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Abstract

Human-robot interaction is a wide area of research which exploits complementary competences of humans
and robots. Humans are capable of reasoning and planning, while robots are capable of performing tasks
repetitively and precisely. Rapid developments in robotics and reduction of cost lead to an increased re-
search interest in the area of robot teams and human-robot team interaction. One of the key research
questions is how to combine human and robot team decision making and task execution capabilities, i.e.
how control should be shared among them. This paper surveys advances in human-robot team interaction
with special attention devoted to control sharing methodologies. Additionally, aspects affecting the control
sharing design, such as robot team and human behavior modeling, level of autonomy and human-machine
interfaces are identified. Open problems and future research directions towards joint decision making and
task execution in human-robot teams are discussed.
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1. Introduction

Human-robot team interaction describes the in-
teraction between a human and multiple robots,
which collaborate to achieve a common goal. Its en-
visioned benefits are superior performance in highly
unstructured tasks in unknown and/or remote en-
vironments, reduced human workload, execution of
tasks which are not possible with a single robot,
flexibility in task execution, and robustness. Ap-
plication domains of human-robot team interaction
include for example: search and rescue [57], cooper-
ative manipulation [63], collaborative manufactur-
ing, logistics, and construction.
Rapid technological developments in the area of au-
tonomous robotics result in large improvements of
robots’ reliability and adaptability to unknown en-
vironments. With these developments the nature of
human-robot interaction changes, as robots become
smart tools to humans, or even their collaborative
partners.
Reduction of price, size, and operational complex-
ity considerably increases the availability of mod-
ern robots, while the advancements in communica-
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tion technology allow a seamless information ex-
change between them. These developments are
enablers for multi-robot systems. They provide in-
creased flexibility and robustness and are capable
to conduct more complex tasks then single-robot
systems [90].
Even though the capabilities of modern robots are
enhanced, they still need human intervention in
the form of high-level reasoning and planning. As
a consequence, novel forms of human-robot inter-
action beyond single-human-single-robot have be-
come a current and important topic of research:
multiple humans-single robot interaction [73], mul-
tiple humans-multiple robots interaction [43], and
single human-multiple robots interaction [26].

The main scientific challenge of human-robot
team interaction is to fuse the cognitive capabili-
ties of the human and the autonomous capabilities
of the robot team, while maximizing task perfor-
mance and intuitiveness of the interaction. This
leads to the consideration of suitable levels of au-
tonomy, control sharing and human cognitive and
behavioral aspects in the interaction design.
The aim of this article is to provide a survey on
the existing literature on human-robot team inter-
action with the special focus on its control sharing
aspects. The overview of the article structure is
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provided with the block scheme in Figure 1. We
review relevant literature considering important re-
search challenges for each component of the shared
control loop for human-robot team interaction.

2. Robot team and human aspects in the in-
teraction

In this section we briefly review modeling and
control approaches for robot teams and human be-
havior modeling.

2.1. Modeling and control of robot teams

This subsection focuses on the modeling and con-
trol concepts for robot teams, which are suitable
and/or used in human-robot team interaction. Ex-
tensive reviews on multi-robot systems in general
are, among many [33], [39], [47] and [79].
In this article the term robot team refers to a multi-
robot system which cooperates to perform a global
task. Robot teams can be a set of mobile manipula-
tors [108], wheeled robots [27], UAVs [56]. A swarm
is considered as a type of robot team which con-
tains relatively large number of ”simple” and ho-
mogeneous robots. There are also heterogeneous
cooperative multi-robot systems, which we here in-
clude under the term robot teams as well.
Depending on the coupling between the individ-
ual robots, robot teams can be uncoupled, loosely
coupled or tightly coupled (e.g. through physical
constraints) systems. Uncoupled and loosely cou-
pled robot teams are modeled as a set of differen-
tial equations describing the models of individual
robots. Most frequently used models are:

• Kinematic (single integrator) model [111]:

ẋi = ui i = 1, ..., N, (1)

where xi ∈ Rn is the pose of the i-th robot, ui ∈
Rn its control input, and N the number of robots.

• Point mass (double integrator) model [71]:

ẍi =
1

mi
ui, (2)

where mi is the mass of the ith robot.

• Euler-Lagrange model [81]:

Mi(qi)q̈i + c(qi, q̇i) + gi(qi) = τ i, (3)

where qi ∈ Rn is the vector of generalized co-
ordinates, M i(qi) ∈ Rn×n is the inertia matrix,
c(xi, ẋi) ∈ Rn the vector of Coriolis and cen-
trifugal forces, gi(xi) ∈ Rn the vector of gravita-
tional forces, and τ i ∈ Rn is the vector of control
torques.

• State-space model:

ẋi = f i(xi,ui) (4)

where f i ∈ Rn is a smooth vector field represent-
ing the dynamics of the robot.

For tightly coupled robot teams it is necessary to
model the physical interactions between the in-
dividual robots, for example see [37]. Together
with continuous states, a discrete state, termed as
role [79], can be assigned to each robot in the team.
The role can refer to a set of responsabilities or ca-
pabilities a robot has within the team [116], and
is particularly relevant for heterogeneous teams.
Roles can also determine to what extent the indi-
vidual robots are capable of making decisions. Ex-
amples are leader and follower roles, where a leader
does not use information of other robots to make a
decision, while a follower considers the information
of other robots to make its decision.

