)
=0

+

∫∞
0

[
∂

∂z
F̄(z)

]
· log H̄[d](z)d z

=

∫∞
0

 ∂
∂z

n∑
k=1

ψ
(k)
z

 d∑
j=1

Θjk


× exp

−

n∑
k=1

ψ
(k)
z

 d∑
j=1

Θjk


×
[
(−1)d+1

n∑
k=1

∆Θ1,k . . . ∆Θd,kψ
(k)
z (0)

]
d z,

(24)

where (?) follows with limx→∞ x e−x = 0 and from Eqs. (21) and (22) as well
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as the Bernstein property of the functions ψ(k), as these imply for k ∈ [n][
(−1)d+1∆Θ1,k . . . ∆Θd,kψz(0)

]
= (−1)d+1∆Θ1,k . . . ∆Θd−1,kψz(Θd,k)︸ ︷︷ ︸

60

+(−1)d∆Θ1,k . . . ∆Θd−1,kψz(0)

6 (−1)d∆Θ1,k . . . ∆Θd−1,kψz(0) 6 . . . 6 ∆Θ1,kψz(0) 6 ψz (Θ1,k)

6 ψz

 d∑
j=1

Θj,k

 .

Note that in case the underlying model is exchangeable with ψ = ψ
(1)
1 and

∆ = ∆1, then

P (τ1 = . . . = τd)
Eq. (23)

=

∫∞
0

e−zψ(d) ·
[
(−1)d+1∆dψ(0)

]
d z

Eq. (24)
=

∫∞
0

ψ(d) · e−zψ(d) ·
[
(−1)d+1 z∆dψ(d)

]
d z

=
(−1)d+1∆dψ(0)

ψ(d)
=

∑d
i=0

(
d
i

)
(−1)i+1ψ(i)

ψ(d)
.

Equations (21) and (22) have been tested with a simple implementation for293

the case that n = 1, Θ = 1, and ψ = ψ(1) is the Bernstein function of a294

compound Poisson subordinator with exponentially distributed jumps, i.e.295

ψt(x) = µxt+βt · (1− η/(x+ η)) for (µ,β,η) 
 0, where exact formulas of296

the “combined death”-probability are known, see [15, p. 111 sq.]. The three297

parameter combinations from [18, Fig. 3.6, p.156 sq.]9 were used and showed298

similar results: The exact formula as well as the formula from Eq. (24) per-299

form equally well up to d ≈ 50 and the formula from Eq. (23) performs well300

up to d ≈ 25. The breakdown, which can be detected using the monotonicity301

properties of the Bernstein function ψ, is due to loss of significant digits in302

the numerical calculation of the discrete differences. Moreover, for small d303

the numerical integration formula outperforms a Monte-Carlo estimation of304

the probabilities w.r.t. error-size as well as runtime.305

In case that n = 1 and Θ = 1, i.e. if the model is exchangeable, and
Λ = Υ(1) is a Lévy subordinator, the model can be (uniquely) linked
to so called regenerative composition structures, see [8].10 In that case, the

9These are (0.2995, 1.401, 1), (0.2, 2.4, 2), and (0.0151, 0.994749, 0.01).
10For a definition of (regenerative) composition structures and an introduction of the

notation which is used hereinafter, the interested reader is referred to [8].
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corresponding shock model is a classical Marshall–Olkin model and the
decrement matrix of the corresponding regenerative composition model
can be expressed in terms of the exponential rates of the exchangeable
MO-distribution {λ

(n)
m , 1 6 m 6 n}, i.e.

q(n : m) = P

(
min

∅6=I⊆[d]:|I|=m
Z
(n)
I < min

∅6=I⊆[d]:|I|6=m
Z
(n)
I

)
=

(
n
m

)
λ
(n)
m∑n

k=1

(
n
k

)
λ
(n)
k

,

where {Z
(n)
I }∅6=I⊆[d] are independend exponential random variables with

rates λ(n)I ≡ λ(n)
|I|

and

λ
(n)
m =

m∑
j=0

(−1)j+1
(
m

j

)
ψ(n−m+ j), 1 6 m 6 n.

Thm. 1 can subsequently be used to extend some results from [8] for com-306

position structures which fulfill a suitably relaxed notion of regenerativity307

such that the stochastic process representation uses an additive subordinator308

instead of a Lévy subordinator.309

5 Conclusion310

The survival functions of ESM distributions are the product of their ordered311

and individually transformed arguments. The transformations gπi are order-312

dependent if the ESM distribution is not exchangeable. Conversely, if313

a function of that form is a continuous multivariate survival function,314

the distribution has a stochastic representation as an exogenous shock315

model. Formulas for retrieving the shock survival functions from the316

transformations gπi are given explicitly. Furthermore, the special form of317

F̄(t) =
∏d
i=1 g

π
i (tπ(i)) implies a simplified d-volume condition. The attained318

results generalize the findings from [17] for the exchangeable subclass.319
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