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Abstract—Cooperative vehicle infrastructure systems offer sig-
nificant potential for improved traffic safety, throughput and
improved energy efficiency. Infrastructure sensors along the
road can substitute vehicular sensor-sets, providing improved
robustness and performance through different mounting posi-
tions and orientations, reducing occlusions, stationary locations,
facilitating system-wide calibration, optimization for the specific
traffic area in view, and vastly increase perception range by com-
bining multiple measurement points. Communication via fifth
Generation (5G) networks offers solutions to the corresponding
substantial requirements for high bandwidth, low latency and
high reliability for data and information communication. We
propose a concept, which aims to provide a far-reaching view
to (self-driving) vehicles and drivers with infrastructure sensors
and 5G communication, as a cognitive system. The system detects
and localizes traffic objects and predicts their future movements.
The resulting information will be provided to traffic participants
allowing for safer, more proactive and comfortable driving.

Index Terms—V2X, autonomous driving, connected cars, 5G,
sensor-sets, far-reaching view, big data, environmental perception

I. INTRODUCTION

Cooperative vehicle infrastructure systems combine vehicles
and roadside units in hybrid networks, utilizing the available
data from all devices to provide improved information for
traffic participants and active infrastructure elements [1]. As
each available sensor comes with its own set of challenges, the
combination of both vehicle and infrastructure sensors makes
it possible to substitute sensor weaknesses and achieve an
improved environmental perception. Additionally, road side in-
frastructure sensors often have better access to high bandwidth
connections (e.g. glass fiber), electricity, and access to more
computational power, enabling more sophisticated detection
and fusion algorithms. Vehicle sensors can likewise provide
valuable information about the vehicle’s state (position, ve-
locity, road condition) and their immediate environment.

An increasing range of promising use-cases for cooperative
vehicle infrastructure systems have been identified [2], includ-
ing road side animal detection, traffic monitoring, stopped
vehicle detection, wrong-way driver detection, road debris

detection, cooperative overtaking, cooperative collision avoid-
ance, intersection management and automated valet parking.
Roads with cooperative vehicle infrastructure systems also
provide valuable testing opportunities for autonomous vehicle
technologies and can quickly accumulate massive data sets
for offline-testing, scenario virtualization, and training of deep
neural networks.

Recent progress in sensor, detection and tracking technolo-
gies, improved computational power for reduced cost, and
paradigm shifts in mobile communication (from a network of
connected people to a network of connected things) resulting
in high performance 5G networks, offer the potential for
significantly improved performance of cooperative vehicle
infrastructure systems. New systems will provide more valu-
able and reliable information to traffic participants, at higher
frequencies, with lower latencies for reduced costs.

After the introduction, we present related work, followed by
an overview of the Providentia architecture. We then explore
the implications of 5G-based communication for intelligent
V2X systems, and present strategies for object detection,
fusion and scene prediction, as well as experimental validation.

II. RELATED WORK

Cooperative vehicle infrastructure systems provide the po-
tential for much more extensive environmental perception. To
access this potential, a number of related challenges need
to be addressed concerning detection, fusion, communication
and prediction. Fusion faces challenges such as bandwidth
limitations, data association uncertainties, dynamic coordinate
transformations and system scalability. Multiple promising
approaches have gained traction in current research, including
approaches based on factor graphs [3], filters [4] and deep
learning [5].

5G communication offers promising improvements over
prior communication technologies (e.g. LTE). However, chal-
lenges such as performing fast, seamless and reliable handover,
maintaining QoS requirements, disseminating data while en-
suring communication security, and the upper layer commu-



nication protocols, need to be addressed. A comprehensive
overview of current Vehicle-to-Infrastructure (V2I) communi-
cation technologies, related projects and a discussion of the
mentioned communication challenges is provided in [6].

