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Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. rer. nat. Sonja Berensmeier
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Abstract

Atherosclerosis is an inflammatory disease of the artery wall which induces severe cardiovascular
sequelae like stroke or myocardial infarction. It is a major contributor to worldwide morbidity and
mortality and is therefore addressed by scientific communities of all kinds. Nevertheless, many
aspects, causalities and consequences of this burgeoning disease are not yet fully understood.

In this thesis, an in silico approach to a better understanding of atherosclerosis is chosen. Particular
focus lies on the onset and early stages of atherosclerosis, as they are key to the prevention and
medical treatment of atherosclerotic plaques. To investigate the inflammatory, immunological and
mechanobiological processes and their causal dependencies, several mathematical models are
developed, computationally treated and their implications are analyzed.

The first main objective of this thesis is to provide a mathematical and computational multiphysics
framework for atherosclerosis which incorporates major aspects of the disease: cardiovascular
mechanics, transport of low-density lipoproteins, inflammatory and immunological processes as
well as growth and remodeling of the artery wall. Particular interest lies in investigating the inter-
lacement of the different time scales and the parameterization of patient-specific anatomies and
pathophysiologies. A methodology for the wall shear stress-dependent endothelial permeability
with respect to lipoproteins is established which serves as an indicator for potential atherosclerotic-
prone sites. The analysis of the multiphysics model corroborates that neglecting the short time
scale of cardiovascular mechanics by time-averaging flows or neglecting the deformation of the
artery wall is misleading in the context of atherosclerosis.

As existing models of the long time scale inflammatory and immunological processes are domi-
nated by qualitative models, the second major goal of this thesis is to derive predictive mathemat-
ical models of crucial atherosclerotic processes based on available experimental data from the
literature. Here, focus lies on key and measurable inflammatory and immunological processes
of early atherosclerosis. The modeling and quantification of key processes and their interplay
in a parameterized combined model lead to a deeper understanding of the formation of early
atherosclerotic plaques. A sensitivity and stability analysis suggests that further experimental
work quantifying the different fates of macrophages and the balance between intracellular choles-
terols may add valuable insights toward predicting long-term plaque outcomes in vivo. Moreover,
the results show that a persistent high supply of low-density lipoproteins and macrophages in
combination with a lack of high-density lipoproteins in vivo render early atherosclerotic plaques
progression-prone.

A decisive step toward the prevention and medical treatment of atherosclerosis is to understand
under which biological and mechanobiological conditions early plaques are progressive or
stagnating. Thus, the third main objective of this thesis is to develop a predictive and spatially
resolved model of key contributors of early atherosclerosis. The established model allows to
classify the stability of early plaques based on measurable or computable inputs, such as blood
cholesterol concentrations and wall shear stresses a plaque is exposed to in vivo. The results
indicate that the advective flux of lipoproteins through the endothelium is decisive, while the
influence of the advective transport within the artery wall is negligible. Moreover, the model
suggests that regions within the human cardiovascular system with an approximate wall shear
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stress exposure below 1.3 Pa as well as their surroundings must be considered as potential regions
of progression-prone atherosclerotic plaques.

By successive modeling and parameterization of crucial processes of atherosclerosis based on
experimental data, several predictive mathematical models are established in this thesis. The
analysis of these models deepen the understanding of key biological mechanisms and suggest
future experimental investigations for biologists to take up.
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Zusammenfassung

Atherosklerose ist eine Entzündungskrankheit der Arterienwand, die schwerwiegende kardio-
vaskuläre Folgeerkrankungen wie Schlaganfälle oder Herzinfarkte verursacht. Als weltweiter
Hauptverursacher für Morbidität und Mortalität wird sie von wissenschaftlichen Disziplinen aller
Art untersucht. Dennoch sind viele Aspekte, Zusammenhänge und Folgen dieser weitverbreiteten
Krankheit bis heute nicht vollständig erforscht.

In dieser Arbeit wird ein in silico Ansatz verfolgt, um ein besseres Verständnis von Atherosklerose
zu erlangen. Besonderer Fokus liegt dabei auf deren Ausbruch und frühen Stadien, da diese der
Schlüssel zur Prävention und medizinischen Behandlung von atherosklerotischen Plaques sind.
Um die Entzündungs-, Immun- und biomechanischen Prozesse und deren Kausalzusammenhänge
zu untersuchen, werden verschiedene mathematische Modelle entwickelt, numerisch behandelt
und deren Implikationen betrachtet.

Das erste Hauptziel dieser Arbeit ist die Entwicklung eines mathematischen und numerischen
Multiphysik-Modells, welches maßgebliche Aspekte der Krankheit vereinigt: kardiovaskuläre
Gefäßdynamik, Transport von Lipoproteinen niedriger Dichte, Entzündungs- und Immunprozesse
sowie Wachstum und Umbau der Arterienwand. In diesem Zusammenhang liegt ein besonderes
Interesse in der Untersuchung der Verflechtung verschiedener Zeitskalen und der Parametrisierung
patientenspezifischer Anatomien und Pathopysiologien. Eine Methodik für die wandschubspan-
nungsabhängige Durchlässigkeit des Endotheliums gegenüber Lipoproteinen wird etabliert,
welche als Indikator für mögliche Regionen von atherosklerotischer Plaqueentwicklung dient.
Die Analyse des Multiphysik-Modells untermauert die These, dass die Vernachlässigung der
kurzen Zeitskala der kardiovaskulären Gefäßdynamik durch die Mittelung von Flüssen oder der
Vernachlässigung der Deformation der Arterienwand im Zusammenhang von Atherosklerose
irreführend ist.

Da bestehende Modelle für die Entzündungs- und Immunprozesse der langen Zeitskala von quali-
tativen Modellen dominiert werden, ist der zweite Hauptzweck dieser Arbeit die Entwicklung
von prädiktiven mathematischen Modellen von entscheidenden atherosklerotischen Prozessen
an Hand von auf verfügbaren experimentellen Daten aus der Literatur. Der Schwerpunkt liegt
dabei auf messbaren Entzündungs- und Immunprozessen der frühen Atherosklerose. Die Model-
lierung und Quantifizierung von Schlüsselprozessen und deren Zusammenspiel innerhalb eines
parametrisierten kombinierten Modells führt zu einem tieferen Verständnis der Entstehung von
frühen atherosklerotischen Plaques. Eine Sensitivitäts- und Stabilitätsanalyse legt nahe, dass weit-
ere experimentelle Arbeit zur Quantifizierung der verschiedenen Schicksale von Makrophagen
sowie zum Gleichgewicht zwischen intrazellulären Cholesterolen wertvolle Erkenntnisse liefern
kann, um die Vorhersage des Langzeitverhaltens von Plaques in vivo zu verbessern. Darüber
hinaus zeigen die Ergebnisse, dass ein ständiger hoher Zufluss von Lipoproteinen niederer Dichte
und Makrophagen in Kombination mit einem Mangel von Lipoproteinen hoher Dichte frühe
atherosklerotische Plaques anfällig macht, sich zu späteren Stadien weiterzuentwickeln.

Ein entscheidender Schritt zur Prävention und medizinischen Behandlung von Atherosklerose
ist, zu verstehen unter welchen biologischen und mechano-biologischen Bedingungen sich
frühe Plaques weiterentwickeln oder stagnieren. Der dritte Hauptbeitrag dieser Arbeit ist daher
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die Entwicklung eines prädiktiven und räumlich aufgelösten Modells der Hauptakteure früher
Atherosklerose. Das eingeführte Modell ermöglicht es, die Stabilität früher Plaques auf Basis von
messbaren oder berechenbaren Größen, wie den Cholesterolkonzentrationen im Blut oder den
Wandschubspannungen, denen ein Plaque in vivo ausgesetzt ist, zu bestimmen. Die Ergebnisse
deutet darauf hin der advektive Fluss von Lipoproteinen durch das Endothelium maßgeblich
ist, während der Effekt des advektiven Transports innerhalb der Arterienwand vernachlässigt
werden kann. Darüber hinaus legt das Modell nahe, dass Regionen innerhalb des kardiovaskulären
Gefäßsystems mit einer Wandschubspannungsbelastung unterhalb von etwa 1.3 Pa sowie deren
Umgebung als mögliche Regionen für sich weiterentwickelnde atherosklerotische Plaques ange-
sehen werden müssen.

Durch die sukzessive Modellierung und Parametrisierung entscheidender Prozesse von Atheroskle-
rose basierend auf experimentellen Daten, werden in dieser Arbeit mehrere prädiktive mathematis-
che Modelle entwickelt. Die Analysen dieser Modelle vertiefen das Verständnis von biologischen
Schlüsselmechanismen und legen zukünftige experimentelle Untersuchungen nahe, welche von
Biologen aufgegriffen werden können.
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Nomenclature

This section contains the important abbreviations, notations and symbols that are used on several
occasions in this thesis.

Abbreviations

ALE Arbitrary-Lagrangean-Eulerian
CSF Conductivity scaling factor
Fluid-scatra Scalar transport with fluid flow
FSI Fluid-structure interaction
FSSTI Fluid-structure-scalar transport interaction
HDL High-density lipoproteins
LDL Low-density lipoproteins
MCC Metabolic control coefficient
MCP Monocyte chemoattractant protein
ODE Ordinary differential equation
OSI Oscillatory shear index
PFSTI Porous medium fluid-scalar transport interaction
Poro-fluid Porous medium fluid
Poro-scatra Scalar transport with porous medium fluid flow
PSF Permeability scaling factor
SI units International System of Units
SMC Smooth muscle cell
S2I Fluid scalar transport-structure scalar transport interaction
Structure-scatra Scalar transport within a structure
VCAM Vascular cell adhesion molecule
WSS Wall shear stresses

Nomenclature of problems and models

(Mathematical) problem Collection of one or multiple equations that describe an “ab-
stract” system

Subproblem Smaller problem that describes only a subset of an “abstract”
system
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Multiphysics problem Problem that combines subproblems that describe different
physics

(Mathematical) model Collection of one or multiple equations that describe a “con-
crete” system

Submodel Smaller model that describes only a subset of a “concrete” sys-
tem

Multiphysics model Model that combines submodels that describe different physics
Multiscale model Model that involves multiple time or space scales

Main notations and symbols

q,Q Scalar quantity (non-bold)
q,Q Vector, matrix or higher order tensor (bold)
t Time
T Specific instant of time
Ω Domain
Γ Boundary
X Material point or coordinate
x Spatial point or coordinate
χ Reference point or coordinate
d Displacement
u Velocity
p Pressure
ci i-th (abstract) concentration
c Vector of (abstract) concentrations
% Density
J Jacobian
F Deformation gradient
C Right Cauchy-Green deformation tensor
σ Cauchy stress tensor
S Second Piola-Kirchhoff stress tensor
b Volume force
t Surfaces force
Ψ Strain-energy density function

Superscripts

(•)F Quantity (•) related to fluid field
(•)S Quantity (•) related to structure field
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Nomenclature

(•)G Quantity (•) related to ALE field
(•)FS Quantity (•) related to fluid-scatra field
(•)SS Quantity (•) related to structure-scatra field
(•)PF Quantity (•) related to poro-fluid field
(•)PS Quantity (•) related to poro-scatra field

Operators and symbols

∪ Union of sets
∪· Disjunct union of sets
∩ Intersection of sets
(•)T Transpose of (•)
(•)−1 Inverse of (•)
(•)−T Transpose of inverse of (•)
det Determinant
tr Trace
⊗ Dyadic product
(•)+ Positive branch of (•)
‖(•)‖ 2-norm of (•)
‖(•)‖∞ Supremum norm of (•)
‖(•)‖L2 L2-norm of (•)
d
dt

(•) Material time derivative of (•)
∂
∂t

(•)
∣∣
χ

ALE time derivative of (•)
∂
∂t

(•) Partial time derivative of (•)
∇(•) Spatial gradient of (•)
∇0(•) Material gradient of (•)
∇ · (•) Spatial divergence of (•)
∇0 · (•) Material divergence of (•)
(•) Spatial average of (•)
<(•)> Temporal average of (•)
(̂•) Steady-state value of (•)
O(•) Order of magnitude of (•)
1 Identity function
H Heavyside step function
R Set of real numbers
R≥0 Set of non-negative real numbers

xvii



Nomenclature

Coordinates, Domains and Boundaries

X Material point or coordinate
x Spatial point or coordinate
χ Reference point or coordinate
ϕ Deformation map from material to spatial configuration
Φ Deformation map from reference to spatial configuration
Θ Deformation map from material to reference configuration
Ω0 Material domain
Ωt,Ω(t) Spatial domain
n,N Spatial and material outward pointing surface normal
ΓD Dirichlet boundary
ΓN Neumann boundary
ΓI Interaction boundary
ΓIn Inlet boundary
ΓOut,i i-th outlet boundary
ΓEnd Endothelium boundary
ΓAdv Media-adventitia boundary
ΓWall Outer wall boundary
R Radius
T Thickness of artery wall
H Thickness of plaque
L Length of segment

Fluid specific

pF Pressure of fluid
uF Velocity of fluid
%F Spatial mass density of fluid
σF Cauchy stress tensor of fluid
εF Strain rate tensor of fluid
bF , tF Spatial volume and surfaces forces of fluid
τF Wall shear stress of fluid
µF Dynamic viscosity of fluid
γ̇F Shear-rate of fluid
µF0 , µ

F
∞ Dynamic viscosity for zero and high shear rates

κF , bF , aF Parameters of Carreau-Yasuda model
QFIn, <Q

F
In> Volume influx and time-averaged volume influx rate of fluid

TCycl Length of cardiac cycle
CFi , R

F
C,i, R

F
P,i Parameters of i-th Windkessel submodel

pFdia, p
F
sys Diastolic and systolic pressure of fluid
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Nomenclature

Structure specific

dS Displacement of structure
uS Velocity of structure
%S , %S0 Spatial and material mass density of structure
σS ,SS Cauchy and second Piola-Kirchhoff stress tensor of structure
bF0 Material volume forces of structure
JS Jacobian of structure
F S Deformation gradient of structure
F SGr,F

S
El, Growth and elastic parts of deformation gradient of structure

∆F SGr Incremental growth deformation gradient
CS ,CSEl Right and elastic right Cauchy-Green deformation tensor of structure
ΨS Strain-energy density function of structure
I(•), II(•) First and second modified invariant of (•)
ΨSAo,Ψ

S
FC Strain-energy density function of aortic and foam cell material

cS0,Ao, c
S
0,FC Ground stiffness of aortic and foam cell material

δSi , $
S
i Orientation angle and stretch of i-th fiber of aortic material

cS1,i, c
S
2,i Parameters of i-th fiber of aortic material

τSFC Relaxation time of foam cell material
kSWall, k

S
Out Spring stiffness of surrounding and succeeding tissue

cSWall, c
S
Out Dashpot viscosity of surrounding and succeeding tissue

αSi Growth parameter of species i
ϑ Growth factor
λ Remodeling factor

Scalar transport specific

nc Amount of species
ci i-th abstract concentration
c Vector of abstract concentrations
Di Diffusion coefficient of species i
κi Reaction term of species i
JSol,i Solute flux of species i through membrane
Pi Diffusive permeability of species i
σF,i Filtration reflection coefficient of species i
ωi Weighting factor for average concentration of species i
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Nomenclature

Porous medium specific

φ Porosity of porous medium
ΩPFMic Microscopic fluid phase of porous medium
ΩPS

′

Mic Microscopic structure phase of porous medium
uPFMic Microscopic velocity of porous medium fluid
uPF Fluid intrinsic volume-averaged velocity of porous medium fluid
pPF Pressure of porous medium fluid
KPF Darcy permeability of porous medium fluid
µPF Dynamic viscosity of porous medium fluid
bPF Spatial volume forces of porous medium
cPSMic,i i-th microscopic concentration in porous medium fluid
cPSi i-th fluid intrinsic volume-averaged concentration in porous medium fluid
DPSEff,i Effective diffusion coefficient of species i
KPSi Hindrance coefficient of species i
JVol Volume flux through membrane
σD,i Osmotic reflection coefficient of species i
Lp Hydraulic conductivity

Discretization specific

(•)n Temporal discrete quantity (•) at time step n
(•)h Spatial discrete quantity (•)
(•)j Quantity (•) at Newton step j
S(•) Solution space for (•)
T(•) Trial space for (•)
L2(•) Function space of square-integrable functions on domain (•)
H1(•) Sobolev space of functions with square-integrable weak derivative on

domain (•)
r(•) Weak residual of problem (•)
r

(•),n
h Discrete residual of problem (•)

∆t Time step size
h Characteristic element length

Atherosclerosis specific species

` Concentration of native LDL
˜̀ Concentration of modified LDL
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Nomenclature

a Concentration of ingested LDL
m Density of macrophages
e Density of endothelial cells
h Concentration of native HDL
h̃ Concentration of modified HDL
ς Concentration of copper sulfate
f Concentration of intracellular free cholesterol
b Concentration of intracellular cholesterol ester
r Concentration of excreted cholesterol

Atherosclerosis specific parameters

p Abstract parameter
d`, γ`, `Thres Parameters of simplistic atherosclerosis model
s, sP (Diffusive) permeability scaling factor
ζτ , γτ Parameters of permeability scaling factor
q`,m, q`,e Rate of modification of native LDL by macrophages and endothelial cells
qh,m, qh,e Rate of modification of native HDL by macrophages and endothelial cells
µ`, ξ`, n` Parameters for ingestion of native LDL by macrophages
µ˜̀, ξ˜̀, n˜̀ Parameters for ingestion of modified LDL by macrophages
N˜̀, Nh̃ Lipid peroxide per modified LDL and modified HDL
q`,ς , qh,ς Rate of lipid peroxidation in native LDL and HDL by copper sulfate
kh, nh Parameters for inhibition of modification by native HDL
Nf Number of ingested intracellular free cholesterol per ingested LDL
fMin, fMax Minimum and maximum intracellular free cholesterol for esterification
kf , kb Rate of esterification and hydrolysis of intracellular free cholesterol
cf Rate of efflux of intracellular free cholesterol
µf , ξf , nf Parameters for efflux of intracellular free cholesterol to native HDL
fIn Intracellular free cholesterol of recruited macrophages
µm, ξm, nm Parameters for apoptosis of macrophages by intracellular free cholesterol
f0 Initial intracellular free cholesterol per macrophages
r`, r˜̀, rh, rm Rate of native LDL, modified LDL, native HDL and macrophage recruit-

ment into intima
Pm Rate of recruitment of macrophages
δm, km Parameters of saturation of macrophage recruitment by modifies LDL
δτ , ξτ , ντ Parameters of saturation of macrophage recruitment by WSS
η`, ηh (Constant) concentration of native LDL and HDL in blood
ηp (Constant) blood pressure in lumen
sL (Hydraulic) conductivity scaling factor
γp, µp, ξp Parameters of conductivity scaling factor
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1 Introduction

Atherosclerosis is a chronic inflammatory disease of the artery wall [75, 173, 233]. Inducing
severe cardiovascular sequelae like stroke or myocardial infarction, atherosclerosis is a major
contributor to worldwide morbidity, loss of productive life years and mortality [202]. According
to the World Health Organization, an approximate fraction of 31% of all deaths worldwide in
2015 were attributable to cardiovascular diseases [290] and they are projected to remain the
leading cause of death until at least 2030 [289]. Thus, it is of major interest for all societies to
reduce social and economic burdens arising from atherosclerosis.

A deep understanding of factors involved in the onset and progression of atherosclerosis is crucial
to allow the prevention and medical treatment of this burgeoning disease. Although substantial
progress was made over the past decades, the transition from in vitro experimental and in vivo
animal findings to human atherosclerosis and clinical applications remains a major challenge [174].
Many inflammatory, immunological and biomechanical aspects as well as their causalities and
consequences for atherosclerosis are not fully understood. Hence, atherosclerosis is addressed by
scientific communities of all kinds – from biologists and physicians to mathematicians, physicists
and engineers.

In this thesis, an in silico approach to better understand atherosclerosis is chosen which consists
of three steps – mathematical modeling, numerical simulation and analysis of model results.
For mathematical modeling suitable key species (i.e., predominant contributors, such as cells
or particles) must be identified and their interactions and implications precisely defined. Vali-
dated mathematical models reduce atherosclerosis to its key processes and functions, providing
a condensed view which is interesting not only for theoretical but also for experimental scien-
tists. An appropriate numerical treatment and software implementation of mathematical models
allow computationally investigating implications and hypotheses in a fast and resource-efficient
manner.

This first chapter is structured as follows: To begin with, an overview of medical fundamentals
of atherosclerosis is given in Section 1.1. In Section 1.2, existing modeling approaches, their
challenges and applications are reviewed. Finally, the objectives and outline of this thesis are
presented in Sections 1.3 and 1.4.

1.1 Atherosclerosis: the disease

In this section, the medical fundamentals of atherosclerosis required throughout this thesis are
presented. Focus lies on key species and processes of the onset and early stages of the disease and
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Figure 1.1 Schematic overview of the structure of walls of large arteries and their relative layer
thicknesses. Modified figure taken (with permission) from Lusis [184]. Relative layer thicknesses
are estimated for large arteries based on values given in [84, 120, 124, 221, 294].

their causal relations, which serve as a basis to put up mathematical models of various aspects of
atherosclerosis in the subsequent chapters. It is important to note, however, that this section gives
only a snapshot of the current view of atherosclerosis which is partly subject to ongoing research
and rapid changes. Previous reviews on key species and processes of atherosclerosis can be found
in the publications by Faxon et al. [75], Libby [173], Lusis [184] or Ross [233] or in the theses by
Ougrinovskaia [212] or Peiffer [217].

Atherosclerosis is a non-communicable, inflammatory vascular disease occurring in the inner
artery wall of large arteries, such as the aorta. Artery walls consist of three morphologically
distinct sections – intima, media and adventitia [123, 184, 222]. The interior region of arteries,
where blood flows, is called lumen. The luminal surface is delimited by a monolayer of endothelial
cells called endothelium leading to a distinct interface between lumen and intima. In contrast, the
transition from intima to media is rather smooth, but their delimiter is frequently defined by the
internal elastic lamina. The three innermost layers – endothelium, intima, internal elastic lamina –
are thin and soft compared to the media and adventitia [123, 125, 221, 294]. As a consequence,
the mechanical properties of artery walls are dominated by media and adventitia. In the context of
atherosclerosis, however, the intima is of major importance. A schematic overview of the structure
of walls of large arteries and their relative layer thicknesses is given in Figure 1.1.

Atherosclerosis causes a pathological alteration of intima and media, and is characterized by the
development of ineffective inflammatory lesions within the artery wall called atherosclerotic
plaques or atheroma. Atherosclerotic plaques result from a complex and not yet fully understood
cascade of immunological processes as response to an inflammation of the artery wall, which
leads to the accumulation of lipid-rich cells and debris in the intima. The growth of plaques is
associated with a thickening and hardening of artery walls. The artery lumen can be narrowed
due to the protruding of the plaque, or become blocked by a blood clot resulting from a plaque
rupture and a release of thrombotic plaque constituents into the bloodstream. Both phenomena
can lead to a lack of nourishment of the subsequent organs, tissues and muscles and thus to severe
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1.1 Atherosclerosis: the disease

Figure 1.2 The eight stages of development of atherosclerotic plaques. Figure taken (with
permission) from Faxon et al. [75].

sequelae, such as stroke or myocardial infarction. According to Faxon et al. [75], the formation
of atherosclerotic plaques can be subdivided into the following eight stages:

1. Penetration of low-density lipoproteins (LDL) from the lumen into the intima, cf. Sec-
tion 1.1.2.

2. Oxidative modification of LDL by endothelial cells, macrophages and smooth muscle
cells (SMCs), cf. Section 1.1.2.

3. Initiation of the inflammatory processes by modified LDL which leads to the release of
monocyte chemoattractant proteins (MCPs), vascular cell adhesion molecules (VCAMs)
and other monocyte attracting factors, cf. Section 1.1.3.

4. Migration of monocytes from the bloodstream into the intima and their differentiation into
macrophages, cf. Section 1.1.3.

5. Ingestion of modified LDL by macrophages which become foam cells, cf. Section 1.1.4.

6. Accumulation of foam cells in the intima which further stimulates the inflammation and
leads to a thickening of the artery wall, cf. Section 1.1.4.

7. Migration and proliferation of SMCs from the media into the plaque leading to an increased
thickening of the artery wall, cf. Section 1.1.5.

8. Sealing of the plaque’s necrotic core by the fibrous cap, cf. Section 1.1.5.

An illustration of the eight stages is given in Figure 1.2. Details on the individual stages and
further key processes are reviewed in the following sections. Here, a particular focus lies on
inflammatory, immunological and biomechanical aspects that initiate atherosclerosis and drive its
early stages.
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1 Introduction

1.1.1 Endothelial dysfunction and localization

It is well-accepted that a significant first step for the onset of atherosclerotic plaques is a dys-
function of the endothelium increasing the penetration of LDL from the bloodstream into the
vessel wall. The role of the endothelium is crucial since it acts as a transport barrier between
lumen and intima. Over the past decades, more and more evidence was found that hemodynamical
factors, such as low wall shear stresses (WSS), resulting from flow recirculations and oscillatory
flows, locally disturb the endothelium [22, 216]. Thus, plaques tends to form at inner sites of
curved segments and at outer sites of bifurcations [5, 37, 190]. In humans, predominant sites for
plaques are the coronary arteries and the carotids [99, 167]. As the endothelial cells react to the
flow conditions they are exposed to [190], the endothelium can essentially be seen as a “shear
stress sensor” [222], regulating the flux of lipoproteins and cells into the artery wall. Still, the
interplay of hemodynamic forces, endothelial permeability and atherosclerosis progression is not
yet understood in full detail [216, 227, 280].

1.1.2 Lipoprotein transport and modification

Lipoproteins are compositions of lipids and proteins and are retained in blood in different sizes and
concentrations. Their function is to transport hydrophobe lipids, such as cholesterol in the hydrous
blood environment. There are five distinct groups of lipoproteins according to their compositions
(amount of lipids and proteins) and densities: chylominkrone, very low-density lipoproteins,
low-density lipoproteins, intermediate-density lipoproteins and high-density lipoproteins (HDL).
Of particular interest in the context of atherosclerosis are LDL and HDL. Due to their parts
in atherosclerosis, LDL and HDL are commonly referred to as “bad” and “good” cholesterol,
respectively.

In general, there are three pathways for the transport of blood solutes through the endothelium: by
vesicular transcytosis (through cells), by normal junctions (through gaps in-between individual
cells) and by leaky junctions (through leaks associated with dying or replicating cells) [210, 267].
For LDL particles the vesicular pathway is not eligible and their main pathway through the
endothelium is by leaky junctions [30].

According to Olgac et al. [210] and references therein, the WSS sensor-like behavior of endothelial
cells with respect to LDL transport can be explained as follows: Endothelial cells elongate in the
flow direction [190] and have a lower rate of mitosis (cell division) when exposed to high steady
WSS. Thus, the amount of leaky junctions and the associated amount of LDL seeping into the
vessel wall through their main pathway is decreased by high WSS. In contrast, the transport of
HDL through the endothelium is scarcely investigated. Due to their related structure and smaller
size [151, 225], however, analog transport mechanisms with faster transport rates can be expected
for HDL [251].

LDL and HDL retained in the artery wall are prone to oxidative modifications by endothelial
cells, macrophages and smooth muscle cells [116, 165, 200, 204, 252]. In this thesis, when a
differentiation between unmodified LDL (as retained in blood) and oxidatively modified LDL is
required, they are referred to as native LDL and modified LDL, respectively. Analog terms are
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used for HDL too. The modification of LDL and HDL is induced by oxidants, such as radical
oxygen species or free radicals which are excreted from cells. Native HDL, however, provides
an atheroprotective behavior as it offers a protection against the oxidative modification of native
LDL [187, 188, 244]. Details on the oxidative modification of native LDL and native HDL can
be found in the extensive review by Stocker and Keaney [252].

1.1.3 Endothelial activation and monocyte recruitment

The oxidative modification of native LDL renders it pro-inflammatory [252, 286, 287], which
initiates an immune response in the artery wall. Modified LDL activates endothelial cells causing
the production of VCAM-1 and other cell adhesion molecules [49, 93]. Thus, modified LDL
increases the adhesiveness of the endothelium with respect to monocytes [16, 134, 141, 169,
169].

Monocytes in the bloodstream roll and adhere on the endothelium surface due to VCAM-1 [2, 171],
which enables their migration into the artery wall. Monocytes, however, can also be detached by
the mechanical force of the fluid, i.e., the wall shear stresses acting on the endothelium. Due to
the increased VCAM-1 production by activated endothelial cells, modified LDL enhances the
binding of monocytes against WSS induced detachment [2, 141]. In contrast, the production of
VCAM-1 by endothelial cells is decreased under high wall shear stress conditions [42] which
weakens the monocyte adhesion in addition to their increased detachment.

Although substantial progress was made over the past decades, important aspects of the influence
of local flow conditions on the endothelium remain unclear [168]. For example, monocytes
show an increased attachment in response to oscillatory flows [127], even though monocytes are
also dragged away under steady flow conditions. Further, it is controversial whether endothelial
cells in different vessels and species are primed to a uniform range of WSS, or to location- and
species-dependent ranges [40, 238].

Modified LDL also causes the production of MCP-1 by endothelial cells and SMCs in the
artery wall which creates a chemotactic gradient of MCP-1 [110]. Therefore, firmly attached
monocytes actively migrate through the endothelium into the intima [171]. Other monocyte-
attracting molecules, such as MCP-2, MCP-3, MCP-4, MCP-5, Interleukin-8 or Interferon-γ
take part in the monocyte migration process too. However, it is widely accepted that MCP-1
is the most prominent contributor. Genetically modified mice with an absence of MCP-1 or its
receptor on monocytes have shown significant lesion retardations [18, 105]. Once within the
intima, monocytes can also transmigrate into the media [189, 239] depending on chemotactic
gradients.

1.1.4 Fate of macrophages and cholesterol cycle

Ubiquitous macrophages (Greek: “big eaters”) are decisive for the disease pathogenesis and
resolution. They promote inflammation resolution by removing pro-inflammatory materials
from plaques but at the same time also drive the inflammation in response to LDL [110, 198].
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Macrophages exhibit a wide variety of phenotypes [201]. Nevertheless, solely the inflammatory
phenotype of macrophages within plaques is of particular interest in atherosclerosis.

Endothelial cells, SMCs and plaque-resident macrophages secrete Macrophage Colony Stimu-
lating Factor (MCSF) causing the differentiation of monocytes to scavenger-receptor express-
ing macrophages [110, 191, 224, 260]. MCSF is crucial for the survival of macrophages in
lesions [260] and the onset of atherosclerosis. Mice lacking MCSF show a retarded lesion
development with markedly reduced macrophage accumulation in plaques [173, 260].

The Nobel Prize winning work of Brown and Goldstein [23] revealed the cholesterol cycle in
macrophages. Cholesterol in cells is stored in the cell membrane in two distinct states – free and
esterified cholesterol. Intracellular free and esterified cholesterol are in a dynamic equilibrium due
to hydrolysis and esterification, which together are referred to as cholesterol cycle [25]. Most cells
endocytose LDL (transport LDL into the cell) only when being low on cholesterol to maintain a
stable intracellular cholesterol content [23]. Cholesterol is essential to keep the integrity of cell
membranes but is cytotoxic in excess. Thus, LDL uptake and efflux are tightly regulated by cells
to be within essential and cytotoxic limits.

Using their scavenger receptors, however, macrophages in lesions actively scavenge and ingest
modified LDL, removing it from the plaque [156] and reducing its inflammatory implications. As
a consequence, macrophages gain lipids in excess and store its cholesterol content as intracellular
free and esterified cholesterol. Hence, the intracellular cholesterol balance is disrupted in plaque
macrophages, causing cholesterol cytotoxicity. Macrophages with an excess of intracellular lipids
are known as foam cells.

Increased intracellular cholesterol concentrations in macrophages enhance their pro-inflammatory
response [299] and their rate of apoptosis (controlled cell death) [63, 296]. Above the cytotoxic
cholesterol limit, necrosis (uncontrolled cell death) is inevitable [77, 175, 259]. To prevent
cholesterol cytotoxicity, macrophages offload their intracellular free cholesterol content to native
HDL, a process called reverse cholesterol transport [24, 25]. In contrast to native HDL, modified
HDL no longer takes part in the reverse cholesterol transport [204].

Besides modified LDL, macrophages also scavenge and ingest other noxious extracellular sub-
stances, such as necrotic debris or other apoptotic macrophages. By efferocytosis (clearance of
defective cells, Latin: “to bury”) the cholesterol content in apoptotic macrophage is recycled and
retained in the macrophage population [91]. As a consequence, dead and dying macrophages
worsen the whole population’s state leading to a vicious cycle of cell death and efferocytosis.
With poor access to native HDL, the intracellular cholesterol content in plaque macrophages
increases [218] above the cytotoxic cholesterol limit, causing necrosis and thus the accumulation
of necrotic debris and extracellular lipids in plaques [103, 198].

Besides apoptosis and necrosis, the fate of macrophages is also driven by emigration from and
proliferation within plaques. However, only apoptosis is important in early stages of atheroscle-
rosis [220]. Emigration [170, 180, 220], proliferation [228] and necrosis [258] are crucial in
advanced stages. Thus, the particular interest on the fate of macrophages in this thesis lies on
apoptosis.
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Apoptosis, proliferation and necrosis all contribute to a maladaptive inflammatory response,
whereas emigration and reverse cholesterol transport reduce the inflammatory response. As
emigration is yet poorly studied and hard to influence in vivo, reverse cholesterol transport and
thus HDL has received considerable attention in therapy design offering a possibility to break the
vicious cycle of cell death and efferocytosis. Its pathway for cholesterol removal from plaques [24]
and its antioxidant effects that reduce LDL modification in vitro [187], together with its easy
application by injections, make it an interesting target as a drug. Nevertheless, there is controversy
over the efficacy of increasing HDL concentration in the blood serum as a therapy for late-stage
plaques, but infusions of HDL mimetics show some promise [26, 39].

1.1.5 Advanced stages and sequelae

If the inflammatory response is sustained by the persistent influx and modification of LDL
and poor access to native HDL, the plaque renders from progression-resistant to progression-
prone [249]. In such plaques, further processes are triggered that aim to contain the inflammatory
lesion.

Advanced plaques are populated by a variety of cells, such as T-cells (≈ 10%), macrophages
(≈ 40%), SMCs (≈ 50%) and small populations of other cells [110]. T-cells are immune cells
that enter the intima similar to monocytes: They adhere on the endothelium surface due to
adhesion molecules, such as VCAM-1 and actively migrate through the endothelium due to
chemoattractants, such as Interferon-γ [173]. In the artery wall, T-cells bind modified LDL by
their antigen receptors. This, together with macrophage-produced cytokines (mediating signal
molecules), activates T-cells to produce additional pro-inflammatory and anti-inflammatory
cytokines [110, 173].

In contrast to early stages, in late stages of atherosclerosis, macrophage proliferation and em-
igration from the plaque are enhanced to minimize the populations intracellular cholesterol
content [170, 180, 220, 228, 258]. By emigration, macrophages (and also T-cells) can traffic
between bloodstream, lesioned artery wall, vasa vasorum (microvasculatures that penetrate the
artery wall, Latin: “vessel of the vessel”) and regional lymph nodes. Moreover, efferocytosis
of apoptotic T-cells by macrophages results in the secretion of vascular endothelial growth
factor, which promotes endothelial cell proliferation [102, 258]. Thus, lipid influx is promoted by
macrophage efferocytosis due to an increased amount of leaky junctions in the endothelium.

SMCs are assumed to play an important role, even though their part in atherogenesis is not yet
fully understood [68]. For a review of SMCs and their part in atherosclerosis the publication
by Doran et al. [68] is recommended. Activated by growth factors and cytokines produced by
macrophages and T-cells, SMCs undergo a phenotypic change from their usual contractile state
(medial SMCs) to a synthetic state (intimal SMCs). The phenotypic change of SMCs leads to
an agile and secretory cell which migrates into the intima [75]. One of the most prominent
functions of intimal SMCs is to secrete extracellular matrix consisting of collagen, elastin
and fibronectin [68, 184]. However, Interferon-γ, produced by T-cells, inhibits the production of
extracellular matrix by SMCs. Further, macrophages produce various proteases (protein dissecting
enzymes), that degrade extracellular matrix. SMCs use the collagen and fibronectin gradients
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(secreted by other SMCs) to haptotactically move into the plaque and toward the endothelium.
This process is further enhanced by their chemotaxation along the gradient of platelet-derived
growth factor secreted by macrophages [206].

The role of SMCs is complex as they can be both pro-inflammatory and anti-inflammatory. SMCs
modify LDL to a form that is recognized by macrophages and thus retain the inflammation [116].
Similar to macrophages, SMCs also ingest modified LDL and can therefore become foam cell-like
cells [68]. However, SMCs can also perform endothelial cell-like functions, such as the production
of VCAM-1, which is taken over by SMCs in advanced stages [110], retaining the migration of
monocytes and T-cells even in the absence of intact endothelial cells.

Synthetic SMCs in the intima secrete significantly more collagen than contractile SMCs. Over
time, the secreted extracellular matrix (especially collagen) by SMCs give rise to a thick fibrous
cap sealing the plaque and separating its constituents from the bloodstream. Additionally, synthetic
SMCs are more proliferative than their contractile counterparts, which is assumed to be a major
factor in the growth of advanced plaques [206]. Together, necrotic cells (macrophages, T-cells and
SMCs) and other lipid-laden extracellular debris form the necrotic core within plaques [206]. The
successive migration, necrosis and defective clearance of more and more cells in the plaque lead
to a growing necrotic core which induces a swelling of the inner artery wall. Experimental results
indicate that the thickening of the artery wall can initially be compensated by an enlargement of
the artery [101, 113, 136, 168] called Glagov remodeling [84]. Still, the plaque may grow large
enough to cause a drastic narrowing of the lumen and the formation of a severe stenosis [173].

It is known, however, that serious clinical symptoms can occur also without a preexisting severe
stenosis [109, 172]. Nowadays, the occurrence of severe sequelae of atherosclerosis is commonly
associated with plaque ruptures. Atherosclerosis involves a hardening and loss of elasticity of
the artery wall [271]. The increased artery stiffness may be induced by degenerative changes
of the extracellular matrix (e.g., by SMCs) [214] or by calcifications of the intimal and medial
layers [33, 186]. However, the influence of the latter is controversial as uncalcified late-stage
plaques also exist [186, 271]. Yet, the pathway which leads to the hardening and remodeling of
the artery wall is under frequent investigation.

Due to increased artery stiffness, loss of elasticity and continuous mechanical loading by the
blood, advanced plaques are prone to a rupture or superficial erosion of their fibrous cap [172].
When thrombogenic material within plaques, such as macrophage-produced tissue factor comes
into contact with blood, a coagulation cascade that results in the production of thrombin is
unleashed [56]. This causes blood platelets and other blood constituents to form a blood clot
known as thrombus at the site of injury. The thrombus can trigger an occlusion event at the site
of the injury or downstream that may result in serious clinical symptoms, such as myocardial
infarction, stroke or other ischaemia. However, not all disruptions of atherosclerotic plaques must
result in severe symptoms [172] and thus atherosclerotic sequelae can be clinically silent too.

1.1.6 Clinical relevance and classification

In general, atherosclerosis itself is asymptomatic (clinically silent). Some of its sequelae, such
as stenoses can induce slowly advancing noticeable symptomatic consequences (e.g., angina
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pectoris) and thus may be medically treated in time. However, most of the secondary diseases
which result from a plaque rupture and an associated thrombosis usually occur instantaneously
and may lead to life-threatening clinical symptoms which can only be treated a posteriori to the
symptomatic event.

In a clinical context, an important indicator for early atherogenesis is an increased intima-media
thickness [33, 107, 219]. The intima-media thickness of vulnerable superficial arteries, such as
the carotid can be assessed in patients by high-resolution ultrasonography [107, 219]. However,
in general the non-invasive detection of vulnerable atherosclerotic plaques remains a challenge
and is often a by-product of other clinical diagnostics. Thus, the focus in atherosclerosis lies
more on its prevention by actively reducing the modifiable risk factors [88, 253]. Modifiable
risk factors include elevated blood pressure, dyslipidemia (abnormal blood lipid profile, usually
high LDL profile), obesity, smoking and diabetes mellitus [108]. Important non-modifiable risk
factors for atherosclerosis-induced clinical events are sex, age and genetic predisposition. The
prevention or cure of atherosclerosis is at its beginning [229] and thus cardiovascular diseases are
projected to remain the leading cause of death until at least 2030 according to the World Health
Organization [289, 290].

During the course of a human lifetime, the interplay between lipids and immune cells drives
characteristic changes in plaque constituents [199]. These changes are used by clinicians to
quantify and describe the individual stages of the disease based on its pathology. The classification
by the American Heart Association proposed by Stary et al. [249] considers nine different types of
the atherosclerotic process divided into six different stages denoted as I-VI. The designated types
can be used by clinicians to assess atherosclerotic plaques – often even based on the appearance
to the unaided eye. An overview of the nomenclature, main histology, main growth mechanism,
earliest onset and clinical correlation of the different stages of atherosclerosis in humans is given
in Table 1.1.

The inflammatory, immunological and biomechanical processes described in the previous sections
are roughly linked to the classification by the American Heart Association as follows: Early
plaques that contain lipid-rich macrophages and T-cells are known as types I and IIb. Lesions that
contain a cap of SMCs over a lipid-rich core present themselves as intermediate types IIa, III and
IV. By the time a thick fibrous cap has formed, lesions usually possess a necrotic core and give
rise to characteristics of type Va. The advanced and final stages, when the cap becomes fibrous,
calcified and is potentially rupture-prone are designated to type Vb, Vc or VI.

1.1.7 Plaque stability

In this thesis, particular interest lies on the quantification of early plaques and the assessment
of their long-term development and stability. Therefore, the differentiation of progression-prone
and progression-resistant fatty streaks (i.e., type IIa and IIb) in the classification by the American
Heart Association is of particular interest. Progression-resistant fatty streaks correspond to early
plaques that remain in their current state (i.e., are stable) or are even regressive to some extent.
On the other hand, progression-prone plaques keep growing and become potentially vulnerable.
However, advanced plaques can also stabilize, and even eroded or ruptured plaques can heal. A
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Table 1.1 Classification of atherosclerotic lesions in humans by the American Heart Association
based on their pathology. Types of lesions including their nomenclature, main histology, main
growth mechanism and clinical relevance in humans. Modified table as given in [249].

Type Nomenclature Main Histology
Main Earliest Clinical

growth onset corre-
mechanism (human) lation

I Initial lesion
Isolated macrophage

Growth
mainly by
lipid accu-
mulation

From
first

decade
Clinic-

ally
silent

foam cells

IIa
Progression-prone

fatty streak (or fatty dot) Mainly intracellular

IIb
Progression-resistant lipid accumulation

fatty streak (or fatty dot)

III Intermediate lesion
II & small extra-

From
third

decade

cellular lipid pools

IV
Atheroma (or II & core of extra-

Clinic-
ally

silent
or overt

atheromatous plaque) cellular lipids

Va
Fibroatheroma One or multiple lipid

Accelerated
smooth

muscle and
collagen
increase

From
fourth
decade

(or fibrolipid plaque) cores & fibrotic layers

Vb
Calcific lesion Mainly calcific

(or calcified plaque) fibrolipid lesions

Vc
Fibrotic lesion

Mainly fibrotic layers
(or fibrous plaque)

VI
Complicated lesion (or

complicated plaque)

Surface defect, hema-
Thrombosis,
hematoma

toma-hemorrhage,
thrombus

schematic overview of the life history and possible terminations of atherosclerotic plaques is
given in Figure 1.3.

In general, the presence of large numbers of macrophages, a large necrotic core and a thin
fibrous cap are the hallmarks of dangerous and asymptomatic plaques [274]. Nevertheless, the
question of why some initial plaques evolve toward advanced plaques whereas others do not, is
yet unanswered. Therefore, an important aim of this thesis is to model and quantify processes
that determine the stability of early plaques and if they are progression-prone or progression-
resistant.

1.1.8 Atherosclerosis in mouse models

Currently, mice are the most frequently employed animal to study atherosclerosis [99]. Clear
advantages of mouse models are their unproblematic acquisition, easy keeping and short time
means leading to relatively cheap and quick studies. More important, however, is the possibility of
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Figure 1.3 Life history and possible terminations of atherosclerotic plaques. Figure taken (with
permission) from Libby [173].

genetic manipulations of mice which enables the knockout of genes to “modify” specific processes
and to study their part in atherosclerosis in vivo. The great importance of genetic manipulations can
be seen in the example of macrophages-specific and SMC-specific manipulations. It is common
practice to genetically modify mice to bear macrophages-specific knockouts (see [283] for a
tabular overview) and thus much is known concerning the behavior of macrophages in vivo. In
contrast, SMC-specific gene manipulations are yet rather novel such that SMC-related processes
in vivo and details on their participation in atherosclerosis are just recently surfacing [68].

Besides all benefits, mouse models also come along with a severe drawback: Wild-type mice
are naturally resistant to atherosclerosis [167, 283]. An important reason for their protection is
that mice have low plasma cholesterol levels where sanatory HDL is predominant (in humans
deleterious LDL is predominant) [167]. However, other factors, such as their failure to develop a
thick fibrous cap [232], their lack of vasa vasorum [167] or their differently primed endothelial
cells [40] might be of great influence too.

Therefore, atherosclerotic plaques in mice are induced by high-fat diets drastically altering blood
cholesterol profiles and thus enforcing the development of plaques [272]. However, concerns
have been raised that this non-physiological diet also alters the atherogenesis such that it differs
from that in humans [167, 241]. And even if the atherosclerotic process in mice is enforced,
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they are – depending on their genetic manipulation – usually restricted to develop solely early
and intermediate plaques of type I-IV which are not prone to rupture [283]. An exception are
apolipoprotein E deficient mice, where also type V and VI lesions have been reported in the
innominate artery [98, 167]. Other predominant sites for atherosclerotic plaques in mice on
high-fat diets are the aortic sinus and aortic arch [99, 167, 185, 232].

Another drawback of mouse models is that due to their small size the imaging and the localization
of plaques in vivo is challenging [167]. However, advances have been made using high-resolution
magnetic resonance imaging [284] or gold particle-enhanced computer tomography [61]. Despite
the mentioned drawbacks, mouse models are an indispensable part of the scientific research on
atherosclerosis, and they may bear the key for the prevention or cure of this burgeoning disease.

1.2 Existing modeling approaches and challenges

Mathematical and computational models play an important role in increasing the understanding
of atherosclerosis. Therefore, a broad spectrum of models of various aspects of atherosclerosis
was established over the past decades. In this section, mathematical and computational models
and challenges that are of particular interest in this thesis are reviewed. A comprehensive tabular
overview of existing models of atherosclerosis and their specific applications can be found in
the publication by Parton et al. [215]. In the publication by Holzapfel et al. [125] a review of
mechanical models of plaques and plaque rupture is given.

A great challenge for computational models are the different time scales involved in the atheroscle-
rotic process. On the one hand, most of the atherosclerosis-specific processes, such as the pene-
tration of lipids and monocytes through the endothelium, the development and accumulation of
foam cells or the migration of SMCs into the intima are – depending on the species – on the time
scale of hours to weeks, months or years. On the other hand, the cardiovascular mechanics and
thus WSS-related aspects of atherosclerosis, such as the endothelial permeability with respect
to lipids and monocytes are governed by the time scale of the cardiac cycle being in the order
of magnitude of a second. Therefore, existing modeling approaches can be divided into short
and long time scale models. For the scope of this thesis, the long time scale models can again
roughly be subdivided into three groups which focus on the LDL transport, the inflammatory and
immunological processes and the growth of the artery wall. A schematic illustration of selected
mathematical and computational models including their approximate time scales and topics is
given in Figure 1.4

1.2.1 LDL transport

Following Zunino et al. [221, 305], LDL transport models can be classified into three groups
according to their complexity: The wall-free model estimates the LDL concentration in the
lumen and takes the artery wall solely into account in terms of suitable boundary conditions. The
fluid-wall model considers the LDL concentrations in the lumen and intima and their exchange
of LDL. Finally, the multilayer model additionally considers the LDL concentrations in the
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Long time scale modelsShort time scale models

Cardiovascular
mechanics

LDL transport
Inflammation &

immunology
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growth
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Figure 1.4 Illustration of selected existing mathematical and computational models including
their approximate time scales and topics.

media and the LDL exchange in-between all three layers – lumen, intima and media. However,
experimental results [19, 54, 195, 268] and computational studies [146, 221, 294] indicate that
the concentration of LDL in the media is almost vanishing and thus negligible. Hence, the
fluid-wall model is commonly employed when investigating LDL transport in the context of
atherosclerosis [29, 152, 209, 210, 254, 255, 264, 267].

