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Abstract

During the last 20 years, significant efforts have been made towards integration of dif-
ferent clinical imaging modalities within a single device, i.e. multi-modality imaging.
While PET/CT was established in clinical practice early on, the more recently introduced
PET/MRI devices have so far remained research tools, nevertheless with a wide range of
unique potential applications. The main appeal of fully integrated multi-modality imaging
is the opportunity to utilize simultaneously acquired data in a way that does not merely
add up or cross-validate distinct features of each modality, but exploits them in a truly
synergistic fashion. For applications of cardiovascular PET/MRI, it was the main goal of
this thesis to develop methods for quantitative image analysis that expand the current un-
derstanding of both imaging techniques in ways that would not be conceivable outside of a
multi-modality context. The focus of this work is therefore the application of mathematical
approaches to model the relationship between imaging data and physiology.
A large portion of this work is dedicated to the field of dynamic contrast-enhanced MRI

perfusion imaging, for which opportunities and limitations of fully quantitative analysis
have yet to be fully understood. While MRI offers the potential to assess physiologically
meaningful parameters beyond perfusion flow, such as vascular permeability and vascular
volume, their measurability depends on a number of factors including the physiological
state of the tissue or the patient. It is the first major contribution of this thesis to propose
an hierarchical framework for analysis of MRI perfusion data, in which an Akaike criterion
is used to determine the respective applicability of three mathematically contiguous tissue
models, representing distinct degrees of measurability for vascular parameters. In the
same patient cohort, exhibiting a wide range of cellular tissue damage post myocardial
infarction, it was also shown that estimates of extracellular distribution volume of the
MRI contrast agent obtained from only 90 seconds of perfusion data were comparable
to standard extracellular volume mapping techniques, which usually require significant
equilibration periods of several minutes. As contrast agent doses for the latter are often
two- to three-fold higher than for perfusion imaging, the proposed approach is both more
time- and contrast agent dose-efficient. Addressing limitations of the described framework,
the following two chapters propose tissue model-independent approaches to both assess
vascular characteristics using spline-based algorithms as well as to calculate bolus delay
time, which is also shown to have a potential value characterizing coronary physiology.
Having established a solid framework for understanding and executing MRI-based perfu-

sion tissue modeling, the fourth chapter describes an evaluation of simultaneously acquired
dynamic contrast-enhanced MRI and 13NH3-ammonia PET data. While both methods can
be used to derive estimates of tissue perfusion flow in mL/min/g, only PET tracers per-
meate red blood cells and therefore indicate (whole-) blood flow. Conversely, all common
MRI contrast agents remain extracellular, implying that resulting plasma flow estimates
need to be scaled by a tissue hematocrit fraction in order to be comparable to the cor-
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Abstract

responding PET results. The framework for simultaneous acquisition presented herein for
the first time allowed for a combination of PET- and MRI-derived perfusion flow values in
order to generate actual estimates of myocardial tissue hematocrit. While relative tissue
hematocrit was found to be significantly lower than the usually assumed equality of macro-
and microvascular hematocrit would suggest, they were also found to be different between
resting and vasodilator-induced stress states. On the basis of the same data, an additional,
important contribution towards understanding the limitations of MRI perfusion modeling
in the regime of small contrast agent transit times was made: In comparison to the more
robust PET approach, it could be shown that application of MRI tissue models, especially
the widely-used Fermi-model, may result in unreliably high perfusion estimates if not con-
strained according to both the respective limits of temporal resolution in the dynamic data
as well as to physiological plausibility.
In the final chapter, the same synergistic mindset is applied to myocardial tissue char-

acterization in patients after myocardial infarction, comparing MRI-derived T1 and extra-
cellular volume estimates with fasted 18F-FDG PET targeted at inflammatory cell popula-
tions. It was found that all three imaging markers indicate co-localized but quantitatively
independent features of the underlying pathology, with the increase in absolute native T1
highly correlated to systemic expression of monocytes, as well as absolute extracellular
volume estimates highly correlated to creatine kinase-MB expression. Building on these
correlates, it was hypothesized that the measured 18F-FDG PET signal, representing a
mixture of previously unknown proportions of post-ischemic myocytic glucose consump-
tion and uptake by infiltrative inflammatory cell populations, could be constructed from a
combination of the simultaneously acquired MRI markers representing these two pathways.
Fits of a linear model yielded similar contributions for post-ischemic and inflammatory sig-
nal pathways, challenging the notion of fasted 18F-FDG as a purely inflammatory image
signal.
In summary, the presented thesis contains the description and validation of new methods

for dynamic contrast-enhanced MRI perfusion quantification, and contributes significantly
to the understanding of PET and MRI methods of myocardial tissue characterization. The
described combinations of simultaneously acquired PET/MRI data have led to relevant
insights with respect to cardiac physiology, thereby providing examples for the scientific
value of quantitative multi-modality imaging.
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Zusammenfassung

Im Zeitraum der letzten 20 Jahre wurden erhebliche Anstrengungen bezüglich der Kom-
bination unterschiedlicher Bildgebungsmodalitäten innnerhalb eines einzelnen Gerätes un-
ternommen, der sogenannten multimodalen Bildgebung. Während PET/CT frühzeitig
im klinischen Betrieb erfolgreich etabliert werden konnte, sind die später eingeführten
PET/MRT-Geräte bis heute hauptsächlich in wissenschaftlicher Verwendung, nichts-
destoweniger mit einer großen Bandbreite an einzigartigen Anwendungsmöglichkeiten. Der
Hauptanreiz multimodaler Bildgebung besteht in der Möglichkeit zur Verwendung simultan
akquirierter Daten, nicht nur als einer Addition bzw. Validierung unterschiedlicher Para-
meter aus beiden Modalitäten, sondern im Sinne einer tatsächlich synergistischen Nutzung.
Es war ein Hauptziel dieser Arbeit, für Anwendungen der kardialen PET/MRT-Bildgebung
Methoden zur quantitativen Datenanalyse zu entwickeln, die das momentane Verständnis
beider Modalitäten erweitern, und ohne eine multimodale Datenakquisition nicht vorstell-
bar wären. Der Fokus der Arbeit liegt somit auf der mathematischen Modellierung des
Verhältnisses von Bildgebungsdaten und Physiologie.
Ein großer Teil der vorgelegten Schrift befasst sich mit dynamisch kontrastmittel-

verstärkter MRT-Perfusionsbildgebung, für die Möglichkeiten und Limitationen der quant-
itativen Auswertung noch unvollständig verstanden sind. Obwohl die MRT prinzipiell
eine Abschätzung physiologisch bedeutsamer Parameter zusätzlich zum Perfusionsfluss er-
laubt, z.B. vaskuläre Permeabilität und vaskuläres Volumen, hängt deren Messbarkeit von
unterschiedlichen Faktoren wie dem physiologischen Zustand des Gewebes oder des Pa-
tienten ab. Als erster wichtiger Beitrag dieser Arbeit kann die Vorlage einer hierarchis-
chen Struktur zur Analyse von MRT-Perfusionsdaten angesehen werden. In dieser wird
durch ein Akaike-Kriterium über die jeweilige Anwendbarkeit dreier, mathematisch ver-
wandter Gewebemodelle entschieden, entsprechend jeweils unterschiedlichen Graden der
Messbarkeit vaskulärer Parameter. In derselben Patientenkohorte, die eine große Band-
breite kardialen Zellschadens nach Infarkt beinhaltete, konnte dazu gezeigt werden, dass
Schätzungen des extrazellulären Verteilungsvolumens des MRT-Kontrastmittels auf Basis
von nur 90 Sekunden dynamischer Daten vergleichbar mit Ergebnissen von Standard-
techniken für die Kartierung von Extrazellulärvolumen sind. Da die Kontrastmitteldo-
sierung für letztgenannte Techniken oft zwei- bis dreimal höher ist als für Perfusionsb-
ildgebung und diese Equilibrierungszeiten von einigen Minuten benötigen, kann der bes-
chriebene Ansatz als eine Zeit- und Dosis-effizientere Alternative angesehen werden. In
Bezug auf Limitationen der vorgestellten Methodik, behandeln die folgenden zwei Kapitel
Modell-unabhängige Techniken zur Schätzung sowohl vaskulärer Parameter mithilfe eines
Spline-Ansatzes, alsauch der Kontrast-Anflutungsverzögerung mithilfe ein Fourier-Phasen-
Technik, deren Nutzen für die Charakterisierung koronarer Physiologie gezeigt wird.
Nach Etablierung einer fundierten Methodik zur MRT-basierten Perfusions-

Gewebemodellierung, befasst sich das vierte Kapitel mit der Auswertung simultan
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akquirierter dynamisch kontrastmittel-verstärkter MRT- und 13NH3-Ammoniak PET-
Perfusionsdaten. Obwohl beide Methoden verwendet werden können um einen Perfu-
sionsfluss in mL/min/g abzuschätzen, dringen nur PET-Tracer in rote Blutzellen ein
und sind somit sensitiv für (Voll-)Blutfluss. Übliche MRT-Kontrastmittel sind dagegen
extrazellulär, weshalb die resultierenden Plasmaflusswerte mit einem Gewebehämatokrit
skaliert werden müssen, um mit PET vergleichbar zu sein. Der hier vorgestellte, sim-
ultane Akquisitionsansatz ermöglichte in diesem Kontext erstmalig eine Kombination
von PET- und MRT-Flusswerten zu einer tatsächlichen Abschätzung des myokardialen
Gewebehämatokrits. Es ergab sich sowohl ein niedrigerer Gewebehämatokrit als der
üblicherweise verwendete, aus der Annahme von gleichem mikro-und makrovaskulärem
Hämatokrit hervorgehende Wert, als auch ein Unterschied in diesem zwischen Ruhe-
und Vasodilatations-induziertem Stresszustand. Auf Basis derselben klinischen Daten
konnte ein weiterer, wichtiger Beitrag zum Verständnis der MRT-basierten Perfusions-
Gewebemodellierung kleiner Kontrastmittel-Transitzeiten geleistet werden: Im Vergleich
mit der robusteren PET-Auswertung wurde gezeigt, dass Gewebemodelle für die MRT,
insbesondere das weit verbreitete Fermi-Modell, zu unzuverlässig hohen Schätzungen
des Perfusionsflusses führen können, falls keine Beschränkung der Modelle bezüglich
Zeitauflösung der Daten und physiologischer Plausibilität verwendet werden.
Das letzte Kapitel enthält eine weitere Anwendung desselben synergistischen Auswer-

tungsprinzips im Bereich der myokardialen Gewebecharakterisierung bei Patienten nach
akutem Myokardinfarkt. Dazu wurden die MRT-basierte Abschätzung des T1 sowie des
Extrazellulärvolumens verglichen mit gefastetem 18F-FDG PET, ausgerichtet auf inflam-
matorische Zellpopulationen. Es wurde gezeigt, dass alle drei Bildgebungsmarker ko-
lokalisierte, jedoch quantitativ unabhängige Eigenschaften der zugrundeliegenden patho-
logischen Veränderuneng abbilden. Es zeigten sich Korrelationen zwischen Absolutwer-
ten des nativen T1 und systemischer Monozytenexpression, und zwischen Absolutwerten
des Extrazellulärvolumens und der Expression von Kreatinkinase-MB. Auf Basis dieser
Zusammenhänge wurde die Hypothese aufgestellt, dass das gemessene 18F-FDG PET-
Signal, bestehend zu unbekannten Teilen aus einer Mischung post-ischämischer, myozyt-
ischer Glukoseaufnahme mit Aufnahme durch eingewanderte, inflammatorische Zellpopu-
lationen, durch eine Kombination der simultan akquirierten, diese Signalkanäle repräsen-
tierenden MRT-Parameter konstruiert werden kann. Der Fit eines linearen Modells res-
ultierte in der Schätzung ähnlicher Signalanteile für post-ischämische und inflammatorische
Signalkanäle, was die Interpretation von gefastetem 18F-FDG PET als einem rein inflam-
matorischen Bildsignal infragestellt.
Zusammenfassend enthält die vorgelegte Arbeit sowohl die Beschreibung und Validier-

ung neuer Methoden zur Perfusionsquantifizierung auf Basis dynamisch kontrastmittel-
verstärkter MRT, sowie Beiträge zum Verständnis von PET- und MRT-basierter myokar-
dialer Gewebecharakterisierung. Die beschriebenen Kombinationen simultan akquirierter
PET/MRT-Daten ermöglichten relevante Erkenntnisse in Bezug auf die kardiale Physiolo-
gie und sind beispielgebend für den wissenschaftlichen Wert quantitativer multimodaler
Bildgebung.
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Chapter 1

Background

Motivation

The field of medical imaging technology encompasses applications of a large range of phys-
ical principles to biological systems, including nuclear physics, electromagnetism, ionizing
radiation and acoustics. When assessing the timeline of technical developments in imaging
science, one can appreciate the last two to three decades as a turn away from successful
clinical establishment of entirely new imaging modalities towards an era of technical refine-
ment for existing techniques, paralleled by significant efforts towards integrating different
imaging modalities, i.e. so-called multi-modality or hybrid imaging. While sequential ap-
plication of imaging techniques may often suffice to answer a more complex clinical question
at hand, actual integration within a single scanner was expected to greatly increase time
efficiency in a clinical setting and open up a broad range of new possibilities for research.
The first major clinical success of integrated multi-modality imaging was the combination
of positron emission tomography (PET) and computed tomography (CT) within a single
PET/CT device [8], which has essentially replaced standalone PET since its introduction
in the early 2000s. An important reason for this success is the fact that morphological
information provided by the high spatial resolution of CT acts as an important extension
to the spatially less well resolved functional and metabolic information from PET. Addi-
tionally, the information on x-ray attenuation - which essentially constitutes the CT signal
- represents a somewhat natural complement to the emission data gathered from PET,
which needs to be corrected for attenuation especially when accurate signal quantification
is desired.
As a consequence of this success, significant efforts towards a combination of positron

emission tomography with magnetic resonance imaging (MRI) were made. While MRI
provides a comparable complement to PET with respect to spatial resolution, its main
advantage over computed tomography - not just in the context of multi-modality imaging
- is the large range of achievable image contrasts through utilization of different magnetic
relaxation properties, without ionizing radiation. However, the development of integrated
PET/MRI scanners faced significantly larger obstacles than the corresponding development
towards integrated PET/CT. Both the interference between magnetic fields used in MRI
with PET hardware, as well as the increased high energy photon attenuation and scattering
due to the MRI bed and coil systems have proven to be superb technical challenges for
production of an operational, integrated whole-body PET/MRI device.
After the first commercial system received approval by authorities in 2011 [35], it

had soon become clear that the mid- to short-term commercial potential of integrated
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PET/MRI was not comparable to the earlier success of PET/CT. Even after important
technical developments in MRI e.g. towards reliable attenuation estimation [91,108], the
much higher price of PET/MRI systems and the significantly lower patient throughput
when compared to PET/CT render a cost-effective clinical operation challenging. While
considerations with respect to cost and clinical value are subject to change, e.g. due to the
potential emergence of PET/MRI applications providing unique clinical value as well as
more vendors introducing commercial systems into the market, it can still be considered
largely a research device.
Regardless of the respective imaging technique, cardiovascular research is one of the areas

receiving the largest scientific interest as of today, which mirrors the fact that cardiovascu-
lar disease is the leading cause of death worldwide [159]. Here, different imaging modalities
have exhibited a wide range of - partly overlapping - diagnostic ability with respect to clin-
ical markers of cardiac integrity, such as perfusion (PET, MRI, single photon emission
tomography (SPECT), CT, Ultrasound), function (MRI, Ultrasound), morphology (MRI,
CT), metabolism (PET), viability (PET, MRI) and coronary angiography (CT). There-
fore, in the context of integrated PET/MRI imaging, a number of different cardiovas-
cular applications with synergistic potential have been proposed. While many of these,
e.g. the assessment of metabolism and function [121] or coronary plaque/inflammatory
imaging [122], essentially add clinical examinations from both modalities in an efficient
manner, also more complex approaches have been developed e.g. regarding joint motion
correction [44]. The latter is especially relevant for PET/MRI, as both respiratory and car-
diac motion may degrade PET image quality, for which motion correction may be guided
by temporally well resolved morphological MRI information, resulting in a much lower
radiation exposure than conceivable corresponding PET/CT techniques.
With respect to synergies in multi-modality imaging, an area that has remained largely

unexplored as of today is the absolute quantification of physiological processes. While the
clinical value of absolute quantification e.g. in cardiac perfusion imaging is well established
for PET [48], MRI techniques allowing for absolute quantification of tissue characteristics
have only recently matured to a level of clinical applicability and widespread use. Es-
pecially myocardial tissue characterization using quantitative relaxometry - mainly for
assessment of T1 [95] or extracellular volume (ECV) [2] - has received a significant increase
in attention over the last couple of years, leading to a higher standardization of techniques
across vendors and research sites [94,100]. For MRI perfusion imaging, qualitative analysis
of Dynamic Contrast-Enhanced (DCE-) MRI has been shown to be highly effective in the
management of patients with coronary artery disease (CAD) [31,51]. However, absolute
quantification of tissue perfusion remains challenging both with respect to acquisition and
post-processing techniques, despite significant efforts to develop consensus methods tack-
ling the remaining obstacles, e.g. absolute quantification of contrast agent concentrations
from MRI signal [73]. Here, especially the understanding for proper kinetic analysis of
DCE-MRI data has remained limited, mainly due to its mathematical complexity and the
large array of available modeling methods to derive perfusion characteristics from dynamic
data [134]. While the corresponding approaches for PET are mainly used to quantify
tracer extraction acting as a surrogate for vascular perfusion flow [63,128], it can be seen
as one of the great advantages of DCE-MRI that, due to a continuing increase in perfu-
sion data quality and a superior temporal resolution, a host of additional, physiologically
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meaningful parameters have come into its scope more recently [16,88]. Still, despite efforts
to validate perfusion flow quantification from DCE-MRI with PET [98,102,116], there is
a significant lack of methodologically sound assessments of systematic differences between
both methods.

Structure of the Thesis

In order to provide the reader with a deeper understanding of the imaging methods, math-
ematical modeling formalisms, as well as the underlying cardiovascular physiology to be
assessed, this introduction is extended by a detailed theoretical review in the next chapter.
Applications of the so-described concepts in a clinical setting substantiate the scientific
content of this thesis. The individual contributions published as journal or conference pa-
pers during the work on this thesis - occasionally extended or altered from the published
versions in order to avoid redundancies in the description of methodology - are compiled
in Part II of this thesis with each chapter representing a distinct publication.
With respect to the quantification of myocardial perfusion, it is one of the main goals of

this thesis to provide an in-depth discussion of methods, both on the MRI side as well as
in the context of multi-modality imaging using PET/MRI. The presented studies address
some of the most important technical issues in DCE-MRI data analysis with respect to
quantitative assessment of microvascular perfusion parameters. In this context, the third
chapter proposes an algorithm to determine the measurability of vascular characteristics,
which can vary significantly between different physiological perfusion states observed in
the myocardium. It additionally reports the validation of perfusion-derived extracellular
volume estimates, which has potentially significant implications for scan time and contrast
media-dose reduction in cardiac MRI. While the following two chapters address some less
prominent aspects in DCE-MRI analysis, such as bolus delay and flow heterogeneity, the
sixth chapter features an extensive study on the comparison of perfusion quantification
on the basis of simultaneously acquired PET/MRI data. Using the example of perfusion
imaging, it can be seen as an effort to establish a paradigm for quantitative multi-modality
imaging, rebutting the notion of simple validation in favor of appreciating the existing
systematic differences between PET and MRI as an opportunity for synergistic application
in the context of basic research. The seventh chapter is a direct continuation of this
paradigm into the field of quantitative tissue characterization, featuring a comparison of
MRI parameters and inflammatory PET imaging both mutually as well as with blood
markers of cardiac pathology. In a similar fashion as the previous section for perfusion, it
reports on a combination of PET and MRI imaging results broadening the understanding
of both modalities in a way that would not be conceivable outside of an integrated multi-
modality context.
It is the hope of the author that - beyond the already significant implications of the

individual findings - the approaches presented herein for the combined use of quantitative
results from different modalities will serve as an inspiration for future research in multi-
modality imaging.

5





Chapter 2

Theory

2.1 Technical Basics

2.1.1 Nuclear Magnetic Resonance (NMR)

Magnetic resonance imaging is based on nuclear magnetic resonance (NMR), which was first
discovered by I.I. Rabi in 1938. The quantum mechanical explanation of NMR phenomena
is the fact that all elementary particles have a quantum property called spin, which can
be imagined as a quantized, intrinsic angular momentum. Neutrons, protons and electrons
as the constituents of matter each have a spin of 1⁄2, and are therefore so-called fermions.
Depending on the composition of different atomic nuclei, their respective total spin may
exhibit different integer or half integer values. While both NMR and MRI experiments can
target various nuclei with non-vanishing total spin, imaging is most often performed using
the nucleus of hydrogen atoms due to their abundance in the human body within fat and
water molecules.
The nucleus of a hydrogen atom consists of a single proton and has a total spin S (or

isospin I) of 1⁄2. In the classical picture, the proton spin may be imagined as a magnetic
dipole moment µ related to quantum mechanical spin via a so-called gyromagnetic ratio γ:

µ = γI (2.1)

A magnetic quantum number mI indicates the state of the spin moment. For the hy-
drogen nucleus, i.e. a proton, mI may only assume the two discrete values +1⁄2 and -1⁄2,
leading to a two-state system which is as such energetically degenerate. This degeneracy
may be lifted by the presence of a magnetic field (usually called B0-field) interacting with
the magnetic dipole property of the hydrogen nucleus and energetically favoring one of the
two previously degenerate states. With a magnetic field of magnitude B0 pointing along
the z-axis, the magnetic energy of the proton is given by:

E = −µ ·B0 = −γIzBz = −γmI h̄B0 (2.2)

With the so-called Larmor frequency ω0, the energy difference between the two states is:

∆E = γh̄B0 := h̄ω0 (2.3)

For protons, depending on the magnetic field strength, this energy gap lies within the
radio frequency (rf) spectrum, e.g at around 128MHz at a B0-field of 3Tesla. Since all
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standard NMR and MRI experiments are applied across macroscopic volumes, the statist-
ical concept of magnetization needs to be introduced, which is defined as the sum of all
magnetic moments per volume V :

M =
1

V

∑
µ in V

µ (2.4)

Assuming a large ensemble of spins residing inside a magnetic field across the z-direction,
the rotating expectation values of the x- and y-components of different moments cancel
in summation, leaving M with a component only along the z-direction. In thermal equi-
librium, the probability of magnetic spin moments to populate either of the two energetic
states is determined by Boltzmann statistics. At room temperature, the net magnetization
in z-direction arising from a higher probability to populate the energetically lower state
is [55]:

P+

P−
=
Ze

(
E+
kBT

)

Ze
(
E−
kBT

)
= e

(
h̄ω0
kBT

) ' 1 + 6.6 · 10−6 ·B0 (2.5)

Equation 2.5 implies that the macroscopically observable excess magnetization that is
used to generate MR signals corresponds to a polarization of only a few in a million protons,
depending on B0-field strength. The process of manipulating this net magnetization via
application of additional rf-fields (often called B1-fields) is the basis for all NMR and
MRI applications. Such excitation of M from its equilibrium state by external fields has
essentially two effects: A rotation of M about the direction of B1 as well as a subsequent
precession ofM about the direction ofB0. The term nuclear magnetic resonance describes
the fact that the frequency of this precession is the Larmor frequency ω0, which is the
same frequency that was used with B1 during the initial excitation. A full inversion of the
thermal equilibrium state corresponds macroscopically to a rotation of the magnetization
vector by 180°. Depending on the strength and duration of exposure to the rf-field, M
may be rotated by any angle between 0° and 180°.
Relaxation of a non-equilibrium state induced by B1 is the core observation in essen-

tially all magnetic resonance experiments. The relaxation of excited states in NMR is the
combined effect of two different phenomena: The first channel of relaxation is the decay
of the transversal magnetization component M⊥, visualized e.g. with a free induction
decay (FID) experiment (Fig. 2.1). It is associated with the time constant T2 and can
be explained as a loss of coherence in precession phases of spins due to interactions with
the magnetic fields of other spin moments. This so-called spin-spin relaxation is further
accelerated by potential inhomogeneities in the B0-field, leading to the definition of an
additional constant T′2. The resulting relaxation time constant is called T*

2 and is given
by:

1

T ∗2
=

1

T2
+

1

T
′
2

(2.6)

The second channel of relaxation corresponds to the loss of energy of the spin system to
the surrounding tissue, and can macroscopically be imagined as a regrowth of the longit-
udinal magnetization component Mz. This so-called spin-lattice relaxation is associated
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Figure 2.1: Free induction decay after application of a 90° pulse with the tip of the magnet-
ization vector shown while returning to equilibrium (a). A corresponding induction signal
that would be recorded with a coil placed around the x-axis is shown in (b).1

with the time constant T1. Both relaxation constants may be equivalently expressed in
terms of rates (R) or times (T), with R1/2 equal to 1/T1/2. The fundamental equation
governing precession and relaxation of the magnetization vector M with magnitude M0

inside a magnetic field B is the Bloch equation:

dM

dt
= γM ×B +

1

T1
(M0 −Mz)êz −

M⊥

T
(∗)
2

(2.7)

For a static B-field in z-direction, this simplifies to:

dMz

dt
=

1

T1
(M0 −Mz) (2.8)

dM⊥
dt

= −M⊥
T
(∗)
2

(2.9)

In order to observe the relaxation phenomena described by these equations, a coil can be
placed around one of the transversal axes. As soon as the magnetization is excited to the
effect of having a nonzero transversal component, its rotation around the z-axis induces a
current inside the coil which can be detected as a signal. On the right hand side of Fig. 2.1,
the basic structure of such a signal is depicted after the application of a 90° rotation to
the equilibrium magnetization.
A technique that is fundamental to MR experiments is the formation of spin echoes or

gradient echoes. A so-called spin echo is formed by the application of a 180° rotation after
1Image (a) reproduced with permission from [153]. Image (b) reproduced with permission from [118],

originally published by SpringerOpen.
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initially rotating the magnetization by 90° and subsequently waiting for a time TE/2. Dur-
ing the so-called echo time TE, spin populations are allowed to dephase before the 180° pulse
again reverses their current phase relation, leading them back to coherence (Fig. 2.2(a)).
The 180° pulses also reverse the effects of inhomogeneities in the external B0-field, making
the strength of the echo signal depend on T2.

Figure 2.2: Two ways of creating a signal echo: A spin echo reversing the effects of external
magnetic field inhomogeneities (a) and the creation of a gradient echo with signal decay
depending on T*

2 (b).2

This reversal of inhomogeneities is not possible with so-called gradient echoes, which is
why their signal decay is determined by T*

2. A gradient echo is formed by the application
of spatially dependent magnetic field gradients in addition to the main B0-field. The
first gradient (the dephase lobe) artificially destroys the phase coherence of spins so that
after it is turned off, every spin has acquired a phase which is exclusive to its spatial
residence within the gradient field. The second part of the gradient configuration (the
rephase lobe) is of the same strength but twice as long and has opposite polarity. It may
be switched on almost immediately after the dephase lobe is turned off, reversing its effect
and thus creating a signal echo at time TE with a peak at the center of the rephase lobe
(Fig. 2.2(b)). The switching of gradient polarities occurring at TE/2 cannot happen in-
stantaneously due to a finite latency of the gradient coils caused by their inductance. This
latency (or slew rate) is one of the fundamental technical limits of speed in MR applications.

2.1.2 Magnetic Resonance Imaging (MRI)

The key to MR imaging is the acquisition of information about the described NMR phe-
nomena and relaxation constants in a spatially resolved manner. An MR imaging setup is

2Images (a) and (b) reproduced with permission from [118], originally published by SpringerOpen.
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depicted schematically in figure 2.3 with the patient lying along the z-axis being also the
axis of the B0-field.