A number of infrastructure systems supporting different use-
cases have been built in the recent years. There is an ongoing
effort for improved detection performance and reliability at
reduced costs, increasing performance parameters for sensing
and communication devices, increasing distances between
measurement points, reducing maintenance efforts, facilitating
access to more complex traffic areas (e.g. overpasses, trees)
and improving auto-calibration [7][8][9]. However, many chal-
lenges still persist, when the goal is to provide (self-driven)
vehicles with a real time capable far-reaching view during all
lighting and weather conditions that can directly contribute to
vehicle motion planning and decision making.

Knowledge about the intentions of other vehicles in a traffic
scenario greatly simplifies decision making and planning.
A cooperative vehicle infrastructure system is ideally suited
to provide traffic participants with long-term and short-term
traffic predictions, including prediction of lane changes, accel-
eration, braking, and swerving maneuvers at real time. Many
of the current driver models like the Intelligent Driver Model
(IDM) [10] or physics-based models can neither predict these
actions nor create predictions far into the future. Newer ap-
proaches based on Deep Learning have been proposed recently
[11, 12, 13] with good results and can now be extended as
an integral part of cooperative vehicle infrastructure systems,
fully utilizing vehicle and infrastructure perception.

III. PROVIDENTIA

The Providentia system aims to provide (autonomous) ve-
hicles with a real time far-reaching view during all weather
and lighting conditions. Each measurement point combines
several sensors with redundant measurement principles (e.g.
cameras and radars). Vehicles can contribute knowledge about
their own state and about their immediate environment to the
system. The detection of all sensors are fused and combined
with a high-resolution map to create a detailed model of the
environment in the infrastructure’s computer system - a "real
time digital twin". Based on the fused information, long- and
short-term traffic movements are predicted. The fused and
predicted information can be provided to self-driving vehicles,
drivers or passengers. Similarly, the digital twin can be used
for the virtualization of traffic scenarios for simulation tests.
One of the research goals is to investigate the interplay of
various information streams in highly automated vehicles, and
the communication with back end infrastructure. Another goal
is to enable accurate tests of autonomous driving technologies
in the harsh reality of a heavily travelled motorway, instead of
an isolated test cell with very few vehicles. The Providentia
system aims to support mixed traffic scenarios, including
both vehicles with a variety of sensor sets and degrees of
automation. Such mixed scenarios will be of major impor-
tance for years to come. Therefore, this scenario will have

a strong impact on the upgrade of the 4.5G communications
infrastructure towards 5G in future [14].

IV. SYSTEM ARCHITECTURE

Figure 1 illustrates the targeted Providentia system archi-
tecture. It consists of the following subsystems and intercon-
necting networks.
Vehicles The vehicles that are part of the system play a dual

role - first as an information source capable of feeding
reliable data about themselves and their environment
into the various algorithms that create and maintain
the real time digital twin, and second as users of the
digital twin data. Vehicle-2-Everything communication
(V2I/V2N/V2V) is realized through 5G mobile networks,
accessed with on-board 5G modems. Applications and
services can be visualized with suitable computational
and display units. In order to support mixed traffic
scenarios with legacy vehicles, a communication link
based on 4G LTE is also included. A variety of vehicle
sensor information is supported for communication and
fusion. Supported sensor types include radars, lidars,
in-vehicle cameras and ultrasonic sensors. Additionally,
information about current and planned vehicle states can
be transmitted, e.g. steering angles, indication light status,
desired velocities or accelerations or planned trajectories
of automated vehicles or ADAS functions.

Measurement Points The measurement points capture the
traffic flow in their local regions, extract useful repre-
sentational information, and transfer it to neighboring
measurement points and the back end for a more compre-
hensive and wider representation. They are equipped with
a variety of sensors that are in combination capable of
capturing traffic flow reliably, a powerful local data fusion
unit that operates on the information provided by all the
sensors, and on the information provided by the neighbor-
ing measurement points to generate the real time digital
replica within its geographical area of relevance. This
information is consequently made available to the back
end in real time over the 5G communication network.
In order to sense traffic participants reliably, multiple
measurement principles are combined. Cameras have a
high accuracy in angular resolution and image processing
algorithms allow to perform good object classification.
Multiple cameras with optimized lenses can increase
camera detection range. Radar sensor readings are very
accurate in object distance and speed, while angular
accuracy is relatively poor and provide good performance
during bad weather conditions. Both radar and thermal
sensors allow for improved functionality during night.
The combination of the sensors promises to compensate
the negative effects of each measurement technique.