Independent of the specific wall model, the transport barriers conditions between the individual
layers (i.e., endothelium and internal elastic lamina) are commonly modeled as semi-permeable
membranes described by the equations of Kedem and Katchalsky [148]. The crucial role of
the biomechanics in the transport of LDL through the endothelium is usually incorporated by
adapting parameters of the Kedem-Katchalsky equations by WSS-dependent laws. A sophisticated
approach proposed by Olgac et al. [209] is the three-pore model where the three LDL transport
pathways (vesicular, normal junctions and leaky junctions) are considered and the amount of leaky
junctions is estimated based on the local WSS. Other approaches consider a WSS-dependent
hydraulic conductivity [254] or utilize heuristic laws that adapt the diffusive permeability [29]
which drastically reduces the complexity but can still mimic a physiological correct behavior.

There is divisiveness, however, on the importance of driving mechanisms for the LDL transport
into the intima. According to the Kedem-Katchalsky equations, the flux through the endothelium
and internal elastic lamina can be split into a concentration gradient-driven diffusive flux and
an advective flux. The advective flux is due to the transmural flow of blood plasma driven by
the pressure gradient across the endothelium. Yet, there is no experimental data that allows to
rate the importance of the advective flux. The analog holds for the LDL transport within the
artery wall which might be driven by advection and diffusion, or solely by diffusion. Many
models consider the transmural flow across the endothelium and within the artery wall by porous
media approaches [210, 221, 267, 294], whereas others model the penetration or transport as a
purely diffusive process [29, 126, 268]. Still, the importance of the porous media flow on the
LDL transport and on atherosclerosis is controversial and requires further investigations. Besides
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the transport of LDL, the penetration and transport of HDL and monocytes are key aspects of
atherosclerosis that have received only scarce attention [45, 90, 251]. Especially the latter is
problematic, as the pathway for the active migration and movement of monocytes (and other
cells) is independent of the pathways of the lipoprotein transports.

1.2.2 Inflammation and immunology

A broad spectrum of models of the inflammatory and immunological processes of all stages
of atherosclerosis exists [7, 29, 34, 45, 46, 48, 72, 83, 90, 111, 135, 213, 304]. However, due
to the incomplete knowledge of many aspects and causalities from a biological point of view,
there is barely any continuity in-between different models. Some models consider only a few
key species [29, 34], whereas others identify up to 16 important species [90]. Some identify
chemotaxis to be crucial [34, 35, 90, 111], whereas others restrict themselves to pure ordinary
differential equation (ODE) models [46, 48, 213]. The complete picture of inflammatory and
immunological models is even more fuzzy when considering how specific processes are incorpo-
rated into different models. A comprehensive tabular overview of existing models can be found
in the review by Parton et al. [215]. A quantitative validation of the models by experimental
results is barely achieved and it is difficult to distinguish the validity of the different models.
Thus, enhanced by poor access to quantitative experimental data, the development of data-driven
mathematical models with predictive capabilities remains a major challenge.

1.2.3 Plaque growth

In addition to the inflammatory and immunological processes, some models consider the growth
of atherosclerotic plaques in terms of heuristic growth laws [29, 45, 83, 90, 267]. Even though
mechanically motivated growth models are successfully employed for other biomechanical
problems, such as tumor or tissue growth [3, 55, 119, 132, 149, 155], only scarce work has been
done in the context of atherosclerosis [84].

The mechanical properties of the individual plaque constituents are well quantified and are essen-
tial to assess the risk of plaque damages and ruptures due to mechanical loading [9, 125, 261]. The
mechanical models, however, commonly solely analyze snapshots of the continuous remodeling
process of artery walls. The dynamic change of mechanical properties of atherosclerotic artery
walls associated with their growth is not yet considered.

Only few models take a holistic approach of the atherosclerotic process and consider all the
aforementioned processes. For models of the long time scale of atherosclerosis, one can highlight
the works by Calvez et al. [29] and Cilla et al. [45] which both consider the transmural flow in
the artery wall, a simple but convenient inflammatory and immunological model and an induced
heuristic growth. As most porous media based models, however, they consider solely an artificial
and simple geometrical setup, which at best produces qualitative results.
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1.2.4 Cardiovascular mechanics

Short time scale models generally focus on a physiologically correct description of the cardio-
vascular mechanics and therefore do not have to be specific to atherosclerosis. They commonly
include two aspects missing in most of the long time scale models: pulsatile blood flow and
compliance of the vessel wall. In contrast to the inflammatory and immunological processes,
models of the macroscopic cardiovascular mechanics are well quantifiable [52, 62, 76, 197], but
also often come along with high computational costs.

It is frequently stated that pulsatile blood flow should not be neglected [152, 178, 255]. Still,
many models – especially porous media models – commonly assume stationary blood and
transmural flows [29, 76, 82, 142, 177, 178, 267, 276]. Besides the (instantaneous) WSS, a
pulsatile model allows to estimate other hemodynamical factors, such as time-averaged WSS,
oscillatory shear index (OSI) or relative residence time [118, 245]. Such hemodynamical factors
indicate recirculating or oscillatory blood flows which disturb the endothelium and are frequently
employed to alter the endothelial permeability in mathematical and computational models. The
definition of the “correct” hemodynamical factor in the context of the endothelial permeability is
addressed by many computational studies. Still, the findings are ambiguous. For example, low
time-averaged WSS are frequently found to correlate with atherosclerotic plaque locations [154,
216], even though the contrary is reported too [121]. This ambivalence holds also for OSI, relative
residence time and other hemodynamical factors which suggests that important biomechanical
functions of the endothelium are still unknown.

The influence of the compliance of the artery is usually investigated using fluid-structure
interaction (FSI) models allowing for a physiologically realistic deformation of the artery
wall [52, 81, 152, 197, 295]. However, the influence of the artery compliance on the atherosclerotic
process has not been considered much [59]. For a model of the short time scale of atherosclerosis,
one can highlight the work by Koshiba et al. [152], where a non-stationary FSI simulation, a
model of the species transport and penetration as well as a linked model of the transmural flow is
considered. The back coupling from the long time scale, i.e., the plaque formation and induced
narrowing of the lumen, crucial to atherogenesis are not included therein.

1.2.5 Multiscale and multiphysics

A suitable multiscale in time strategy is necessary to bring together the aforementioned small
and long time scale phenomena. General multiscale frameworks exist [81], but an all-embracing
framework for atherosclerosis is not yet established. As a first step Koshiba et al. [152] and Sun
et al. [255] investigated the influence of pulsatile flow patterns to the LDL penetration, but not
vice versa. In contrast, Tomaso et al. [267] and Calvez et al. [29] modeled the long time scale
growth process and studied the induced changes to the hemodynamics. However, both assumed
stationary flows and phenomenological growth laws. Still, [267] shows that the back-coupling
from the long time scale due to growth is of major importance: Tomaso et al. explained that fatty
streak formation observable in early stages of the disease might in fact be a result of the adjusted
LDL penetration due to the thickened artery wall altering blood flow.
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The chosen time scale separation into short and long time scale is accompanied by a separation
of two other important aspects – the space scale and the describing physics. The short time
scale of atherosclerosis is driven by the cardiac cycle. Thus, the flow of blood and its solutes
and the deformation of the artery wall are of particular interest. To capture those processes
properly, it is required to take into account a considerable part of the lumen and its adjacent entire
artery wall. Accordingly, immanent with the short time scale is a space scale corresponding to
the “organ level” being – depending on the species – in the order of magnitude of dozens of
micrometers to millimeters. The driving physics of the short time and large space scale are the
Navier-Stokes equations (blood), the balance of linear momentum (artery wall) and the advection-
diffusion equation (blood solutes) which will be derived and described in detail in the following
Section 2. In contrast, the long time scale is driven by the penetration of lipids, inflammatory
and immunological processes, growth, remodeling and the transmural flow which mainly take
place in the intima and media. Thus, immanent with the long time scale is a space corresponding
to the intima-media thickness being approximately half of the entire artery wall thickness, cf.
Figure 1.1. To accurately capture the processes within the intima, an even smaller space scale
of around 2 % of the artery wall must be resolved. The driving physics of the long time and
small space scale are the advection-diffusion-reaction equation (inflammation and immunology),
Darcy’s law (transmural flow), and the specific growth and remodeling formulation (foam cell
accumulation).

1.3 Objectives

The great need for a deeper understanding of inflammatory, immunological and biomechanical
processes and their interplay in atherosclerosis are the motivation of this work. The objective
is to develop predictive mathematical and computational approaches that resolve urgent issues
described in the previous sections. In particular, the focus of this thesis lies on the following
challenges:

• Development of a mathematical and computational multiphysics approach for ather-
osclerosis

Atherosclerosis is a multiscale disease which can be characterized as the interplay between
(the short time and large space scale) cardiovascular mechanics and (the long time and small
space scale) inflammatory and immunological processes. The computational treatment
of the disease is a great challenge and currently a model of the short time scale, which
is capable to dynamically adjust to changes in the long time scale and vice versa, is not
established. To computationally resolve the problem of the different time and space scales,
a multiphysics approach can be utilized which follows the separation of the different scales.

A main contribution of this thesis is to develop a novel mathematical and computational
multiphysics approach for atherosclerosis which incorporates inflammatory, immunological
and biomechanical processes of all time scales of the disease. Here, the interlacement of the
different time scales and the influence of patient-specific anatomies and pathophysiologies
is of particular interest.
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• Quantification of early atherosclerotic plaque formation

Many studies exist that quantify the cardiovascular mechanics and allow a predictive
computation of cardiovascular quantities of interest in atherosclerosis, such as WSS. In
contrast, the field of modeling atherosclerosis is dominated by qualitative models which
are usually not validated against experimental results. Even though a growing number of
studies model inflammatory and immunological processes of atherosclerosis, one of the
major problems remains that the models’ parameters are commonly unknown and can
often only be estimated vaguely. Yet, there has been scarce work done resolving this issue
by quantifying crucial processes that cause the onset and progression of atherosclerotic
plaques.

A major goal of this thesis is to establish predictive data-driven mathematical models of
crucial processes of the formation of atherosclerotic plaques that improve this issue by
experiment-based derivations and parameterizations. Here, focus lies on key and measur-
able processes of early atherosclerosis, such as endothelial permeability with respect to
lipoproteins, oxidative modification and ingestion of lipoproteins, intracellular cholesterol
cycle, reverse cholesterol transport and macrophage recruitment, apoptosis and clearance.

• Assessment of stability of early plaques

A decisive step for the prevention and medical treatment of atherosclerosis is to understand
under which conditions plaques continue to grow, stagnate or become regressive. Still,
the driving biological and mechanobiological mechanisms that determine the stability of
plaques are yet rather unknown. A key to assess the long-term outcome of plaques lies
in their early stages where it is decided if a plaque is progression-prone or progression-
resistant, i.e., of type IIa or IIb in the classification by the American Heart Association, cf.
Table 1.1.

A main objective of this thesis is to develop a spatially resolved model of key species
in order to assess the local stability of early atherosclerotic plaques. Here, focus lies
on the identification and classification of progression-prone and progression-resistant
atherosclerotic regions based on measurable or computable inputs, such as blood cholesterol
concentrations and wall shear stresses a plaque is exposed to in vivo.

1.4 Outline

The remainder of this work is structured as follows: In the following Chapter 2, basic continuum
mechanical principles are used to derive mathematical formulations of several abstract single-field
and multiphysics problems. The relevant single-field problems such as fluid, solid, scalar transport
and porous media flow problems are derived in Section 2.1. Subsequently, single-field problems
are merged to multiphysics problems by appropriate coupling conditions in Section 2.2. The
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1 Introduction

abstract multiphysics problems serve as a basis to develop mathematical models1 of different
aspects of atherosclerosis in this thesis.

Chapter 3 gives details on the numerical treatment of the mathematical single-field and mul-
tiphysics problems that are required to computationally solve them efficiently under complex
premises, such as patient-specific geometries and setups. After the weak formulations of the
single-field problems are presented and discretized in time and space in Section 3.1, the treatment
of the multiphysics problems is detailed in Section 3.2.

In Chapter 4, a multiphysics model of the cardiovascular mechanics and transport of species is
developed which incorporates major biomechanical processes of all time scales of atherosclerosis
and their interactions. After the multiphysics model is established in Section 4.1, details on the
numerical procedure are given in Section 4.2. A computational case study of the multiphysics
model on a murine-specific geometry is performed and the interlacement of the different time
scales is investigated in Section 4.3. The computational results of the multiphysics model are
discussed, critically reflected and summarized in Sections 4.4, 4.5 and 4.6, respectively.

Chapter 5 focuses on the modeling and quantification of the formation of early atherosclerotic
plaques. Therefore, several ODE submodels that describe key inflammatory and immunological
processes in early atherosclerosis are developed, parameterized by least-square fitting to existing
in vitro experimental results and subsequently merged into a combined ODE model in Section 5.1.
Details on the analysis of the combined model are given in Section 5.2. The computational
results of the ODE models are presented, discussed and summarized in Sections 5.3, 5.4 and 5.5,
respectively.

In Chapter 6, a spatially resolved model of key species of early atherosclerosis is developed and the
local stability of early plaques is assessed. To this end, further ODE submodels of the recruitment
of species are developed, parameterized and embedded into a spatially resolved generalization
of the combined model in Section 6.1. Section 6.2 gives details on the parameterization of the
models and the methods to classify the stability of model plaques. The computational results of
the model of key species are presented, discussed and summarized in Sections 6.3, 6.4 and 6.5,
respectively.

Finally, an overall summary of this thesis and an outlook on possible future work is given in
Chapter 7.

1Throughout this thesis, a mathematical problem is understood as a set of equations that describe an “abstract”
system, whereas a mathematical model describes a “concrete” system, cf. page xv.
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2 Mathematical formulations

This chapter gives a brief introduction to the mathematical formulations that are necessary to
develop a mathematical and computational multiphysics model of atherosclerosis. First, the
governing equations of all relevant single-field problems required in this thesis are derived from
basic continuum mechanical principles in Section 2.1. In the subsequent Section 2.2, the single-
field problems are merged by appropriate coupling conditions which leads to several multiphysics
problems. The numerical treatment of the single-field and multiphysics problems is described in
the subsequent Chapter 3.

More extensive reviews on the presented aspects can be found in the literature and will be
referenced at the beginning of the individual sections. However, for a broad overview of many
fundamental aspects that are essential in this thesis the exhaustive textbooks by Donea and
Huerta [67] and Formaggia et al. [85] are recommended.

2.1 Single-field problems

This section first introduces different observers and their relations (Sections 2.1.1 and 2.1.2).
Subsequently, brief derivations of the mathematical single-field formulations of fluid mechanics
(Section 2.1.3), solid mechanics (Section 2.1.4), scalar transport (Section 2.1.5) and porous
medium transport (Section 2.1.6) problems are given.

2.1.1 Lagrangean, Euler ian and ALE observer

To derive the governing equations of the single-field problems, a basic understanding of observers
and their relation is required. In this section, a short introduction on different observers and the
fundamental ALE equation is given. A more detailed review can be found in the textbooks by
Donea and Huerta [67] or Formaggia et al. [85] or the theses by Vuong [275] or Wall [278].

It is common practice to describe the deformation of solids by a Lagrangean observer, where
the motion of a set of specific material points X is followed. The position of a material point
at initial time t = 0 is its material coordinate, denoted also by X ∈ R3 (as there is a unique
one-to-one relation by the initial time). The set of all material coordinates, i.e., the initial position
of all considered material points, is the material domain Ω0 ⊂ R3. The spatial coordinate x ∈ R3
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2 Mathematical formulations

is the position of a material point X ∈ Ω0 at time t ≥ 0 and let be described by the unique
deformation map (diffeomorphism)

ϕ :

{
R≥0 × Ω0 → R≥0 × Ωt(t),

(t,X) 7→ ϕ(t,X) = (t,x(t,X)).
(2.1)

Hence, the spatial domain Ωt(t) := {x(t,X) ∈ R3|X ∈ Ω0} contains the spatial coordi-
nates of all material points in the material domain Ω0 that are transported by ϕ. The displace-
ment d(t,X) of a material pointX is given by d(t,X) = x(t,X)−X and its material velocity
by u(t,X) = d

dt
x(t,X) = d

dt
d(t,X). Here, d

dt
denotes the material time derivative, i.e., the

partial time derivative ∂
∂t

where material coordinatesX are fixed coordinates.

In contrast to solids, fluids are usually described by an Eulerian observer, where the state of
material points X is investigated that happen to be at the position of a spatial point x in
the fixed spatial domain Ωt ⊂ R3. The respective material point X to a given fixed spatial
coordinate x ∈ Ωt at time t ≥ 0 is uniquely defined by the inverse of the mapping given by (2.1),
i.e., (t,x) 7→ ϕ−1(t,x) = (t,X(t,x)).

However, in some applications, such as fluid-structure interaction problems, spatial domains Ωt(t)
deform over time t. In these cases, an Arbitrary-Lagrangean-Eulerian (ALE) observer can be
employed which can be conveniently thought of as the deforming underlying grid of the spatial
fluid domain. An ALE observer allows to handle the deformation of the spatial domain Ωt(t) like
a Lagrangean observer, but at the same time still decouples the spatial domain from the material
points which happen to be within it like an Eulerian observer. For this purpose, a third domain is
needed, denoted as the reference domain or ALE domain ΩG(t). The reference domain contains
the corresponding reference coordinates χ ∈ ΩG(t) which identify the position of the grid of
the spatial domain at time t. The deformation maps (diffeomorphisms) from and to the reference
domain are given by

Φ :

{
R≥0 × ΩG(t) → R≥0 × Ωt(t)

(t,χ) 7→ Φ(t,χ) = (t,x(t,χ))
(2.2)

and

Θ :

{
R≥0 × Ω0 → R≥0 × ΩG(t),

(t,X) 7→ Θ(t,X) = (t,χ(t,X)),
(2.3)

such that

x(t,X) = x(t,χ(t,X)), i.e., ϕ = Φ ◦Θ. (2.4)

For a schematic overview of the different domains and mappings, see Figure 2.1. Defining the
ALE velocity by uG(t,χ) = ∂

∂t
x(t,χ)

∣∣
χ

, where
∣∣
χ

means “with holding χ fixed”, it follows:

u(t,X) =
d

dt
x(t,X)

(2.4)
=

∂

∂t
x(t,χ(t,X))

=
∂

∂t
x(t,χ)

∣∣
χ=χ(t,X)

+
∂

∂χ
x(t,χ)

∣∣
χ=χ(t,X)

∂

∂t
χ(t,X)

= uG(t,X) +
∂

∂χ
x(t,χ)

∣∣
χ=χ(t,X)

∂

∂t
χ(t,X).

(2.5)
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2.1 Single-field problems

χ

spatial domain Ωtmaterial domain Ω0

reference domain ΩG

Θ Φ

ϕ = Φ ◦ Θ

x
X

Figure 2.1 Schematic overview of material, reference and spatial domains (Ω0,Ω
G and Ωt) and

coordinates (X,χ and x) and their mappings (ϕ,Θ and Φ).

Let q(t,x) be an arbitrary scalar-valued spatial quantity. By the mappings ϕ,Θ and Φ and their
inverses, q can be expressed in terms of any of the three coordinates:

q∗(t,χ) := q ◦ Φ(t,χ) = q(t,x(t,χ))

q∗∗(t,X) := q ◦ ϕ(t,X) = q(t,x(t,X)).
(2.6)

It follows that the material time derivative of the spatial quantity q(t,x) can be expressed as

d

dt
q(t,x)

(2.6)
=

∂

∂t
q∗(t,χ(t,x)) =

∂

∂t
q∗(t,χ)

∣∣
χ=χ(t,x)

+
∂

∂χ
q∗(t,χ(t,x))

∂

∂t
χ(t,x)

=
∂

∂t
q∗(t,χ)

∣∣
χ=χ(t,x)

+
∂

∂x
q(t,x) · ∂

∂χ
x(t,χ)

∣∣
χ=χ(t,x)

∂

∂t
χ(t,x)

(2.5)
=

∂

∂t
q∗(t,χ)

∣∣
χ=χ(t,x)

+
∂

∂x
q(t,x)

︸ ︷︷ ︸
=:∇q(t,x)

·
(
u(t,x)− uG(t,x)

)
,

(2.7)

which is called the fundamental ALE equation. The derivative ∂
∂t
q∗(t,χ)

∣∣
χ

is called the ALE time
derivative of q. The term

(
u− uG

)
is named convective velocity.
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2 Mathematical formulations

Remark. With the choice Θ(t,X) = (t,X), i.e.,X = χ(t,X), the Lagrangean description is
obtained from the ALE description. In this case, the ALE time derivative ∂

∂t
(•)
∣∣
χ

is equivalent to
the material time derivative d

dt
(•) and it yields uG = u. In contrast, by choosing Φ(t,x) = (t,x),

i.e., χ = x(t,χ), the Eulerian description is obtained from the ALE description. Here, the ALE
time derivative ∂

∂t
(•)
∣∣
χ

is equivalent to the partial time derivative ∂
∂t

(•) (with fixed x) and it
follows uG = 0.

2.1.2 ALE transport equation

In this section, the fundamental ALE equation is used to derive the continuum mechanical
equivalent for an arbitrary spatial conserved quantity with an arbitrary observer. It is an abstraction
of content presented in Donea and Huerta [67]. For more details the reader is referred to the
textbooks by Donea and Huerta [67], Eck et al. [69] or Formaggia et al. [85].

Let q(t,x) now be the scalar-valued spatial density of an arbitrary physical conserved quantity
on an arbitrary spatial domain Ω(t) with boundary Γ(t) = ∂Ω(t). If qΩ(t,x) and qΓ(t,x) denote
the quantity’s volume sources and boundary influxes, respectively, then its balance equation in
the domain Ω(t) at time t ≥ 0 is

d

dt

∫

Ω(t)

q(t,x) dv =

∫

Ω(t)

qΩ(t,x) dv −
∫

Γ(t)

qΓ(t,x) · n(t,x) ds, (2.8)

where n denotes the outward pointing unit surface normal on the spatial boundary Γ(t). Ap-
plying the Reynold’s transport theorem and Gauß’s theorem to the left- and right-hand side of
Equation (2.8), respectively, yields

∫

Ω(t)

(
d

dt
q(t,x) + q(t,x)∇ · u(t,x) + qΩ(t,x)−∇ · qΓ(t,x)

)
dv = 0, (2.9)

where u is again the material velocity with which material points are transported. Equation (2.9)
holds also for any subset of Ω(t) and hence its integrand vanishes locally such that

d

dt
q(t,x) + q(t,x)∇ · u(t,x)− qΩ(t,x) + ∇ · qΓ(t,x) = 0, ∀t ≥ 0, ∀x ∈ Ω(t). (2.10)

Using the fundamental ALE Equation (2.7) leads to

∂

∂t
q∗(t,χ)

∣∣
χ=χ(t,x)

+
(
u(t,x)− uG(t,x)

)
· ∇q(t,x) + q(t,x)∇ · u(t,x)

+∇ · qΓ(t,x) = qΩ(t,x), ∀t ≥ 0, ∀x ∈ Ω(t),
(2.11)

which is called the ALE transport equation.

Throughout the remainder of this thesis the asterisks as well as the time and space dependencies
are omitted to ease notation, except in cases where it is crucial. Further, one global common
Cartesian coordinate system is assumed for all coordinates and domains.
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2.1 Single-field problems

Remark. Besides a sufficient smoothness and the particular description by Equation (2.8),
no further assumptions on the spatial density q and the ALE observer were made in order
to derive the ALE transport equation. Hence, the ALE transport equation can be seen as the
fundamental conservation law from which all spatial conservation laws required in this thesis
can be derived.

2.1.3 Fluid mechanics

The derivation of the governing equations that are required to describe viscous incompressible
fluids is briefly presented in this section. A more detailed review on conservation laws and
the derivation of the Navier-Stokes equations can be found in the textbooks by Donea and
Huerta [67], Eck et al. [69] or Formaggia et al. [85]. Extensive reviews on non-Newtonian fluids
are the textbooks by Astarita and Marrucci [8] or Chhabra and Richardson [41], whereas an
overview of rheological models for blood is given in the textbook by Formaggia et al. [85].

Material points that make up a fluid can undergo large deformations like vortices, which could
lead to infeasible mesh distortions when describing the fluid in terms of a Lagrangean observer. In
contrast, fluids described by an Eulerian observer can only have fixed spatial domains. However,
this restriction is infeasible in the context of multiphysics problems where the spatial domain of
the fluid ΩF(t) is deformed over time t. Hence, an ALE observer is exploited where the ALE
observer is chosen such that it captures the full deformation of the spatial fluid domain, i.e.,
ΩG(t) = ΩF(t).

The physical principles that drive the mechanics of fluids are the conservation of mass and the
balance of linear momentum which can both be derived from the ALE transport Equation (2.11)
as follows. All quantities and parameters that are related to the fluid problem are indicated by the
superscript F .

2.1.3.1 Conservation of mass

The assumption that the global mass of the fluid in the spatial domain ΩF(t) is conserved over
time t, i.e., no mass is generated or lost, reads

d

dt

∫

ΩF (t)

%F(t,x) dv = 0, (2.12)

where %F(t,x) is the spatial mass density of the fluid. Hence, by setting q(t,x) = %F(t,x),
qΩ(t,x) = 0 and qΓ(t,x) = 0 in Equation (2.11), it follows the continuum mechanical equivalent
for the conservation of mass in an ALE frame

∂

∂t
%F
∣∣
χ

+
(
uF − uG

)
· ∇%F + %F ∇ · uF = 0, (2.13)
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2 Mathematical formulations

which is called the continuity equation (in an ALE frame). Here, uF is the material velocity of the
fluid. If the fluid is incompressible, i.e., has a constant material mass density %F(t,X) = const,
it follows

∇ · uF = 0 ∀t ≥ 0, ∀x ∈ ΩF(t), (2.14)

which is known as the incompressibility equation.

2.1.3.2 Balance of linear momentum

The balance of linear momentum is in fact well-known as Newton’s second law. It states that the
change of the global balance of linear momentum in the domain ΩF(t) is equal to the volume
forces bF and surface forces tF acting on it:

d

dt

∫

ΩF (t)

%F(t,x)uF(t,x) dv =

∫

ΩF (t)

bF(t,x) dv +

∫

ΓF (t)

tF(t,x) ds. (2.15)

Expressing the surface forces tF by the Cauchy stress tensor σF yields

tF(t,x) = σF(t,x)nF(t,x). (2.16)

where nF denotes again the outward pointing unit surface normal on the spatial boundary ΓF(t).
Hence, by setting q(t,x) = %F(t,x)uF(t,x), qΩ(t,x) = bF(t,x) and qΓ(t,x) = −σF(t,x)
and componentwise use of Equation (2.11) it follows

∂

∂t
(%FuF)

∣∣
χ

+
((
uF − uG

)
·∇
)

(%FuF) + (%FuF)∇ · uF −∇ · σF = bF . (2.17)

By using Equation (2.13), the common continuum mechanical equivalent for the conservation of
linear momentum in an ALE frame is achieved:

%F
∂

∂t
uF
∣∣
χ

+ %F
((
uF − uG

)
·∇
)
uF −∇ · σF = bF ∀t ≥ 0, ∀x ∈ ΩF(t). (2.18)

Remark. Equation (2.18) is valid also for fluids with a non-constant density.

Remark. Using Equation (2.18) one can show that the conservation of angular momentum is
equivalent to the symmetry of the Cauchy stress tensor, i.e., σF =

(
σF
)T [69].

Remark. The continuum mechanical equivalents for the conservation of internal and total
energy in ALE frames are also a consequence of the ALE transport Equation (2.11). However, the
conservation of energy is not of particular interest in this thesis and the reader is referred to the
textbook by Donea and Huerta [67].
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2.1 Single-field problems

2.1.3.3 Governing equations

The governing equations for viscous incompressible fluids are derived from the continuum
mechanical equivalents for the conservation of mass and the balance of linear momentum with an
appropriate Cauchy stress tensor σF . The Cauchy stress tensor σF for viscous incompressible
Newtonian fluids reads

σF(pF ,uF) = −pF1 + 2µFεF
(
uF
)
, (2.19)

where pF is the pressure of the fluid and

εF
(
uF
)

=
1

2

(
∇uF + (∇uF)

T
)

(2.20)

is the strain rate tensor of the fluid. For Newtonian fluids, the dynamic viscosity µF is a constant.
Together, equations (2.13), (2.18) and (2.19) yield the incompressible Navier-Stokes equations in
an ALE frame on the spatial domain ΩF(t):

%F
∂

∂t
uF
∣∣
χ

+ %F
(
(uF − uG) ·∇

)
uF +∇pF − 2µF∇ · εF

(
uF
)

= bF , (2.21)

∇ · uF = 0, (2.22)

where the fluid velocity uF and the fluid pressure pF are the primary unknowns.

Important classes of non-Newtonian fluids are shear-thinning and shear-thickening fluids which
are described by rheological models with non-constant dynamic viscosities

µF = µF(γ̇F(uF)) (2.23)

depending on the shear-rate γ̇F of the fluid. The shear-rate γ̇F is given by:

γ̇F(uF) =
√

2 tr (εF(uF)2). (2.24)

On the disjunct boundaries ΓFD(t) ⊂ ΓF(t) and ΓFN(t) ⊂ ΓF(t), Dirichlet and Neumann boundary
conditions are applied, respectively. In the case of the Navier-Stokes equations, Dirichlet boundary
conditions prescribe given velocities uFD(t,x) on the spatial boundary ΓFD(t)

uF(t,x) = uFD(t,x), (2.25)

whereas Neumann boundary conditions load the fluid with external spatial surface tractions
tFN(t,x) on the spatial boundary ΓFN(t):

σF(t,x)nFN(t,x) = tFN(t,x). (2.26)
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2 Mathematical formulations

2.1.4 Solid mechanics

In this section, the derivation of the governing equations that are required to describe growing
hyperelastic solids is briefly presented. A more detailed review on solid mechanics can be found
in the textbooks by Holzapfel [122], Ragab and Bayoumi [223] or Wriggers [291]. For more
details on the theory of growth the reader is referred to the publications by Himpel et al. [119],
Klisch et al. [149], Rodriguez et al. [231] or others [3, 73, 94, 104, 155, 242].

In contrast to fluids, solids are usually described by a Lagrangean observer as the position and
state of particular material points (that define the solid) are of interest. The physical principles that
drive the mechanics of solids are the conservation of mass and the balance of linear momentum.
All quantities and parameters that are related to the structure problem are indicated by the
superscript S.

2.1.4.1 Conservation of mass

Analog to the conservation of mass of a fluid (Section 2.1.3.1), the global conservation of mass of
a solid in the spatial domain ΩS(t) reads

0 =
d

dt

∫

ΩS(t)

%S(t,x) dv =
d

dt

∫

ΩS0

JS(t,X)%S(t,X) dV , (2.27)

where %S is the spatial mass density of the structure. In the last step, the integral was pulled-back to
the material domain ΩS0 which introduced the Jacobian JS = det(F S) of the structure, where

F S(t,X) =
∂

∂X
x(t,X) = 1 +

∂

∂X
dS(t,X)

︸ ︷︷ ︸
=:∇0 dS(t,X)

(2.28)

is the deformation gradient of the structure. Equation (2.27) directly yields the continuum
mechanical equivalent for the conservation of mass on the material domain ΩS0

0 =
d

dt
(JS%S) =

d

dt
%S0 , (2.29)

where %S0 = JS%S is the material mass density of the structure. By integration over time it follows
that the material mass density is constant over time:

%S0 (t,X) = %S0 (0,X) ∀t ≥ 0, ∀X ∈ ΩS0 . (2.30)
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2.1 Single-field problems

2.1.4.2 Balance of linear momentum

The global balance of linear momentum of the structure on the spatial domain ΩS(t) reads
analog to Equation (2.15). By pulling-back the integrals to the material domain ΩS0 , the continu-
um mechanical equivalent for the balance of linear momentum on the material domain ΩS0 is
achieved:

%S0
d2

dt2
dS −∇0 ·

(
F SSS

)
= bS0 , (2.31)

where SS is the second Piola-Kirchhoff stress tensor of the structure. The second Piola-Kirchhoff
stress tensor is given by the Piola Transformation of the Cauchy stress tensor σS (cf. Equa-
tion (2.16)) which reads

SS = JS(F S)
−1
σS(F S)

−T
. (2.32)

In this thesis, hyperelastic solids with strain-energy density function ΨS are assumed such that
the second Piola-Kirchhoff stress tensor is given as

SS = 2
∂

∂CS
ΨS
(
CS
)
, (2.33)

where CS =
(
F S
)T
F S is the right Cauchy-Green deformation tensor of the structure.

2.1.4.3 Growth

In this thesis, solids can grow due to an increase of their global mass. To incorporate growth,
a common approach is to assume that the deformation gradient F S of the structure can be
multiplicatively decomposed into

F S = F SEl F
S
Gr. (2.34)

Here, F SGr is the growth deformation gradient which describes the growth of the material do-
main ΩS0 to a discontinuous but stress-free growth domain denoted as ΩSGr(t) [231, 242]. The
respective coordinates are denoted by χGr. The second part F SEl denotes the elastic deformation
gradient which maps the growth domain ΩSGr(t) to the spatial domain ΩSt (t) where the domain is
continuous again. An illustration of this assumption is given in Figure 2.2.

Further, it is common to assume that the growth is density preserving in the growth
domain ΩSGr(t) [119] reading analog to Equation (2.29):

d

dt
%SGr(t,χGr) = 0, ∀t ≥ 0, ∀χGr ∈ ΩSGr(t), (2.35)

where %SGr is the mass density in the growth domain. The pull-back into the material domain ΩS0
yields a generalization of Equation (2.30) reading [94, 119, 231]

%S0 (t,X) = JSGr(t,X)%S0 (0,X), ∀t ≥ 0, ∀X ∈ ΩS0 (2.36)
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spatial domain ΩS
tmaterial domain ΩS

0

F S
El

F S = F S
El F

S
Gr

F S
Gr

χGr

x
X

growth domain ΩS
Gr

Figure 2.2 Schematic overview of material, growth and spatial domains (ΩS0 ,Ω
S
Gr and ΩSt ),

coordinates (X,χGr and x) and their deformation gradients (F S ,F SGr and F SEl).

where JSGr = det
(
F SGr

)
is the Jacobian of the growth deformation gradient F SGr. To respect

the stress-freeness of the growth configuration, the second Piola-Kirchhoff stress tensor SS is
computed by a pull-back of the elastic stresses SSEl:

SS = (F SGr)
−1SSEl(F

S
Gr)
−T . (2.37)

By again taking the assumption of a hyperelastic solid with strain-energy density function ΨS the
elastic stresses are given by

SSEl = 2
∂

∂CSEl

ΨS
(
CSEl

)
, (2.38)

where CSEl =
(
F SEl

)T
F SEl = (F SGr)

−T
CS(F SGr)

−1 is the elastic right Cauchy-Green deformation
tensor.

Remark. So far, no assumptions on the specific form of the growth deformation gradient F SGr

were made and it remains to be modeled. By choosing F SGr = 1 the standard formulation for
hyperelastic structures is recovered.
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2.1 Single-field problems

2.1.4.4 Governing equations

The mathematical description of hyperelastic solids undergoing growth is derived from the con-
tinuum mechanical equivalents for the conservation of mass and the balance of linear momentum.
Together, Equations (2.31), (2.36), (2.37) and (2.38) yield the governing equations of the structure
problem on the material domain ΩS0 :

%S0
d2

dt2
dS −∇0 ·

(
F SSS

)
= bS0 (2.39)

with

SS = (F SGr)
−1
(

2
∂

∂CSEl

ΨS
(
CSEl

))
(F SGr)

−T
. (2.40)

where the structure displacement field dS is the primary unknown. In the case of the structure
problem, Dirichlet boundary conditions prescribe given displacements dSD(t,X) on the material
boundary ΓSD:

dS = dSD. (2.41)

Neumann boundary conditions load the structure with external material surface tractions T SN (t,X)
on the material boundary ΓSN:

F SSSNSN = T SN , (2.42)

whereNSN is the outward pointing surface normal on the material boundary ΓSN.

2.1.5 Scalar transport

The derivation of the governing equations that are required to describe the advective, diffusive and
reactive transport of scalar-valued quantities (scalar transport) is briefly presented in this section.
A more detailed review on this topic can be found in the textbooks by Donea and Huerta [67] or
Eck et al. [69].

As the fluid problem, the scalar transport problem is described in terms of an ALE observer. The
ALE observer is chosen such that it captures the full deformation of the spatial scalar transport
domain ΩSC(t). The physical principle that drives the scalar transport is the balance of mass. All
quantities and parameters that are related to general scalar transport problems are indicated by the
superscript SC. For an easy distinction between the special cases of scalar transport with a fluid or
structure, their quantities and parameters are indicated by the superscripts FS or SS , respectively.
The special case of scalar transport in porous media, indicated by the superscript PS , is presented
in Section 2.1.6 together with the porous media flow problem.
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2 Mathematical formulations

2.1.5.1 Balance of mass

In this thesis, the transport of scalars is viewed in the sense of the transport of concentrations
even though the derived equations are valid also for other scalar-valued quantities. Let cSCi
(i = 1, . . . , nc) denote the scalar-valued concentrations of nc reactive contributors. Then, the
global balance of mass of concentration cSCi (t,x) in the spatial domain ΩSC(t) reads

d

dt

∫

ΩSC(t)

Mic
SC
i (t,x) dv =

∫

ΩSC(t)

MiκSCi (cSC(t,x)) dv −
∫

ΓSC(t)

Miq
SC
i (t,x) · n(t,x) ds,

(2.43)

where Mi denotes the mass per unit of concentration cSCi . The reaction term κSCi (cSC) of scalar i
depends on the vector of all concentrations cSC = [cSC1 , . . . , cSCnc ]

T . The diffusive influx is denoted
by qSCi and is further described by Fick’s law [80]:

qSCi (t,x) = −DSCi ∇cSCi (t,x), (2.44)

where the constant DSCi is the diffusion coefficient. Hence, by setting q(t,x) = cSCi (t,x),
qΩ(t,x) = κSCi (cSC(t,x)) and qΓ(t,x) = DSCi ∇cSCi (t,x) in Equation (2.11), it follows the
advection-diffusion-reaction equation in an ALE frame

∂

∂t
cSCi
∣∣
χ

+
(
u− uSCG

)
· ∇cSCi + cSCi ∇ · u−∇ · (DSCi ∇cSCi ) = κSCi (cSC),

∀t ≥ 0, ∀x ∈ ΩSC(t), ∀i = 1, . . . , nc,
(2.45)

where u is the material velocity the concentration cSCi (t,x) is transported with. The velocity
of the ALE observer is denoted as uSCG to avoid confusion with the ALE observer of the fluid
problem.

2.1.5.2 Governing equations

The governing equations of two special scalar transport problems are derived which describe
the scalar transport with a fluid flow (fluid-scatra) and the scalar transport within a deforming
structure (structure-scatra).

Scalar transport with fluid flow

The transport of concentrations cFSi (t,x) in the spatial fluid-scatra domain ΩFS(t) ⊆ ΩF(t) is
driven by diffusion and advection with the fluid velocity uF . Using the same ALE observer as
the fluid problem (with ALE velocity uG), the incompressibility Equation (2.22) and dropping
the reactive term, the advection-diffusion-reaction Equation (2.45) yields the advection-diffusion
equation in an ALE frame describing the fluid-scatra problem on the spatial domain ΩFS(t):

∂

∂t
cFSi
∣∣
χ

+
(
uF − uG

)
· ∇cFSi −∇ · (DFSi ∇cFSi ) = 0, ∀i = 1, . . . , nc, (2.46)
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2.1 Single-field problems

where the fluid-scatra concentrations cFSi (t,x) are the primary unknowns. Dirichlet and Neumann
boundary conditions of the fluid-scatra problem prescribe given concentrations cFSi,D(t,x) on the
spatial boundary ΓFSD (t)

cFSi = cFSi,D (2.47)

and given diffusive influxes qFSN (t,x) through the spatial boundary ΓFSN (t)

−DFSi ∇cFSi · nFSN = qFSN , (2.48)

respectively.

Remark. At first glance, a more intuitive definition of the Neumann boundary condition would be
an advective and diffusive flux condition:

(
cFSi

(
uF − uG

)
−DFSi ∇cFSi

)
·nFSN = qFSN . However,

by this definition, a zero-Neumann condition would prevent any flux through the Neumann
boundary and special boundary conditions would be required at fluid outflux boundaries, where
the scalar quantity is supposed to leave the domain together with the fluid. Further, both definitions
are equivalent at regions, where a no-slip boundary condition is prescribed on the fluid, i.e.,
where uF = uG .

Scalar transport within deforming structure

The transport of concentrations cFSi (t,x) in the spatial structure-scatra domain ΩSS(t) ⊆ ΩS(t)
is driven by diffusion, reaction and advection due to the deformation of the structure (with
velocity uS). As the structure-scatra domain ΩSS(t) deforms with the structure domain ΩSt (t),
the natural choice for the ALE observer of the structure-scatra problem is given by the structure
problem (with ALE velocity uS). Hence, the advection-diffusion-reaction Equation (2.45) yields
the diffusion-reaction equation in an ALE frame describing the structure-scatra problem on the
spatial domain ΩSS(t):

∂

∂t
cSSi
∣∣
χ

+ cSSi ∇ · uS −∇ ·
(
DSSi ∇cSSi

)
= κSSi (cSS), ∀i = 1, . . . , nc, (2.49)

where the structure-scatra concentrations cSSi (t,x) are the primary unknowns. Dirichlet boundary
conditions prescribe given concentrations cSSi,D(t,x) on the spatial boundary ΓSSD (t)

cSSi = cSSi,D, (2.50)

whereas Neumann boundary conditions prescribe given diffusive influxes qSSN (t,x) through the
spatial boundary ΓSSN (t)

−DSSi ∇cSSi · nSSN = qSSN . (2.51)

2.1.6 Porous medium fluid and scalar transport

The governing equations that describe the fluid flow and scalar transport within a porous medium
are briefly presented in this section. For an introduction to porous media problems and a derivation
of their governing equations, see the textbooks by Bear and Bachmat [14], Coussy [51] or
Formaggia et al. [85] or the thesis by Vuong [275].
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porosity Φ
homogenization

ΩPS ′
Mic

ΩP = ΩPF = ΩPS ′
homogenized porous-mediummicroscopic porous-medium

ΩP = ΩPF
Mic ·∪ ΩPS ′

Mic

ΩPF
Mic

Figure 2.3 Schematic overview of homogenization of porous media. The microscopic porous
media fluid phase ΩPFMic and microscopic porous media solid phase ΩPS

′

Mic within the porous
media domain ΩP = ΩPFMic ∪· ΩPS

′

Mic are homogenized to the (homogenized) porous media fluid
domain ΩPF and (homogenized) porous media structure domain ΩPS

′
.

2.1.6.1 Fundamentals

A saturated porous medium is a body that consists of a solid phase with pores that are filled with
a fluid. In this thesis, only porous media are considered where the fluid and solid phases are fine-
grained such that a sharp distinction between the phases is only possible on the microscopic scale.
However, the microscopic scale is not resolvable from a computational perspective. Therefore,
the microscopic structure of porous media consisting of the fluid phase ΩPFMic and solid phase ΩPS

′

Mic

in the porous media domain ΩP = ΩPFMic ∪· ΩPS
′

Mic is homogenized to the macroscopic porous media
fluid domain ΩPF = ΩP and porous media structure domain ΩPS

′
= ΩP . The local microscopic

fraction of the fluid phase is represented by the porosity φ which considers only the interconnected
parts of the fluid phase which are accessible to the microscopic porous media fluid. After the
homogenization, a differentiation between the two phases is no longer possible, nor is it required.
An illustration of the homogenization of porous media is given in Figure 2.3.

In this thesis, the deformation of the homogenized porous medium structure is not of particular
interest. Thus, the governing equations describing a porous medium structure are not stated
but can be found in the referenced literature. For completeness, however, the influence of a
potential porous medium structure to the porous medium fluid will be considered at first and
be neglected later on. Further, only the case of a temporal and spatial constant porosity φ is
considered. Additional to the mechanics of porous media, the scalar transport of concentrations
with the porous media fluid is considered, similar to Section 2.1.5.

Both, the porous media fluid and scalar transport are described in terms of an ALE observer. As
the spatial porous media fluid and scalar transport domains ΩPF(t) and ΩPS(t) deform as the
spatial porous medium structure domain ΩPS

′
(t), the natural choice for their ALE observers is

given by the porous medium structure problem (with ALE velocity uPS
′
). All quantities and
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2.1 Single-field problems

parameters that are related to the porous media fluid, structure and scalar transport are indicated
by the superscripts PF , PS ′ and PS , respectively.

2.1.6.2 Governing equations

In the following, the governing equations that describe a porous medium fluid (poro-fluid) and
the scalar transport with a porous medium fluid flow (poro-scatra) are stated.

Porous medium fluid

The velocity uPF of the poro-fluid is assumed to be quasi-stationary and driven purely by the
poro-fluid pressure pPF . Hence, it can be described by the stationary Darcy’s law on the spatial
domain ΩPF (t):

φ
(
uPF − uPS′

)
=
KPF

µPF
(
−∇pPF + bPF

)
, (2.52)

where KPF and µPF are the Darcy permeability and the dynamic viscosity of the poro-fluid,
respectively. Here, uPF is the fluid intrinsic volume-averaged velocity which corresponds to the
microscopic poro-fluid velocity uPFMic (in ΩPFMic) locally averaged over the fluid phase ΩPFMic. Analog,
uPS

′
is the structure intrinsic volume-averaged velocity which corresponds to the microscopic

velocity uPS
′

Mic (in ΩPS
′

Mic ) of the porous medium structure locally averaged over the structure phase
ΩPS

′

Mic .

Additionally, the conservation of mass of the poro-fluid is required. The continuum mechani-
cal equivalent of the conservation of mass reads similar to the case of a pure fluid (cf. Equa-
tion (2.13)):

∂

∂t
φ
∣∣
χ

+
(
uPF − uPS′

)
· ∇φ+ φ ∇ · uPF = 0, (2.53)

Considering a constant material porosity φ(t,X) = const, the continuum mechanical equivalent
of the conservation of mass of the porous medium fluid reads analog to the incompressibility
equation of a pure fluid (cf. Equation (2.22)):

∇ · uPF = 0. (2.54)

Assuming a fixed porous medium structure, i.e., uPS
′

= 0, taking the divergence of Equa-
tion (2.52) and using Equation (2.54) yields a Poisson-like equation for the poro-fluid problem on
the fixed spatial domain ΩPF :

−∇ ·
(
KPF

φµPF
∇pPF

)
= −K

PF

φµPF
∇ · bPF , (2.55)

where the porous medium fluid pressure pPF is the primary unknown. Dirichlet boundary condi-
tions prescribe given pressures pPFD (t,x) on the spatial boundary ΓPFD

pPF = pPFD , (2.56)
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whereas Neumann boundary conditions prescribe given volume influxes qPFN (t,x) through the
spatial boundary ΓPFN

−K
PF

φµPF
∇pPF · nPFN = qPFN . (2.57)

Remark. More sophisticated porous media flow models, such as the generalized Darcy’s law or
the Darcy-Brinkmann equation exist, see for example the textbook by Bear and Bachmat [14].
However, for the purpose of this thesis, the stationary Darcy’s law is sufficient to describe the
porous media flow within artery walls.

Scalar transport with porous medium fluid

On the microscopic scale, the microscopic concentrations cPSMic,i (i = 1, . . . , nc) are transported
only with the poro-fluid located in the fluid phase ΩPFMic of the porous medium. Hence, the balance
of mass for the microscopic concentrations cPSMic,i reads analog to Equation (2.43), but with an
integration over the fluid phase ΩPFMic. The governing equations for the fluid intrinsic volume-
averaged concentrations cPSi (i.e., the concentrations cPSMic,i locally averaged over the fluid phase
ΩPFMic) on the deformable spatial domain ΩPS(t) read

φ
∂

∂t
cPSi
∣∣
χ

+ φ KPSi

(
uPF − uPS′

)
· ∇cPSi −∇ · (φDPSEff,i∇cPSi ) = φ κPSi

(
cPS

)
, (2.58)

where DPSEff,i is the effective diffusion coefficient as observable on the macroscopic scale. The
reduction of the advective transport by the collision of the transported quantity with the solid
phase of the porous medium is taken into account by the introduction of the hindrance coeffi-
cient 0 ≤ KPSi ≤ 1.