2.1.1. Control of robot teams

Control architectures for robot teams largely de-
pend on the way in which robots interact to achieve
team behaviors. In this context, it is possible to dis-
tinguish between centralized and distributed control
approaches. Centralized control architectures com-
mand the team from a single point (e.g. through
the robot leader). Therefore, they have a single
point of failure. Distributed control architectures
run locally on the robots and communicate between
themselves. Achieving team behaviors is more chal-
lenging in this case, but the reliability is higher. For
human-robot team interaction, a combination of
centralized (through the human involvement) and

2



Subtask layer

Task layer

Action layer

Robot team

Planning layer

...

Planners Planners

Figure 2: Hierarchical control architecture for robot teams.
Goal of the robot team is determined and monitored in
the task layer. Based on the goal, a set of global and local
behaviors are activated in the subtask layer. The outputs of
this layer are control inputs for the low-level controllers of
robots in the action layer.

distributed (between the robots) control is the most
suitable.
An illustration of a control architecture for robot
teams, which can be extended to the human-robot
team interaction, is depicted with Figure 2. It is
possible to distinguish between 6 layers within the
architecture: task, planning, subtask, action, robot
teams and interaction layers. The planning layer is
not treated in this article.
The knowledge about the goal (task, mission) is
stored within the task layer. Often the task is de-
fined as a performance function [79]:

J =

∫ T

0

L(x,α,u)dt+ V (x(T ),α(T )) (5)

where L and V are incremental and terminal costs,
respectively. Continuous states of the robots, xi,
are stacked in the vector x ∈ RnN , discrete states
(roles) are denoted by α, the control inputs are
u = γ(x,α) with γ being a smooth vector field,
while T is the time horizon in which the task should
be accomplished.

The elementary behaviors or subtasks are stored
within the subtask layer. We consider that global
behaviors require information exchange between
the robots, and local require only the local infor-
mation of a robot. Some of the global behav-
iors are rendezvous, aggregation, foraging, coopera-
tive manipulation, formation, coverage, inter-robot
avoidance, etc. An important local behavior is ob-
stacle avoidance.
Rendezvous describes a behavior in which the
robots meet at a common point at a common
time [79]. Foraging refers to a behavior of collecting
and delivering an object. Formation refers to the
maintenance of robot poses relative to each other
or to a reference [34], [35], [66]. Coverage refers to
the use of the team to cover and visit areas of an
environment for information acquisiton [23]. Com-
binations of these, elementary behaviors, can define
different missions. For example, flocking incorpo-
rates aggregation and avoidance as a set of neces-
sary behaviors [84].
Global behaviors are achieved through cooperation.
Coordination control approaches from the area of
multi-agent systems are suitable for accomplishing
global behaviors by exchanging individual state in-
formation through the network of agents (robots)
to reach a common agreement/consensus [85]. For
example, in order to accomplish a rendezvous be-
havior, the robots need to perform consensus on
the position. The idea behind the consensus con-
trol is that each robot moves towards the weighted
average of the states of its neighbors. Communica-
tion topology of the robot team is frequently mod-
eled with graphs [40]. Robustness towards topol-
ogy changes and communication uncertainties such
as packet loss and time delay are important con-
trol challenges. There are multiple other control
approaches that are used for cooperation of robot
teams, e.g. artifical potential functions [66], Lya-
punov analysis [85], sliding mode control [46], be-
havioral control [4], virtual structures [67], to name
the few.
Nowadays, robot teams need to operate in dynamic,
unstructured environments. Therefore, for a suc-
cessfull execution of the task, multiple subtasks
need to be performed simultaneously. In order to
achieve this, a behavior-based control approach is
suitable [7]. It is designed by defining and weight-
ing the elementary behaviors. Subtasks are defined
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as transformations of the system states

xti = f ti(x)

ẋti = J ti(x)ẋ
(6)

where xti are the coordinates of the subtask ti
and J ti(x) is the corresponding subtask Jacobian.
Therefore, behavioral control defines global and lo-
cal behaviors as subtask functions.

Example 2.1. In order to manipulate a common
object in R2 from an initial to a final configuration,
a team of robot manipulators needs to collectively
move to a desired location, while maintaining a fixed
formation. Therefore, we can define two subtask
functions

em(x) =
1

N
ΣNi=1xi − xdm,

ef (x) =

 (x2 − x1)T − dd12
...

(xN − xN−1)− dd(N−1)N

 , (7)

where xdm is the desired mean position of the robot
team and dd(i−1)i is the desired distance between
robots i− 1 and i.

A behavioral control approach that ensures sub-
tasks are conducted according to a predefined pri-
ority is termed as Null-space based behavioral con-
trol [4]. A common approach is to project lower
priority subtasks onto the null-space of the higher
priority subtask. For example, in the case of 2 sub-
tasks, the control input ẋd would be:

ẋd = J†t1xt1 + (I − J†t1J t1)J†t2xt2 , (8)

where (I−J†t1J t1) is the null-space projector. How-
ever, the approach is kinematic, which makes it
unsuitable for the control of dynamic behaviors
(e.g. when the inertia of the team cannot be ne-
glected). Additionally, interaction with the envi-
ronment (e.g. with objects or humans) cannot be
handled appropriately.
Allocation of responsibilities to the individual
robots, according to the selected subtasks, and the
role they have within the team is an important step
and can be handled in various ways, see for exam-
ple [49] and [117].
In order to exploit human capabilities within the
control architecture for robot teams, it is necessary
to assign a role to the human, understand behaviors
and constraints of the human in the interaction, and

Task layer

Human 

supervisor

Figure 3: Possible human roles within the robot team control
architecture.

how the control approaches for robot teams need
to be extended towards human-robot team interac-
tion.