Base Stations The base stations are in charge of establishing
the physical 5G radio interface required to connect the
rest of the system participants. Apart from performing
the radio access duty, the base stations are also equipped
with Mobile Edge Computing units, which can provide



Fig. 1. Providentia system architecture illustration showing the system participants - vehicles that feed information into the system and utilize its services;
measurement points equipped with sensors that digitally capture the traffic flow; back end infrastructure that hosts the overall digital twin information; and
interconnecting 5G mobile networks (UE and RSU types) established with the help of base stations and 5G modems.

additional computational power to system processes, such
as data fusion.

Backend The back end generates and hosts the compre-
hensive real time digital twin based on the extracted
information received from all measurement points. This
data is then made available to traffic participants.

Communication Network The system is enabled by two 5G
communication networks - the UE (User Equipment)
network for V2V communication that is deployed for
the localized communication between the vehicles them-
selves and the measurement points, and the RSU (Road
Side Unit) network for V2I communication between the
central back end and the local vehicles or measurement

points. Additionally, optical fiber networks, if available,
could be used for communication between measurement
points and back end.

Application Cloud The Providentia system also includes an
interface by which the real time digital twin data from
the back end can be made available over the internet to
a wide array of application services that are deployed on
the cloud.

To achieve real time capability, the Providentia system
requires an effective communication architecture. It needs
to provide an efficient and reliable way to exchange data
between multiple processes on one machine, by using classical
inter process communication (IPC) approaches (e.g. shared



memory). It also needs to support fast, reliable data exchange
between multiple physical endpoints, using network-based
communication. A possible solution could be provided by
the new Time Sensitive Networking Standard (TSN), in order
to schedule critical, as well as non-critical traffic within our
network. The system concept is based on a decentralized
communication approach, meaning that it does not require a
central master, who has overall knowledge about the whole
system and its connected clients. A related approach has been
implemented for IPC communication on one single physical
endpoint. A service provider and requester were attached to a
local multicaster group, where control information, as how can
specific information get accessed (e.g. shared memory, pipes,
etc.) and by whom the data gets provided, get exchanged to
make the local system self-organized. A benefit of this attempt
is added redundancy within the system, since every client
has knowledge about the current local system’s state, without
adding further complexity to the architecture.

V. 5G-BASED COMMUNICATION

One of the key elements of the next generation radio system
(5G) is the native support for ultra-reliable and low latency
communication (URLLC), which can be considered a crucial
enabler for safety-critical services and thus an important driver
for future V2X communications. Compared to current 4G
Long Term Evolution (LTE) networks, 5G introduces a new
frame structure tailored for URLLC that facilitates much faster
response times for the transmission of single data packets. The
key idea here is on the one hand to use more bandwidth for the
transmission of a data packet and thus reduce the time required
for its transmission, and on the other hand to multiplex control
information supporting the transmission of the data packet into
the same transmission slot. This way, transmission time for a
single data packet becomes short, and even retransmissions
of the packet can be facilitated without having a significant
impact on the constrained delay budget.