Using Equation (2.54) and taking the assumptions of a fixed porous medium structure with
constant material porosity φ leads to a similar result as Equation (2.45) called the porous medium-
advection-diffusion-reaction equation describing the poro-scatra problem on the fixed spatial
domain ΩPS :

∂

∂t
cPSi + ∇ ·

(
KPSi cPSi uPF

)
−∇ ·

(
DPSEff,i∇cPSi

)
= κPSi

(
cPS

)
, ∀i = 1, . . . , nc. (2.59)

The primary unknowns of the poro-scatra problem are the volume-averaged concentrations cPSi .
Dirichlet boundary conditions prescribe given concentrations cPSi,D(t,x) on the spatial bound-
ary ΓPSD

cPSi = cPSi,D , (2.60)

whereas Neumann boundary conditions prescribe given advective and diffusive fluxes qPSN (t,x)
through the spatial boundary ΓPSN

(
KPSi cPSi uPF −DPSEff,i∇cPSi

)
· nPSN = qPSN . (2.61)
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ΓN

ΓI

ΓD

ΩF ,ΩG,ΩFS

ΩS ,ΩSS ,ΩPF ,ΩPS

Figure 2.4 Schematic overview of domains (fluid ΩF , ALE ΩG , fluid-scatra ΩFS , structure ΩS ,
structure-scatra ΩSS , poro-fluid ΩPF and poro-scatra ΩPS) and boundaries (Dirichlet ΓD, Neu-
mann ΓN and interaction ΓI) of surface coupled and volume coupled multiphysics problems.

2.2 Multiphysics problems

The modeling of early atherosclerosis in this thesis involves the coupling of multiple physics
introduced in the previous Section 2.1. In this section, the relevant multiphysics problems and
their couplings are briefly presented.

In general, there are two different classes of coupled problems - surface coupled and volume
coupled problems. Surface coupled problems involve two or more subproblems which share a
joint boundary denoted as the interaction boundary ΓI. For surface coupled problems, the coupling
between the subproblems is solely in terms of coupling conditions on the interaction boundary ΓI.
Additional to the coupling condition on ΓI, each subproblem still may have respective boundary
conditions prescribed on its Dirichlet and Neumann boundaries ΓD and ΓN, respectively. Together,
the Dirichlet boundary ΓD, Neumann boundary ΓN and interaction boundary ΓI form a disjunct
partition of the respective domain boundary Γ, i.e., Γ = ΓD ∪· ΓN ∪· ΓI.

In contrast, volume coupled problems involve two or more subproblems which share a joint
domain. Volume coupled subproblems interact by couplings on the joint domain. Examples for
surface and volume coupled multiphysics problems in this thesis are fluid-structure interaction,
multi-field scalar transport, fluid-structure-scalar transport interaction or porous medium fluid-
scalar transport interaction problems which are introduced in the following section. A schematic
overview of the arrangement of relevant domains and boundaries of surface and volume coupled
multiphysics problems in this thesis is given in Figure 2.4.

2.2.1 Fluid-structure interaction

Fluid-structure interaction (FSI) problems are common examples for multiphysics problems. For
a schematic overview of the arrangement of the domains and boundaries of the involved fluid,
structure and ALE subproblems, see Figure 2.4.
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Detailed reviews on fluid-structure interaction problems can be found in the textbooks by Bazilevs
et al. [13] or Formaggia et al. [85] or in the theses by Küttler [158], Mayr [192] or Wall [278].

2.2.1.1 ALE subproblem

The numerical treatment of the physical two-field FSI problem, requires to solve a computational
three-field problem as the fluid problem introduced in Section 2.1.3 is formulated in an ALE
fashion to respect the deformation of the fluid domain ΩF(t) over time t. It is convenient to think
of the introduced (fluid) ALE subproblem on the material ALE domain ΩG0 as the underlying grid
of the discretized fluid problem. Hence, the motion of the ALE observer has to be chosen such
that it captures the deformation of the fluid domain ΩF(t), i.e., such that ΩG(t) = ΩF(t).

In this thesis, the motion of the ALE observer is described as a quasi-elastostatic hyperelastic
pseudo-structure on the domain ΩG0 with a neo-Hookean strain-energy density function ΨG [122]
as constitutive law. It is governed by the stationary version of the structure problem as described
in Section 2.1.4. The governing equations of the ALE subproblem on the material domain ΩG0
read

−∇0 ·
(
F GSG

)
= 0, (2.62)

where F G = 1 + ∇0d
G , CG =

(
F G
)T
F G and SG = 2 ∂

∂CG
ΨG
(
CG
)

are the deformation
gradient, the right Cauchy-Green tensor and the second Piola-Kirchhoff stress tensor of the
ALE subproblem, respectively. The ALE displacement field dG is the primary unknown of the
ALE subproblem. The Dirichlet and Neumann boundaries of the ALE subproblem coincide with
the Dirichlet and Neumann boundaries of the fluid subproblem, i.e., ΓGD = ΓFD and ΓGN = ΓFN .
Zero-displacements and zero-tractions are prescribed on the Dirichlet boundary ΓGD and Neumann
boundary ΓGN, respectively.

The fluid subproblem is volume coupled to the ALE subproblem by the ALE velocity field uG in
the Navier-Stokes Equations (2.21). Further, all three subproblems - the fluid, structure and ALE
subproblem - are surface coupled by the FSI coupling conditions.

Remark. The task of the ALE observer model is to enable a smooth and mesh quality preserving
computational approach for the extension of the ALE displacements from its domain bound-
aries ΓG to its full domain ΩG0 . The proposed approach of a pseudo-structure is just one possible
choice to do so and other approaches, such as by springs, laplacian or bilaplacian approaches
exist, cf. [192] or [295] and references therein. An advantage of the chosen pseudo-structure
approach is that the implementation required to solve the structure problem can be reused. Further,
the pseudo-structure approach offers a large flexibility by the particular choice for an appropriate
constitutive law and its parameters which gives the opportunity to preserve the mesh quality at
regions where the mesh is especially vulnerable, e.g., at thin fluid boundary layers.
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2.2.1.2 Coupling conditions

The fluid, structure and ALE subproblems are surface coupled by the FSI coupling conditions
prescribed on the interaction boundary ΓI = ΩF ∩ΩS ∩ΩG . The FSI coupling conditions enforce
the kinematic continuity of the three fields by a Dirichlet-like conditions on the fluid interaction
boundary ΓFI

uF = uG (2.63)

and a Dirichlet-like conditions on the ALE interaction boundary ΓGI

dG = dS . (2.64)

Taking the derivative of Equation (2.64) with respect to time leads to the (in the continuous
regime) equivalent conditions for the kinematic continuity between the fluid, structure and ALE
subproblems:

uF = uG = uS . (2.65)

The third FSI coupling condition is in fact well-known as Newton’s third law – actio=-reactio.
It ensures the equilibrium of forces by a Neumann-like condition on the structure interaction
boundary ΓSI

σSnSI = −σFnSI . (2.66)

In subsequent discussions, the ALE subproblem is dropped, as it is required only to computation-
ally treat the deforming fluid subproblem and does not possess a physical relevance on its own.
Hence, in the following FSI problems will be seen as surface coupled problems of ALE-fluids
and structures coupled solely by the FSI coupling conditions (2.65) and (2.66).

Remark. The FSI coupling conditions were presented as a Dirichlet-To-Neumann scheme [158,
159], which has been chosen for simplicity. However, other impositions of the FSI coupling
conditions are possible [160], which can be derived by using the in the continuous regime
equivalent formulations in Equation (2.65). However, the different formulations gained by using
Equation (2.65) might differ, depending on the chosen temporal discretization [193].

2.2.2 Fluid-structure-scalar transport interaction

The multiphysics model for atherosclerosis in this thesis is a fluid-structure-scalar transport
interaction (FSSTI) problem bringing together the previously introduced FSI problem and a
multi-field scalar transport problem that is subsequently denoted as (fluid-scatra)-(structure-
scatra) interaction (S2I) problem. The interaction of the two scalar problems is governed by the
Kedem-Katchalsky equations. For a schematic overview of the arrangement of the domains and
boundaries of the involved subproblems, see Figure 2.4.

Further information on FSSTI problems can be found in the publications by Coroneo et al. [50],
Thon et al. [266] or Yoshihara et al. [297]. A derivation and details on the Kedem-Katchalsky
equations are given in the textbooks by Formaggia et al. [85] or Katchalsky and Curran [147] or
the publication by Kedem and Katchalsky [148].
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2.2.2.1 Kedem-Katchalsky equations

The equations of Kedem and Katchalsky were developed in 1958 to describe the transport of
non-electrolyte solutions through semi-permeable membranes [148]. The Kedem-Katchalsky
equations describe the volume flux JVol and solute flux JSol,i through semi-permeable membranes
in dependency of the hydraulic pressure gradient ∆p, the osmotic pressure gradient ∆π and
the solute concentration gradient ∆ci across the membrane. In their practical form, the Kedem-
Katchalsky equations read

JVol = Lp (∆p− σD,i∆π) ,

JSol,i = Pi∆ci + (1− σF,i)ciJVol,
(2.67)

where the constants Lp and Pi are the hydraulic conductivity and the diffusive permeability
of solute i. The osmotic reflection coefficient 0 ≤ σD,i ≤ 1 and filtration reflection coeffi-
cient 0 ≤ σF,i ≤ 1 are employed to account for the effects of the osmotic pressure and the
selective rejection of solutes by the membrane. The average concentration of the solute i within
the membrane is denoted by ci.

The osmotic pressure gradient ∆π can be estimated by Van’t Hoff’s law: ∆π = RT∆ci, where
R and T are the gas constant and absolute temperature. In many applications, concentrations
and temperatures are rather low such that the osmotic pressure gradient ∆π is minor by orders
compared to hydraulic pressure gradient ∆p. Hence, the osmotic volume flux is frequently
dropped decoupling the volume flux JVol from the solute flux JSol,i.

In the most general context of this thesis, the membranes correspond to the interaction bound-
ary ΓI that connects the fluid-scatra and poro-scatra problems. Therefore, the hydraulic pressure
gradient ∆p and the solute concentration gradient ∆c across ΓI are given by

∆p = pF − pPF ,
∆ci = cFSi − cPSi .

(2.68)

The average concentration c within the membrane is estimated by the weighted arithmetic average
given by

ci = ωic
FS
i + (1− ωi)cPSi , (2.69)

where 0 ≤ ωi ≤ 1 is the weighting factor of the two concentrations cFSi and cPSi at the two sides
of the membrane ΓI. Together, Equation (2.67), (2.68) and (2.69) yield the Kedem-Katchalsky
equations used in this thesis to describe the membrane transport between the fluid-scatra and
poro-scatra problems:

JVol = Lp
(
pF − pPF

)
︸ ︷︷ ︸

volume flux

JSol,i = Pi
(
cFSi − cPSi

)
︸ ︷︷ ︸

diffusive solute flux

+ (1− σF,i)(ωic
FS
i + (1− ωi)cPSi )JVol︸ ︷︷ ︸

advective solute flux

.
(2.70)

The solute flux JSol can be seen as a superposition of a diffusive and advective solute flux. In the
special case of a non-porous solid, the volume flux vanishes, i.e., JVol = 0, and hence does also
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the advective solute flux. Thus, the membrane transport between fluid-scatra and structure-scatra
problems is given by the diffusive solute flux of the Kedem-Katchalsky equations:

JSol,i = Pi
(
cFSi − cSSi

)
. (2.71)

Remark. Other averages, such as the arithmetic average or the logarithmic average [148] can
be used to estimate the average concentration c from the concentrations of both sides of the
membrane. The logarithmic average, however, is valid only for extreme thin membranes, cf. [85].
Thus, the weighted arithmetic average is used as it contains the arithmetic average as special
case.

2.2.2.2 Multi-field scalar transport

The S2I problem is a surface coupled problem that brings together the advective and diffu-
sive scalar transport with a fluid and the diffusive and reactive scalar transport in the struc-
ture as described in Section 2.1.5. The (fluid-scatra)-(structure-scatra) interaction boundary
ΓI = ΩFS ∩ ΩSS of the S2I problem is treated as a transport barrier which leads to a significant
discontinuity between the concentrations on the fluid-scatra and structure-scatra sides of ΓI. In
many cases, the interaction boundary ΓI is treated as a semi-permeable membrane described
by the simplified Kedem-Katchalsky Equation (2.71). Even if otherwise treated, let JSol,i denote
the diffusive flux of concentration ci (i = 1, . . . , nc) through ΓI. Then, the Neumann-like S2I
coupling condition on the fluid-scatra interaction boundary ΓFSI reads

−DFSi ∇cFSi · nFSI = −JSol,i(c
FS
i , cSSi ), (2.72)

whereas on the structure-scatra interaction boundary ΓSSI the negative of the diffusive flux JSol,i

is prescribed:

−DSSi ∇cSSi · nSSI = JSol,i(c
FS
i , cSSi ). (2.73)

2.2.2.3 Couplings

The FSSTI problem is a volume and surface coupled multiphysics problem that brings together
the FSI and S2I problems introduced beforehand. Besides the surface couplings of the FSI and S2I
problems (cf. Sections 2.2.1.2 and 2.2.2.2), there are inherent FSI to S2I volume couplings by the
advection with the fluid and the choice of the (fluid) ALE and structure subproblems as ALE ob-
servers of the fluid-scatra and structure-scatra subproblems, respectively. In this thesis, there also
is a back-coupling from the S2I to the FSI problems due to scalar dependencies of the growth de-
formation gradient F SGr(c

SS) (cf. Section 2.1.4.3) and the strain-energy density function ΨS(cSS)
of the structure which will be described in detail in Sections 4.1.1.4 and 4.1.1.5.
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2.2.3 Porous medium fluid-scalar transport interaction

Another multiphysics problem considered in this thesis is the volume coupled porous medium
fluid-scalar transport interaction (PFSTI) problem that brings together the poro-fluid and poro-
scatra subproblems as introduced in Section 2.1.6.2. As the underlying porous medium structure
was assumed to be undeformeable, the PFSTI problem can be seen as a simplification of a full
porous medium subproblem coupled to a poro-scatra subproblem. For a schematic overview of
the arrangement of the domains and boundaries of the involved subproblems, see Figure 2.4.

Related models can be found in the thesis by Vuong [275] or the publications by Koshiba et
al. [152], Prosi et al.[221], Yang et al. [294] or others [1, 29, 45, 146, 210, 255, 267].

Couplings

As the concentrations are transported with the porous medium fluid, the poro-scatra subproblem
is inherently volume coupled to the poro-fluid subproblem. Additionally, there is a poro-fluid to
poro-scatra surface coupling by the Kedem-Katchalsky equations (2.70) as the solute flux JSol,i of
concentration ci (i = 1, . . . , nc) depends on the volume flux JVol. The volume flux JVol is applied
as Neumann-like boundary condition to the poro-fluid interaction boundary ΓPFI

−K
PF

φµPF
∇pPF · nPFI = JVol(p

PF) (2.74)

whereas the solute flux JSol,i of concentration ci is applied as Neumann-like boundary condition
to the poro-scatra interaction boundary ΓPSI :

(
KPSi cPSi uPF −DPSEff,i∇cPSi

)
· nPSI = JSol,i(c

PF
i , pPF). (2.75)
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3 Computational approaches

In this chapter, a brief overview of computational aspects required to numerically solve the
single-field and multiphysics problems presented in the previous Section 2 is given. More ex-
tensive reviews on the presented aspects can be found in the literature and will be referenced
at the beginning of the individual sections. All implementations were done in the multiphysics
framework BACI [277].

3.1 Single-field problems

Before the single-field and multiphysics problems are discretized in time and space in terms of
the finite element method and one-step-θ scheme, their weak formulations must be established.

A detailed overview of the finite element method and other computational aspects can be found
in the textbooks by Larson and Bengzon [163] or Zienkiewicz et al. [302]. The textbooks by
Hughes [129], Wriggers [291] or Zienkiewicz et al. [301] deal with the specific finite element
treatment of structure problems, whereas details on the finite element treatment of transport
problems can be found in the textbooks by Brezzi and Fortin [20], Donea and Huerta [67] or
Zienkiewicz et al. [303] or the exhaustive monograph by Kuzmin [161].

3.1.1 Weak formulations

The weak formulations of the single-field problems are established from their governing equations
as presented in Section 2.1.

3.1.1.1 Fluid

The weak formulation of the fluid problem governed by the incompressible Navier-Stokes equa-
tions is established from its strong formulation as described in Section 2.1.3.3. For both primary
unknowns – the fluid velocity uF and fluid pressure pF – the establishment of the weak from
requires the definition of appropriate solution spaces SuF and SpF :

SuF =
{
uF ∈

(
H1(ΩFt )

)3
∣∣∣ uF = uFD on ΓFD

}
,

SpF =
{
pF ∈ L2(ΩFt )

}
,

(3.1)

41



3 Computational approaches

where L2(ΩF) and H1(ΩF) denote the usual Sobolev spaces on ΩF . The trial spaces TuF and
TpF equal the corresponding solution spaces, but with homogenized Dirichlet conditions:

TuF =
{
δuF ∈

(
H1(ΩFt )

)3
∣∣∣ uF = 0 on ΓFD

}
,

TpF =
{
δpF ∈ L2(ΩFt )

}
.

(3.2)

The weak formulation is derived by multiplying Equations (2.21) and (2.22) with the respective
testing functions δuF ∈ TuF and δpF ∈ TpF and integrating them over the fluid domain ΩF(t).
Further an integration by parts of the pressure and viscous terms is performed such that Neumann
boundary conditions can be employed as natural boundary conditions. Denoting the standard
L2-scalar products by with (•, •), the weak formulation of the fluid problem (F) reads: Find
uF ∈ SuF and pF ∈ SpF such that

(F) :





0 = rF :=
(
δuF , %F ∂

∂t
uF
∣∣
χ

)
ΩF (t)

+
(
δuF , %F

((
uF − uG

)
·∇
)
uF
)

ΩF (t)

−
(
∇ · δuF , pF

)
ΩF (t)

+
(
∇δuF , 2µF(uF)εF(uF)

)
ΩF (t)

−
(
δuF , tFN

)
ΓFN (t)

−
(
δuF , bF

)
ΩF (t)

+
(
δpF ,∇ · uF

)
ΩF (t)

,

(3.3)

for all δuF ∈ TuF and δpF ∈ TpF . rF denotes the weak residual of the fluid problem.

Remark. The solution and trial spaces as well as the weak formulations depend on time t.
However, this was neglected in the notation to keep it easy and comprehensible. Throughout this
thesis, it is always assumed that all quantities are sufficiently smooth in time.

3.1.1.2 Structure

The weak formulation of the structure problem is established from its strong formulation as
described in Section 2.1.4.4. Therefore, the solution space SdS and trial space TdS for the
structure displacement field dS read

SdS =
{
dS ∈

(
H1(ΩS0 )

)3
∣∣∣ dS = dSD on ΓSD

}
,

TdS =
{
δdS ∈

(
H1(ΩS0 )

)3
∣∣∣ dS = 0 on ΓSD

}
.

(3.4)

The weak formulation is derived by multiplying Equation (2.39) with a testing function δdS ∈ TdS ,
an integration over the structure domain ΩS0 and an integration by parts of the stress term such
that Neumann boundary conditions can be employed as natural boundary conditions. The weak
formulation of the structure problem (S) reads: Find dS ∈ SdS such that

(S) :





0 = rS :=
(
δdS , %S0

d2

dt2
dS
)

ΩS0

+
(
∇0 δd

S ,F SSS
)

ΩS0

−
(
δdS ,T SN

)
ΓSN
−
(
δdS , bS0

)
ΩS0
,

(3.5)

for all δdS ∈ TdS . rS denotes the weak residual of the structure problem.

Remark. The ALE problem is treated as a stationary pseudo-structure, cf. Section 2.2.1.1. Thus,
the weak formulation (G) and the weak residual rG of the ALE problem read analog to the weak
formulation (S) and weak residual rS of the structure problem, respectively.
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3.1 Single-field problems

3.1.1.3 Scalar transport

The weak formulations of the fluid-scatra and structure-scatra problems are established from
their strong formulations as described in Section 2.1.5.2. The solution spaces ScFSi and ScSSi
and trial spaces TcFSi and TcSSi for the primary unknowns – all concentrations of the fluid-scatra
problem cFSi and the structure-scatra problem cSSi (i = 1, . . . , nc) – read

ScFSi =
{
cFSi ∈ H1(ΩFSt )

∣∣∣ cFSi = cFSi,D on ΓFSD

}
,

ScSSi =
{
cSSi ∈ H1(ΩSSt )

∣∣∣ cSSi = cSSi,D on ΓSSD

}
,

TcFSi =
{
δcFSi ∈ H1(ΩFSt )

∣∣∣ cFSi = 0 on ΓFSD

}
,

TcSSi =
{
δcSSi ∈ H1(ΩSSt )

∣∣∣ cSSi = 0 on ΓSSD

}
.

(3.6)

The weak formulation of the fluid-scatra problem is derived by multiplying Equation (2.46) with
the respective testing functions δcFSi ∈ TcFSi , their integration over the fluid-scatra domain ΩFS(t)
and taking their sum. An integration by parts of the advective and diffusive terms is performed
such that Neumann boundary conditions can be employed as natural boundary conditions. The
weak formulation of the fluid-scatra problem (FS) reads: Find cFSi ∈ ScFSi (i = 1, . . . , nc) such
that

(FS) :





0 = rFS :=
nc∑
i=1

((
δcFSi , ∂

∂t
cFSi
∣∣
χ

)
ΩFS(t)

+
(
δcFSi ,

(
uF − uG

)
· ∇cFSi

)
ΩFS(t)

+
(
∇δcFSi , DFSi ∇cFSi

)
ΩFS(t)

+
(
δcFSi , qFSN

)
ΓFSN (t)

)
,

(3.7)

for all δcFSi ∈ TcFSi .

The weak formulation of the structure-scatra problem is derived by multiplying Equation (2.49)
with the respective testing functions δcSSi ∈ TcSSi , their integration over the structure-scatra
domain ΩSS(t) and taking their sum. An integration by parts of the diffusive terms is performed
such that Neumann boundary conditions can be employed as natural boundary conditions. The
weak formulation of the structure-scatra problem (SS) reads: Find cSSi ∈ ScSSi , i = 1, . . . , nc
such that

(SS) :





0 = rSS :=
nc∑
i=1

((
δcSSi , ∂

∂t
cSSi
∣∣
χ

)
ΩSS(t)

+
(
δcSSi , cSSi ∇ · uS

)
ΩSS(t)

+
(
∇δcSSi , DSSi ∇cSSi

)
ΩSS(t)

+
(
δcSSi , qSSN

)
ΓSSN (t)

−
(
δcSSi ,κSSi (cSS)

)
ΩSS(t)

)
,

(3.8)

for all δcSSi ∈ TcSSi . rFS and rSS denote the weak residuals of the fluid-scatra and structure scalar
problems, respectively.

Remark. Even though the strong formulations of the fluid-scatra and structure-scatra problems
seem quite different, their weak formulations differ only in the advective and reactive term
and the choice of the ALE observer. Hence, both formulations can be solved within the same
computational scalar transport framework.
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3.1.1.4 Porous medium fluid and scalar transport

The weak formulations of the poro-scatra and poro-scatra problems are established from their
strong formulations as described in Section 2.1.6.2. The solution spaces SpPF and ScPSi and trial
spaces TpPF and TcPSi for their primary unknowns – the poro-fluid pressure pPF and poro-scatra
concentrations cPSi (i = 1, . . . , nc) – read

SpPF =
{
pPF ∈ H1(ΩPFt )

∣∣∣ pPF = pPFD on ΓPFD

}
,

ScPSi =
{
cPSi ∈ H1(ΩPSt )

∣∣∣ cPSi = cPSi,D on ΓPSD

}
,

TpPF =
{
δpPF ∈ H1(ΩPFt )

∣∣∣ pPF = 0 on ΓPFD

}
,

TcPSi =
{
δcPSi ∈ H1(ΩPSt )

∣∣∣ cPSi = 0 on ΓPSD

}
.

(3.9)

The weak formulation of the poro-fluid problem is derived by multiplying Equation (2.55) with
a testing functions δpPF ∈ TpPF , their integration over the poro-fluid domain ΩPF and an
integration by parts such that Neumann boundary conditions can be employed as natural boundary
conditions. The weak formulation of the poro-fluid (PF) problem reads: Find pPF ∈ SpPF such
that

(PF) :





0 = rPF :=
(
∇δpPF , KPF

φµPF
∇pPF

)
ΩPF

+
(
δpPF , qPFN

)
ΓPFN

+
(
δpPF , K

PF

φµPF
∇ · bPF

)
ΩPF

,
(3.10)

for all δpPF ∈ TpPF .

The weak formulation of the poro-scatra problem is derived by multiplying Equation (2.59) with
the respective testing functions δcPSi ∈ TcPSi , their integration over the poro-scatra domain ΩPS

and taking their sum. An integration by parts of the advective and diffusive terms is performed
such that Neumann boundary conditions can be employed as natural boundary conditions. The
weak formulation of the poro-scatra problem (PS) reads: Find cPSi ∈ ScPSi (i = 1, . . . , nc) such
that

(PS) :





0 = rPS :=
nc∑
i=1

((
δcPSi , ∂

∂t
cPSi
)

ΩPS
−
(
∇δcPSi , KPSi cPSi uPF

)
ΩPS

+
(
∇δcPSi , DPSEff,i∇cPSi

)
ΩPS

+
(
δcPSi , qPSN

)
ΓPSN

−
(
δcPSi ,κPSi

(
cPS

))
ΩPS

)
,

(3.11)

for all δcPSi ∈ TcPSi . rPF and rPS denote the weak residuals of the poro-fluid and poro-scatra
problems, respectively.

Remark. The weak formulation of Darcy’s law (PF) can be seen as a special case of the weak
formulation of the porous medium scalar transport problem (PS) by considering the poro-fluid
pressure pPF as a stationary, non-advective, non-reactive “concentration pPS” with effective
diffusion coefficient DEff,p = KPF

φµPF
. Doing so, the advection of the other concentrations with the

poro-fluid can interestingly be interpreted as chemotaxation, where ∇pPF is the chemoattractant.
Hence, the presented poro-fluid problem can be solved within a scalar transport framework.
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3.1 Single-field problems

3.1.2 Spatial discretization

The weak formulations of the single-field problems (F), (S), (G), (FS), (SS), (PF) and (PS)
are spatially discretized by means of the Galerkin finite element method with an equal-order
interpolation of all primary unknowns. As the finite element formulations of all single-field
problems read similar, the finite element method is presented in an abstract manner. Spatially
discrete quantities are indicated by the subscript (•)h

Following the standard procedure of the finite element method, the domain Ω(•) of each of the
single-field problems is approximated by n(•)

ele disjunct finite elements Ω
(•)
h,e, i.e.

Ω(•) ≈
n

(•)
ele⋃
·

e=1

Ω
(•)
h,e , (3.12)

which are spanned by n(•)
node distinct nodes. Trilinear Lagrange polynomialsN (•)

k over the n(•)
node ele-

ment nodes are used as ansatz functions for the unknown primary variables
y ∈ {uF ; pF ;dS ;dG; cFS ; cSS ;uPF ; cPS} of the single-field problems, i.e.

y(t, ·) ≈
n

(•)
node∑

k=1

yh,k(t)N
(•)
k (·), (3.13)

where yh,k denotes the k-th entry of the vectors yh of nodal ansatz coefficients. Using the
n

(•)
node Lagrange polynomials N (•)

k also as test functions yields the spatially discrete but temporal
continuous, semi-discrete problem for the continuous ansatz coefficients yh(t), which can be
written as an initial value problem (IVP) of the form

(IVP) :

{
d
dt
yh(t)− fh(t,yh(t)) = 0,

yh(0) = yh,0.
(3.14)

Here, the initial condition is denoted by yh,0 and the nonlinear function fh corresponds to the
spatially discrete version of the weak formulation of the problem under consideration. The
integrals in the spatially discrete problem are numerically integrated by the application of the
Gauß quadrature rule.

To overcome numerical instabilities arising from the chosen equal-order finite element approxi-
mation of the fluid problem, residual-based stabilizations are applied. Namely, the Streamline-
Upwind Petrov-Galerkin (SUPG) [67], Pressure-Stabilized Petrov-Galerkin (PSPG) [130] and a
grad-div stabilization [57] are used. The stabilization parameters of the fluid problem are chosen
according to [10]. The advection dominated fluid-scatra problem is stabilized using the Galerkin
least-squares (GLS) method [67]. Additionally, the YZβ discontinuity-capturing method is ap-
plied [12, 145] to also stabilize steep concentration gradients occurring close to no-slip boundaries
of the fluid [161]. The stabilization parameter of the fluid-scatra problem is chosen according
to [47]. Further, additional backflow stabilizations on the Neumann boundaries ΓFN and ΓFSN of the
fluid and fluid-scatra problems are applied to deal with spontaneous backflows through Neumann
boundaries [106].
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Remark. The element nodes that belong to a Dirichtlet boundary Γ
(•)
D would have to be excluded

from the sum and explicitly dealt with in the approximation given by Equation (3.13). For details
on the rigorous inclusion of Dirichlet boundary condition in the finite element method, see the
textbooks by Donea and Huerta [67] or Hughes [129].

3.1.3 Temporal discretization

The temporal discretization of the initial value problem (IVP) is done by the one-step-θ scheme
which is a two-stage implicit Runge-Kutta method. The one-step-θ scheme results in an ap-
proximating sequence {ynh}n=0,1,...,nT

to the solution yh(t) of the time continuous initial value
problem (IVP) by successively finding the root of the nonlinear discrete residual rn+1

h of the
fluid:

rn+1
h (tn+1,yn+1

h ) := yn+1
h − ynh −∆t

(
θfh(tn+1,yn+1

h ) + (1− θ)fh(tn,ynh )
)

= 0, (3.15)

for each n = 0, 1, . . . , nT , where tn = n∆t and ynh = yh(tn). The (constant) time step size
is denoted by ∆t and nT time steps are performed. If not stated otherwise, the scheme coeffi-
cient θ = 1

2
is used such that the utilized method is equivalent to the Crank-Nicolson scheme

with a second-order accuracy. The one-step-θ scheme is implicit and therefore requires to use an
appropriate method to solve Equation (3.15) for the unknowns yn+1

h .

Remark. A detailed review of Runge-Kutta methods and their analysis can be found in the
textbooks by Butcher [28] or Lambert [162]. The one-step-θ scheme with θ = 1

2
is stable,

introduces no damping and is of second-order accuracy. As the one-step-θ scheme is implicit,
it is computationally expensive to solve for the unknowns yn+1

h . However, compared to other
implicit time integration schemes, the evaluation of the one-step-θ scheme is cheap, as it is a
two-stage method requiring only a single evaluation of fh for each evaluation of the discrete
residual rn+1

h when re-using the evaluation of fh(tn,ynh ) from the prior time step. Another suitable
time integration scheme would be the generalized-α scheme which allows for a user specified
damping of high-frequencies [44, 140].

3.1.4 Newton’s method

To find the root yn+1
h of the nonlinear discrete residual rn+1

h given by Equation (3.15) the Newton’s
method is applied. Hence, the linearized system

∂

∂y
rn+1

h (tn+1,y)
∣∣∣
y=yn+1

h,j

∆yn+1
h,j+1 = −rn+1

h (tn+1,yn+1
h,j )

⇒
(
1−∆tθ∇fh(tn+1,yn+1

h,j )
)

∆yn+1
h,j+1 = −yn+1

h,j + ynh + ∆t
(
θfh(tn+1,yn+1

h,j )

+ (1− θ)fh(tn,ynh )
)

(3.16)

must be solved for the update increment ∆yn+1
h,j+1 for each Newton step j = 0, 1, . . ., followed by

the incremental update

yn+1
h,j+1 = yn+1

h,j + ∆yn+1
h,j+1 (3.17)
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3.2 Multiphysics problems

until a convergence criteria is matched. In this thesis, Newton iterations are stopped if the 2-norm
of the discrete residual ‖rn+1

h (tn+1,yn+1
h,j )‖ and the 2-norm of the increment vector ‖∆yn+1

h,j+1‖
divided by the root of the number of degrees of freedom nDOF are below given error tolerances.

Solving Equation (3.16) for each Newton step i and each time step n requires an efficient method
for inverting the sparse, but nDOF × nDOF-dimensional matrix on the left-hand side. Therefore, a
parallel preconditioned generalized minimal residual method [234] with field-specific algebraic
multigrid preconditioning is used [235, 270]. An introduction into algebraic multigrid methods can
be found in the textbook by Briggs et al. [21] or in the theses by Mayr [192] or Wiesner [285].

3.2 Multiphysics problems

Multiphysics problems combine single-field subproblems by appropriate coupling conditions like
those presented in Section 2.2. Hence, the weak formulations of the single-field subproblems
and their numerical treatment as presented in the previous Section 3.1 can be reused when they
are enriched by the respective coupling conditions. For simplicity, it is assumed that surface and
volume coupled problems have matching grids such that the exchange of quantities between the
subproblems it straightforward. However, this assumption is not mandatory and can be dropped,
e.g., by using appropriate interpolation or projection methods, such as collocation or mortar
methods, see [15, 74, 150, 153, 288] and references therein.

To computationally solve multiphysics (and multi-field) problems, there are in general three
solution approaches – field elimination, monolithic and partitioned approaches [278]. In a field
elimination approach a continuous or discretized subproblem is analytically solved for its un-
knowns and its solution plugged into the coupling conditions. As a consequence, the subproblem
is eliminated and the size of the multiphysics problems is reduced. However, this approach is
generally restricted to simple subproblems where an analytical relation of the unknowns with
respect to the other subproblems can actually be derived.

A monolithic approach corresponds to the idea of applying Newton’s method (cf. Section 3.1.4)
to the full multiphysics problem. Hence, the individual single-field subproblems as well as their
couplings are solved simultaneously which in general leads to a fast converging and robust
approach. In practice, however, a monolithic approach must not always be the method of choice to
solve a multiphysics problem at hand. A monolithic approach requires to often solve the (linear)
monolithic system, i.e., the linearized system given by Equation (3.16) of the discretized full
multiphysics problems. The associated monolithic system matrix has a dimension corresponding
to at least the added up dimensions of the subproblems. To invert such a potentially high-
dimensional matrix, algebraic multigrid-preconditioned generalized minimal residual methods as
for the single-field problems can be employed. However, monolithic system matrixes which result
from multiphysics problems often have challenging block-structures such that problem-specific
algebraic multigrid block preconditioners are usually required [95, 273]. Therefore, a monolithic
approach in general involves sophisticate methods to solve the monolithic system and often comes
along with a challenging implementation.
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Partitioned approaches exploit the idea to solve multiphysics problems by a fixed-point iteration
of the subproblems. The most straightforward method of doing so is by an iteratively staggered
partitioned approach where each subproblem is successively solved and the other subproblems
updated until all couplings between the subproblems are resolved. Such an iteratively staggered
approach can be seen as a block Jacobi-like method applied to the monolithic system with
zero off-diagonal blocks. Thus, it is possible to fasten the convergence of iteratively staggered
partitioned approaches by utilizing relaxation methods, such as the Aitken ∆2 relaxation [137, 157].
Nevertheless, relaxed iteratively staggered approaches are usually outperformed by monolithic
approaches and may also come along with stability issues, such as the well studied added-mass
effect of FSI problems [32, 86, 87]. However, these drawbacks disappear in the case of one-way
or “loosely” coupled subproblems which are adequately addressed by a sequentially staggered
partitioned scheme. In a sequentially staggered scheme the subproblems are solved (and the
other subproblems updated) in a suitable order which respects their couplings. The strength of
partitioned approaches relies on their simplicity. They are relatively easy to implement as only
the coupling variables must be transferred between the (completely reusable) implementations of
the single-field subproblems. Further, smaller (but more) linear systems must be solved compared
to a monolithic approach. An illustration of the presented solution approaches for multiphysics
problems is given in Figure 3.1.

In the case of large multiphysics problems, such as FSSTI or PFSTI problems (Sections 2.2.2
and 2.2.3), all three approaches can be combined in a more or less arbitrary manner since
each subset of subproblems can be solved again by field elimination, monolithic or partitioned
approaches. An appropriate choice for the overall solving approach depends on the specific
multiphysics problem and is referred to as solution strategy.

In this section, the weak formulations and solution strategies for the multiphysics problems
presented in Section 2.2 are given. The numerical treatment of FSI problems is well studied and
the reader is referred to the textbooks by Bazilevs et al. [13] or Formaggia et al. [85] or the theses
by Förster [86], Küttler [158], Mayr [192] or Wall [278] for details. Further details on FSSTI
problems can be found in the publications by Thon et al. [266] or Yoshihara et al. [297].

3.2.1 Fluid-structure interaction

The numerical treatment of FSI problems as introduced in Section 2.2.1 is well studied and is
only briefly summarized in this section.

3.2.1.1 Weak formulation

The weak formulation of the FSI problem is established from the weak formulations (F), (S)
and (G) of the fluid, structure and ALE problems (Sections 3.1.1.1 and 3.1.1.2) enriched by
the FSI coupling conditions as described in Section 2.2.1.2. The kinematic continuity given
by Equation (2.64) is enforced weakly via a Lagrange multiplier field Λ which allows for an
interpretation of the Lagrange multiplier field as interface tractions. In this thesis, the arbitrary
choice of the Lagrange multiplier field Λ as the interface traction acting onto the structure side ΓSI
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subproblem 2

subproblem 1

tn tn+1

subproblem 2

subproblem 1

time

(a) Field elimination approach

subproblem 2

subproblem 1

subproblem 2

subproblem 1

tn tn+1 time

(b) Monolithic approach

subproblem 2

subproblem 1

tn tn+1 time

subproblem 2

subproblem 1

(c) Iteratively staggered partitioned approach

subproblem 2

subproblem 1

tn tn+1 time

subproblem 2

subproblem 1

(d) Sequentially staggered partitioned approach

Figure 3.1 Solution approaches for a multiphysics problem coupling two subproblems 1 and 2
(gray boxes). The arrows indicate the order of the solving of the subproblems, whereby dou-
ble arrows indicate that the subproblems are solved simultaneously. Dotted arrows indicate a
proceeding to the next time step.

of the interaction boundary is made. The solution and trial spaces SΛ and TΛ of the Lagrange
multiplier field Λ are given by

SΛ =

{
Λ ∈

(
H− 1

2 (ΓI)
)3
}
,

TΛ =

{
δΛ ∈

(
H− 1

2 (ΓI)
)3
}
.

(3.18)

The overall weak formulation of the FSI problem (FSI) reads: Find uF ∈ SuF , pF ∈ SpF ,
dS ∈ SdS ,dG ∈ SdG and Λ ∈ SΛ such that

(FSI) :





0 = rFSI,S := rS −
(
δdS ,Λ

)
ΓSI
,

0 = rFSI,F := rF +
(
δuF ,Λ

)
ΓFI
,

0 = rFSI,G := rG,

0 = rCoupl :=
(
δΛ,dS − dG

)
ΓSI
,

(3.19)

for all δuF ∈ TuF , δpF ∈ TpF , δdS ∈ TdS , δdG ∈ TdG and δΛ ∈ TΛ. rFSI,F , rFSI,S and rFSI,G

denote the weak residuals of the fluid, structure and ALE subproblems of the FSI problem, respec-
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tively. The vector of weak residuals of the FSI problem is denoted by
rFSI := [rFSI,S , rFSI,F , rFSI,G, rCoupl]

T .

3.2.1.2 Solution strategy

The numerical treatment of FSI problems by partitioned approaches is well studied. Partitioned
approaches can lead to inherent instabilities, such as the added-mass effect in case of unfa-
vorable density ratios [32, 87, 97] or the incompressibility dilemma in case of fully enclosed
incompressible fluids [160].

A peculiarity in cardiovascular mechanics is the similar density of fluid %F and structure %S which,
combined with the incompressibility of the fluid, leads to an increased computational effort of
partitioned approaches due to the added-mass effect [87]. Therefore, cardiovascular problems
are efficiently addressed by monolithic approaches [114, 157]. In this thesis, the monolithic FSI
formulation as described in detail in the publication by Mayr [193] is employed.

Monolithic FSI

Analog to the single-field problems, the weak formulation (FSI) of the FSI problem is spatially
and temporally discretized in terms of the finite element method and the one-step-θ scheme,
respectively. Applying Newton’s method (Section 3.1.4) to the discretized FSI problem, the mono-
lithic FSI problem to solve for the incremental structure displacements ∆dSh , fluid velocities ∆uFh ,
ALE displacements ∆dGh and Lagrange multipliers ∆Λh reads




∂
∂dSh
rFSI,Sh 0 0 ∂

∂Λh
rFSI,Sh

0 ∂
∂uFh

rFSI,Fh 0 ∂
∂Λh
rFSI,Fh

0 0 ∂
∂dGh
rFSI,Gh 0

∂
∂dSh
rCoupl

h 0 ∂
∂dGh
rCoupl

h 0




n+1

j




∆dSh
∆uFh
∆dGh
∆Λh




n+1

j+1

= −




rFSI,Sh

rFSI,Fh

rFSI,Gh

rCoupl
h




n+1

j

,

(3.20)

where n and j denote the time step and Newton step, respectively. To ease the notation the fluid
pressure was merged together with the fluid velocities. A structure-handled monolithic approach
is utilized where the nodal unknowns of the fluid interaction boundary ΓFI are condensed from the
monolithic system (3.20) [192]. The resulting monolithic system is solved by a preconditioned
generalized minimal residual method [234] with a FSI-specific block preconditioning based on
algebraic multigrid established by Gee et al. [95].
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3.2.2 Fluid-structure-scalar transport interaction

The numerical treatment of FSSTI problems as introduced in Section 2.2.2 is given in this
section.

3.2.2.1 Weak formulation

The weak formulation of the FSSTI problem is established from the weak formulations (FSI),
(FS) and (SS) of the FSI, fluid-scatra and structure scalar problems (Sections 3.2.1.1 and 3.1.1.3)
enriched by the S2I couplings as introduced in Section 2.2.2.2. The overall weak formula-
tion (FSST I) of the FSSTI problem reads: Find uF ∈ SuF , pF ∈ SpF ,dS ∈ SdS ,dG ∈ SdG ,
Λ ∈ SΛ and cFSi ∈ ScFSi , cSSi ∈ ScSSi (i = 1, . . . , nc) such that

(FSST I) :





0 = rFSI(cSS),

0 = rS2I,FS := rFS −
nc∑
i=1

(
δcFSi , JSol(c

FS
i , cSSi )

)
ΓFSI

,

0 = rS2I,SS := rSS +
nc∑
i=1

(
δcSSi , JSol,i(c

FS
i , cSSi )

)
ΓSSI

,

(3.21)

for all δuF ∈ TuF , δpF ∈ TpF , δdS ∈ TdS , δdG ∈ TdG , δΛ ∈ TΛ, δcFSi ∈ TcFSi and δcSSi ∈ TcSSi .
rS2I,FS and rS2I,SS denote the weak residuals of the fluid-scatra and structure-scatra subproblems
of the S2I problem, respectively.

3.2.2.2 Solution strategy

To efficiently solve the weak formulation (FSST I) of the FSSTI problem a suitable solution
strategy taking into account the specific couplings between the single-fields must be exploited.
As discussed in the previous Section 3.2.1, the FSI subproblem is addressed by a monolithic
approach due to the strong coupling between the fluid, structure and ALE subproblems by the
FSI coupling conditions. Analog, the S2I subproblem is solved monolithically too. In the context
of this thesis, the coupling of the S2I to the FSI subproblem is solely in terms of a structure-scatra
concentration-dependent growth and change of the constitutive equation of the structure. Both
processes take place on a much larger time scale compared to the time scale of the FSI subproblem
such that this coupling is just loosely and hence adequately addressed by a sequentially staggered
partitioned approach. Hence, the natural choice for solving the overall FSSTI problem in this
thesis is by a sequentially staggered scheme coupling the monolithic FSI with the monolithic S2I
subproblem.

Monolithic S2I

The weak formulation of the S2I subproblem is spatially and temporally discretized in terms of
the finite element method and the one-step-θ scheme, respectively. Applying Newton’s method
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(Section 3.1.4) to the discretized S2I subproblem, the monolithic S2I subproblem to solve for the
incremental concentrations of the fluid-scatra ∆cFSh and structure-scatra ∆cSSh reads [297]

(
∂

∂cFSh
rS2I,FS

h
∂

∂cSSh
rS2I,FS

h

∂
∂cFSh

rS2I,SS
h

∂
∂cSSh

rS2I,SS
h

)n+1

j

(
∆cFSh

∆cSSh

)n+1

j+1

= −
(
rS2I,FS

h

rS2I,FS
h

)n+1

j

, (3.22)

where n and j denote the time step and Newton step, respectively. The monolithic system (3.22)
is solved for the unknown step increments ∆cFSh and ∆cSSh by a preconditioned generalized
minimal residual method [234] with block Gauß-Seidel preconditioning that utilizes algebraic
multigrid for the approximated block inverses.

3.2.3 Porous medium fluid-scalar transport interaction

The numerical treatment of PFSTI problems as introduced in Section 2.2.3 is given in this
section.

3.2.3.1 Weak formulation

The weak formulation of the PFSTI problem is established from the weak formulations (PF)
and (PS) of the poro-fluid and poro-scatra subproblems (Sections 3.1.1.4) enriched by the PFSTI
couplings as introduced in Section 2.2.3. The overall weak formulation (PFST I) of the PFSTI
problem reads: Find pPF ∈ SpPF and cPSi ∈ ScPSi (i = 1, . . . , nc) such that

(PFST I) :





0 = rPF +
(
δpPF , JVol(p

PF)
)

ΓPFI
,

0 = rPS +
nc∑
i=1

(
δcPSi , JSol(c

PS
i , pPF)

)
ΓPSI

,
(3.23)

for all δpPF ∈ TpPF and δcPSi ∈ TcPSi .

3.2.3.2 Solution strategy

The poro-fluid subproblem can be embedded and solved in a multi-concentration scalar transport
framework (cf. remark in Section 3.1.1.4). Doing so, the PFSTI problem is monolithically solved
by the monolithic poro-scatra approach presented in Section 3.1.1.4. The weak formulations of
all subproblems are spatially and temporally discretized in terms of the finite element method and
the one-step-θ scheme, respectively.
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4 Multiphysics approach for
atherosclerosis

In the previous Chapters 2 and 3 abstract mathematical single-field and multiphysics problems
were derived from basic continuum mechanical principles and their numerical treatments were
addressed. In this chapter, the abstract FSSTI problem (see Section 2.2.2) is extended to a
multiphysics model of atherosclerosis which incorporates major processes of all time scales of the
disease and their interactions. Here, focus lies on the development of a predictive biomechanical
model of the short time scale cardiovascular mechanics and its influence to and from the long
time scale atherosclerotic processes. In contrast to the cardiovascular mechanics, however, little
focus lies on a quantitative modeling of the inflammatory and immunological processes within
the artery wall which will be addressed separately in the subsequent Chapter 5. Furthermore, the
advective transport within the artery wall by the transmural flow is neglected in this chapter and
will be addressed in Chapter 6.

In this chapter, a multiphysics model of the cardiovascular mechanics and the transport and
penetration of LDL is developed which includes a pulsatile blood flow, a compliant artery
wall, a WSS-dependent penetration of LDL and a growth and remodeling of the artery wall,
cf. Section 1.2. A simple phenomenological model of the inflammatory and immunological
processes is employed to represent the long time scale foam cell accumulation triggering a novel
growth and remodeling formulation for the artery wall. The developed model is calibrated to
and computationally solved for a murine-specific case reproducing important cardiovascular
quantities from the literature. Moreover, the case study is used to investigate the interlacement of
the different time scales. In particular, the question of the influence of pulsatile blood flow and
vessel compliance on the onset of atherosclerosis are addressed.

The structure of this chapter is as follows: In Section 4.1 the mathematical multiphysics model
for atherosclerosis is established. Section 4.2 gives further details on the numerical treatment of
the model. A murine-specific computational case study of the model is performed in Section 4.3,
where the convergence and validity of the results is evaluated and the consequences of common
model reductions are investigated. The computational results are discussed in Section 4.4 and
critically reflected in Section 4.5. Finally, a brief summary of this chapter is given in Section 4.6.
This chapter is a revised version of the previously published work by Thon et al. [266].
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4 Multiphysics approach for atherosclerosis

4.1 Multiphysics model

To reproduce the atherosclerotic process in a mathematical model, reasonable simplifications and
model assumptions have to be made.

Simplified model

The main interest of this chapter is to study the mechanobiological influence of the cardiovascular
mechanics driven by the hemodynamics on the atherosclerotic process and vice versa. In this
chapter, the following model assumptions based on key processes described in Section 1.1 are
considered for simplicity:

• The hemodynamics is governed by the pulsatile blood flow interacting with the elastic
artery wall.

• LDL molecules are transported by advection and diffusion in the lumen and solely by
diffusion in the artery wall.

• The initiator of the atherosclerotic inflammation is the migration of LDL through the
endothelium into the artery wall.

• The endothelium has an increased permeability with respect to LDL at regions of low wall
shear stresses.

• In the artery wall LDL triggers a series of inflammatory and immunological processes
which lead to the production of foam cells.