2.2. Human behavior modeling

The human is an element of the control loop in
human-robot team interaction, see Figure 5. Based
on the team states, delivered through a feedback
interface, the human performs an action, mapped
into a command for the robot team through the
command interface.
In order to establish the human-robot team interac-
tion, the concepts introduced in Subsection 2.1 need
to be extended to the human by assigning him/her
an appropriate role. We distinguish between su-
pervisory and active human role [18], depicted in
Figure 3.
A supervisory role brings human on the loop and
considers the interaction on a symbolic and discrete
level. The human supervisor is located on the task
layer. Therefore, the human is aware of the overall
goal and is capable of modifying it. The respon-
sibilities of the supervisor are to select global and
local behaviors and intervene when necessary.

An active role brings human in the control loop
with the robot team and considers their interaction
on a physical and continuous level [64]. Active role
can be exhibited in the form of the human opera-
tor which provides control inputs to the subtask or
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action layers, or it can be exhibited by including
human in the team.
Very frequently the human behavior in the inter-
action is not modeled. Instead, assumptions are
imposed on the human expertise in both roles and
on human passivity in the active role, e.g. [104].
An appropriate human model can predict under
which conditions the human exhibits bad perfor-
mance or instability, and may be beneficial in the
design of appropriate control sharing. With the
increase of robot team capabilities, human cogni-
tive models are needed. Relevant models and con-
straints on the human behavior in the interaction
are found within the area of cognitive psychology.
These models can provide valuable insight, but need
to be transformed into the form suitable for systems
and control analysis.
Very often the human supervisor is modeled by
a Markov model. In [110], a Markov model is ob-
tained from the neurally inspired cognitive model.
It predicts the human decision when choosing be-
tween two global behaviors of the swarm, Deploy
(D) or Rendezvous (R). The probability of transi-
tion from one behavior to another is proposed as

psi→sj =
csi→sj

Σst∈{D,R}csi→sj
, (9)

where si, sj ∈ {D,R} are two possibilities of the
team behavior, and csi→sj is the number of tran-
sitions from si to sj obtained during the training
of the Markov model. The prediction of the next
chosen behavior is obtained with

si+1 = arg max
x∈{D,R}

psi→x. (10)

Models that can capture the dynamics of the de-
cision making are termed as accumulator mod-
els [91]. They are suitable for modeling the hu-
man decision-making behavior in the supervisory
as well as the active role. The accumulator models
are typically used for two-alternative forced-choice
tasks (TAFCTs).
The authors of [45] formulate an extended decision
field theory (EDFT) model to represent multiple se-
quential decisions in human-automation interaction
with supervisory role. The preference in two-forced
choice tasks at sample n is proposed as:

P (n) = (1− s)P (n− 1) + sd+ ε(n) (11)

where s determines the influence of the previous
preference state, P (n − 1), d is the subjective ex-
pected payoff and ε is the residual (produced by

fluctuations in attention).
In human-robot team interaction this model can be
used to model the reliance of the human on the
robot team autonomy. The reliance is determined
by trust of the human in the autonomy and by self-
confidence of the human in his/her manual control.
Therefore, the two alternatives are modeled as the
human preference for autonomous or manual con-
trol.
Trust in autonomy is the attitude that an agent
will help achieve an individual’s goals in a situ-
ation characterized by uncertainty [65]. Overtrust
and undertrust in autonomy can cause overre-
liance (misuse) and underutilization (disuse), re-
spectively [88]. A review on human trust in auton-
omy is provided in [65]. Based on (11), trust and
self-confidence are estimated as [45]

T (n) = (1− s)T (n− 1) + sdca(n) + ε(n)

SC(n) = (1− s)SC(n− 1) + sdcm(n) + ε(n),
(12)

where T and SC correspond to trust and self-
confidence, while dca and dcm are subjective ex-
pected payoffs if the task is automated and if it is
manual, respectively. The reliance is computed as
the preference P (n) = T (n)− SC(n). Therefore, it
depends on the dynamical interaction between the
trust and the self-confidence.
Another accumulator model, proposed in [107] for
the human-robot team interaction, uses a stochas-
tic soft-max choice model that emerges from a drift-
diffusion (DD) model. The probability that the the
human operator will choose option A is defined as
a sigmoidal function:

pA(t+ 1) =
1

1 + e−µd(t)
(13)

where µ represents the slope of the sigmoidal func-
tion. The probability (13) can be represented with
a drift-diffusion model:

dz = αdt+ σdW, z(0) = 0, (14)

where z represents the accumulated evidence in fa-
vor of a candidate choice, α is a drift rate represent-
ing the signal intensity of the stimulus, and σW is
a Wiener process with standard deviation σ.
The authors of [54] use black-box methods to iden-
tify human decision-making behavior in the active
role of commanding a swarm. Obtained, linear
time-invariant (LTI) system, reveals that the hu-
man decision-making process is not passive in the
high-frequency range.