Moreover, 5G will come with a bunch of technologies that
help to increase the reliability of data transmissions, such
as beamforming techniques based on multiple antennas at
transmitter and receiver, aiming to increase the robustness
of the communication link, and network multi-connectivity,
where a terminal is maintaining multiple links to the network
to exploit the statistical independence of these links (also
called l̈ink diversity)̈ for attaining reliable transmission and
reception of data. In more detail, beamforming techniques
allow to direct the radio wave towards the mobile terminal
and thus achieve a higher signal quality at the receiver for
constant transmit power. If there are sufficient reflectors in
the propagation environment, different beams can be formed
reaching the receiver through independent propagation paths,
and if these are used for transmitting the same data packet,
the provided link diversity can be beneficially exploited for
improving the reliability of the transmission. As the vehicular
communication node is usually moving at higher speed, a
transmission beam needs to be continuously modified to follow
the vehicle properly and avoid any signal loss. Since the

Fig. 2. Network multi-connectivity in 5G networks for providing link diversity

trajectory for a moving vehicle (in particular a car moving
along a road) is known for short-term, beam tracking and
beam prediction is facilitated if information on this trajectory
is exchanged between the involved communication nodes.

Network multi-connectivity, the other technology mentioned
above to leverage reliability, can be provided to a vehicle by
several means, as illustrated in Figure 2: The vehicle can be
connected to different base stations at the same time, where
these connections may even be established on different carrier
frequencies. Since the coverage of a carrier frequency scales
inverse-proportionally with the carrier frequency itself, i.e. a
low carrier frequency has a longer reach, a vehicle can be
easily connected to base stations being located at significantly
different distance. Moreover, an additional link to the vehicle
can also be established through another vehicle, which may
relay the signal from the base station using a V2V (vehicle
to vehicle) connection. For all these multi-connectivity cases,
it can be assumed that the propagation paths for the links are
statistically independent, thus providing the link diversity that
finally can be exploited to yield a highly reliable transmission.
All the technologies mentioned in this section will be applied
in the 5G prototype deployed in the Providentia project for the
reliable and delay-critical data exchange between the vehicles
on the highway and the back end.

VI. OBJECT DETECTION

To cover all lighting and weather conditions at high range
and acceptable cost with infrastructure sensors, cameras,
radars and thermal sensors are evaluated. Position, velocity,
and class of each object should be identified. While the utilized
radars provide object detection, a deep learning based object
detection approach is adapted for the camera. Both online and
offline traffic object detection are of interest, because while
real time capable online detection with good performance is
needed to create the live digital twin, adapted data sets for
deep neural network optimization can be created with offline
detection, which should provide highest performance, but does
not need to run at real time. For this we evaluated Faster R-
CNN [15], which consists of two advanced modules: a region
proposal network (RPN) and Fast R-CNN [16] detector. The
entire system is a single, unified network for object detection.

In the first stage, RPN, images are processed by a feature
extractor, and features at some selected level are used to
predict class-agnostic box proposals. The RPN is trained



Fig. 3. View of the short-range camera on the left and of the long-range camera on the right with camera detections (bounding boxes) and radar measurements
(blue cuboids). The image illustrates fields of views and detection ranges of the 2 cameras and the radar. The sensors complement each other. The short-range
camera detects objects closer than the radar, the far range camera detects objects beyond the radar range. There is overlap between each sensor.

end-to-end to generate high-quality region proposals. In the
second stage, Fast R-CNN, box proposals are used to crop
features from the same intermediate feature map, which are
subsequently fed to the remainder of the feature extractor in
order to predict a class and class-specific box refinement for
each proposal. Faster R-CNN merged RPN and Fast R-CNN
into a single network by sharing convolutional features, using
’attention’ mechanisms, the RPN component tells the unified
network where to search [17]. The adaption of networks
pretrained on general images enables good initial detection
results before time consuming labeling of specialized data sets
becomes necessary.

We show exemplary detection results of sample images in
Figure 3. Most vehicles get detected. However, detection range
is limited and occlusion due to adjacent vehicles can still
lead to errors. In general, our test vehicle detection system
shows reasonable and high accuracy detection results, but it
also illustrates the value of fusing camera detections with
additional sensor types to increase robustness, especially when
high performance during a multitude of lighting and weather
conditions is required.

