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Abstract

In this paper, the problem of a particle subjected to an acoustic field is addressed theoretically. Once the fundamental
equation of motion is obtained, two nonlinearities are identified: one related to the drag law and one associated with the
excitation. In order to face the nonlinearities, two cases are constructed: the first corresponds to the parametric
numerical solution of a particle with nonlinear drag in an oscillating flow field (infinite wavelength) and the second
refers to the particle submitted to an acoustic standing wave (finite wavelength). For the latter, an approximated
analytical solution is formulated. The system is linearized around an equilibrium point and the parameters of the equation
are grouped in three nondimensional numbers: the Stokes number (S,), the acoustic Mach number (M,), and the densities
ratio (y). Conditions of parametric resonance in the particle response are deduced for this system by means of the
analytical method here proposed, based on Hill's determinants. Comparison with numerical solutions of the linearized
and nonlinearized equations close to an equilibrium point corroborates the analysis for different combinations of

parameters.
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Introduction

The particle response to an acoustic field is a funda-
mental problem faced in the investigation of the mul-
tiple interactions that may occur in a polydispersed
population of particles immersed in an acoustic field.
This response is of primary interest in technologies that
involve sprays, like spray combustion, or in devices that
use forced fields to agglomerate particulate material
(fine particles with sizes on the order of nanometers
up to a few micrometers) in order to enhance filtration
capacity.

In spray flames, for instance, number droplet density
waves and droplet agglomeration are undesirable for a
stable combustion process. Combustion instabilities
appear when oscillations of heat release and pressure
waves are in phase. While pressure oscillations are nor-
mally associated with the acoustic modes of the com-
bustor, fluctuations in heat release can be generated by
unsteady fuel evaporation or fluctuating equivalence
ratios.! Under some conditions, acoustics promotes
the formation of a number density wave of fuel

droplets. In that case, a perturbed field of equivalence
ratio, and subsequently of heat release, can be directly
linked to acoustics.

In contrast, in some systems, agglomeration of par-
ticles due to acoustics is a beneficial phenomena and
has a potential use in air pollution control.? Acoustic
agglomeration is in this context a promising novel alter-
native to improve the particulate material filtration
effectiveness in exhaust systems,>* and, consequently,
reduce the emissions of this product in diesel engines,
just to mention one application.

Mechanisms of acoustic agglomeration or formation
of a number density wave in a population of particles
depend fundamentally on the individual particle
dynamics (or response) to an acoustic field, which
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motivates the present investigation. Unfortunately, this
dynamics is in general nonlinear, there are several par-
ameters involved and the role of each parameter needs
to be clearly understood in order to construct solid
physical descriptions of the aforementioned mechan-
isms. It is pertinent to clarify that there are hydro-
dynamic mechanisms of acoustic agglomeration of
binary nature.” These are activated by the interaction
of two particles in a pressure field that is disturbed by
the particles themselves. Such mechanisms require
an explicit description of the disturbed field around
the particles and is out of the scope of the analysis
given here.

Although several experiments™® and numerical
simulations™”  for different scenarios of an individual
particle and population of particles submitted to an
acoustic field have been carried out, in our best know-
ledge, a theoretical approach of the problem of a par-
ticle immersed in an acoustic field considering
nonlinearities and focused on the examination of the
parameters role has not yet been performed, which is
the main novelty of the present investigation. Partial
approximations have been carried out, for example,
Aboobaker et al.'” developed an approximate analyt-
ical description for the trajectory of a particle subjected
to an acoustic standing wave. An acoustic force was
contemplated in such work, which is the time-averaged
force due to the drag produced by the acoustic field in
the Stokes regime. That approach differs from ours as
we attempt both to develop solutions without averaging
in time any term in the equation of motion and to focus
on the most general parametric response, seeking a pro-
cedure to estimate the particle drift velocity when the
response is stable and particular conditions that lead to
unstable or resonant responses.

The derivation of the equation of motion for a par-
ticle excited with an acoustic field is given in the follow-
ing section, where two sources of nonlinearities are
found. Next, the effect of the first nonlinearity, concern-
ing the drag law, is evaluated numerically considering
an oscillating flow as the particle excitation.
Subsequently, a linearized equation is derived from
the nonlinear problem involving an acoustic standing
wave, and a principal stability map is constructed
assuming a particular solution in complex Fourier
series. Finally, the principal stability map is validated
comparing the numerical solution with the theoretical
response for several combinations of parameters.