5



2.2.1. Constraints on human modeling

Important constraints that affect the human-
robot team interaction are human workload and sit-
uational awareness [18].
The mental workload is the extent to which a
task places demands on the human’s cognitive re-
sources [100]. The workload increases significantly
if the human operator interacts with the individual
robots within the team [17]. This corresponds to
the interaction on the action layer. Authors of [51]
propose that the maximum number of homogeneous
and uncoupled robots a single human can manage
is determined by the fan out (FO) expression

FO =
NT

IT
+ 1, (15)

where NT is the neglect time allowed and IT the
interaction time required for each robot.
Workload can be reduced by increasing the au-
tonomous capabilities of the robot team, and by
establishing the interaction through the subtask
layer.
However, with the increase of the robot team au-
tonomy, situational awareness (SA) [36] of the hu-
man degrades, reducing human apprehension of
the robot team states. It has been shown that if
the robot team is involved in the decision-making,
the situational awareness is negatively affected [87].
Therefore, the higher the support from the robot
team, the greater the risk from complacency, im-
paired situational awareness and skill degradation.
True danger from these effects can occur when the
automation fails and the human does not react, has
a delayed response or does not have the skill to re-
act properly [86]. Situational awareness can be im-
proved with a suitable interface design.

Important research questions are how can the un-
derstanding of the human behavior and constraints
aid in the control sharing design and to what extent
can the team be included in the decision-making
process without inducing negative impact on the
human behavior. Furthermore, if the robot team
performs multiple subtasks simultaneously, the hu-
man can also exhibit multitasking behavior during
the interaction. An additional research challenge
is to use multitasking decision-making models [91],
for the purpose of designing a suitable control ar-
chitecture for human-robot team interaction.

3. Interaction aspects for human-robot
teams

In this section we consider possible interaction
paradigms between a human and a robotic team in
terms of levels of autonomy, allocation of respon-
sibilities and handling multiple subtasks. Further-
more, we provide a review of the interfaces used in
this type of interaction.

3.1. Interaction paradigms

The approach we take in reviewing types of inter-
action for human-robot teams is motivated by the
degree to which the robot team can perform func-
tions autonomously and by the roles the human and
the robot team undertake in the interaction. These
roles are majorly influenced by the levels of robot
autonomy [53]. The concept of levels of autonomy
(LOAs) is introduced in the area of human-machine
interaction (HMI):

Definition 3.1. Levels of autonomy are a design
aspect that defines which functions should be au-
tonomous and which should be managed by the hu-
man [101].

The early research proposes fixed number of dis-
cretized levels of autonomy between no autonomy
and full autonomy. For example, Sheridan proposes
10 levels of automation in [101], see Table 1. The
concept has been extended to the levels of auton-
omy for each information-processing system func-
tion: information acquisition, information analysis,
decision and action selection, and action implemen-
tation. For example, high level of autonomy is de-
sirable for information acquisition and information
analysis functions, but not for decision making as
it causes human skill degradation, complacency and
poor situational awareness [89]. Therefore, it is nec-
essary to allow the human to provide commands
to the robot team. An important question is to
what extent can we include the robot team in the
decision-making process.
The concept of levels of autonomy has been con-
sidered for human-robot team interaction as well.
Each function of the robot team or each robot can
have a level of autonomy. In [21] a concept of au-
tonomy spectrum is proposed for human-robot team
interaction. An example of the autonomy spec-
trum is depicted with Figure 4. It is a graphical
representation of operating modes (depicted with
nodes), with levels of autonomy and functions to be
executed along vertical and horizontal graph axes,
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1 The human executes all actions.
2 The computer offers complete set of action

alternatives.
3 The computer offers a selection of action

alternatives.
4 The computer suggests one alternative.
5 The computer executes an action au-

tonomously if the human approves.
6 The computer allows the human a re-

stricted time to veto before automatic ex-
ecution.

7 The computer executes an action and in-
forms the human.

8 The computer executes an action and in-
forms the human if asked.

9 The computer executes an action and in-
forms the human if it decides to.

10 The computer executes all actions au-
tonomously.

Table 1: 10 levels of autonomy by Sheridan [101].

respectively. The authors use 10 levels of auton-
omy, proposed in [101]. The approach allows to de-
termine several operating modes for each function,
and to combine them (depicted with lines). This
method emphasizes the importance of having mul-
tiple operating modes during the task execution.
Another important property that needs to be en-
sured for interaction modes is smooth and seamless
transition, termed as sliding scale autonomy [98].
In [70] a sliding autonomy approach is proposed for
robot swarms.

In [80] interaction paradigms are introduced for
human-robot team interaction through the subtask
layer. The authors propose subtask allocation to
the human operator and the autonomous controller
of the robot team according to the available levels
of autonomy. Three interaction paradigms are pro-
posed: direct, complementary and overlapping. Di-
rect interaction paradigm is an interaction in which
the human provides commands for all the subtasks.
Complementary interaction paradigm is an interac-
tion in which the human provides input to a set
of subtasks, while the robot team executes the re-
maining subtasks autonomously. Overlapping in-
teraction paradigm is an interaction in which the
inputs from the human and the robot team auton-
omy are blended to perform a common subtask.

If we denote the set of all the subtasks that need
to be conducted within a mission as S, Table 2 dif-

Information

acquisition

Information

analysis
Decision

selection

Action

implementation

10

9

1

7

5

Figure 4: An example representation of the autonomy spec-
trum.

ferentiates between the interaction paradigms and
provides examples. In many applications, especially
the ones that are time-critical, it is necessary to pri-
oritize subtasks. The authors of [87] propose to de-
sign an automation matrix which contains weights
(representing subtask importance, expected work-
load and other factors) that are used to prioritize
subtasks and determine which of them should be
automated. It can be used to allocate responsibil-
ity within the interaction and fuse control inputs
from the human and the robot team.
However, the priority between subtasks is, so far,
determined in advance and cannot dynamically
change during the task execution.