VII. RELIABLE MULTI-OBJECT MULTI-SENSOR
DATA-FUSION

Fusion in the Providentia system concept is performed first
locally on the measurement points (infrastructure sensors and
sensors from connected nearby vehicles), and in a second
step with the combined information of multiple measurement
points in the back end, where they are fused to form the
comprehensive and real-time digital twin. Thereby, Providentia
combines a number of filtering, tracking and fusion challenges,
all of which have to be solved in real time:
Multi-object: In comparison to fusion tasks for autonomous

vehicles, the term multi-object for filtering algorithms
takes on new meaning when it is applied to large scale
infrastructure systems. During traffic jams, one measure-
ment point’s overall detection range can contain 800
vehicles (assuming a traffic jam, 10m per vehicle, four
lanes in each direction, and 500m field of view in

each direction). At this scale, the association problem
of assigning each measurement to the corresponding
object can become a computational bottleneck when
using classical filters like the Kalman filter (see [18]),
Multiple Hypotheses Tracking (MHT) (see [19]) or the
Joint Probabilistic Data Association filter (JPDA) (see
[20]). Therefore, the current concept utilizes filters based
on the random finite set (RFS) framework developed by
Mahler (see e.g. [4]), as those do not need to solve the
association problem explicitly. Further advantages of RFS
based filtering methods for highway scenarios are that
they can handle varying and unknown numbers of objects
and achieve accurate and robust estimates despite clutter
and detection failures.

Sensor dependent characteristics: A good fusion algorithm
incorporates the characteristics of each sensor in the sys-
tem and treats their measurements according to their in-
dividual strengths and limitations. For example, cameras
are well suited for classifying objects while radars can
determine velocities and angles accurately. Furthermore,
the algorithm should eliminate sensor dependent ghost
objects. In our test field, there is a wall next to the most
left highway lane reflecting radar signals especially from
trucks driving by and leading the radar to erroneously
assume the existence another vehicle. This can be seen in
the left picture of Figure 3. Each stationary measurement
point can be optimized for its specific location. Therefore,
we take such knowledge into account when weighting
each measurement in the fusion procedure. Furthermore,
every sensor type provides measurements at a different
frequency and requires a different processing time, i.e.
adds a different delay to the system. These delays together
with those stemming from the communication have to be
determined and incorporated appropriately in the fusion
algorithm, even though we assume the latter to be quite
small thanks to 5G.
The combination of the individual sensors’ fields of view
constitute another challenge. Regarding one Measurement
Point in one direction, the short range camera and the



far range camera cover different areas with overlapping
field of views while the radar’s field of view starts some
meters into that of the short range camera but continues
into that of the long rang camera and also depends on the
specific lane, as can be seen in Figure 3. Additionally,
these field of views intersect with the corresponding
ones from the neighboring Measurement Point as well
and the sensors in the communicating cars have yet
others, completely different perspectives. Therefore, the
area covered by one Measurement Point contains several
parts that are observed with different numbers of sensors,
i.e. our algorithm needs to be able to fuse measurements
from an adaptive number of different sensors. However,
the different field of views have the advantage of provid-
ing more information and redundancy. The Providentia
system sees the same object from different angles and
sides and can dissolve occlusions resulting into an overall
improved tracking performance.