Single droplet dynamics

The starting point of the investigation can be formu-
lated as made by Sujith et al."' The Lagrangian equa-
tion of motion of a rigid spherical particle (subscript p
is related to a particle and ¢ to the fluid around it),

without internal circulation nor angular motion, with
mass m, and velocity u, can be stated as

du
mpT;) — FD + Fuf—‘r F], + va + FBamet

(1

Body forces Fj, the virtual mass force F,,,, and the
Basset or history integral force Fp,,., are not con-
sidered in this investigation. The remaining forces
acting on the particle are the steady-state drag Fp and
the undisturbed flow forces F,,. The latter is the force
required to accelerate the fluid of volume V/, if the par-
ticle were absent,'? and is divided in the contributions
of the pressure gradient and shear stress,
F,r= V,(—0dp/ox + dt/dx). Since the acoustic field will
be imposed, the shear stress is assumed to be zero and
the pressure gradient becomes dp/dx = —p.du./ot. This
is advantageous since the undisturbed flow force can be
explicitly expressed in terms of the excitation of the
fluid velocity field u,.. F,, does not contribute signifi-
cantly for a particle in gas flows where the density
ratio y = p,/p. is much larger than unity,'? but it will
be maintained to preserve the generality of the
approach. The drag force

1
Fp = EIOL'CDAch - up|(uc - up) 2
depends on the drag coefficient, defined as

Cp =f124/Re,. The particle Reynolds number is
Re, = |u. — uy|D,/v., where D, is the particle diameter
and v, the fluid kinematic viscosity. 4, is the cross-sec-
tional area of the spherical particle. The drag force con-
tributes with a linear term to the equation of motion for
the Stokes regime and with a nonlinear term for the
Schiller and Naumann extension in the following way

.1 — Stokes flow. Re, < 1
=11 + 0.15R82‘687 — Schiller and Naumann. Re, < 800

Assembling the terms, the following governing equa-
tion is obtained

du, 3CDu|u| ( 1)8uc
Yar T Tap, Y t

3)

where v, = u, — u.. Given that X, = 1, and X, = u,, the
equation of motion for C = 18v,/ yDi can be expressed
as

. . 1 0u,
%y +f1Cxy = fiCutp +— =t

) “4)

Two nonlinearities contained in particular forms of
f1 and u, are identified. The first one is associated with
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the exponent in the particle Reynolds number for non-
Stokes flow. The second one comes from the excitation
u., which leads to two cases: oscillating flow (excitation
with infinite wavelength and speed of sound) and
acoustic (finite wavelength). For the latter, the velocity
field depends on the particle position x, (uc(xp,?)).
These two nonlinearities will be faced numerically for
/1 and analytically for u,., in the following sections.
Note that only in the simplest case where f| =1
(Stokes flow) and u. = . sin(wsf) (oscillating flow)
an analytical solution of equation (4) can be easily
derived.

Particle in an oscillating flow field

In the present context, an oscillating flow field refers to
an acoustic wave with infinite wavelength, which is
equivalent to consider an incompressible medium or
with infinite speed of sound. The flow velocity oscillates
according to u.(t) = i, sin(wyt), where &, is the ampli-
tude of the velocity wave and w; = 27f, is the angular
frequency. For this form of excitation, a nondimen-
sional equation can be derived from equation (4).
After defining the nondimensional time T = wyt, the
Stokes number S, = f,/C and the nondimensional vel-
ocity uy = u, /1., the governing equation becomes

dr = 27S,

P

dis f (1= sin() + %cos(r) (3)

If the Schiller and Naumann extension for the drag
law is accounted for (fi =fi(Re,)), equation (5)
becomes nonlinear and is resolved numerically, follow-
ing Sujith et al.'' This initial value problem is resolved
parametrically for a range of Stokes numbers using the
Runge-Kutta algorithm. Different amplitudes of exci-
tation #, are also evaluated, which allows the assess-
ment of corresponding maximum values of the
Reynolds number (Re, qy) in the particle response.

The entrainment factor, n = i,/il., defined as the
velocity amplitudes ratio (or the amplitude of uy) is
plotted in Figure 1 as a function of the Stokes
number and the corresponding Re, ... The entrain-
ment factor was determined as the amplitude of the
discrete Fourier transform of the nondimensional par-
ticle velocity u;, at the frequency f,. The response of the
particle is strongly sensitive to the Stokes number,
which relates, for this case, the characteristic time
response of the particle 7¢ = 1/C with the period of
the flow oscillation. For high frequencies and large
diameters (high Stokes numbers) the particle does not
react fast enough and the entrainment factor  becomes
weak. In the regime of Stokes flow (small Re,), and
consequently the limiting case where f; = 1, the differ-
ential equation (5) is linear and the entrainment factor
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Figure |. Entrainment factor (1) against Stokes number
(St = fr/C) and maximum particle Reynolds numbers. —-
Repmax < |, — == Repmax = 20, — - — Repmax = 100, and
-+ - Repmax = 1000.

is associated uniquely to the Stokes number.'' In fact,
the nonlinear effect of increased drag at higher Re,, is to
shift the entrainment factor curve to the right side of
Figure 1. The Stokes flow assumption can be employed
in the equation of motion (4) only for a combination of
a low relative velocity u,, small particle size D, and a
large fluid viscosity v.. Small relative velocities may be
expected for small excitation amplitudes of u. and a
nonresonant particle velocity u,,.