• The accumulation of foam cells in the artery wall leads to a thickening of the artery wall
with an induced change of its mechanical properties.

• The growth of the artery wall is considered to be stress free in the reference configuration.

The simplified model of atherosclerosis is mathematically represented by an extension of the
FSSTI problem as described in Section 2.2.2. Therein, Dirichlet and Neumann conditions have
to be specified such that the in vivo setup of atherosclerosis is matched as close as possible.
Further, a rheological and pressure model for blood, a constitutive, growth and remodeling law
for the artery wall, and penetration and reaction models for the inflammatory and immunological
processes have to be introduced. The multiphysics model is subdivided into a FSI submodel for
the cardiovascular mechanics (Section 4.1.1) and a S2I submodel for the transport and interaction
of species (Section 4.1.2). A schematic overview of the simplified model and the affiliation of its
main aspects to the submodels is given in Figure 4.1.
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LDL in the
artery walllumen

LDL in the
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Figure 4.1 Schematic overview of the simplified model of atherosclerosis and affiliation of its
main aspects to the submodels of the multiphysics model.

Domain overview

In the context of atherosclerosis in mice (cf. Section 1.1.8), a special focus lies on the aortic
sinus, aortic arch and its bifurcations where atherosclerotic plaques are commonly located [98, 99,
167, 185, 232]. Hence, the region of the aortic arch and its surrounding is considered as overall
computational domain Ω. The computational domain Ω can be subdivided into the domain of the
lumen and the domain of the artery wall. Within the lumen the computational domains of the
fluid ΩF , ALE observer ΩG and fluid-scatra ΩFS are located. Within the artery wall, the domains
of the structure ΩS and structure-scatra ΩSS are situated.

As introduced beforehand, the affiliation of a quantity (•) to the five computational domains is
placed as a superscript, i.e., the quantity is denoted by (•)F , (•)S , (•)G , (•)FS or (•)SS . Names of
quantities are indicated as subscript. Each computational domain contains an inlet boundary ΓIn

and nOut ≥ 1 outlet boundaries ΓOut,i, i = 1, . . . , nOut. The endothelium corresponding to the
fluid-structure interface and (fluid-scatra)-(structure-scatra) interface is denoted by ΓEnd. The
boundary connecting the outer artery wall with the surrounding tissue is denoted by ΓWall. A
schematic overview of the different domains and boundaries of the multiphysics model is given
in Figure 4.2.

4.1.1 Cardiovascular mechanics

The cardiovascular mechanics is commonly modeled by FSI methods [52, 62, 152, 197, 295], cf.
Section 2.2.1. Here, it is described by an incompressible non-Newtonian fluid (Section 4.1.1.1)
including embedded three-element Windkessel models (Section 4.1.1.2) coupled with a hyperelas-
tic solid undergoing finite deformations (Section 4.1.1.3) and a species concentration-dependent
anisotropic growth (Section 4.1.1.4) and change of its constitutive equation (Section 4.1.1.5).
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ΓOut,5

ΩS,ΩSS

ΩF ,ΩG,ΩFS

ΓOut,2 ΓOut,3 ΓOut,4ΓOut,1

ΓEnd ΓWall

ΓIn

Figure 4.2 Schematic overview of the domains and boundaries of the multiphysics FSSTI model:
fluid domain ΩF , structure domain ΩS , ALE observer domain ΩG , fluid-scatra domain ΩFS ,
structure-scatra domain ΩSS , inlet boundary ΓIn, outlet boundaries ΓOut,i (i = 1, . . . , 5), endothe-
lium boundary ΓEnd and outer artery wall boundary ΓWall.

4.1.1.1 Blood flow

Blood is modeled as an incompressible non-Newtonian fluid. Thus, the blood flow on the de-
formable domain ΩF(t) is governed by the incompressible Navier-Stokes equations in an ALE
frame, see Section 2.1.3:

%F
∂

∂t
uF
∣∣
χ

+ %F
(
(uF − uG) ·∇

)
uF +∇pF − 2µF(uF)∇ · εF

(
uF
)

= 0,

∇ · uF = 0.
(4.1)

Blood exhibits a shear-thinning property, i.e., a decrease of its viscosity when its strain-rate
increases [38, 43, 178]. The rheological Carreau-Yasuda model is used to account for the shear-
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thinning property of blood [4, 17, 43, 100]

µF(uF) = µF∞ +
µF0 − µF∞(

1 + (κF γ̇F(uF))b
F
)aF , (4.2)

where µF∞, µ
F
0 , κ

F , aF and bF are constants and γ̇F(uF) =
√

2 tr (εF(uF)2) is the shear-rate of
the fluid. On ΓFIn the following Dirichlet condition is applied

uF(t,x) = −QFIn(t) gF(t,x) nFIn, (4.3)

where the scalar-valued function gF(t,x) corresponds to the applied velocity profile and QFIn(t)
to the total volume influx. QFIn(t) is a TCycl-periodical function, to regard the pulsatile nature of
blood flow with a cardiac cycle duration of TCycl. The Windkessel effect of succeeding arteries
has to be accounted for to achieve a physiological range for the blood pressure pF . Therefore,
time varying pressures pFWK,i from the underlying Windkessel submodels (Section 4.1.1.2) are
applied as tractions on each of the outflow boundaries ΓFOut,i:

σFnFOut,i = −pFWK,i n
F
Out,i, (4.4)

where σF = −pF1 + 2µF
(
uF
)
εF
(
uF
)

is the Cauchy stress tensor of the fluid. On ΓFEnd the
FSI coupling condition is applied [193]

uF = uG, (4.5)

which enforces the kinematic continuity of the fluid and ALE submodels in combination with a
no-slip boundary condition on the fluid across the endothelium.

Remark. A non-Newtonian rheological model for the shear-thinning property of blood is an
important factor in hemodynamics [38]. However, a large variety of rheological models for the
shear-thinning property of blood exists, see [43, 142] and references therein. For a comparison
of Newtonian with different non-Newtonian viscosity models for blood, see [38, 100, 245, 293].
The Carreau-Yasuda model was chosen as it allows for a good approximation of the WSS at low
velocities [142]. Hence, as there is a large period with almost no inlet flux in the diastole of the
cardiac cycle, the Carreau-Yasuda model is well-suited to estimate the WSS in aortic arches. At
the same time, it is not as complex as other well-performing models, such as the Generalized
Power Law [142].

4.1.1.2 Blood pressure

To achieve a physiological pressure range of the fluid and to physiologically split the total flux to
the different bifurcations, separate three-element Windkessel submodels [139, 211, 281, 292] are
used on each of the outflow boundaries ΓFOut,i to determine the Windkessel pressures pFWK,i:

CFi
d

dt
pFWK,i(t) +

1

RFP,i
pFWK,i(t) = CFi R

F
C,i

d

dt
QFOut,i(t) +

(
1 +

RFC,i
RFP,i

)
QFOut,i(t), (4.6)
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where QFOut,i(t) =
∫

ΓFOut,i
uF(t) · nFOut,i ds is the current outflux through ΓFOut,i. The constants

RFC,i, R
F
P,i and CFi correspond to the characteristic resistance, peripheral resistance and artery

compliance of the successive artery network, respectively. They have to be fitted to the specific
case to produce physiologically meaningful results, see Section 4.3.1.

4.1.1.3 Artery wall

The artery wall is a multi-component structure that also contains a fluid phase [29, 267, 294].
Here, its mechanical response is modeled through an anisotropic hyperelastic material law [131],
while a movement of species within the artery tissue is still allowed, see Section 4.1.2.2. Hence,
the frequently used approach of modeling the artery wall as a solid [52, 59, 81, 152, 197] is used
which is governed by the balance of linear momentum on ΩS0 , see Section 2.1.4

%S0
d2

dt2
dS −∇ ·

(
F SSS(CS)

)
= 0. (4.7)

To incorporate the effect of the tissue surrounding the aorta, a spring and dashpot combination
on ΓSWall [179, 197] is applied:

F S SSNSWall = −kSWalld
S − cSWallu

S , (4.8)

where the constants kSWall and cSWall are the spring stiffness and dashpot viscosity of the surrounding
tissue, respectively. To respect the influence of the succeeding aortic tissue on all boundaries ΓSOut,i

sliding springs and dashpots acting only in the direction of the surface normal and allowing a free
movement in the boundary plane are applied:

F S SSNSOut,i = NSOut,i ·
(
−kSOutd

S − cSOutu
S)NSOut,i, (4.9)

where kSOut and cSOut are the spring stiffness and dashpot viscosity of the succeeding aortic tissue,
respectively. On the boundary ΓSIn, a zero displacement Dirichlet condition is applied. On ΓSEnd

the FSI coupling condition is applied [193]

σSnSEnd = hSEnd = −hFEnd = −σFnSEnd, (4.10)

which enforces the equilibrium of interface traction of the structure hSEnd and the fluid hFEnd across
the endothelium.

Remark. As stated beforehand, the discussion of the ALE submodel is dropped as it is required
only to computationally treat the deforming fluid submodel and does not possess a physical
relevance on its own. Details on the ALE submodel and further information on the FSI coupling
conditions can be found in Section 2.2.1.
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4.1.1.4 Growth

In addition to the elastodynamics, the non-elastic process of growth due to the accumulation of
foam cells in the atherogenesis [279] is considered. It is assumed that the growth of the artery
wall is stress free in the reference configuration [242] and hence a multiplicative split of the
deformation gradient F S of the structure into an elastic part F SEl and a growth part F SGr [3, 155] is
utilized, see Section 2.1.4.3.

The natural direction of growth is the luminal direction, as it is induced by the accumulation of
macrophages and other cells in the intima and the adjacent media. Furthermore, growth of the
aorta in the axial or circumferential direction would stretch collagen and elastin fibers within
the artery wall and hence introduce additional wall stresses. For a better understanding of the
theory of anisotropic growth, it is first assumed that the unit radial direction ra, the unit axial
direction ax and the unit circumferential direction ci are constants (an assumption that will be
dropped in the subsequent discussion). Hence, the following form of the growth deformation
gradient is postulated to enforce a growth of the artery wall in the radial direction ra and thus
toward the lumen [149]:

F SGr = ϑ(mSS) ra⊗ ra+ ax⊗ ax+ ci⊗ ci, (4.11)

where the scalar-valued function ϑ(mSS) is the growth factor and depends on the local concentra-
tion of the growth inducing concentration. In this chapter, this concentration is for simplicity the
density of macrophages mSS in the artery wall which are assumed to be foamy.

Remark. A more precise description for foam cells and its incorporation into the multiphysics
framework is given in Chapter 6. At this point a simple definition is chosen as this is in agreement
with the simplified model for the inflammatory and immunological processes utilized in this
chapter.

Since the set {ra,ax, ci} is an orthonormal basis of R3, Equation (4.11) can be simplified to

F SGr = 1 +
(
ϑ(mSS)− 1

)
ra⊗ ra, (4.12)

which now only depends on the unit radial direction ra. The model of the foam cells is described
in Section 4.1.2.2. For the computation of the growth factor ϑ(mSS), the idea is exploited that the
increase in volume ∆VGr(t) due to growth at all times t is proportional to the mass of foam cells
M(mSS(t)) at this time. Hence, it is asked for

∆VGr(t) = αSm M(mSS(t)), (4.13)

where αSm is the proportionality constant and corresponds to the amount of volume occupied by a
unit of foam cells, i.e., it is the inverse of the statistical mass density of foam cells. It follows

VGr(t)− V (0) = αSm M(mSS(t)), (4.14)

which can be expressed in terms of integrals over the corresponding domains
∫

ΩSGr(t)

1 dVGr −
∫

ΩS0

1 dV = αSm

∫

ΩS(t)

mSS(t) dv, (4.15)
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where dVGr, dV and dv denote an integration over the corresponding growth, material and spatial
configurations, respectively. All integrals can be pulled-back to the material configuration such
that

∫

ΩS0

JSGr(t) dV −
∫

ΩS0

1 dV = αSm

∫

ΩS0

JS(t)mSS(t) dV, (4.16)

where JSGr(t) = det
(
F SGr(t)

) (4.12)
= ϑ(mSS(t)) is the Jacobian of the growth deformation gradi-

ent F SGr(t) at time t. Since (4.16) also holds locally, a result similar to [149] is achieved:

ϑ
(
mSS(t)

)
= 1 + αSmJ

S(t)mSS(t). (4.17)

In an atherosclerosis specific setup the unit radial direction ra at time t is equal to the unit outer
normal nSEnd(t) of the deformed surface ΓSEnd(t). Hence, the radial direction does change due to
the hemodynamics and preceded growth. Thus, Equation (4.12) is not valid in an atherosclerotic
context and an incremental definition of the growth partF SGr of the deformation gradient [104, 149]
must be used. Let therefore t, τ be instances in time with τ < t, where in the interval [τ ; t]
the growth direction is assumed to be constant. Consequently, the growth part F SGr(t) of the
deformation gradient at time t is computed by

F SGr(t) = ∆F SGr(τ, t) F
S
Gr(τ), (4.18)

where F SGr(τ) is the growth history part of the deformation gradient at time τ and ∆F SGr(τ, t) is
the incremental growth deformation gradient from τ to t. The incremental growth deformation
gradient is computed by

∆F SGr(τ, t) = 1 +
ϑ(mSS(t))− ϑ(mSS(τ))

ϑ(mSS(τ))
nSEnd(t)⊗ nSEnd(t). (4.19)

This incremental growth deformation gradient corresponds to a growth of the structure in the
current radial directionnSEnd(t) by the factor (ϑ(t)−ϑ(τ))/ϑ(τ) compared to the state at time τ .

Remark. Iff the direction of growth is constant for all times t, the incremental growth deformation
gradient-based formulation, i.e., equations (4.18) and (4.19) are equivalent to the representation
in Equation (4.12).

4.1.1.5 Remodeling and constitutive laws

In the previous section, a growth model for the artery wall representing the increase of volume
due to the deposition of foam cells was derived. Along with growth also the change of mechanical
properties of the artery wall is considered since foam cells feature a very different mechanical
behavior compared to healthy aortic tissue. Thus, an increasing accumulation of foam cells mSS

locally and gradually changes the constitutive law of the structure toward the one of foam cells.
The strain-energy density function ΨS of the hyperelastic structure is therefore computed as a
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convex combination of the strain-energy density function ΨSAo of healthy aortic tissue and the
strain-energy density function ΨSFC of foam cells

ΨS = λ(mSS)ΨSAo + (1− λ(mSS))ΨSFC, (4.20)

where λ(mSS) ∈ ]0; 1] is the remodeling factor. It is a nonlinear function depending on the local
concentration mSS and describes the ratio between the two extrema. To be more precise, the
remodeling factor λ describes the fraction of volume of healthy aortic tissue compared to the
overall (grown) volume. Since the change of overall volume relative to the initial volume is given
by the growth factor ϑ(mSS), the remodeling factor is calculated by

λ(mSS) =
1

ϑ(mSS)

(4.17)
=

1

1 + αSmJ
SmSS

. (4.21)

Consequently, at a position without foam cells, i.e., mSS = 0 the remodeling factor is λ = 1
which corresponds to healthy aortic material. In contrast, a large amount of foam cells, i.e.,
mSS →∞ results in λ = 0 and hence in the mechanical properties that were assumed for foam
cells.

Since artery tissue is nearly incompressible [31, 64], an additive split for both strain-energy
functions into a volumetric and isochoric part [123, 208] is used. For the specific choices of the
volumetric parts ΨSVol, see [65, 207]. The artery wall can be seen as a ground material which is
reinforced by fibers representing the collagen and elastin fibers. Hence, for the isochoric part of
the healthy aortic tissue ΨSAo the four-fiber family model is used, see [78, 112, 131, 230]

ΨSAo =
cS0,Ao

2

(
ICS − 3

)
+

4∑

k=1

cS1,k
4cS2,k

(
e(c
S
2,k(($Sk )2−1)2) − 1

)
, (4.22)

where the constants cS0,Ao, c
S
1,k and cS2,k are aortic tissue specific material parameters. Here,

ICS = (JS)−2/3tr(CS) is the first modified invariant of the right Cauchy-Green deformation
tensorCS and $Sk is the stretch of the k-th fiber family, respectively. The stretch $Sk is calculated
by the total Cauchy-Green tensor CS , see [236], and hence by $Sk =

√
MT

k C
SMk where

Mk = [0, sin(δk), cos(δk)]
T is the direction of the k-th fiber represented in the coordinate system

spanned by the radial, axial and axes. The directions of the fibers are parameterized by the
orientation angles δS1 , δS2 , δS3 and δS4 , which are material specific constants.

The mechanical behavior of atherosclerotic plaques is more comparable to a fluid than to a
solid [182]. Therefore, a visco-hyperelastic Maxwell-like material, i.e., a spring and dashpot in
series like approach is utilized as constitutive equation of foam cells [115, 144, 203, 298]. The
relaxation time of the viscous dashpot is τSFC [203]. For the isochoric part of the strain-energy
density function ΨSFC a modified neo-Hookean law is used: [9]

ΨSFC =
cS0,FC

2

(
ICS − 3

)
, (4.23)

where the constant cS0,FC is a material specific parameter.
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Remark. A large variety of constitutive laws for healthy and atherosclerotic aortic tissues exists,
see [125, 230] and references therein. Here, the four-fiber family model is utilized as it respects
the complex, inhomogeneous and anisotropic structure of which the artery wall is build, cf.
Figure 1.1 or [123]. Further, the chosen constitutive law comes with a large variety of parameter
sets for different aortic regions and ages of humans which were gained by fits to experimental
results [230].

Remark. If more species induce a growth and remodeling of the artery wall, the presented
laws can be generalized in a straightforward manner. The growth factor ϑ defined in Equa-
tion (4.17) can be generalized to ϑ

(
cSS
)

= 1 + JS
∑

i α
S
i c
SS
i , where cSS is the vector of

concentrations cSSi of all growth inducing species i and αSi are the corresponding growth pa-
rameters. The generalization of the remodeling process governed by Equation (4.21) reads
ΨS = 1

ϑ(cSS)
ΨSAo + JS

ϑ(cSS)

∑
i α
S
i c
SS
i ΨSi , where the sum again is over all growth (and remodeling)

inducing species i.

4.1.2 Transport and interaction of species

All species are modeled by a continuum approach, i.e., they are described as concentrations.
The general framework of species in atherosclerosis model is given by the advection-diffusion-
reaction equation [29, 152, 177, 276], see Section 2.1.5. The transport of LDL in the lumen is
dominated by advection, whereas in the artery wall it is assumed to be solely driven by diffusion
(an assumption that is dropped in Chapter 6). In addition, species in the artery wall are produced
and degraded by a simplistic reaction model κκκSS for the inflammatory and immunological
processes. The complex heterogeneous structure of the artery wall is neglected and the fluid-wall
model [221, 305] is employed, where the endothelium is considered to be the only transport
barrier, cf. Section 1.2.1. The endothelium is treated as a semi-permeable membrane leading to a
significant discontinuity between the concentrations in the blood and in the artery wall. Thus, the
transport and interaction of species is modeled by a S2I method coupling the advection dominated
fluid-scatra (Section 4.1.2.1) and the diffusive and reactive structure-scatra (Section 4.1.2.2) in
terms of a WSS-dependent version of the Kedem-Katchalsky equation (Section 4.1.2.3).

4.1.2.1 Transport of LDL with blood flow

The transport of LDL with blood is modeled by the advection-diffusion equation in an ALE frame,
where the motion of the ALE observer is the same as for the fluid submodel, cf. Section 2.1.5.
Hence, the dynamics of the scalar-valued concentration `FS of LDL within the deformable
fluid-scatra domain ΩFS(t) is described by:

∂

∂t
`FS
∣∣
χ

+ (uF − uG) · ∇`FS −∇ ·
(
DFS` ∇`FS

)
= 0. (4.24)

On the inflow boundary ΓFSIn the concentration of LDL `FSIn is prescribed by a Dirichlet condi-
tion:

`FS = `FSIn . (4.25)
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On the outflow boundaries ΓFSOut,i symmetry conditions are used

∇`FS · nFSOut,i = 0. (4.26)

The flux of LDL through the endothelium ΓFSEnd is described by
(
−DFS` ∇`FS + (uF − uG)`FS

)
· nFSEnd = −JSol(`

FS , `SS), (4.27)

where JSol(`
FS , `SS) is the solute flux. The submodel of the solute flux is described in detail in

Section 4.1.2.3. It is important to note that in this chapter it is assumed that the artery wall is a
solid. Hence, using Equation (4.5) reduces the flux condition to:

−DFS` ∇`FS · nFSEnd = −JSol(`
FS , `SS). (4.28)

4.1.2.2 Species interaction in artery wall

The transport and interaction of species in the artery wall is modeled by the diffusion-reaction
equation in an ALE frame, where the motion of the ALE observer is the same as for the structure
submodel, cf. Section 2.1.5. Hence, the dynamic of the concentration `SS of LDL in the deforming
structure-scatra domain ΩSS(t) is described by:

∂

∂t
`SS
∣∣
χ︸ ︷︷ ︸

time derivative of LDL
(in ALE frame)

+ `SS∇ · uS︸ ︷︷ ︸
transport of LDL
with deforming

artery wall

−∇ ·
(
DSS` ∇`SS

)
︸ ︷︷ ︸

diffusion of LDL

− κSS` (cSS)︸ ︷︷ ︸
inflammatory and

immunological
processes of LDL

= 0, (4.29)

The reaction term κSS` (cSS) is a function depending on the vector of concentrations cSS of all
species considered in the artery wall. In this chapter, a simplistic reaction model for the inflamma-
tory and immunological process in the artery wall is employed that mimics an atherosclerosis-like
behavior. The reaction model considers two species only: “LDL” and “foam cells”. Here, LDL
does not literally represent low-density lipoproteins but more general a composite of all species
involved in the inflammatory and immunological processes, such as native LDL, modified LDL,
native HDL, modified HDL, VCAM-1 and MCP-1. In contrast, foam cells must be understood
as composite of final growth inducing products of the complex immunological processes, such
as monocytes, macrophages, smooth muscle cells, foam cells and necrotic core. The governing
equation for the concentration of foam cells mSS in the structure-scalar domain ΩSS is in analogy
to Equation (4.29).

It is assumed that there are healing processes which result in the degradation of the concentra-
tion `SS of LDL. Furthermore, foam cells are produced if the concentration of LDL `SS exceeds
a given threshold `SSThres. Hence, the reactive term of LDL is

κSS` (cSS) = −dSS` `SS − γSS`
(
`SS − `SSThres

)
+
, (4.30)
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where the constants dSS` and γSS` are the degradation and reaction rate of LDL, respectively. The
index (•)+ denotes the positive branch of (•), i.e., it is zero when its argument is negative. Foam
cells are a product of LDL and are not degraded. The reactive term of foam cells reads

κSSm (cSS) = γSS`
(
`SS − `SSThres

)
+
. (4.31)

On the boundaries ΓSSIn and ΓSSOut,i symmetry conditions are used:

∇`SS · nSSIn = 0 = ∇`SS · nSSOut,i,

∇mSS · nSSIn = 0 = ∇mSS · nSSOut,i.
(4.32)

It is assumed that the artery wall is impervious at its outer boundary ΓSSWall and hence no-flux
conditions

−DSS` ∇`SS · nSSWall = 0,

−DSSm ∇mSS · nSSWall = 0
(4.33)

are imposed. The diffusive influx of LDL through ΓSSEnd, i.e., the endothelium is given by

−DSS` ∇`SS · nSSEnd = JSol(`
FS , `SS), (4.34)

whereas foam cells cannot migrate through the endothelium:

−DSSm ∇mSS · nSSEnd = 0. (4.35)

Remark. It is highlighted again that the multiphysics model in this section neglects the advective
transport of LDL through the endothelium and within the artery wall driven by transmural pressure
gradients. To consider these effects either a full fluid-porous-structure interaction approach must
be chosen for the cardiovascular mechanics [275] or the multiphysics model has to be enriched
by a flow model on the structure-scatra domain [152]. The latter will be done in Section 6.1.2.1.

Remark. A quantitative model for inflammatory and immunological processes in early atheroscle-
rosis is developed in Section 5 and incorporated into a model of concentrations of key species
in the artery wall in Section 6.1.2.2. For simplicity, however, a simplistic reaction model for the
inflammatory and immunological processes is used in this chapter.

4.1.2.3 LDL transport through endothelium

The endothelium is frequently modeled as semi-permeable membrane described by the equations
of Kedem and Katchalsky [29, 126, 145, 148, 221, 264, 294], where the applicability of the
Kedem-Katchalsky equations was investigated by Thomas and Mikulecky [264]. Details on the
Kedem-Katchalsky equations can be found in Section 2.2.2.1. It was assumed that the artery
wall is a solid and hence the second Kedem-Katchalsky equation that describes the solute fluxes
reduces to [29, 126]

JSol

(
`FS , `SS

)
= P`

(
`FS − `SS

)
. (4.36)
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This neglection of the advective mass transport through the endothelium lies in agreement with
observations in the literature [126, 268]. It is well-accepted that the localization of atherosclerosis
correlates with hemodynamic factors, such as low wall shear stresses [118, 154, 216, 227]. The
wall shear stresses τF of the fluid acting on the endothelium ΓEnd, are calculated by removing
the normal parts of the tractions

τF = σF nFEnd −
((
nFEnd

)T
σFnFEnd

)
nFEnd. (4.37)

The WSS dependency of the endothelium is on a much larger time scale than the cardiovascular
mechanics. It is considered by adapting the diffusive permeability P` by a function s depending
on the norm of the time-averaged WSS <τF>t:

JSol

(
`FS , `SS , τF

)
= P` s(‖<τF>t‖)

(
`FS − `SS

)
, (4.38)

where time-average of the WSS τF at time t is defined as

<τF>t =
1

TCycl

t∫

t−TCycl

τF(s) ds. (4.39)

The function s(‖<τF>t‖) is called the (diffusive) permeability scaling factor (PSF). For the
shape of the PSF s the approach in [29] is followed:

s(‖<τF>t‖) =
1

ln(2)
ln

(
1 + ζτ

γτ
‖<τF>t‖+ γτ

)
, (4.40)

where the constants ζτ and γτ are free model parameters which have to be fitted to the specific
geometry, see Section 4.3.1. The PSF is a monotonically decreasing function with respect to WSS
resulting in an increased permeability of the endothelium with respect to LDL at regions of low
WSS.

Remark. One could also include other hemodynamic factors like the oscillatory shear index
or the relative residence time [118, 216, 245] into the calculation of the PSF s(•). In contrast
to the utilized PSF, however, the OSI and relative residence time are normalized quantities
where no clear reference value exists (cf. Section 4.3.1). Therefore, they cannot be employed in a
straightforward manner to adjust the endothelial permeability.

4.1.3 Initial conditions and prestressing

To achieve a well-defined initial value problem, specific initial conditions have to be stated.
For the cardiovascular mechanics model, zero initial conditions are used and the prescribed
fluid influx QFIn(t) is smoothly increased to its physiological level. The aim of this model is to
utilize geometries stemming from in vivo medical imaging that do not represent a stress-free
configuration. Hence, a prestressing according to [96] is applied to the structure field. Therein, the
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Windkessel submodels on the outflow boundaries lead to a physiological diastolic pressure of the
fluid field and hence to physiological loading of the structure comparable to the in vivo state.

For the concentrations in the artery wall, zero initial conditions are prescribed. For initial condition
of the concentration in the blood, constant concentrations equal to values prescribed on the inflow
boundary ΓFSIn are utilized.

4.2 Numerical procedure

The presented model of atherosclerosis is an adapted FSSTI problem and thus can be compu-
tationally treated as described in detail in Section 3.2.2. Therein, the weak formulations of the
individual single-field models were established, spatially discretized in terms of the finite element
method, temporally discretized in terms of the one-step-θ scheme and stability issues arising
in the advection dominated fields were dealt with by residual-based stabilizations. This section
gives a brief summary of the solution strategy for the multiphysics model and details on the
requirements and generation of the utilized finite element mesh.

4.2.1 Solution strategy

A suitable solver strategy is exploited that takes into account the specific couplings between the
individual fields as described in Section 3.2.2.2: The FSSTI model is addressed by a sequentially
staggered scheme coupling the monolithic FSI and monolithic S2I submodels. Additionally,
the fluid submodel is also coupled to the Windkessel submodels. The evolution of the multiple
Windkessel pressures pFWK,i is described by linear ODEs, which allow deriving analytic relation-
ships pFWK,i(Q

F
Out,i) between the Windkessel pressures pFWK,i and the outfluxes QFOut,i through the

different outflow boundaries ΓFOut,i [211]. Hence, the Windkessel submodels can be eliminated
(cf. Figure 3.1) by expressing the interface traction on the fluid (cf. Equation (4.4)) directly by the
integrated quantity QFOut,i of the velocity unknowns uF . Thus, no additional field for the Wind-
kessel submodels and no additional unknowns for the Windkessel pressures are introduced. An
illustration of the overall solver strategy of the multiphysics model for atherosclerosis including
the corresponding coupling variables is given in Figure 4.3.

4.2.2 Finite element mesh

The finite element mesh for the spatial discretization is generated using Trelis (Csimsoft) such
that it satisfies the following properties:

• It is conforming on the FSSTI interface ΓEnd.

• In the fluid domain ΩF a boundary refinement is introduced to better resolve velocity
gradients and concentrations ` and m near the FSSTI interface ΓFEnd.
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Figure 4.3 Schematic overview of solver strategy of the multiphysics model including the
coupling variables between the fields. Simple and double arrows mark one-way and two-way
couplings, respectively. Dotted arrows denote weak couplings, whereas solid arrows represent
strong couplings. The subscript (•)Γ indicates a surface coupled quantity (•), whereas without
explicit subscript a volume coupled quantity is denoted.

• The structure domain ΩS is meshed using hexahedral elements such that F-bar element
technology can be employed [58, 66].

The lumen of patient-specific geometries of aortic arches are difficult to mesh with hexahedral
elements only. Hence, a tetrahedral dominated mesh with a hexahedral boundary layer is employed,
where the tetrahedral and hexahedral elements of the fluid mesh are connected by pyramid shaped
elements.

The generation of such a finite element mesh of a patient-specific lumen requires the use of an
appropriate strategy as follows: First, the segmented geometry is reduced by the thickness of the
fluid boundary layer leaving the geometry of the inner lumen. Subsequently, the (inner lumen)-
(boundary layer) interface is meshed using quadrilateral surface elements with a characteristic
element length h. The volume of the inner lumen is meshed using tetrahedral and pyramid shaped
elements also with a characteristic element length h. The boundary layer is created by successive
offsets of the quadrilateral meshed surface such that it consists of hexahedral elements with
thicknesses of h

2
, h

4
, h

8
and h

16
toward the direction of the FSSTI interface ΓEnd. The structure

domain ΩS is adjacent to the FSSTI interface ΓFEnd with constant thickness T . Its mesh is generated
by another offset of the FSSTI interface ΓFEnd with 6 element layers with an equidistant thickness.
The finite element meshes of the ALE domain ΩG and the fluid-scatra domain ΩFS equal the
fluid mesh. The finite element mesh of the structure-scatra domain ΩSS is equal to the structure
mesh.
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4.3 Computational case study and results

In this section the presented mathematical and computational model is calibrated to a murine-
specific case, the computational results of the case study are given and the results compared
with various literature. The geometry of the case study is a murine-specific reconstruction of the
lumen of a non-atherosclerotic mouse (type C57BL/6J), see Figure 4.4. It was segmented from
an in vivo magnetic resonance angiography from medical partners. The measurement was taken
on a horizontal bore 7T small animal scanner (Discovery MR901, GE Healthcare) applying an
ECG-triggered 3D gradient echo sequence achieving an in-plane resolution of 59 µm with a slice
thickness of 250 µm. The segmentation was performed in a semi-automatic fashion using Mimics
(Materialise). Nevertheless, the achieved resolution did not allow for an exact segmentation of the
artery wall. Thus, as only a small part of the artery tree is considered, the variation of the wall
thickness is neglected and a constant wall thickness T is employed.

The discretization for the performed case study of the murine-specific geometry is visualized
in Figure 4.4. A detailed summary of the utilized mesh as described in Section 4.2.2 with a
characteristic element length h = 0.06 mm (for comparison: the radius of the inflow boundary ΓFIn
is RIn = 0.57 mm) and a constant artery wall thickness T = 0.08 mm [284] is given in Table 4.1.
A mesh convergence analysis is performed in Section 4.3.3.

4.3.1 Model parameters

Due to a lack of suitable in vivo data, an exemplary set of key physiological data of mice from the
literature is used to derive from it a set of model parameters for the given patient-specific geometry.
The experimental results in [143] are utilized providing a complete set of physiological data – the
mean volume influx <QFIn>, the length of the cardiac cycle TCycl, the diastolic pressure pdia

F

and the systolic pressure psys
F – from a single source. However, this data set is just one possible

choice representing the mice studied in [143] where the systolic pressure psys
F seems to be low

compared to other studies [6, 282]

First, an overview of the parameters which have to be calibrated to the specific geometry is
given and afterward the remaining parameters taken from the literature are listed, see Tables 4.3
and 4.4.

For the prescribed inflow velocities on ΓFIn given by Equation (4.3) the velocity profile gF(t,x)
and the total volume influx QFIn(t) need to be specified. For the inflow profile gF(t,x) a ninth
order polynomial-shaped function is utilized [243], which is superimposed by a Womersley profile
respecting the influence of the oscillatory influx on the velocity profile [138]. The temporal
shape of the volume influx QFIn(t) is taken from [211] and is scaled such that the length of the
cardiac cycle TCycl and the time-averaged influx <QFIn> fits to the murine physiology [6, 76, 143]:
TCycl = 0.1 s, <QFIn> = 16.2 ml

min
= 270 mm3

s
. The resulting prescribed influx QFIn(t) is plotted

in Figure 4.5.

68



4.3 Computational case study and results

layer

A
B

C

D

1

2
3

4

5

Fluid, tet4

Fluid, pyramid5 layer

Fluid, hex8 boundary

Matching FS3I interface

Structure, Fbar-hex8

Figure 4.4 Conforming FSSTI mesh consisting of tetrahedral, hexahedral and pyramid shaped
finite elements with a characteristic element length h = 0.06 mm. Gray represents the finite
element mesh used for the fluid domain ΩF , ALE domain ΩG and fluid-scatra domain ΩFS .
Blue represents the finite element mesh used for the structure domain ΩS and structure-scatra
domain ΩSS . The numbers indicate the numbering of the outlet boundaries and the lines AB and
CD are the profile lines used in the mesh convergence analysis.

Table 4.1 Number of finite elements, number of nodes, degrees of freedom (DOF) per node
and total DOF of the fluid domain ΩF , structure domain ΩS , ALE domain ΩG , fluid-scatra
domain ΩFS structure-scatra domain ΩSS and combinations of the mesh with a characteristic
element length h = 0.06 mm.

Domains # Finite elements # Nodes # DOF per node # DOF
ΩF Tet4 315896, Pyr5 9523, Hex8 47615 108986 4 435944
ΩS Hex8 57138 67298 3 201894
ΩG Tet4 315896, Pyr5 9523, Hex8 47615 108986 3 326958

ΩFS Tet4 315896, Pyr5 9523, Hex8 47615 108986 1 108986
ΩSS Hex8 57138 67298 2 134596

ΩF ∪ ΩS ∪ ΩG 430172 176284 5.47 964796
ΩFS ∪ ΩSS 430172 176284 1.38 243582

All 430172 176284 6.85 1208378
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Figure 4.5 Prescribed fluid volume influx QFIn(t) through ΓFIn and time-averaged influx <QFIn>
over time t. The volume influx is periodic with a periodicity of TCycl = 0.1 s.

Table 4.2 Parameters for the calibration of the three-element Windkessel submodels and cal-
ibrated results. Approximated portion of volume outflux %QFOut,i and resulting characteristic
resistance RFC,i, peripheral resistance RFP,i and artery compliance CFi of each of the five three-
element Windkessel submodels. All units are in mm, s, Pa.

i %QFOut,i RFC,i RFP,i CFi

1 11.36 % 16.93 Pa s
mm3 384.18 Pa s

mm3 4.29 · 10−4 mm3

Pa

2 8.97 % 19.56 Pa s
mm3 426.39 Pa s

mm3 3.29 · 10−4 mm3

Pa

3 12.73 % 12.00 Pa s
mm3 369.63 Pa s

mm3 4.81 · 10−4 mm3

Pa

4 7.55 % 21.49 Pa s
mm3 441.62 Pa s

mm3 2.86 · 10−4 mm3

Pa

5 59.39 % 4.67 Pa s
mm3 69.73 Pa s

mm3 21.50 · 10−4 mm3

Pa

The parameters of each of the five three-element Windkessel submodels must be fitted to the
murine physiology and the specific geometry. For the murine physiology, a diastolic pres-
sure pFdia= 77 mmHg = 10265.8 Pa and a systolic pressure pFsys = 100 mmHg = 13332.2 Pa
are assumed as measured in [143]. The compliance of the geometry is approximated by a simu-
lation of the structure submodel, where only a hydrostatic pressure is applied. The geometry is
first prestressed to the diastolic pressure pdia and afterward the pressure is further increased to the
systolic pressure pFsys. Then the compliance of the given geometry can be approximated by

Cgeo ≈
V Fsys − V Fdia

pFsys − pFdia

= 11.86 · 10−4 mm3

Pa
, (4.41)

where V Fsys and V Fdia are the volume of the lumen measured at the systolic and diastolic pressure
level, respectively. Furthermore, the approximated portions of volume outflux %QFOut,i through
each of the five outflow boundaries ΓFOut,i is approximated by the ratio of the surface area of ΓFOut,i

to the total surface area of all five outflow boundaries. Following the approach in [292] and [139],
Windkessel parameters as given in Table 4.2 are achieved.

The growth parameter αSm in Equation (4.17) corresponds to the amount of unite volume occupied
by a unit scalar of foam cells. Following the approach in [90], a constant mass density %S of the
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artery wall – which in advanced states consists of both, healthy and atherosclerotic aortic tissue –
is applied. Hence, it follows:

αSm =
1

%S0
= 1.0 · 103 mm3

g
. (4.42)

The remaining parameters of the FSI submodel are independent of the specific geometry and
are taken from the literature. However, no complete data set based on murine experiments exists
such that the used parameters for the Carreau-Yasuda model, the surrounding tissue and the
constitutive laws are based on human experiments. An overview of fitted as well as the remaining
parameters of the FSI submodel is found in Table 4.3.

For the calibration of the permeability scaling factor s(‖<τF>‖) in Equation (4.40) the argu-
mentation of Cheng et al. [40] is followed that endothelial cells are primed to the present flow
condition. Therefore, the approach by Calvez et al. [29] is generalized. The two model parame-
ters ζτ and γτ of the monotonically decreasing function are determined such that the following
two conditions are fulfilled:

1. The permeability scaling factor vanishes, when the norm ‖τF‖ of the wall shear stresses is
equal to the reference value ‖τF‖. This reference value is approximated by considering a
stationary Poiseuille flow with an equivalent total volume influx <QFIn> through a straight
pipe with the same radius RIn as the inflow boundary ΓFIn. Hence, it is required:

s(‖τF‖) = 1 with

‖τF‖ =
4

π

µF∞<Q
F
In>

(RIn)3 = 6.404 Pa.
(4.43)

2. According to measurements in [117], the local permeability of the endothelium with respect
to LDL in regions with high permeability is up to a factor of 25 higher than in regions with
low permeability. It is assumed that the harmonic mean of those two extrema corresponds
to the case of s(‖τF‖) = 1. Since the permeability is highest for the case ‖τF‖ = 0, the
PSF must fulfill:

s(0) = 5. (4.44)

The two assumptions lead to

s(‖<τF>‖) =
1

ln(2)
ln


1 +

(
1 + 1

2s(0)−2

)
‖τF‖

‖<τF>‖+ 1
2s(0)−2

‖τF‖




=
1

ln(2)
ln

(
1 + 31

2.13 · 10−1 Pa

‖<τF>‖+ 2.13 · 10−1 Pa

)
,

(4.45)

which is plotted in Figure 4.6. An overview of the calibrated and remaining physiological
parameters for the S2I submodel is found in Table 4.4.
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Table 4.3 Parameters of FSI submodel. Parameters are sorted by the first appearance in the model.
All units are in mm, g, s, Pa.

Parameter Description Value Source
%F Mass density of blood 1.05 · 10−3 g

mm3 [142]
µF∞ Dynamic viscosity of blood for high shear rates 3.45 · 10−3 Pa s [43]
µF0 Dynamic viscosity of blood for zero shear rates 5.6 · 10−2 Pa s [43]
κF Characteristic time of Carreau-Yasuda model 1.902 s [43]
bF Parameter of Carreau-Yasuda model 1.25 [43]
aF Parameter of Carreau-Yasuda model 0.624 [43]

QFIn(t) Influx rate over time Figure 4.5 [143, 211]
TCycl Length of cardiac cycle 0.1 s [76]
<QFIn> Time-averaged influx rate 270.0 mm3

s
[143]

CFi Artery compliances of Windkessel on ΓFOut,i Table 4.2 Table 4.2
RFC,i Characteristic resistances of Windkessel on ΓFOut,i Table 4.2 Table 4.2
RFP,i Peripheral resistances of Windkessel on ΓFOut,i Table 4.2 Table 4.2
%S0 Material mass density of artery wall 1.0 · 10−3 g

mm3 [90]
kSWall Spring stiffness of surrounding tissue 5.0 · 103 Pa

mm
[60, 197]

cSWall Dashpot viscosity of surrounding tissue 100.0 Pa s
mm

[197]
kSOut Spring stiffness of succeeding tissue 2.0 · 104 Pa

mm
[197]

cSOut Dashpot viscosity of succeeding tissue 100.0 Pa s
mm

[197]
αSm Growth parameter 1.0 · 103 mm3

g
Eq. (4.42)

cS0,Ao Stiffness of aortic ground material 47.43 · 103 Pa [230]
cS1,1 Stiffness of first fiber 35.23 · 103 Pa [230]
cS2,1 Exponential parameter of first fiber 7.65 · 10−6 [230]
δS1 Orientation angle of first fiber 0◦ [230]
cS1,2 Stiffness of second fiber 40.84 · 103 Pa [230]
cS2,2 Exponential parameter of second fiber 0.1 [230]
δS2 Orientation angle of second fiber 90◦ [230]
cS1,3 Stiffness of third fiber 15.21 · 103 Pa [230]
cS2,3 Exponential parameter of third fiber 2.58 [230]
δS3 Orientation angle of third fiber 48.98◦ [230]
cS1,4 Stiffness of fourth fiber 15.21 · 103 Pa [230]
cS2,4 Exponential parameter of fourth fiber 2.58 [230]
δS4 Orientation angle of fourth fiber −48.98◦ [230]
τSFC Relaxation time of lipid material 47.5 · 10−3 s [203]
cS0,FC Stiffness of lipid material 10.0 · 103 Pa [9]
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Figure 4.6 Calibrated law for the permeability scaling factor s(‖<τF>‖) plotted over the norm of
the time-averaged wall shear stresses ‖<τF>‖ of the fluid. ‖τF‖ = 6.404 Pa is the approximated
reference value of the WSS.

Table 4.4 Parameters of S2I submodel. Parameters are sorted by the first appearance in the model.
All units are in mm, g, s, Pa.

Parameter Description Value Source

DFS` Diffusivity of LDL in blood 3.07 · 10−5 mm2

s
[176, 255, 269]

`FSIn Concentration of LDL at ΓFSIn 1.22 · 10−6 g
mm3 [89]

DSS` Diffusivity of LDL in artery wall 3.5 · 10−6 mm2

s
[29, 255, 267]

DSSm Diffusivity of foam cells in artery wall 0.0 [90]
P` Diffusive permeability of endothelium 1.7 · 10−8 mm

s
[268, 294]

ζτ Permeability scaling factor parameter 31 Eq. (4.45)
γτ Permeability scaling factor parameter 2.13 · 10−1 Pa Eq. (4.45)

4.3.2 Dimensionless parameters

From the parameters in Table 4.3 and Table 4.4 dimensionless parameters are calculated. For the
fluid submodel, the Reynolds number Re at the inflow boundary is given by

Re =
2%F‖uF‖RIn

µF∞
, (4.46)

where uF is the characteristic velocity. Using the peak velocity at the inflow boundary ΓFIn, i.e.,
maxuF∈ΓFIn

‖uF‖ results in an approximation for the peak Reynolds number RePeak = 411.3.
Using the temporal and spatial mean of the velocities on the inflow boundary results in an approx-
imation for the mean Reynolds number ReMean = 91.9. The peak and mean Reynolds numbers
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are slightly higher than found in the literature [6, 76, 133, 257] The Womersley number Wo of the
fluid is given by

Wo =

√
2π%FR2

In

TCycl µF∞
= 2.49, (4.47)

fitting very well to the murine physiology [6, 76, 133, 257]. Since both Reynolds numbers RePeak

and ReMean as well as the Womersley number Wo are small, the behavior of the fluid is viscous-
dominated and in the laminar regime.

The dimensionless parameter of the transport of LDL with the blood flow governed by the
advection-diffusion equation is the Péclet number Pe given by

Pe =
2‖uF‖RIn

DFS`
. (4.48)

Inserting again the peak and mean velocity the range for the Péclet number is
Pe ∈ [9.82 · 106; 4.40 · 107] being in the physiological regime of LDL transport [246]. Hence,
the transport with the blood flow is advection dominated, except for regions close to the no-slip
fluid-structure interface ΓFEnd.

4.3.3 Convergence analysis

To prove the validity of the computational results a spatial and temporal convergence analysis
is performed. The convergence of the fluid velocities uF and the ALE displacements dG is
exemplarily checked over two distinct lines AB and CD as indicated in Figure 4.4.

The spatial convergence is analyzed by utilizing the constant time step size ∆t = 2.5 · 10−4 s in
combination with meshes as described in Section 4.2.2 with characteristic element lengths h of
0.04 mm, 0.06 mm, 0.09 mm and 0.12 mm. The velocity profiles of the four meshes over the
lines AB and CD at the peak of the systolic phase of the fifth cardiac cycle (i.e., t = 0.412 s) is
plotted in Figure 4.7. The meshes with h = 0.04 mm and h = 0.06 mm possess qualitatively
the same behavior. Quantitatively, the relative L2-errors of the velocities ‖u

F
h=0.04mm−u

F
h=0.06mm‖L2

‖uFh=0.06mm‖L2

and the displacements ‖d
G
h=0.04mm−d

G
h=0.06mm‖L2

‖dGh=0.06mm‖L2
over the lines AB and CD between the two finest

meshes are below 1, 6%.

Additionally to the velocities and displacements, the spatial convergence of the WSS and von
Mises stresses is exemplarily checked at the four intersection points of the fluid-structure inter-
face ΓFEnd and the lines AB and CD. The relative errors of the WSS between the two finest meshes
at these four points are below 2.75%. The relative errors of the von Mises stresses between the
finest two meshes at these four points are below 7.38% but are within the asymptotic range.

To analyze the temporal convergence, the mesh with a characteristic element length h = 0.06 mm
is utilized with three time step sizes ∆t of 1.25 · 10−4 s, 2.5 · 10−4 s and 5.0 · 10−4 s. Again the
velocity profiles over the lines AB and CD are analyzed and plotted at time t = 0.412 s in Figure
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Figure 4.7 Spatial convergence study.

4.8. Temporal convergence is sufficiently reached with a time step size of ∆t = 2.5 · 10−4 s.
Quantitatively, the relative L2-error of the velocities and the displacements over the lines AB and
CD between the smallest two time step sizes are below 1, 3%.

The qualitatively same spatial and temporal convergence behavior was observed for other points
and profile lines too. As the wall stress is no quantity of particular interest in the present model,
the mesh with a characteristic element length h = 0.06 mm in combination with a constant time
step size ∆t = 2.5 · 10−4 s is further employed.