High reliability: The basis for a highly reliable digital
twin are good models of the reality within the fusion
algorithms like suitable dynamic and observation models,
good birth densities and appropriate survival probabilities.
In this context, one challenge is to differ between vehicles
that have vanished from the field of view and those that
are still there but are now occluded. Therefore, a good
way to represent occlusions in the filtering needs to be de-
veloped so that they get resolved in the back end fusion as
mentioned above. Additionally, good models of the clutter
process are required. Conventional filtering and tracking
methods assume it to follow a spatially uniform distri-
bution although it is unknown and dynamically changing
over time. Therefore, an algorithm not requiring a priori
clutter models like the RFS based CPHD filter described
in [21] seems more promising (see also Section VII in
[22]). Representing the vehicles as extended objects also
increases reliability. Classical filters and basic RFS based
ones like the GM-PHD and SMC-PHD assume point ob-
jects, leading to a mismatch between filtering results and
reality. For example, shapes cannot be taken into account
and only one measurement per object is assumed. This
is contradictory to the measurements in the Providentia
project like (2D or 3D) bounding boxes resulting from
the camera object detection or raw reflection data from
the radars. Furthermore, it is essential for autonomous
driving algorithms to know the extension of other traffic
participants. There already exist extended object filtering
methods, also for multiple objects within the RFS filter
framework (see [23]). However, they focus on single
sensor systems or such with very similar sensors.

The fused measurements are used for the virtualization of
recorded traffic scenarios, which is an important part of simu-
lation testing for autonomous vehicles. Effective generation of
test scenarios that can be rerun in different scenario variations
can greatly improve testing capabilities. The digital twin that
results as the output of the Providentia system aims to be

Fig. 4. The Providentia system, a measurement point visible as a stylized
pole, providing a warning of an impending braking cascade. The yellow car
suddenly changes lanes to exit the highway. This causes the blue truck to
brake. Due to the early warning for the blue and white car, even before the
truck brakes, the cascade can be prevented.

Fig. 5. The CarMaker as a dynamic virtualization platform for the real
time digital twin model, showing two infrastructure measurement points in
a highway scenario perceiving a number of vehicles Source: IPG CarMaker.

compatible with simulation software. Based on high resolution
maps, including precise spatial and semantic information about
all lanes, lane markers, road signs and further infrastructure,
a traffic simulation can both generate synthetic measurement
data to test and further develop fusion algorithms, and import
measurement data from the Providentia system, making it
possible to experience the full scope of the digital twin in
a physical test drive simulator. The Providentia system works
with IPG CarMaker, which provides the required capabilities
for map import, sensor simulation and traffic visualization (see
Figure 5).

VIII. SCENE PREDICTION

A key strength of attentive drivers is good scene understand-
ing and anticipation of upcoming traffic events. Accurately
predicting traffic events allows for preventing actions and
better structured reactions. An example of preventing a braking
cascade through prediction and early warning for participating
vehicles, is shown in Figure 4). This short-term prediction of
traffic events, on the order of magnitude of about ten seconds,
is significantly different from long-term traffic state prediction
(e.g. predict traffic jams), which has a time horizon of tens
of minutes. The advantages of using an infrastructure system
for this prediction are manifold and include a significantly
longer perception horizon, strongly reduced occlusion and the
possibility for optimization for the infrastructure system’s spe-



Fig. 6. Short-term prediction for a traffic scene, based on radar detections.
The current prediction system predicts the next seconds of a car’s motion.
Prediction performance, in distance, time and accuracy, depends on the
detection performance.

cific location. Furthermore, more efficient computation can be
achieved, since many cars are interested in the same stretch of
highway, and once calculated, the prediction can be distributed
to every participant. The computational complexity for the
infrastructure based prediction scales with the length of the
perceived highway stretch. Contrary to that, prediction running
on every car’s computer will require redundant computing
power for every car.

The Providentia system aims to provide short-term pre-
dictions of lane changes, acceleration, braking, and swerv-
ing maneuvers, sufficiently early to allow both autonomous
vehicles, as well as drivers of manual vehicles to include
the prediction into the decision making and planning process.
Recent approaches based on Deep Learning [11, 12, 13] have
shown promising results. However, these approaches remain
fundamentally limited by operating only with the ego-vehicle’s
perception. This results in duplicated computation and neglects
the increased availability of additional measurements, arguably
the main advantage of an infrastructure system. Clearly, a
new approach has to be developed for infrastructure-based
prediction. The concepts of an infrastructure and V2X based
far-reaching view and infrastructure-based traffic prediction
complement each other. Therefore the Providentia system aims
to provide a far-reaching view both in distance and time.
Figure 6 shows initial short-term prediction results of a traffic
scene based on radar detections, predicting the next seconds
of vehicle motion to illustrate the concept. Both improved
detection and fusion, as well as more sophisticated prediction
algorithms will further enhance the prediction capabilities.