Figure 2.3: Basic setup of a clinical MRI system. A schematic depiction of the coil ar-
rangement inside the system is shown consisting of coils for the main magnet, gradients,
as well as rf-field transmission and reception.3

The basis for spatial encoding is the application of spatially dependent magnetic field
gradients in addition to the main B0-field. Across a limited extension, these gradients
result in an effective magnetic field that varies close to linearly along potentially all three
spatial directions. For the duration of gradient application, every spin moment is assigned
with a precession frequency that is dependent on its position on the corresponding axes
and is therefore accumulating a phase difference with respect to spins in other locations.
Using this principle, an example for the generation of images can be given for a 2D imaging
approach as follows: Magnetization from a single transversal slice covering the x-y plane
may be excited by application of a linear magnetic field gradient in z-direction during the
rf-excitation, with the rf-frequency of the excitation pulse chosen to match the frequency
belonging to the desired z-position. Spatial encoding of the signal in the remaining two
dimensions is achieved by introduction of so-called k-space. The axes of k-space form a
coordinate system in which every point corresponds to the density of spins ρ in all points
(or voxels) of real space that have accumulated the same phase due to the magnetic field
gradients along x- and y-axes. For a regular Cartesian sampling of k-space, the Gx-gradient
can be used for acquisition of a gradient echo signal representing information about one
line of k-space along the kx-axis. The vertical placement of that line is determined by the
phase assigned to it by the gradient field Gy. With τy being the time that Gy is applied,
it is:

kx(t) = γGxt and ky(τy) = γGyτy (2.10)
The resulting signal is given by the so-called imaging equation (Eq. 2.11) for the 2D

case, connecting the density of protons ρ in real space with the corresponding signal values
in k-space via a 2D Fourier transformation between the variables r and k.

S(k) = FT [%(r, z0)] =

∫∫
%(x, y, z0)e

−2πi(kxx+kyy)dx dy (2.11)

3Image reproduced with permission from [118], originally published by SpringerOpen.
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According to this equation, MR images, i.e. spatially resolved information about the
spin density ρ, can be obtained by application of an inverse Fourier transform to the re-
corded MRI signal S(k), which represents the spectrum of accumulated precession phases
in the sample. The nature of this encoding process has facilitated the development of an
enormous variety of strategies to sample and reconstruct k-space in both 2D and 3D ima-
ging applications. The MRI sequences used for imaging in this thesis all use the described
cartesian sampling approach based on gradient echoes. They employ Fast Low Angle
Shot (FLASH) [56] techniques with either spoiled or preserved transverse magnetization
coherences.
As seen in Fig. 2.3, rf transmit and receive coils are usually separated, resulting in a

large body transmit coil for more homogeneous excitation and smaller receive elements
as close as possible to the imaging target for an improved signal-to-noise ratio (SNR).
Concerning signal reception, especially cardiac applications have benefited significantly
from the introduction of array coils with multiple coil elements. These allow for time-
saving undersampling of k-space by making use of redundancies in information gathered
from spatially overlapping coil signals, e.g. in the form of Generalized Autocalibrating
Partially Parallel Acquisitions (GRAPPA) [53].

2.1.3 Gadolinium-based MRI Contrast Agents

Despite the large variety of possibilities to achieve image contrast in MRI, a number of
applications benefit from the use of additional exogenous contrast agent (CA). Essentially
all clinically accepted agents rely on the paramagnetic properties of Gd3+-ions. As Gd3+

has seven unpaired electrons in parallel spin configuration, its magnetic susceptibility is
significantly higher than that of normal protons. In MRI experiments, the strong result-
ing paramagnetic dipole field may act as a local field inhomogeneity, which accelerates
relaxation implying a shortening of T1 and T*

2 times.
For clinical administration, Gd3+ needs to be combined with a chelate acting as a shell

around the ion due to its high toxicity. The purpose of the chelate is to effectively in-
hibit any physiological interaction of the Gd3+-ion until it is excreted via the kidneys.
Two classes of clinically established chelates for Gadolinium exist, which are called linear
and macrocyclic. Based on linear chelation, gadopentetic acid (Gd-DTPA) was the first
compound to be accepted for clinical usage [25], while the most widely-used agent with
macrocyclic chelation is gadoteric acid (Gd-DOTA) (Fig. 2.4). Despite being well toler-
ated and excreted rapidly by the vast majority of patients, the association of Gd-DTPA
administration with Nephrogenic Systemic Fibrosis (NSF) in end-stage renal disease [54]
has prompted ongoing investigations on the long-term retention and stability of Gd-based
compounds. A number of studies since then have investigated the disassociation of Gad-
olinium from its chelate, which is believed to be the main pathogenic effect, suggesting a
generally higher in-vivo stability of macrocyclic compared to linear chelation [101,113,133].
The structure formula for Gd-DTPA depicted in Fig. 2.4(a) shows the addition of a

water molecule to the compound, attached directly to the Gd3+-ion by a coordinative
bond. This bond provides the spatial vicinity needed for efficient dipole-dipole interaction
between water protons and the Gd3+-ion. Protons at the binding site are relaxed very
rapidly, making the magnetic relaxation of a whole volume of water effectively depend
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Figure 2.4: Chemical structure formulae for the most widely-used MRI contrast agents Gd-
DTPA based on linear chelation (a) and Gd-DOTA based on macrocyclic chelation (b).4

on the rate at which the water molecule at the binding site is being exchanged. This
rate is determined by the ability of water to move within its molecular context, effectively
making it a tissue property, and the potential impact of macromolecular content on the
relaxation properties of Gd-based compounds within tissue have been documented [137].
Quantitatively, the influence of MRI contrast agents on T1 and T*

2 relaxation is usually
condensed into a single global constant (r1/2*) called relaxivity. With R1/2*,0 as the native
relaxation rate and [Gd] as the local concentration of the contrast agent, it is:

R1/2∗ :=
1

T1/2∗
= R1/2∗,0 + r1/2∗ · [Gd] (2.12)

Concerning biodistribution, the described molecules are mainly bound to the vascu-
lature [4], although their relatively small size allows permeation of vascular walls and there-
fore leakage into the interstitial tissue space (or equivalently, the extravascular-extracellular
space (EES)) for a number of organs including the heart. However, no Gd-based agent is
able to move across intact cellular walls, leading e.g. to a relative myocardial distribution
volume for Gd-DTPA/Gd-DOTA of about 25% of the whole tissue space. Although agents
that distribute almost exclusively intravascular have been developed for clinical use, their
effectiveness for dynamic or quantitative applications is limited, as intravascularity usually
depends on reversible albumin binding, potentially changing the kinetic properties of the
agent itself during dynamic experiments.
With respect to the relative distribution volume of MRI agents, it is also important

to introduce the distinction between what is commonly called a tracer and an indicator:
While tracers usually both represent the imaging target and beget the image signal - e.g via
radioactive decay in PET - indicators only passively report on the presence of the imaging
target, i.e. water protons in the case of MRI. The fact that MRI indicators are usually
confined to the extracellular space while the water molecules creating the actual image
signal may move between all tissue subspaces introduces the necessity to consider so-called
water exchange effects. For a tissue voxel containing two subspaces (a,b), the impact of
water exchange on MRI signal is proportional to the relationship between water exchange
rates across their border and the difference in their magnetic relaxation rates. The basic

4Images adapted from [156] (a) and [155] (b).
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mathematical framework for the treatment of exchange effects was given by Hazlewood et
al. [59] and later adapted for sequences mapping R1 recovery after inversion [40]. For the
two extreme cases - the so-called fast-exchange (FEXL) and no-exchange limits (NEXL) -
normalized signals after an inversion time TI from a voxel comprising two subspaces with
relative volumes va/b and relaxation rates R1,a/b may be written as:

SFEXL(TI)/M0 = 1− 2e−TI(vaR1,a+vbR1,b) (2.13)

SNEXL(TI)/M0 = v′a(1− 2e−TIR
′
1,a) + v′b(1− 2e−TIR

′
1,b) (2.14)

In the fast-exchange limit, water protons move rapidly between subspaces making them
subject to a single, effective R1 that is a weighted average of R1 rates within the two
subspaces (Eq. 2.13). In the case of limited or no water exchange, each subspace contributes
to the voxel signal with a separate exponential, depending on a set of apparent (primed)
relative volumes and relaxation rates (see [40] for details). While limited exchange implies
the possibility to estimate relative volumes of subspaces from a bi-exponential fit according
to Eq. 2.14, it complicates the estimation of absolute CA concentration from MRI voxel
signal. For this process, Eq. 2.12 is applicable to a mixed voxel-signal only when assuming
the FEXL, in which a single effective R1 exists that is linearly proportional to indicator
concentration within the respective subspace.
Whether the FEXL applies depends to a large degree on the MRI sequence with which

exchange effects are sampled. For common gradient-echo sequences, short repetition times
reduce exchange sensitivity and may fully alleviate them if certain conditions are met [40].
The main problem for contrast-enhanced imaging in this context is that agents may in-
troduce very large differences in R1 between tissue subspaces, and therefore may violate
the FEXL independent of the physiological water exchange rate. Especially for dynamic
imaging, which involves the tracking of a high-concentration indicator bolus through the
tissue, water exchange effects have been extensively discussed in the literature. For in-
travascular indicator behavior, e.g. cerebral applications of Gd-DTPA, the FEXL is meas-
urably violated between vascular and extravascular tissue compartments [70]. In the case
of significant extravasation, e.g. in cardiac applications of Gd-DTPA, effects of both vascu-
lar/interstitial [18] and interstitial/cellular [88] water exchange have, however, been shown
to be not measurable using gradient echo sequences with short TR.

2.1.4 Positron Emission Tomography (PET)

Positron emission tomography imaging relies on the application of short-lived isotopes
whose decay invokes the emission of a positron (β+) as part of the conversion of protons
into neutrons:

1
1p

+ → 0
1n + 1

0β
+ + ν (2.15)

Such isotopes may be chemically substituted into a large variety of different biological
molecules which may act as tracers to a potentially vast amount of metabolic or functional
processes. The radiotracers used in this thesis belong to the most widely used ones in
medicine today, namely the glucose analogue F18-fluorodeoxyglucose (18F-FDG) and the
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ammonia analogue 13NH3. The decay equations for fluorine and nitrogen isotopes are given
below, half-lives are about 110min and 10min respectively.

18
9 F → 18

8 O + 1
0β

+ + ν (2.16)
13
7 N → 13

6 C + 1
0β

+ + ν (2.17)

After injection of a radiotracer into the human body, the emitted positrons perform
elastic and inelastic collisions with atomic electrons or nuclei of surrounding matter. When
kinetic energy is reduced far enough the positron combines with an electron, resulting in
annihilation either directly or via the formation of a short-lived positronium system. The
eventual annihilation produces two photons with an energy of 511 keV, usually emitted with
a relative angle of 180° according to the conservation of momentum. The synchronous de-
tection of theses photons is the basic imaging signal of PET, corresponding however to de-
tection of the annihilation event rather than the location of the original isotope/radiotracer
decay. The positron range between emission and annihilation events is one of the funda-
mental limits of spatial resolution in PET imaging, being at about 0.6mm for 18F and
0.9mm for 13N in tissue [87].
In order to locate the positron annihilation, both photons need to be detected by detect-

ors on opposing sides across a so-called line of response (LOR). The most commonly used
(block) detectors are a combination of an array of scintillation crystals in front of a photo-
detector. The main scintillator material interacts with incoming annihilation photons via
Compton scattering events. The concomitant energy deposition creates electron-hole pairs
that in turn interact with targeted crystalline impurities (activators), ultimately produ-
cing photons in the range of visible light. Photodetectors process the incoming scintilla-
tion photons into an electrical current of photo-electrons. They consist either of standard
photomultiplier tubes (PMTs) or semiconductor-based photomultipliers such as avalanche
photodiodes (APDs) and silicon photomultipliers (SiPMs).
In the so-described detection process, precise timing on the order of a few nanoseconds

is necessary to sufficiently identify coinciding detection events. In addition to the so-called
true coincidences recorded for LORs passing through the actual point of annihilation,
the finite time resolution of detection as well as scattering of annihilation photons may
also lead to random coincidences and scattered coincidences. Especially the latter is a
major contributor to image noise in medical scanners, and widely-used methods for scatter
correction exist [146].
Quantitative estimation of activity from PET image data relies on another pre-

reconstruction step which is called attenuation correction (AC). In any extended object,
the path lengths for annihilation photons passing through media that may absorb them
before detection can vary significantly. The probability of absorption also depends on the
material that is passed through, and is e.g. much higher in bone than in mostly air-filled
lung tissue. Attenuation correction refers to the process of estimating for each LOR the
probability that both photons from a preceding annihilation event are actually detected,
and subsequently normalizing detection events across all LORs to these probabilities. The
necessary information about the variation of the attenuation coefficient µ within the sample
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Figure 2.5: Visualization of the basic PET imaging principle. In (a) a schematic PET
imaging setup is shown, consisting of a detector ring designed to detect annihilation photons
across a LOR. Placing of the annihilation event inside the subject (here: a Shepp-Logan
phantom) determines the photon path through different tissue types and therefore the
probability to be detected at the corresponding side of the detector. Examples for 2D
short-axis (a) and transversal (b) slices from a 3D 18F-FDG PET image are shown in
units of SUVLBM with prominent tracer uptake in the myocardium.

is recorded in most clinical scenarios, i.e. with combined PET/CT devices, using a low-dose
CT scan [78].
The so-corrected PET data may be reformatted before image reconstruction into a num-

ber of recorded coincidence events populating a set of projection lines. In 2D, these pro-
jection lines represent the integration of events across all LORs under a certain projection
angle φ, leading to a sinogram or Radon transform data format p(s, φ). Akin to computed
tomography, the most basic reconstruction algorithm for such projection data is the so-
called backprojection or tomographic reconstruction. For a 2D case with f(x, y) as the
distribution of activity in the volume of interest, it is:

f(x, y) =
1

2π

π∫
0

p(x cos(ϕ) + y sin(ϕ), ϕ) dϕ (2.18)

Due to the higher density of data in the center of sinogram space, direct reconstruction
according to Eq. 2.18 is applied in combination with weighting filters as a filtered back-
projection (FBP). Because such filters usually create undesirable noise patterns, most of
the clinically applied reconstruction frameworks rely on iterative, numerical reconstruction
algorithms such as Ordered Subsets Expectation Maximization (OSEM) [62]. One of the
main differences of PET data to MRI is that the acquisition process is inherently continu-
ous and three-dimensional, and certain time windows of the whole acquired raw dataset
may be reconstructed separately, e.g. for dynamic imaging.
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Concerning the quantitative representation of image data in PET, basic intensity values
after reconstruction are usually given as an activity I in units of Bq/mL, which is equi-
valent to the number of recorded decay events per second per milliliter. Both for dynamic
imaging as well as for the calculation of a so-called standardized uptake value (SUV), decay
correction specific to the radioisotope is executed based on the difference between the time
of injection and image acquisition. The SUV can be seen as a measure of deviation from
equal dose distribution to all organs and is mostly used in 18F-FDG applications (Fig. 2.5).
It is calculated at a time point t after injection using the injected dose ID and the body
mass BM or alternatively the lean body mass LBM of the subject, yielding either SUV or
SUVLBM:

SUV (t) =
I(t)

ID/BM
and SUV LBM(t) =

I(t)

ID/LBM
(2.19)

2.1.5 PET/MRI

The clinical success of integrated PET/CT scanners and the ability of MRI with respect
to soft tissue contrast and reduction of exposure to ionizing radiation has inspired the de-
velopment of combined PET/MRI scanners. With respect to the technical aspects of both
systems as outlined in the preceding sections, a number of additional obstacles needed to
be overcome. As dynamic magnetic fields have strong detrimental effects on the operation
of PET detector hardware based on PMTs, development of detector systems that are not
influenced by magnetic fields was crucial. The use of semiconductor-based photodetectors,
first realized for pre-clinical system using APDs [27], has led to the first clinical systems
based on APDs [35] and more recently using SiPMs [50]. Conversely, proper shielding of
PET detector hardware is necessary in order to diminish their influence on magnetic field
homogeneity. With respect to MRI hardware, also the design of patient beds and surface
coils changed to move as much of electronics or otherwise attenuating material out of the
PET bore. A detailed assessment of performance aspects for both PET and MRI sub-
systems of the integrated clinical PET/MRI scanner system used in this thesis has been
published in [35].
With respect to quantitative applications, the generation of reliable µ-maps is more

demanding than for PET/CT, where the basic image signal of the CT is essentially the at-
tenuation coefficient (apart from differences in photon energy). For abdominal and cardiac
PET/MRI applications, the most widespread approach is a fat-water separation (Dixon-)
technique [39] from which tissue-types may be classified and assigned with known at-
tenuation values. Still, truncation artifacts from the limited field of view across which
the MRI can estimate attenuation remains challenging especially for whole-body applic-
ations [10]. Also cerebral applications are relying on further development of ultra short
echo time (UTE) sequences capable of generating MRI signals from highly attenuating
bone structures exhibiting very short T*

2 times [26].
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Chapter 2 Theory

2.2 Cardiovascular Physiology and Blood Flow

This section introduces aspects of basic cardiac physiology with specific relevance to the
topic of this thesis, focusing on the coronary circulation and the physiology of microvascular
perfusion as well as pathologies associated with it.

Figure 2.6: Idealized physiology of the human heart. An inside view of the large vessels and
four chambers of the heart with arrows indicating the direction of blood flow is shown on
the left (a), the heart muscle (myocardium) is magenta. On the right (b) is an outside view
of the heart showing the course and origin of the three large epicardial arteries supplying
blood to the microvasculature inside the myocardium. It is RCA = right coronary artery,
LAD = left anterior descending artery, LCx = left circumflex and LM = left main stem.5

The human heart as depicted in Fig. 2.6 is best idealized as a system of tubes and cham-
bers designed to move deoxygenated blood through the lungs (via the pulmonary vessels)
and subsequently distribute oxygenated blood via the left ventricle (LV) and the aorta into
the rest of the body. Like every other muscle inside the human body, the heart muscle
itself - represented by the contractible walls of the two ventricles - needs blood supply. This
blood supply is provided by the so-called coronary circulation. It consists of the coronary
veins and arteries constituting a system of vessels within the myocardium and on its outer
surface. The coronary arteries have their origin at the aortic root just downstream of the
aortic valve. The arterial coronary vasculature may be divided into functional subgroups
by vessel diameter [23]. It consists of the macroscopic epicardial arteries (>0.5mm) as
well as the microvasculature within the tissue, consisting of prearterioles (0.5 - 0.1mm),
arterioles (<0.1mm) and capillaries. The capillaries represent the main functional unit of
tissue perfusion as pertaining to oxygen and nutrient exchange across the vascular walls.

5Image (a) reproduced from [160]. Image (b) reproduced from [157], © R.C.B. Kreuger and ECGpe-
dia.org.
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2.2 Cardiovascular Physiology and Blood Flow

There is a complex mechanical (prearterioles) and metabolic (arterioles) regulation of flow
resistance and thus microvascular blood flow in the myocardium (Fig. 2.7, left). The pur-
pose of this regulation is to at all times meet the perfusion demand of the heart muscle,
while at the same time maintaining a pressure gradient along the vascular hierarchy to
protect the sensitive capillaries from high systemic blood pressure.

Figure 2.7: Characterization of perfusion on a microvascular level. Plot (a) shows func-
tional subunits of the arterial coronary vasculature in a hierarchical fashion, highlight-
ing the physiological pathways of pressure regulation. On the right (b), Fårhæus- and
Fårhæus-Lindqvist effects are visualized, depicting a drop in blood viscosity by phase sep-
aration of blood and plasma in the microvasculature as well as a concomitant drop in tube
hematocrit.6

With respect to blood flow, the drop in pressure is partially compensated for by a
decrease in overall blood viscosity with decreasing vessel diameter called the Fårhæus-
Lindqvist effect [41]. It describes the observation that, at small tube diameters, red blood
cells and plasma flow patterns separate, resulting in a cell-free layer at the inner vessel wall
where laminar shear resistance is greatest (Fig. 2.7, right). While the resulting drop in
overall blood viscosity is called Farhaeus-Lindquist effect, the concomitant drop of effective
tube hematocrit, i.e. the volumetric ratio of vascular cell to plasma content, is usually
referred to as the Farhaeus effect. Both Fårhæus- [81] and Fårhæus-Lindqvist effects [114]
have been observed in-vivo, although differing accounts on their strength and interplay
with the general physiological state exist [5,115].
An additional factor that is assumed to play an important role in the regulation of oxygen

delivery in the myocardium is the local heterogeneity of flows within a single vascular bed.
Evidence for both the heterogeneity itself as well as its change during vasodilator stress
has been documented early on in animal studies [32,124]. The basic concept of how het-
erogeneity of flow rates in a given vascular bed, equivalently expressed as capillary transit

6Image (a) reproduced with permission from [22], © Massachusetts Medical Society. Image (b) adapted
from [154], © R. Hellmuth.
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time heterogeneity (CTH), influences the average efficacy of oxygen extraction (OEF) is
depicted in Fig. 2.8.
It shows that the maximum achievable diffusion of oxygen from a single exchanging vessel

increases sub-linearly with flow according to the flow-diffusion equation. This implies that
the most efficient way in which a given vascular bed can facilitate oxygen extraction at a
given average flow rate is by exhibiting a completely homogeneous flow distribution across
all pathways it contains. It also implies that - theoretically - the most efficient way to
adapt to an increase in oxygen demand includes both an increase of overall flow and a
homogenization of capillary flow patterns (Fig. 2.8(b)) [109].

Figure 2.8: Visualization of the effects of flow heterogeneity on oxygen extraction. (a)
The graph on the left shows diffusion of oxygen - expressed as an upper limit to the
maximal metabolic rate of oxygen (MMRO2) - with a sub-linear relationship to blood
flow along a single vessel as predicted by the flow-diffusion equation. The subsequent
difference in achievable oxygen extraction between homogeneously (A) and heterogeneously
(B) perfused vascular beds is indicated by the difference between points (a) and (b). (b)
The plot on the right is a 2D representation of the graph on the left with a continuous
scale of average blood flow (MBF) and CTH for a hypothetical vascular bed.7

The described system of cardiac perfusion can be affected by disease on a number of
different levels, which may manifest as life-threatening acute insults or gradual alterations
of vascular or overall tissue structure. The most prevalent disease associated with cardiac
perfusion is coronary artery disease, which describes the narrowing of macroscopic coronary
arteries due to calcification or atherosclerotic plaque. The actual impact of CAD on tissue
perfusion may vary depending on its location and whether downstream tissue is sufficiently
supported (collateralized) by other arteries. An acute ischemic event, i.e. occlusion of
a major coronary vessel, is the most dramatic complication from CAD. It results in a
complex biochemical cascade inducing edematous-inflammatory processes in the short-

7Images (a) and (b) adapted with permission from [109], originally published by Springer.
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term and fibrotization of myocardial tissue or ventricular remodeling in the long-term.
The main effect on tissue composition consists of a gradual exchange of formerly intact
cellular tissue content with fibroblasts, effectively increasing the relative volume of the
extracellular matrix.
Somewhat separate from the simple clinical picture of macrovascular obstruction and

downstream ischemia associated with CAD, a number of overall less-well understood dis-
ease patterns associated with morphologic or functional alterations of the microvasculature
are collectively referred to as either microvascular disease (MVD) or coronary microvascular
dysfunction (CMD). They may manifest as both symptoms or risk factors to a number of
other disease processes [22], and may in some instances be seen as underlying explanations
for ischemic alterations in tissue structure in the absence of large-vessel CAD [33]. While a
number of scenarios for ischemic disease processes that are only determined by functional
alterations to the microvasculature are theoretically conceivable [109], direct observation
of cause and effect is not as easily achievable as for macroscopic CAD.

2.3 Myocardial Perfusion Imaging

2.3.1 Generic Perspective

The main purpose of perfusion imaging is the visualization of vascular tissue space, which
refers to the hierarchy of microscopic vessels that due to their small size escape direct
visualization by angiography techniques. A contrast with respect to perfusion is usually
created both in time and space by administration of a bolus of external contrast agent,
whose distribution is monitored by observing dynamic signal changes of the tissue space as
a whole. All major clinical imaging techniques (MRI, CT, PET, SPECT, ultrasound) have
established protocols for perfusion imaging that may vary in applicability with respect to
the organ of interest.
The main motivation behind the development of myocardial perfusion imaging has been

assessment of the very prevalent and potentially life-threatening CAD, for which cause
(coronary obstruction) and effect (ischemic tissue) are somewhat spatially separated. While
the presence of calcifications in the large arteries may be visualized by invasive angiography
or non-invasive by CT, their effect both with respect to location and severity of ischemia
cannot readily be deduced from angiographical data. Conceptually, perfusion imaging
fills this gap in information and may, from a clinical point of view, act as a gatekeeper
to the prescription of more expensive invasive angiography diagnostics or recanalisation
therapy. In addition to its relevance in estimating the severity of known or suspected
CAD, direct assessment of tissue perfusion may yield information on vascular pathology
that only manifest microscopically and - depending on the biodistribution of the agent -
also characterize tissue properties associated with CA distribution beyond perfusion flow.
In a clinical setting, the ability of the vasculature to adapt to high demands during

physical stress is often tested by simulating a stressed state via patient exercise or ad-
ministration of a pharmacological vasodilating agent. An attenuated reaction to stress,
implying that some part of the coronary vasculature is limiting the accommodation of
perfusion flow to a state of high energy demand, is considered an indicator of ischemia.
Ischemia due to pathologic narrowing of a single epicardial artery (single-vessel disease)
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may be detected by any qualitative technique yielding a perfusion contrast. One of the
main clinical motivations for absolute quantification of perfusion information is the fact
that ischemia may also present itself as a globally balanced effect, e.g. in three-vessel dis-
ease or microvascular disease, for which diagnosis requires the comparison of quantitative
perfusion information to some absolute reference standard.

Figure 2.9: Bolus passage and corresponding enhancement curves for dynamic 13NH3-
ammonia PET (a) and perfusion MRI (b) in one mid-ventricular slice. The regions of
interest from which tissue curve (blue) and AIF (red) were taken are highlighted in the
baseline image prior to contrast arrival. The relationship of AIF and tissue curves between
PET and MRI indicates the different relative distribution volumes of 13NH3 and Gd-DTPA
inside the tissue. Both CA injection speed and time resolution of perfusion images are
about one order of magnitude lower for PET than for MRI.

Figure 2.9 shows examples of a mid-ventricular perfusion MR image series and the cor-
responding PET slice during the passage of intravenously administered CA. It also shows
the signal enhancement over time, both from regions of interest inside the LV and the
myocardium. By convention, any enhancement curve acquired from myocardial tissue
space is called tissue curve, while a curve corresponding to blood enhancement, e.g. in the
LV cavity, is called arterial input function (AIF). In a generic sense, quantitative perfusion
imaging is based on using the AIF as a surrogate for CA input into the tissue vasculature.
Quantitative estimation of tissue properties - e.g. flow in units of mL/min/g - is based on
the mathematical modeling of the relationship between tissue curve and input function.
The specific formalism of how this is performed depends greatly on the properties of the
contrast agent and the time resolution of the imaging modality, and may include model-
ing of CA convection, its chemical interactions within the tissue, or both. In a broader
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technical sense, analogies can be made to virtually any system characterization for which
sampling of excitation and answer is used in order to deduce a response function that char-
acterizes an unknown system at hand with respect to the excited property. This may refer
to unknown elements in electric circuits, where excitations may be made in the current or
voltage domain, in a similar way as in this case to perfused tissue, where an excitation in
the CA concentration domain is answered with a distinct pattern of retention and outflow
over time. With respect to myocardial perfusion MRI, the concepts and applications of sta-
bilizing the search for a proper system characterization in the form of an impulse-response
function - which is essentially a mathematical deconvolution problem - substantiate large
parts of the scientific content of this thesis. With respect to quantitative PET perfusion
imaging, application of the concepts of deconvolution and impulse responses are slightly
modified to accommodate the low time resolution of PET, which is elucidated in detail in
the following section.