3.2. Interfaces for human-robot team interaction

Main challenges in the interface design for
human-robot interaction are to decide on the suit-
able command and feedback information and how
to represent them appropriately. According to [18],
the interface needs to ensure the human under-
stands intentions and behaviors of the robots and
the environment. Furthermore, it needs to ap-
propriately allocate human attention to important
events and ensure the decision authority of the hu-
man. Overall, the interface for human-automation
interaction needs to be determined by: purpose (de-
gree to which the automation is used w.r.t. the de-
signer intent), process (if the autonomy level is suit-
able for a given situation) and performance (relia-
bility, predictability and capability).

3.2.1. Command interfaces

In the supervisory role, the human typically in-
teracts with the robot team via a graphical user
interface (GUI) (e.g. touch screen [14]). An action
of the human supervisor is mapped into high-level
commands (e.g. setting goals for the robot team
or individual robots, assigning levels of autonomy,
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Interaction Human Robot team
paradigms responsibilities responsibilities Examples

Direct S ∅ Teleoperation
Complementary Sh ⊂ S Sa ⊂ S, Sh ∩ Sa = ∅ Semi-autonomy

Overlapping Sh ⊂ S Sa ⊂ S, Sh ∩ Sa 6= ∅ Mixed-initiative

Autonomy

Table 2: Properties of the interaction paradigms.

interference in the case of events, etc.). In the ac-
tive role, the human provides physical commands
(e.g. motion and/or force commands), typically via
a haptic device, e.g. a master robot in teleoperation
scenarios [64].
Human-robot team interaction is asymmetric, as
the robot team typically has more degrees of free-
dom than the human. So far, the challenge of in-
teracting intuitively with highly redundant systems
has been tackled for specific application examples
only. The research output indicates that the in-
teraction with the robot team through global be-
haviors in the subtask layer of Figure 2 is suit-
able, as it reduces the dimensionality of command
and feedback information [81]. For example, in or-
der to command a formation behavior, instead of
commanding relative distances between individual
robots, the human operator can command change
of the formation shape using the concept of virtual
deformable volumes [2], [29].
From the perspective of control theory, the control-
lability property of the system can aid in the inter-
face design [80]. Knowing the level of system auton-
omy implies which states of the robot team should
be controllable by the human. In order to ensure
controllability of those states, it is necessary to pro-
vide sufficient number of command channels. This
number conditions the command interface that can
be used in the interaction.

3.2.2. Feedback interfaces

The feedback signal in human-robot team inter-
action is typically visual. In the supervisory role,
the human receives feedback via GUI and video.
In [14] the authors show that if the roles of the
human and the robot team are changing during the
task execution, the interface should provide dynam-
ical feedback. In [24] authors distinguish between:
GUI interfaces for visual representation, warning
systems (visual, auditory and haptic) and sugges-
tion systems which propose where the attention
should be allocated. The performance in manag-
ing multiple UAVs individually proved to be the

best with suggestion systems.
In the active role, the human typically receives feed-
back via a haptic device. Usefulness of the hap-
tic feedback in human-robot team interaction has
been confirmed in [83]. Analoguously to the super-
visory role, the feedback of continuously changing
states should be provided to the human in dynam-
ical form. This conclusion has been made through
experimental validation for the control of multiple
UAVs in [30] and [31]. In [1] the authors inves-
tigate haptic human-robot team interaction with
variable formation. The haptic signal informs the
human when the swarm is stretched, compressed
or reshaped. Relative behavior of the individual
robots in the team is a useful feedback information
if robots establish multiple contacts with the envi-
ronment, e.g. in cooperative manipulation tasks. It
is shown that wearable haptic devices are a suitable
interface in this case [81].
In terms of the appropriate feedback, the human
operator should be informed about the states it con-
trols. In that sense, the states which are control-
lable by the human should also be observable. In or-
der to ensure observability of states, it is necessary
to provide sufficient number of feedback channels.
This number conditions the feedback interface that
can be used in the interaction.
Due to complexity of human-robot team interac-
tion, it is no longer sufficient to provide only the
feedback about the system states. It is necessary to
represent activity of the automation as well (e.g. the
change of the autonomy level) and sensitivity to fu-
ture activities (e.g. warnings) [115]. The activity
of automation of multiple UAVs is examined as a
function of interfaces in [106]. The authors show
that the interfaces which allow the human to select
between different autonomy levels reduce switching
costs.
The existing literature shows there are many indi-
vidual studies on the suitable interface design for
specific examples of human-robot team interaction.
However, a systematic control theoretical under-
standing which models the interface as a mapping
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from human action to command signals and from
sensor signals to presented information is still miss-
ing.

4. Shared control for human-robot team col-
laboration

Human-robot team interaction represents a col-
laboration between heterogeneous entities. There-
fore, the responsibilities over the task conduction
are shared, which is accomplished with shared con-
trol approaches. Therefore, we say that the shared
control allows to determine the level of collaboration
between the human and the robot team. It includes
all the control methods between manual and fully
autonomous control.
In this section, existing shared control concepts are
reviewed. First, we review how the responsibil-
ities among the human and the robot team can
be shared. Afterwards, the control theoretical ap-
proaches, found in the literature, are summarized.
Shared control concepts from a broader area of
human-robot interaction are considered if they are
deemed as suitable for human-robot team interac-
tion.