Since Deep Learning-based approaches showed good results
in the single-vehicle scenario, they are a promising avenue to
pursue further. The restrictions on behaviour implied through
a purely-supervised approach as in [13] suggest an approach
based either on reinforcement learning or on imitation learn-
ing, as done in [12]. The latter approach using Generative
Adversarial Imitation Learning (GAIL) however still suffers
from restrictions from GAIL like preferring longer-running
trajectories. An alternative would be to abstract further, re-

moving the prediction of car behaviour and instead predicting
the whole scene change. This has already been done on
video data in the Atari domain [24]. Its advantage is an
easy and clear feature representation and constant performance
independent of the number of cars. For feature representation,
three different approaches are possible: using a high-level
abstraction as in [13], which allows modelling a wide variety
of situations, but denies the main use of Deep Learning, that is
learning features; using a simulated lidar-like sensor as feature
representation, as in [12], which allows for feature extraction
but does not allow us to include information based on the
infrastructure sensors; or a grid map representation, which
allows the inclusion of arbitrary sensors and allows the system
to learn high-level features itself, which is a preferred approach
for the Providentia system and can be combined with grid-map
based event detection, as shown in [25]. The latter is also the
only system in which whole-scene prediction is possible.

IX. CONCLUSION AND OUTLOOK

Cooperative vehicle infrastructure systems offer significant
potential for improved traffic safety, throughput and improved
energy efficiency. The Providentia system aims to detect,
localize and predict traffic objects and their movements, and
make corresponding information available to traffic partici-
pants, both to drivers and to self-driving cars. The system
facilitates the integration of self-driving and manual cars,
a major challenge and the dominant traffic scenario of the
coming decades. The combination of vehicle and infrastructure
sensors promises improved environmental perception, profiting
from the use of complementing sensor-sets and sense all
relevant areas from multiple angles.

High resolution maps that contain geo-spatial as well as
semantic information facilitate scene understanding. The com-
bination of excellent and far-reaching perception with well un-
derstood (mapped) traffic scenarios provides the best base for
scene prediction. Scene prediction performed by cooperative
vehicle infrastructure systems provides a number of benefits,
ranging from reduced computational cost to better prediction
performance. Stationary infrastructure can be optimized to
detect traffic objects in its local field of view, while sensor sets
of autonomous vehicles have to provide good performance in
all traffic areas. Additional computational resources in a back
end help to provide situational awareness and scene prediction.
Progress in each of the technological areas of sensors, detec-
tion algorithms, fusion, tracking, prediction, communication
and computation power bring the provision of a far-reaching
view, in both space and time, within reach. However, a number
of challenges remain in each of the mentioned areas, when the
goal is to provide good performance in all traffic scenarios,
for all lighting and weather conditions at very low latency,
with very high reliability, at acceptable cost. In this work we
presented a concept for the realization of a real time digital
twin based on 5G-telecommunication technology, providing
this far-reaching view to self-driving cars, drivers and passen-
gers, and demonstrated promising experimental results. Other
researchers can extend the concept or evaluate different algo-



rithms in its context for increased performance. In future work,
we will investigate different vehicle detection approaches and
leverage different feature fusing techniques for improved real
time detection. We aim to develop reliable multi-sensor multi-
object fusion algorithms for 5G communication based sensor
networks. We will also strife to provide improved scene
prediction approaches, because while shortest-term predictions
of traffic object trajectories of a few seconds are possible with
existing models, predicting trajectories and occupancies ten
seconds into the future while using infrastructure sensor data
remains a worthwhile and unexplored research area.
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