4.3.4 Model validation

To show the qualitative validity of the presented mathematical model and its parameters the
computational results are compared to cardiovascular measurements and computational results
from the literature. The Windkessel submodels determining the pressure of the fluid start with
an unphysiological zero pressure and requires approximately four cardiac cycles to reach a
periodic state. Hence, in the following the computed results from the seventh simulated car-
diac cycle are utilized. Exemplarily, the Windkessel pressure at the outflow boundary ΓOut,5

over time t is plotted in Figure 4.9. In its periodic state the Windkessel submodel at ΓOut,5

is oscillating between the diastolic pressure pdia ≈ 74.0 mmHg = 9867.0 Pa and systolic
pressure psys ≈ 102.5 mmHg = 13660.6 Pa, being close to the assumed pressure levels [143].
Additionally, the qualitative shape of the pressure over time is in good agreement with the results
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Figure 4.8 Temporal convergence study.
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Figure 4.9 Pressure of three-element Windkessel on outflow ΓOut,5 over time t. After approxi-
mately four cardiac cycles the periodic state with the diastolic pressure pdia = 74.0 mmHg and
the systolic pressure psys = 102.5 mmHg is reached.

achieved in [211]. As a result of the fluid pressure and the prestressing of the structure, the struc-
ture undergoes a maximal radial enlargement of the inner artery wall of around 14− 17 % in the
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aortic arch and around 8− 12 % in its branches, which is in good agreement to the measurements
in [179]. Due to the pulsatile fluid flow the instantaneous WSS τF changes rapidly over time.
But since the WSS-dependent migration of LDL into the artery wall is on a much larger time
scale than the cardiac cycle, it is convenient to look at the time-averaged WSS <τ>F , where
the time index is dropped to ease notation. If not explicitly stated otherwise the time-average is
taken over the seventh simulated cardiac cycle. The estimated reference WSS ‖τF‖ = 6.404 Pa
(see Equation (4.43)) lies in perfect agreement with measurements from the literature [40]. The
norm of the peak of the computed time-averaged WSS ‖<τF>‖ is 49.28 Pa which corresponds
to the 7.7 times of the norm of the reference WSS ‖τF‖, both lying in good agreement with
computational results from the literature [76, 257]. When the instantaneous WSS τF is used
in Equation (4.45), the instantaneous PSF s(‖τF‖) is computed. However, in experiments the
long time behavior is measured, which is determined by the mean of the PSF. Therefore, one
can computationally investigate three different scenarios: the time-average of the instantaneous
PSF <s(‖τF‖)>, the PSF of the time-averaged norm of the WSS s(<‖τF‖>) and the PSF
of the norm of the time-averaged WSS s(‖<τF>‖). The computational study of these three
cases showed that only the latter case is able to match observations from the literature [76, 185].
The second case did produce a qualitatively but not quantitatively correct PSF pattern and the
first did result in a more or less homogeneous PSF. In the following s(‖<τF>‖) is called the
time-averaged PSF to ease the language. It is visualized in the anterior and posterior view in
Figures 4.10(a) and 4.10(b), respectively. The time-averaged PSF varies in the range between 0.18
and 4.74. Hence, the computed scalings differ by a factor of 26.3 showing very good agreement
to the measurements in [117].

As visible in Figure 4.10(a) the simulated regions with high endothelial permeability and hence
high risk for atherosclerotic driven plaque formation are located at the ascending aorta, near
bifurcations and at the bottom and side of the aortic arch. This qualitative phenomena was also
observed in experiments [5, 185] and lies in good qualitative agreement with earlier computational
results [11, 52, 76, 257]. Moreover, the location of atherosclerotic plaques at these sites is
qualitatively corroborated by experimental observations with atherosclerotic mice models, see
Figure 4.11.

Remark. Even if not explicitly considered in the computation of the PSF, the spatial distribu-
tion of the OSI o(τF) = 1

2

(
1− ‖<τF>‖

<‖τF‖>

)
[118, 216, 245] is plotted from two perspectives in

Figures 4.10(c) and 4.10(d). An OSI of zero corresponds to regions of non-oscillatory and an OSI
of 0.5 to regions of highly oscillatory flow. As visible the pattern is comparable to the computed
PSF visualized in Figures 4.10(a) and 4.10(b). This supports the theory that the OSI may also be
a valid indicator for atherosclerosis plaque localization as is critically discussed in the literature,
see [216] and references therein. However, it is not straightforward to use the OSI to adjust the
endothelial permeability as there is, in contrast to the utilized PSF, no clear reference value.
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0.18 4.74

time-averaged PSF s(k<⌧F>k) [1]

(a) Anterior view of the spatial distribution of time-
averaged permeability scaling factor s(‖<τF>‖).

0.18 4.74

time-averaged PSF s(k<⌧F>k) [1]

(b) Posterior view of the spatial distribution of time-
averaged permeability scaling factor s(‖<τF>‖).

0.50.0

oscillatory shear index o(⌧F ) [1]

(c) Anterior view of the spatial distribution of oscilla-
tory shear index o(τF ).

0.50.0

oscillatory shear index o(⌧F ) [1]

(d) Posterior view of the spatial distribution of oscilla-
tory shear index o(τF ).

Figure 4.10 Spatial distribution of the time-averaged permeability scaling factor and oscillatory
shear index.
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Figure 4.11 Dissection of an aortic arch of a LDL receptor-deficient mouse (type B6.129S7-
Ldlrtm1Her/J) with atherosclerotic plaques (white).

4.3.5 Influence of compliance of artery wall and pulsatile flow

The influence of model reductions frequently found in the literature is studied. Therefore, the PSF
derived from the multiphysics model with the PSF of reduced models is compared. As model
reductions, two simplified versions of the presented model are considered.

The first reduced model is the case of a non-compliant artery wall, resulting in a rigid wall model.
This simplification is enforced by the addition of the condition dS = 0 compared to the full model.
Such types of models are frequently proposed, especially in the context of porous media models of
the artery wall, see e.g. [29, 178, 221, 255, 294]. The computed time-averaged PSF s(‖<τF>‖)
of the rigid wall model is visualized in Figure 4.12(a). The computed OSI o(τF) for the rigid
wall model is visualized in Figure 4.12(c).

The second reduced model scenario frequently found in the literature are stationary, time-averaged
flow models [29, 142, 197, 267, 276]. This simplification is achieved by assuming the influx to be
constant in time, i.e., by QFIn(t) = <QFIn>. As consequence, the pressure of the fluid determined
by the Windkessel submodels is constant and no displacements can be expected from the loaded
in vivo state. Hence, the time-averaging of flows implies dS = 0. The computed PSF s(‖<τF>‖)
of the time-averaged flow model is visualized in Figure 4.12(b). The computed OSI o(τF) for the
time-averaged flow model is visualized in Figure 4.12(d).
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0.18 4.74

time-averaged PSF s(k<⌧F>k) [1]

(a) Anterior view of the spatial distribution of time-
averaged PSF s(‖<τF>‖) of the rigid wall model.

0.18 4.74

time-averaged PSF s(k<⌧F>k) [1]

(b) Anterior view of the spatial distribution of time-
averaged PSF s(‖<τF>‖) of the time-averaged flow
model.

0.50.0

oscillatory shear index o(⌧F ) [1]

(c) Anterior view of the spatial distribution of the
OSI o(τF ) of the rigid wall model.

0.50.0

oscillatory shear index o(⌧F ) [1]

(d) Anterior view of the spatial distribution of the
OSI o(τF ) of the time-averaged flow model.

Figure 4.12 Spatial distribution of time-averaged permeability scaling factor and oscillatory shear
index of the rigid and mean-flow model.
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4.3.6 Growth and remodeling

To show the capability of the cardiovascular model to adapt to the narrowing of the lumen due to
the accumulation of foam cells, the spatial distribution of the PSF is compared at different times.
Since inflammatory, immunological, growth and remodeling processes take place on a much
larger time scale as the hemodynamics (cf. the orders of the length of the cardiac cycle TCycl and
the diffuse permeability P`) and as the model is not embedded into a multiscale strategy, some
model parameters are increased to accelerate atherosclerosis progression to the duration of a few
cardiac cycles. Hence, after the cardiovascular model obtained its periodic state the following
adapted model parameters were used: DSS` = 6.0 · 10−2 mm2

s
, dSS` = 1.0 1

s
, γSS` = 0.4 1

s
,

`SSThres = 2.0 · 10−3 `FSIn , P` = 5.0 · 10−4 mm
s

, kSWall = 1.0 · 106 Pa
mm

and αSm = 4.1 · 1010 mm3

g
. In

Figures 4.13(a) and 4.13(b) the time-averaged PSF of the grown artery wall at different times is
visualized. Figures 4.13(c), 4.14(b) and 4.14(c) show the growth and remodeling factors of the
grown artery wall at time t = 1.2 s.

4.4 Discussion

A methodology to calibrate the multiphysics model to a specific geometry and a given set of key
physiological data has been presented. The validation of the model in Section 4.3.4 showed that
computed key physiological quantities, such as blood pressure, artery wall displacements and
WSS derived from the considered exemplary set of murine physiological data are qualitatively in
good agreement with measurements and simulations performed by others. However, there are
large inter- and intramouse variations of these quantities depending on the condition, type, age
and size of the specific mouse and its geometry, see e.g. [40, 166, 282] and references therein.
A quantitative validation of the developed model remains to be done, which is due to a lack of
suited in vivo data available to us.

The newly developed calibration of the time-averaged WSS-dependent law for the scaling of
the endothelial permeability s(‖<τF>‖) to the specific geometry proved to qualitatively predict
sites of atherosclerotic plaque formation. The alternative formulations for the time-averaged
endothelial PSF <s(‖τF‖)> and s(<‖τF‖>) do not result in physiological results. However, a
quantitative validation of the developed PSF remains to be done. Therefore, the in vivo plaque
locations must be imaged and compared to the predicted locations by the PSF in terms of a
suitable metric, see e.g., the work in [59]. A picture of a dissection of a murine aortic arch with
atherosclerotic plaques is given in Figure 4.11.

In the literature, models of atherosclerosis with time-averaged flows are commonly utilized. This
is often argued by the idea that the growth and remodeling process in atherosclerosis is on a much
larger time scale than the hemodynamics and hence also the mean blood flow is a valid indicator
for the mechanobiology behind. In contrast to this argument, the comparison of the multiphysics
model with the reduced time-averaged flow model introduced in Section 4.3.5, shows a significant
difference in the WSS patterns and hence their time-averaged PSF patterns, see Figures 4.10(a)
and 4.12(b). This observation is even more valid when comparing the OSI computed by the two
models, see Figures 4.10(c) and 4.12(d). This effect is due to the unphysiological averaging of
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time-averaged PSF s(k<⌧F>0.5 sk) [1]

(a) Spatial distribution of time-averaged permeability
scaling factor s(‖<τF>0.5 s‖) at time t = 0.5 s.

0.18 4.74

time-averaged PSF s(k<⌧F>1.2 sk) [1]

(b) Spatial distribution of time-averaged permeability
scaling factor s(‖<τF>1.2 s‖) at time t = 1.2 s.
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growth factor #(mSS(1.2 s)) [1]

(c) Grown artery wall, spatial distribution of growth factor ϑ(mSS(1.2 s)) at time t = 1.2 s and comparison of
grown cross sections with aortic cross sections from LDL receptor-deficient mice (type B6.129S7-Ldlrtm1Her/J)
with early (left top) and advanced (right) atherosclerotic plaques. The murine cross sections were stained with
haematoxylin.

Figure 4.13 Cross sections of spatial distribution of time-averaged permeability scaling factor and
growth factor at different times and comparison of grown cross sections with mouse experiments.
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the pulsatile nature of blood flow preventing flow recirculations and oscillatory flows frequently
occurring in the diastolic phase of the cardiac cycle, where the cardiac output almost vanishes. In
the case of time-averaged flows, such oscillatory flows are not observed at all, see Figure 4.12(d).
This observation strongly supports the theory that the above described model reduction of
neglecting the pulsatile nature of blood flow and hence using a time-averaged flow is misleading,
as is stated by others too [76, 152, 178, 255].

In contrast, the comparison of results of the full model with its rigid wall simplification shows that
the displacements of the artery wall only have a minor influence on the WSS and PSF patterns,
see Figures 4.10(a) and 4.12(a). Similar observations are also made for the computed OSI of the
two models, see Figures 4.10(c) and 4.12(c). The case study showed that the time-averaged WSS
and OSI and hence the endothelial permeability are only slightly altered by radial enlargements.
Hence, the rigid wall model is also capable to properly compute the spatial distribution of the
time-averaged PSF and the OSI patterns and hence is also suited to predict the potential plaque
formation locations. The difference in the PSF mainly is that the non-compliant artery wall
model yields sharper transitions between low and high permeability regions, where in contrast the
compliant artery wall does produce broader and more blurred high permeability regions. Similar
observations for the WSS patterns in carotid arteries were observed in [62]. However, in [62] a
significant influence of the compliant artery wall to the OSI was observed.

Still, a FSI-like approach to model atherosclerosis is indispensable. This is also stated by oth-
ers [59, 62, 152], but the reason for this conclusion is different. The computational results indicate
that not the radial enlargement of the lumen creates the need for a FSI approach, but much more
the ability of the model to capture the permanent displacements of the endothelium due to the
artery wall thickening. Consequently, a classical FSI approach is not mandatory, but mainly a
rigid wall and pulsatile flow model where the vessel lumen adapts to growth and remodeling. Still,
a pure computational fluid dynamics simulation is not sufficient since growth and remodeling
processes can only be captured physiologically when the specific layout of the artery wall, i.e.,
a suitable constitutive law is considered. Hence, a FSI-like approach is indispensable to phys-
iologically capture the influences of the long time scale phenomena in atherosclerosis to the
cardiovascular mechanics.

To accelerate the development of atherosclerotic plaques to a few cardiac cycles, some parameters
of the model were adapted. This was done such that the developed plaques qualitatively match
plaques found in experiments with atherosclerotic mice models, see Figure 4.13(c). As indicated
in Figures 4.13(a) and 4.13(b), growth successively narrows the lumen and induces a drastic
change of the PSF patterns representing the endothelial permeability. To give a quantitative
example, the luminal area of cross section EF (cf. Figure 4.13(c)) is reduced by 36, 8% compared
to the initial state, see Figure 4.14. Even though the results were achieved with a simplistic model
for the immunology, this illustrates that the presented model of the cardiovascular mechanics
is capable to adjust dynamically to the long time scale atherosclerotic process of growth and
remodeling. For the primary high permeability regions with already developed plaques, there
are two main trends. On the one hand the endothelial permeability could decrease such that the
healing processes outweigh the continuing LDL penetration and hence the atherosclerotic process
locally stagnates resulting in a stable plaque. In the contrary case, the endothelial permeability
would be too high for the plaque to become stable and the plaque continues to grow. To be able
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growth factor #(mSS(0.0 s)) [1]

(a) Initial cross section EF
and spatial distribution of
growth factor ϑ(mSS(0.0s)) at
time t = 0.0 s.
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growth factor #(mSS(1.2 s)) [1]

(b) Grown cross section EF
and spatial distribution of
growth factor ϑ(mSS(1.2s)) at
time t = 1.2 s.
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(c) Grown cross section EF and
spatial distribution of remod-
eling factor λ(mSS(1.2s)) at
time t = 1.2 s.

Figure 4.14 Initial and grown cross section EF (cf. Figure 4.13(c)) and spatial distributions of
growth factor and remodeling factor at different times.

to predict the stability outcome of a plaque, a predictive reaction model of key species must be
introduced to replace the utilized simplified model. Further, it is inevitable to embed the presented
model into a suitable multiscale in time strategy.

4.5 Limitations

The developed multiphysics model is affected by five main limitations. First, the conclusions
drawn from the developed mathematical and computational model are based only on a single
murine-specific computational case study which is based on a single set of physiological data
from the literature. Hence, the murine-specific setup in the multiphysics model only differs in the
geometry and geometry-derived model parameters. Still, the computational case study showed
that the multiphysics model is well applicable in the context of atherosclerosis. The qualitatively
same results are expected also for other murine-specific geometries and derived parameter sets. In
further work more murine-specific cases must be investigated to further corroborate the presented
conclusions.

Second, the model suffers from a variety of uncertainties which were not yet assessed. The
utilized magnetic resonance angiography has a rather coarse spatial resolution (especially through-
plane) compared to other imaging techniques like micro computer tomography. Thus, due to
the common sequence of imaging, segmentation and simulation, immanent inaccuracies in the
segmented geometry of the lumen may result in geometry-driven alterations of computed results,
especially of the WSS and PSF patterns [166]. Moreover, some model parameters are only
roughly known as they are very difficult to measure (such as the spatial variation of the diffusive
permeability) or were not yet measured based on murine experiments (such as the parameters for
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the surrounding tissue). A detailed quantification of these uncertainties in the multiphysics model
is very challenging and must be individually addressed in future work.

Further, the utilized reaction model is a drastic simplification of the complex inflammatory
and immunological processes of atherosclerosis, cf. Section 1.1. Many important processes
and key species involved in the development of atherosclerotic plaques were neglected and a
simple heuristic reaction model with solely two species (LDL and foam cells) was utilized. The
development of a quantitatively validated and predictive reaction model of the formation of early
atherosclerotic plaques is addressed in the subsequent Chapter 5. The incorporation of the reaction
model into a scalar transport submodel is part of Chapter 6.

The fourth limitation of the proposed model is the neglection of the transmural pressure gradient-
driven porous media flow within the artery wall and the induced neglection of the advective solute
flux through the endothelium. The mechanical properties, however, are dominated by the media
and adventitia layers of the artery wall and these layers mainly consist of a solid phase [294].
Thus, the influence of the fluid phase to the short time scale cardiovascular mechanics can be
assumed to be minor. The importance of the advective transport of lipoproteins with the porous
media flow to the long time scale atherosclerotic process is controversial, see e.g. [268] and [210],
and will be assessed in Chapter 6.

Finally, the expensive computational cost prevents a straightforward application of the multi-
physics model to predict the long-term process of atherosclerosis. Hence, the model has to be
embedded into a suitable multiscale in time strategy, e.g., similar to [81, 152, 267]. In a multiscale
in time strategy, the presented models of cardiovascular mechanics and concentrations in the
blood can be utilized to represent the short time scale. In contrast, the model of concentrations in
the artery wall (with a predictive reaction model) can be used for the long time scale. As has been
shown, the modeling of the short time scale is indispensable and hence the usage of a multiscale
in time strategy is unavoidable. A detailed proposal for a multiscale in time strategy based on the
developed multiphysics model is given in the final Chapter 7.

4.6 Short summary

This chapter is a revised version of [266]. It is concerned with the development of a novel
mathematical model of atherosclerosis which incorporates major processes of all time scales of the
disease. Based on basic continuum mechanical principles, a mathematical multiphysics model was
developed which incorporates the cardiovascular mechanics including the interaction of blood and
artery wall, transport of LDL to and through the endothelium, inflammatory and immunological
processes within the artery wall as well as a novel growth and remodeling formulation for the
artery wall. Thereby, the interlacement of the different time scales of atherosclerosis is respected
such that the short time scale cardiovascular mechanics is capable to dynamically adjust to
changes occurring in the long time scale and vice versa.

The model was calibrated to an exemplary physiological data set and a murine-specific geometry
such that it reproduced important cardiovascular quantities, such as the blood pressure, radial
displacements and WSS. The developed law for the up- and downscaling of the endothelial
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4 Multiphysics approach for atherosclerosis

permeability with respect to LDL is a good indicator for potential sites of atherosclerotic plaque
formation. The analysis of model reductions corroborates the theory that neglecting the short time
scale of cardiovascular mechanics by time-averaging flows or neglecting the deformation of the
artery wall is misleading in the context of atherosclerosis.
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5 Quantification of early
atherosclerotic plaque formation

The previous Chapter 4 focused on the development of a computational multiphysics approach
for atherosclerosis. Thereby, only little focus was put on the inflammatory and immunological
processes in the artery wall that lead to the development of atherosclerotic plaques. Simplistic reac-
tion models for LDL κSS` and foam cells κSSm were introduced and their parameters trimmed such
that they mimicked a physiological atherosclerosis-like behavior. However, when the presented
multiphysics approach shall become predictive and clinically relevant, the complex inflamma-
tory and immunological processes must be addressed by a suitable quantified and predictive
mathematical model. Indeed, there is a growing number of studies that model inflammatory and
immunological processes in the artery wall that cause the development of atherosclerotic plaques,
see [215] and references therein. However, only few of these models even use parameters that are
obtained from experimental results and none of these models is able to forecast the formation of
atherosclerotic plaques in the artery wall.

In this chapter, a non-spatial but parameterized mathematical ODE model of the early stages
of atherosclerosis is developed and analyzed. The model is constructed componentwise where
each component is strongly informed by existing sets of in vitro experiments. Therefore, ODE
submodels are developed which are least-squares fitted to various in vitro experimental results
from the literature. Subsequently, the submodels are used to construct a parameterized combined
model of the formation of early atherosclerotic plaques. A local sensitivity analysis of the
combined model with respect to its parameters is performed that identifies critical parameters
and processes. Further, a systematic analysis of the long-term outcome of the model is presented
which produces a characterization of stable and unstable model plaques based on prescribed rates
of recruitment of low-density lipoproteins, high density lipoproteins and macrophages.

The structure of this chapter is as follows: In Section 5.1, three mathematical submodels are
developed that are validated against in vitro experiments. The submodels are merged to create
a combined model that describes the formation of early atherosclerotic plaques as they may
occur in vivo. Section 5.2 gives details on the performed sensitivity and stability analysis of the
combined model. In Section 5.3, all computational results are presented, and they are discussed
in Section 5.4. Finally, a brief summary of this chapter is given in Section 5.5.

In this chapter, all quantities belong to concentrations in the artery wall. The respective super-
script SS is omitted for clarity. This chapter is a revised version of the previously published work
by Thon et al. [265].
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5 Quantification of early atherosclerotic plaque formation

5.1 Models

This section is concerned with the development of a quantitative mathematical ODE model of
the formation of early atherosclerotic plaques. For an overview of important inflammatory and
immunological processes in early atherosclerosis, see Section 1.1.

The chosen modeling approach is similar to the biologists’ experimental approach where the
bigger picture of atherosclerosis is put together from many smaller observations and findings that
are gained from in vitro experiments. Analog, in vitro experimental results from the literature are
used to successively construct a quantified and predictive mathematical model. Therefore, a series
of three simpler submodels is developed that describe the modification of LDL by endothelial
cells and macrophages (Section 5.1.1.1), the protection that HDL offers against the oxidative
modification of LDL (Section 5.1.1.2) and the cholesterol cycle and reverse cholesterol transport
in macrophages (Section 5.1.1.3). Supplemented by a law for the apoptosis of macrophages,
the three submodels are merged to create a combined model that describes formation of early
atherosclerotic plaques as they may occur in vivo (Section 5.1.2). The combined model is a
quantitative and deterministic system of ODEs that describe the coupled inflammatory, lipid and
macrophage dynamics within the artery wall. The combined model tracks the number of LDL
particles, the extent of their modification, the total number of HDL particles as well as the total
number of macrophages and the extent of their intracellular cholesterol burden. A schematic
overview of the considered key species and their interactions is shown in Figure 5.1.

In all models, a continuum approach is used where the concentration of each species is represented
as a function of time only. Concentrations are either in units of mass per unit volume or number
per unit volume where the representative volume will be either the volume determined by the
petri dish (for in vitro experiments) or the volume of the plaque (for in vivo experiments).

Where a species in a model exists in many states, it will be assumed that the different states can
be binned so that different classes in the model have functionally distinct roles. For example, LDL
has many degrees and different types of oxidative modification [252]. In the models, however,
LDL is divided into two classes which are labeled, native LDL and modified LDL. The distinction
is that only modified LDL creates an immune reaction that leads to inflammation. The analog
holds for HDL. Analog, only those macrophages are modeled that ingest and store lipids to a
significant extent, as this is the behavior of the macrophages observed in the in vitro experiments
that are used to find parameters. Macrophages in vivo exhibit a wide variety of phenotypes [201],
but modeling that phenotypic diversity is beyond the capability of the available data.

The time-dependent behavior of species is modeled by systems of ODEs. If specific experimental
data exist, relationships are chosen which best represent the data. In contrast, linear relationships
are used if no experimental data exist and there is nothing to indicate that the relationship
must be nonlinear. The results of the mathematical submodels are least-squares fitted to various
experimental measurements from the literature to find values of the unknown parameters. Due to a
lack of uniform data experimental results gained from cells or lipids from different animal models
cannot be distinguished. All quantities are converted to the International System of Units (SI units)
from the experiment-specific units used in the literature which are often non-SI units. Table 5.1
shows the values used for the conversions in this thesis.

88



5.1 Models

Submodel 2: LDL 
modification and ingestion

Submodel 1: HDL 
protection against LDL 
modification

Submodel 3: cholesterol cycle and 
reverse cholesterol transport  

F

B

LDLHDL

Monocyte

Apoptotic 
macrophage

Macrophage

modLDL

++

-

Endothelium

Bloodstream

Intima

Complete model

Figure 5.1 Overview of key inflammatory and immunological processes in early atherosclerotic
plaques that are considered in the submodels and the combined model. It is assumed that mono-
cytes (circle, gray), LDL (diamond, gray) and HDL (triangle) enter the vessel wall at a constant
rate which reflect their concentrations in blood and the magnitude of wall shear stress exerted
on the endothelium by blood flow. Monocytes differentiate into macrophages (circle, white),
consume modified LDL (diamond, white) and apoptotic macrophages (cloud) and gain free
cholesterol (F) as a result, export cholesterol to HDL and undergo apoptosis. Free cholesterol is
converted to esterified cholesterol (B) and stored in lipid droplets, so free cholesterol is within an
essential and cytotoxic limit. LDL is oxidatively modified by macrophages and the endothelium,
whereas HDL counteracts LDL oxidation. The processes considered in each submodel of in vitro
systems are encircled by green (submodel 1 ), blue (submodel 2 ) and red (submodel 3 ) frames.
The processes considered in the combined model are encircled by a yellow frame.
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5 Quantification of early atherosclerotic plaque formation

Table 5.1 Overview of values of key quantities in SI units.

Symbol Description Value Source
NA Avogadro constant 6.022 · 1023 1

Mol

ρ1 Number of cell proteins per cell volume 3.0 · 1015 1
mm3 [196]

ρ2 Molecular weight of cell proteins 5.3 · 104 g
Mol

[181]
Mb Molecular weight of cholesterol ester 6.48 · 102 g

Mol
[263]

Vb Volume per mass of cholesterol ester 1.06 · 103 mm3

g
[263]

Mf Molecular weight of free cholesterol 3.87 · 102 g
Mol

[263]
Vf Volume per mass of free cholesterol 1.02 · 103 mm3

g
[263]

ρ3 Molecular weight of apolipoprotein B-100 5.49 · 105 g
Mol

[225]
ρ4 Volume of murine macrophage 2.10 · 10−6 mm3 [194]

Rm Radius of murine macrophage 7.94 · 10−3 mm = 3

√
3ρ4

4π

ρ5 Macrophages per cell protein mass 1.80 · 109 1
g

= NA
ρ1ρ2ρ4

R` Radius of LDL 1.1 · 10−5 mm [146]
M` Molecular weight of LDL 2.93 · 106 g

Mol
[53, 225]

ρ6 Fraction of cholesterol ester of LDL mass 38.3% [263]
ρ7 Fraction of free cholesterol of LDL mass 8.8% [263]
ρ8 LDL particles per LDL cholesterol mass 4.36 · 1017 1

g
= NA

M`(ρ6+ρ7)

ρ9 Apolipoprotein B-100 fraction of LDL protein mass 95% [225]
ρ10 LDL particles per LDL protein mass 1.04 · 1018 1

g
= NAρ9

ρ3

Rh Radius of HDL 4.72 · 10−6 mm [151]
Mh Molecular weight of HDL 2.92 · 105 g

Mol
[151]

ρ11 Cholesterol ester molecules per HDL particle 110.1 [151]
ρ12 Free cholesterol molecules per HDL particle 27.7 [151]
ρ13 HDL particles per HDL cholesterol mass 7.34 · 1018 1

g
= NA

Mbρ11+Mfρ12

ρ14 HDL particles per HDL protein mass 4.22 · 1018 1
g

[151]

All values are converted to mm, g and Mol.

5.1.1 Submodels of in vitro systems

In this section, three mathematical submodels that describe various in vitro experiments are
developed. All parameters of the submodels are either experiment-specific (i.e., are specified
by the experimental procedure) or estimated by a least-squares fit to the measured experimental
results.

5.1.1.1 LDL modification and ingestion

Native LDL gets oxidatively modified by endothelial cells and macrophages and both, native LDL
and modified LDL, gets ingested by macrophages. The submodel of the LDL modification and
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5.1 Models

ingestion is based on in vitro experiments by Henriksen et al. [116] and Leake et al. [165]. It is
subsequently denoted as submodel 1 .

Experimental setups

The modification of LDL by endothelial cells and the ingestion of modified LDL by macrophages
were investigated in vitro in [116] using a two-stage experimental setup. First, specified initial
concentrations of native LDL `Mod,0 were modified by exposure to cultured endothelial cell mono-
layers eMod for specified time periods TMod. (Here the subscript “Mod” indicates quantities of the
modification stage of the experimental setup.) Subsequently, the mixtures of native and modified
LDL, that had been created in the first step, were reduced to specified initial concentrations `Ing,0

and exposed to specified densities of macrophages mIng for specified time periods TIng to allow
the macrophages to ingest the LDL. (The subscript “Ing” indicates quantities of the ingestion
stage of the experimental setup.) Among other things, the ingested LDL per macrophage was
measured for various experiment-specific values of `Mod,0, eMod, TMod, `Ing,0, mIng and TIng as
shown in Table 5.2.

Additionally, measurements in [165] are used where the modification and ingestion of LDL by
macrophages were investigated. This study used experimental protocols similar to [116], but the
modification of LDL in the first stage was done using specified densities of macrophages mMod

instead of endothelial cell monolayers. Also, in the second stage a high concentration of fetal calf
serum was added preventing the oxidative modification of LDL by macrophages. In [165], the
ingested LDL per macrophage in the second stage was measured for various experiment-specific
values of `Mod,0, mMod, TMod, `Ing,0, mIng and TIng as shown in Table 5.2.

Mathematical submodel

The experimental observations in [116] and [165] are driven by the ingestion of native and
modified LDL by macrophages and by the modification of native LDL by endothelial cells and
macrophages. In these experiments, the ingestion of native and modified LDL, concentrations `
and ˜̀ per macrophage saturates as LDL concentrations increase (see [116], Figure 7 and 8
and [165], Figure 4). The modification of native LDL by macrophages and endothelial cells is de-
scribed by linear relationships in their concentrations `, m and e, respectively, as no experimental
data exist which indicates otherwise. In the experiments, a lag phase for the modification of native
LDL of 3 − 8 h was observed (see [116], Figure 2, [165], Figure 1a and 1b, [200], Figure 1b).
This lag phase is accounted for by a reduction of 4 h of the experimental time period TMod.

The mathematical submodel is formulated in the same units that are used in the experiments: time
[t] = h, concentration of native LDL [`Mod] = [`Ing] = µg lipid protein

ml
, concentration of modified

LDL [˜̀Mod] = [˜̀Ing] = µg lipid protein
ml

, concentration of total ingested LDL [aIng] = µg lipid protein
ml

,
density of macrophages [mMod] = [mIng] = mg cell protein

ml
and density of endothelial cells

[eMod] = mm2

ml
. The submodel consists of two sequential system of ODEs and associated ini-

tial conditions. As in the experiments described in [116, 165], the first system corresponds to
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5 Quantification of early atherosclerotic plaque formation

Table 5.2 Experiment-specific parameters of the mathematical submodel of LDL modification
and ingestion (submodel 1 ) in analogy to the experimental setups in [116] and [165].
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[116], Fig. 1, eMod = 0 24 200 0 0 0− 20 10 4.16 · 10−2 ∗ 1.18 · 10−1 ∗∗

[116], Fig. 1, eMod = 1413.7 24 200 0 1413.7 0− 20 10 4.16 · 10−2 ∗ 1.18 · 10−1 ∗∗

[116], Fig. 2, eMod = 0 0− 46 200 0 0 5 8.5 4.16 · 10−2 ∗ 1.18 · 10−1 ∗∗

[116], Fig. 2, eMod = 1413.7 0− 46 200 0 1413.7 5 8.5 4.16 · 10−2 ∗ 1.18 · 10−1 ∗∗

[116], Fig. 5, eMod = 0 26 200 0 0 5 0− 40 4.16 · 10−2 ∗ 1.18 · 10−1 ∗∗

[116], Fig. 5, eMod = 1413.7 26 200 0 1413.7 5 0− 40 4.16 · 10−2 ∗ 1.18 · 10−1 ∗∗

[165], Fig. 1a, mMod = 0 0− 24 100 0 0 24 10 5.54 · 10−1 ∗ 0
[165], Fig. 1a, mMod = 1.11 0− 24 100 1.11 ∗ 0 24 10 5.54 · 10−1 ∗ 0
[165], Fig. 4, mMod = 0 24 100 0 0 24 0− 50 5.54 · 10−1 ∗ 0
[165], Fig. 4, mMod = 1.11 24 100 1.11 ∗ 0 24 0− 50 5.54 · 10−1 ∗ 0

Parameters indicated by ∗ are estimated using ρ5 from Table 5.1. Parameters indicated by ∗∗ are
estimated by least-squares fitting to the experimental results. All values are given in the units of
submodel 1 .

the oxidative modification of native LDL by macrophages and endothelial cells (modification
stage)

d

dt
`Mod(t) = −µ`

(`Mod)n`

(ξ`)n` + (`Mod)n`
mMod

︸ ︷︷ ︸
ingestion of native LDL

by macrophages

− q`,m`ModmMod︸ ︷︷ ︸
modification of native
LDL by macrophages

− q`,e`ModeMod︸ ︷︷ ︸
modification of native

LDL by endothelial cells

,

d

dt
˜̀
Mod(t) = −µ˜̀

(˜̀
Mod)n˜̀

(ξ˜̀)n˜̀ + (˜̀
Mod)n˜̀

mMod

︸ ︷︷ ︸
ingestion of modified LDL

by macrophages

+ q`,m`ModmMod︸ ︷︷ ︸
modification of native LDL

by macrophages

+ q`,e`ModeMod︸ ︷︷ ︸
modification of native LDL

by endothelial cells

,

`Mod(4h) = `Mod,0, ˜̀
Mod(4h) = 0, t ∈ [4h;TMod]

(5.1)

and the second system to the ingestion of LDL by macrophages (ingestion stage)

d

dt
`Ing(t) = −µ`

(`Ing)n`

(ξ`)n` + (`Ing)n`
mIng

︸ ︷︷ ︸
ingestion of native LDL

by macrophages

− q`,m`IngmIng︸ ︷︷ ︸
modification of native LDL

by macrophages

, (5.2)
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d

dt
˜̀
Ing(t) = −µ˜̀

(˜̀
Ing)n˜̀

(ξ˜̀)n˜̀ + (˜̀
Ing)n˜̀

mIng

︸ ︷︷ ︸
ingestion of modified LDL

by macrophages

+ q`,m`IngmIng︸ ︷︷ ︸
modification of native LDL

by macrophages

,

d

dt
aIng(0) = +µ`

(`Ing)n`

(ξ`)n` + (`Ing)n`
mIng

︸ ︷︷ ︸
ingestion of native LDL

by macrophages

+µ˜̀
(˜̀

Ing)n˜̀

(ξ˜̀)n˜̀ + (˜̀
Ing)n˜̀

mIng

︸ ︷︷ ︸
ingestion of modified LDL

by macrophages

,

`Ing(0) = `Ing,0
`Mod(TMod)

`Mod(TMod) + ˜̀
Mod(TMod)︸ ︷︷ ︸

fraction of native LDL at end
of first experimental stage

,

˜̀
Ing(0) = `Ing,0

˜̀
Mod(TMod)

`Mod(TMod) + ˜̀
Mod(TMod)︸ ︷︷ ︸

fraction of modified LDL at end
of first experimental stage

,

aIng(0) = 0, t ∈ [0;TIng],

(5.2)

where TMod, `Mod,0,mMod, eMod, TIng, `Ing,0 and mIng are experiment-specific parameters of the
submodel (see Table 5.2). The remaining constants q`,m, q`,e, µ`, ξ`, n`, µ˜̀, ξ˜̀ and n˜̀ are the
unknown parameters of submodel 1 . They are estimated by least-squares fitting the simulated
ingestion of native and modified LDL per macrophage in the ingestion phase aIng(TIng)

mIng
is fitted to

the experimental results in [116] and [165].

5.1.1.2 HDL protection against LDL modification

The native HDL offers a protection against the oxidative modification of native LDL. The
submodel of HDL protection against LDL modification is based on in vitro experiments by
Mackness et al. [187]. It is subsequently denoted as submodel 2 .

Experimental setup

The HDL protection against the oxidative modification of LDL by copper sulfate was investigated
in vitro in [187]. Specified initial concentrations of native LDL `0 and HDL h0 were exposed to
specified concentrations of copper sulfate ς for specified time periods TMod. Among other things,
the lipid peroxide content per lipoprotein particle was measured for various experiment-specific
values of `0, h0, ς and TMod as shown in Table 5.3.

Mathematical submodel

The experimental observations in [187] are driven by the modification of native LDL and native
HDL by copper sulfate as well as by the inhibition of LDL modification by native HDL. The
protection that HDL gives against modification of native LDL by copper sulfate saturates as the
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5 Quantification of early atherosclerotic plaque formation

Table 5.3 Experiment-specific parameters of the mathematical submodel of HDL protection
against LDL modification (submodel 2 ) in analogy to the experimental setups in [187].

Experiment
Quantity

TMod [h] `0 [mg protein
ml

] h0 [mg protein
ml

] ς [µMol
ml

]

[187], Fig. 4, `0 = 0, h0 = 1.5 0− 24 0 1.5 5
[187], Fig. 4, `0 = 1.5, h0 = 0 0− 24 1.5 0 5
[187], Fig. 4, `0 = 1.5, h0 = 1.5 0− 24 1.5 1.5 5
[187], Fig. 5 6 1.5 0− 2 5

All values are given in the units of submodel 2 .

concentration of HDL h increases (see [187], Figure 5). The modification of native LDL and
native HDL by copper sulfate is described by linear relationships in their concentrations `, h
and ς , respectively, as no experimental data exist which indicates otherwise. The lipid peroxide
quantities are used as a measure of the concentrations of modified LDL and modified HDL.
Therefore, each mg of lipid protein of modified LDL and modified HDL as given in [187] is
converted to N˜̀ nMol and Nh̃ nMol of lipid peroxide, respectively.

The mathematical submodel is formulated in the following units: time [t] = h, concentration
of native LDL [`] = mg protein

ml
, concentration of modified LDL [˜̀] = mg protein

ml
, concentration of

native HDL [h] = mg protein
ml

, concentration of modified HDL [h̃] = mg protein
ml

and concentration of
copper sulfate [ς] = µMol

ml
. The submodel consists of a system of four ODEs and associated initial

conditions

d

dt
`(t) = − q`,ς`ς︸ ︷︷ ︸

modification of native
LDL by copper sulfate

· (kh)
nh

(kh)
nh + hnh︸ ︷︷ ︸

inhibition of modi-
fication by native HDL

= − d

dt
˜̀(t),

d

dt
h(t) = − qh,ςhς︸ ︷︷ ︸

modification of native
HDL by copper sulfate

· (kh)
nh

(kh)
nh + hnh︸ ︷︷ ︸

inhibition of modi-
fication by native HDL

= − d

dt
h̃(t),

`(0) = `0, ˜̀(0) = 0, h(0) = h0, h̃(0) = 0, t ∈ [0;TMod],

(5.3)

where TMod, `0, h0 and ς are experiment-specific parameters (see Table 5.3). The remaining
constants N˜̀, Nh̃, q`,ς , qh,ς , kh and nh are the unknown parameters of submodel 2 . They are

estimated by least-squares fitting of the simulated lipid peroxide content per lipoprotein N˜̀
˜̀(TMod)

`0
and the reduction of lipid peroxide content due to the presence of HDL to the experimental results
in [187].
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5.1.1.3 Cholesterol cycle and reverse cholesterol transport

Macrophages ingest native and modified LDL and store its cholesterol content as intracellular
free and esterified cholesterol. Free and esterified cholesterol are in a dynamic equilibrium due to
hydrolysis and esterification. Further, macrophages are able to offload their free cholesterol content
to native HDL. The submodel of cholesterol cycle and reverse cholesterol transport is based on in
vitro experiments by Brown et al. [24, 25]. It is subsequently denoted as submodel 3 .

Experimental setup

The ingestion of cholesterol by macrophages and the cholesterol cycle within macrophages was
investigated in vitro in [24]. Specified concentrations of modified LDL ˜̀

0 were incubated in a
dish in the presence of specified densities of macrophages m for specified time periods TCho.
Among other things, the intracellular free cholesterol and cholesterol ester per macrophage were
measured for various experiment-specific values of ˜̀

0,m and TCho as shown in Table 5.4.

Using this study [24] as a basis, the cholesterol efflux from macrophages to HDL was investigated
in [25] using a multi-staged experimental setup. First, specified densities of macrophages m
were loaded with free and esterified cholesterol by incubation with LDL. Subsequently, the
concentrations of intracellular free cholesterol f0 and esterified cholesterol b0 per macrophage
were measured. After specified time periods Th, specified concentrations of HDL h0 were added.
After a total time period of TCho the intracellular free and esterified cholesterol per macrophage
as well as the excreted cholesterol per macrophage was measured for various experiment-specific
values of m, f0, b0, h0, Th and TCho as shown in Table 5.4. In both studies, the modification of
LDL by macrophages was prevented by high concentrations of fetal calf serum.

Mathematical submodel

The experimental observations in [24] and [25] are driven by the ingestion of modified LDL
by macrophages, the free cholesterol-cholesterol ester cycle within macrophages and the off-
loading of free cholesterol from macrophages to HDL. The ingestion of modified LDL per
macrophage saturates as the concentration of modified LDL ˜̀ increases (see [116], Figure 7).
Each µg lipid protein of ingested modified LDL can be identified with Nf nMol of incorporated
intracellular cholesterol particles which are hydrolyzed to free cholesterol [25]. The cholesterol
cycle of free cholesterol and cholesterol ester within macrophages shows a buffer-like behavior
(see [24], Figure 1 and [25], Figure 1 and 4). Hence, it is assumed that there exists a concentration
of free cholesterol fMin which is favored by macrophages as well as a maximum concentration of
free cholesterol fMax possible within macrophages [25]. As suggested in [25], these concentra-
tions fMin and fMax affect only the rate kf of esterification and not the rate kb of hydrolysis. The
delivery of free cholesterol from macrophages to native HDL saturates as the concentration of
HDL h increases (see [25], Figure 2), but only takes place when concentration of intracellular
free cholesterol f is bigger than fMin (see [25], Figure 1b). In accordance with the results in [25],
it is assumed that native HDL is never saturated by the cholesterol it takes up and so the action of
HDL does not decline through lipid loading due to reverse cholesterol transport. Additionally, a
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Table 5.4 Experiment-specific parameters of the mathematical submodel of cholesterol cycle
and reverse cholesterol transport (submodel 3 ) in analogy to the experimental setups in [24]
and [25].
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[24], Fig. 1a & 1b, ˜̀
0 = 0 0− 96 0 0 0 56 0 4.16 · 10−1 ∗

[24], Fig. 1a & 1b, ˜̀
0 = 25 0− 96 0 0 25 56 0 4.16 · 10−1 ∗

[25], Fig. 1a, 1b & 1c, h0 = 0 0− 72 0 0 0 183 342 6.93 · 10−1 ∗

[25], Fig. 1a, 1b & 1c, Th = 0 0− 24 0 250 0 183 342 6.93 · 10−1 ∗

[25], Fig. 1a, 1b & 1c, Th = 24 0− 48 24 250 0 183 342 6.93 · 10−1 ∗

[25], Fig. 1a, 1b & 1c, Th = 48 0− 72 48 250 0 183 342 6.93 · 10−1 ∗

[25], Fig. 2a, TCho = 8 8 0 0− 267 0 212 405 6.93 · 10−1 ∗

[25], Fig. 2a, TCho = 24 24 0 0− 267 0 212 405 6.93 · 10−1 ∗

[25], Fig. 4 24 0 0− 250 0 177 ∗∗ 456 ∗∗ 1.39 ∗

[25], Fig. 7a & 7b, h0 = 0 0− 6 0 0 0 190 488 6.93 · 10−1 ∗

[25], Fig. 7a & 7b, h0 = 200 0− 6 0 200 0 190 488 6.93 · 10−1 ∗

Parameters indicated by ∗ are estimated using ρ5 from Table 5.1. Parameters indicated by ∗∗ are
estimated by least-squares fitting to the experimental results. All values are given in the units of
submodel 3 .

constant efflux of intracellular free cholesterol from macrophages independent of native HDL
(see [24], Figure 1a and [25], Figure 1c) occurs in vitro.

The mathematical submodel is formulated in the following units: time [t] = h, concentration of
modified LDL [˜̀0] = µg lipid protein

ml
, concentration of native HDL [h] = µg lipid protein

ml
, density of

macrophages [m] = mg cell protein
ml

, concentration of total intracellular free cholesterol [f ] = nMol
ml

,
concentration of total intracellular cholesterol ester [b] = nMol

ml
and concentration of total choles-

terol excreted from cells [r] = nMol
ml

. The submodel consists of a system of three ODEs and
associated initial conditions

h(t) = h0H(t− Th)
d

dt
f(t) = +Nf µ˜̀

(˜̀
0)
n˜̀

(ξ˜̀)
n˜̀ + (˜̀

0)
n˜̀
m

︸ ︷︷ ︸
ingestion of modified LDL

− kf
f
m
− fMin

fMax − f
m

(
f

m
− fMin

)
m

︸ ︷︷ ︸
esterification of free cholesterol

(5.4)
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+ kbb︸︷︷︸
hydrolysis of

cholesterol ester

−
(
cf + µf

hnf

(ξf )
nf + hnf

)(
f

m
− fMin

)
m

︸ ︷︷ ︸
cholesterol efflux from macrophages to HDL

,

d

dt
b(t) = + kf

f
m
− fMin

fMax − f
m

(
f

m
− fMin

)
m

︸ ︷︷ ︸
esterification of free cholesterol

− kbb︸︷︷︸
hydrolysis of

cholesterol ester

,

d

dt
r(t) = +

(
cf + µf

hnf

(ξf )
nf + hnf

)(
f

m
− fMin

)
m

︸ ︷︷ ︸
cholesterol efflux from macrophages to HDL

,

f(0) = f0m, b(0) = b0m, r(0) = 0, t ∈ [0;TCho],

(5.4)

where the functionH denotes the Heaviside step function and TCho, Th, h0, ˜̀
0, f0, b0 and m, are

experiment-specific parameters (see Table 5.4). The constants µ˜̀, ξ˜̀, n˜̀ are the same as those in-
troduced in submodel 1 . The values of these parameters determined by the fitting of submodel 1
are used, see Table 5.7. The remaining constants Nf , fMin, fMax, kf , kb, cf , µf , ξf and nf are the
unknown parameters of submodel 3 . They are estimated using a least-squares fit of the simulated
concentration of intracellular free cholesterol f(TCho)

m
, intracellular cholesterol ester b(TCho)

m
and ex-

creted cholesterol r(TCho)
m

per macrophage to the experimental results in [24] and [25]. The results
in [24] are converted into the correct units for the submodel using the molecular weights of free
cholesterol Mf = 3.87 · 102 g

Mol
and cholesterol ester Mb = 6.48 · 102 g

Mol
[263]. Additionally,

doubled results from [25], Figure 2 are used in order to be consistent with other measurements of
the same experiment, i.e., [25], Figure 1c, 4 and 7b.

5.1.2 Combined model of early atherosclerotic plaque formation

The purpose of the combined mathematical model is to predict the development of early stages
of atherosclerotic plaques as they may occur in vivo. It is based on the previous submodels of
in vitro systems that quantified the modification and ingestion of LDL by macrophages and
endothelial cells, the protective action of HDL against LDL modification, the cholesterol cycle
within macrophages and reverse cholesterol transport from macrophages. Hence, it is assumed
that the previous assumptions underlying the submodels and parameters of the in vitro systems
are valid in an in vivo setting too. This modeling approach is philosophically the same as by
experimental scientists and relies on the idea that results from in vitro studies can be used to
inform the understanding of what goes on in vivo.

It it assumed that the protection against LDL modification that HDL provides is independent of
the source of modification, as no experimental data exist which indicates otherwise. Hence, it
is assumed that the protection HDL gives against oxidative modification of LDL by copper is
also valid for endothelial cell and macrophage mediated modification. Following [46] the rates of
modification of native HDL by macrophages and endothelial cells are 7.6 times smaller than the
rates that LDL is modified by macrophages and endothelial cells. Modified HDL no longer takes
part in the reverse cholesterol transport [204].
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5 Quantification of early atherosclerotic plaque formation

In contrast to the in vitro systems where the experiments were run in hours or days, the disease
progression in vivo happens on a much longer time scale. Hence, the fate of macrophages in
vivo is of particular interest. Macrophages can undergo necrosis, proliferation, emigration and
apoptosis. But as rates of necrosis, proliferation and emigration are small in early stages of
atherosclerosis (see [180, 220, 228]), the only fate of macrophages considered in the model is
apoptosis. The rate of macrophage apoptosis is dependent on the concentration of free cholesterol
within macrophages (see [296], Figure 4a), which is approximated by the average concentration f

m

of intracellular free cholesterol per macrophage. As it is implausible to assume an unlimited rate
of macrophages apoptosis and it is in accordance with the results in [296], it is assumed that the
rate of apoptosis saturates (with an exponent of nm = 2) as the concentration of free cholesterol f
increases. In [296] the initial population of macrophages m(t) decays exponentially over the time
period of the experiment TApo = 9 h. This gives:

m(TApo) = m0 exp


−µm

(
f0

m0

)nm

(ξm)nm +
(
f0

m0

)nm TApo


 , (5.5)

where f0

m0
is the experiment-specific average intracellular free cholesterol of the macrophage

population. The unknown parameters µm and ξm are least-squares fitted to the measurements of
Yao et al. [296], Figure 4a. The total intracellular free and esterified cholesterol is not affected by
apoptosis as it can be assumed that all apoptotic macrophages are cleared by other non-apoptotic
macrophages by efferocytosis which is assumed to be not defective [237].