Figure 2.10: MRI example for placement of perfusion slices across the LV myocardium.
Standard division into 17 segments is shown with the most common pattern of large artery
support.8

In order to unify the terms for navigation inside cardiac imaging slices, there exists a
standard segmentation proposition by the American Heart Association [29]. It divides the
left-ventricular myocardium into a total of 17 segments distributed across three short-axis
and one long axis slices. Figure 2.10 shows the segmented myocardium with basal and
mid-ventricular slices each containing six, and the smaller apical position holding four
segments. The 17th segment is represented by the most apical tip of the myocardium.

8Schematic image of the heart adapted with permission from [160]. Schematic depiction of coronary
territories reproduced with permission from [29], © American Heart Association, Inc.
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2.3.2 Dynamic 13NH3-Ammonia PET

The basic concept of clinical PET perfusion imaging is the intravenous injection of a small,
rapidly diffusible tracer molecule and the monitoring of its extraction from the vascular
space and subsequent retention inside the tissue of interest. Historically, this mechanism
was adapted from existing invasive techniques based on the administration of microspheres
that were only applicable in preclinical settings. Such extraction-based approaches can be
seen as a passive way of indicating actual vascular perfusion, because information about
blood flow is only inferred from the rate of extraction from the vascular space (usually
called K1). Consequentially, the most important quality criterion for a perfusion tracer
in PET is its diffusivity, i.e. how close to linear the relationship between extraction rate
and vascular flow is, especially at high flow rates during stress testing. The four clinically
available PET tracers vary in extraction efficacy from 82Rb-Rubidium to 13NH3-ammonia,
18F-flurpiridaz and 15O-water. Wide-spread clinical application of 13NH3-ammonia and
15O-water is hampered e.g. by the need for an on-site cyclotron, while worldwide regulatory
approval for 18F-flurpiridaz is still pending. Therefore, as of today, 82Rb-Rubidium is one
of the most widely used PET perfusion tracers despite mediocre extraction properties.

Figure 2.11: Schematic representation of functional myocardial tissue compartments with
respect to ammonia distribution.9

One of the first applications of quantitative perfusion imaging that was established in
a clinical setting was dynamic 13NH3-ammonia PET, for which an example of dynamic
data is given in Figure 2.9(b). One of the decisive advantages of PET with respect to
quantitative imaging is the linearity of image signal to tracer concentration, i.e. after decay
and attenuation correction. The main drawbacks are its low time and spatial resolution, as
clinically achievable time windows for dynamic imaging are usually on the order of 10 s and
intra-slice spatial resolution is usually not higher than 5mm2. Low time resolution is the
technical reason why PET perfusion imaging can usually only infer characteristics of fast

9Image originally published in JNM [104], © Society of Nuclear Medicine and Molecular Imaging, Inc.
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vascular tracer convection from extraction and retention in a slow-changing extravascular
pool. Both the coronary transit of LV blood into the tissue (1 - 4 s) as well as the transit of
blood through the tissue (2 - 10 s) may not be resolved directly, which is visualized e.g. by
a missing delay in the onset between LV blood and tissue enhancement curves compared
to MRI (Fig. 2.9).
The most established kinetic models for distribution of 13NH3-ammonia classify myocar-

dial tissue into three functional compartments [128]: A vascular space with 13NH3 concen-
tration Ca, an extravascular space with free diffusion (CE) and a cellular space in which
ammonia is irreversibly metabolized and retained (CG). Linear kinetic rate constants K1,
k2 and k3 between tissue compartments are defined as shown in Fig. 2.11. With a dynamic
correction for radioactive decay (λ), the basic pharmacokinetic differential equations for
the tissue can be written as:

∂ CE(t)

∂t
= K1Ca(t)− k2CE(t)− k3CE(t)− λCE(t) (2.20)

∂ CG(t)

∂t
= k3CE(t)− λCG(t). (2.21)

These may be solved with respect to a vascular input Ca and an extravascular tissue
concentration CT , yielding:

CT (t) = CE(t) + CG(t) = RK(t)⊗ Ca(t) (2.22)

with

RK(t) = K1 ·
[
e−(k2+k3+λ)t +

k3
α+ − α−

(
e−α−t − eα+t

)]
(2.23)

α± =
(k2 + k3 + 2λ)±

√
(k2 + k3 + 2λ)2 − 4λ(k2 + k3 + λ)

2
. (2.24)

A derivation of the above solution can be found in the Appendix of [63]. In the generic
sense outlined in the previous section, it represent extraction and retention inside the tissue
as the result of filtering the incoming signal profile, i.e. the AIF, with a convolution kernel
RK containing all information about the tissue in the form of rate constants.
With respect to the vascular tissue space, low temporal and spatial resolution in clinical

applications motivate two major simplifications: As vascular blood signal from the tissue
cannot be distinguished from LV blood signal with respect to time, Ca can be identified
with the measured AIF. Additionally, the volumetric contributions of all blood activity
inside the tissue can be lumped into a tissue-blood volume fraction (TBV ) [63]. It rep-
resents the added relative volumes of the vascular bed inside the tissue and a potential
partial-volume/spillover fraction from the LV. With that, the measured overall tissue con-
centration Cm can be expressed as:

Cm(t) = Ca(t) · TBV + (RK(t)⊗ Ca(t)) · (1− TBV ) (2.25)
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Using the measured AIF (Ca) and tissue curve (Cm), this equation may be solved nu-
merically for the four parameters TBV , K1, k2 and k3. Finally, actual vascular blood flow
(F ) can be expressed as the ratio of K1 and the so-called first-pass extraction fraction
(E), which is related to the permeability-surface area product (PS) of the vascular wall
for ammonia according to the Kety-Schmidt equation [76]:

K1 = FE = F (1− e−
PS
F ) (2.26)

The assumption that E is close enough to unity so that K1 can be assumed equal
to flow F is one of the fundamental limits of accuracy, although it has been shown to
hold for the clinically relevant flow range [104,128]. An additional assumption that is
usually made is that the presence of radioactive, blood-borne ammonia metabolites urea
and glutamine that contribute to the AIF signal do not have a significant effect on flow
estimation. While this has been shown to be accurate with respect K1 and flow, estimates
of k3 may be significantly affected by metabolite correction [63,104]. Concerning the use
of rate constants other than K1, it has been shown that the ratio K1/k2 may also serve as
an indirect way of characterizing the metabolically active 13NH3 distribution volume [7].
For a comparison of the conceptual basics between PET and MRI flow estimation, it

is important to note that the simplifications for tracer dynamics in the vascular space,
described in this section for clinical 13NH3 PET applications, are only valid at low time
resolutions, irrespective of the imaging method. One implication of Eq. 2.20 is that the
vascular tissue space appears as having no concentration gradient in flow direction, which
is a valid assumption only as long as the time resolution is too low to observe the transit
of blood through the tissue. In situations where kinetic data is sampled with high time
resolution, models allowing for a more physiologically faithful representation of vascular
flow dynamics have to be applied, as it is usually the case in MRI. The fact that this is not
a feature of the imaging modality but a matter of dynamic data structure has been shown
more recently by the application of axially-distributed vascular models with preclinical
13NH3-ammonia PET at a time resolution of 2 s [1].

2.3.3 Dynamic Contrast-Enhanced (DCE-) MRI

Perfusion applications in MRI can be divided according to whether they include exogen-
ous contrast agent or not. Non-contrast perfusion techniques such as blood-oxygen level
dependent (BOLD) imaging or arterial spin labeling (ASL) are established for a number of
cerebral applications, but complications such as cardiac and respiratory motion as well as a
generally low sensitivity are limiting their effectiveness in cardiac MRI. The two clinically
established methods that include CA are dynamic contrast-enhanced MRI and dynamic
susceptibility contrast (DSC-) MRI. The latter is used mainly in cerebral studies, where
e.g. Gd-DTPA and Gd-DOTA stay intravascular due to the blood brain barrier and there-
fore create significant susceptibility (T*

2) contrast that may be used to identify vascular
leakages. Its advantage in quantitative applications is the linearity of the MRI signal map-
ping the susceptibility effect to CA concentration, its dependence on CA intravascularity
however limit its use to the brain. Perfusion MRI in oncology and cardiac applications
relies on DCE-MRI, which maps the T1-shortening properties of MRI contrast agents to a
dynamic increase of image signal. While there are efforts to develop sequences that allow
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perfusion acquisition comparable to PET, i.e. continuous in space and time, as of today
the most stable and established cardiac DCE-MRI protocols are limited to acquiring non-
isotropic 2D slices as snapshots. These usually cover 3-6 short-axis positions (see Fig. 2.10)
during each cardiac cycle for a certain amount of time after CA injection.

Figure 2.12: Effects of signal saturation in DCE-MRI for the example of an SR-FLASH
dual-sequence design. Bloch-simulation of a high-resolution acquisition with centric k-space
readout in the upper left shows a highly nonlinear relationship between R1 and recovered
magnetization along the highlighted central k-space line. Additional acquisition of images
with adjusted sequence parameters and centric k-space ordering mitigate signal saturation
at peak LV enhancement as shown on the right.

Depending on a trade-off between the desired slice coverage, in-plane resolution, SNR
and the effects of cardiac motion, acquisition times for a single slice may vary anywhere
below 200ms. Due to ECG-triggering of the first acquisition in each cardiac cycle, cardiac
motion appears frozen for each individual slice position. Respiratory motion is usually
corrected retrospectively based on the dynamic image series as it is slow compared to
image acquisition time and therefore only noticeable between images from different cardiac
cycles. Figure 2.9(b) shows typical DCE-MRI enhancement curves visualizing a bolus
passage of Gd-DTPA through the heart for a single slice position. Due to its relatively
small extracellular distribution volume, the difference in relative voxel concentration of Gd-
DTPA between tissue and peak blood signal is about one order of magnitude. Therefore,
it is one of the main obstacles for perfusion quantification based on DCE-MRI to linearly
map the highly shortened T1 times during bolus passage to MRI signal, while still acquiring
the tissue curve with appropriate sensitivity and SNR.
Standard T1-weighted sequences may exhibit a strongly sublinear relationship between

MR image signal and T1, which is usually called signal saturation and varies with sequence
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design. The Bloch-equation simulation in Fig. 2.12 shows this for the most widely used
saturation-recovery (SR-)FLASH sequence, which achieves T1 contrast through an initial
destruction of all magnetization components and image acquisition during the subsequent
recovery of longitudinal magnetization. An equation for the signal evolution considering
only T1 relaxation, i.e. assuming that echo time TE is very short compared to T*

2, may
be derived from basic Bloch equations [12]. It contains a spatially-varying normalization
constant S0 and a function f characterizing the relationship of recovered magnetization
signal with R1:

S(TN ) = S0 · f(R1, TD, TR, N, α)

= S0

[
(1− e−R1TD) · aN−1 + (1− e−R1TR) · 1− aN−1

1− a

]
(2.27)

with
a = cos(α) · e−R1TR .

The function f predicts recovered magnetization available for acquisition of the Nth k-
space line. It takes into account a delay time TD after saturation as well as N -1 preceding
acquisitions with repetition time TR and flip angle α. The central k-space line, which ef-
fectively corresponds to image signal magnitude, is highlighted in red in Fig. 2.12 showing
the non-linearity between R1 and MR image signal for the case of a regular perfusion ac-
quisition. The most widely-used approaches to overcome this are referred to as dual-bolus,
dual-sequence and theory-based magnetization modeling techniques. The most logistically
challenging is the dual-bolus approach, which includes injection of a diluted or smaller
pre-bolus [83] to measure an AIF curve at a level of signal saturation that is comparable
to the tissue curve. The so-acquired AIF is scaled by the dilution factor to recreate a
hypothetically unsaturated AIF, and the tissue curve is acquired afterwards using a full
bolus of CA, while both pre-bolus tissue curve and full-bolus AIF are discarded. The more
elegant dual-sequence approach also separates acquisition of AIF and tissue curve, but does
so by adding a short additional low-resolution acquisition at a single basal slice position to
each cardiac cycle [46]. Sequence parameters and k-space ordering for the low-resolution
image are adjusted so that they map changes in T1 close to linearly to image signal as
shown in Fig. 2.12. The logistically most simple approach is the theory-based calibration of
dynamic T1 with DCE-MRI image signal by using a theoretical simulation of the sequence
with known parameters such as Eq. 2.27. Recovery of the normalization constant S0 may
be performed either using additional proton-density weighted images [28] or a combination
of pre- or post-contrast baseline signals and additional reference T1 values [17].
Assuming that tissue curve and AIF accurately reflect T1 values during CA bolus pas-

sage, CA concentration may be calculated according to Eq. 2.12. Before modeling the
relationship between AIF and tissue curve, the AIF needs to be adjusted for differences
between voxel reference volume (i.e. whole blood) and CA distribution volume (i.e. blood
plasma). Therefore, in order to obtain an accurate input function for the vascular, i.e.
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plasma, tissue space, the reference frame for concentration can be shifted from whole
blood (b) to plasma (p) using arterial hematocrit hcta according to [134]:

AIFp =
AIFb

1− hcta
, Fb =

Fp
1− hctt

, vb =
vp

1− hctt
. (2.28)

Rescaling of resulting plasma parameters, i.e. flow Fp and volume vp, to corresponding
blood parameters requires the introduction of a tissue hematocrit hctt for the vascular bed.
Note that this rescaling also implies the assumption of equal flow patterns of plasma and
blood within the tissue.

2.3.4 DCE-MRI Tissue Modeling

In the early days of DCE-MRI, the paradigm of calculating vascular flow from CA extrac-
tion akin to established PET or microsphere applications has led to the development of
approaches such as the Tofts-model [139]. It is mathematically equivalent to the ammonia
model described above (Eq. 2.25 with k3 = λ = 0), and originally had the purpose to
use K1 for characterization of vascular lesion in the blood brain barrier. However, the ef-
fects of a low and more variable extraction of Gadolinium-based agents compared to PET
tracers preclude application of models oversimplifying vascular kinetics for most DCE-MRI
applications [135].
In a generic sense, most of the existing DCE-MRI modeling approaches - especially for

the myocardium - can be related more directly to earlier applications of the indicator-
dilution principle, in which tissue is thought of strictly a as black-box system. In their
invasive form, indicator-dilution techniques include the injection of dyes or radiolabeled
molecules (indicators) into the feeding vessel of an organ or vascular bed of interest. Sim-
ultaneously, a time-concentration profile of the indicator mixed with blood is sampled from
all exit pathways of the vascular bed. The so-acquired outflow curve can be identified with
the distribution of transit times through the organ, historically called h, if the following
conditions hold:

1. The input injection is rapid enough to be considered a δ-like impulse.

2. There is no recirculation of indicator.

3. The vascular system is linear and time-invariant, meaning that its properties do not
change with time or indicator concentration.

The transit time distribution h fully characterizes the flow pattern of the vascular bed in
a statistical sense and can equivalently be described as a function of transit frequencies over
time. For an intravascular indicator, it may exhibit the shape of a right-skewed Gaussian
or gamma-variate function as depicted in Fig. 2.13.
However, the (complete) sampling of outflow curves is by definition an invasive pro-

cess and not compatible with clinical applications. Additionally, while the third condition
stated above is the foundation of any kinetic analysis using linear rate constants, the first
two cannot readily be met in non-invasive situations. The original comprehensive set of
mathematical tools for the description of indicator-dilution techniques using external mon-
itoring instead of outflow analysis was given by Zierler in the 1960s [151]. Its basis is the
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Figure 2.13: Basic indicator-dilution curves h(t), H(t) and 1−H(t). The transit time dis-
tribution h reports the frequencies of transit events, its cumulative distribution H therefore
is the fraction of indicator having left the tissue, and its reverse cumulative distribution
gives the fraction of indicator remaining in the tissue at time t after injection.10

concept that transit of indicator can be described by relating its accumulation within the
tissue to a so-called remaining fraction 1−H(t) via mathematical convolution. While meas-
uring accumulation instead of outflow is the basis for its non-invasiveness, the convolution
approach is also able to both cope with recirculating indicator as well as accept indicator
input functions that are more dispersed than sharp δ-like impulses. The defining equation
of the convolution approach can be given in analogy to the corresponding equations for
PET (Eqs. 2.23 and 2.25) with tissue curve Cm and AIF Ca. The main difference is that
vascular kinetics are fully included within the filter function RF , and its normalization
constant is therefore not extraction K1 as in PET but actual vascular flow F :

Cm = Ca(t)⊗ F · (1−H(t))

=: Ca(t)⊗RF (t) (2.29)

A detailed derivation of this equation from the basic principles of indicator-dilution
theory is given in Appendix A. Solving it with respect to RF , which contains all information
about the tissue as related to CA distribution, is equivalent to a deconvolution of tissue
curve Cm with input function Ca. For a computationally efficient implementation, Eq. 2.29
may be vectorized assuming that both measured curves consist of n discrete data points
sampled in uniform steps ∆t:

Cm(ti) = ∆t ·
i∑

j=1

Ca(ti − tj) ·RF (tj) =

i∑
j=1

Aij ·RF (tj) (2.30)

10Image reproduced with permission from [151], © American Heart Association, Inc.
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with

A := ∆t ·


Ca(t0) 0 0 . . . 0
Ca(t1) Ca(t0) 0 . . . 0
Ca(t2) Ca(t1) Ca(t0) . . . 0

...
...

...
. . .

...
Ca(tn) Ca(tn−1) Ca(tn−2) . . . Ca(t0)

 . (2.31)

Because RF is as such not determined by any tissue- or indicator-specific assumption,
different strategies for solution of Eq. 2.29 may be applied. These are introduced in the fol-
lowing sections, including regularized analytic deconvolution as well as model-constrained
deconvolution using shape functions that are either heuristic or parameterized in a physiolo-
gically meaningful way.

Model-free Deconvolution

The main problem for direct analytic deconvolution, e.g. by division of Cm and Ca in the
Fourier domain or matrix inversion of A, is that as soon as the AIF deviates from a perfect
δ-impulse, the frequency content of the excitation it provides with respect to indicator con-
centration is reduced. In this situation, direct deconvolution is equivalent to the attempt
of reconstructing an answer of the tissue to frequencies that were never excited by the
AIF in the first place, which is commonly referred to as an ill-posed problem. Consequen-
tially, this leads to arbitrary high-frequency oscillations in the time-domain solution of RF
already in the presence of minimal noise. The main strategy for overcoming this problem
in model-free deconvolution is using a regularized singular value decomposition (SVD) ap-
proach, which allows for introduction of variable side constraints or basis functions for the
construction of RF . Regularized SVD effectively dampens the high-frequency content of
RF in the Fourier domain and thus reduces oscillations in the time domain. Both the ef-
fect of regularization as well as the oscillations in time and the underdetermined frequency
content in frequency space for unregularized deconvolution are visualized in Fig. 2.14.
For SVD, a number of different regularization approaches exist, and a detailed educa-

tional review as well as implementation advice may be found in [58]. The most common
form of regularization that is used throughout this thesis is called Tikhonov regularization,
and may be expressed by rephrasing Eq. 2.30 as a minimization problem:

xλ = min
{
‖Ax− b‖22 + λ2‖Lx‖22

}
, (2.32)

with vectorization of curves

xi = RF (ti), bi = Cm(ti).

The regularization operator L whose weight is controlled by λ may represent any linear
smoothness constraint, the most common choice being a first-order differential operator.
In order to arrive at plausible solutions xλ while avoiding excessive damping, the choice
of a regularization parameter λ usually includes weighting the residual norm ‖Axλ − b‖22
against the solution norm ‖xλ‖22. A widely-used optimality criterion for this is the so-called
L-curve criterion [57], and an example for a so-regularized deconvolution result can be seen
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in Fig. 2.14 (b/c). Flow F is finally extracted from the resulting RF curve as its maximum
amplitude, where accuracy is limited in cases of highly damped solutions as well as cases
exhibiting significant oscillations.

Figure 2.14: Examples for direct deconvolution in the Fourier domain and SVD regular-
ization. The upper panel shows time domain representations for a measured AIF (a), a
tissue curve simulated with SNR 50 (b) and the corresponding response function (c). The
lower panel shows the respective Fourier transform spectra for a frequency range of -1Hz to
+1Hz. The red curve in (c/f) visualizes a response function resulting from deconvolution
of tissue curve and AIF via direct division of their Fourier transforms. As seen in (d),
the Fourier spectrum of the AIF deviates from a δ-like excitation of all frequencies, which
leads to arbitrary oscillations at higher frequencies where the AIF, i.e. denominator of
the Fourier deconvolution, is close to zero (f). The use of regularized SVD for adaptive
damping of high frequency content is visualized in green (b/c/f).

In addition to Tikhonov regularization, deconvolution may be stabilized further by in-
troducing the constraint that RF be constructed from a set of smooth basis functions. This
has been shown for deconvolution in general [144] and specifically for cardiac DCE-MRI
data [69] with the use of so-called B-splines. Splines are commonly used to interpolate
functions by representing them as concatenations of polynomials with degree d that are
defined piecewise between a series of knots (or control points), resulting in d − 1 times
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smoothly differentiable interpolating curves. A mathematical representation of the re-
sponse function RF in terms of a spline basis can be given as:

RF (ti) =

p∑
j=1

B
(d)
j (ti) · αj (2.33)

Here, B(d)
j is the jth B-spline of degree d and αj is its corresponding coefficient. The

spline is defined on a sequence of p+d knots where p is the number of coefficients. Depend-
ing on the desired properties with respect to smoothness or behavior at the edges, knots
with multiplicity >1 may be introduced, maintaining the original number of knots and re-
ducing the number of variable coefficients. In analogy to the definition of the convolution
matrix A in Eq. 2.30, the spline representation given above may be inserted into Eq.2.29
according to:

Cm(ti) = ∆t ·
p∑
j=1

i−1∑
l=1

Ca(ti − tj) ·B(d)
j (ti) · αj =

p∑
j=1

Dij · αj (2.34)

The difference between matrices A and D is essentially a basis transformation from an
n-dimensional basis of sampled time points to a p-dimensional basis of spline coefficients.
Solving for coefficients αj by exchanging matrix A with matrix D in Eq. 2.32 usually
reduces the dimensionality of the problem, while the shape of the resulting curve may be
better controlled by individual placement of knots along the time course of sampled data.

Model-constrained Deconvolution

While regularized SVD may provide a computationally efficient, stable deconvolution
method, it is limited to heuristic flow estimation by examining the shape of the response
function RF . A more complete description of CA kinetics would also include parameters
that represent e.g. vascular extraction or fractional volumes of functional compartments
within the tissue in analogy to the described PET model. The most comprehensive tis-
sue model that is established in the the context of myocardial perfusion is the so-called
Multiple path, Multiple tracer, Indicator-Dilution, 4 region (MMID4) model. It is used to
simulate indicator kinetics in the tissue by explicitly modeling the vascular hierarchy as
a set of tubes [80] and vascular exchange in a dedicated Blood-Tissue Exchange (BTEX)
unit [6] as shown in Fig. 2.15. The commonly used implementation [158] includes capillary
transport and exchange in up to 20 parallel pathways in order to account for flow het-
erogeneity. Despite an early application to clinical DCE-MRI data [79], determination of
large sets of diffusion, flow and volume parameters from experimental data is limited by
noise corruption. Therefore, the MMID4 is mainly used for forward simulation of tissue
curves that may act as a physiological ground truth for simulation studies such as shown
in Fig. 2.14. For clinical experimental settings, the physiologically meaningful paramet-
ers that are commonly used to characterize indicator distribution in DCE-MRI analysis
are [134]:

• Perfusion flow (Fp or Fb) in units of mL/min/g, representing the total displacement
of plasma or blood volume through a vascular system.
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• The vascular permeability-surface area product (PS) in units of mL/min/g, repres-
enting a combination of average permeability and the total surface area of all vascular
walls across which indicator exchange occurs.

• First-pass extraction fraction (E) in %, reporting the probability for an indicator
particle to be extracted from the vascular space during its first passage through the
tissue.

• Vascular volume (vp or vb) in %, representing the relative plasma or blood volume of
indicator distribution with respect to the whole tissue volume.

• Extravascular-extracellular volume (ve) in %, representing the relative extravascular
distribution volume of indicator with respect to the whole tissue volume.

• Capillary/vascular transit time heterogeneity (CTH) in units of seconds, character-
izing average flow heterogeneity within the tissue, usually defined as the standard
deviation of transit times.

Depending on specific assumptions about tissue structure, most of the above parameters
are connected to the others or may be expressed in terms of transit times through the
individual distribution spaces. A detailed review on the most common tissue models and
connections between their parameters can be found in [134].
In addition to the parameters above, a factor that affects all cardiac DCE-MRI data

is the so-called bolus arrival time (BAT). It describes the constant time shift between
AIF and tissue curve, which corresponds to the passage time of indicator from the LV
cavity into the tissue through the arterial coronary circulation. While the BAT may be
seen as somewhat independently informative on coronary morphology, it also represents
the fact that the assumption of AIF sampling directly at the tissue entrance is funda-
mentally violated in the vast majority of quantitative perfusion measurements. While a
neglect of the BAT significantly affects the deconvolution analysis [21], its influence on
flow and other microvascular parameters may be contained by proper BAT estimation and
incorporation into the modeling process [75]. For this, the BAT may be estimated either
independently [30] or simultaneously during the deconvolution process. For stability reas-
ons, estimation during the deconvolution process is usually not done by incorporating an
additional shift parameter into the respective model, but either by iterative shifting of the
AIF [85] or by a scout-fit with a simpler model [16]. While the BAT may be accounted
for via linear shifting, the concomitant dispersion of the AIF shape during the coronary
passage is one of the fundamental confounders to the accuracy of absolute estimation of
microvascular parameters [129].
In the following, five tissue models of varying complexity that are relevant to this thesis

are introduced and briefly discussed. Analytic closed-form solutions for response func-
tions may be given both for time and Laplace domains. While solving Eq. 2.29 in the
Laplace/Fourier domain has been shown to result in more efficient parameter estima-
tion [45], not all models have representations in both domains.
The simplest conceivable way of modeling Gd-DTPA kinetics is to assume a single, well-

mixed and homogeneous distribution volume in the tissue, which is in fact the correct
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Figure 2.15: Tissue models of different complexity for DCE-MRI data analysis and simu-
lation. The upper panel schematically shows constituents of the MMID4 model, i.e. the
tubing architecture (a) and a detailed view of the exchange unit (b). Here, the extra-
vascular space is referred to as the interstitial fluid (ISF), and parameters for diffusion
inside vascular and interstitial spaces are defined as Dp and Disf respectively. The lower
panel (c-e) shows different simplifications made to the tissue structure in order to arrive
at closed-form solutions for response functions.11

definition of a compartment. For this one-compartment (1C) model, flow is characterized
by a single mean transit time T and the response function is a simple exponential:

Time domain: R1C
F (t) = Fp · e

t
T (2.35)

Laplace domain: R1C
F (s) = Fp ·

1

s+ 1
T

(2.36)

Here, both extravascular and vascular distribution spaces are lumped together (v), and
the overall mean transit time T is equal to the fraction v/Fp. Physiologically, the 1C
model predicts a vascular wall that does not act as an effective barrier for indicator ex-
change, which is mathematically framed as an infinitely high and therefore unmeasurable
permeability (PS = ∞). In order to avoid having to assume both an infinitely high per-
meability as well as instant mixing within the vascular space, a number of more complex
two-region models have been developed. The first is the so-called Distributed-Parameter
(DP) model [126], which predicts a finite vascular permeability and a concentration gradi-
ent of indicator in flow direction for both vascular and extravascular spaces as schematically
11Images (a) and (b) adapted with permission from [99], © National Simulation Resource.
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shown in Fig. 2.15. Its Laplace domain response function is given below, while its time
domain solution is too complex for computationally efficient implementation [134].