4.1. Collaboration in human-robot team interaction

Collaboration refers to the interaction in which
information, resources and responsabilities are
shared among participants. In [21] the authors dis-
tinguish between control by behavior (human in-
teracts with each each robot in the team individ-
ually) and control by policy (human interacts with
the complete robot team). In the context of Fig-
ure 2, control by behavior referes to the control of
local behaviors by the human, while control by pol-
icy referes to the control of global behaviors by the
human. In the control by policy the local behaviors
are executed autonomosly. Both control approaches
are evaluated in [50]. The authors show that control
by policy is more suitable with increasing number
of agents. In the case of control by behavior lim-
ited interaction intervals can cause inefficient inter-
action and, in the worst case, failures.
Interaction of the human with individual robots
(control by behavior) limits the number of robots
within the team. Naturally, it imposes the great-
est workload and time-related stress on the human
operator [75], [114]. Furthermore, the complexity
of the interaction is of order N , O(N). In order

to obtain complexity O(1), it is necessary to de-
sign autonomous cooperative controller. The re-
duction of complexity can be achieved with the in-
teraction between the human and a single robot,
termed as leader. In this way the human workload is
considerably reduced [99]. However, human-robot
team interaction is not achieved in this way as the
human does not need to understand and act in re-
sponse to the complete team behavior. Such sys-
tems heavily rely on the autonomy of the complete
team, which the human typically cannot manage in
the case of unpredictable situations.
If the human controls the complete robot team,
its team dynamics is managed (control by pol-
icy). This approach enables the human to operate
on higher levels of abstraction [25]. However, the
human is a point of failure of such a system [13].
The solution to this problem is an interaction with
a subset of robots in the team [54].
The results in [11] confirm that humans are capable
of perceiving a robot team as a single unit. In [13]
human collaborates with a robot team at higher
levels of abstraction, termed as attractors. They
represent states of the overall team dynamics (or
its subset). One can also say that attractors are
projections of robots’ states onto the lower dimen-
sional state space or that they abstract from the
individual to the group behavior. They correspond
to the introduced concept of global behaviors. We
provide a simple and intuitive example of global
versus local states.

Example 4.1. The pose of the robot team can rep-
resent one of the team overall states. If poses of N
robots are xi ∈ R2, i = 1, ..., N , the team pose can
be their mean value

x =
1

N
ΣNi=1xi. (16)

The dimensionality of the overall behavior is re-
duced from 2N to 2 and the control objective for
this team can be limt→∞ x(t)→ xh(t), where xh(t)
is the trajectory commanded by the human operator.

Authors of [13] additionally impose the stabil-
ity requirement on the global behaviors. Therefore,
the overall team dynamics is stable. This is an im-
portant requirement for the shared control design
since the human does not need to stabilize the sys-
tem. Furthermore, the control design on the level
of global behaviors is easier in terms of dimension-
ality [58].
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4.2. Shared control approaches

In this subsection control approaches for human-
robot team interaction are reviewed. Typically,
human-robot team interaction is remote and con-
siderable research output treats the problem of
shared control design for teleoperation scenarios.
We classify the methods into the ones suitable for
the complementary interaction paradigm and the
ones suitable for overlapping interaction paradigm.

4.2.1. Shared control for the complementary inter-
action paradigm

Typically, the human is in charge of control-
ling a global subtask of the overall team behav-
ior. The robot team is in charge of cooperating
autonomously [103]. Additionaly, the robots within
the team perform a local subtask of collision avoid-
ance, see e.g. [43] and [92]. However, the authors
do not consider that the desired commands for dif-
ferent behaviors may be in conflict. This causes
unpredictable behaviors of the robot team. Such
situations can be resolved by decoupling the dy-
namics of the overall robot team into the dynamics
for the required behaviors. It can be achieved by
ensuring the autonomous task is uncontrollable to
the human, see e.g. [103] and [80].
Since robot teams are inherently redundant, they
can perform multiple subtasks simultaneously. In
order to avoid conflicts of control inputs, a null-
space based behavioral control, introduced in Sub-
section 2.1 can be applied to define, decouple and
prioritize multiple subtasks. Using double integra-
tor model of the robots within the team, the au-
thors of [69] assign the responsibility over a set of
global behaviors of the team to the human operator.
Those are termed as teleoperated tasks and include
commanding the position of the robot team mean
pose (16) and its variance

fv(q) =
1

N
ΣNi=1(xi − fm(q))2, (17)

where q ∈ RnN is the stacked vector of generalized
coordinates of the robot team.
The subtasks performed by the robot team are dis-
persion, avoidance of obstacles and the other mem-
bers of the team. Within the subtask layer, desired
control inputs for the low-level controllers within
the action layer are computed according to

q̇d = J+
s ẋs + (InN − J+

s Js)ψs, (18)

where Js is the partial derivative of one of the tele-
operated subtasks, while ψs is the sum of partial

derivatives of the autonomous subtasks. In this way
it is ensured that the teleoperated and autonomous
subtasks do not intefere if there are sufficient de-
grees of freedom. If they interfere, the teleoper-
ated subtasks are of a higher priority over the au-
tonomous subtasks. However, the authors do not
prioritize autonomous subtasks. Additionally, the
priority is fixed which is not suitable in the case
of unpredictable events, nor is it possible to allo-
cate teleoperated tasks to the robot team and vice
versa.
The possibility that the robot team interacts and
collides with the environment is not treated exten-
sively in the literature. However, cooperative ma-
nipulation by the robot team in teleoperation sce-
narios provides some insights into the appropriate
control approaches. In [64] energetic passivity is
enforced via passivity-based control. Therefore, the
passivity of the system when interacting with a pas-
sive environment in guaranteed. Another approach
uses impedance control to ensure passivity in inter-
action with environement, see e.g. [3] and [81].
The reviewed approaches are suitable for the active
human role. In the supervisory role, the human
typically behaves as a switch. There are also ap-
proaches in which the human performs both roles.
For example, in [43] the human selects the mode of
interaction while the team of UAVs autonomously
controls its variable topology. The choice can be
made between the global intervention (steering the
centroid of the formation to the goal) or the ocal
intervention (steering a single UAV). In [54] the
human switches manually between two two con-
trollers: the control of the robot team position and
the control of the robot team velocity, and provides
the input commands to the chosen controller.
The drawback of the reviewed approaches is that
the subtask distribution is constant during the task
execution and the level of the robot team autonomy
is fixed. This is problematic as it reduces the flex-
ibility of the interaction. Furthermore, if multiple
subtasks need to be executed, their prioritization is
of the fixed order. It would be beneficial to be able
to dynamically change the priorities of the subtasks
according to the stage of the task execution and to
allocate the responsibilities of the subtasks online.