The concentrations of native LDL `, native HDL h and the density of macrophages m in plaques
are determined by recruitment from the bloodstream. Hence, rates of recruitment of native LDL r`,
of native HDL rh and of macrophages rm (per unit area of plaque surface) are introduced into the
combined model. Monocytes in the blood contain a concentration of free cholesterol fIn [296]
that remains within each monocyte-derived macrophage when it migrates into a plaque.

The radial thickness of the plaques is denoted by H . A thickness of H = 10 µm is used which is
the width of the intima [221, 294] as early stages of atherosclerosis are considered. The factor 1

H

is introduced to account for effects of processes which take place on plaque surface (such as
the inward flux of lipids and cells from the blood and the modification of LDL and HDL by
endothelial cells) on volume-averaged concentrations.

Mathematical model

The combined model is formulated in the following units: time [t] = h, concentration of na-
tive LDL [`] = 1

mm3 , concentration of modified LDL [˜̀] = 1
mm3 , concentration of native

HDL [h] = 1
mm3 , concentration of total intracellular free cholesterol [f ] = 1

mm3 , concentra-
tion of total intracellular cholesterol ester [b] = 1

mm3 and density of macrophages [m] = 1
mm3 . The

combined model consists of a system of six ODEs and associated initial conditions
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d

dt
`(t) =− µ`

`n`

(ξ`)
n` + `n`

m

︸ ︷︷ ︸
ingestion of native LDL

by macrophages

−
(
q`,m`m+

q`,e
H
`
)

︸ ︷︷ ︸
modification of native LDL

by macrophages and
endothelial cells

· (kh)
nh

(kh)
nh + hnh︸ ︷︷ ︸

inhibition of
modification by HDL

+
r`
H︸︷︷︸

recruitment
of native LDL

,

d

dt
˜̀(t) =− µ˜̀

˜̀n˜̀

(ξ˜̀)
n˜̀ + ˜̀n˜̀

m

︸ ︷︷ ︸
ingestion of modified LDL

by macrophages

+
(
q`,m`m+

q`,e
H
`
)

︸ ︷︷ ︸
modification of native LDL

by macrophages and
endothelial cells

· (kh)
nh

(kh)
nh + hnh︸ ︷︷ ︸

inhibition of
modification by HDL

,

d

dt
h(t) =− qh,mhm︸ ︷︷ ︸

modification of HDL
by macrophages

− qh,e
H
h

︸ ︷︷ ︸
modification of HDL
by endothelial cells

+
rh
H︸︷︷︸

recruitment
of HDL

,

d

dt
f(t) = +Nf µ`

`n`

(ξ`)
n` + `n`

m

︸ ︷︷ ︸
ingestion of native LDL

by macrophages

+Nf µ˜̀

˜̀n˜̀

(ξ˜̀)
n˜̀ + ˜̀n˜̀

m

︸ ︷︷ ︸
ingestion of modified LDL

by macrophages

− kf
(f − fMinm)2

fMaxm− f︸ ︷︷ ︸
esterification of
free cholesterol

+ kbb︸︷︷︸
hydrolysis of

cholesterol ester

− µf
hnf

(ξf )
nf + hnf

(f − fMinm)

︸ ︷︷ ︸
cholesterol efflux from macrophages to HDL

+
rm
H
fIn

︸ ︷︷ ︸
recruitment of
macrophages

,

d

dt
b(t) = + kf

(f − fMinm)2

fMaxm− f︸ ︷︷ ︸
esterification of
free cholesterol

− kbb︸︷︷︸
hydrolysis of

cholesterol ester

,

d

dt
m(t) =− µm

fnm

(ξmm)nm + fnm
m

︸ ︷︷ ︸
apoptosis of macrophages

+
rm
H︸︷︷︸

recruitment of
macrophages

,

`(0) = 0, ˜̀(0) = 0, h(0) = 0, f(0) = f0m0,

b(0) = b0m0, m(0) = m0, t ∈ [0;∞[,

(5.6)

where all parameters except the initial conditions f0, b0,m0 and the rates of recruitment r`, rh, rm
have been introduced previously.

The initial conditions describe the normal, non-inflamed state of the artery wall determined by
the prior condition of the subject. It is assumed that the initial intracellular free cholesterol f0 per
macrophage is 50% higher than the free cholesterol fIn of recruited macrophages. Assuming that
macrophages and intracellular cholesterols are in a steady-state, it follows

f0 = 1.5fIn,

m0 =
rm
H

(ξm)nm + (f0)nm

µm(f0)nm
,

b0 =
kf
kb

(f0 − fMin)2

fMax − f0

.

(5.7)
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Table 5.5 Ranges of rates of recruitment for the combined mathematical model.
Parameter Description Range Source

r` Rate of native LDL influx 3 · 106 − 3 · 109 1
h mm2

∗ [205, 221, 268, 272]
rh Rate of native HDL influx 4 · 107 − 4 · 109 1

h mm2
∗ [205, 221, 251, 268]

rm Rate of macrophage recruitment 400− 2800 1
h mm2 [2, 141]

Parameters indicated by ∗ are estimated using ρ8 and ρ13 from Table 5.1. All values are given in
the units of the combined mathematical model.

The initial conditions for the concentrations of lipids are set to zero as the lipids rapidly reach a
non-zero equilibrium. It is important to note that the long-term behavior of the combined model
is independent of the specific choice of initial conditions.

The rates of recruitment of native LDL r`, native HDL rh and macrophages rm into the plaque in
reality are strongly dependent on the particular plaque under consideration, including the wall
shear stress, where the plaque forms, and the diet, lifestyle and physiology of the individual who
carries the plaque.

The simplified version of the second Kedem-Katchalsky equation presented in Section 4.1.2.3 can
be used to calculate a rough estimate for the recruitment rates of LDL r` and HDL rh. For the
condition of a healthy subject this estimate shows that the recruitment rates of LDL and HDL can
vary by an order of up to 100 [205, 221, 268]. However, in LDL receptor-deficient mice on a high
fat-diet this order can even increase up to 1000 due to the very high LDL profile in blood [272].
The rate of macrophage recruitment is approximated by the experimental results in [141] and [2].
An overview of the ranges of these rates of recruitment is given in Table 5.5.

Remark. The mathematical submodels that describe the in vitro systems are special cases of the
combined model of early atherosclerotic plaque formation.

Remark. To keep the notation comprehensible, the symbols f and b have the following definitions:
Stand-alone f and b represent the (time-dependent) total concentrations of intracellular free and
esterified cholesterol per volume, respectively. However, with an index, such as f0, fMin, fMax, fIn

and b0 they denote (constant) quantities of unit intracellular cholesterol per macrophage.

5.2 Methods

This section gives the methods that are required to analyze the combined model. A sensitivity
analysis of the combined model with respect to its parameters is performed that identifies crucial
parameters and processes and that suggests future experimental investigations (Section 5.2.1).
Further, the combined model with the least-squares fitted parameters is used to forecast the stability
of the model plaque based on prescribed recruitment rates of LDL, HDL and macrophages into
the artery wall (Section 5.2.2).
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5.2.1 Sensitivity analysis of combined model

Most of the parameters of the combined model are estimated by least-squares fits of the submodels
to the respective in vitro experiments. The estimated parameters have a degree of uncertainty
due to the different experimental setups and measurement methods, different animals used as
experimental models and measurement errors. Additionally, the conversion from the various units
of measurement in the experimental studies (especially “mass of cell protein” to “amount of cells”
via ρ5 from Table 5.1) to a unified SI unit system introduces another source of uncertainty for
some parameters.

To quantify the effect of uncertainties in the parameters on the results of the combined model, a
local sensitivity analysis in terms of a metabolic control analysis [300] is performed. Therefore,
the normalized partial derivatives of all concentrations with respect to all parameters p of the
combined model (see Tables 5.5 and 5.7) at time TAC = 25 weeks are compared. As in [300],
the partial derivatives are estimated by using forward finite difference approximations with
a sufficiently small variation parameter ε = 0.1%. Hence, the metabolic control coefficient
MCC(`, p) of LDL ` with respect to the model parameter p is computed by

MCC(`, p) =
1

`p(TAC)

∂

∂p
`p(TAC) ≈ 1

`p(TAC)

`p+ε%(TAC)− `p(TAC)

ε
, (5.8)

where `p+ε% denotes the concentration of LDL ` computed with the parameter p perturbed by ε
percent. The metabolic control coefficients of all other species are computed in the same way.
As a basis for the perturbation of the recruitment rates r` = 3 · 107 1

h mm2 , rh = 4 · 108 1
h mm2

and rm = 1000 1
h mm2 are used. For all other parameters the values stated in Table 5.7 are

utilized.

5.2.2 Stability analysis of combined model

The long-term outcome for the plaque of the combined model is strongly dependent on the
three recruitment rates of LDL r`, of HDL rh and of macrophages rm, which characterize the
physiology and diet of the plaque’s host and its position within the cardiovascular system. They
vary by up to three orders of magnitude (see Table 5.5) resulting in qualitatively different predicted
developments of the model plaque. Hence, a focus is put on these three recruitment rates and a
systematic analysis of the stability of the combined model is performed. Therefore, the following
proposition is used:

Proposition 1. Let `(t), ˜̀(t), h(t), f(t), b(t),m(t) (t ≥ 0) be the unique and smooth solution of
the initial value problem defined by Equations (5.6) and (5.7) with strictly positive parameters
fulfilling fMin ≤ fIn < fMax and fMin ≤ f0 < fMax. Then the solution satisfies:

(a) `(t), ˜̀(t), h(t), f(t), b(t),m(t) ≥ 0 for all t ≥ 0.
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(b) m(t) ∈
[
rm
H

(ξm)nm + (fMax)nm

µm(fMax)nm︸ ︷︷ ︸
=:mMin

,
rm
H

(ξm)nm + (fMin)nm

µm(fMin)nm︸ ︷︷ ︸
=:mMax

]
and

f(t)
m(t)
∈ [fMin, fMax] for all t ≥ 0.

(c) `(t), h(t), f(t),m(t) are bounded. If additionally r`
H
< µ˜̀mMin, then ˜̀(t) is bounded too.

Proof. See Appendix A.

The long-term outcome of the combined model is analyzed by numerically determining the steady-
state solutions for the concentrations of macrophages m̂ ∈ [mMin;mMax] and total intracellular
free cholesterol per macrophage f̂

m̂
∈ [fMin; fMax] for the full physiological spectrum of rates of

recruitment r`, rh and rm (see Table 5.5). Additionally, the boundedness of the concentration of
the total intracellular cholesterol ester b(t) with respect to the recruitment rates is investigated
numerically in order to assess the severity and risk of plaques.

5.3 Results

In this section all results gained from the models in Section 5.1 and the methods in Section 5.2
are presented. All numerical computations were performed using MATLAB (The MathWorks
Inc., Natick, Massachusetts, USA, 2000).

5.3.1 Model parameters

The mathematical submodels of LDL modification and ingestion, HDL protection against LDL
modification, cholesterol cycle and reverse cholesterol transport and macrophage apoptosis are
numerically solved and their parameters least-squares fitted to the respective experimental results.
An overview of the sources of these studies, the number of different experiments in each study
and the number of data points from each study that were used in the least-squares fitting of the
unknown parameters is given in Table 5.6. The fitted parameters and the remaining parameters of
the combined model are given in Table 5.7. The least-squares fits of the mathematical submodels
of in vitro systems to the experimental results in [24, 25, 116, 165, 187, 296] are shown in
Figure 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7.

5.3.2 Analysis of combined model

The local sensitivity analysis of the combined mathematical model is analyzed as described in
Section 5.2.1. The results of the performed metabolic control analysis are independent of the
chosen variation parameter ε = 0.1%. The metabolic control coefficients of native LDL, modified
LDL, HDL, average intracellular free and esterified cholesterol per macrophage and macrophages
with respect to all model parameters of the combined model are visualized in Figure 5.8.
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(a) Least-squares fits of simulated ingestion of native
LDL and endothelial cell modified LDL to experi-
mental results in [116], Fig. 1 for varying ingestion
time periods TIng.
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(b) Least-squares fits of simulated ingestion of native
LDL and endothelial cell modified LDL to experi-
mental results in [116], Fig. 2 for varying modifica-
tion time periods TMod.
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(c) Least-squares fits of simulated ingestion of native
LDL and endothelial cell modified LDL to experi-
mental results in [116], Fig. 5 for varying initial LDL
ingestion concentrations `Ing,0.

Figure 5.2 Experimentally measured ingestion of LDL for various experimental setups in [116]
and results of the least-squares fitted mathematical submodel of LDL modification and ingestion
(submodel 1 ).
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Table 5.6 Overview of experimental studies, number of different experiments in each study
and number of data points from each study that were used for the least-squares fitting of the
mathematical submodels of in vitro systems.

Source Experimental setups Number of data points
[116] 3 34
[165] 2 24
[187] 2 27
[24] 2 20
[25] 6 65
[296] 1 2

Total 16 172
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(a) Least-squares fits of simulated ingestion of native
LDL and endothelial cell modified LDL to experi-
mental results in [165], Fig. 1a for varying modifica-
tion time periods TMod.
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(b) Least-squares fits of simulated ingestion of native
LDL and endothelial cell modified LDL to experi-
mental results in [165], Fig. 4 for varying initial LDL
ingestion concentrations `Ing,0.

Figure 5.3 Experimentally measured ingestion of LDL for various experimental setups in [165]
and results of the least-squares fitted mathematical submodel of LDL modification and ingestion
(submodel 1 ).
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Table 5.7 Fitted and estimated parameters of the mathematical submodels given in units of the
submodel and SI based units.

Parameter Description
Value in units Value in Fitted to /

of the submodels SI based units source

q`,m Rate of modification of ` by m 1.18 · 10−1 ml
h (mg cell protein)

6.56 · 10−5 mm3

h
[116, 165]

q`,e Rate of modification of ` by e 2.48 · 10−5 ml
h mm2 2.48 · 10−2 mm

h
[116, 165]

µ` Rate of ingestion of ` by m 1.46 · 10−1 µg lipid protein
h (mg cell protein)

8.44 · 104 1
h

[116, 165]
ξ` Saturation of ingestion of ` by m 5.73 µg lipid protein

ml
5.96 · 109 1

mm3 [116, 165]
n` Exponent of ingestion of ` by m 1.99 1.99 [116, 165]
µ˜̀ Rate of ingestion of ˜̀by m 7.08 · 10−1 µg lipid protein

h (mg cell protein)
4.09 · 105 1

h
[116, 165]

ξ˜̀ Saturation of ingestion of ˜̀by m 4.63 µg lipid protein
ml

4.82 · 109 1
mm3 [116, 165]

n˜̀ Exponent of ingestion of ˜̀by m 1.99 1.99 [116, 165]
N˜̀ Lipid peroxide per ˜̀ 298.49 nMol

mg lipid protein
1.73 · 102 [187]

Nh̃ Lipid peroxide per h̃ 63.73 nMol
mg lipid protein

9.09 [187]
q`,ς Rate of lipid peroxidation in ` by ς 1.11 · 10−2 ml

h µMol
1.84 · 10−17 mm3

h
[187]

qh,ς Rate of lipid peroxidation in h by ς 6.18 · 10−2 ml
h µMol

1.03 · 10−16 mm3

h
[187]

kh Saturation of inhibition of modification by h 2.57 · 10−1 mg lipid protein
ml

1.08 · 1012 1
mm3 [187]

nh Exponent of inhibition of modification by h 2.59 2.59 [187]
Nf Number of ingested f per ingested ` or ˜̀ 10.61 nMol

µg lipid protein
6.14 · 103 [24, 25]

fMin Minimum f for esterification 36.43 nMol
mg cell protein

1.22 · 1010 [24, 25]
fMax Maximum f for esterification 213.70 nMol

mg cell protein
7.15 · 1010 [24, 25]

kf Rate of esterification of f 2.56 · 10−2 1
h

2.56 · 10−2 1
h

[24, 25]
kb Rate of hydrolysis of b 4.33 · 10−2 1

h
4.33 · 10−2 1

h
[24, 25]

cf Rate of efflux of f 3.32 · 10−3 1
h

3.32 · 10−3 1
h

[24, 25]
µf Rate of efflux of f to h 1.65 · 10−1 1

h
1.65 · 10−1 1

h
[24, 25]

ξf Saturation of efflux of f to h 85.41 µg lipid protein
ml

3.60 · 1011 1
mm3 [24, 25]

nf Exponent of efflux of f to h 7.37 · 10−1 7.37 · 10−1 [24, 25]
fIn f of recruited m 56.85 nMol

mg cell protein
1.90 · 1010 [24, 296]

µm Rate of apoptosis of m by f 9.90 · 10−2 1
h

9.90 · 10−2 1
h

[296]
ξm Saturation of apoptosis of m by f 622.8 µg

mg cell protein
5.38 · 1011 [296]

nm Exponent of apoptosis of m by f 2.00 2.00 [296]
qh,m Rate of modification of h by m - 8.63 · 10−6 mm3

h
=

q`,m
7.6

, [46]
qh,e Rate of modification of h by e - 3.26 · 10−3 mm

h
=

q`,e
7.6

, [46]
H Thickness of early plaque - 1.00 · 10−2 mm [221, 294]
f0 Initial f per m - 2.85 · 1010 = 1.5fIn

All units are converted from respective experimental units to the SI based units mm and h using
ρ5, ρ10 and ρ14 from Table 5.1. Abbreviations: native low-density lipoproteins, `; modified
low-density lipoproteins, ˜̀; native high-density lipoproteins, h; modified high-density
lipoproteins, h̃; endothelial cells, e; macrophages, m; copper sulfate, ς; intracellular free
cholesterol, f ; intracellular cholesterol ester, b.
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(b) Least-squares fit of simulated reduction of lipid
peroxide content to experimental results in [187],
Fig. 5 for varying initial HDL concentrations h0.

Figure 5.4 Experimentally measured lipid peroxide content and HDL protection for various
experimental setups in [187] and results of the least-squares fitted mathematical submodel of the
HDL protection against LDL modification (submodel 2 ).
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Figure 5.5 Experimentally measured intracellular cholesterols per macrophage for various exper-
imental setups in [24] and results of the least-squares fitted mathematical submodel of cholesterol
cycle and reverse cholesterol transport (submodel 3 ).
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Figure 5.6 Experimentally measured intracellular free cholesterol, intracellular cholesterol ester
and excreted cholesterol per macrophage for various experimental setups in [25] and results of the
least-squares fitted mathematical submodel of cholesterol cycle and reverse cholesterol transport
(submodel 3 ).

107



5 Quantification of early atherosclerotic plaque formation

0 25 50 75 100 125 150 175 200 225 250

HDL concentration h0 [ µg lipid protein
ml

]

0

50

100

150

200

250

300

350

400

450

C
el
lu
la
r
ch
o
le
st
er
o
l
[

n
m
o
l

m
g
ce
ll
p
ro
te
in
]

Measured, free cholesterol

Simulated, free cholesterol f (TCho)
m

Measured, cholesterol ester

Simulated, cholesterol ester b(TCho)
m

(e) Least-squares fits of simulated intracellular free
cholesterol f(TCho)

m and cholesterol ester b(TCho)
m per

macrophage to experimental results in [25], Fig. 4
for varying additions of HDL h0.

0 1 2 3 4 5 6

Experimental time period TCho [h]

0

20

40

60

80

100

E
x
cr
et
ed

ch
o
le
st
er
o
l

r
(T

C
h
o
)

m
[

n
m
o
l

m
g
ce
ll
p
ro
te
in
] Measured, h0 = 0

Simulated, h0 = 0
Measured, h0 = 200
Simulated, h0 = 200

(f) Least-squares fits of simulated excreted choles-
terol per macrophage r(TCho)

m to experimental results
in [25], Fig. 7b for varying experimental time peri-
ods TCho.

Figure 5.6 Continued.
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Figure 5.7 Least-squares fit of simulated macrophage apoptosis to experimental results in [296],
Fig. 4a.
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Figure 5.8 Metabolic control analysis of the combined mathematical model. The metabolic
control coefficients of native LDL `, modified LDL ˜̀, HDL h, average intracellular free cholesterol
per macrophage f

m
, average intracellular cholesterol ester per macrophage f

m
and macrophages m

with respect to all parameters p of the combined model are computed as described in Section 5.2.1.
For an overview of all parameters of the combined model, see Tables 5.5 and 5.7.
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Figure 5.9 Examples of densities of macrophages m(t) and concentrations of intracellular free
cholesterol f(t)

m(t)
and intracellular cholesterol ester b(t)

m(t)
per macrophage over time t predicted by the

combined mathematical model. Parameters from Table 5.7, a LDL recruitment rate r` = 3.0·107 1
h

,
a macrophage recruitment rate rm = 600 1

h
and varying HDL recruitment rates rh were used.
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(a) Boundedness of concentration of intracellular choles-
terol ester per macrophage for varying rh and rm, and
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(b) Boundedness of concentration of intracellular choles-
terol ester per macrophage for varying rh and rm, and
fixed r` = 3.0 · 109 1
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Figure 5.10 Stability analysis of the combined mathematical model. The boundedness of in-
tracellular cholesterol ester, the steady-state concentration of intracellular free cholesterol per
macrophages and the steady-state density of macrophages are predicted for varying rates of re-
cruitment of LDL r`, HDL rh and macrophages rm. The red line indicates the boundary between
where intracellular cholesterol ester concentrations change from being bounded to unbounded. Its
equation is 1.2 · 10−6 rh = rm + 4.9 · 10−7 r`.
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Figure 5.10 Continued.

Data from the literature [2, 141, 205, 221, 251, 268] suggest that the three rates of recruit-
ment r`, rh, rm which characterize each individual plaque vary by up to three orders of magnitude
(see Table 5.5) and induce qualitatively different long-term outcomes of the combined model.
Time-dependent concentrations for three example sets of recruitment rates with qualitatively
different long-term outcomes are plotted in Figure 5.9.

The analysis of the long-term outcome of the combined model with respect to the recruitment
rates is performed as described in Section 5.2.2. Proposition 1 applies as all its requirements are
fulfilled by the combined model with the parameter set from Table 5.7. Hence, the steady-state
concentrations of macrophages m̂ and intracellular free cholesterol per macrophage f̂

m̂
satisfy

m̂ ∈ [mMin,mMax] = [1.16 · 107, 5.90 · 109]
1

mm3
,

f̂

m̂
∈ [fMin, fMax] = [1.22 · 1010, 7.15 · 1010]

(5.9)

and only the concentration of cholesterol ester b can be unbounded. Hence, the boundedness of
intracellular cholesterol ester b, the steady-state concentration of intracellular free cholesterol
per macrophages f̂

m̂
and the steady-state density of macrophages m̂ are computed for the full

physiological ranges of recruitment rates of LDL r`, HDL rh and macrophages rm. The con-
sidered ranges of the recruitment rates in the stability analysis are r` ∈ [3 · 106, 3 · 109] 1

h mm2 ,
rh ∈ [0, 5 · 109] 1

h mm2 and rm ∈ [200, 3000] 1
h mm2 (compare Table 5.5). They are covered by a

simple analysis utilizing an equidistant grid of the parameter space. The results for varying rh
and rm and two different r` are visualized in Figure 5.10.
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5.4 Discussion

Three mathematical submodels of in vitro systems were developed and their parameters least-
squares fitted to measurements of various experimental setups, see Table 5.6. The fitted submodels
show very good agreement with the experimental data, see Figure 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7.
The fitted parameters given in Table 5.7 lead to the following observations.

• The ingestion of native and modified LDL follows a very similar saturating kinematic. The
rate of ingestion of native LDL µ` is approximately 5 times smaller than the rate of ingestion
of modified LDL µ˜̀. This is consistent with values reported in the literature [183, 250].

• Using a density of 1205.2 1
mm2 [141] of endothelial cells per unit endothelial monolayer

area the rate of oxidative modification of native LDL by endothelial cells can be compared
to the modification rate by macrophages. The rate of modification of native LDL by
macrophages q`,m is approximately 3 times smaller than the modification rate by endothelial
cells q`,e.

• Free cholesterol and cholesterol ester are in a buffer-like relationship, where the maximum
concentration of intracellular cholesterol fMax is approximately 6 times bigger than the
minimum concentration fMin. The rate of esterification of intracellular cholesterol kf
varies as the level of intracellular free cholesterol changes. However, the average rate of
esterification of cholesterol kf is approximately 2 times faster than the rate of hydrolysis kb.
In the absence of a source and acceptor for the intracellular free cholesterol the model
suggests that approximately 63.8% of the stored cholesterol is hydrolyzed and re-esterified
each day which is moderately higher than 50% as proposed in [25].

• The dynamic of lipids and cholesterols, i.e., of native LDL, modified LDL, HDL, free
cholesterol and cholesterol ester adapts very rapidly to the current number of macrophages
and is in the order of minutes to hours. In contrast, the fate of macrophages is determined on
a much larger time scale in the order of weeks to months. Hence, the long-term outcome for
the plaque is driven by the fate of macrophages, which is governed by the short term quasi-
equilibrium concentrations of intracellular cholesterols. The concentrations of intracellular
cholesterols, however, are governed by the uptake of modified LDL and in particular the
efflux to available native HDL which are determined by the very rapid influx through the
endothelium and the modification by macrophages.

Remark. Due to the short time scale which governs the dynamic of the concentrations of
native LDL, modified LDL and HDL it would be justified to take a steady-state assumption
for their concentrations, i.e., to assume d

dt
`(t) = 0 = d

dt
˜̀(t) = d

dt
h(t) in the combined

model. However, the resulting equations for the steady-state concentrations ̂̀, ̂̀̃ and ĥ
cannot be solved analytically. Hence, the concentrations of native LDL, modified LDL and
HDL cannot be condensed from the combined model.

A mathematical model for the early development of atherosclerotic plaques has been derived. It is
based on submodels of in vitro systems and most importantly is parameterized using data from in
vitro experimental studies. The combined model includes and quantifies the following biological
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processes: oxidative modification of native LDL and HDL by endothelial cells and macrophages,
protection that native HDL offers against LDL modification, ingestion of native and modified
LDL by macrophages, esterification and hydrolysis of intracellular cholesterols, cholesterol efflux
from macrophages to HDL, apoptosis of macrophages as well as the recruitment of native LDL,
native HDL and macrophages into the plaque.

The performed sensitivity analysis of the combined model with respect to its parameters reveals
that the combined model is especially sensitive to parameters connected to the apoptosis of
macrophages (e.g., µm, ξm, nm) and to free cholesterol (e.g., fMax, fIn, f0), see Figure 5.8. The
sensitivity of the combined model with respect to free cholesterol-related parameters is high but
their estimation is based on a large number of data points, see Table 5.6, and so their value is
likely to be reliable. However, the high sensitivity with respect to the parameters of macrophage
apoptosis nm and ξm is crucial. This sensitivity is approximately 3 times bigger compared to
the sensitivity of other parameters and additionally the parameters of macrophage apoptosis are
estimated only on the base of two data points, see Table 5.6. More suitable experimental data
from the literature could not be found and hence further experimental work quantifying apoptosis
of macrophages in atherosclerotic plaques is recommended. The sensitivity analysis and further
investigations reveal that the influence of the rates of ingestion of native LDL as well as HDL
protection against native LDL modification is minor to the plaque formation process and plaque
outcome in the model. In both cases this is due to the low concentrations of native LDL and HDL
compared to the respective saturation coefficients.

The combined model is able to predict three qualitatively different long-term plaque outcomes.
They are characterized by the following behaviors:

• Regressing plaque or non-atherosclerotic region: all concentrations are bounded and the

long-term equilibrium concentrations are characterized by low modified LDL ̂̀̃, high
macrophages m̂, low intracellular free cholesterol per macrophage f̂

m̂
and very low intracel-

lular cholesterol ester per macrophage b̂
m̂

. Macrophages exhibit a low rate of apoptosis, and
the ingested modified LDL within macrophages is effectively offloaded to native HDL. An
example of time-dependent concentrations of macrophage and intracellular cholesterols for
a regressing plaque is shown in Figure 5.9(a) and 5.9(b).

• Stable plaque: all concentrations are bounded and the long-term equilibrium concentrations

are characterized by moderate modified LDL ̂̀̃, low macrophages m̂, moderate intracellular
free cholesterol per macrophage f̂

m̂
and low intracellular cholesterol ester per macrophage b̂

m̂
.

Macrophages exhibit a moderate rate of apoptosis, and the ingested modified LDL within
macrophages is still offloaded to native HDL. An example of time-dependent concentrations
of macrophage and intracellular cholesterols for a stable plaque is shown in Figure 5.9(c)
and 5.9(d).

• Unstable plaque: concentration of intracellular cholesterol ester per macrophage b
m

is
unbounded, and the remaining long-term equilibrium concentrations are characterized by

high modified LDL ̂̀̃, very low macrophages m̂ and very high intracellular free cholesterol
per macrophage f̂

m̂
. Macrophages exhibit a high rate of apoptosis, and not all the ingested
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modified LDL within macrophages is offloaded to native HDL. An example of time-
dependent concentrations of macrophage and intracellular cholesterols for an unstable
plaque is shown in Figure 5.9(e) and 5.9(f).

The distinction between mathematically stable and unstable model plaques is clear, whereas there
is a smooth transition between regressing and stable plaques. The definitions of mathematical
stability of model plaques closely align with medical definitions of plaques that become clinically
stable or unstable [173, 248, 249].

The recruitment rates of native LDL r`, native HDL rh and macrophages rm which characterize
the plaque under consideration show only little influence in the performed local sensitivity
analysis, see Figure 5.8. Still, the long-term behavior of the combined model and hence the
classification of plaques into the three categories above is determined by them as they can vary by
up to three orders of magnitude, cf. Table 5.5. The stability analysis visualized in Figure 5.10
shows that a model plaque is unstable if the recruitment of HDL rh is low and the recruitment of
macrophages rm is large. More precisely a plaque is unstable if

1.2 · 10−6 rh < rm + 4.9 · 10−7 r` (5.10)

holds approximately, see Figure 5.10(a) and Figure 5.10(b). A plaque is regressing if the re-
cruitment rate of macrophages rm is low and the recruitment rate of HDL rh is sufficiently
large, cf. Figure 5.10(c), 5.10(d), 5.11(e) and 5.11(f). For increasing rm or decreasing rh the
plaque smoothly transitions from a regressing to a stable atherosclerotic plaque. In general, an
increased recruitment rate of LDL r` results in a less stable atherosclerotic plaque, but the pre-
dicted influence of r` is small compared to rh and rm. However, in reality the rate of macrophage
recruitment rm is a function of modified LDL ˜̀ (which, in turn, is strongly dependent on r`),
since it triggers the production of vascular cell adhesion molecules and monocyte chemoattractant
proteins by endothelial cells which determine the number of macrophages recruited from the
blood [2, 93, 141]. As a consequence, the rate of macrophage recruitment is actually dependent on
the LDL recruitment. Therefore, the rate of macrophage recruitment that is used in this model to
determine plaque stability is, in effect, the rate of macrophage recruitment at the long-term steady

state equilibrium, i.e., rm = rm(̂ ˜̀(r`)). As this dependency is not explicitly considered, but rm is
a fixed input parameter of the combined model, the influence of the rate of LDL recruitment r` is
underestimated. The explicit consideration of this dependency as well as the explicit modeling of
the driving mechanisms for the recruitment rates of LDL r`, HDL rh and macrophages rm will be
addressed in the subsequent Chapter 6. Moreover, the increase of the thickness of the plaque H
due to the advancing accumulation of macrophages, nor indeed any other spatially-dependent
effects have not been included. Hence, the reduction of the recruitment rates of LDL, HDL and
macrophages by the factor 1

H
which will continually decrease in growing plaques is neglected.

This leads to an overestimation of all three rates and must be addressed in future work.

The mathematical stability criterion given by Equation (5.10) is not suitable for the experimental
determination of the clinical stability of a given early atherosclerotic plaque in vivo. Macrophages
within unstable plaques contain a very high concentration of intracellular cholesterol ester,
see 5.10(a), 5.10(b), 5.10(c) and 5.10(d). As a consequence, the predicted concentration of
intracellular free cholesterol is also high in unstable plaques due to the buffer-like behavior
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5 Quantification of early atherosclerotic plaque formation

between free and esterified cholesterol. More precisely the estimated concentration of intracellular
free cholesterol in model plaques is close to fMax ≈ 213.70 nMol

mg cell protein
when a plaque becomes

unstable in the long-term. This suggests that a high concentration of intracellular free cholesterol
within plaque macrophages is necessary in order for an early plaque to be progression-prone
and hence be of type IIb in the classification by the American Heart Association, cf. Table 1.1.
The relation between intracellular free cholesterol and plaque stability in vivo has not yet been
investigated experimentally.

This model assumes that macrophages only undergo recruitment and apoptosis and do not
experience necrosis, proliferation and emigration from plaques. This assumption is only valid
for early stages of the atherosclerotic process, i.e., for atherosclerotic plaques of type I to IIb. In
contrast, necrosis, proliferation and emigration are important in intermediate atheroma [170, 220,
228, 258] which lead to a reduction of cholesterol ester within macrophages. If the processes of
intermediate-stage plaques are included in the model in addition to recruitment and apoptosis
of macrophages, the behavior of intermediate atheroma of type III and IV can be modeled. As
for apoptosis, there are very few experimental data suited for parameter estimations for rates of
necrosis, proliferation and emigration of macrophages. The extension of the combined model to
also represent the behavior and fate of macrophages in late-stage plaques requires further work.
In particular, further experiments are required that quantify macrophage behavior in intermediate
and advanced plaques.

5.5 Short summary

This chapter is a revised version of [265]. It is concerned with mathematical modeling and
quantification of early atherosclerotic plaque formation. Therefore, three novel ODE submodels
of in vitro systems were derived and parameterized based on existing experimental studies.
The submodels closely reproduced experimental results and lead to a quantification of crucial
biological processes of atherosclerosis, such as LDL modification and ingestion, HDL protection
against LDL modification, cholesterol cycle within macrophages and reverse cholesterol transport
from macrophages.

The three submodels that are closely connected to in vitro studies were merged to build the basis
of a quantified and predictive combined ODE model of the formation of early atherosclerotic
plaques which uses the physiological parameters determined by the submodels. A sensitivity
analysis of the combined model suggests that further experimental work quantifying the different
fates of macrophages as functions of their cholesterol load and the balance between intracellular
free cholesterol and cholesterol ester may add valuable insight toward predicting long-term
plaque outcomes in vivo. Moreover, the combined model was used to classify the stability of
early model plaques with respect to prescribed rates of recruitment of native LDL, native HDL
and macrophages. The results suggest that a persistent high supply of LDL and macrophages in
combination with a lack of HDL in vivo render early plaques progression-prone.
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atherosclerosis

In the previous Chapter 5, a parameterized set of ODEs was developed that describes the formation
of early atherosclerotic plaques. The established combined ODE model (see Section 5.1.2) is able
to predict the stability of early model plaques based on the recruitment of low-density lipopro-
teins r`, high-density lipoproteins rh and macrophages rm, which characterize the physiology
and diet of the plaque’s host and its position within the cardiovascular system. However, the
recruitment rates were a priori specified constants that neither adapt to the progression of the
plaque, nor can be estimated from measurable or computable in vivo inputs in a straightforward
manner. In particular, the rate of macrophage recruitment rm is crucial for the stability of early
plaques and their classification into progression-prone and progression-resistant plaques. Still,
only scarce work has yet been done concerning the modeling of its dependencies with respect to
the current state of plaques in general [27, 45] and the activation of the endothelium in particular.
Yet, enhanced by poor availability of quantitative experimental data, the modeling and quantifica-
tion of macrophage recruitment remains a challenge. In addition, the combined model neglects all
spatial aspects, which is reasonable solely for in vitro experiments. In contrast, spatial effects,
such as the diffusivity of species, their transport with the transmural flow or their inhomogeneous
recruitment into the artery wall can have a severe impact on the local disease progression in
vivo.

In this chapter, models for the recruitment of macrophages as well as the fluxes of LDL and HDL
are developed. A quantification of these models based on in vitro experimental results allows
to estimate the previously constant recruitment rates based on three measurable or computable
physiological in vivo inputs: the LDL and HDL blood cholesterol concentrations and the WSS
the plaque is exposed to. Furthermore, the abstract PFSTI problem (see Section 2.2.3) is extended
to a model of key species of early atherosclerosis which consists of a submodel of the transmural
filtration flow within the porous artery wall, non-constant recruitment laws and a spatial general-
ization of the combined model. A sensitivity analysis of the model of key species with respect to
its parameters is performed that identifies crucial parameters and processes. Further, the model’s
stability is assessed based on the three in vivo inputs in order to identify and classify regions of
progression-prone and progression-resistant plaques. Moreover, the model is used to assess the
importance of the diffusive and advective lipoprotein fluxes through the endothelium and within
the artery wall. Finally, the influence of locally varying WSS to the model plaque outcome is
investigated.

This chapter is structured as follows: In Section 6.1, the submodels of the recruitment of
macrophages, as well as the fluxes of LDL and HDL are developed. Subsequently, a spatial
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6 Spatially resolved model of early atherosclerosis

PFSTI model is established based on the developed recruitment submodels and the previous
chapter’s combined model. Section 6.2 gives details on the parameterization of the models and
the methods to analyze them. In Section 6.3, all computational results are presented, and they are
discussed in Section 6.4. Finally, a brief summary of this chapter is given in Section 6.5.

6.1 Models

This section is concerned with the development of a porous medium fluid-scalar transport interac-
tion model that describes the penetration and spatial transport of key species and the inflammatory
and immunological processes that occur on the long time scale of atherosclerosis. First, submodels
of the recruitment of macrophages and the fluxes of LDL and HDL are developed (Section 6.1.1).
Subsequently, the PFSTI model is established based on the submodels of macrophage recruitment,
lipoprotein fluxes and the previous chapter’s combined model (Section 6.1.2).

6.1.1 Submodels

The submodels in this section are concerned with a detailed modeling of the adhesion of mono-
cytes on endothelial cells in vitro (Section 6.1.1.1), the recruitment of macrophages in vivo
(Section 6.1.1.2) and the fluxes of LDL and HDL through the endothelium (Section 6.1.1.3).

6.1.1.1 Monocyte adhesion in vitro

Monocytes migrate from the bloodstream into the artery wall depending on the local flow condition
of blood and the current activation of the endothelium, cf. Section 1.1.3. The modeling of the
monocyte adhesion in vitro is based on experimental results by Jeng et al. [141]. It is subsequently
denoted as submodel 4 .

Experimental setup

The adhesion of human monocytes on human vein endothelial cells in the absence of flow and their
binding under flow conditions in vitro was investigated in [141] using a two-stage experimental
setup. First, specified initial concentrations of native LDL `0 and modified LDL ˜̀

0 were incubated
with cultured endothelial cell monolayers e on coverslips for specified time periods TMod. Thereby,
the endothelial cells oxidatively modified native LDL [116, 165] and accrued modified LDL
activated endothelial cells, increasing their adhesiveness with respect to monocytes [2, 93, 169].
Subsequently, all LDL was removed and monocytes were added for specified time periods TAdh,
where they adhered to the endothelial cells. The coverslips were placed in a flow chamber in
which the flux was increased step by step, exposing the monocytes to varying WSS levels ‖τ‖.
Among other things, the number of adhered monocytes mAdh prior to the flow chamber and the
number of remaining monocytes after each increase of WSS exposure was counted for various
experiment-specific values of `0, ˜̀

0, e, TMod, TAdh, ‖τ‖ as shown in Table 6.1.
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6.1 Models

Table 6.1 Experiment-specific parameters of the mathematical submodel of monocyte adhesion
in vitro (submodel 4 ) in analogy to the experimental setups in [141].

Modification stage Adhesion stage

Experiment
Q

ua
nt

ity

T
M

o
d

[h
]

` 0
[µ

g
p

ro
te

in
m

l
]

˜̀ 0
[µ

g
p

ro
te

in
m

l
]

e
[m

m
2

m
l

]

T
A

d
h

[h
]

‖τ
‖

[d
y
n

cm
2
]

[141], Table 1, `0 = 0, ˜̀
0 = 0 6 0 0 2.68 0.5 0− 30.52

[141], Table 1, `0 = 25, ˜̀
0 = 0 6 25 0 2.68 0.5 0− 30.52

[141], Table 1, `0 = 0, ˜̀
0 = 25 6 0 25 2.68 0.5 0− 30.52

All values are given in the units of submodel 4 .

Mathematical submodel

The observations made in the flow chamber experiments in [141] are driven by the modification of
native LDL by endothelial cells, the adhesion of monocytes on modified LDL-activated endothelial
cells and the detachment of monocytes due to exposure to WSS. As in the previous Section 5.1.1.1,
the modification of native LDL by endothelial cells is described by a linear relationship in their
concentrations ` and e and the initial LDL modification lag phase is accounted for by a reduction
of 4 h of the experimental time period TMod. The activation of endothelial cells by modified LDL
saturates as the concentration of modified LDL ˜̀ increases (see [141], Fig. 5 and [93], Fig. 1).
Still, monocytes adhere on endothelial cells also in the absence of LDL (see [141], Fig. 3 and
[93], Fig. 1). Therefore, the activation of endothelial cells is modeled using a partly vanishing
and saturating kinematic. The WSS-dependent detachment of adhered monocytes in vitro is also
saturating and decreases as the WSS ‖τ‖ are increased (see [141], Fig. 1). No experimental data
exist that quantify the influence of the monocyte concentration in the bloodstream on the amount
of adhering monocytes on the endothelium. Here, it is assumed that it is solely dependent on the
activation of the endothelium and that there is a surplus of monocytes at all times such that the
number of adhering monocytes is independent of the number of monocytes in the flow chamber.

The mathematical submodel is formulated in the same units that are used in the experiments:
time [t] = h, concentration of native LDL [`] = µg protein

ml
, concentration of modified LDL

[˜̀] = µg protein
ml

, density of endothelial cells [e] = mm2

ml
, amount of adhered monocytes

[m] = 1
0.1452 mm2 and level of WSS exposure [‖τ‖] = dyn

cm2 . The submodel consists of two se-
quential system of ODEs and associated initial conditions. The first system corresponds to the
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modification of native LDL by endothelial cells (modification stage)

d

dt
`(t) = − q`,e`e︸ ︷︷ ︸

modification of native
LDL by endothelial cells

= − d

dt
˜̀(t),

`(4h) = `0, ˜̀(4h) = ˜̀
0, t ∈ [4h;TMod]

(6.1)

and the second system corresponds to the adhesion and detachment of monocytes (adhesion
stage)

d

dt
m(t) = Pm

(
1− δm

km

km + ˜̀(TMod)

)

︸ ︷︷ ︸
activation of endothelial cells

by modified LDL

(
1− δτ

‖τ‖ντ
(ξτ )

ντ + ‖τ‖ντ
)

︸ ︷︷ ︸
monocytes remaining bound

on endothelial cells

,

m(0) = 0, t ∈ [0;TAdh],

(6.2)

where q`,e = 2.48 · 10−5 ml
h mm2 (cf. Table 5.7) and TMod, `0, ˜̀

0, e, TAdh, ‖τ‖ are the experiment-
specific parameters, see Table 6.1. The remaining constants Pm, δm, km, δτ , ξτ and ντ are the
unknown parameters of submodel 4 . They are estimated by least-squares fitting of the simulated
number of adhered monocytes m(TAdh) to the experimental results in [141].

6.1.1.2 Macrophage recruitment

The experiments by Jeng et al. [141] solely considered the adhesion of monocytes in the absence
of flow and their successive detachment under various flow conditions. When monocytes migrate
from the bloodstream into the artery wall in vivo, however, the attachment of monocytes takes
place under pulsatile flow conditions. However, no experimental data exist that allow to quantify
the adhesion of monocytes on activated endothelial cells under flow conditions. The submodel
of the macrophage recruitment is based on submodel 4 and the experimental results by Alon et
al. [2]. It is subsequently denoted as submodel 5 .

Mathematical submodel

The influence of the WSS to the adhesion of T-lymphocytes on VCAM-1 saturated plastic slides
was investigated by Alon et al. [2]. The experimental results show that the adhesion of cells under
flow conditions vanishes when they are exposed to high WSS (see [2], Fig. 1). In this submodel,
the vanishing adhesion is accounted for by neglecting the limiting of the saturation kinematic with
respect to WSS ‖τ‖, i.e., by using δτ = 1 for the in vivo setup. Due to the presence of MCP-1 and
other monocyte-attracting molecules in vivo, it is assumed that each monocyte that adheres and
remains bound under heavy flow conditions also migrates into the intima. Further, the considered
time scale of atherosclerosis progression is large such that the relatively fast differentiation of
monocytes into macrophages [191] is approximated by an instantaneous differentiation. In total,
the submodel for the rate of recruitment of macrophages rm thus reads

rm(˜̀, ‖τ‖) = Pm

(
1− δm

km

km + ˜̀

)
(ξτ )

ντ

(ξτ )
ντ + ‖τ‖ντ , (6.3)
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6.1 Models

where all parameters have been introduced previously.

6.1.1.3 LDL and HDL fluxes

Lipoproteins, such as LDL and HDL are transported through the endothelium depending on their
concentrations in blood and the local blood flow condition, cf. Section 1.1.2. The submodel of the
LDL and HDL fluxes is subsequently denoted as submodel 6 .

Mathematical submodels

As discussed in Sections 2.2.2.1 and 4.1.2.3, the transport of native LDL ` through the endothelium
is modeled as transport through a semi-permeable membrane described by the equations of Kedem
and Katchalsky. Thus, the total flux of native LDL r` into the intima is subdivided into a diffusive
and an advective flux

r` (`, p, ‖τ‖) = P`sP (‖τ‖) (η` − `)︸ ︷︷ ︸
diffusive flux

+ (1− σF,`) (ω`η` + (1− ω`)`) JVol(p, ‖τ‖)︸ ︷︷ ︸
=:rAdv,`(`,p,‖τ‖), advective flux

, (6.4)

where η`, σF,` and ω` are the concentration of native LDL in blood, filtration reflection coeffi-
cient with respect to LDL and weighting factor for the average LDL concentration within the
endothelium layer, respectively. The volume flux through the endothelium JVol is given by

JVol(p, ‖τ‖) = LpsL(‖τ‖) (ηp − p) , (6.5)

where ηp and p correspond to the luminal blood pressure and the subendothelial blood plasma
pressure, respectively. The diffusive permeability P` and hydraulic conductivity Lp are modulated
depending on the magnitude of the local WSS ‖τ‖ the model plaque is exposed to. For the shape
of the diffusive permeability modulation sP, the monotonically decreasing (diffusive) permeability
scaling factor from Section 4.1.2.3 is used:

sP (‖τ‖) =
1

ln(2)
ln

(
1 + ζτ

γτ
‖τ‖+ γτ

)
. (6.6)

In contrast to the diffusive permeability, there is clear experimental data that the hydraulic
conductivity Lp increases as endothelial cells are exposed to increased WSS ‖τ‖ [36, 240].
Therefore, the hydraulic conductivity is modulated by the following monotonically increasing
function from literature [226, 254]

sL(‖τ‖) = γp ln (µp‖τ‖+ ξp) , (6.7)

which is subsequently called (hydraulic) conductivity scaling factor (CSF).

Due to their related structure and size, the transport mechanisms of modified LDL and native
HDL are equal to that of native LDL. Hence, the fluxes of modified LDL r` and HDL rh are
modeled in analogy to Equation (6.4):

r˜̀(˜̀, p, ‖τ‖) = P˜̀sP (‖τ‖) (η˜̀− ˜̀) + (1− σF,˜̀)(ω˜̀η˜̀ + (1− ω˜̀)˜̀)JVol(p, ‖τ‖),
rh (h, p, ‖τ‖) = PhsP (‖τ‖) (ηh − h) + (1− σF,h) (ωhηh + (1− ωh)h) JVol(p, ‖τ‖).

(6.8)
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Remark. In the multiphysics model from Chapter 4, the WSS τ , concentration of native LDL in
blood η` and luminal blood pressure ηp were denoted by τF , `FS and pF . However, in present
model of key species, these quantities are considered to be constant (in time) and are therefore
denoted by different symbols to avoid confusion.