Laplace domain: RDPF (s) = Fp ·
1− e−s

PSve+PSvp+svevp
Fp(PS+sve)

s
(2.37)

Note that the DP model does not predict any flow heterogeneity, i.e. indicator passes
through all vascular pathways with the same transit time Tp = vp/Fp (plug flow). In order
to avoid the previously challenging implementation of deconvolution in the Fourier/Laplace
domain while still maintaining a realistic, two-region tissue structure, different approxim-
ations have been developed. The adiabatic Tissue-Homogeneity (ATH) model [136] differs
from the DP model in that it assumes a well-mixed extravascular space - which is usu-
ally a much better approximation than a well-mixed vascular space - and allows vascular
exchange only at the venous end of the exchanging vessel. With θ(t) as the Heaviside
function and kep = EFp/ve, response functions for the ATH model can be given as:

Time domain: RATHF (t) = Fp ·
[
θ(Tp − t) + θ(t− Tp) · Ee−(t−Tp)kep

]
(2.38)

Laplace domain: RATHF (s) = Fp ·
[

1− esTp
s

+ E
esTp

kep + s

]
(2.39)

The derivations and underlying differential equations for both DP and ATH response
functions may be found in [134]. In addition to a closed-form time domain response func-
tion, the core advantage of the ATH model is that vascular and extravascular kinetics are
completely separated using Heaviside functions as shown in Eq. 2.38. This separability has
been used to facilitate the introduction of a more realistic vascular flow heterogeneity into
the ATH formalism, assuming either gaussian [82] or gamma-variate [127] transit time
distributions. The latter has led to the definition of a so-called gamma capillary transit
time (GCTT) model, which assumes the vascular transit time distribution function hp to
be a normalized gamma distribution Dγ :

hGCTTp (t) = Dγ(t;α, τ) =
tα−1e−

t
τ

ταΓ(α)
with α− 1, τ ≥ 0. (2.40)

Mean transit time and transit time heterogeneity are defined as distribution mean and
standard deviation according to:

Tp = α · τ, CTH =
Tp√
α
. (2.41)

A detailed derivation for the corresponding response function is given in [127]. It can be
expressed in the time domain for vascular and extravascular spaces individually using the
upper incomplete gamma function γ:
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Vascular: RGCTTp (t) = γ

(
Tp
τ
,
t

τ

)
(2.42)

Extravascular: RGCTTe (t) =
Ee−kept

(1− kepτ)
Tc
τ

[
1− γ

(
Tp
τ
,

(
1

τ
− kep

)
t

)]
(2.43)

In analogy to Eq. 2.38 for the ATH model, the full response function is given by addition
of vascular and extravascular contributions:

Time domain: RGCTTF (t) = Fp ·
[
RGCTTp (t) +RGCTTe (t)

]
(2.44)

While the four models described above are mathematically derived from basic physiology,
the first and to this day most established model-constrained approach uses a heuristic
shape function for RF , taking into account only data corresponding to the first-pass of
contrast agent. Use of this shape function, originally thought to describe purely vascular
indicator kinetics [3], is widely-known as Fermi (-function) deconvolution [67]. It has been
augmented for a more stable use in the context of extravascular contrast agent by a constant
leakage term [61]. However, the assumption of negligible backflow from the EES makes its
application less accurate if significant amounts of data from beyond the first pass are used
in the analysis. Indicator transit is described as a logistic (Fermi-like) distribution, and
the purely vascular response function as well as its augmented version can be given in the
time domain as:

Vascular only: RFermiF (t) = Fp ·

[
1

1 + e
t−Tp
σ

]
(2.45)

Vascular + Leakage: RFermi+IF (t) = Fp ·

[
1− I

1 + e
t−Tp
σ

+ I

]
(2.46)

Here, I is the constant extravascular leakage term and the standard deviation of transit
times is σπ/

√
3.

2.4 Quantitative Myocardial Tissue Characterization

2.4.1 MRI: T1 and ECV mapping

While MRI may be used to quantitatively investigate a number of different functional
parameters, the most obvious tissue properties for quantification are relaxation times T1
and T2/T∗2 on which all MR image signals depend in some form. The difficulty in measuring
the latter is the fact that especially T∗2 times are usually very short, thereby strongly
decreasing any image signal at longer echo times, ad exhibit a high sensitivity to local
perturbations in magnetic susceptibility.
Conversely, the main difficulty for quantification of T1 is its potentially long duration,

reaching e.g. 2 s for blood at 3T. Accurate determination of T1 from an experimentally
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sampled relaxation curve would have to cover multiple durations of the time constant,
which implies data acquisition over the course of at least 5 - 10 s. As this is longer than
the time scales of both respiratory and cardiac motion, especially T1 estimation in the
heart has proven to be challenging. The most important innovation that facilitated wide-
spread clinical use of cardiac T1 mapping was the so-called modified Look-Locker inversion
recovery (MOLLI) sequence [95]. On the basis of older techniques sampling T1 relaxation
curves multiple times after a single inversion [89], MOLLI sequences distribute a number of
multipoint acquisitions into consecutive cardiac cycles during a single breathhold as shown
in Fig 2.16(a). The shorthand notation for the originally proposed scheme is 3(3)3(3)5,
which indicates three acquisition cycles after a first inversion followed by a waiting period
of three cycles, three acquisition cycles after a second inversion followed again by three
resting cycles before a final inversion with five acquisitions. Since characteristics of the
sampled relaxation curve depend to some degree on the distribution of acquisition and
recovery cycles, alternative schemes have been proposed [72] that are e.g. more robust to
variations in heart rate (5(3)3) or more accurate for shorter T1 times after administration
of contrast agent (4(2)3(1)2).
In addition, an important confounding factor is residual respiratory motion, which, com-

pared to the relatively mono-intense dynamic perfusion acquisitions based on saturation
recovery, is harder to correct for retrospectively due to the changes of relative image con-
trast during inversion recovery. For estimation of T1 from MOLLI data, the acquired
measurement points are sorted across all inversions by their cumulative inversion time TI
as shown in Fig. 2.16, yielding a final recovery curve that is related to T1 according to:

SI = A−B · e
− t
T∗1 , T1 = T ∗1 ((B/A)− 1). (2.47)

The second equation describes the so-called Look-Locker correction, expressing actual
T1 in terms of an apparent T∗1 that includes the influence of multiple measurements on the
recovery curve itself. Fig. 2.16(b) shows an example for inversion signals from a 3(3)3(3)5
MOLLI scheme, reordered according to TI, as well as the corresponding fit for T ∗1 according
to Eq. 2.47. As all signals with negative polarity that occur early after inversion are mapped
to positive values during acquisition, original polarities may be restored by iterative fitting
approaches [107]. Executing the described fit procedure for all image voxels results in a
mapping of T1 relaxation across the myocardium and LV blood as shown in Fig. 2.16 both
for the native state as well as after contrast agent administration.
Concerning contrast agent, the most established application of myocardial tissue char-

acterization in MRI is so-called Late Gadolinium Enhancement (LGE) imaging. It can be
understood as a qualitative version of quantitative T1 mapping, for which T1 weighted im-
ages are acquired a certain time after CA injection in order to highlight potential increases
in relative CA distribution volume, i.e. for common Gadolinium-based agents an increase
of the extracellular space. While qualitative techniques may suffice to assess the extent of
focal increases in ECV, absolute quantification may benefit the assessment of focal severity
or detection of diffuse disease processes [2]. An absolute extracellular volume fraction may
be calculated by combining both native and post-contrast T1 estimates. For each image
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Figure 2.16: Acquisition scheme and mapping examples for T1 and ECV estimation based
on MOLLI. For the depicted 3(3)3(3)5 scheme, acquisition is distributed across three sets
of inversions (LL1-3) separated by two pausing periods (a). The fit for T∗1 on the basis
of reordering according to inversion times TI and the concomitant restoration of signal
polarity is shown in (b). Resulting native (c), post-contrast (d) and ECV maps (e) are
shown in the lower panel for one short-axis slice position in a subject with no apparent
cardiac pathology.12

voxel of native and post-contrast T1 maps, relaxation may be expressed in terms of R1 for
cellular (c) and extracellular (ec) subspaces according to equation 2.12:

R1,native = vc ·Rc1,native + (vp + ve) ·Rec1,native
R1,post = vc ·Rc1,native + (vp + ve) · (Rec1,native + r1 · [Gd]ec)

In the same way for an additional region of interest covering LV blood with plasma (p)
and cellular (rbc) subspaces:

Rblood1,native = hcta ·Rrbc1,native + (1− hcta) ·Rp1,native
Rblood1,post = hcta ·Rrbc1,native + (1− hcta) · (Rp1,native + r1 · [Gd]p)

Assuming equal native relaxation rates for subspaces within the tissue, i.e. Rc1,native =

Rec1,native as well as R
c
1,p = Rrbc1,native, relative differences in R1 can be defined as:

12Image (a) reproduced with permission from [93], © Wiley-Liss, Inc.

39



Chapter 2 Theory

∆R1 = R1,native −R1,post = (vp + ve) · r1 · [Gd]ec

∆Rblood1 = Rblood1,native −Rblood1,post = (1− hcta) · r1 · [Gd]p

If gadolinium concentration between blood plasma and the extracellular subspace is
equilibrated - or at least in a transient pseudo-equilibrium - ECV can be directly expressed
by R1 differences and hematocrit:

ECV = vp + ve = (1− hcta) ·
∆R1

∆Rblood1

(2.48)

The necessary equilibrium condition is generally accepted to be sufficiently achieved 10-
15min after injection [100], which is the same delay that is usually applied to maximize
contrast in LGE imaging. An example of a so-derived ECV map is shown in Fig. 2.16(e).
Based on the development of cardiac T1 mapping, ECV mapping is being increasingly

applied in investigations of diffuse fibrotic disease processes [74]. With respect to avoidance
of Gd-based contrast agents, also native T1 without the extension to LGE/ECV mapping
has received increasing interest in clinical studies. Native T1 has been shown to be sens-
itive to an array of different disease processes, as alterations may occur in response to
increased iron (Hemorrhage, Anderson-Fabry disease), free water (acute infarct) or fibrotic
(LV hypertrophy) tissue content. One of the major confounding factors to the applicabil-
ity of native T1 as a quantitative biomarker is the significant variation in absolute values
published for a number of different circumstances: Besides obvious differences pertaining
to scanner field strengths, significant disagreement exists between MOLLI and alternative
methods, e.g. based on saturation recovery (SASHA), as well as between different vendor
implementations of the same method. Despite the normalization of R1 in Eq. 2.48 and the
link of ECV to basic physiology, global reference values for normal extracellular volume
(range: 20-30%) may therefore vary with T1 acquisition methods [147].

2.4.2 PET: Viability and Inflammation

While myocardial tissue characterization using MRI may be seen as visualizing rather
mechanistic tissue properties such as distribution volumes or tissue composition, PET is
generally more sensitive to metabolic tissue properties. Clinically established applications
of cardiac tissue characterization with PET mostly rely on 18F-FDG acting as a marker
of cellular glucose metabolism. While myocardial cells may use a number of different sub-
strates for energy supply, the most common ones are long-chain fatty acids and glucose.
Under normal aerobic conditions the main energy source is fat, but ischemia may result
in a switching of myocyte metabolism to glucose as a more efficiently convertible energy
source under oxygen-deprived conditions [36]. In combination with reversible ventricu-
lar dysfunction, both short-lived stunning after acute myocardial events [60] or so-called
hibernation as a result of repetitive ischemic episodes [117] are associated with a local
upregulation of glucose metabolism. The corresponding findings from combined 18F-FDG
and 13NH3-ammonia PET imaging have therefore been initially described as an apparent
mismatch between perfusion and metabolism [130]. However, differentiation of stunning
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and hibernation in patients with CAD is difficult in practice due to the existence of a
continuum of structural and metabolic alterations in response to chronic ischemia [49].
With respect to such structural tissue alterations, the most common diagnostic applica-

tion of 18F-FDG PET in clinical practice is so-called viability imaging. It aims to asses the
density of metabolically functional myocytes in the context of irreversible cellular damage,
to which the described phenomena of post-ischemic upregulation of glucose consumption
may contribute. In order to achieve the desirable high levels of FDG uptake also in normal
myocardium, patients are usually metabolically prepared e.g. by intravenous insulin load-
ing prior to 18F-FDG injection and PET imaging [38]. An example for a patient exhibiting
a viability defect due to fibrotic tissue alterations is shown in Fig. 2.17 with corresponding
LGE images confirming an expansion of the extracellular matrix.

Figure 2.17: Examples for short-axis 18F-FDG PET images corresponding to different ways
of metabolic patient preparation. Stimulation of glucose consumption via intravenous
insulin infusion induces high FDG uptake everywhere apart from an inferolateral region
(a) with fibrotic tissue alterations as confirmed by LGE imaging (b). A suppression of
normal metabolic glucose uptake by fasting and Heparin administration (c/d) is supposed
to highlight the presence of inflammatory cells, here after acute myocardial infarction.
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More recently, a cardiac 18F-FDG application that has received increased interest is
the targeting of infiltrative inflammatory cells post AMI [86]. While the role of the im-
mune system after myocardial infarction is not well understood, it is believed that the
healing process involves a dedicated balance in the activity of pro- and non-inflammatory
monocyte subsets [105,142]. These are recruited to the site of infarction according to dif-
ferent timelines [105], first supporting the removal of cellular debris and subsequently the
synthesis of the extracellular matrix. Due to upregulation of glucose uptake in activated
inflammatory cells, 18F-FDG has been proposed as a marker of inflammatory activity for
a number of circumstances [90]. In cardiac applications, this involves the suppression of
normal myocytic uptake, which may be achieved in a clinical setting by a low-glucose diet
and additional administration of heparin prior to PET imaging [119,123]. However, des-
pite reliable suppression of normal myocytic glucose metabolism, the potential presence of
post-ischemic glucose consumption represents an uncertainty with respect to the quant-
itative interpretation of PET results [119], and the relationship between different signal
contributions may additionally depend on the time of imaging post AMI [132]. A clinical
example for inflammatory 18F-FDG imaging is shown in Fig. 2.17.
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Chapter 3

Tissue Characterization with DCE-MRI:
Measuring Vascular Permeability, ECV
and Flow Heterogeneity Using an
Hierarchical Fit Approach

Based on the work published in:
KP Kunze et al., Magnetic Resonance
in Medicine 77 (6) 2320-2330, 2017.

3.1 Motivation

Quantitative dynamic contrast-enhanced perfusion MRI has been suggested as a promising
diagnostic procedure for the characterization of coronary artery disease [31]. Recent years
have seen an increasing interest in quantitative DCE-MRI measurements of microvascular
perfusion characteristics beyond myocardial blood flow Fb. This includes the investigation
of changes in vascular volume during adenosine stress testing [16,68,88] or estimation of the
myocardial extracellular volume fraction [111]. However, many studies [64,88,111] are lim-
ited by making use of perfusion models similar or identical to the (extended) Tofts model.
Depending on the time resolution of the perfusion data, such models usually oversimplify
the vascular tissue region, leading to a well-documented inapplicability in a number of
circumstances [135]. This notion is supported by increasing evidence that extravasation of
Gd-DTPA in the myocardium is usually not flow-limited [16], which reinforces the need
for more sophisticated models with a vascular substructure [82,127,134]. One such model
is the distributed-parameter model, which assumes a uniform transit time for the vascular
space [134]. It has been successfully applied to myocardial perfusion data in healthy volun-
teers [16] and, most recently, also in ischemic pathology [112]. However, the assumption of
a uniform vascular transit time is also known to be inaccurate, because there is a finite de-
gree of capillary transit time heterogeneity in myocardial tissue [124]. With the exception
of an early application to myocardial residue curves [84], models assuming a finite CTH
have mainly been used for forward modeling to simulate realistic tissue curves, as they
usually imply explicit formulation of multiple capillary pathways. Although different mod-
eling approaches exist incorporating CTH as a parameter for capillary flow distribution
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(see Section 2.3.4), there have not yet been systematic applications to myocardial perfu-
sion data. The concept of CTH, its physiological implications, and thus its measurement
may become relevant, given recent evidence suggesting that transit time heterogeneity is a
key determinant in the regulation of myocardial tissue oxygenation [109]. It has also been
hypothesized that assessment of CTH may offer the possibility to better understand the
involvement of perfusion and ischemia in different microvascular disorders.
Seeing the potential importance of measuring CTH, as well as the increasing interest in

assessing myocardial ECV with T1 mapping-based methods [100], this study had two main
goals: First, to investigate the ability of myocardial perfusion MRI to measure myocar-
dial ECV simultaneously with myocardial blood flow and capillary permeability-surface
area product in patients with AMI. Second, to examine to what degree model-based es-
timation of myocardial CTH is feasible using clinical DCE-MRI perfusion data, and how
the introduction of CTH as a model parameter affects the estimation of other perfusion
characteristics. For these purposes, three perfusion models of different complexity were
implemented in a hierarchical fashion. A two-parameter 1-compartment (1C) model, a
four-parameter Adiabatic Tissue Homogeneity (ATH) model, and a five-parameter Gamma
Capillary Transit Time (GCTT) model featuring a CTH parameter. The corrected Akaike
Information Criterion was used to determine which model was best supported by the data,
and thus to what extent microvascular kinetics could be resolved. The approach was tested
by examining a group of patients shortly after myocardial infarction and subsequent revas-
cularization. However, only patients without remaining flow deficits were considered, as
any persistent, flow-limiting macro- or microvascular obstruction would arguably lead to
different degrees of dispersion of the arterial input function [129], hampering comparabil-
ity of perfusion parameter estimates between obstructed and non-obstructed tissue. As an
alternative measure of tissue damage, reference equilibrium ECV measurements based on
T1 mapping were acquired during the same imaging session for comparison with perfusion
results.

3.2 Methods

3.2.1 Patient Cohort

All imaging was performed on a clinical 3T PET/MRI tomograph (Biograph mMR,
Siemens Healthcare GmbH, Erlangen, Germany). A total of 44 patients underwent exam-
ination in resting state 5 ± 1 days after successful revascularization of an acute coronary
obstruction. Of those 44 patients, 24 were included in the final study cohort after exclusion
of all patients exhibiting signs of microvascular obstruction (six), other severe perfusion
defects (eight) or non-diagnostic data quality (six). Non-diagnostic data quality was found
mostly in the MOLLI data, where three cases were excluded due to failure of the retro-
spective motion correction and two due to susceptibility artifacts extending across more
than two myocardial segments. One dataset was discarded due to a very thin lateral wall,
for which segmentation was deemed impossible. Mean age in the final patient group was
57 ± 11 years. Written consent was given by all patients, and the study was approved by
the local Ethics Board.
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3.2.2 Perfusion MR Image Acquisition

MR perfusion imaging was performed using a 2D ECG-triggered saturation-recovery
FLASH sequence. A dual-sequence approach [46] included acquisition of an additional
series of low-resolution images for dedicated assessment of the AIF. During 90 consecutive
RR intervals, high-resolution perfusion images were acquired in three short-axis slices in
the left-ventricular myocardium. Immediately preceding the high-resolution images, the
aforementioned low-resolution acquisition with altered imaging parameters was performed
at the most basal of the three perfusion slice positions in each RR interval in order to
generate the AIF image series. A bolus injection of 0.05mmol/kg Gd-DTPA (Magnevist,
Bayer Healthcare, Leverkusen, Germany), followed by a 20-mL saline flush, was started
at an injection speed of 4mL/s after the first 10 RR intervals, ensuring accurate measure-
ment of a pre-contrast baseline signal. A non-selective saturation pulse train was applied,
followed by a delay time TD, defined as the time between end of the saturation pulse and
beginning of k-space acquisition. Typical imaging parameters for high-resolution perfusion
acquisitions were: FOV 400 x 300mm2, matrix size 192 x 144, 85% phase resolution, slice
thickness 8mm, in-plane resolution 2.08 x 2.08mm2, TD 5.14ms, TR 2.33ms, TE 1.03ms,
flip angle 15°, recovery time to center of k-space (TI) 100ms, receiver bandwidth 744Hz/Px,
65 acquired lines per k-space in linear ordering. Typical imaging parameters for the low-
resolution AIF acquisitions were: FOV 400 x 300mm2, matrix size 64 x 48, slice thick-
ness 10mm, in-plane resolution 5.62 x 5.62mm2, TD 10ms, TR 1.12ms, TE 0.65ms, flip
angle 8°, 36 acquired lines per k-space in centric ordering. GRAPPA was used with an
acceleration factor of 3 and 36 integrated reference lines per k-space that were used both
for calibration and during image reconstruction. For each slice, the first three of the 90
repetitions were acquired without saturation pulses and with the flip angle reduced to 5°,
resulting in proton density-weighted images.

3.2.3 Perfusion MR Image Analysis

All perfusion data were acquired in free breathing, and image-based motion correction was
performed retrospectively once all repetitions were acquired. High-resolution perfusion
images were motion corrected on the scanner, low-resolution AIF images were motion
corrected offline. All images that were not acquired in matching parts of the cardiac cycle
due to mis-triggering were removed from the time series. The myocardial wall was manually
segmented prior to surface coil intensity correction (SCIC) and signal-to-concentration
modeling (Fig. 3.1). For the high-resolution perfusion images, an approach similar to the
one presented by Cernicanu et al. [28] was implemented. It essentially combines SCIC and
signal to concentration modeling, using the first PDW image to derive the spatially varying
normalization constant S0. The surface coil bias field was estimated for the previously
segmented portion of the PDW image as a two-dimensional surface fit [28]. Since the
deviation between PDW image signal and true S0 depends only negligibly on R1 for a flip
angle of 5°, the ratio of true S0 to PDW image signal was assumed to be a global constant.
It was calculated using Eq. 2.27 with TD set to infinity and assuming a constant native
myocardial T1 of 1.2 s during acquisition of the PDW images. After estimation of S0, R1
for the tissue curves was ultimately estimated by numeric inversion of Eq. 2.27.
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A very similar approach was used to estimate R1 from low-resolution AIF images [11]. In
this case, due to significant partial-volume effects with the myocardial wall and papillary
muscles, usually only one to five voxels could be assumed to represent uncontaminated LV
blood signal. However, the volume of a voxel in the low-resolution images corresponded
to a volume of about seven voxels in the high-resolution images. Of those voxels, the
one with the highest area under its dynamic signal curve was chosen as the AIF, which
marks the voxel that was most successfully motion corrected. Due to the central k-space
ordering of the AIF acquisition, S0 was assumed to be identical to PDW image signal and
R1 was estimated by direct inversion of Eq. 2.27 assuming N = 1 [11]. Estimation of
R1 was calibrated with previously acquired phantom data against reference spin-echo R1
measurements resulting in a reduction of nominal flip angles for all calculations. Gd-DTPA
concentrations for AIF and tissue curves were calculated from R1 estimates according to
Eq. 2.12 assuming a Gd-DTPA relaxivity of 4 s-1M-1. Deconvolution was executed in the
plasma reference frame (AIF = AIFp), and individually measured arterial hematocrit values
were used for plasma to blood conversion of the AIF and vascular parameters according to
Eq. 2.28. Equal tissue and arterial hematocrit as well as fast water exchange between all
subspaces in blood and tissue was assumed.

Figure 3.1: Examples for separate segmentation of ECV measurements acquired with the
MOLLI equilibrium method (a) and perfusion modeling (b). ECV maps were generated
from MOLLI data and segmented afterwards, perfusion images were segmented before
modeling.

3.2.4 Perfusion MRI Data Modeling

AIF and tissue curves were linearly interpolated to uniform increments of 0.5 seconds,
which ensured that the actual data were not undersampled by the interpolation. For
model-constrained deconvolution, three different tissue models were used: First a 1C model,
representing a situation in which extravasation of Gd-DTPA across capillary walls is flow-
limited, and its distribution volume can be seen as a single well-mixed space. Second, the
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two-region ATH model, assuming permeability-limited extravasation as well as a single
uniform transit time for the vascular and an exponential distribution of transit times for
the extravascular-extracellular space. Third, as a direct extension to the ATH model, a
two-region GCTT model assuming a gamma-variate distribution of vascular transit times
with CTH defined as its standard deviation. Deconvolution of Eq. 2.29 was performed
in the Fourier domain for 1C and ATH models, using the closed-form Laplace-domain
representations of response functions RF shown in Eqs. 2.36 and 2.39 respectively. GCTT
deconvolution analysis was executed in the time domain using the response function shown
in Eq. 2.44.
With the three described models, a two-stage fitting approach was implemented.

Therein, a decision concerning support for a more complex tissue model was first made
between 1C and ATH models, and in a second stage between ATH and GCTT models.
For this decision, corrected Akaike factors (cAIC), weighing fit residuals against the num-
ber of model parameters, were calculated as previously demonstrated for DCE-MRI data
(Eq. 4 in [15]). In both stages, the model better supported by the data was assumed
to be the one yielding the lower cAIC factor. The only exceptions were cases where the
ATH fit estimated an extraction fraction E > 99%. In such cases, PS was also deemed
not measurable and the 1C fit results were used irrespective of cAIC factors. For 1C and
ATH fits, the effective bolus arrival time (BAT), representing passage time of contrast
agent through the coronary arteries, was not added as an additional parameter. Instead,
fitting was iterated for all possible BAT values by advancing the measured AIF in steps of
0.1 s between zero and the initial difference of rising points between AIF and tissue curve.
Parameters corresponding to the BAT showing the smallest fit residual were taken as final
modeling results.
In the second stage, a decision between the ATH and the GCTT model was made

by applying the GCTT model to all datasets for which the two-region ATH model was
favored in the first stage. For stability reasons, both BAT and Tp were now constrained to
a window equal to the time resolution of the scan (1/heart rate), centered around the values
previously determined using the ATH model. The GCTT model - and thus estimation of
CTH - was assumed to be supported if it yielded a lower cAIC factor than the ATH model.
As in the first stage, the final modeling parameters were taken from the fit favored by
the cAIC factors. Examples for fits and response functions from all models are shown in
Fig. 3.2.

3.2.5 Equilibrium ECV Image Acquisition and Analysis

For equilibrium ECV mapping, native and post-contrast T1 maps were acquired using a
prototype Modified Look-Locker Inversion Recovery (MOLLI) sequence [95] at the same
slice position and with the same spatial resolution as the perfusion images. Native T1
maps were acquired directly before the perfusion scan. After the perfusion scan, but at
least 15 minutes [100] before post-contrast T1 map acquisition (average 25 ± 4 minutes),
another Gd-DTPA bolus was given (0.2mmol/kg). Identical 3(3)3(3)6 acquisition schemes
were used for both maps. Typical imaging parameters were: FOV 400 x 300mm2, mat-
rix size 192 x 144, slice thickness 8mm, in-plane resolution 2.08 x 2.08mm2, TR 2.8ms,
TE 1.01ms, flip angle 35°, Fourier factor 7/8, minimum inversion time 105ms, inversion
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Figure 3.2: Representative tissue curves, fits and response functions for one remote (a/b)
and one pathologic sector (c/d). According to the corrected Akaike criterion, estimation of
CTH was feasible only for the remote segment, while not even PS was deemed measurable
in the pathologic sector. For the latter case, the underlying ambiguity between 1C, ATH
and GCTT response functions can be seen in (d), while the response functions shown in
(b) underscore the measurable differences between modeling results for the first case. The
time tmax during which indicator transit was observed is highlighted in grey (a/c).

time increment 80ms. All MOLLI images were acquired in free breathing, patients were
instructed to breathe shallowly to minimize respiratory motion. For each native and post-
contrast MOLLI series, individual motion correction was performed on the scanner as
implemented by the vendor of the tomograph. Native to post-contrast registration was
performed offline. For this purpose, all 24 images of the native and post-contrast series
were sorted into two groups according to the relationship of contrast between LV blood
and myocardium. Images were registered within both groups individually, and groups were
registered with respect to each other in a final step. Registered native and post-contrast
MOLLI images were separated and fitted using a three-parameter model and the conven-
tional Look-Locker correction according to Eq. 2.47 to generate both T1 maps. Individual
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hematocrit measurements from the day of examination (average: 0.39 ± 0.03) were used
to calculate ECV maps [74] according to Eq. 2.48.
In each patient, one basal or mid-ventricular slice was chosen for analysis and divided into

six segments according to standard 17-segment AHA segmentation [29]. Care was taken to
morphologically align segmentation of ECV maps with the segmentation of perfusion data
(Fig. 3.1). Offline motion correction for ECV mapping as well as for low-resolution AIF
images was performed using precompiled C++ code (prototype) provided by the vendor of
the MR tomograph [150], all other software for data post processing was custom written
in Matlab R2015a (Mathworks, Natick (MA), USA). Data fitting for perfusion and T1
evaluations used a Trust-Region-Reflective least-squares algorithm with constant initial
parameter estimates across all sectors.