Due to developments of robot autonomy, the per-
formance of the robot team does not necessarely
improve with the persistent human command if
the robot team knows the goal. However, the hu-
man command is suitable in the open-ended mis-
sions [18]. Therefore, mixed-initiative control ap-
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proaches that allow the human to be part of the
control loop when necessary and to leave the loop
when desired, can be suitable in the future.

4.2.2. Overlapping interaction paradigm

So far, we reviewed human-robot team interac-
tion in which robot team autonomy complements
human capabilities. However, another aspect of
shared control can be exhibited in the form of assis-
tance where the human and the robot team jointly
perform a common task. Shared control approaches
that establish an overlapping interaction paradigm
are termed as mixed-initiative. The obtained con-
trol commands are a synthesis of the human input
and the autonomy input. The block structure of
the control loop is depicted with Figure 5.

There is little work done on human-robot team
mixed-initiative control. One of the examples is
the work of Chipalkatty et al. in [20]. The au-
thors use model predictive control (MPC) to es-
tablish a mixed-initiative control of the helicopter
robot team, teleoperated by the human operator.
The autonomous controller has a built in planner,
i.e. the robot team is capable to reach a target au-
tonomously. The human can inject input for the
overall robot team behavior and, in this way, in-
terfere with the input from the autonomous con-
troller. The coordination between the robots within
the team is handled autonomously. The stability of
the global behavior commanded by the human op-
erator is not guaranteed. Instead, it is assumed that
the human is capable of stabilizing the correspond-
ing states. Furthermore, the authors disregard the
feedback effect of the MPC approach, i.e. the con-
troller predicts the team behavior and the human
input on which the human reacts in return. There-
fore, stability issues can occur when prediction of
the human behavior is autonomous. In this ap-
proach it is not necessary to specify levels of au-
tonomy and the MPC approach is suitable only for
sufficiently regular human inputs.
Potential mixed-initiative control approaches can
be found in the broader area of human-robot in-
teraction. Typically, they are obtained by blending
human control inputs and autonomy control inputs.
In the remainder we review blending approaches
that can be suitable for human-robot team inter-
action.

Blending mechanisms. Let us denote the human
control input as uh(t) and the autonomy control

input as ua(t). Their blending is typically linear:

u(t) = Khuh(t) +Kaua(t), Kh +Ka = I, (19)

where u(t) is the resulting control command, Kh

and Ka are arbitration matrices, and I is an iden-
tity matrix. In general, Ka quantifies the level of
autonomy, and Kh the level of collaboration be-
tween the human and the autonomy of the robot
team.
There are many ways in which arbitration matri-
ces can be selected. The simple approach is to as-
sign fixed and constant values to the matrices [38].
In [112], the author proposes a probabilistic shared
control and proves that linear blending is its spe-
cial case. Furthermore, in this paper shared control
is defined as a joint optimization between agreabil-
ity, safety and efficiency of the interaction. Authors
prove that linear blending can generate unsafe shar-
ing with safe human and safe autonomous input.
The shared control input is determined as

u(t) = fR∗

(h,fR,f)∗ = arg max
h,fR,f

p(h,fR,f |zh1:t, zR1:t, z
f
1:t)

(20)
where h,fR,f are human, robot, and dynamic ob-
stacle trajectories, and zh1:t, z

R
1:t, z

f
1:t their corre-

sponding measurements. The probabilistic shared
control is determined as

p(h,fR,f |z1:t) = ψ(h,fR)p(h|zh1:t)p(f
R,f |z̄1:t)

(21)
where ψ(h,fR) = exp(− 1

2γ (h − fR)(h − fR)T ) is
the interaction function between the human and
the robot with the coupling factor γ. Dynami-
cal prediction function of the human behavior is
p(h|zh1:t). The dynamical prediction of the auton-
omy is p(fR,f |z̄1:t).
Arbitration of the human input and the robot team
input can be achieved using game-theoretical ap-
proaches, see e.g. [68]. Recently, the arbitration
based on the estimation of human trust and self-
confidence has been validated. In [96] a mixed-
initiative bilateral teleoperation is proposed for the
control of a single mobile robot. It uses trust mod-
els to scale the manual and the autonomous con-
trol inputs with a human-to-robot trust and to
scale feedback with a robot-to-human trust. A
passivity-based controller successfully manages the
time-varying scales and communication time de-
lays.
The arbitration can also be applied on the param-
eters of the low-level controller of the action layer.
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Figure 5: Block scheme of the control loop for the human-robot team interaction in a cooperative manipulation task.