6.1.2 Spatially resolved model of key species

The penetration and transport of species as well as immunological and inflammatory processes of
atherosclerosis take place in the intima and adjacent media, see Section 1.1. A spatial model of
the species must therefore consider both layers and their main transport barriers – the endothelium
and the internal elastic lamina, cf. Figure 1.1. However, monocytes actively transmigrate from the
intima into the media [189, 239] and the transport rates of lipoproteins through the internal elastic
lamina are more than two orders of magnitude faster compared to those through the endothe-
lium [146, 294]. As a consequence, the internal elastic lamina represents solely a minor transport
barrier for LDL, HDL and macrophages. The internal elastic lamina is therefore neglected and
a fluid-wall model is employed [221, 305], where the endothelium is considered to be the only
transport barrier, see Section 1.2.1.

In contrast to the multiphysics model where the artery wall was treated as a non-porous solid (cf.
Section 4.1.2), this section considers a pressure gradient-driven transmural flow. All species are
modeled by temporal and spatially continuous concentrations with the unit of number per volume.
As the species are diffusive, reactive and are transported with the transmural flow, the general
framework of the species is given by the porous medium-advection-diffusion-reaction equation
(see Section 2.1.6.2). The immunological and inflammatory processes and species transport
in atherosclerosis take place on the long time scale of the disease, cf. Section 1.2, where the
deformation of the intima and media due to the pulsatile blood flow is dispensable. In total, the
model of key species of atherosclerosis in this section is a PFSTI problem (cf. Section 2.2.3)
extended by atherosclerosis-specific reactions and boundary conditions.

Using the same notation as introduced in the beginning of Section 4.1, the PFSTI model considers
the poro-fluid domain ΩPF and the poro-scatra domain ΩPS . The boundaries are the inlet bound-
ary ΓIn, outlet boundary ΓOut, endothelium boundary ΓEnd and media-adventitia boundary ΓAdv.
For a schematic overview of the domains and boundaries of the PFSTI model of key species, see
Figure 6.1.

In the subsequent Section 6.1.2.1, the model of the transmural flow is given, whereas Sec-
tion 6.1.2.2 gives the model of the interaction and transport of species. In the following, the
superscript PS of all species and parameters related to the poro-scatra domain ΩPS is omitted to
keep the notation comprehensible.

6.1.2.1 Transmural flow

As frequently done in the literature [29, 146, 152, 210, 221, 267], the transmural filtration flow
within the artery wall is modeled as a purely pressure gradient-driven incompressible flow. Further,

122



6.1 Models

ΓIn ΓOutΓAdvΓEnd ΓWall

Lumen

Intima & Media

Adventitia

ΩPF ,ΩPS
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L

Figure 6.1 Schematic overview of domains (gray) and boundaries of the PFSTI model of key
species: poro-fluid domain ΩPF , poro-scatra domain ΩPS , inlet boundary ΓIn, endothelium bound-
ary ΓEnd, media-adventitia boundary ΓAdv, outer wall boundary ΓWall and outlet boundary ΓOut.
Both domains are characterized by the lumen radius R, intima-media thickness H and segment
length L.

the deformation of the spatial poro-fluid domain ΩPF is dispensable in the long time scale which
implies a constant porosity φ. The transmural flow is thus described by Darcy’s law and the
incompressibility equation, see Section 2.1.6.2:

uPF = −K
PF

φµPF
∇pPF ,

∇ · uPF = 0.

(6.9)

Together, both equations yield the Poisson equation for the intimal and medial blood plasma
pressure pPF on the fixed spatial domain ΩPF :

−∇ ·
(
KPF

φµPF
∇pPF

)
= 0. (6.10)

On the media-adventitia boundary ΓPFAdv a constant pressure corresponding to the adventitial
pressure pPFAdv is prescribed as Dirichlet boundary condition:

pPF = pPFAdv. (6.11)

The volume flux JVol through the endothelium boundary ΓPFEnd is described by the first Kedem-
Katchalsky equation without osmotic flux [128, 262], see Section 2.2.2.1:

−K
PF

φµPF
∇pPF · nPFEnd

(6.9)
= uPF · nPFEnd = JVol(p

PF , ‖τ‖) = LpsL(‖τ‖)
(
ηp − pPF

)
. (6.12)
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On the inlet and outlet boundaries ΓPFIn and ΓPFOut no-flux conditions are applied:

−K
PF

φµPF
∇pPF · nPFIn = 0

−K
PF

φµPF
∇pPF · nPFOut = 0

(6.13)

6.1.2.2 Interaction and transport of species

The model of the interaction and transport of species is a generalization and extension of the com-
bined model from Section 5.1.2. In addition to the parameterized reaction terms of the combined
model, the specific laws for the recruitment of macrophages (submodel 5 , Section 6.1.1.2), as
well as the fluxes of LDL and HDL (submodel 6 , Section 6.1.1.3) are employed to replace the
constant recruitment rates utilized in the combined model. Further, the non-spatial combined
model is generalized to the spatial domain ΩPS to account for the diffusive and advective transport
of species and spatially varying boundary condition due to inhomogeneous WSS distributions.

The general framework of the poro-scatra model is given by the porous medium-advection-
diffusion-reaction equation, see Equation (2.59). The porous medium scalar transport models of
native LDL `, modified LDL ˜̀and HDL h on the fixed spatial domain ΩPS read

∂

∂t
`+∇ ·

(
K``u

PF)
︸ ︷︷ ︸

advection of native
LDL with poro-fluid

−∇ · (DEff,`∇`)︸ ︷︷ ︸
diffusion of
native LDL

= −µ`
`n`

(ξ`)
n` + `n`

m

︸ ︷︷ ︸
ingestion of native

LDL by macrophages

− q`,m`m
(kh)

nh

(kh)
nh + hnh︸ ︷︷ ︸

modification of native
LDL by macrophages
and inhibition by HDL

,

∂

∂t
˜̀+∇ ·

(
K˜̀

˜̀uPF
)

︸ ︷︷ ︸
advection of modified
LDL with poro-fluid

−∇ ·
(
DEff,˜̀∇˜̀

)

︸ ︷︷ ︸
diffusion of

modified LDL

= −µ˜̀

˜̀n˜̀

(ξ˜̀)
n˜̀ + ˜̀n˜̀

m

︸ ︷︷ ︸
ingestion of modified
LDL by macrophages

+ q`,m`m
(kh)

nh

(kh)
nh + hnh︸ ︷︷ ︸

modification of native
LDL by macrophages
and inhibition by HDL

,

∂

∂t
h+∇ ·

(
Khhu

PF)
︸ ︷︷ ︸

advection of HDL
with poro-fluid

−∇ · (DEff,h∇h)︸ ︷︷ ︸
diffusion of HDL

= − qh,mhm︸ ︷︷ ︸
modification of HDL

by macrophages

, (6.14)

where the advection of lipoproteins is with the transmural filtration flow governed by the gradient
of the blood plasma pressure pPF , see Equation (6.9). In contrast to lipoproteins, macrophages
are not transported by advection with the transmural flow due to their several orders of magnitude
larger size, cf. Table 5.1. Thus, the models of the concentrations of intracellular free cholesterol f ,
intracellular cholesterol ester b and the density of macrophagesm on the fixed spatial domain ΩPS
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read

∂

∂t
f−∇ · (DEff,f∇f)︸ ︷︷ ︸

diffusion of
free cholesterol

= +Nf µ`
`n`

(ξ`)
n` + `n`

m

︸ ︷︷ ︸
ingestion of native

LDL by macrophages

+Nf µ˜̀
(˜̀)

n˜̀

(ξ˜̀)
n˜̀ + (˜̀)

n˜̀
m

︸ ︷︷ ︸
ingestion of modified
LDL by macrophages

− kf
(f − fMinm)2

fMaxm− f︸ ︷︷ ︸
esterification of
free cholesterol

+ kbb︸︷︷︸
hydrolysis of

cholesterol ester

− µf
hnf

(ξf )
nf + hnf

(f − fMinm)

︸ ︷︷ ︸
cholesterol efflux from macrophages to HDL

,

∂

∂t
b−∇ · (DEff,b∇b)︸ ︷︷ ︸

diffusion of
cholesterol ester

= + kf
(f − fMinm)2

fMaxm− f︸ ︷︷ ︸
esterification of
free cholesterol

− kbb︸︷︷︸
hydrolysis of

cholesterol ester

,

∂

∂t
m−∇ · (DEff,m∇m)︸ ︷︷ ︸

diffusion of
macrophages

= −µm
fnm

(ξmm)nm + fnm
m

︸ ︷︷ ︸
apoptosis of macrophages

.

(6.15)

On the inlet, outlet and media-adventitia boundaries ΓPSIn , ΓPSOut and ΓPSAdv, no-flux conditions
are applied. Native LDL and HDL are oxidatively modified by endothelial cells. Further, native
LDL `, modified LDL ˜̀, HDL h and macrophages m are recruited according to submodels 5

and 6 , whereby recruited macrophages contain an amount fIn of free cholesterol. Accordingly,
the influx boundary conditions on the endothelium boundary ΓPSEnd are given by

−
(
K``u

PF −DEff,`∇`
)
· nPSEnd = − q`,e`

(kh)
nh

(kh)
nh + hnh︸ ︷︷ ︸

modification of native
LDL by endothelial cells
and inhibition by HDL

+ r`
(
`, pPF , ‖τ‖

)
︸ ︷︷ ︸

influx of native LDL
from lumen

,

−
(
K˜̀

˜̀uPF −DEff,˜̀∇˜̀
)
· nPSEnd = + q`,e`

(kh)
nh

(kh)
nh + hnh︸ ︷︷ ︸

modification of native
LDL by endothelial cells
and inhibition by HDL

+ r˜̀(˜̀, pPF , ‖τ‖)︸ ︷︷ ︸
outflux of modified LDL

to lumen

,

−
(
Khhu

PF −DEff,h∇h
)
· nPSEnd = − qh,eh︸︷︷︸

modification of HDL
by endothelial cells

+ rh
(
h, pPF , ‖τ‖

)
︸ ︷︷ ︸

influx of native HDL
from lumen

,

− (−DEff,f∇f) · nPSEnd = +fIn rm(˜̀, ‖τ‖)︸ ︷︷ ︸
recruitment of
macrophages

,

− (−DEff,b∇b) · nPSEnd = 0,

− (−DEff,m∇m·)nPSEnd = + rm(˜̀, ‖τ‖)︸ ︷︷ ︸
recruitment of
macrophages

,

(6.16)

where the functions r`, r˜̀, rh and rm are given by Equations (6.3), (6.4) and (6.8).
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6 Spatially resolved model of early atherosclerosis

6.1.2.3 Initial conditions

To achieve a well-defined initial value problem, the specific initial conditions are stated. A spatially
constant initial blood plasma pressure pPF0 is utilized

pPF(0,x) = pPF0 (6.17)

and spatially constant initial concentrations similar to the combined model (Equation (5.7)) are
used

`(0,x) = 0, ˜̀(0,x) = ˜̀
0, h(0,x) = 0,

f(0,x) = f0m0, b(0,x) = b0m0, m(0,x) = m0,
(6.18)

where

f0 = 1.5fIn,

m0 =
rm

(
˜̀
0, ‖τ‖

)

H

(ξm)nm + (f0)nm

µm(f0)nm
,

b0 =
kf
kb

(f0 − fMin)2

fMax − f0

.

(6.19)

In contrast to the combined model, the initial concentration of modified LDL ˜̀
0 is required

to estimate the initial rate of recruitment of macrophages rm
(

˜̀
0, ‖τ‖

)
. Therefore, an initial

concentration of modified LDL ˜̀
0 = 7.2 · 10−4 η` based on the experimental results in [117, 268]

is utilized.

Remark. Except for the specific submodels of the recruitment of species, the spatially resolved
PFSTI model of key species in this section and the non-spatial combined ODE model from
Section 5.1.2 are equivalent in the case of homogeneous concentrations, e.g., induced by high
effective diffusion coefficients DEff,i →∞, ∀i = `, . . . ,m.

6.2 Methods

This section specifies the parameters and methods that are required to analyze and solve the PFSTI
model of key species of atherosclerosis. A simplified geometrical setup of the murine physiology
of the aortic arch is considered. Therefore, the dimensions corresponding to the example in Sec-
tion 4.3 are employed: lumen radius R = 0.57 mm, intima-media thickness H = T

2
= 0.04 mm

and segment length L = 3R ≈ 1.8 mm, cf. Figure 6.1.

First, all unknown parameters of the PFSTI model are estimated in Section 6.2.1. Using a non-
spatial extended combined model, uncertainties in the parameters are assessed by a sensitivity
analysis and the laws for the recruitment of LDL, HDL and macrophages (submodels 5 and 6 )
are analyzed as described in Sections 6.2.2 and 6.2.3, respectively. The methods that are required
to analyze the stability with respect to its parameters are introduced in Section 6.2.4. Subsequently,
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the meshing and a validation of the implementation of the spatial PFSTI model are presented in
Section 6.2.5. Finally, the influence of spatial lipoprotein transports and inhomogeneous WSS
distributions to the atherosclerotic process are investigated as described in Sections 6.2.6.

6.2.1 Model parameters

In this section, a complete set of parameters for the PFSTI model is established, where all
parameters are formulated in the SI based units h, mm and g. As the media is the predominant
part of the considered intima-media domain (cf. Figure 1.1), parameters corresponding to the
media are employed.

The least-squares fitted parameters of the model of the monocyte adhesion in vitro (submodel 4 )
to the experimental results in [141] read

Pm = 443.17
1

h 0.1452 mm2
= 3052.13

1

h mm2
, δm = 68.62 %,

km = 7.09 · 10−3 µg lipid protein

ml
= 7.38 · 106 1

mm3
, δτ = 40.22 %,

ξτ = 1.95
dyn

cm2
= 1.95 · 10−1 Pa, ντ = 1.18,

(6.20)

where all values are given in the unit of the experiment and SI based units. The conversion
from experimental to SI based units is performed using ρ10 from Table 5.1. An overview of the
least-squares fits of submodel 4 is given in Figure 6.2(a).

The influx of native LDL through the endothelium described by Equation (6.4) is well studied and
thus the required parameters are found in the literature. In contrast, the fluxes of modified LDL
and native HDL are yet only poorly investigated. Due to its origin and equal size, it is convenient
to use equal parameters for native and modified LDL. In contrast to native LDL, however, the
concentration of modified LDL in blood is low [70] and therefore η˜̀ = 0 is employed.

HDL has a smaller size compared to LDL. More precisely, LDL and HDL have radii of
R` = 11.0 nm and Rh = 4.72 nm, cf. Table 5.1. As a consequence, HDL has an approximately
1.87 times higher diffusive permeability compared to LDL: Ph = 1.87 P` = 1.14 · 10−4 mm

h
[251,

268].

Karner et al. [146] investigated the transport rates of ADP, albumin and LDL through the
endothelium and the internal elastic lamina. As ADP and albumin have a smaller and LDL has
a larger radius compared to HDL, their filtration reflection coefficients are used to estimate
the filtration reflection coefficient σF,h of HDL. To this end, a least-squares fit of the filtration
reflection coefficient as given in [146], Table 3 to a saturating function in the particle radius Ri of
the form σF,i(Ri) =

Rai
ba+Rai

is performed. The least-squares fit yields a = 3.006 and b = 2.112 nm

and it follows

σF,i(Ri) =
R3.006
i

(2.112 nm)3.006 +R3.006
i

, (6.21)
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(b) Least-squares fit of filtration reflection coeffi-
cient σF,i with respect to particle radius Ri to [146],
Table 3.
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Figure 6.2 Least-squares fits of submodel of monocyte adhesion in vitro (submodel 4 ), filtration
reflection coefficient, hindrance coefficient and effective diffusion coefficient to various data.
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which is visualized in Figure 6.2(b). Accordingly, the filtration reflection coefficient scales approx-
imately with the volume of particles and for HDL (Rh = 4.72 nm) it yields σF,h = 9.18 · 10−1.

The hindrance coefficient of LDL in the media is given by K` = K˜̀ = 0.117 [85, 210, 256],
respectively. Assuming that the hindrance coefficient scales with the volume of particles (in
consistency to the filtration reflection coefficient) and a saturating kinematic (in general it
holds 0 ≤ Ki(Ri) ≤ 1), it follows

Ki(Ri) =
(5.61 nm)3

(5.61 nm)3 +R3
i

, (6.22)

which is plotted Figure 6.2(c). Accordingly, the hindrance coefficient of HDL (Rh = 4.72 nm) is
estimated to Kh = 6.27 · 10−1.

An additional unknown parameter is the effective diffusion coefficient of HDL DEff,h within the
artery wall. The effective diffusivity of LDL is measured asDEff,` = DEff,˜̀ = 1.26 ·10−2 mm2

h
[29,

255, 267], but no experimental results exist that allow quantifying the effective diffusivity of
HDL. However, Karner et al. [146] state the diffusivities of ADP, albumin and LDL in blood
plasma. The data in [146] is therefore normalized to the diffusivity of LDL in blood plasma
and least-squares fitted to a rational function of the form DEff,i(Ri)

DEff,`
= e

Rfi
. The least-squares fit

yields e = 11.0 nm and f = 1.0 such that

DEff,i(Ri) =
11.0 nm

Ri

DEff,`, (6.23)

which is visualized in Figure 6.2(d). Here, the effective diffusion coefficients scales with the radius
of particles and for HDL (Rh = 4.72 nm) it yields DEff,h = 2.33 DEff,` = 2.94 · 10−2 mm2

h
.

The weighting factors ω`, ω˜̀ and ωh for the average concentrations of native LDL, modified LDL
and native HDL within the endothelium layer are estimated as proposed in [85]. Therein, the
one-dimensional advection-diffusion equation is solved and volume-averaged over the domain of
the endothelium. It follows that

ωi =
exp(Pei)

exp(Pei)− 1
− 1

Pei
, (6.24)

where Pei is the Péclet number of species i within the endothelium given by

Pei =
‖u‖
Pi

. (6.25)

Here, ‖u‖ and Pi are the transmural filtration velocity and the diffusive permeability of species i,
respectively. Using ‖u‖ = 6.41 · 10−2 mm

h
[85, 195, 294] and P` = P˜̀ = 6.12 · 10−5 mm

h
,

Ph = 1.14 · 10−4 mm
h

[251, 268, 294] results in the weighting factors

ω` = ω˜̀ = 9.99 · 10−1, ωh = 9.98 · 10−1. (6.26)
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6 Spatially resolved model of early atherosclerosis

The Darcy permeability of the intima and media KPF must be estimated to fit to the murine
physiology, i.e., to the murine intima-media thickness. The Darcy permeability is approximated
by solving the norm of Equation (6.9) for KPF :

KPF =
φµPF‖u‖
‖∇pMed‖

, (6.27)

where ‖u‖ and ‖∇pMed‖ correspond to the transmural filtration velocity and pressure gradient
the intima and media, respectively. The latter is approximated by the luminal blood pressure ηp =
100 mmHg [1, 209, 282], the pressure drop across the endothelium ∆pEnd = 18 mmHg [262] and
the adventitial pressure pAdv = 30 mmHg [1, 209, 294] by:
‖∇pMed‖ = ηp−∆pEnd−pAdv

H
= 52 mmHg

0.04 mm
= 1.73 · 105 Pa

mm
. Assuming a transmural filtration veloc-

ity ‖u‖ = 6.41 · 10−2 mm
h

[85, 195, 294], a porosity φ = 0.15 [1, 221] and a dynamic vis-
cosity of blood plasma µPF = 2.0 · 10−7 Pa h [221, 294] yields a Darcy permeability of
KPF = 1.11 · 10−14 mm2.

The rates of oxidative modification of HDL by macrophages qh,m and endothelial cells qh,e are
crucial, but no experimental results exist that allow quantifying them directly. Hence, the rates of
HDL modification are calculated from the rates of LDL modification by considering the different
structure and size of LDL and HDL. Therefore, we use

qh,m =
q`,m
7.6

N˜̀

Nh̃

, qh,e =
q`,e
7.6

N˜̀

Nh̃

, (6.28)

where N˜̀ and Nh̃ correspond to the amount of lipid peroxide in modified LDL and HDL,
respectively. The factor 7.6 represents the relative difference between the surface areas of LDL
and HDL [46]. Using the values of q`,m, q`,e, N˜̀ and Nh̃ given in Table 5.7 yields qh,m = 1.64 ·
10−4 mm3

h
and qh,e = 6.21 · 10−2 mm

h
.

There is experimental data by Sill et al. [240] that quantifies the hydraulic conductivity with
respect to the WSS ‖τ‖. Sun et al. [254] used these experimental results to parameterize the CSF
given by Equation (6.7) which leads to: γp = 1.31 · 10−1, µp = 1.24 · 103 1

Pa
and ξp = 1.86 · 101.

Therein, the parameter µp was scaled such that it fits to a reference WSS value of ‖τ‖ = 1.68 Pa.
Even though the distribution of the reference WSS value ‖τ‖ within an animal is more or
less uniform [238], it varies significantly in between different animal models [40]. Therefore,
the parameter µp of the CSF must be adapted to match the physiology of the animal under
consideration, i.e., the murine physiology.

The analog also holds for the parameters ξτ and γτ of the recruitment law of macrophages (Equa-
tion (6.3)) and the PSF (Equation (6.6)). The estimated value ξτ = 1.95 · 10−1 Pa corresponds
to the human physiology with a reference WSS value ‖τ‖ = 1.16 Pa [40]. The parameter γτ is
linked to a given reference WSS value ‖τ‖ by γτ = 1

30
‖τ‖, see Section 4.3.1. A tabular overview

of values for ‖τ‖, ξτ , γτ and µp for different animal models and the normalized case is given in
Table 6.2. The PSF and CSF are visualized in Figure 6.3. In the following, normalized WSS ‖τ‖‖τ‖
values are employed, as frequently done in the literature [29, 45, 146, 254].

An overview of all specific parameters of the PFSTI model is given in Table 6.3. The remaining
parameters are given by the values parameterized for the combined model listed in Table 5.7.
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Figure 6.3 Permeability scaling factor sP(‖τ‖) and conductivity scaling factor sL(‖τ‖) for
varying normalized wall shear stresses ‖τ‖‖τ‖ .

Table 6.2 Wall shear stress-dependent parameters for different animal models and the normalized
case.

Species
Quantity ‖τ‖ [Pa] ξτ [Pa] γτ [Pa] µp

[
1

Pa

]

Normalized 1 1.68 · 10−1 3.33 · 10−2 20.88 · 102

Human 1.16 1.95 · 10−1 3.87 · 10−2 18.00 · 102

Dog 1.61 2.71 · 10−1 5.37 · 10−2 12.97 · 102

Rabbit 2.38 4.00 · 10−1 7.93 · 10−2 8.77 · 102

Rat 4.71 7.92 · 10−1 15.70 · 10−2 4.43 · 102

Mouse 6.52 10.96 · 10−1 21.73 · 10−2 3.20 · 102

Fitted to / source [40] [141] Eq. (4.45) [240, 254]

It remains to specify the concentrations of native LDL η` and HDL ηh in blood and the WSS ‖τ‖
the model plaque is exposed to in vivo, which characterize the physiology and diet of the plaque’s
host and its position in the cardiovascular system. These parameters cannot be predetermined
to fixed values, but their full ranges must be considered. The WSS ‖τ‖ within a murine aortic
arch are approximately below 7.7‖τ‖, cf. Section 4.3.4. In a clinical context, the concentrations
of LDL and HDL are measured by determining their cholesterol contents in blood. In humans,
the physiological ranges lie approximately in between concentrations of 50 − 250 mg

dl
of LDL

blood cholesterol and 20 − 80 mg
dl

of HDL blood cholesterol [205], which can be transformed
into SI units of particles per volume using ρ8 and ρ13 from Table 5.1. In the case of mice
with genetic modifications and high-fat diets, the LDL and HDL cholesterol concentrations
can rise above 3000 mg

dl
and 400 mg

dl
, respectively [167, 272]. In general, however, mice show

lower total blood cholesterol concentrations compared to humans, where HDL cholesterol is
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6 Spatially resolved model of early atherosclerosis

Table 6.3 Specific parameters of the PFSTI model. Parameters are grouped according to their
affiliation. All units are in mm, g, s and Pa.

Parameter Description Value
Fitted to /

source
R Lumen radius 5.7 · 10−1 mm Figure 4.4
H Intima-media thickness 4.00 · 10−2 mm = T

2
, [84, 124, 146]

L Segment length 1.8 mm ≈ 3R
Pm Rate of recruitment of m 3.05 · 103 1

h mm2 [141]
δm Fraction of saturation of recruitment of m by ˜̀ 68.62 % [141]
km Saturation of recruitment of m by ˜̀ 7.38 · 106 1

mm3 [141]
ξτ Saturation of recruitment of m by τ Table 6.2 [141]
ντ Exponent of recruitment of m by τ 1.18 [141]

DEff,m Effective diffusion coefficient of m 3.6 · 10−6 mm2

h
[45, 90]

DEff,f Effective diffusion coefficient of f 3.6 · 10−6 mm2

h
= Dm

DEff,b Effective diffusion coefficient of b 3.6 · 10−6 mm2

h
= Dm

P` Diffusive permeability of ` 6.12 · 10−5 mm
h

[268]
ζτ Permeability scaling factor parameter 31 Eq. (4.45)
γτ Permeability scaling factor parameter Table 6.2 Eq. (4.45)
σF,` Filtration reflection coefficient of ` 9.97 · 10−1 [146, 255, 294]
ω` Weighting factor of ` 9.99 · 10−1 Eq. (6.26), [85]
Lp Hydraulic conductivity 4.26 · 10−5 mm

Pa h
[262]

γp Conductivity scaling factor parameter 1.31 · 10−1 [240, 254]
µp Conductivity scaling factor parameter Table 6.2 [240, 254]
ξp Conductivity scaling factor parameter 1.86 · 101 [240, 254]

DEff,` Effective diffusion coefficient of ` 1.26 · 10−2 mm2

h
[29, 255, 267]

K` Hindrance coefficient of ` 1.17 · 10−1 [85, 210]
P˜̀ Diffusive permeability of ˜̀ 6.12 · 10−5 mm

h
= P`

η˜̀ Concentration of ˜̀ in blood 0.0 1
mm3 [70]

σF,˜̀ Filtration reflection coefficient of ˜̀ 9.97 · 10−1 = σF,`

ω˜̀ Weighting factor of ˜̀ 9.99 · 10−1 =ω`
DEff,˜̀ Effective diffusion coefficient of ˜̀ 1.26 · 10−2 mm2

h
= DEff,`

K˜̀ Hindrance coefficient of ˜̀ 1.17 · 10−1 = K`

Ph Diffusive permeability of h 1.14 · 10−4 mm
h

=1.87P`, [251]
σF,h Filtration reflection coefficient of h 9.18 · 10−1 Eq. (6.21), [146]
ωh Weighting factor of h 9.98 · 10−1 Eq. (6.26), [85]
qh,m Rate of modification of h by m 1.64 · 10−4 mm3

h
=

q`,m
7.6

N˜̀

Nh̃

qh,e Rate of modification of h by e 6.21 · 10−2 mm
h

=
q`,e
7.6

N˜̀

Nh̃

DEff,h Effective diffusion coefficient of h 2.94 · 10−2 mm2

h
Eq. (6.23), [146]

Kh Hindrance coefficient of h 6.27 · 10−1 Eq. (6.22), [85]
φ Porosity of media 1.5 · 10−1 [1, 221]

KPF Darcy permeability of artery wall 1.11 · 10−14 mm2 Eq. (6.27)
%PF Mass density of blood plasma 1.05 · 10−3 g

mm3 = %F

µPF Dynamic viscosity of blood plasma 2.0 · 10−7 Pa h [221, 294]
ηp Luminal blood pressure 1.33 · 104 Pa [1, 209, 282]
pAdv Adventitial blood plasma pressure 4.0 · 103 Pa [1, 209, 294]

Abbreviations: low-density lipoproteins, `; modified low-density lipoproteins, ˜̀; high-density
lipoproteins, h; endothelial cells, e; macrophages, m; intracellular free cholesterol, f ;
intracellular cholesterol ester, b; wall shear stresses, τ .
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Table 6.4 Physiological ranges of LDL η` and HDL ηh cholesterol concentrations in blood as
well as wall shear stress exposure ‖τ‖ in vivo.

Parameter Description Range Source
η` Concentration of LDL cholesterol in blood 10− 3000 mg

dl
∗ [167, 205, 272]

ηh Concentration of HDL cholesterol in blood 20− 400 mg
dl
∗ [167, 205, 272]

‖τ‖ WSS exposure 0%− 770%‖τ‖

Parameters indicated by ∗ can be transformed into SI based units using ρ8 and ρ13 from Table 5.1.

the predominant lipoprotein [167]. An overview of the full spectrum of LDL and HDL blood
cholesterol concentrations as well as WSS is given in Table 6.4. The ranges of interest, however, lie
in the lower ends of the spectrum as these are associated with the development of atherosclerotic
plaques in humans.

Remark. The volume-averaged concentrations of LDL and HDL within the endothelial layer
are close to their concentrations in blood. Moreover, the concentrations of native LDL ` and
HDL h in the intima and media are small compared to the respective concentrations η` and ηh in
blood [19, 54, 195, 268]. Therefore,

r` (`, p, ‖τ‖) ≈ (P`s (‖τ‖) + (1− σF,`)Lp (‖τ‖) (ηp − p)) η`,
rh (h, p, ‖τ‖) ≈ (Phs (‖τ‖) + (1− σF,h)Lp (‖τ‖) (ηp − p)) ηh

(6.29)

are reasonable approximations to the influx of native LDL r` [146, 210] and HDL rh given
by Equations (6.4) and (6.8), respectively. However, as the concentration of modified LDL in
blood η˜̀ is small, the analog simplification is not valid for the outflux of modified LDL r˜̀.

6.2.2 Sensitivity analysis

The estimated parameters in the previous section have a degree of uncertainty due to their different
origins, different animals used as experimental models and measurement errors. Additionally, the
conversion from the various units of measurement in the experimental studies to a unified SI unit
system introduces another source of uncertainty for some parameters.

To quantify the effect of uncertainties in the parameters on the computational results of the
model, a local sensitivity analysis in terms of a metabolic control analysis [300] is performed.
However, the computational cost to solve the spatial PFSTI model is large such that a metabolic
control analysis using the spatial PFSTI model is not achievable. Therefore, the non-spatial
extended combined model is exploited which consists of the combined model (Section 5.1.2)
enriched by the laws of the macrophage, LDL and HDL recruitments (submodels 5 and 6 with
fixed p = ηp−∆pEnd = 82 mmHg = 1.09 ·104 Pa [45, 209, 262, 267]). The extended combined
model is given in detail in Appendix B. It is important to note that the extended combined model is
equivalent to the spatial PFSTI model in the case of large effective diffusion coefficients DEff,i.
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6 Spatially resolved model of early atherosclerosis

The metabolic control analysis is performed in correspondence to Section 5.2.1. Therefore, the
metabolic control coefficients MCC(i, p) of all species i at time t = 100 weeks are computed
as described by Equation (5.8), where solely the non-spatial parameters p listed in Table 6.3 are
regarded. The uncertainties of the remaining non-spatial parameters were previously addressed
in Section 5.2.1. The influence of the spatial parameters DEff,i and Ki is assessed as described
in Section 6.2.6. As a basis for the perturbation of LDL cholesterol, HDL cholesterol and
WSS, η` = 150 mg

dl
, ηh = 50 mg

dl
and ‖τ‖ = 10%‖τ‖ are employed.

Remark. The extended combined model does not solve for an approximation of the medial
pressure pPF and transmural velocity uPF , but a prescribed medial pressure p and velocity u
are employed. To avoid confusion, the prescribed medial pressure and velocity of the extended
combined model are denoted without superscript PF , whereas their counterparts in the PFSTI
model are denoted with superscript.

6.2.3 Influence of advective fluxes through endothelium

The fluxes of lipoproteins through the endothelium governed by the WSS-dependent Kedem-
Katchalsky equations in Section 6.1.1.3 are subdivided into diffusive and advective parts which are
individually altered by the WSS-dependent PSF and CSF. The advective fluxes are a consequence
of the pressure drop ∆pEnd = ηp − p across the endothelium and the induced volume flux JVol of
blood plasma through the endothelium, cf. Section 4.5. However, mathematical and computational
models frequently model the artery wall as solids (e.g., the multiphysics model in Chapter 4),
where the advective fluxes of lipoproteins are neglected as consequence. There is controversy
about the impact of this simplifying model assumption with respect to the transport of native LDL
through the endothelium [210, 268]. Further, the advective flux of modified LDL and native HDL
through the endothelium is not yet assessed at all. Therefore, the laws for the fluxes of native
LDL r` (`, p, ‖τ‖), modified LDL r˜̀(˜̀, p, ‖τ‖) and HDL rh (h, p, ‖τ‖) through the endothelium
(Equations (6.4) and (6.8)) are analyzed.

First, the three laws relative to the cholesterol concentrations in blood, i.e., r`
η`

, r˜̀

η`
and rh

ηh
are

studied, where the following physiological ranges for their arguments are considered: Accord-
ing to the measurements in [262], the pressure drop across the endothelium is approximately
∆pEnd = 18 mmHg. Hence, subendothelial pressures p in between 75−90 mmHg are considered.
In analogy to the medial LDL concentrations measured in [117, 268], ` = ˜̀= 7.2 · 10−4η` and
h = 7.2 ·10−4ηh are utilized as lipoprotein concentrations in the media. The remaining parameters
are given in Tables 5.7 and 6.3.

Further, the fractions of the advective to the total fluxes of native LDL rAdv,`

r`
, modified LDL

rAdv,˜̀

r˜̀

and HDL rAdv,h

rh
are investigated using the same parameters as stated above. Here, rAdv,i denotes

the advective flux of a lipoprotein i = `, ˜̀, h, cf. Equation (6.4).
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6.2 Methods

6.2.4 Stability analysis

The outcome of the PFSTI model is strongly dependent on blood cholesterol concentrations
of LDL η` and HDL ηh and the WSS ‖τ‖ which characterize the physiology and diet of the
host and the position of the individual plaque within the cardiovascular system. They can – de-
pending on the species, its predisposition and its diet – vary by several orders of magnitude (cf.
Table 6.4) which results in qualitatively different predicted long-term outcomes of the model
plaque, cf. Section 5.4. Hence, a focus is put on these three parameters and a systematic analysis
of the stability in correspondence to Section 5.2.2 is performed. Due to the high computational
cost of the spatial PFSTI model, the stability analysis is performed using the extended com-
bined model (cf. Appendix B) with parameters from Tables 5.7 and 6.3 and a subendothelial
pressure p = 82 mmHg.

The long-term outcome of the extended combined model is analyzed by numerically determining
the steady-state values of the concentrations of macrophages

m̂ ∈ [m′Min,m
′
Max] :=

[
Pm (1− δm)

H

(ξτ )
ντ

(ξτ )
ντ + ‖τ‖ντ

(ξm)nm + (fMax)nm

µm(fMax)nm
,

Pm
H

(ξτ )
ντ

(ξτ )
ντ + ‖τ‖ντ

(ξm)nm + (fMin)nm

µm(fMin)nm

] (6.30)

and total intracellular free cholesterol per macrophage

f̂

m̂
∈ [fMin; fMax] (6.31)

for the ranges of interest of η`, ηh and ‖τ‖. Additionally, the boundedness of the concentration
of the total intracellular cholesterol ester b(t) is investigated numerically in order to assess the
severity and risk of plaques.

Remark. Since (1−σF,i)(1−ωi)LpsL(‖τ‖)(ηp−p) ≤ PisP(‖τ‖) ∀i = `, ˜̀, h, the influx rates of
native LDL r` (`, p, ‖τ‖) and HDL rh (h, p, ‖τ‖) are positive and bounded by positive constants
and the “influx” rate of modified LDL r˜̀(˜̀, p, ‖τ‖) is strictly negative. In addition, the rate
of recruitment of macrophages is bounded by 0 ≤ rm(˜̀, ‖τ‖) ≤ Pm. Therefore, Proposition 1
from Section 5.2.2 remains valid with slight adaptations for the extended combined model, see
Proposition 2 in Appendix B.

6.2.5 Meshing and implementation validation

The PFSTI model is numerically treated as described in Section 3.2.3. The poro-fluid domain ΩPF

and poro-scatra domain ΩPS of the idealized intima-media geometry utilize equal finite element
meshes which are structured as follows: The endothelial boundary ΓEnd is meshed using quadri-
lateral elements with surface element length h1. In the radial direction, equidistant layers of
hexahedral elements with radial element length h2 are employed. As the deficiency of the
finite element mesh lies in the resolution of the steep concentration gradients near the endothe-
lial and media-adventitia boundaries ΓEnd and ΓAdv, 20 equidistant layers with radial element
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Figure 6.4 Finite element mesh for the PFSTI model with h1 = 6.0 · 10−2 mm and
h2 = 2.0 · 10−3 mm and prescribed inhomogeneous normalized WSS pattern ‖τ‖‖τ‖(x).

length h2 = 2.0 · 10−3 mm are utilized. As determined in Section 4.3.3, a surface element length
h1 = 6.0 · 10−2 mm is used. In total, a finite element mesh with 36000 hexahedral elements,
39060 nodes and 273420 degrees of freedom is employed. An overview of the finite element mesh
for the PFSTI model is given in Figure 6.4.

A validation of the implementation of the complex inflammatory and immunological reactions
and boundary conditions of the PFSTI model in BACI is performed. To this end, the results of the
PFSTI model with high effective diffusion coefficients DEff,i solved using BACI are compared to
the results of the extended combined model solved using MATLAB. In MATLAB, a stiff solver
with adaptive time stepping (MATLAB solver “ode15s”) is used. In contrast, a constant time
step size ∆t = 1 week = 168 h is employed in BACI. Thus, to allow a valid comparison of the
results with MATLAB, appropriate initial concentrations `0, ˜̀

0, h0, f0, b0,m0 are employed for
the PFSTI model which correspond to the post-initial concentrations computed with MATLAB.

6.2.6 Influence of transport within artery wall

Within the artery wall LDL and HDL are transported by diffusion and advection with the trans-
mural flow which lead to spatially varying concentration profiles. However, the importance of the
transport of lipoproteins within the artery wall was not yet investigated. The influence of diffusion
on the lipoproteins transport is assessed by a successive reduction of the order of magnitude of the
effective diffusion coefficients DEff,`, DEff,˜̀ and DEff,h from large values inducing homogeneous
concentrations to their values as given in Table 6.3. Subsequently, the importance of the advective
transport of lipoproteins within the artery wall is investigated by a comparison of the concentration
profiles of the PFSTI model with various hindrance coefficients K`, K˜̀ and Kh. As consistent
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6.3 Results

inhomogeneous initial concentrations are not achievable in the case of physiological diffusion co-
efficients, a shock-like event in the beginning of the simulation is inevitable. Therefore, numerical
dissipation is introduced by using the one-step-θ scheme coefficient θ = 0.6.

6.2.7 Influence of inhomogeneous WSS distribution

In addition to diffusion and advection, the concentrations are locally altered in vivo by non-
uniform recruitment rates of LDL, HDL and macrophages through the endothelium, e.g., induced
by spatially varying WSS distributions. Regional differences in the recruitment rates can locally
lead to the formation of plaques whereas other sites remain healthy. Therefore, the PFSTI model
is solved and analyzed with a prescribed inhomogeneous normalized WSS distribution given
by

‖τ‖(x)

‖τ‖ =


1− 0.9

1− exp
(
− 1

1+((62(X/mm−0.57)2+(5−8Z/mm)2(Y/mm−0)2+22(Z/mm−0))2)8

)

1− exp (−1)


 ,

(6.32)

where X , Y and Z are the coordinates of the vector x = [X, Y, Z]T in the cartesian coor-
dinate system. The geometrical center of the idealized intima-media geometry (with lumen
radius R = 0.57 mm, intima-media thickness H = 0.04 mm and segment length L = 1.8 mm)
is at the origin of the coordinate system and the geometry is symmetric with respect to the Z-axis.
A visualization of the geometry and the prescribed inhomogeneous normalized WSS distribu-
tion ‖τ‖(x)

‖τ‖ is given in Figure 6.4. In accordance with the WSS pattern in mice (cf. Figure 4.10), a
sharp transition from low (10%‖τ‖) to high (100%‖τ‖) WSS is prescribed.

6.3 Results

In this section all results gained from the models in Section 6.1 and the methods in Section 6.2 are
presented. All numerical computations concerning ODE models were performed using MATLAB
(The MathWorks Inc., Natick, Massachusetts, USA, 2000). The solving of the spatial PFSTI
model was performed using BACI [277].

6.3.1 Sensitivity analysis

The local sensitivity of the extended combined model with respect to its parameters is analyzed as
described in Section 6.2.2. The results of the performed metabolic control analysis are independent
of the chosen variation parameter ε = 0.1%. The metabolic control coefficients of all species of
the extended combined model with respect to all non-spatial parameters listed in Table 6.3 are
visualized in Figure 6.5.
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Figure 6.5 Metabolic control analysis of the extended combined model. The metabolic con-
trol coefficients of native LDL `, modified LDL ˜̀, HDL h, intracellular free cholesterol per
macrophage f

m
, intracellular cholesterol ester per macrophage b

m
and macrophages m with respect

to all specific parameters p of the PFSTI model are computed as described in Section 6.2.2. The
values of the truncated bars are MCC(`, σF,`) = −175.90 and MCC(˜̀, σF,`) = −92.68. For an
overview of all parameters, see Tables 5.7 and 6.3.
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6.3.2 Lipoprotein fluxes and macrophage recruitment

The submodels for the fluxes of native LDL, modified LDL and HDL (submodel 6 ) are analyzed
as described in Section 6.2.3. As medial concentrations of native LDL ` and HDL h relative to the
luminal concentrations η` and ηh are employed, the results of the relative fluxes of native LDL r`

η`
and HDL rh

ηh
are independent of η` and ηh, respectively. In contrast, since η˜̀ = 0, the relative

outflux of modified LDL r˜̀

η`
scales linearly with the medial concentration of modified LDL ˜̀. The

fractions of the advective fluxes of native LDL rAdv,`

r`
, modified LDL

rAdv,˜̀

r˜̀
and HDL rAdv,h

rh
are

independent of the medial and luminal lipoprotein concentrations, cf. remark in Section 6.2.1.

The relative fluxes ri
ηi

and fractions of advective fluxes rAdv,i

ri
of native LDL `, modified LDL ˜̀

and HDL h are shown in Figure 6.6. Further, an overview of the estimated rates of recruitment of
macrophages (submodel 5 ) for various concentrations of modified LDL is given in Figure 6.7.

6.3.3 Stability analysis

The influence of the blood cholesterol concentrations of LDL η` and HDL ηh and the WSS ‖τ‖
to the long-term outcome of model plaques is investigated using the extended combined model
as described in Section 6.2.4. Proposition 2 from Appendix B) applies as all its requirements
are fulfilled by the extended combined model with the parameter set from Tables 5.7 and 6.3.
Hence, the steady-state concentrations of macrophages m̂ and intracellular free cholesterol per
macrophage f̂

m̂
satisfy

m̂ ∈ [m′Min,m
′
Max] = [0.04 · 108, 14.96 · 108]

1

mm3
,

f̂

m̂
∈ [fMin, fMax] =

[
1.22 · 1010, 7.15 · 1010

] (6.33)

and only the concentration of cholesterol ester b can be unbounded. The boundedness of intra-
cellular cholesterol ester b, the steady-state concentration of intracellular free cholesterol per
macrophages f̂

m̂
and the steady-state density of macrophages m̂ are computed for the crucial ranges

of η`, ηh and ‖τ‖. As high LDL cholesterol, low HDL cholesterol and regions with low WSS are
prone to atherosclerosis, the considered ranges for the stability analysis are η` ∈ [10, 800] mg

dl
,

ηh ∈ [20, 100] mg
dl

and ‖τ‖ ∈ [5%, 40%]‖τ‖, cf. Table 6.4. They are covered by a simple analysis
utilizing an equidistant grid of the parameter space. The results for varying blood cholesterol
concentrations η` and ηh and four different WSS levels ‖τ‖ are visualized in Figure 6.8.

6.3.4 Spatially resolved model

The validity check of the complex implementation of the spatial PFSTI model in BACI is per-
formed as described in Section 6.2.5, where the parameter set from Tables 5.7 and 6.3 together
with DEff,i = 1.26 · 102 1

mm2 ∀i = `, . . . ,m, ‖τ‖ = 10 %‖τ‖, η` = 150 mg
dl
, ηh = 50 mg

dl
and
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Figure 6.6 Relative fluxes ri
ηi

and fractions of advective fluxes rAdv,i

ri
of native LDL, modified

LDL and HDL (i = `, ˜̀, h) as predicted by submodel 6 with varying normalized wall shear
stresses ‖τ‖‖τ‖ , various medial pressures p and prescribed medial concentrations `, ˜̀and h.
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Figure 6.7 Rate of recruitment of macrophages as predicted by the submodel of macrophage
recruitment (submodel 5 ) with varying normalized wall shear stresses ‖τ‖‖τ‖ and various concen-

trations of modified LDL ˜̀.

p = 82 mmHg are employed. Due to the high effective diffusion coefficients DEff,i, the concen-
trations are homogeneous throughout the domain ΩPS and the results of an arbitrary node are
utilized. The comparison of the results of the PFSTI model solved using BACI and the extended
combined model solved using MATLAB is shown in Figure 6.9.

The influence of diffusion and advection within the artery wall is assessed as described in
Section 6.2.6. Successively reducing the effective diffusion coefficients DEff,`, DEff,˜̀ and DEff,h

in the PFSTI model results in inhomogeneous concentration profiles of all species along the
radial direction, whereby the independence of the utilized element lengths h1 and h2 to the
computational results is ensured. Denoting the concentration profile of native LDL along the X-
axis by `(X) (with X ∈ [R,R +H] = [0.57 mm, 0.61 mm]), the space-averaged concentration
of native LDL ` and its center of mass X` are computed by

` =
1

H

R+H∫

R

`(X) dX,

X` =
1

`

R+H∫

R

X `(X) dX.

(6.34)

The average concentrations and centers of mass of the remaining species are computed analo-
gously. The average concentrations of all species `, . . . ,m along the X-axis and the position
of their respective centers of mass X`, . . . , Xm on the X-axis for various effective diffusion
coefficients DEff,`, DEff,˜̀, DEff,h and hindrance coefficients K`, K˜̀, Kh are given in Table 6.5.
Moreover, the concentration profiles for various hindrance coefficients K`, K˜̀ and Kh are given
in Figure 6.10.
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(a) Boundedness of concentration of intracellular choles-
terol ester per macrophage for varying η` and ηh and
fixed ‖τ‖ = 5%‖τ‖.
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(b) Boundedness of concentration of intracellular choles-
terol ester per macrophage for varying η` and ηh and
fixed ‖τ‖ = 10%‖τ‖.

‖τ‖ = 20%‖τ‖

20 40 60 80 100

HDL cholesterol ηh [mg
dl
]

10  

100 

200 

300 

400 

500 

600 

700 

800 

L
D
L
ch
ol
es
te
ro
l
η
ℓ
[m

g
d
l
]

U
n

b
o

u
n

d
e

d
  

  
  

  
  

  
  

B
o

u
n

d
e

d
  

 

(c) Boundedness of concentration of intracellular choles-
terol ester per macrophage for varying η` and ηh and
fixed ‖τ‖ = 20%‖τ‖.
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(d) Boundedness of concentration of intracellular choles-
terol ester per macrophage for varying η` and ηh and
fixed ‖τ‖ = 40%‖τ‖.

Figure 6.8 Stability analysis of the extended combined model as described in Section 6.2.4. The
boundedness of intracellular cholesterol ester, the steady-state concentration of intracellular free
cholesterol per macrophage f̂

m̂
and the steady-state density of macrophages m̂ are predicted for

varying LDL and HDL cholesterol concentrations η` and ηh and various WSS ‖τ‖.
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for varying η` and ηh and fixed ‖τ‖ = 5%‖τ‖.
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(f) Steady-state concentrations of intracellular free
cholesterol per macrophage f̂

m̂ relative to [fMin, fMax]
for varying η` and ηh and fixed ‖τ‖ = 10%‖τ‖.
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cholesterol per macrophage f̂
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for varying η` and ηh and fixed ‖τ‖ = 20%‖τ‖.
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(h) Steady-state concentrations of intracellular free
cholesterol per macrophage f̂

m̂ relative to [fMin, fMax]
for varying η` and ηh and fixed ‖τ‖ = 40%‖τ‖.
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(i) Steady-state densities of macrophages m̂
relative to [m′Min;m′Max] for varying η` and ηh and
fixed ‖τ‖ = 5%‖τ‖.
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(j) Steady-state densities of macrophages m̂
relative to [m′Min;m′Max] for varying η` and ηh and
fixed ‖τ‖ = 10%‖τ‖.
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(k) Steady-state densities of macrophages m̂
relative to [m′Min;m′Max] for varying η` and ηh and
fixed ‖τ‖ = 20%‖τ‖.
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(l) Steady-state densities of macrophages m̂
relative to [m′Min;m′Max] for varying η` and ηh and
fixed ‖τ‖ = 40%‖τ‖.
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(a) Concentrations of native LDL `(t) over time t.