3.3 Results

Analysis of one mid-ventricular slice for each of the 24 patient datasets resulted in a
total of 144 segments, of which four were discarded. Three were discarded due to small
susceptibility artifacts in the T1 maps confined to one segment and one due to blood
contamination from the outflow tract. Concerning modeling of the perfusion data, the
proposed approach using the Akaike criterion favored ATH model fits in 92 (65%), GCTT
fits in 22 (16%) and 1C fits in 26 (19%) sectors. ECV and Fb are the only parameters
reported for all 140 sectors, since none of the others were measurable using a 1C model.
Fig. 3.3 shows the comparison of equilibrium ECV and ECV estimates from the hier-

archical perfusion analysis. A good correlation (R2 = 0.76) between the two sets of values
was observed, the range of ECV was 19 - 62% as determined by the equilibrium method.
In regions with higher ECV, for which less data were available, perfusion-derived values
tended to be even lower than average compared with the equilibrium values. This can also
be seen in the Bland-Altman analysis shown in Fig. 3.4, which reports a mean difference
of 1.14% and a standard deviation of 4.53%. The 95% limits of agreement were ± 8.9%.
For comparison purposes, Fig. 3.5 shows ECV results for all sectors and all three models,

where – apart from two outliers – GCTT and ATH models yielded very similar results.
ECV results for the 1C model were slightly lower and subject to higher variability, however,
fit quality was often worse than for the other two models (see Fig. 3.2(a)). Fig. 3.3 also
shows EES volume ve (b) and blood volume vb (c) individually as a function of equilibrium
ECV. The correlation of ve with equilibrium ECV was very similar (R2 = 0.76) to the
one between ECV from both methods. The mean of vb estimates was 9.9 ± 2.8%, and no
correlation with ECV was observed.
GCTT fits, for the 22 sectors where they were favored by the Akaike criterion, yielded

slightly higher vb values than those obtained via the ATH model. Differences between
parameter estimates from these two models are highlighted in all plots using green (GCTT)
and red (ATH) points. Note that ATH results marked in red are only displayed to highlight
the changes between both fits, and the cAIC-favored GCTT results marked in green were
the final results of the hierarchical approach. The largest differences between ATH and
GCTT estimates were observed for first-pass extraction (Fig. 3.6(a)), which decreased on
average from 74.7% with the ATH fits to 61.1% with the favored GCTT fits. Figs. 3.6(b/c)
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Figure 3.3: Comparison of T1 mapping-based ECV with perfusion-derived ECV (a) as well
as with EES volume fraction ve (b) and blood volume fraction vb (c). Differences between
ATH (red) and GCTT fit results (green) are highlighted for cases in which the latter were
preferred by the Akaike criterion. These differences are largest for vb and relatively modest
for ECV and ve. Note that all red points, representing the overturned ATH results, are only
displayed for the purpose of visual comparison. Thus, the result of the proposed Akaike-
based hierarchical approach as well as the basis for all linear regressions is represented by
the combined number of blue and green points

show that no correlations were found between ECV expansion and PS nor Fb, mean blood
flow and PS were 0.67 ± 0.15 and 0.62 ± 0.20mL/min/g respectively.
For those 22 sectors in which heterogeneity effects were measurable, the absolute differ-

ences in corrected Akaike factors (ΔcAIC) between the favored GCTT and the respective
ATH fits was on average 14.6 ± 14.2.Measurable effects of CTH were found predominantly
in sectors with lower ECV. A total of ten patients had at least one sector with measurable
CTH, with one single case presenting with ECV > 30% and measurable CTH in all sectors.
A typical pattern is illustrated by the six-segment evaluation in Fig. 3.7, where indeed only
the remote sectors exhibit significant differences between GCTT and ATH fits. However, a
direct inter-patient correlation between CTH and ECV estimates was not observed. Mean
CTH was 5.45 ± 2.04 s, the mean ratio of Tp/CTH was 2.04 ± 1.11.
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Figure 3.4: Bland-Altman plot for the comparison of T1 mapping-based ECV with
perfusion-derived ECV. Mean differences and limits of agreement are shown for all points
(black lines), and separately for points with ECV smaller than (green) as well as larger
than (red) 50%.

3.4 Discussion

The study presented here demonstrates the application of an hierarchical approach for
model-selection involving three perfusion models with increasingly complex physiological
implications. A corrected Akaike Information Criterion was used to determine to what
degree it was possible to resolve myocardial microvascular Gd-DTPA kinetics with the
DCE-MRI perfusion data at hand.

3.4.1 Measurability of PS and CTH

The main question for any model assuming a dedicated substructure of the vascular space
is whether information from vascular space and EES can be sufficiently separated by the
fit. That is, besides noise contamination, usually the question of whether extravasation
of Gd-DTPA is flow-limited or permeability-limited. The flow-limited case is character-
ized by an extraction fraction approaching 100% and a subsequent impossibility to study
vascular characteristics, because vascular space and EES become a single functional re-
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Figure 3.5: Correlations between ECV as derived by T1 mapping and ECV estimates from
all perfusion models in all sectors irrespective of cAIC factors. Apart from two outliers,
ATH (a) and GCTT (c) estimates were very similar, while 1C (b) estimates were lower at
the higher end of ECV values and generally more variable.

gion as pertaining to indicator kinetics. Results from our study comparing 1C and ATH
models suggest that Gd-DTPA kinetics at rest, as studied in revascularized myocardial
infarction patients, are in most cases permeability-limited. Similar observations were also
documented for healthy volunteers by Broadbent et al. [16]. Concerning first-pass extrac-
tion, previous studies in healthy volunteers have resulted in estimates ranging from 82%
with the ATH model [19] to 66% with the distributed-parameter model [16]. Values found
in this study for fits with the ATH model lie within that range.
The observed decrease in E between ATH and GCTT models is equivalent to the com-

bined observation of a slight increase in Fb and a more pronounced drop in PS. To what
degree these changes represent physiological reality cannot be said with absolute certainty.
A systematic increase of Fb in some proportion to the ratio of Tp/CTH can actually be
expected, as significant parts of h may be assigned to very small transit times with the
gamma-variate distribution. In fact, it is a feature of the GCTT model to become math-
ematically equivalent to a 2-compartment model in the limit of CTH → Tp. This can lead
to the inadvertent assumption of the vascular region as a well-mixed compartment and
thus to a fundamentally different interpretation of the same data as with the ATH model.
The problems of that assumption are known, and have already been referred to in the
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Figure 3.6: Comparison of T1 mapping-based ECV with first-pass extraction E (a) as well
as with blood flow Fb (b) and capillary permeability surface area product PS (c). Changes
between ATH (red) and GCTT fit results (green) are highlighted for all three parameters
as in Fig. 3.3, and they are most clearly visible as a significant drop in E (a) as indicated
by the dashed lines. Again, all red points are only displayed for visualization purposes,
while the final result of the proposed Akaike-based approach is the combination of blue
and green points. The seven white points in (a) show the positions of sectors with an ATH
estimate of E > 99%, which were discarded and fit with the 1C model irrespective of cAIC
values.

introduction in the context of the Tofts-model, one of them being the existence of a non-
zero probability for indicator transit at t = 0, i.e. a non-zero value for ∂tRF (0). Despite
this being somewhat unphysiological (no indicator particle can traverse the vascular space
with infinite velocity), it is also not possible to measure the transit time distribution for
arbitrarily small transit times, given the time resolution of usual DCE-MRI data. However,
closed-form models that respect the constraint of a minimum observable transit time do
not exist without also applying the constraint of a minimum ratio of Tp/CTH > 1. Note
that this also relates to the reason why BAT and Tp where kept close to ATH estimates for
the GCTT fits, namely in order to maintain comparability concerning the interpretation
of parameter estimates.
Still, the results show that essentially all shapes of transit time distributions that are

attainable by the GCTT model were observed in the patient data, which has also been
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Figure 3.7: Perfusion analysis for all six sectors from a patient showing a typical pattern
concerning the measurability of CTH in relation to pathology. All curves are scaled ar-
bitrarily for visualization purposes. The ATH model fits and response curves (R(t)) are
shown in blue, the respective GCTT curves are shown in green and the corresponding
transit time distributions (h(t)) for the GCTT fits are shown in orange. Estimates of E
and ECV are shown for the GCTT model, with the respective ATH estimates in brackets.
Note that GCTT fits were only favored for the antero- and inferolateral sectors (ΔcAIC
shown). For the other four sectors, CTH estimates were smaller and ΔcAIC values ranged
from - 1.3 (inferior) to - 4.3 (anterior).

noted by Schabel for different tumor tissues [127]. These shapes are exponential distri-
butions for CTH → Tp, gamma-distributions for Tp > CTH > 0 and delta-distributions
for CTH → 0. As expected, GCTT results with CTH → 0 were rejected by the Akaike
criterion, because they usually matched ATH results while carrying an additional fit para-
meter. Where measurable, CTH was found to be between 2 - 9 s, which is in the range
of values seen in cerebral studies [103] and theoretically considered for the myocardium
in [109]. Despite no direct inter-patient correlation between ECV and CTH, the observed
pattern, in which significant effects of CTH were often only found in remote sectors, may
have two explanations: The first would be physiological, namely that CTH is in fact lower
in regions with cell damage/post-infarct trauma. This could e.g. suggest that flow het-
erogeneity is down-regulated in the infarcted areas to achieve a higher oxygen extraction
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efficacy. A more probable explanation may however be methodological, namely that CTH
may or may not be actually different between infarcted and remote regions, but the impact
that either situation has on the dynamic curves of the infarcted region are largely atten-
uated by the predominant EES kinetics. This situation is visualized in Fig. 3.8, where
GCTT results from the bottom panel of Fig. 3.7 are reproduced using the same AIF and
fit parameters apart from CTH, which is varied between 0 and Tp. The resulting curves
show that the effect of CTH is indeed much smaller for the anterior region, exhibiting
higher ECV and first-pass extraction. In theory, the required SNR for observing a meas-
urable, non-zero CTH becomes in fact arbitrarily high as E goes to 100%. Thus, although
one might be tempted to embrace the physiological explanation given above, the authors
hesitate to make such a claim based on the DCE-MRI data at hand and the subgroup of
patients for which this pattern was observed.

Figure 3.8: Visualization of the effects of varying flow heterogeneity at different tissue
conditions. All three curves from the lower panel of Fig. 3.7 were reproduced using the
same GCTT parameter estimates, but a variable CTH parameter. Extraction and ve
decrease significantly from left to right as already shown in Fig. 3.7, Tp was 5.1/5.1/4.9 s
and vp was 3.9/4.5/5.7% respectively. It can be seen that the effects of potential changes
in CTH on the tissue curve are much less pronounced in cases of high first-pass extraction
and large interstitial volume.

3.4.2 Extracellular Volume

Concerning the comparison of equilibrium ECV with the corresponding perfusion results,
the lower perfusion-derived estimates at the high end of values may be explained by the fact
that perfusion data was acquired for only 90 RR intervals: Since the response function RF
is only sampled for a time tmax between first inflow of indicator and the end of acquisition,
the remaining outflow kinetics, i.e. the shape of RF , need to be extrapolated from the
tissue model on the basis of all previously observed indicator outflow. Thus, even the
assumption of an apt model is no guarantee for correct volume estimates, as the actual
acquisition time might not be long enough to sample a sufficient amount of transit time
data to which to base the extrapolation. This has already been documented by Pack et
al. [111], albeit with only four pathologic cases and a simpler model. Our data indeed
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suggests that the perfusion method may estimate ECV up to 50% without a significant
bias compared to the equilibrium MOLLI method (Fig. 3.4). Still, the observed variability
between the two was quite large (Figs. 3.4/3.5) if compared to changes in ECV expected
for diffuse diseases such as aortic stenosis or dilated/hypertrophic cardiomyopathy [125].
It should be noted however, that some significant sources for this variability may not lie
within either method but within the comparison itself, e.g. the separate segmentation
and motion correction. This aspect is important, because scan-time efficiency arguments
favoring a perfusion method may become more relevant in these diffuse diseases, where the
added diagnostic value of ECV assessment is assumed to be greatest [100], but absolute
differences in ECV are relatively modest [125]. For these cases, the smaller the expected
distribution volume, the less actual sampling time would be needed to assess it with a
perfusion method according to the central volume theorem [151].

3.4.3 Limitations

Concerning the comparison of ECV measurements between perfusion and MOLLI equi-
librium methods, the potential sources of error within the perfusion analysis probably
outnumber the ones for the equilibrium method - despite shortcomings of the MOLLI se-
quence especially concerning estimation of T1 in the blood pool [72]. Especially correct
measurement of low-resolution AIF signals after the first pass and subsequent motion cor-
rection has proven challenging with the dual-sequence approach. In general, even small
inaccuracies lowering the area under the AIF, e.g. due to insufficient motion correction,
partial-volume effects or errors in estimation of the signal normalization constant S0, may
lead to overestimation of distribution volume parameters [151]. It is thus believed that,
despite overall agreement with equilibrium ECV estimates, reported ECV values represent
an upper limit for the perfusion method. Concerning CTH, no quantitative reference was
available. Since the described deconvolution fit only accounted for bolus delay but not for
concomitant bolus dispersion [129], reported CTH results are likely to include some over-
estimation. Further limitations concerning CTH are that the data at hand only allowed
to investigate it under resting conditions, and that the assumption of gamma-distributed
vascular transit times may still represent an oversimplification of reality. This, and the
fact that small CTH estimates, leading to small differences between GCTT and ATH fits,
were usually rejected by the Akaike criterion, may have limited the number of sectors for
which CTH was deemed measurable. Also, the fast water exchange condition assumed
herein might not be fulfilled at all times during the first-pass of Gd-DTPA, especially
across capillary and cellular walls within the myocardial tissue.

3.4.4 Conclusion

This study presents the first simultaneous assessment of extracellular volume, blood flow,
capillary permeability and myocardial transit time heterogeneity using perfusion imaging
in patients after myocardial infarction. There are two core findings:
Myocardial capillary PS and CTH can be estimated simultaneously with Fb and ECV

using DCE-MRI perfusion modeling. While PS was measurable in most cases, estimating
CTH by introduction of an additional fit parameter was often only possible in remote
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sectors, and therefore a relatively modest portion of the data. Nevertheless, hierarchical
approaches such as the one presented herein may become important tools for identifying
and resolving situations in which the use of a single tissue model implies a measurable
under- or oversimplification of reality.
Secondly, myocardial ECV estimates derived from DCE-MRI data using a dual-sequence

AIF correlated well with estimates from a conventional equilibrium method based on T1
mapping. Thus, perfusion MRI using advanced modeling approaches may be a scan-time
and contrast media dose-efficient alternative to methods based on T1 mapping, despite
higher implementation effort and post-processing complexity.
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Chapter 4

Characterization of Coronary Morphology
Using a Fourier Phase Method to
Estimate Bolus Arrival Time

Based on the work published in:
KP Kunze et al., Proceedings of the
25th Annual Meeting of ISMRM, 3238
(2017).

4.1 Motivation

Bolus arrival time (or BAT) represents the path length of blood through the coronary
arterial vasculature, and in the context of DCE-MRI is usually identified with the time
shift between arterial input function and corresponding tissue enhancement curves. As
described in Section 2.3.3, accurate estimation of the BAT is an important step in the
process of model-constrained deconvolution analysis, and a neglect of arrival time effects
is known to cause significant variations in flow estimates [21,75]. Methods estimating the
BAT from time domain curve shapes by e.g. linear regression of baseline and upslope [30]
have been shown to somewhat stabilize DCE-MRI deconvolution analysis [75], but lack
precision especially in the presence of noise. Alternative approaches for iteratively extract-
ing BAT estimates from the same deconvolution fit from which the response function R
itself is calculated exist [16], but may introduce model-dependent biases. Due to these
potential systematic differences between models concerning BAT estimation during the
deconvolution process, independent estimation of arrival times is desirable especially for
an hierarchical approach as described in Chapter 3 of this thesis. To that end, this section
proposes an elegant and robust way of mapping the time shift between the two curves to
a shift in the Fourier phase spectrum of R, instead of determining and comparing specific
points (maximum/foot) of AIF and tissue curve.
The proposed approach is tested in a simulation study as well as in a small clinical control

group, and a proof of principle combining DCE-MRI data with 18F-FDG viability imaging
is provided for a patient with collateralized coronary total occlusion (CTO). Proceeding
in this fashion, this section proposes an understanding of PET as inherently quantitative
in the signal magnitude domain and dynamic MRI with its superior time resolution as
inherently quantitative in the time/frequency domain.
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4.2 Methods

4.2.1 Low-Frequency Fourier Phase Reconstruction

A new technique is introduced to estimate bolus delay using the low-frequency phase
spectrum of a direct Fourier deconvolution of AIF and tissue curve. It contains the following
steps:
First, the tissue curve is padded to double length with a (linearly) decreasing tail to

avoid discontinuity effects and shifted a further 10 s from the AIF for stability. Both curves
are subsequently Fourier transformed and deconvolved analytically, i.e. divided in Fourier
space, which results in phase and magnitude deconvolution spectra. In order to avoid high-
frequency noise amplification, the phase spectrum is zero-padded for frequencies > 0.1Hz,
so that only the low-frequency components are examined, which contain the time-domain
shift in the same way as all other phase components. As the shift information is contained
solely in the Fourier phase spectrum, all components of the magnitude spectrum are set to
unity. An inverse Fourier transform of the padded phase spectrum with all magnitudes set
to unity is performed, resulting in a low-frequency phase reconstruction of the convolution
kernel, i.e. the impulse response RF . The bolus arrival time can be calculated from its
main oscillation peak by subtracting positive and negative peak position (Fig. 4.1).

4.2.2 Simulations and Patient Study

A simulation study was performed testing accuracy, precision and superiority to similar
approaches such as Time-To-Peak (TTP) analysis also in the presence of bolus dispersion.
In order to better control the simulated degrees of arrival time and dispersion, only the
blood-tissue exchange unit of the MMID4 model shown in Fig. 2.15(a/b) was used to
create a reference tissue curve, and convolved afterwards with a gamma-variate kernel
that simulated different BAT with and without dispersion. Simulations were performed
for 100 iterations across a BAT range of 0 - 8 seconds at SNR = 40 (regional curves),
SNR = 30 (single-voxel curves) and without the addition of noise to detect potential biases.
If dispersion was included, it was set using a standard deviation for the gamma-variate
kernel of 1⁄3 of the respective simulated BAT.
In order to provide an in-vivo proof of concept, five subjects without known cardiac

disease and one patient with an LAD main branch coronary total occlusion (CTO) were
scanned on a 3T PET/MRI scanner (Biograph mMR, Siemens, Erlangen). MRI imaging
was performed using a 2D SR-FLASH sequence as described in Section 3.2 including mo-
tion correction, SCIC and signal non-linearity correction. The CTO patient received an
additional simultaneous 18F-FDG PET scan to test for myocardial viability with metabolic
preparation by intravenous insulin loading [120]. Assessing the argument of post-processing
simplicity, the motion corrected in-vivo DCE-MRI data were evaluated once with SCIC
and full nonlinearity correction and once without any additional post processing.
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Figure 4.1: Calculation of the bolus arrival time from a low-frequency phase reconstruction
of the response function RF . The upper panel shows the measured and smoothed AIF, the
MMID4 tissue curves simulated at two noise levels as well as an example for the variability
of Time-To-Peak (TTP) estimates in the presence of noise. The bottom panel visualizes
the appearance and analysis of the low-frequency phase reconstruction (“R(t)-phases”) and
its stability to different noise levels. Magnitudes of all curves are scaled in arbitrary units.

4.3 Results

Figures 4.2 and 4.3 visualize the simulation results. It can be seen that TTP analysis
was not able to distinguish between delay and dispersion, introducing a bias proportional
to the simulated dispersion factor. BAT estimates from the proposed Fourier technique
remained virtually unaffected by dispersion (Fig. 4.2).
The standard deviations from all 100 simulation runs shown in Fig. 4.3 underscore the

higher robustness of BAT measurements to TTP analysis at both noise levels. The clinical
results from the control group showed a regionally homogeneous distribution of arrival
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Figure 4.2: Noise-free simulation results visualizing a comparison of the proposed Fourier
BAT estimation technique and TTP analysis with respect to distinguishing bolus delay and
dispersion. Both plots (a/b) show simulation results without dispersion in the lower panel,
and with dispersion in the upper one. While the average difference between simulated and
estimated BAT is vanishing irrespective of concomitant dispersion (a), results of the TTP
analysis are clearly dependent on both dispersion and delay (b).

Figure 4.3: Summary of the simulation results with respect to precision at noise levels of
SNR = 40 (a/b) and SNR = 30 (c/d). All color-coded values as well the numbers on the
right represent the standard deviation of BAT (a/c) and TTP (b/d) estimates across all
100 simulation runs in seconds. Irrespective of dispersion and noise level, the proposed
method for BAT estimation outperformed TTP analysis by almost an order of magnitude
with respect to noise robustness.

times despite some longer BAT estimates in the inferior and lateral territories, leading to
slightly higher averages there (Fig. 4.4(a)). The range of per-sector average BAT values
for the control group was 2.53 s (anterior) to 3.55 s (inferior).
The CTO patient presented with a highly inhomogeneous BAT distribution ranging

from 2.0 s (anterolateral) to 5.0 s inferoseptal). 18F-FDG PET confirmed metabolic integ-
rity of all regions despite a small inferior deficit (Fig. 4.5(a)). Invasive angiography results
confirmed collateralization of the septum, bypassing an occluded LAD main branch and
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Figure 4.4: Results from regional analysis of the clinical data, showing sector-wise BAT
results from the control group (a) and the CTO patient (c) as well as the six regional tissue
curves for one example of the control group (b) and the patient (d). The color-coded
segmentation in (a) represents an average BAT from all 5 controls for each respective
segment.

thus leading to a longer coronary path length for blood reaching the septum. The pre-
viously reopened LAD diagonal branch conversely led to a shorter path length for blood
reaching the anterior wall.
Fig. 4.5 also highlights the independence of the proposed method from SCIC and satur-

ation correction, whereas the distribution of quantitative flow estimates greatly depended
on these additional post-processing steps. Absolute perfusion flow Fp as calculated without
SCIC and with saturation correction was globally overestimated and exhibited a signific-
ant septal-to-lateral gradient. BAT results, depending only on the low-frequency phase
information, were unaffected by missing SCIC or signal saturation.
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Figure 4.5: Results of the 18F-FDG PET scan (a) confirming metabolic integrity of the
collateralized septal territories with the exception of a small inferior region, also exhibiting
a small defect in plasma flow Fp (b). Panels on the right show results of the DCE-MRI
analysis with (b/c) and without SCIC and saturation correction (e/f). Angiography results
show the septal collateralization (d).

4.4 Discussion

A new method has been proposed to extract quantitative information from the phase spec-
tra of DCE-MRI data with minimal additional post-processing. Understanding BAT estim-
ation as a Fourier phase problem has highlighted the fact that it is a parameter essentially
independent of linear (SCIC) and moderately non-linear (signal saturation) confounders to
the quantitativeness of the DCE-MRI signal. Correcting for these in the context of absolute
perfusion flow estimation involves significant user-interaction and post-processing complex-
ity, which is an important obstacle for robustness and clinical applicability of quantitative
DCE-MRI. This investigation has provided clinical evidence for the independence of BAT
estimates from SCIC and correction of signal saturation when obtained using only Four-
ier phase components of DCE-MRI data. Conversely, quantitative voxel-wise flow results
reported herein depended strongly on these corrections.
As a proof of principle, it has been shown herein that BAT and perfusion flow can be inde-

pendently attributed to distinctly different physiological correlates: For BAT, invasive an-
giography confirmed the predicted prolongation of the coronary pathway for septal/inferior
regions of the CTO patient. Here, only a small subregion of the one showing a BAT pro-
longation also presented with an actual perfusion deficit. The location and extent of this

66



4.4 Discussion

smaller perfusion deficit was however co-localized with a decrease in metabolic activity as
indicated by 18F-FDG PET.
With respect to the robustness of BAT estimates, simulation studies presented herein

have shown superiority of the proposed BAT estimation approach when compared to meas-
ures based on time-domain curve shapes. This has been shown with respect to noise
contamination and especially with respect to the distinction between bolus delay and dis-
persion. In addition to the simulation study, homogeneity of BAT estimates from a control
group without known CAD has confirmed the sensitivity of the parameter in a clinical
setting.

4.4.1 Conclusion

Bolus arrival time estimates obtained using a low-frequency Fourier phase approach have
been shown to robustly characterize path lengths within the coronary vasculature. The
BAT represents a quantitative and robust DCE-MRI counterpart to tissue characterization
using PET in the context of quantitative multimodality imaging. It is expected that more
accurate assessment of the BAT will also benefit model-constrained deconvolution analysis
of MRI perfusion data.
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Chapter 5

Estimating Microvascular Perfusion
Characteristics from Myocardial
DCE-MRI Data with a
Model-Independent Spline Approach

Based on the work published in:
KP Kunze et al., Proceedings of the
24th Annual Meeting of ISMRM, 2609
(2016).

5.1 Motivation

The relevance of parameters such as vascular transit time Tp and transit time heterogeneity
CTH is given by the fact that their relationship is thought to play an important role in
regulating the availability of oxygen to the myocardium, and that different ischemic (non-
CAD) disease patterns may affect them [109]. As pertaining to the estimation of CTH, an
important limitation of the investigation documented in Chapter 3 of this thesis is that
the proposed fitting approach could only be tested in patients at rest. Therein, estimation
of CTH using a gamma-capillary transit time model has been described as challenging,
mainly due to the fact that information about the vascular space may not always be easily
extracted from DCE-MRI data. As visualized in Fig. 3.8, the measurability of vascular
parameters such as Tp or CTH depends to a large degree on the relative contribution
of vascular signal to the overall tissue curve. A conceivable way to artificially increase
this vascular signal contribution is pharmacological vasodilation, as it leads both to a
lower first-pass extraction fraction [16] as well as to a measurably higher relative vascular
volume [16,88]. While model-based estimation of CTH has proven challenging with resting-
state data, the investigation of vasodilation stress states exhibiting higher vascular signal
contributions may also enable model-independent assessment of microvascular flow char-
acteristics. Model-independence would additionally address another important limitation
referenced in Chapter 3 of this thesis, namely that the assumption of gamma-variate transit
time distributions with the GCTT model may represent a significant oversimplification of
reality.
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This section therefore proposes a new B-spline based approach for deconvolution analysis
of myocardial DCE-MRI perfusion data and reconstruction of the vascular transit time dis-
tribution h. It allows the model-independent quantification of vascular mean transit time
and vascular transit time heterogeneity, assuming separability of vascular and extravas-
cular DCE-MRI signal contributions (adiabatic exchange [82]). The presented algorithm
was tested in simulations with respect to stability for the range of perfusion parameters
expected under stress conditions, and 12 DCE-MRI patient datasets from adenosine stress
examinations were analyzed.