For example, in order to obtain safe and intuitive
assistance, an approach to the allocation of con-
trol authority is achieved using a human-inspired
decision-making model (13). The authors of [48]
treat the problem of shared control of a mobile
assistive robot (MAR) by solving simultaneously
3 low level sub-tasks: follow a path, avoid colli-
sions and mitigate human fatigue. For each subtask
a drift-diffusion decision-making model is used for
gain scheduling of the low-level control parameters
of admittance or impedance controller:

c(t) = pA(t+ 1)
¯
c+ (1− pA(t+ 1))c̄ (22)

where
¯
c and c̄ represent the upper and lower bounds

of the control parameter c. However, the authors
disregard the problem of subtask conflicts, since
they do not consider their interference in exper-
imental evaluation. A similar approach is used
in [22] for a single task and bilateral teleopera-
tion scenario. Experimental results show that the
decision-making models have potential for intuitive
mixed-initiative interaction.
In the mixed initiave shared control, the human
modeling is important, since it is necessary to de-
termine the most appropriate autonomous control
input based on the human behavior to accomplish a
satisfactory assistance. In [32] the authors propose
the linear arbitration with constant selection matri-
ces, and with the autonomous control input that is
based on the prediction of the human intent. This
approach adapts to the robot confidence in itself,
to the user confidence and the user type. It uses
machine learning for the estimation.

We can conclude that tasks should be decom-
posed into multiple subtasks represented by stable
global and local behaviors. Furthermore, these sub-

Goal

Subtask generation and prioritization

Subtask allocationHuman
Autonomy
(planner)

Low-level controllers

Robot team

Environment
Unpredictable

events

Interaction
paradigms

Self-confidence

Trust LOAs

Sliding scale
autonomy

Figure 6: Block structure of the general hierarchical
shared control architecture for human-robot team interac-
tion. Based on a desired goal of the interaction and the en-
vironment state subtasks are generated and prioritized. Al-
location of subtasks to the human and the robot team is
dynamical and determined depending on the available lev-
els of autonomy, current self-confidence of the human and
its trust in automation. Low-level controllers receive desired
control inputs either from human or from the built-in robot
team planners.

tasks should be prioritized according to the current
state of the environment and allocated dynamically
to the human and/or the autonomous controller of
the robot team as depicted in Figure 6. Dynamical
distribution of subtasks among the human and the
robot team is termed as trading control [55], [59].
As far as the authors know, this has not been done
so far for human-robot team interaction.
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5. Conclusion

Control sharing in human-robot team interaction
is summarized in this article through the effects
that each component of the closed-loop, given with
Figure 1, has on the overall performance. There-
fore, we reviewed human, robot team, interface and
control aspects of the interaction. Following conclu-
sions can be made based on the reviewed literature:

• With the increase of autonomous capabilities
of robots, role of humans in the interaction is
not reduced. On the contrary, human gains
more high-level responsibilities. Therefore, it
is important to include human in the control
loop as a decision-making dynamical system.

• Autonomous capabilities of robot teams are de-
scribed by the autonomy spectrum, which in-
cludes levels of autonomy assigned to each sub-
task that the robot team can perform. Combi-
nations of levels of autonomy define interaction
paradigms between the human and the robot
team. Paradigms represent the design aspects
of the interaction and indicate shared control
requirements.

• The human should interact with the robot
team on the subtask level by managing its
global behaviors. In this way, the high dimen-
sional robot team state-space is projected onto
the lower-dimensional space of the global be-
havior for which the control design is easier.

• Interface in human-robot team interaction
should provide intuitive mappings to resolve
the inherent asymmetry.

• Mixed-initiative shared control approaches en-
able both human and robot team to make deci-
sions and can benefit from the human behavior
modeling.

For a better overview, reviewed literature is sorted
in Table 3 with respect to the elements of the shared
control loop and the taxonomy for the human-robot
team interaction.

6. Future work

The review of the available literature indicates
the need to perceive the human as a team member.
There are a number of research challenges within
the area of human-robot team interaction; we high-
light some of them:

• Models of the human cognitive process are nec-
essary within the control theoretical context.
Therefore, decision-making dynamical models
from cognitive psychology might provide a use-
ful construct to tackle the problem of hetero-
geneity.

• Developing a control architecture which tunes
the assistance of the robot team based on the
monitored workload and situational awareness
can enable human and robots to function as a
team. Therefore, mixed-initiative shared con-
trol is a promising control concept for further
research.

• Another important aspect is how to effectively
and appropriately choose suitable level of au-
tonomy. A lot of potential lies in approaches
that optimize level of autonomy with respect
to the human confidence in performing certain
task, i.e. by modeling trust in automation and
human self-confidence.

• A major challenge is to design appropriate one-
to-many mappings between the human and the
robot team from the control theoretical per-
spective in order to be able to formally ana-
lyze interaction properties during the task ex-
ecution.

• Robot teams as redundant systems can per-
form multiple subtasks simultaneously. A ma-
jor challenge is to design, prioritize and dis-
tribute the subtasks among the human and
the robot team autonomy dynamically. This
largely depends on the state of the environ-
ment and the available levels of autonomy.

• If multiple subtasks are considered, the con-
trol loop needs to handle multitasking sit-
uations from the human and control per-
spective. Therefore, incorporating multitask-
ing decision-making models into control loop
would be a challenging research goal.

Overall, sophisticated shared control strategies
that rely on mixed-initiative interaction, multitask-
ing capabilities, dynamical prioritization and dis-
tribution of subtasks should bring us closer to a
peer-to-peer human-robot team interaction.
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