0 20 40 60 80 100

Time t [weeks]

0

2

4

6

8

10

M
o
d
ifi
ed

L
D
L
ℓ̃(
t)

[

1
m
m

3

]

×10
7

ηℓ = 150 mg
dl , ηh = 50 mg

dl , ‖τ‖ = 10%‖τ‖, p = 82 mmHg

ℓ̃(t), BACI

ℓ̃(t), MATLAB

(b) Concentrations of modified LDL ˜̀(t) over time t.
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(c) Concentrations of HDL h(t) over time t.
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(d) Concentration of intracellular free cholesterol per
macrophage f(t)

m(t) relative to [fMin, fMax] over time t.
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(e) Concentration of intracellular cholesterol ester per
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m(t) over time t.
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Figure 6.9 Comparison of concentrations of native and modified LDL, HDL, intracellular free
and esterified cholesterol per macrophage and macrophages over time t computed with MATLAB
and BACI as described in Section 6.2.5. Parameters from Tables 5.7 and 6.3, η` = 150 mg

dl
,

ηh = 50 mg
dl

, ‖τ‖ = 10%‖τ‖ and p = 82 mmHg.
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6 Spatially resolved model of early atherosclerosis

Table 6.5 Mean concentrations of native LDL `, modified LDL ˜̀, native HDL h, intercellular free
cholesterol f

m
, intercellular cholesterol ester f

m
and macrophages m and their centers of mass X i

for varying effective diffusivities DEff,` (= DEff,˜̀ = 1
2.33

DEff,h) and hindrance coefficients K`

(= K˜̀ = 1
5.36

Kh) of native LDL at time t = 100 weeks. Parameters from Tables 5.7 and 6.3 and
η` = 150 mg

dl
, ηh = 50 mg

dl
and homogeneous WSS ‖τ‖ = 10%‖τ‖.

Parameter setup Mean concentration
[

1
mm3

]
or [1] Center of mass [%] ∗ Plot

1
1.26
·DEff,` K` 10−6 · ` 10−7 · ˜̀ 10−7 · h 10−10 · f

m
10−11 · b

m
10−7 ·m X` X ˜̀ Xh X f

m

X b
m

Xm

102 0.12 ∗∗ 3.02 10.41 10.43 6.46 2.33 3.37 50 50 50 50 50 50 Fig. 6.9
100 0.12 ∗∗ 2.67 9.73 9.07 6.15 1.77 3.41 41.3 50.9 40.8 51.4 54.0 48.5 –

10−1 0.12 ∗∗ 2.66 9.90 9.04 6.27 2.18 3.27 18.6 48.9 17.9 51.3 54.1 48.4 –
10−2 ∗∗ 0 2.58 8.83 8.78 6.39 2.75 3.19 5.51 37.2 5.32 51.3 54.1 48.3 –
10−2 ∗∗ 0.12 ∗∗ 2.58 8.84 8.78 6.39 2.75 3.19 5.52 37.3 5.33 51.3 54.1 48.3 Fig. 6.10
10−2 ∗∗ 1 2.58 8.94 8.79 6.39 2.75 3.19 5.55 38.1 5.33 51.3 54.1 48.3 Fig. 6.10
10−2 ∗∗ 5 2.59 9.33 8.81 6.39 2.74 3.18 5.71 41.5 5.40 51.3 54.1 48.3 Fig. 6.10
10−2 ∗∗ 25 2.67 9.70 9.04 6.39 2.72 3.11 6.63 55.6 5.79 51.3 54.1 48.3 Fig. 6.10

∗ 0% and 100% correspond to the endothelium and media-adventitia boundary, respectively.
∗∗ Corresponds to the physiological parameter from Table 6.3.

0.57 0.575 0.58 0.585 0.59 0.595 0.6 0.605 0.61

X coordinate [mm]

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

C
o
n
ce
n
tr
a
ti
o
n
s
[

1
m
m

3

]

t = 100 weeks, ηℓ = 150 mg
dl , ηh = 50 mg

dl , ‖τ‖ = 10%‖τ‖

10−7
· ℓ(X)

10−7
· ℓ̃(X)

10−8
· h(X)

10−10
·

f (X )
m(X )

10−11
·

b(X )
m(X )

10−7
·m(X)

Figure 6.10 Concentration profiles of native LDL `, modified LDL ˜̀, native HDL h, intercellular
free cholesterol f

m
, intercellular cholesterol ester b

m
and macrophages m at time t = 100 weeks

plotted over the X-axis. Parameters from Tables 5.7 and 6.3 and η` = 150 mg
dl

, ηh = 50 mg
dl

,
homogeneous WSS ‖τ‖ = 10%‖τ‖ and K` = 0.12 (solid lines), K` = 1 (dotted lines), K` = 5
(dash-dotted lines) or K` = 25 (dash lines) (K˜̀ = K`, Kh = 5.36K`).
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(a) Steady-state concentration profiles of species over the negative X-axis.
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(b) Steady-state concentration profiles of species over the positive X-axis.

Figure 6.11 Steady-state concentration profiles of native LDL ̂̀, modified LDL ̂̀̃, native HDL ĥ,
intercellular free cholesterol f̂

m̂
, intercellular cholesterol ester b̂

m̂
and macrophages m̂ plotted

over the positive and negative X-axis. Parameters from Tables 5.7 and 6.3 and η` = 150 mg
dl

,
ηh = 50 mg

dl
and non-homogeneous WSS ‖τ‖(x) as given by Equation (6.32).
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Figure 6.12 Spatial distributions of steady-state concentration of modified LDL ̂̀̃, intercellular
free cholesterol f̂

m̂
, intercellular cholesterol ester b̂

m̂
and macrophages m̂. Parameters from Ta-

bles 5.7 and 6.3 and η` = 150 mg
dl

, ηh = 50 mg
dl

and non-homogeneous WSS ‖τ‖(x) as given by
Equation (6.32).
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The steady-state concentration profiles of the species ˆ̀(X), . . . , m̂(X) of the PFSTI model with
prescribed inhomogeneous WSS given by Equation (6.32) along the negative and positive X-axis
are visualized in Figure 6.11. Further, the spatial distributions of the steady-state concentra-

tions of modified LDL ̂̀̃, intercellular free cholesterol f̂
m̂

, intercellular cholesterol ester b̂
m̂

and
macrophages m̂ at the endothelial boundary ΓPSEnd are shown in Figure 6.12.

6.4 Discussion

A parameterized mathematical and computational model of key species of early atherosclerosis
was developed. To this end, a mathematical model of the adherence of monocytes on modified
LDL-activated endothelial cells in vitro was developed and its parameters were estimated by
least-squares fitting to experimental results in [141]. The fitted submodel thereby shows very good
agreement with experimental data, see Figure 6.2(a). The remaining parameters of the model of
key species were specified either by further least-squares fits, estimates based on experimental
data or were taken from the literature such that a complete parameter set was obtained.

The parameters of the complete set given by Tables 5.7 and 6.3 are subject to uncertainties
arising from various sources. The performed sensitivity analysis of the extended combined model
reveals that variations of the filtration reflection coefficients of LDL σF,` and HDL σF,h have
by far the largest influence to the computational results, see Figure 6.5. While the impact of
the filtration reflection coefficient of HDL σF,h is moderate, the effect of σF,` is severe even
though the literature in general agrees on σF,` ≈ 9.97 · 10−1 [1, 146, 221, 255, 294]. Still, both
parameters σF,` and σF,h require further attention, especially by experimental communities.

In addition, the recruitment of monocytes in vivo requires a special focus in future experimental
work. As only very few experimental results exist that consider non-constant flow patterns to
assess the influence of complex flows to the endothelium [127], determining a truly valid measure
for the local influence of the pulsatile blood flow is currently impossible. Here, the WSS ‖τ‖ were
employed as indicator for disturbed blood flow [154, 216]. In addition, the specific law for the
recruitment of macrophages was derived from experimental results investigating the adherence of
monocytes. However, no quantitative data exist that allow estimating the actual rate of monocyte
recruitment into the intima.

Three laws based on the equations of Kedem and Katchalsky were developed and parameterized to
assess the fluxes of native LDL r`, modified LDL r˜̀ and native HDL rh through the endothelium.
The total fluxes are subdivided into diffusive and advective parts which vary depending on the
WSS ‖τ‖ due to the PSF and CSF, cf. Figure 6.3. As a consequence, the total fluxes and the
fractions of the advective fluxes of native LDL, modified LDL and native HDL differ depending
on the WSS, see Figure 6.6.

As apparent from Figures 6.6(b), 6.6(d) and 6.6(f), there is great difference in the importance of
the advective fluxes with respect to the different lipoproteins. While the total outflux of modified
LDL r˜̀ is hardly counterbalanced by its advective influx, the advective influx of HDL dominates
the total influx of native HDL rh for all relevant WSS and medial pressure regions. The picture
of the advective influx of native LDL is ambiguous as it is dominant for low WSS regimes but
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minor for high WSS. In total, however, the results indicate that the advective flux of lipoproteins
through the endothelium is in general not negligible.

Due to their smaller particle size, the amount of penetrating native HDL is – depending on the
WSS and subendothelial pressure – approximately 10 to 25 times larger compared to native
LDL, see Figures 6.6(a) and 6.6(e). A large concentration of modified LDL ˜̀= 7.2 · 10−4η` was
assumed to assess the outflux of modified LDL. Still, the outflux of modified LDL is negligible
as it is more than three magnitudes smaller compared to the influx of native LDL and HDL, cf.
Figure 6.6(c). Furthermore, it is important to note that the influx of native HDL increases with
increasing WSS while the influx of native LDL decreases. Together with a decreasing recruitment
of macrophages under high WSS, see Figure 6.7, all three external markers of the combined
model (i.e., the constant recruitment rates r`, rh and rm, cf. Section 5.1.2) turn from the tendency
of an unbounded (unstable) plaque toward a bounded (stable) plaque with increasing WSS, cf.
Figure 5.10. This observation explains the great importance of the local blood flow condition to
the onset of atherosclerosis. Thus, the results indicate that the WSS and therefore the location of
plaques within the cardiovascular system decisively determine the type of early plaques, i.e., if
they are progression-prone (type IIa) or progression-resistant (type IIb), cf. Table 1.1.

Besides the flow-dependent and thus non-modifiable WSS, the cholesterol concentrations of
LDL η` and HDL ηh play an important role in atherogenesis. Depending on the physiology and diet
of a plaque’s host, they vary by several orders of magnitude (cf. Table 6.4) and induce qualitatively
different long-term outcomes of model plaques. The stability analysis of the extended combined
model shows that the most crucial determinant of the stability are the WSS ‖τ‖ followed by
the blood cholesterol concentration of HDL ηh, see Figure 6.8. Solely high blood cholesterol
concentrations of LDL η` significantly influence the long term outcome. However, such LDL
cholesterol concentrations do not occur naturally but must be enforced, e.g., by putting genetically
modified mice on a high-fat diet. The observations from the stability analysis indicate that the
natural resistance of mice against atherosclerosis might be due to their in general high HDL
and low LDL blood cholesterol profiles [167]. For the common range of blood cholesterol
concentrations in humans [205], plaques at locations with a WSS exposure below approximately
‖τ‖ = 20%‖τ‖ = 0.2 Pa must be considered as progression-prone plaques, i.e., as plaques of
type IIa [249].

Based on the assumption of a purely pressure gradient-driven transmural flow, Darcy’s law in
combination with the first Kedem-Katchalsky equation was used to develop a model of the blood
plasma pressure and transmural flow in the artery wall. In average, a transmural filtration velocity
of ‖uPF‖ = 6.47 · 10−2 mm

h
is estimated which is in perfect agreement with experimental and

computational results in the literature [85, 195, 221, 294]. Using this average velocity value, the
Reynolds number Re of the transmural filtration flow is calculated to

Re =
%PF‖uPF‖H

µPF
= 1.05 · 10−6. (6.35)

As the Reynolds number isRe� 1, the application of Darcy’s law results in a good approximation
to the viscous transmural flow within aortic tissue [14, 85, 164]. Using Darcy’s law, an intima-
media pressure drop of ∆pPFMed = 52.4 mmHg = 7.0 · 103 Pa is estimated which is in very good
agreement to experimental results in [262].
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6.4 Discussion

Crucial parameters that were not covered by the performed sensitivity analysis of the extended
combined model are the effective diffusivity of native LDL DEff,` and the arising diffusivities
of modified LDL DEff,˜̀ = DEff,` and native HDL DEff,h = 2.33DEff,`. No agreement on the
value of DEff,` exists in the literature, where almost all orders of magnitude in between DEff,` =

1.2 · 102 mm2

h
[90] and DEff,` = 1.8 · 10−4 mm2

h
[294] are found. Based on an extensive literature

review, in this thesis a frequently found intermediate value DEff,` = 1.26 · 10−2 mm2

h
[29, 255,

267] is utilized. As apparent from the comparison with the results of the non-spatial extended
combined model (cf. Figure 6.9), effective diffusion coefficients in the order of magnitude
of DEff,i = O(102 mm2

h
) result in concentration profiles without spatial variations. With decreasing

diffusion coefficients, the concentrations of lipoproteins along the radial direction change from
homogeneous concentrations to concentration profiles with steep gradients at the endothelium,
see Table 6.5 and Figure 6.10. In contrast, the density of macrophages and their intercellular
free and esterified cholesterol contents remain rather homogeneously distributed along the radial
direction. Even though the centers of mass shift by the reduction of the diffusivities, the average
concentrations of all species `, ˜̀, h, f , b,m are solely little affected by the reduction of the
diffusivities (< 18%). Thus, the extended combinded model is a valid simplification compared to
the PFSTI model when it comes to the analysis of non-spatial phenomena.

The variation of the hindrance coefficients K`, K˜̀ and Kh reveals that no species is significantly
affected (< 10%) by the advective transport with the transmural flow within the artery wall, see
Table 6.5 and Figure 6.10. Even if the advective transport of lipoproteins is increased by using
high hindrance coefficients, solely the concentration profile of modified LDL is significantly
altered, whereas the profiles of the remaining species are barely affected. As hindrance coefficients
are in general 0 ≤ Ki ≤ 1, such fast advective transports are only achieved by an approximately
100 times higher transmural velocity of ‖uPF‖, which is far beyond velocities reported in the
literature. The advective transport can thus not explain the increase of the LDL profile toward the
media-adventitia boundary as observable in vivo [19, 54, 195, 268] and the driving mechanism
behind remains unknown. In total, the computational results indicate that in case of homogeneous
boundary conditions, the effect of diffusion is minor while the influence of the advective transport
with the transmural flow within the artery wall is negligible. Still, the model of the transmural
flow cannot completely be neglected as it determines the subendothelial pressure pPF and thus
significantly alters the total lipoprotein fluxes r`, r˜̀ and rh, see Figure 6.6.

Important spatial phenomena occur when considering inhomogeneous boundary conditions,
see Figures 6.11 and 6.12. The steady-state concentration profiles of the PFSTI model with
prescribed inhomogeneous WSS pattern (cf. Figure 6.4) along the radial directions are qualitatively
different. The negative X-axis corresponds to a region exposed to high WSS ‖τ‖ = ‖τ‖ and
thus the atherosclerotic process remains non-critical: the long-term equilibrium concentrations

are characterized by moderate modified LDL ̂̀̃, low macrophages m̂ with low intracellular free
cholesterol f̂

m̂
and almost no intracellular cholesterol ester b̂

m̂
, cf. Figure 6.11(a). The negative

X-axis corresponds to a region exposed to low WSS ‖τ‖ = 10%‖τ‖. As a consequence, along
the negative X-axis qualitatively similar results as in Figures 6.8(b), 6.8(f), 6.8(j), 6.9 and 6.10 are
found. It is important to note, however, that the concentration of intracellular cholesterol ester b̂
remains bounded in the case of inhomogeneous WSS which is not the case for homogeneous
boundary conditions. The reason for this arising boundedness of all species lies in the diffusion
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6 Spatially resolved model of early atherosclerosis

of the species which blurs the strongly atherosclerotic regions with the surrounding virtually
non-atherosclerotic regions. By the smearing of the atherosclerotic region, the area of the plaque
drastically increases compared to the area of low WSS (cf. Figures 6.4 and 6.12), whereby
the surrounding region next to the low WSS is drawn into an even worse condition than the
central plaque region, see Figure 6.12. Another effect of the diffusion-driven smearing is that

macrophages are capable to preserve a stable concentration of detrimental modified LDL ̂̀̃
comparable to non-atherosclerotic sites, see Figure 6.12(a). However, this comes by the cost
of an increased concentration of intracellular free cholesterol f̂

m̂
and cholesterol ester b̂

m̂
within

macrophages rendering their own state toward apoptotic and necrotic foam cells. Hence, plaques
at the low WSS region and their surrounding must be considered progression-prone, i.e., as type
IIa in the classification by the American Heart Association given in Table 1.1.

The developed PFSTI model of key species of early atherosclerosis is able to assess the stability
of an early plaque based on the blood cholesterol concentrations of LDL and HDL and the
WSS it is exposed to. As discussed in detail in Section 5.4, the model of macrophages must be
enriched by their fates of emigration, proliferation and necrosis in order to assess intermediate
and advanced plaques. Further, solely a simplified geometrical setup was investigated, where an
artificial WSS distribution was prescribed. To consider patient-specific anatomies, the PFSTI
model can be embedded into the multiphysics model from Chapter 4 within a suitable multiscale
in time strategy, e.g., as described in the subsequent Chapter 7. Within the multiphysics model, the
PFSTI model can replace the previously employed simplistic reaction model of the inflammatory
and immunological processes, see Section 4.4. Within a patient-specific setup, the time-averaged
WSS and luminal pressure from a pulsatile fluid or fluid-structure interaction simulation can be
used to achieve locally varying physiological lipoprotein fluxes and macrophage recruitments. To
consider the back-coupling to the short time scale due to growth and remodeling of the artery wall,
the PFSTI model must be slightly adapted to respect the deforming porous media structure.

6.5 Short summary

This chapter is concerned with the development of a quantified spatially resolved mathematical
model of key species of early atherosclerosis and a classification of the stability of early model
plaques. Based on basic continuum mechanical principles, a novel model is established that
brings together Darcy’s law, the previous chapter’s combined model as well as submodels of the
recruitment of macrophages and fluxes of lipoproteins that were parameterized using existing
experimental results.

The model of key species allows to assess a local differentiation of progression-prone and
progression-resistant plaques based on three measurable or computable in vivo inputs – the WSS
a plaque is exposed to and blood cholesterol concentrations of LDL and HDL. An analysis of
the model’s parameters indicates that the impact of the transmural flow in the artery wall is
ambiguous. While the advective flux of lipoproteins through the activated endothelium is decisive,
the influence of the advective transport within the artery wall is negligible. Further, the model
suggests that regions within cardiovascular systems with an approximate WSS exposure below
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20 % below the average WSS as well as their surroundings must be considered as potential
regions of progression-prone atherosclerotic plaques.
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7 Overall summary and outlook

In this section, the main results of this thesis are briefly recapitulated and an outlook on remaining
and possible future work is given.

7.1 Summary of results

In this thesis, various novel mathematical and computational models were developed and pa-
rameterized to assess crucial mechanobiological, inflammatory and immunological processes
in silico that lead to the formation of atherosclerotic plaques and that drive their early stages.
The successive modeling, quantification and analysis deepen the understanding of key biological
mechanisms as described in the following summary.

As a first step, a mathematical and computational multiphysics fluid-structure-scalar-transport
interaction model for atherosclerosis was derived based on basic continuum mechanical principles,
and a subsequent discretization in terms of the finite element method and the one-step-θ scheme.
The multiphysics model incorporates major processes of all time scales of the disease, such as
cardiovascular mechanics including the interaction of blood and artery wall, transport of LDL to
and through the endothelium, inflammatory and immunological processes as well as growth and
remodeling of the artery wall. The interlacement of the different time scales of atherosclerosis is
thereby respected such that the short time scale cardiovascular mechanics dynamically adjusts
to changes occurring in the long time scale and vice versa. Using the multiphysics model, the
importance of the interdependencies of the time scales and the influence of patient-specific
anatomies to the atherosclerotic process was assessed. The model was therefore calibrated to an
exemplary physiological data set and a murine-specific geometry of the aortic arch such that it
reproduced important cardiovascular quantities, such as blood pressure, radial displacements, and
wall shear stresses. A methodology for the WSS-dependent up- and downscaling of the endothelial
permeability with respect to lipoproteins was developed and proved to be a qualitative indicator
for potential sites of atherosclerotic plaque formation. The analysis of the interlacement of the
different time scales in the multiphysics model further corroborates the theory that neglecting
the short time scale of cardiovascular mechanics, e.g., by time-averaging flows or neglecting
the deformation of the artery wall, is misleading in the context of atherosclerosis. Thus, the
short time scale of atherosclerosis is indispensable and must therefore be considered in future
modeling approaches. As the separation of the time and space scales of atherosclerosis follows the
separation of its involved physics, the multiphysics model is an essential step toward multiscale
models in time and space.
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7 Overall summary and outlook

A quantification of crucial processes of the formation of early atherosclerotic plaques was
addressed by a modeling approach similar to the biologists’ experimental approach where the
bigger picture of atherosclerosis is put together from many smaller observations and findings that
are gained from in vitro experiments. To this end, several ODE submodels of crucial inflammatory
and immunological processes, such as LDL modification and ingestion, HDL protection against
LDL modification, cholesterol cycle within macrophages, reverse cholesterol transport from
macrophages and macrophage apoptosis were developed. The submodels were parameterized
by least-squares fits to existing experimental results from various in vitro studies. The fitted
submodel closely reproduce the experimental results such that a complete physiological parameter
set was found for key biological processes of early atherosclerosis. The submodels that are
closely connected to in vitro studies build the basis for a quantified and predictive combined
mathematical model of early atherosclerotic plaque formation which reuses the physiological
parameter set determined by the submodels. A sensitivity analysis of the data-driven combined
model suggests that further experimental work quantifying the different fates of macrophages
as functions of their cholesterol load, and the balance between intracellular free cholesterol and
cholesterol ester may add valuable insight toward predicting long-term plaque outcomes in vivo.
Moreover, the combined model was used to classify the stability of early model plaques with
respect to prescribed rates of recruitment of LDL, HDL and macrophages. The results suggest
that a persistent high supply of LDL and macrophages in combination with a lack of HDL in vivo
render early atherosclerotic plaques progression-prone. Due to its experiment-based derivation
and parameterization, the combined model is an important step toward models applicable in a
clinical setting.

The stability of early plaques was further addressed by a quantified spatially resolved mathematical
and computational model of key species of early atherosclerosis. The model therefore incorporates
major spatial aspects of the long time scale of atherosclerosis, such as penetration of macrophages
and lipoproteins through the inflammation- and WSS-activated endothelium, transmural flow of
blood plasma within the artery wall, transport of macrophages and lipoproteins within the artery
wall as well as key inflammatory and immunological processes of early plaques. Based on basic
continuum mechanical principles, the developed porous medium fluid-scalar transport interaction
model of key species brings naturally together Darcy’s law, the combined model, and submodels
of the recruitment of macrophages and fluxes of lipoproteins through the endothelium. Analog to
the combined model, the submodels of the recruitment of macrophages and fluxes of lipoproteins
were parameterized using various existing experimental results. A sensitivity analysis of the
model with respect to uncertainties in the parameters recommends further experimental work
quantifying the endothelial filtration reflection coefficients of lipoproteins. In addition, the results
indicate that the impact of the transmural flow in the artery wall is ambiguous. While the advective
flux of lipoproteins through the activated endothelium is decisive, the influence of the advective
transport within the artery wall is negligible. Further, a characterization of progression-prone
and progression-resistant early plaques based on three measurable or computable in vivo inputs –
the WSS a plaque is exposed to and blood cholesterol concentrations of LDL and HDL – was
achieved. The results indicate that under the common range of blood cholesterol concentrations
in humans, regions within the cardiovascular system with an approximate WSS exposure below
1.3 Pa as well as their surroundings must be considered as potential regions of progression-prone
atherosclerotic plaques. As the model of key species of early atherosclerosis allows to assess
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the long-term outcome of early plaques based on measurable or computable in vivo inputs, it is
a decisive step toward determining the stability properties and risks of early plaques within a
clinical context.

7.2 Outlook on future work

Three outstanding computational and experimental aspects can be identified that require (further)
attention in future research.

From a computational and application perspective, the biggest drawback of the developed multi-
physics framework is its high computational cost which prevents the straightforward simulation
of long time spans and thus the usage of a physiological model of the inflammatory and immuno-
logical processes of atherosclerosis. The developed multiphysics approach, however, naturally
respects the separation of the time and space scales inherent with atherosclerosis (cf. Section 1.2.5).
The multiphysics FSSTI model, together with the PFSTI model of key species, can therefore build
the basis to resolve the problem of different time and space scales within a multiscale in time
strategy based on works by Figueroa et al. [81], Koshiba et al. [152] and Tomaso et al. [267].

As the mechanical properties of artery walls are dominated by media and adventitia, the short
time scale processes of the cardiovascular mechanics and the induced transport of lipoproteins
with the pulsatile blood flow can be addressed by a one-way coupled FSSTI method coupling the
quantified FSI (cf. Section 4.1.1) and fluid-scatra submodels (cf. Section 4.1.2.1). In contrast to the
multiphysics model, the atherosclerotic processes within the artery wall must not be considered
simultaneously as they take much more time compared to the duration of few cardiac cycles
being in the order of magnitude of seconds. The short time scale must be solved until its periodic
state induced by the pulsatile hemodynamics is reached. Subsequently, the PFSTI model can be
exploited to compute the long time scale processes of the penetration and transport of species in
the artery wall and the accompanied inflammatory and immunological processes. The transition
from the short to the long time scale can be accomplished by computing the time-average of all
quantities relevant to the large time scale, such as the local time-averaged WSS <τF>, blood
pressure <pF>, blood LDL concentration <`FS> and blood HDL concentration <hFS>. In
addition to the time-averaging, the transmural flow (without osmotic volume flux) within the artery
wall (cf. Section 6.1.2.1) can be precomputed prior to the simulation of the long time scale. The
quantified poro-scatra submodel (cf. Section 6.1.2.2) can be employed to predict the formation
of early plaques taking place on the long time scale being in the order of magnitude of weeks.
The long time scale poro-scatra part can be solved as long as the condition of the plaque’s host
does not significantly change and as long it can be assumed that the relevant time-averaged small
time scale quantities are not drastically altered by the back-coupling from the long time scale.
As the loss of concentrations within the blood due to the penetration of lipoproteins is negligible
compared to the replenishment by the blood flow [247], the most relevant back-coupling from the
large time scale is due to growth and remodeling of the artery wall.

The growth and remodeling induced by the accumulation of foam cells can be considered by using
the developed laws for the anisotropic growth and remodeling (cf. Sections 4.1.1.4 and 4.1.1.5),
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7 Overall summary and outlook

where solely the growth factor and remodeling factor have to be adapted to match the employed
poro-scatra part. To this end, it can be assumed that the volume occupied by the macrophage
population mPS is proportional to their (average) intracellular free and esterified cholesterols
contents fPS

mPS
and bPS

mPS
, respectively. Doing so, the growth factor ϑ and remodeling factor λ

read

ϑ = ϑ(fPS , bPS) = 1 +

(
αf

fPS

mPS
+ αb

bPS

mPS

)
JSmPS = 1 + αfJ

SfPS + αbJ
SbPS ,

λ = λ(fPS , bPS) =
1

ϑ(fPS , bPS)
,

(7.1)

where αf and αb are the respective proportionality constants. Identifying them with the volume of
free and esterified cholesterol molecules, they are estimated to αf = 6.55 · 10−19 mm3 and αb =
1.14 · 10−18 mm3 by using Vf , Vb and NA from Table 5.1. As the growth factor ϑ is associated to
the local relative increase of volume, the supremum norm ‖ϑ− 1‖∞ = ‖αfJSfPS + αbJ

SbPS‖∞
can be used to determine the end of the validity of the long time scale simulation, i.e., if the
cardiovascular mechanics is significantly altered due to local growth and remodeling induced
by the accumulation of intracellular cholesterols. The transition from long to short time scale
involves to reestablish the equilibrium between all involved physics. This can be done in a
sequentially staggered partitioned manner where the growth is applied to the structure submodel
within the short time scale FSSTI part and the concentrations are reduced within the long time
scale poro-scatra part to assure mass conservation.

Summarizing, it is proposed to utilize a partioned two-way coupled scheme as multiscale in time
strategy for atherosclerosis which couples one-way coupled FSSTI and PFSTI models based on
the models developed in this thesis. A schematic overview of the suggested multiscale in time
strategy including the corresponding coupling variables is given in Figure 7.1. It is important to
note, however, that the back-coupling of the long to short time scale by growth and remodeling is
solely necessary when investigating the long-term progression of atherosclerosis. If focus lies on
the onset of atherosclerotic plaques, a one-way coupled multiscale in time strategy which neglects
the growth and remodeling of the artery wall is sufficient too.

The time scale separation in atherosclerosis into short and long time scale is accompanied by
the separation of space scales. To assess the large space (and short time) scale FSSTI part a
considerable part of the lumen and its adjacent entire artery wall must be considered and thus
rather coarse finite element meshes corresponding to the “organ level” size are employed (cf.
Section 4.2.2). In contrast, the small space (and long time) scale PFSTI part requires to resolve
the intima and media with sufficient accuracy, especially in the radial directions. Therefore,
fine finite element meshes corresponding to the intima-media thickness are required to resolve
the steep concentration gradients (cf. Section 6.2.5). To simultaneously respect phenomena
occurring at different space scales, an appropriate multiscale in space approach must be taken.
A simple but convenient approach would be to use interpolation or projection methods, such
as volumetric collocation or mortar approaches as, e.g., discussed in the publications by Farah
et al. [74] or Krause and Zulian [153]. Such methods have the advantage that spatial effects
within both space scales can be fully respected and that the individual implementations of the
FSSTI and PFSTI parts must not be interlaced but solely the transfer of exchanged quantities
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Time-averaging

One-way coupled PFSTIOne-way coupled FSSTI
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Cholesterol ester bPS
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Figure 7.1 Overview of proposed multiscale in time strategy inlcuding the primary unknowns of
each model and coupling variables.

must be adapted. However, as the neglection of spatial effects within the artery wall did not
drastically alter the space-averaged concentrations, an alternative approach would be to utilize
space-averaging methods, such as the FE2 method [71, 79, 92]. The poro-scatra model could
therefore be space-averaged to ODE models (cf. the extended combined model in Appendix B)
which have to be solved solely on the endothelium boundary. However, such averaging approaches
come with the inherent drawback of inducing a uniformly growing artery wall along the radial
directions and thus do not allow investigating complex growth related phenomena, such as the
Glagov remodeling [84, 101, 113, 136, 168].

After having achieved an appropriate multiscale model (in time and space) of early atherosclerosis,
the second main issue can be addressed. It remains to quantitatively validate the developed PSF
based on multiple experimental in vivo data sets. Therefore, in vivo plaque locations could be
imaged and compared to predicted atherosclerosis-prone regions by the multiscale model in
terms of suitable metrics, e.g., similar to the methodology given by de Wilde et al. [59]. The
chosen approach in this thesis of investigating murine aortic arches has several murine specific
advantages (cf. Section 1.1.8). However, the imaging and localization of plaques in vivo yet
remains a challenge [167]. It could therefore be expedient to switch from a study of in vivo murine
aortic arches to human carotids which can be assessed in a clinical context using high-resolution
ultrasonography [107, 219].
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The final outstanding issue for future research must be addressed by experimental biologists.
Only little data exist that allow assessing the fates of macrophages [180, 220, 228, 296]. Besides
the experiments by Yao et al. [296] which were used to quantify macrophage apoptosis (based
on solely two data points), the remaining fates, namely macrophage emigration, proliferation
and necrosis can yet not be quantified based on experimental results. Thus, it is crucial that
biologists further address the fate of macrophages in future experimental work. Once quantifiable
experimental data are available, the experimental results can be used to enhance the developed
(extended) combined model and model of key species by the additional fates of macrophages.
Such enhanced models allow proceeding from the study of early plaques of type IIa or IIb
according to the classification by the American Heart Association [249] to the investigation of
intermediate atheroma of type III and IV.

The analog issue holds for the quantification of processes related to the role of smooth muscle
cells in advanced plaques. The oxidative modification of native LDL as well as the ingestion
of native and modified LDL by SMCs can be quantified by a straightforward extension of
submodel 1 (cf. Section 5.1.1.1) using the experimental results by Henriksen et al. [116], Fig. 7
and 8. However, their probably most important ability to move hapto- and chemotactically is
currently not quantifiable from the available experimental data in the literature. As SMCs in
general and their chemotaxation in particular are crucial for the formation of fibrous caps and
thus the development of plaques of type Va and higher, their further experimental study and
quantification is key to assess advanced plaques and their susceptibility to rupture.

The quantification of the various fates of macrophages and the role of SMCs, and their subsequent
incorporation in the proposed multiscale model have the ability to significantly increase the
knowledge of atherosclerosis and might help to reduce social and economic burdens arising from
this burgeoning disease.
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A Proof of Proposition 1

In the following Proposition 1 from Section 5.2.2 is proved. To prove the positivity of `, i.e.,
`(t) ≥ 0 ∀t ≥ 0 it is sufficient to note that `(0) = 0 and that `(t) = 0 implies

d

dt
`(t)

(5.6)
=

r`
H
> 0, (A.1)

due to the strict positivity of the parameters. The positivities of h,m and ˜̀are proved in an analog
fashion. Since f(0)

m(0)
= f0 ≥ fMin and f(t)

m(t)
= fMin implies

d

dt

(
f(t)

m(t)

)
=

d
dt
f(t)− f(t)

m(t)
d
dt
m(t)

m(t)

(5.6)
≥

rm
H
fIn − fMin

rm
H

m(t)
≥0, (A.2)

it holds f(t)
m(t)
≥ fMin ∀t ≥ 0. This also implies the positivity of f . Given that f(0)

m(0)
= f0 < fMax

and that f(t)
m(t)
→ fMax implies

d

dt

(
f(t)

m(t)

)
=

d
dt
f(t)− f(t)

m(t)
d
dt
m(t)

m(t)
−→−∞, (A.3)

it follows f(t)
m(t)
≤ fMax ∀t ≥ 0. Hence, it is concluded that

f(t)

m(t)
∈ [fMin, fMax] ∀t ≥ 0. (A.4)

The positivity of b follows since b(0) = 0 and b(t) = 0 implies

d

dt
b(t)

(5.6)
= kf

(f(t)− fMinm)2

fMaxm− f(t)

(A.4)
≥ 0 (A.5)

which finishes the proof of (a). (It also follows that the time-dependent solution (`(t), ˜̀(t), h(t),
f(t), b(t),m(t)), t ≥ 0 of the initial value problem is unique and smooth because the smoothness
of the right-hand side of the ODE (5.6) is now straightforward to show.)

Using (A.4)

d

dt
m(t)

(5.6),(A.4)
≥ −µm

(fMax)nm

(ξm)nm + (fMax)nm︸ ︷︷ ︸
=:zMax

m+
rm
H

(A.6)
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holds, and by solving this ordinary differential inequality with associated initial condition
m(0) = m0 it follows

m(t)
(A.6)
≥ m0 exp (−zMaxt) +

rm
HzMax

(1− exp (−zMaxt))

≥ min

(
m0,

rm
HzMax

)
(5.7),fMax>f0

=
rm

HzMax

=
rm
H

(ξm)nm + (fMax)nm

µm(fMax)nm
∀t ≥ 0.

(A.7)

In an analog manner, the upper bound for m(t) is found, leading to

m(t) ∈
[
rm
H

(ξm)nm + (fMax)nm

µm(fMax)nm︸ ︷︷ ︸
=:mMin

,
rm
H

(ξm)nm + (fMin)nm

µm(fMin)nm︸ ︷︷ ︸
=:mMax

]
∀t ≥ 0 (A.8)

which finishes the proof of (b).

The boundedness of `(t) is given by

d

dt
`(t)

(5.6),(A.8)
≤ −

(
q`,mmMin +

q`,e
H

)
`(t) +

r`
H

(A.9)

since the solution of the ordinary differential inequality (with associated initial condition `(0) = 0)
is bounded by

`(t)
(A.9)
≤ r`
Hq`,mmMin + q`,e

(
1− exp

(
−
(
q`,mmMin +

q`,e
H

)
t
))

≤ r`
Hq`,mmMin + q`,e︸ ︷︷ ︸

`Max

<∞. (A.10)

In an analog manner, the boundedness of h(t) is proved. The boundedness of ˜̀(t) under the
condition r`

H
< µ˜̀mMin is shown by a proof by contradiction. Hence, let ˜̀(t) be unbounded, i.e.,

˜̀(t)→∞ as t→∞ and r`
H
< µ˜̀mMin. It follows

d

dt
˜̀(t)

(5.6),(A.10)
≤ (−µ˜̀ + q`,m`Max)︸ ︷︷ ︸

<0, since
r`
H
<µ˜̀mMin

m(t) +
q`,e
H
`Max

(A.8)
≤ −µ˜̀mMin + q`,m`MaxmMin +

q`,e
H
`Max = −µ˜̀mMin +

r`
H
< 0

(A.11)

which is in contradiction to the assumed unboundedness of ˜̀(t). Hence, this finishes the proof of
Proposition 1.

�
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B Extended combined model and
Proposition 2

The extended combined model introduced in Section 6.2.2 consists of the combined model from
Section 5.1.2 enriched by the submodels 5 and 6 from Sections 6.1.1.2 and 6.1.1.3. Altogether,
the extended combined model reads

d

dt
`(t) =− µ`

`n`

(ξ`)
n` + `n`

m−
(
q`,m`m+

q`,e
H
`
)
· (kh)

nh

(kh)
nh + hnh

+
r`(`, ‖τ‖)

H
,

d

dt
˜̀(t) =− µ˜̀

˜̀n˜̀

(ξ˜̀)
n˜̀ + ˜̀n˜̀

m+
(
q`,m`m+

q`,e
H
`
)
· (kh)

nh

(kh)
nh + hnh

+
r˜̀(˜̀, ‖τ‖)

H
,

d

dt
h(t) =− qh,mhm−

qh,e
H
h+

rh(h, ‖τ‖)
H

,

d

dt
f(t) = +Nfµ`

`n`

(ξ`)
n` + `n`

m+Nfµ˜̀

˜̀n˜̀

(ξ˜̀)
n˜̀ + ˜̀n˜̀

m− kf
(f − fMinm)2

fMaxm− f

+ kbb− µf
hnf

(ξf )
nf + hnf

(f − fMinm) +
rm

(
˜̀, ‖τ‖

)

H
fIn,

d

dt
b(t) = + kf

(f − fMinm)2

fMaxm− f
− kbb,

d

dt
m(t) =− µm

fnm

(ξmm)nm + fnm
m+
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(
˜̀, ‖τ‖

)

H
,

(B.1)

where

r` (`, ‖τ‖) = P`sP (‖τ‖) (η` − `) + (1− σF,`) (ω`η` + (1− ω`)`) JVol(p, ‖τ‖),
r˜̀(˜̀, ‖τ‖) = −P˜̀sP (‖τ‖) ˜̀+ (1− σF,˜̀)(1− ω˜̀)˜̀JVol(p, ‖τ‖),
rh (h, ‖τ‖) = PhsP (‖τ‖) (ηh − h) + (1− σF,h) (ωhηh + (1− ωh)h) JVol(p, ‖τ‖),

rm(˜̀, ‖τ‖) = Pm

(
1− δm

km

km + ˜̀

)
(ξτ )

ντ

(ξτ )
ντ + ‖τ‖ντ , (B.2)

JVol(p, ‖τ‖) = LpsL(‖τ‖) (ηp − p) ,

sP (‖τ‖) =
1

ln(2)
ln

(
1 + ζτ

γτ
‖τ‖+ γτ

)
,

sL(‖τ‖) = γp ln (µp‖τ‖+ ξp) .
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Initial conditions similar to the combined model are employed

`(0) = 0, ˜̀(0) = ˜̀
0, h(0) = 0, f(0) = f0m0,

b(0) = b0m0, m(0) = m0,
(B.3)

where

m0 =
rm

(
˜̀
0, ‖τ‖

)

H

(ξm)nm + (f0)nm

µm(f0)nm
,

b0 =
kf
kb

(f0 − fMin)2

fMax − f0

.

(B.4)

Proposition 2. Let `(t), ˜̀(t), h(t), f(t), b(t),m(t) (t ≥ 0) be the unique and smooth solution
of the initial value problem defined by Equations (B.1), (B.2), (B.3) and (B.4) with strictly
positive parameters fulfilling (1 − σF,i)(1 − ωi)JVol(p, ‖τ‖) ≤ PisP(‖τ‖), 0 ≤ ωi ≤ 1,
0 ≤ σF,i ≤ 1 (∀i = `, ˜̀, h), 0 ≤ p ≤ ηp, fMin ≤ fIn < fMax and fMin ≤ f0 < fMax. Then
the solution satisfies:

(A) `(t), ˜̀(t), h(t), f(t), b(t),m(t) ≥ 0 for all t ≥ 0.

(B) m(t) ∈
[
Pm (1− δm)

H

(ξτ )
ντ

(ξτ )
ντ + ‖τ‖ντ

(ξm)nm + (fMax)nm

µm(fMax)nm︸ ︷︷ ︸
=m′Min

,

Pm
H

(ξτ )
ντ

(ξτ )
ντ + ‖τ‖ντ

(ξm)nm + (fMin)nm

µm(fMin)nm︸ ︷︷ ︸
=m′Max

]
and

f(t)
m(t)
∈ [fMin, fMax] for all t ≥ 0.

(C) `(t), ˜̀(t), h(t), f(t),m(t) are bounded.

Proof. The proof of Proposition 2 is similar to the proof of Proposition 1 given in Appendix A.
First, it follows from ηp ≥ p that

JVol(p, ‖τ‖) (B.2)
= LpsL(‖τ‖) (ηp − p) ≥ 0. (B.5)

To prove the positivity of `, i.e., `(t) ≥ 0 ∀t ≥ 0 it is sufficient to note that `(0) = 0 and that
`(t) = 0 implies

d

dt
`(t)

(B.1)
=

P`sP (‖τ‖) η` + (1− σF,`)ω`η`JVol(p, ‖τ‖)
H

(B.5),1≥σF,`

> 0, (B.6)

due to the strict positivity of the parameters. The positivities of h,m and ˜̀are proved in an analog
fashion. Since f(0)

m(0)
= f0 ≥ fMin and f(t)

m(t)
= fMin implies

d

dt

(
f(t)

m(t)

)
=

d
dt
f(t)− f(t)

m(t)
d
dt
m(t)

m(t)

(B.1)
≥

rm(˜̀(t),‖τ‖)
H

fIn − fMin
rm(˜̀(t),‖τ‖)

H

m(t)
≥0, (B.7)
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it holds f(t)
m(t)
≥ fMin ∀t ≥ 0. This also implies the positivity of f . Given that f(0)

m(0)
= f0 < fMax

and that f(t)
m(t)
→ fMax implies

d

dt

(
f(t)

m(t)

)
=

d
dt
f(t)− f(t)

m(t)
d
dt
m(t)

m(t)
−→−∞, (B.8)

it follows f(t)
m(t)
≤ fMax ∀t ≥ 0. Hence, it is concluded that

f(t)

m(t)
∈ [fMin, fMax] ∀t ≥ 0. (B.9)

The positivity of b follows since b(0) = 0 and b(t) = 0 implies

d

dt
b(t)

(B.1)
= kf

(f(t)− fMinm)2

fMaxm− f(t)

(B.9)
≥ 0 (B.10)

which finishes the proof of (A). (It also follows that the time-dependent solution (`(t), ˜̀(t), h(t),
f(t), b(t),m(t)), t ≥ 0 of the initial value problem is unique and smooth because the smoothness
of the right-hand side of the ODE (B.1) is now straightforward to show.)

Using (B.9)

d

dt
m(t)

(B.1),(B.9)
≥ −µm

(fMax)nm

(ξm)nm + (fMax)nm︸ ︷︷ ︸
=:zMax

m+
rm(˜̀(t), ‖τ‖)

H

(B.2)
≥ −zMaxm+

rm(0, ‖τ‖)
H

(B.11)

holds, and by solving this ordinary differential inequality with associated initial condition
m(0) = m0 it follows

m(t)
(B.11)
≥ m0 exp (−zMaxt) +

rm(0, ‖τ‖)
HzMax

(1− exp (−zMaxt))

≥ min

(
m0,

rm(0, ‖τ‖)
HzMax

)
(B.4),fMax>f0

=
rm(0, ‖τ‖)
HzMax

=
rm(0, ‖τ‖)

H

(ξm)nm + (fMax)nm

µm(fMax)nm
∀t ≥ 0.

(B.12)

In an analog manner, the upper bound for m(t) is found, leading to

m(t) ∈
[
rm(0, ‖τ‖)

H

(ξm)nm + (fMax)nm

µm(fMax)nm︸ ︷︷ ︸
=:m′Min

,
rm(∞, ‖τ‖)

H

(ξm)nm + (fMin)nm

µm(fMin)nm︸ ︷︷ ︸
=:m′Max

]
∀t ≥ 0 (B.13)

which finishes the proof of (B).
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B Extended combined model and Proposition 2

Due to (1− σF,`)(1− ω`)JVol(p, ‖τ‖) ≤ P`sP(‖τ‖), the boundedness of `(t) is given by

d

dt
`(t)

(B.1),(B.13)
≤ −

(
q`,mmMin +

q`,e
H

)
`(t) +

r` (`, ‖τ‖)
H

(B.2)
= −

(
q`,mmMin +

q`,e
H

)
`(t) + (P`sP (‖τ‖) + (1− σF,`)ω`JVol(p, ‖τ‖))

η`
H

+ (−P`sP (‖τ‖) + (1− σF,`)(1− ω`)JVol(p, ‖τ‖))︸ ︷︷ ︸
≤0

`(t)

H

≤−
(
q`,mmMin +

q`,e
H

)
`(t) + (P`sP (‖τ‖) + (1− σF,`)ω`JVol(p, ‖τ‖))

η`
H

(B.14)

since the solution of the ordinary differential inequality (with associated initial condition `(0) = 0)
is bounded by

`(t)
(B.14)
≤ (P`sP (‖τ‖) + (1− σF,`)ω`JVol(p, ‖τ‖)) η`

Hq`,mmMin + q`,e

(
1− exp

(
−
(
q`,mmMin +

q`,e
H

)
t
))

≤(P`sP (‖τ‖) + (1− σF,`)ω`JVol(p, ‖τ‖)) η`
Hq`,mmMin + q`,e

<∞. (B.15)

In an analog manner, the boundedness of ˜̀(t) and h(t) are proved which finishes the proof of
Proposition 2.

�
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[150] T. Klöppel, A. Popp, U. Küttler, and W. A. Wall, Fluid–structure interaction for non-
conforming interfaces based on a dual mortar formulation, Computer Methods in Applied
Mechanics and Engineering 200, 3111–3126, 2011.

[151] A. Kontush and M. J. Chapman, Functionally defective high-density lipoprotein: a new
therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis,
Pharmacological Reviews 58, 342–374, 2006.

[152] N. Koshiba, J. Ando, X. Chen, and T. Hisada, Multiphysics simulation of blood flow
and LDL transport in a porohyperelastic arterial wall model, Journal of Biomechanical
Engineering 129, 374–385, 2007.

[153] R. Krause and P. Zulian, A parallel approach to the variational transfer of discrete fields be-
tween arbitrarily distributed unstructured finite element meshes, SIAM Journal on Scientific
Computing 38, C307–C333, 2016.

[154] D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Glagov, Pulsatile flow and atherosclerosis
in the human carotid bifurcation. positive correlation between plaque location and low
oscillating shear stress, Arteriosclerosis, Thrombosis, and Vascular Biology 5, 293–302,
1985.

[155] E. Kuhl, R. Maas, G. Himpel, and A. Menzel, Computational modeling of arterial wall
growth, Biomechanics and Modeling in Mechanobiology 6, 321–331, 2007.

178



Bibliography

[156] V. V. Kunjathoor, M. Febbraio, E. A. Podrez, K. J. Moore, L. Andersson, S. Koehn, J. S.
Rhee, R. Silverstein, H. F. Hoff, and M. W. Freeman, Scavenger receptors class AI/II
and CD36 are the principal receptors responsible for the uptake of modified low density
lipoprotein leading to lipid loading in macrophages, Journal of Biological Chemistry 277,
49982–49988, 2002.
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