5.2 Methods

5.2.1 Reconstruction of h from Spline-Based SVD

In addition to standard Tikhonov regularization, model-independent deconvolution tech-
niques using singular value decomposition support the application of further constraints
(see Section 2.3.4). These may include the requirement that SVD solutions be represented
in terms of a 4th degree B-spline basis [69]. By controlling the placement and overall
number of knots, i.e. the grid on which the resulting spline (the response function R) is
evaluated, different portions of that spline may be forced to exhibit different degrees of
smoothness or monotony.

Figure 5.1: Iterative, spline-based reconstruction scheme for DCE-MRI response curve R
and transit time distribution h. (a) Partitioning of the knot sequence is illustrated with the
corresponding coefficients (red dots) and B-splines (narrow lines) constituting the resulting
spline curve for the response R. Both the less oscillatory behaviour and the underlying
sparsity of knots placed at the later phase of the outflow are shown in cmparison to a
standard SVD. (b) Flow chart for the determination of knot sequence K and iterative
reconstruction of the vascular transit time distribution hv.

The approach presented herein is based on a sequence with varying knot density, ac-
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commodating the expected features of a response curves in DCE-MRI data. The exact
placement of knots was determined using essentially two criteria: First, the assumption
of a global minimal transit time (0.5 s). It is supposed to represents a lower boundary to
transit time information contained in data with the time resolution of usual DCE-MRI
measurements. Second, the constraint that the outflow portion of the response curve be
monotonous as required by basic indicator-dilution theory. Both criteria were met by par-
titioning the knot sequence K into three main constituents as shown in Fig. 5.1: First
the subsequence kdispersion, which characterizes the arrival time shift and the concomitant
dispersion as a monotonous upslope. Second, the subsequence kplateau starting with a knot
of multiplicity 3, essentially implying monotony and therefore no transit during the length
of the plateau. Finally koutflow, consisting of a dense distribution of knots during the vas-
cular outflow phase adjacent to the plateau and a gradual decrease in knot density towards
the slow-changing extravascular portion of R. As depicted in the flow chart in Fig. 5.1, the
final knot sequence was determined by an iterative search for the optimal position of the
plateau. The response was evaluated for the final knot sequence, and oscillations in h, i.e.
the negative derivative of R, were minimized by adjusting the corresponding (Thikonov)
regularization parameter.
After finding a suitable spline representation of R, an iterative method was implemented

in order to separate vascular (Rv) and extravascular (Re) contributions. Application of
the recursion formula shown below using the adiabatic exchange condition (Eq. 5.1 [82])
was executed for 20 iterations:

Rie = Ee−
EFp
ve

t

t∫
0

hiv(t
′)e

EFp
ve

t′dt′ (5.1)

hi+1
v = − ∂

∂t
Rv = − ∂

∂t
(R−Rie) (5.2)

For the recursion, extraction fraction E and EES volume ve were globally fixed to values
of E = 55% and ve = 18% as expected at pharmacological stress [16]. The part of hv
corresponding to vascular indicator kinetics was integrated to yield Tp and CTH, which are
defined as mean and standard deviation of hv respectively. Mean and standard deviation
of the preceding negative part of h corresponding to bolus dispersion were calculated to
correct Tp for the BAT. The described iterative calculation of hv is visualized in Fig. 5.2.

5.2.2 Simulations and Patient Study

To validate the resulting parameters, a simulation was executed varying parameters Tp
and CTH using the GCTT model [127]. Parameters vp, ve, and E were fixed at 8, 18 and
55% respectively as expected at stress [16]. The simulated GCTT response was convolved
with a measured input function after convolution with a gaussian kernel to simulate bolus
dispersion and delay. Noise was added to the resulting tissue curve for an SNR of 50. In
order to test the proposed approach in vivo, 12 DCE-MRI stress perfusion datasets were
analyzed using slice average perfusion data from a mid-LV slice. Data were acquired using
an ECG-gated SR-FLASH sequence on a 3T PET/MRI scanner (Biograph mMR, Siemens,
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Figure 5.2: Visualization for the calculation of vascular transit time distributions hv (green)
by iteratively subtracting extravascular contributions from the full distribution h (black).
Under exclusion of the dispersion phase (shaded black), the iterative approach effectively
subtracts EES kinetics (> 10 s) with usually minor influences on the shape of the vascular
portion (shaded green). The shaded areas represent the portion of the distribution from
which mean and standard deviation are calculated by integration yielding Tp, CTH or
dispersion characteristics.

Erlangen), with MRI sequence parameters, motion correction, SCIC and correction for
signal saturation as described in section 3.2.

5.3 Results

The results of the simulation are summarized in Fig. 5.3. The algorithm was reliable for
CTH as low as 1 s, however more likely to overestimate very small CTH. The algorithm
was least reliable if confronted with combinations of much higher Tp and CTH than seen in
the patient data. Estimation of vp, which was not explicitly varied during the simulation,
showed high stability with respect to variations in Tp and CTH.
The average results from the patient study for vascular transit time and transit time

heterogeneity were Tp = 3.10 ± 0.55 s and CTH = 1.21 ± 0.36 s respectively, leading to an
average Tp/CTH ratio of 2.55 ± 0.63. The individual results in Fig. 5.4 show a relatively
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Figure 5.3: Simulation results for estimation of biases in the spline-based analysis of Tp (a),
CTH (b) and vp (c). Matrix values represent the relative bias in each parameter with
variation of Tp (x - axis) and CTH (y - axis). Especially for higher values of CTH (b),
underestimation of simulated values were observed. Note that vp was fixed to 8% for the
whole simulation study.

stable increase of CTH with Tp for the investigated range. One dataset was rejected due
to a CTH estimate lower than the time resolution of the scan.

5.4 Discussion

5.4.1 Reconstruction of h from Spline-Based SVD

One of the main features of the presented spline-based approach is the iterative determin-
ation of a knot sequence that specifically accommodates DCE-MRI outflow data. While
the impact of overall knot density has been studied for cardiac DCE-MRI data [69], the
concept of taking into account fast-changing (vascular) and slow-changing (extravascular)
portions of the response curve is novel. For the presented approach, this concept was
combined with a separation of dispersion, plateau and outflow portions of the response
curve. Therefore, the stabilized spline approach may also serve as a way to calculate bolus
dispersion by effectively quantifying the deviation between a potential linear BAT shift
and the actually observed dispersed upslope of R. However, quantification of bolus disper-
sion was not the focus of the simulation study, and the general limitations with respect to
temporal resolution of DCE-MRI data apply to time parameters associated with the short
pre-plateau phase of the dispersed response function.
In order to facilitate the calculation of vascular parameters from h as the negative de-

rivative of the so-obtained response R, a recursive algorithm has been presented to extract
the vascular portion hv of the total transit time distribution. The recursion was based
on iterative subtraction of an extravascular contribution Re that was expressed under the
adiabatic assumption originally formulated by St. Lawrence and Lee [136] and adapted
for this study from Koh et al. [82]. As the vascular portion is the dominant part of h at
least for stress data (Fig. 5.2), alternative approaches calculating mean (Tp) and standard
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Figure 5.4: Comparison of vascular transit time heterogeneity CTH and mean transit time
Tp for the 12 investigated vasodilator stress datasets. A gradual increase of CTH with Tp
in a limited range between 1 - 2 s can be seen, with one case marked red exhibiting a lower
CTH estimate than supported by the time resolution of the scan, i.e. 1/patient heart rate.

deviation (CTH) directly from h instead of explicitly calculating a vascular contribution
may also be justified. Depending on the accuracy of estimates for E and ve going into the
recursion, explicit calculation of hv may be favorable if extravascular contributions to h
become significant. Note that higher relative extravascular contributions may pose a gen-
eral limit to the measurability of vascular properties, and explicit model-based approaches
such as the one evaluated in Section 3 may be unavoidable for separating vascular and
extravascular contributions in resting-state perfusion data.

5.4.2 Simulations and Patient Study

The simulation studies have shown generally favorable results with respect to measure-
ment biases for the range of parameters expected in patients at stress. However, especially
for CTH, higher values exhibited more significant negative bias, which precluded applic-
ation of the proposed approach to resting state data where such higher values can be
expected. For the simulation study, the GCTT model was used instead of the MMID4
model, because the former characterizes CTH using only a single parameter, thereby sim-
plifying a quantitative comparison of resulting vascular transit time distributions to the
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simulated ground truth. Note that this does not necessarily infer a limitation on the abil-
ity of the proposed approach to aptly characterize vascular transit time distributions other
than the simulated gamma-variate shape.
Results from the patient study have shown a gradual increase of CTH with Tp for

the relatively small number of patients under investigation. The spectrum of absolute
CTH values may be seen as concordant to the higher resting-state results reported in
Section 3, as a shortening of transit times and their heterogeneity can in fact be expec-
ted at stress [109,124]. However, while the resting state values for CTH from Section 3
can be seen as reflecting an actual physiological state, the values reported herein corres-
pond to the use of an exogenous vasodilating agent. It is therefore debatable to what
degree findings from such data are clinically informative, given that they are obtained by
creating an non-physiological dilation state of the vasculature. While vasodilator stress
testing is established for investigating the potential maximum volumetric throughput of
the myocardial vascular bed, vascular states exhibiting hypothetical maladaptive or "ma-
lignant" CTH [109] may be better characterized in resting state or in combination with
actual patient exercise.

5.4.3 Conclusion

A new, model-independent algorithm has been presented to estimate myocardial mean
transit time and transit time heterogeneity from DCE-MRI perfusion data without the
necessity to assume a specific vascular model. Simulation results as well as clinical data
suggest the possibility for model-independent estimation of microvascular perfusion char-
acteristics beyond flow at vasodilator stress. Higher values of Tp and CTH may however
require support by explicit vascular models, if they are at all retrievable from clinical
DCE-MRI data, that also exhibit significant extravascular signal contributions.
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Chapter 6

Myocardial Perfusion Quantification
Using Simultaneously Acquired
13NH3-Ammonia PET and DCE-MRI

Based on the work published in:
KP Kunze et al., Magnetic Resonance
in Medicine, doi: 10.1002/mrm.27213,
2018.

6.1 Motivation

Myocardial perfusion imaging plays an important role in clinical decision making today. Its
capabilities in the assessment of coronary artery disease using nuclear medicine techniques
such as SPECT and PET are the current reference standard for clinical practice and
research. In addition, numerous studies have shown the added clinical value of absolute
quantification of blood flow or myocardial perfusion ratios in clinical ischemia [48]. While
magnetic resonance perfusion imaging is continuously gaining acceptance [31], the clinical
aptitude of MRI methods for absolute quantification of myocardial perfusion has not yet
been established in a way comparable to PET [63,106]. Therefore, this study provides
an assessment of comparability, systematic differences, as well as potential synergies of
Dynamic Contrast-Enhanced MRI and 13NH3-ammonia PET with respect to quantitative
myocardial perfusion imaging. Both methods are discussed for the first time on the basis
of simultaneously acquired PET/MRI perfusion data in a cohort of patients with known
or suspected CAD.
The manuscript investigates a number of aspects related to quantitative DCE-MRI ana-

lysis, including acquisition of the arterial input function and signal nonlinearity modeling
using dual-sequence [46] and theory-based [17] methods, as well as a discussion of the
widely-used Fermi deconvolution method [61] with respect to regional perfusion quantific-
ation. Potentially useful combinations of simultaneously acquired PET and MRI perfusion
data are highlighted for clinical example cases as well as by application of DCE-MRI tissue
models allowing for estimation of microvascular parameters beyond perfusion flow [16],
such as myocardial plasma volume, capillary permeability-surface area product, first-pass
extraction fraction and extracellular volume [88].
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Additionally, a discussion of some usually underappreciated systematic differences
between flow estimates from DCE-MRI and PET is given. Besides time resolution and
data structure, this refers mostly to the fact that all conventional MRI contrast agents
distribute extracellular, which makes DCE-MRI flow estimates sensitive to microvascular
hematocrit [134]: Although the exchange of water across cellular walls in DCE-MRI leads
to an interaction of all tissue compartments with the extracellular agent, the dynamic
reference volume for flow estimation is still blood plasma. Conversion between plasma
flow (Fp) and blood flow (Fb) is often executed implicitly by ignoring hematocrit normaliz-
ation and producing blood flow estimates under the assumption of equal tissue (hctt) and
arterial hematocrit (hcta). While this may not necessarily present an important limitation
for MRI perfusion quantification, this manuscript additionally explores the possibility of
combining simultaneously acquired MRI-derived plasma and PET-derived blood flow in
order to estimate tissue hematocrit, which may be relevant for all imaging applications
using extracellular contrast agents.

6.2 Methods

6.2.1 Study Protocol Table 6.1: Patient Characteristics

Total 29 (100)

Male 23 (79)

Diabetes 11 (38)

Insulin dep. 2 (7)

Smoker 3 (10)

Age [y] 66± 10

HR stress [bpm] 86± 11

HR rest [bpm] 67± 11

Sys. BP [mmHg] 132± 16

Dia. BP [mmHg] 76± 9

Values are n (%) or mean ± SD.
HR = heart rate, BP = blood pressure.

A total of 29 patients with known or suspec-
ted CAD were prospectively recruited. Exclusion
criteria were any contraindications to undergoing
contrast-enhanced MRI examinations at 3T. Writ-
ten and informed consent was given by all pa-
tients, the study was approved by the local ethics
board and performed in accordance with the declar-
ation of Helsinki. All patients underwent simultan-
eous PET/MRI stress/rest perfusion examination on
a clinical 3T PET/MRI scanner (Biograph mMR,
Siemens Healthcare, Erlangen, Germany), the ima-
ging protocol is shown in Fig. 6.1. For patient com-
fort and logistical reasons, adenosine-induced stress
scans were executed first followed by scanning at
rest.

6.2.2 PET Image Acquisition

For both rest and stress, dynamic list mode ima-
ging with 3D PET mode started briefly before a
slow (30 s) bolus injection of 233 ± 81MBq 13NH3.
Attenuation and scatter correction were applied as
previously described [91]. In addition to a stand-
ard Dixon fat-water separation technique for gener-
ation of attenuation maps, potentially missing attenuation data from the arms due to
a smaller MRI field of view were recovered using the maximum likelihood reconstruc-

78



6.2 Methods

tion of attenuation and activity (MLAA) method [108]. Image reconstruction used a
3D attenuation-weighted ordered-subsets expectation maximization (AW-OSEM 3D) it-
erative reconstruction algorithm with three iterations and 21 subsets, Gaussian smoothing
with 4mm FWHM, matrix size 344 x 344, and zoom 1. Dynamic frames were reconstructed
as follows: 12 x 10 s, 4 x 30 s, 4 x 1min, 1 x 2min.

Figure 6.1: Schematic representation of the simultaneous PET/MRI perfusion protocol.

6.2.3 PET Image Analysis

A previously validated [104,106] three-compartment model including corrections for mo-
tion, partial volume and spillover [63] was used to analyze dynamic 13NH3 data. Blood
flow was estimated directly from K1 assuming no significant difference in 13NH3 extraction
between rest and hyperemia for the limited range of clinically observed blood flow rates.
No explicit correction for 13NH3 blood metabolites was executed as these have limited
impact on extraction rates [104]. Absolute regional flow values were generated as a trans-
mural volume model of the complete left ventricle. DICOM images delineating blood flow,
spatially matched to the original PET data, were created to facilitate the comparison to
MRI results as accurately as technically achievable.

6.2.4 MR Image Acquisition

For MRI perfusion data acquisition, the same 2D Saturation Recovery FLASH prototype
sequence was used in combination with a dual-sequence approach as used in Chapter 3.
High-resolution perfusion images were acquired during 90 consecutive RR intervals in three
short-axis slices in the left-ventricular myocardium. Each stack of high-resolution acquisi-
tions was preceded by a single low-resolution acquisition with altered imaging parameters
at a basal slice position [46]. Bolus injection of 0.05mmol/kg Gd-DTPA (Magnevist, Bayer
Healthcare, Germany) at 4mL/s was started after the first 10 RR intervals with image ac-
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quisitions and followed by a 20-mL saline flush. Typical imaging parameters for high- and
low-resolution perfusion acquisitions were used as reported in Section 3.2.2. Prior to all per-
fusion measurements, myocardial and blood T1 were estimated using a MOLLI prototype
sequence [95] with a 3(3)3(3)6 scheme [93] and parameters as reported in Section 3.2.5.

6.2.5 Perfusion MR Image Analysis

Retrospective motion correction for MOLLI T1 data was performed inline on the scanner
as implemented by the vendor. Motion correction for both high- and low-resolution image
series and Surface Coil Intensity Correction were executed as described in Section 3.2 and
shown in Fig. 6.2. T1 and Gd-DTPA concentration curves were calculated from enhance-
ment curves similar as described in [9] and [16]. Therefore, SR-FLASH signal equations
were numerically inverted to correct for signal saturation in both blood pool and myocar-
dium via Bloch-equation simulations of the SR-FLASH k-space acquisition. Normalization
constants S0 between MRI signal and R1 evolution were calculated using pre-injection
baseline signals and corresponding MOLLI R1 estimates. S0 was calculated only for the
rest scan in order to avoid potentially less reliable native baseline signals [17] and used for
all myocardial signal curves from both rest and stress scans after normalizing SCIC refer-
ence values. Signal-to-concentration modeling for low-resolution AIF images was executed
as described earlier using only proton-density-weighted image signal and no externally
measured T1 estimates [11]. An additional AIF was taken from the high-resolution images
using a comparable region of interest from a similar slice position as the low-resolution
AIF and corrected for signal saturation in the same way as the myocardial curves. Flows
and AIFs were converted between whole blood and plasma reference volumes using arterial
hematocrit (hcta) and tissue hematocrit (hctt) fractions [13,134], and a tissue-to-arterial
hematocrit ratio (dhct) was defined in analogy to Eq. 2.28:

AIFp =
AIFb

1− hcta
, Fb =

Fp
1− hctt

, dhct =
hctt
hcta

= (1− Fp
Fb

)/hcta (6.1)

Deconvolution was executed with plasma as reference volume (AIF = AIFp, Flow = Fp),
explicitly emphasizing the dependence of DCE-MRI blood flow estimates Fb on tissue
hematocrit [134]. Arterial hematocrit was globally assumed to be 0.42 [16] and both the
assumptions of hctt = 0 (dhct = 0%, Fb = Fp) and hctt = hcta (dhct = 100%, Fb ≈ 1.72 ·Fp)
were tested against PET blood flow results. In an additional step, tissue hematocrit
fractions were calculated directly from the cohort-wide comparison of MRI-derived Fp and
PET-derived Fb results according to Eq. 6.1.

6.2.6 Perfusion MRI Data Modeling

All AIFs and tissue curves were linearly interpolated to uniform time steps of 0.5 s, and
bolus arrival times were determined by iterative deconvolution analysis across all possible
values as described in Section3.2. In addition to a simple upslope analysis [14], model-
free deconvolution of Eq. 2.29 was implemented based on singular-value decomposition
using standard Tikhonov regularization and a first-order differential operator as a side
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Figure 6.2: Visualization of MRI surface coil intensity correction and deconvolution mod-
eling. Segmented stack of short-axis images after motion correction (a) and 2D surface
fit to the corresponding segmented portion of the proton-density-weighted image (c) are
shown with corresponding enhancement curves before (b) and after (d) SCIC and signal-
to-concentration modeling. Typical examples for fits and response curves are shown for
rest (e) and stress (f) states on a normalized scale.

constraint in combination with an L-curve criterion [57]. Model-constrained deconvolu-
tion was executed using three different approaches: First, the two-region Distributed-
Parameter (DP) [134] model was applied in combination with a single-compartment (1C)
model as previously described [16], replacing DP with 1C fit results in cases where the
former yielded vascular transit times smaller than the temporal resolution of the scan.
Second, an unconstrained Fermi-function model [3,67] was implemented using an intersti-
tial loading term to account for extravasation [61]. Thirdly, the same Fermi analysis was
implemented without allowing indicator transit at t = 0 to ensure physiological plausibility
and fit stability. Implementation of Fermi shape functions representing the response RF ,
augmented by a constant I-term for extravasation of contrast agent [61], was executed as
described in Eq. 2.46. Here, the leakage term represents indicator extraction into the extra-
vascular space assuming no backflow, i.e. infinite transit times. A so-defined Fermi model
may be seen as a direct extension to previously described compartmental- or plug flow up-
take (CTU/PTU) models [134]. Vascular outflow statistics are governed by a cumulative
logistic distribution with a mean Tp and a standard deviation σπ/

√
3. The underlying dis-

tribution of transit times h, being the negative derivative of RF [151], contains about 99%
of indicator transit events in the interval of three standard deviations around the mean,
i.e. ± 3σπ/

√
3 around Tp. Therefore, the physiological constraints that there be (close
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to) no indicator transit at time zero, i.e. h(t = 0) ≈ 0, and that 99% of transit time
events occur for t > 0 may be implemented by changing the parameterization in Eq. 2.46
according to:

RFermi+IF (t) = Fp ·

[
1− I

1 + e
t−Tp
σ

+ I

]
→ Fp ·

[
1− I

1 + eα(
t
τ
−1)

+ I

]
(6.2)

Setting a lower bound for the parameter α = τ/σ of 3σπ/
√

3 leads to a mean transit
time that is always larger than 3 times the standard deviation of transit times, fulfilling
the physiological plausibility constraints described above. Akin to the described approach,
a constraint for the similar Gaussian distribution has already been proposed by Koh et al.
in combination with a more complex adiabatic tissue homogeneity model [82].

6.2.7 Data Fusion and Statistics
13NH3-ammonia data and DCE-MRI images were processed separately and combined in
a final step, in which volumetric 3D flow values from PET were fused with corresponding
2D MRI perfusion slice positions and manually aligned if necessary. From the so-obtained
2D PET slices, 13NH3 blood flow estimates were taken at the locations of the DCE-MRI
segmentation (Fig. 6.2(a)) either as an average of each individual sector ("sector-wise") or
as an average of across all sectors ("slice-average"). Comparisons of the so-obtained and
co-registered flow results were executed for one mid-ventricular short-axis slice per patient.
MRI segmentation was performed according to the standard 17-segment AHA model, the
described fusion and segmentation therefore resulted in six regional and one slice average
flow estimates per patient per modality. All significance tests were executed as two-sample
t-tests with 5% significance level. All code for data post-processing was custom written in
IDL 8.1 (Harris, Melbourne (FL), USA) and Matlab R2016a (Mathworks, Natick (MA),
USA).

6.3 Results

Baseline characteristics of the patient cohort are shown in Table 6.1. Stress and rest
datasets were rejected for one patient due to irregular ECG triggering and one stress
dataset was rejected due to no apparent reaction to adenosine according to heart rate and
blood pressure. Three of the remaining patients did not complete the scan at rest, leading
to a total of 25 rest and 27 stress datasets. Perfusion flow results from both modalities were
compared on a cohort-average, slice-average and sector-wise basis. All reported DCE-MRI
results correspond to the use of the high-resolution, saturation-corrected AIF if not stated
otherwise.

6.3.1 Cohort-Average

All cohort-average results are summarized in Table 6.2. DCE-MRI flow results are shown
as plasma flow Fp and blood flow Fb, the latter converted under the common assumption
of equal tissue- and arterial hematocrit. DCE-MRI approaches yielded overall similar
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Table 6.2: Cohort-Average Results for Flow, Hematocrit, and Microvascular Parameters

Fp Rest Fp Stress
Fb Rest

hctt =hcta
Fb Stress
hctt =hcta

MPR Diff. to
13NH3

13NH3 0.78± 0.23 1.89± 0.41 2.53 p=1.000

SVD 0.59± 0.14 1.22± 0.31 1.02± 0.25 2.11± 0.31 2.05 p=0.012

Fermi 0.57± 0.15 1.26± 0.43 0.98± 0.25 2.17± 0.74 2.17 p=0.074

Fermic 0.54± 0.13 1.15± 0.30 0.94± 0.23 1.98± 0.49 2.09 p=0.022

DP 0.54± 0.14 1.13± 0.30 0.93± 0.24 1.94± 0.51 2.11 p=0.036

dhct Rest dhct Stress Diff. S/R

SVD 53% 82% p=0.003

Fermi 61% 80% p=0.053

Fermic 67% 92% p=0.005

DP 70% 95% p=0.008

Avg. 63% 89%

(DP) Rest (SD) Stress (SD) Diff. S/R

PS 0.70 (0.20) 0.93 (0.27) p<0.001

vp [%] 7.4 (1.6) 9.2 (1.8) p<0.001

ve [%] 16.8 (3.2) 18.2 (4.7) p=0.2

E [%] 71.6 (7.4) 55.5 (8.4) p<0.001

Values are mean ± SD, all flows and PS in units of mL/min/g. PET results are shown as
blood flow Fb, DCE-MRI results are shown both as plasma and blood flow under the assumption
hctt = hcta. Significance levels are provided for differences to PET MPR, between stress and rest
values of tissue hematocrit, and for additional DP model parameters.

flow estimates, and were higher than PET Fb especially at rest if converted under the
assumption of hctt = hcta. Consequentially, DCE-MRI perfusion ratios were significantly
lower than for PET. Higher MPRs for the unconstrained Fermi approach were observed in
combination with very a high standard deviation of stress results and a number of high-flow
outliers in slice-average and regional results. Combining MRI-derived Fp and PET-derived
Fb estimates, cohort-average plasma-to-blood conversion factors at rest and stress were
calculated according to Eq. 6.1 on the basis of slice-average results. The obtained estimates
of tissue-to-arterial hematocrit ratios were significantly different between rest and stress
for all DCE-MRI models, averaging at dhct = 63% and dhct = 89%, respectively. Due to the
global assumption of arterial hematocrit hcta = 0.42, this is equivalent to the finding of a
myocardial tissue hematocrit of 0.26 at rest and 0.37 at adenosine stress. Additional data
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shown in Table 6.2 represent cohort-average results for microvascular parameters from
the DP model analysis. In response to adenosine stress, significant increases in plasma
volume and PS were observed. First-pass extraction fraction decreased significantly while
myocardial extracellular-extravascular volume did not change significantly.

6.3.2 Slice-Average

High correlation factors between slice-average flow results from PET and all DCE-
MRI deconvolution approaches were observed, which were R2 = 0.80/0.79/0.76/0.82 for
SVD/DP/Fermi/constrained Fermi analysis respectively. Correlations and Bland-Altman
plots are shown for the latter as a representative example in Figure 6.3. Conversion of
MRI-derived plasma to blood flow is visualized using correlation plots for the two ex-
treme cases of assuming hctt = 0 and hctt = hcta. For hctt = 0, equivalent to assuming
no red blood cells in the vascular bed, flow values vastly underestimated PET-derived
blood flow (Fig. 6.3(a)). Assumption of equal tissue and arterial hematocrit yielded an
overestimation of PET-derived Fb at rest and better agreement with the respective stress
results. Figures 6.3(a/b) also contain correlation regressions for using the state-specific
hctt estimates calculated before, i.e. hctt = 0.26 at rest and hctt = 0.37 at stress. The
Bland-Altman analysis in Figure 6.3(c) visualizes the lower PET resting Fb results for the
case of hctt = hcta. Independent of hematocrit, it also shows a smaller absolute variability
and a similar relative variability between PET and MRI flow estimates at rest and stress.
Concerning perfusion ratios, Figure 6.4(a) shows the ratio of stress and rest upslopes,

exhibiting a sublinear and narrowly significant (p < 0.02) relationship to PET. Figs. 6.4(b)
and 6.4(c) show the corresponding comparison for absolute blood flows from the constrained
Fermi analysis as a representative example. MRI-derived perfusion ratios from flows Fb
converted assuming hctt = hcta at both rest and stress (Fig. 6.4(b)) yielded a sublinear but
highly significant (p = 0.002) relationship to PET. Using the previously calculated, state-
specific hctt estimates for conversion of Fp to Fb, an almost linear relationship between
MPRs from PET and DCE-MRI was recovered (Fig. 6.4(c)).
Plots showing the corresponding results for using the low-resolution AIF are given in

Appendix B (Fig. B.1). Flow results were on average similar, but especially at stress more
variable than results with the high-resolution AIF. In cases with large differences to PET
results, unstable and high baseline signals were often observed with the low-resolution AIF
at stress, i.e. the native state without prior contrast injection.

6.3.3 Regional

Figure 6.5 shows correlation plots comparing absolute sector-wise flow results of PET with
constrained (a) and unconstrained (b) Fermi deconvolution as well as with SVD (c) in
a pooled fashion. Conversion of Fp to Fb for DCE-MRI flows was executed using state-
specific hctt conversion factors as calculated before. SVD exhibited the lowest overall
variability when compared to PET (R2 = 0.72) and a slightly sublinear regression due to
higher resting flows. Constrained Fermi analysis yielded a similarly good agreement with
PET (R2 = 0.70) whereas unconstrained Fermi analysis resulted in a number of high-flow
outliers (R2 = 0.59). The underlying difference in constrained and unconstrained Fermi
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Figure 6.3: Slice-average comparison of 13NH3 PET and constrained Fermi analysis. All
rest (blue) and stress (green) slice-average results from the constrained Fermi analysis are
shown assuming either hctt = 0 (a) or hctt = hcta (b) for conversion of Fp to Fb. (c) Bland-
Altman plot for the case of hctt = hcta shows the higher MRI resting flows compared to
PET despite low variability. For state-specific adjustment of hctt calculated from PET
and MRI flow results only the regression line is shown in red (a/b).

response curves is visualized for one example sector in Figure 6.5(d). There, the initial
plateau of the response curve for the unconstrained Fermi fit was usually shifted far into
negative time, implying that the highest relative rate of indicator transit be at t = 0.
This led to strong increases of flow estimates over Fermi analysis constrained to assume

85



Chapter 6 Myocardial Perfusion Quantification Using Simultaneously Acquired
13NH3-Ammonia PET and DCE-MRI

Figure 6.4: Comparison of myocardial perfusion reserve estimates between PET and DCE-
MRI. A weak correlation with PET was observed for the slope analysis (a). Absolute
quantification yielded higher correlation factors (b) despite showing a sublinear relationship
under the global assumption of hctt = hcta. A regression slope closer to unity was recovered
using state-specific hctt estimates (c).

no indicator transit at t = 0. These differences in flow estimates were usually observed
without differences between the corresponding fits to the tissue curve.

6.3.4 Example Cases

The two cases displayed in Figs. 6.6 and 6.7 provide examples for combining PET and
MRI perfusion data in the context of a simultaneous acquisition. Patient A exhibited a
subtle inferior perfusion defect 6 months after myocardial infarction following occlusion of
the proximal RCA, but without a high-grade stenosis at the time of the scan. While PET
data would have suggested a stenosis-related inducible defect, simultaneously acquired
DCE-MRI curves revealed an increase in extracellular volume already at rest. This was
consistent with Late Gadolinium Enhancement, pointing towards a perfusion difference
due to post infarction fibrosis. Patient B was clinically classified as a case of apparent
left ventricular cavity dilatation (LVCD) on the basis of 13NH3 perfusion data, however
lacking a morphological reference for the dilatation. Simultaneously acquired MRI data
revealed both ventricular hypertrophy and an endo- to epicardial perfusion gradient at
stress matching the pattern of apparent dilatation .

6.4 Discussion

Cohort-Average Flows and MPR. This study has compared quantitative estimates of
myocardial perfusion flow between simultaneously acquired 13NH3-ammonia PET and
DCE-MRI data in a clinically relevant patient cohort. An overall good agreement between
the two methods with respect to absolute flow results is contrasted with a trend of DCE-
MRI underestimating PET perfusion ratios irrespective of the MRI deconvolution method.
The observed underestimation of MPRs was equivalent to an overestimation of absolute
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Figure 6.5: Comparison of absolute regional flow estimates between PET and DCE-MRI.
Regional flow is compared between PET and constrained (a) and unconstrained (b) Fermi
deconvolution as well as SVD (c). (d) Response functions and fits for both Fermi imple-
mentations in one example sector whose position is highlighted in the correlations (a/b).
Note the difference in flow estimates and response curve appearances despite indistinguish-
able fit results between unconstrained and constrained Fermi models.

PET flows at rest when calculating blood flow from DCE-MRI data under the most com-
mon assumption of equal tissue and arterial hematocrit. Despite there being no other
studies to date with both comparable methodology and patient cohort, and none with a
simultaneous acquisition approach as described herein, most earlier studies have shown
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Figure 6.6: Clinical example case for integration of PET, DCE and LGE data for a patient
6 months after myocardial infarction following an occlusion of the proximal RCA. The
highlighted inferior perfusion defect appeared as stress-inducible in PET, which would have
led to a misclassification of the deficit as being indicative of a high-grade RCA stenosis.
While invasive coronary angiography did not reveal a potential culprit stenosis, both the
resting state DCE-MRI exam as well as LGE revealed an increased extracellular volume
consistent with fibrotic tissue alterations.

similar patterns of DCE-MRI underestimating PET flows in some form. Pack et al. [110]
have found an overestimation of resting flows and concordance of stress flows using com-
parable modeling approaches for both PET and MRI, examining healthy volunteers. More
recently, Miller et al. [98] and Qayyum et al. [116] showed a similar pattern of underes-
timation for the relationship of PET and DCE-MRI flow results at rest and stress using
82Rb-PET and SVD analysis in patients with CAD. The largest clinically-oriented study
to date by Morton et al. [102] has reported good agreement in MPR despite a large vari-
ability in absolute flows, using however a simplistic single-compartment model for 13NH3
data modeling.

6.4.1 Tissue Hematocrit Adjustment

Akin to the studies cited above, the majority of publications reporting DCE-MRI-derived
values of myocardial blood flow do not make explicit references to hematocrit normaliza-
tion. Neglecting the use of correct reference volumes during DCE-MRI analysis does not
necessarily lead to errors with respect to flow quantification, it is however equivalent to
assuming equal tissue- and arterial hematocrit [134]. It also obscures the fact that blood
flow and plasma flow are two different quantities whose relationship may be complex espe-
cially in the capillary space [115]. Even if the difference between Fp and Fb is assumed to
be given solely by a shift in reference volume as Eq. 6.1 suggests: The deduction of tissue
hematocrit for the very particular case of an image voxel - containing all parts of the sub-
arterial vascular tree with different hematocrit levels in different volumetric proportions
– is not easily made from basic physiology. In the few studies that explicitly reference
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Figure 6.7: Clinical example case for combination of PET and DCE-MRI in a patient with
stable angina, significant left-ventricular hypertrophy, but without any high-grade stenosis
in either RCA or LAD at the time of the scan. PET data suggested classification as a case
of apparent left-ventricular cavity dilatation (LVCD), however lacking a true morphologic
reference with respect to the dilatation. The latter is provided from simultaneously ac-
quired MRI data, where DCE-MRI revealed strong endo- to epicardial perfusion gradients
at stress concordant with microvascular disease and disproving an actual cavity dilatation.

this issue, assumptions for hctt range from 25% [13] to 100% [16] of arterial hematocrit,
while for the vast majority of studies the latter case is inadvertently assumed. With re-
spect to the difference between blood and plasma flow, this manuscript has proposed a
combination of simultaneously acquired MRI and PET perfusion data to yield estimates
of tissue-to-arterial hematocrit fractions. Under the explorative assumption that there
be no systematic differences between PET and MRI flow estimates other than vascular
tracer/indicator distribution volume, estimates of dhct = 63% (hctt = 0.26) at rest and
dhct = 89% (hctt = 0.37) at stress were obtained. An increase in hctt between rest and
stress is at least in part plausible, considering the documented increase of microvascular
hematocrit between rest and vasodilator stress [81]. In addition, already an increasing
relative volume fraction of coronary arterioles during adenosine vasodilatation may appear
as an effective increase of hctt within DCE-MRI voxels covering myocardial tissue.

6.4.2 Water Exchange Effects

It is important to emphasize at this point that tissue hematocrit adjustment on one hand,
and MRI water exchange effects on the other hand, are two separate issues: Hematocrit
adjustment according to Eq. 6.1 simply extends the reference volume of flow (or "dynamic"
volume in the indicator-dilution sense [151]) from plasma to blood, irrespective of how in-
dicator concentrations were initially calculated from MR image signal. The water exchange
condition only influences the latter, i.e. it determines how relaxation rates from different
tissue regions constitute the overall MRI voxel signal. The extreme cases are represen-
ted by a single mono-exponential relaxation rate (fast exchange limit) or by individual
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relaxation rates for each compartment resulting in multi-exponential behavior (limited/no
exchange) [40]. Violations of the commonly (as well as herein) assumed fast exchange
limit between vascular/extravascular or interstitial/cellular spaces would globally lead to
a decrease in tissue signal and therefore a decrease in DCE-MRI flow estimates [40,70,88].
The degree to which water exchange has an impact on DCE-MRI signal during the first
pass depends in large part on the respective sequence parameters, and sequences with short
repetition times/high flip angles as used herein are known to be less sensitive to exchange
effects [18,40,88]. However, first-pass extraction fractions observed in this study were signi-
ficantly lower at stress than at rest, leading to a larger effective difference between vascular
and extravascular relaxation rates during the first pass, and therefore a potentially different
impact of exchange effects [70] at the two states. It is therefore conceivable that some part
of the observed difference in PET and DCE-MRI flow estimates between rest and stress,
which in this study has been projected onto a state-dependent tissue hematocrit, is also
due to a difference in exchange conditions.

6.4.3 AIF and Signal Normalization

Considering alternative explanations for systematic biases between MRI and PET, the
nonlinearity between image signal and contrast agent (signal saturation) on the DCE-
MRI side can probably be considered more as a source of variability since it relies on
baseline MRI signal and corresponding MOLLI T1 estimates. In this study, saturation
correction was executed using a single normalization constant for both rest and stress scans,
deliberately avoiding differences in reliability between DCE-MRI baseline signals at rest
and stress, e.g. due to imperfect saturation efficiency [17]. Also, the overall similar results
obtained using the low-resolution AIF with a different signal normalization approach do not
suggest this as a source for systematic error. The larger variability observed with the dual-
sequence approach has reproduced findings of recent studies investigating the influence of
ROI placement [66] and unreliable (native) baseline signals in the context of potentially
imperfect saturation [17]. Both of these problems are closely related to the originally
proposed [46] centric k-space acquisition used herein, which has been avoided in more recent
implementations [73]. Results from this study therefore do not imply a general inferiority
of dual-sequence approaches, but only provide further evidence for the inaptitude of centric
k-space acquisition strategies in this context. Concerning plausibility of DCE-MRI results,
also the additional microvascular parameters – being a product of the same deconvolution
process as the flow estimates – have reproduced results from comparable studies with
respect to absolute values and changes in parameters such as first-pass extraction and
vascular volume in response to adenosine stress [16,73,88].

6.4.4 Data Structure and Temporal Resolution

Apart from indicator/tracer biodistribution, other systematic differences between dynamic
PET and MRI data structure potentially play a role concerning flow estimation: Dynamic
PET is represented by images showing an integration over all tracer radioactivity extracted
from the vascular space across retrospectively defined time windows ≥ 10 s. In DCE-MRI,
the distribution of indicator is assessed from ECG-gated images representing the current
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state of vascular and extravascular indicator accumulation in the tissue as a snapshot.
Unlike PET, where flow is estimated from tracer extraction, established DCE-MRI ap-
proaches estimate perfusion flow via indicator convection using the initial amplitude of a
response function resulting from a discrete deconvolution of tissue curve and AIF. From a
mathematical perspective, this deconvolution result is not unique for transit times smaller
than the temporal resolution of the scan (e.g. 1/heart rate). As it is not clear whether
such small transit times at all exist, e.g. in the form of shunt channels, this does not ne-
cessarily pose a general limitation to DCE-MRI flow estimation. It does however suggest a
more careful examination of the stability of flow results as exemplified by the discrepancy
between the constrained and unconstrained Fermi analysis reported herein. Figure 6.6(b/c)
shows that, especially at high flows, unconstrained Fermi response curves were observed
proposing large rates of indicator transit during the first second(s), leading to significantly
higher flow estimates that were contradicted by the corresponding PET results. The fact
that DCE-MRI data effectively do not contain information on this part of the response
curve is reflected in the virtually indistinguishable fit results produced by these strongly
differing assumptions about tissue perfusion (Fig. 6.6(d)). Despite the conceivability of
very fast (shunt) channels that may also lead to systematic differences between PET and
MRI perfusion flows, estimating their weight from standard DCE-MRI data is not possible,
and proper modeling constraints are advised for stability. Note that this does not only
apply to the Fermi model, but also to more complex two-region models, for which careful
examination of fit results with respect to very small vascular transit times has already been
suggested by Broadbent et al. [16] as well as in Chapter 3 of this thesis.

6.4.5 Limitations

With respect to PET, it is known that the relationship between 13NH3-ammonia extraction
rate and blood flow depends to some degree on the latter, although it can usually be as-
sumed as linear for the limited flow range that is seen clinically (≤ 3mL/min/g) [104,106].
With respect to DCE-MRI, the impact of T*

2 effects on AIF at peak signal enhancement was
not explicitly modeled during correction for signal saturation [47]. The effect was however
too small to introduce a significant bias between low- and high-resolution AIF flow results
despite a difference in echo time between both acquisition schemes. Therefore, effects of T*

2
relaxation were smaller than effects of the aforementioned variability in low-resolution AIF
baseline signals or factors such as ROI placement. Additionally, the assumption of nom-
inal flip angles during signal-to-concentration modeling for high-resolution AIFs and tissue
curves represents an oversimplification of reality, as the non-uniformity of slice excitation
profiles leads to an accumulation of spatial variations in actual flip angle distributions
during k-space acquisition [140,145]. This may have caused some additional bias when
comparing perfusion results to PET, especially in the context of combining high-resolution
tissue curves (linear k-space ordering) with dual-sequence AIFs (centric k-space ordering),
because signal-to-concentration modeling for the latter does not rely on the inclusion of
excitations after the first k-space line [11]. Note however that inaccuracies with respect
to flip angles would affect rest and stress perfusion quantification in a similar fashion,
and therefore most likely not pose a significant limitation with respect to the reported
differences in MPR between MRI and PET.
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With respect to arterial hematocrit, individual measurements were not available from
the day of the exam. However, the reported relative dhct fractions are essentially insensitive
to absolute arterial hematocrit, and the use of an established, global assumption may be
seen as increasing the comparability of absolute results to earlier studies, where individual
hematocrit sampling has rarely been reported.

6.4.6 Conclusion

Using simultaneously acquired PET/MRI data, an overall good agreement of absolute
myocardial perfusion flow estimates from both modalities was observed in a clinically
relevant patient cohort. However, significant differences in stress/rest perfusion ratios
concordant with previous investigations suggest that absolute thresholds for ischemia clas-
sification may not be directly tradable between PET and MRI. The combination of clinical
data from both modalities has demonstrated the unique potential of integrated PET/MRI,
both for individual patient cases as well as on a cohort-wide basis with respect to tissue
hematocrit . Additionally, a physiologically motivated constraint to the widely-used Fermi
deconvolution method has been introduced and validated against PET for regional perfu-
sion quantification.
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Chapter 7

Quantitative Extracellular Volume, Native
T1 and 18F-FDG PET/MR Imaging in
Patients after Revascularized Myocardial
Infarction

Based on the work pubished in:
KP Kunze et al., Journal of
Cardiovascular Magnetic Resonance
20:33, 2018.

7.1 Motivation

The development of quantitative cardiovascular magnetic resonance imaging techniques
as a means for myocardial tissue characterization has seen a number of advances in re-
cent years. Due to their relative robustness [71], especially extracellular volume mapping
and contrast media free native T1 (nT1) mapping are being translated into clinical ap-
plications [100,148] and both have shown promising results with respect to infiltrative and
fibrotic cardiac diseases [52,74,125]. For acute myocardial infarction, equivalence or superi-
ority of quantitative mapping approaches over qualitative techniques with respect to the
delineation of the Area At Risk (AAR) [20,143] and the prediction of functional outcome
have been shown for native T1 [34,42] and ECV [77] mapping. While there is ongoing
discussion about the limits of detection for absolute changes of ECV in more subtle disease
processes [24,141], studies involving ECV and T1 mapping often make only limited use of
absolute values. Both mapping techniques have usually been evaluated as more sensitive
or accurate versions of late gadolinium enhancement or T2-weighted imaging for the de-
termination of infarct size or AAR in the context of AMI [20,42,77,96,143]. This however
neglects part of the quantitative potential of ECV and T1 mapping, which for the first time
allow non-invasive MR imaging of the local severity of myocardial injury and edematous
processes as opposed to only measuring their extent.
The assessment of post-AMI inflammatory processes have recently also come into the

focus of PET imaging, where 18F-FDG is used in combination with metabolic prepara-
tion to target cardiac infiltration by inflammatory cells [119,149]. However, there is still
uncertainty with respect to the contribution of infiltrative inflammatory cells and altered
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metabolism by post-ischemic but viable cardiomyocytes to the 18F-FDG imaging signal
when applied in a clinical setting [119]. In this context, simultaneous PET/MR imaging
offers the potential for a deeper understanding of quantitative methods from both modal-
ities and their relation to physiology [121,131].
The study at hand employs PET/MR imaging to quantitatively investigate the relation-

ship of the three imaging markers 18F-FDG uptake, native T1 and ECV in the context of
a complex tissue state consisting of diverse processes including inflammation, edema and
cellular tissue damage after revascularized AMI. In addition, blood markers of myocardial
damage and blood counts of inflammatory cells have been obtained following the acute
event. Consequently, quantitative regional results from the three imaging methods under
investigation are compared among themselves as well as with peripheral blood parameters.
It is investigated to what degree the three imaging methods indicate independent features
of the post-ischemic healing process, and to what degree these features are co-localized.
Proceeding in this fashion, it is the goal of this manuscript to highlight the potential in
making full use of available quantitative information from cardiac multimodality imaging
for a better understanding of image signals and their relation to pathophysiology.
As an extension to the originally published manuscript, an additional, explorative ana-

lysis combining imaging results fromMRI and PET is presented on the basis of the observed
correlations of imaging and blood markers. It aims at an estimation of cohort-average
weights for different signal contributions to the 18F-FDG signal by using a linear model,
constructing measured 18F-FDG uptake values from myocytic (100 - ECV) and inflammat-
ory (nT1) pathways.

7.2 Methods

7.2.1 Patient Cohort

Patients that were retrospectively enrolled for this investigation (n=25) represent a large
subgroup of a cohort from a previously published study [119], which has focused on global
measures of 18F-FDG uptake and LGE and their relationship to functional outcome. All
patients underwent examination on a clinical 3T PET/MRI scanner (Biograph mMR,
Siemens Healthcare GmbH, Erlangen, Germany) 5± 1 days after myocardial infarction
and subsequent, successful revascularization (TIMI grade ≥ 2, average: 2.9). The study
was approved by the local ethics committee, performed in agreement with the Declaration
of Helsinki, and all participants gave written and informed consent. Criteria for retrospect-
ive enrollment were membership in the final study cohort reported in [119] and availability
of native and post contrast T1 data. Additionally, patients showing signs of microvascular
obstruction (MVO) in LGE images were excluded from quantitative analysis, as the neces-
sary contrast agent equilibration for ECV mapping is not attainable. Also, segmentation
of MVO border zones was deemed not practicable in these cases due to the differences
in spatial resolution between PET and MRI images, and quantitative values would not
have been comparable to results from transmural segmentation. A detailed description of
the criteria for retrospective enrollment similar to the corresponding statements in [119] is
given in Table 7.1.
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7.2.2 PET Imaging
18F-FDG PET was performed with patients receiving a low-carbohydrate diet the day
before imaging, followed by a 12-hour fasting period in order to suppress physiological
myocardial FDG uptake.

Table 7.1: Criteria for Retrospective En-
rollment

n

Original cohort in [119] 49

Received 18F-FDG imaging
and T1 mapping 45

Exclusion due to n/45

Unsuccessful suppression
of physiological 18F-FDG
uptake

3

Previous infarctions
revealed during imaging 2

Para-venous 18F-FDG
injection 1

Acute pneumonia 1

Non-diagnostic T1 data 2

MVO at infarct core 11

Restrospectively enrolled 25

30 minutes before 18F-FDG injection,
patients received unfractionated Heparin
(50UI/kg body weight intravenously) to fur-
ther suppress physiological myocardial FDG
uptake [119]. A list-mode PET scan in 3D
mode was started 144 ± 39 minutes after intra-
venous injection of 311 ± 72MBq of 18F-FDG.
Correction of emission data was performed for
randoms, scatter, dead time and attenuation.
Attenuation correction was accomplished us-
ing 2-point Dixon MRI sequence as previously
described [91]. Parts of the body truncated in
the attenuation map due to the limited MRI
field-of-view were recovered from PET emission
data using the maximum likelihood recon-
struction of attenuation and activity (MLAA)
technique [108]. For reconstruction, a 3D
attenuation-weighted ordered-subsets expect-
ation maximization iterative reconstruction
algorithm (AW-OSEM 3D) was used with three
iterations and 21 subsets, Gaussian smoothing
at 4mm FWHM, matrix size 344 x 344, zoom 1
and a resulting spatial resolution of 5mm. For
quantitative analysis, 18F-FDG image signals
were expressed as standardized uptake val-
ues based on lean body mass (SUVLBM) or
- for comparison to blood markers - also as
tissue-to-background ratios (TBR) normalized
to blood signal taken from an LV-centric region
of interest.

7.2.3 MR Imaging

As part of a comprehensive resting-state MRI exam, native and post-contrast T1 maps
were acquired using a MOLLI prototype sequence in three short axis slices per patient.
Acquisition (3(3)3(3)6)-scheme [95]), retrospective motion correction and registration of
native and post-contrast MOLLI data was performed as described in Section 3.2.5 of this
thesis. If necessary, additional manual motion correction was applied to the T1 image series
as it was acquired in shallow breathing. After registration, ECV maps were calculated from
the resulting T1 maps using individually measured hematocrit. LGE images covering the
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complete LV myocardium were acquired directly adjacent to post contrast T1 maps after
a cumulative dose of 0.2mmol/kg Gd-DTPA (Magnevist, Bayer Healthcare, Leverkusen,
Germany).

Figure 7.1: Visualization of the three analyzed image signals and their segmentation for
one example case. The upper panel shows from left to right: native T1, extracellular
volume and 18F-FDG uptake after fusion with the corresponding ECV map. The lower
panel shows the respective segmentation results, consisting of 32 segments per slice that
are co-localized between the three imaging methods. For each of these, white lines enclose
the two sectors with the highest signal and orange lines the sectors defined as remote.

7.2.4 PET/MRI Image Analysis

For PET/MR image registration, the MunichHeart software [97] was used to fuse 18F-FDG
PET images with ECV and native T1 maps. Manual alignment was performed between
ungated PET data and individually motion-corrected MRI data if necessary. Manual
segmentation on the basis of ECV maps was performed for the most infarct-centric of the
three acquired slices, which was determined on the basis of LGE images covering the whole
left ventricle. Basal and mid-ventricular slices were segmented into 32 sectors (16 for apical
slices), equally spaced along a centerline between endo and-epicardial borders without
additional morphological reference. This segmentation was applied to the registered ECV,
nT1 and 18F-FDG PET images of that slice. For each patient, segmentation of the chosen
slice therefore resulted in 32 transmural sector values (16 for apical slices) for each of
the three image signals under investigation as shown in Fig. 7.1. An average of the two
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highest sector values was taken as representing maximum insult severity for each patient
and each image signal in the sense of an "imaging biopsy". These maximum values were
determined independently for each imaging method, and therefore do not necessarily refer
to the exact same intra-slice location (see Fig. 7.1). For the quantitative analysis of remote
regions, three sectors as distal as possible to the sector with the highest value were chosen
manually. Therefore, for each patient, the remote value of ECV, nT1 and 18F-FDG uptake
respectively refers to the average from the so-defined remote sectors, and the maximum
value refers to the average of the two highest sector values. Additional measures of infarct
size in % of LV volume were obtained by manual delineation of enhancement regions in
the LGE images as described previously [119].

7.2.5 Blood Analysis Table 7.2: Patient Characteristics

Characteristics

Final [n] (%) 25 (100)

Male [n] (%) 22 (88)

Age [y] 66 ± 10

Pain to PCI [h] 7.2 ± 7.1

PCI to scan [d] 4.9 ± 1.4

HR at scan [bpm] 62 ± 9

Infarct size (LGE) [% LV] 17.3 ± 7.1

Avg. blood markers

CK max [U/l] 1806 ± 930

CK-MB max [U/l] 211 ± 124

Troponin T max [U/l] 2.5 ± 1.7

Peak Leukocytes [G/l] 12.8 ± 4.3

Peak Monocytes [G/l] 1.1 ± 0.4

Daily blood sampling was performed for
up to 6 days after revascularization.
Peak levels of blood parameters creat-
ine kinase (CK), creatine kinase-MB (CK-
MB), troponin T as well as peak leuko-
cyte and monocyte counts were taken from
this sampling period as previously repor-
ted [119].

7.2.6 Data Analysis and Statistics

Data processing and statistical analysis
were executed in Matlab R2017a (Math-
works, Natick (MA), USA). Between-
subject correlations represent a correlation
of per-subject means, within-subject cor-
relations were calculated using multiple re-
gression (analysis of covariance). R- and
p-values are given as Pearson correlations
coefficients with a 5% significance level.
Fit procedures employed an uncon-

strained linear model, both an R-squared
goodness-of-fit value (adjusted for the num-
ber of predictors) and 95% confidence inter-
vals for resulting parameters are reported.

7.3 Results

7.3.1 Patient Cohort

The physiological characteristics of the final patient cohort (n=25) are shown in Table 7.2.
A total of 42 individual segments from four patients were excluded before quantitative
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analysis due to small susceptibility artifacts in the T1 maps (n=3) or breathing artifacts
in the PET attenuation map (n=1).

7.3.2 Mutual Comparison of 18F-FDG, ECV and native T1

The total number of sectors after exclusions was 662 for each imaging method, consisting
of 32 (mid/basal) or 16 (apical) sectors per patient for each of the 25 subjects. The
upper panel of Fig. 7.2 shows the comparisons of these sector values in a globally pooled
fashion. All three comparisons (FDG/ECV, FDG/nT1, ECV/nT1) exhibited similarly
significant correlations between subject means (R = 0.60, 0.43, 0.51). The lower panel of
Fig. 7.2 shows the corresponding within-patient correlations, i.e. a linearization of within-
slice signal increase for each patient (i.e. each slice) individually. Within-patient analysis
yielded much higher correlation factors (R = 0.91, 0.87, 0.88) than the globally pooled
comparison.

Figure 7.2: Pooled comparison (a-c) and individual regressions (d-f) between sector val-
ues from all three imaging methods. These are 18F-FDG vs. ECV (a/d), 18F-FDG vs.
nT1 (b/e) and ECV vs. nT1 (c/f). Plots (a-c) each include results from all 662 sectors
from all 25 patients and the correlation between subjects. Plots (d-f) visualize the different
slopes of individual linear regressions and show the respective correlation factors within
subjects.

The underlying inter-patient variability of absolute values at the high end was most
clearly discernible for the comparison of FDG/ECV. Consequentially, if only the average
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of the two maximum sector values from each patient were compared, no significant correl-
ations were observed for FDG/ECV, FDG/nT1 nor ECV/nT1 (Fig. 7.3). Table 7.3 shows
ranges and averages for maximum and remote values across all patients for each imaging
method. While maximum values were determined individually for each imaging method,
average distances between sectors containing these were small across modalities, i.e. on av-
erage 1.2 sectors between ECV/FDG, 2 sectors between nT1/FDG and 1.9 sectors between
nT1/ECV.

Figure 7.3: Comparison of maximum sector values between ECV/18F-FDG (a), nT1/18F-
FDG (b) and ECV/nT1 (c) for all 25 patients, showing no significant correlations between
the three methods. All points in plots (a-c) are equivalent to a per-patient average of the
two highest sector values shown in the corresponding pooled comparisons in Fig. 7.2 (a-c)

7.3.3 Comparison of Maximum Image Signals and Infarct Size

Table 7.3: Maximum and Remote Values for ECV, nat-
ive T1 and 18F-FDG

Mean SD Range

Max.ECV [%] 57.0 7.8 42.6 - 70.0

Max. nT1 [ms] 1432 101 1281 - 1624

Max. FDG [SUVLBM] 2.62 0.53 1.62 - 3.74

Rem.ECV [%] 27.8 3.9 20.3 - 34.7

Rem. nT1 [ms] 1163 92 998 - 1419

Rem.FDG [SUVLBM] 0.71 0.22 0.45 - 1.22

Results for comparing infarct sizes
with corresponding maximum val-
ues of ECV, 18F-FDG uptake and
native T1 are shown in Fig. 7.4.
Infarct sizes calculated on the
basis of LGE images yielded an
average infarct size of 17.3 ± 7.1%
of LV volume. A highly signific-
ant correlation of cellular damage
as indicated by maximum ECV
with infarct size was observed
(p = 0.002). Conversely, no signi-
ficant correlation between infarct
size and either maximum 18F-
FDG uptake or maximum native
T1 was observed.
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Figure 7.4: Comparison of maximum ECV, 18F-FDG uptake and native T1 values from
the most infarct-centric slice with relative global infarct size as measured independently
from LGE images in % LV. A good correlation between infarct extent and maximum tissue
damage in terms of ECV was observed (a), while no correlation was seen between infarct
size and maximum 18F-FDG uptake (b) and native T1 (c).

7.3.4 Comparison of Maximum Image Signals and Blood Markers

Maximum ECV (Fig. 7.5), 18F-FDG uptake (absolute (Fig. 7.6) and TBR) and native T1
(Fig. 7.7) were compared to peak values of peripheral blood parameters CK, CK-MB, tro-
ponin T as well as peak leukocyte and monocyte counts. Monocyte counts were unavailable
for two patients, and were excluded for one additional patient due to splenectomy, result-
ing in 22 instead of 25 data points for Figs. 7.5(d)/7.6(d)/ 7.7(d). For maximum ECV, a
strong trend towards association with peak CK (p = 0.052) and a significant correlation
with peak CK-MB (p = 0.0057) were observed, despite no correlation to peak troponin
or monocytes. The comparison to peak CK-MB revealed a tight relationship at the low
end and a larger variability at the high end of values (Fig. 7.5(b)). For absolute 18F-FDG
uptake, only a narrowly significant correlation was found with troponin (p = 0.042), and
none was found for 18F-FDG TBR normalized to LV blood (see Appendix C). Maximum
native T1 values did not show significant correlations to CK or CK-MB, but a highly signi-
ficant correlation (p = 0.0046) to peak monocyte counts and a significant correlation with
troponin (p = 0.024). The corresponding comparisons to peak leukocyte counts are not
shown, yielding a significant trend (p = 0.033) with native T1.

7.3.5 Estimation of Contributions to 18F-FDG Uptake Signal

In a final step, a cohort-average regression analysis using MRI results in conjunction with
PET data was executed to yield an estimate of relative contributions to the 18F-FDG sig-
nal. As a simplification, three contributing factors to the 18F-FDG signal were assumed,
namely: (migrated) inflammatory cell populations, post-ischemic cellular metabolism and a
combination of blood pool and remaining metabolic background signal within the myocar-
dium. Concerning their relationship to imaging results, the following three explorative
hypotheses were made:
First, 18F-FDG signals observed in this study contain a combination of blood pool and
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Figure 7.5: Comparison of maximum ECV with peak blood parameters CK (a), CK-MB
fraction (b), troponin (c), and monocyte counts (d). A narrowly insignificant trend for
CK (p = 0.052) and a highly significant correlation to CK-MB (p = 0.0057) were observed.

remaining metabolic contributions (FDGback) that are spatially constant and equal to the
signal from remote regions. Second, the post-ischemic metabolic signal fraction (FDGpIS)
at the site of infarction is – on a cohort-wide average – proportional to the (reduced) fraction
of intact myocytes as indicated by ECV imaging. Third, the infiltrative/inflammatory
cellular signal fraction (FDGInf ) at the site of infarction is – on a cohort-wide average
– proportional to the edematous response indicated by the relative increase of native T1,
considering the high correlation of maximum T1 values to peripheral monocyte counts
shown before.
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Based on these assumptions, an alternative maximum 18F-FDG signal (FDGconstr) was
constructed from a linear combination of the three described contributing pathways:

FDGconstr = λ ·∆nT1FDG + µ · (100− ECVFDG) + FDGremote,

∆nT1FDG = nT1FDG − nT1remote .

Here, the scale for ECV was inverted so that the term 100 - ECV reflects the amount of
remaining cellular volume, while λ and µ represent arbitrary proportionality coefficients.

Figure 7.6: Comparison of maximum 18F-FDG uptake with peak blood parameters CK (a),
CK-MB fraction (b), troponin (c), and monocyte counts (d). A narrowly significant trend
for troponin (p = 0.042) was observed.
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Note that maximum values of 18F-FDG uptake were determined as before (FDGmax),
but corresponding T1 and ECV values (nT1FDG/ECVFDG) were now taken from the exact
same intra-slice location as the maximum FDG value. The above equation was solved
for coefficients λ and µ by minimizing the difference between constructed (FDGconstr)
and measured maximum (FDGmax) FDG uptake. This is equivalent to interpreting the
vector of differences FDGmax – FDGremote across all patients as a linear combination
of the corresponding vectors of ∆nT1 and (100 - ECV) values. Assuming only the three
described contributions to the 18F-FDG signal, averages for relative contributions are given
by:

dFDGback =
〈FDGremote〉
〈FDGconstr〉

, dFDGInf =
λ〈∆nT1FDG〉
〈FDGconstr〉

, dFDGpIS =
µ〈100− ECVFDG〉
〈FDGconstr〉

The average background contribution to the maximum 18F-FDG uptake signal was
28% ± 8%. This was independent of the actual fit results as the mean of FDGconstr
was essentially the same as the mean of the measured maximum 18F-FDG uptake if eval-
uated across the whole cohort. Solving for λ and µ as described above led to similar
estimates of mean contributions for dFDGInf and dFDGpIS at about 38% and 34% re-
spectively. Figure 7.8(a) shows the resulting patient-wise comparison between measured
uptake signals and the ones constructed using the obtained parameters λ and µ. With a
stronger divergence at the lower end of values, 95% confidence intervals for fit parameters
λ and µ translated to large ranges for minimum - maximum contributions of 15% - 61% for
dFDGInf and 11% - 58% for dFDGpIS respectively. Fig. 7.8(b) shows the same fit applied
separately to both high (green) and low ends (red) of measured 18F-FDG uptake values
as separated by the median. For the higher half, estimated average contributions for all
pathways were similar to the fit of the whole cohort, but both adjusted R-squared (0.56)
and 95% confidence intervals ((26 - 54)% for dFDGInf and (21 - 50)% for dFDGpIS) were
much more indicative of an appropriate model. Exclusion of the outlier seen in Fig. 7.8(b)
resulted in significantly tighter confidence intervals ((33 - 51)% for dFDGInf and (25 -
43)% for dFDGpIS) and a higher adjusted R-squared (0.77). Conversely, the fit to the
lower half of values produced highly variable results with confidence bounds extending
into an unphysiological (negative) range.

7.4 Discussion

The study at hand has compared absolute measures of 18F-FDG uptake, extracellular
volume and native T1 in patients early after revascularized myocardial infarction using
simultaneously acquired PET/MRI data. Quantitative results have been derived for a
single, infarct-centric slice position that was co-localized between all three methods, which
can be seen as a biopsy-like imaging approach. An effort was made to link the so-obtained
image signals to underlying pathophysiological processes using independent measures of
infarct size and peripheral blood markers of cardiac damage and inflammatory cell popu-
lations. The study did not investigate correlations between image signals and functional
recovery post AMI as these have already been given separately for ECV [77], 18F-FDG [119]
and native T1 [34] in quantitative or semi-quantitative fashion.
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Figure 7.7: Comparison of maximum native T1 with peak blood parameters CK (a), CK-
MB fraction (b), troponin (c), and monocyte counts (d). A narrowly significant trend for
troponin (p = 0.024) and a highly significant correlation (p = 0.0046) for monocyte counts
was found. No significant correlations to CK or CK-MB fraction were observed.

7.4.1 Comparison of Signal Localization and Magnitude

The first step was the comparison of inter-patient and intra-patient (i.e. intra-slice) sig-
nals as shown in Fig. 7.2. The excellent correlations for the latter suggest a very good
co-localization of pathophysiological processes indicated by the three different image sig-
nals. While in the vast majority of studies, extents of image signals are compared by global
thresholding, e.g. using multiples of standard deviations as binary cutoff values, the intra-
patient correlations shown herein are independent of differences in absolute signal increase
between patients, i.e. differences seen in the correlation slopes in Fig. 7.2(c-d). Despite the
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Figure 7.8: Comparison of measured maximum 18F-FDG uptake values FDGmax with
values FDGconstr that were constructed from a linear combination of co-localized relative
increase in native T1 and cellular volume. For the fit across the whole cohort (a), stronger
mismatches between measured and constructed uptake values can be seen at the lower
end. Performing separate fits for the high (green) and low (red) ends of FDGmax (b),
significantly better visual and statistical results were obtained for the former (despite on
wide outlier), while a fit to the lower end produced similar variability and much weaker fit
statistics

good co-localization of signal increases, the heterogeneity of these slopes and equivalently
the comparison of maximum values in Fig. 7.3 suggest sensitivities to different underly-
ing tissue properties. Therefore, ECV, 18F-FDG uptake and native T1 can each be seen
as representing mutually distinct combinations of features with respect to infarct-related
pathophysiology, while the respective underlying processes are largely co-localized.

7.4.2 Comparison of Signal Magnitudes and External Markers

For myocardial ECV, estimates derived from pre- and post-contrast T1 mapping have
been shown to be sensitive to a number of different disease processes [125] and histolo-
gically verified to correlate with fibrosis [37]. With respect to AMI, quantitative ECV
mapping has only recently been shown to be associated with functional outcome in pa-
tients [77] but further investigation of pathophysiological mechanisms are lacking. While
significant association of ECV with edema has been documented at day 1 after AMI in
pigs [65], the same study reported a disappearance of this association after 7 days, which
suggests edema if at all as a minor contributor to ECV estimates from the study at hand
obtained 5 days after AMI. A possible pathophysiological correlate for absolute ECV in
this study has been provided in the form of CK/CK-MB blood markers for (myocytic)
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cellular damage. The significant correlation between peak CK-MB and ECV is in fact
remarkable as it reflects the association of a global, peripheral blood parameter with a
focal, biopsy-like imaging result. It may however be seen as an epiphenomenon to the
additional finding of a highly significant correlation between ECV at the infarct center and
infarct size, where peak CK-MB activity is an established marker for the latter [43]. This
observed relationship between the extent of the area being subject to ischemic insult and
the amount of myocytic damage at its center may be seen as somewhat mechanistically
plausible, considering a decrease of the probability for remaining collateralization with dis-
tance to the nearest non-infarcted tissue regions. The much smaller significance for the
corresponding correlation observed between peak CK and ECV is consistent with a lower
specificity of CK to myocardial damage compared to CK-MB. With respect to FDG, data
from this study suggest no correlation of maximum 18F-FDG uptake at the infarct center
with peak monocyte or leukocyte counts or global infarct size. This was irrespective of
whether maximum 18F-FDG was evaluated in absolute terms as SUVLBM or normalized
to LV blood activity as a TBR. A similar finding [119] has been interpreted as a conceivable
disproportionality between systemic/peripheral inflammatory cell counts and the presence
of migrated inflammatory cells within the myocardium begetting the imaging signal. While
it is known that 18F-FDG is taken up by inflammatory cell populations [86], the interpret-
ation of a corresponding image signal from the post-ischemic myocardium is challenging
due to the concurrent presence of background contributions from myocyte uptake. Despite
a somewhat reliable suppression of physiologic FDG metabolism in healthy cardiomyo-
cytes, the potential presence of post-ischemic FDG uptake due to a switch of metabolism
from fatty acids towards glucose consumption early after AMI is a major confounder to
the interpretation of 18F-FDG uptake as a purely inflammatory signal [132]. Therefore,
18F-FDG image signals are generally regarded as a mixture of background/blood pool,
post-ischemic and inflammatory constituents in this context. Native myocardial T1 may
reflect a variety of pathologic tissue alterations, but is generally accepted to indicate the
edematous increase of free water content early after AMI [143]. The expected increase of
infarct-centric native T1 observed in this study is therefore attributed to an edematous
reaction, which however did not show a correlation with infarct size as ECV did. With
respect to native T1, the most interesting finding from this study is a highly significant
correlation with peak monocyte counts and a weaker but still significant association to
peak leukocyte counts, of which monocytes are a subset specific to inflammatory activity.
As for ECV, this association of biopsy-like imaging results with peripheral blood markers
is remarkable, even more so considering that native T1 was not found to be related to
infarct size. Therefore, the data at hand provides evidence for the fact that myocardial
edema and the systemic inflammatory reaction are quantitatively associated. Summariz-
ing the comparison of imaging results with peripheral blood parameters, the data at hand
suggest ECV as a marker of cellular damage early after reperfused AMI, with maximum
values related to infarct size and therefore reflecting most likely a mechanistic property
of the respective infarct. Conversely, the missing correlation to infarct size for maximum
18F-FDG uptake and native T1 suggest their association with a more patient- than infarct-
specific reaction to the ischemic insult. This notion is strongly supported by the observed
association of native T1 with peak monocyte counts.
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7.4.3 Estimation of Contributions to 18F-FDG Uptake Signal

As stated before, it is known that, despite dietary preparation, 18F-FDG uptake signal
early after AMI represents some mixture of inflammatory cell uptake and remaining post-
ischemic metabolism [86,119,132]. Building on the interpretation of maximum ECV and
native T1 as quantitative indicators of (extra-) cellular content and inflammatory activity,
it was hypothesized in this study that the maximum values of 18F-FDG uptake observed
at the infarct center could be constructed from a linear combination of ECV and native T1
values measured at the same location. The presented result that at the infarct center only
about 40% of the uptake signal actually reflects inflammatory activity may in fact explain
earlier accounts of relatively weak associations between measures of mean or maximum 18F-
FDG uptake with counts of monocyte subsets despite a relation to functional outcome [119].
However, a number of major assumptions were made that are potentially unreliable

when applied on a cohort-average level: First, the association of native T1 in the tissue
with the systemic inflammatory reaction as indicated by monocyte counts is purely circum-
stantial and lacks further validation with respect to the relationship between peripheral
and migrated cell populations. Second, the assumption that post-ischemic metabolism is
directly proportional to relative cellular content on a cohort-average while the underlying
process is clearly more case-specific may be flawed. Thirdly, the assumption that peak
18F-FDG uptake may be divided into three pathways in the proposed fashion probably
represent an additional, significant simplification of reality. This especially applies to as-
suming a quantitatively consistent background signal within the whole myocardium, which
may adequately describe blood pool contributions, but not potentially remaining, variable
physiological myocyte uptake. Although errors due to the latter assumption are somewhat
constrained by the limited variability observed in remote 18F-FDG signals, the ratio of
remote to maximum FDG uptake was often much higher for the lower end of FDGmax
values. Performing separate fits for the low and high ends of 18F-FDG signals revealed that
mean estimation of signal contributions was mainly driven by high uptake values, while sig-
nificant variability was introduced from the lower end of values. The latter finding may be
explained both by a less stable fit due to a lower range of "fittable" non-background signal,
as well as by the fact that potential physiological variations in background signal would
have a stronger relative impact. As a consequence, the fit results and confidence intervals
corresponding to the high end of values probably represent more reliable estimates of 18F-
FDG signal contributions using the proposed approach. As an additional Limitation, since
fits were executed on the basis of intra-slice differences between maximum and remote re-
gions for FDG and native T1, a potential global component of inflammatory activity that
may also be present in remote regions would be falsely attributed to the background signal
using the described approach. Therefore, the proposed contribution of inflammatory cell
populations may be seen as a lower limit.

7.4.4 Limitations

An important translational limitation to results from this study is that patients exhibiting
microvascular obstructions post AMI were not amenable to the presented analysis. While
there exist propositions on the segmentation of MVO border zones for e.g. ECV map-
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ping [77], the difference in spatial resolution between PET and MRI precluded comparable
sub-segmentations of the myocardial wall. For similar reasons, only transmural short-axis
sectors were defined for LV myocardium, where especially cardiac motion hampers a mean-
ingful sub-segmentation across the myocardial wall in PET. With respect to segmentation,
locations for maximum values were determined individually for each modality because the
alternative of having one of the three methods be the reference standard for locating the
corresponding sectors would have introduced a bias into the comparison and additionally
precluded the translation of conclusions to situations where the reference modality is not
available. The small spatial differences introduced by individual determination of refer-
ence sectors did not suggest this as a significant limitation to the finding that all three
modalities indicate mutually distinct processes within the tissue.
The acquisition scheme (3(3)3(3)6) used in this study for MOLLI T1 mapping has been

shown to be more sensitive to variations in heart rate than other, more recently proposed
schemes [72]. However, the fact that resting heart rates in the examined cohort did not
vary strongly and that heart rate did not correlate with remote native T1 (R = -0.22,
p = 0.3) do not suggest this as a major confounder to the presented findings.
Additionally, the practice of using peak values of peripheral blood markers as a surrogate

for their summed activity may have introduced additional variability into the reported
results. While the described practice is known to be relatively accurate for CK/CK-
MB [43], the inflammatory reaction indicated by monocyte counts may behave in a more
complex fashion. With respect to statistics, the large number of performed correlation
analyses may have justified the use of a 1% significance level to make type 1 errors less likely.
However, the main conclusions presented herein only rely on findings with p-values < 0.01.

7.4.5 Conclusion

Simultaneously acquired PET/MRI data from this study have shown a close spatial con-
cordance of relative signal increase in combination with a divergence of absolute signal
magnitudes between 18F-FDG uptake, native T1 and ECV early after revascularized AMI.
A biopsy-like imaging approach has revealed links between MRI-derived ECV estimates
and blood markers of muscular damage as well as an association of the edematous re-
sponse indicated by absolute native T1 estimates with the systemic inflammatory activity
indicated by peripheral monocyte counts.
On the basis of these pathophysiological correlates, an explorative combination of co-

localized PET and MRI results have suggested similar contributions of inflammatory activ-
ity and post-ischemic metabolism at the infarct center early after AMI.
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Conclusions

The thesis at hand has presented the development and clinical application of a variety
of mathematical methods for modeling the relationship between medical imaging data
and physiology. In the context of clinical PET/MRI, simultaneously acquired data from
both modalities have been used in a synergistic fashion in order to expand the current
understanding of MRI and PET methods for perfusion imaging and tissue characterization.
Especially with respect to absolute perfusion quantification using DCE-MRI data, this
thesis has made significant contributions to the field by providing important insights into
the opportunities and limitations of mathematical methods for dynamic data analysis.

DCE-MRI Deconvolution Modeling

The contributions with respect to DCE-MRI perfusion imaging can be summarized as
follows:

• Data in this thesis provides further evidence that measurability of vascular per-
fusion characteristics using DCE-MRI varies depending on data quality and the
physiological state of the tissue. Addressing this, a mathematically sound, hier-
archical method to determine the amount of resolvable vascular information from
model-based deconvolution analysis was developed and applied in a clinically relev-
ant patient cohort.

• For the described hierarchical approach, it was shown in patients after myocardial
infarction that already a small amount of DCE-MRI perfusion data and appropriate
application of two-region models can result in extracellular volume estimates com-
parable to those from equilibrium techniques, implying the potential for significant
reductions in scan time and contrast agent dose.

• Using simultaneously acquired, 13NH3-ammonia PET perfusion flow estimates as
a reference, limitations of DCE-MRI deconvolution analyis in the regime of small
transit times were described and adressed through implementation of a physiologic-
ally motivated constraint to the widely-used Fermi model.

• Addressing the issue of bolus arrival time estimation, a new method based on shifted
low-frequency Fourier phase spectra in the DCE-MRI response function was imple-
mented and shown to be both accurate in determining bolus arrival time as well as
providing potential clinical value by characterizing arterial coronary path lengths.

• A spline-based reconstruction of DCE-MRI response functions aimed at model-
independent estimation of vascular perfusion parameters beyond perfusion flow was
developed and shown to be applicable to vasodilator stress data, however, with sig-
nificant limitations.

111



Quantitative MRI Tissue Characterization

MRI-based tissue characterization using the two most established quantitative methods,
T1 and extracellular volume mapping, was applied early after revascularized myocardial
infarction and compared to blood markers of cardiovascular pathology and blood counts
of inflammatory cell populations. For the core of the infarct - excluding MVOs - correl-
ations with monocyte counts suggested a previously unknown link between the systemic
inflammatory response and an increase in native T1, as well as a link between absolute
extracellular volume and creatine kinase-MB expression.

Synergistic Evaluation of PET/MRI data

In addition to insights contributing to the technical refinement or understanding of dynamic
MRI data modeling, this thesis has introduced a paradigm of combining quantitative ima-
ging results obtained from simultaneously acquired PET and MRI data. It was applied
both to perfusion imaging as well as to tissue characterization, and resulted in findings re-
lating imaging signals and physiology in ways that would not have been conceivable outside
of a multi-modality context:

• With respect to quantitative perfusion flow, estimates from simultaneously acquired
DCE-MRI and 13NH3-ammonia PET were shown to be comparable, but PET resting
flows are overestimated by DCE-MRI under the common assumption of equal tissue
and arterial hematocrit. A combination of MRI-derived plasma flow and PET-derived
blood flow yielded direct estimates of tissue hematocrit, which were found to be
lower than arterial hematocrit at rest but increasing at vasodilator stress. These
findings may have implications not only for MRI but for all imaging modalities using
extracellular agents for the assessment of perfusion.

• For tissue characterization, a combination of fasted 18F-FDG uptake signal in patients
early after myocardial infarction with MRI-based native T1 and ECV estimates was
proposed on the basis of concomitantly observed physiological correlates for the latter
two. A model constructing the measured 18F-FDG signal as a linear combination
of inflammatory and post-ischemic signal pathways yielded similar contributions for
both, challenging the notion of fasted 18F-FDG uptake being a purely inflammatory
image signal.
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Appendix A

Indicator-Dilution Theory

The transit time distribution h can be seen as a propagation function for indicator particles
through a system for which no a priori knowledge exists. It has units of s-1, formally making
it a frequency function, and may be defined by [151]:

q0h(t) dt = FCout(t) dt (A.1)

Indicator flow F through the system has units of volume over time and q0 is a fixed
amount of indicator particles appearing at the entrance of the flow system at time t = 0.
The term h(t)dt is the fraction of q0 that is appearing at the system exit between t
and t + dt. The absolute amount of indicator q0h(t)dt appearing at the exit between t
and t + dt may be expressed in terms of the sampled concentration at the exit Cout, which
is the absolute amount of particles normalized by their distribution volume V within the
sampled fluid. This volume has traversed the system in a time between t and t + dt
and is therefore given by Fdt according to the definition of F , which motivates Eq. A.1.
The same holds true in a more global sense, i.e. the total distribution volume of indicator
within the system equals flow multiplied by mean circulation (or transit) time. This is in
fact one of the main theorems of indicator-dilution theory time called the central volume
principle, for which a detailed derivation can be found in [152].
If the initial amount of indicator q0 is thought of as a single particle, h(t)dt can equi-

valently be thought of as the probability for that particle to appear at the system exit
between t and t + dt. Since the amount of indicator at the entrance is fixed, integration
of h over all times is normalized and a function H can be defined as:

t→∞∫
0

h(t) dt =: H(t→∞) = 1 (A.2)

In the limit of infinite time after injection, H becomes 1 since every indicator particle has
left the flow system at some point. With the normalization of h, it follows from integration
of equation A.1:

F =
q0∫∞

0 Cout dt
(A.3)

Equation A.3 can be seen as a classic "invasive" indicator-dilution equation [92]. Here,
calculation of flow F is based on the assumption that after a single injection, all fluid
appearing at the system exit is also taken out of the system and indicator concentration of
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the emerging fluid is measured until there is no more indicator left inside the system. In
order to find a formalism that allows flow estimation by external monitoring, i.e. accounting
for recirculation or an inability to measure the whole time course of Cout, a convolution
formula for an arbitrary indicator input can be given as [138,151]:

o(t) =

t∫
0

i(t− τ)h(τ) dτ (A.4)

and therefore:

Cout(t) =

t∫
0

Ca(t− τ)h(τ) dτ = Ca(t)⊗ h(t) (A.5)

The functions i(t) and o(t) were originally thought of as being frequency functions,
but they can be generalized to any kind of input. Equation A.5 is the description of a
mechanism that propagates volume with a certain concentration of particles through a
system via convolution using the propagation function h. In order to solve the problem
of having to measure the outflow concentration cout, the Fick principle in its integral
formulation is introduced:

q(t) = F

t∫
0

[Ca(τ)− Cout(τ)] dτ (A.6)

It relates the amount of indicator q(t) inside a system to the difference in concentrations
at its exit and entrance via flow through the system F effectively acting as a statement
of mass conservation. Using the Fick principle and Eq. A.5, Cout may be eliminated as
follows:

q(t) = F

t∫
0

[Ca(τ)− Cout(τ)] dτ

= F

t∫
0

Ca(τ)−
τ∫

0

Ca(T )h(τ − T )dT

 dτ
= F

t∫
0

[Ca(τ)− Ca(τ) ·H(t− τ)] dτ

= F · [Ca(t)⊗ (1−H(t))]

Convolution and integration are switched in the second step assuming discretely sampled
functions Ca and h. Restating this in terms of a measurable indicator concentration, the
tissue/system density is used changing also dimensions of flow F to volume per time per
unit mass:
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q(t) =
%

%
· F · [Ca(t)⊗ (1−H(t))]

⇔ q(t)

Vtissue
= % · F

mtissue
· [Ca(t)⊗ (1−H(t))]

With:

q(t)

Vtissue
= Cm and

F

mtissue
→ F

The density of muscular tissue can be assumed very close to 1 g/mL and therefore be
omitted, while flow F is usually given in units of mL/min/g:

Cm = F · [Ca(t)⊗ (1−H(t))]

=: Ca(t)⊗RF (t) (A.7)

Equation A.7 relates the externally measurable tissue curve Cm and AIF Ca via the
function RF , incorporating all relevant information about the system, explicitly framed as
a normalized function 1 − H(t) characterizing system outflow and an amplitude that is
equal to flow F .
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Appendix B

Low-Resolution AIF Perfusion Results

Figure B.1: Slice-average flow comparison to PET for the low-resolution AIF. (a/b) Sim-
ilar systematic differences between 13NH3 PET and DCE-MRI flow estimates as for the
saturation-corrected high-resolution AIF were observed. (c) Bland-Altman plot highlight-
ing the higher absolute variability between PET and MRI results especially at stress.
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Appendix C
18F-FDG TBR vs. Blood Parameters

Figure C.1: Comparison of 18F-FDG uptake TBR (normalized to LV blood activity) with
peripheral blood markers CK (a), CK-MB (b), troponin (c) and monocyte counts (d).
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