Particle in an acoustic standing wave

The previous section corresponds to a limiting case
where the acoustic wavelength / is infinite. For finite
wavelengths, the intensity of the standing wave depends
on the position x,, then

2
ue(xp, 1) = 20, sin(awyt) cos (7” xp) (6)

The factor of 2 arises from the superposition of two
travelling waves, each one with amplitude ..

The, apparently simple, nonlinear dependence of
excitation amplitude on particle position brings an
interesting theoretical wealth to the problem. From
equation (4), the following system for an acoustic
standing wave is derived

2
u, = —Cf1x, + 2f1 Cii, sin(wyt) cos (771 xp>
a)f N 2]‘[
+2 " it cos(wyt) cos =%

Xp = U (7
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Besides being nonlinear, equation (7) depends on seven
parameters: D, i, A, ws pe, pp, and v.. Our goal is to
investigate the parametric stability of system (7).

Theoretical approach for the nonlinear system

The purpose of nonlinear analysis is to detect a rich
variety of phenomena introduced by the nonlinear
terms, which is normally focused on the system behav-
ior around the equilibrium points. Sub- or super har-
monics resonances, parametric instabilities in pulsating
loads, and existence of periodic solutions are typical
phenomena associated with nonlinearities.'* The
canonical notation of the nonlinear, parametric, and
nonautonomous (a differential equation where the coef-
ficients depend explicitly on the independent variable, ¢
in this case, is by definition nonautonomous) system is
X = f(x,p, 1) (p is the vector of parameters). In an equi-
librium point (x.,p), the vector x vanishes, making
f(Xc,p, 1) = 0. By inspection of system (7), the equilib-
rium points are located at the standing wave nodes,
X.=02m+1)2/4. At the first equilibrium point
(xe, 1) = (4/4,0), the system is linearized by means of
the Jacobian matrix

< .p ) ( ¢ : %‘C Sill(a)f[) : A)ﬁﬁr COS(C()ft) ) < ) )
)'Cp 1 0 Xp

This system can be represented as x = A(/)x. In
order to study the type of local stability, Floquet ana-
lysis, perturbation methods and harmonic balance were
initially considered.

Brief discussion on the selected method

As matrix A(7) is periodic, the system is amenable to
Floquet analysis. According to the Floquet theory in a
periodic varying system, like system (8), there is a funda-
mental matrix solution @(f) that can be decomposed as
the product of a periodic matrix P(7) and an exponential
matrix ¢’®, @(1) = P(¢)e'®. The stability of the solution is
in general determined by matrix B. Nevertheless, as men-
tioned by Montagnier,'> Floquet theory is not easy to use
for quantitative purposes, since there is no set procedure
of determining the Floquet factors (B matrix), unless
numerically by posing a boundary value problem, for
specific values on the parameters. Additionally, the peri-
odic matrix P(7), in case it can be determined, does not
explicitly show the presence of harmonic or sub-harmonic
frequencies in the response.

Although the parameters can be grouped into three,
as will be shown later, multiple scales or perturbation
methods tend to be complicated for even two param-
eters and not easily generalizable. In contrast, the Hill’s

determinants (based on a harmonic balance) technique
is in principle not limited to a low number of param-
eters and allows to incorporate explicitly harmonics
and sub-harmonics in the response. For these reasons
this strategy is used here.

Making an analogy, system (8) can be seen as a damped
harmonic oscillator with periodic spring coefficient

X+ C x4+ f() x,=0, 9)
damping spring coeff.
where
4ru.C . 1 47,
1) = ”Z' sin(ayf) + - 2 cos(@st) (10
) v 7

The time varying “‘spring coefficient” can cause a
particular type of resonance called parametric reson-
ance. In a linear system, parametric resonance could
be understood as how the oscillatory response grows
due to the periodic variation of some energy-storing
parameter,'® and is essentially different from resonance
that may occur in an oscillator of constant parameters
with external forcing. Compared to the classic reson-
ance, there are two main peculiarities of parametric res-
onance in a linear system (like equation (9)): first, there
is a different relationship between the mean natural fre-
quency of the system and the frequency of the param-
eter modulation wy, and second, if damping or friction
exists, parametric resonance occurs only above a
threshold in the amplitude of the parameter modulation

(7). Details of these two facts will be discussed later

when an assumed solution needs to be constructed. In
this work, a transformation ¢(¢) = xp(t)e%’ is applied,
which eliminates explicitly the term related to damping.
Equation (9) now reads

C2
i+ (-G +r0)a =0 ap

A Hill’s equation'® is therefore obtained. Note that

one particular case of the Hill’s equation is the Mathieu
equation, where /(1) = B cos(f). Methods to find approxi-
mate solutions and construct stability maps for the
Mathieu equation have been extensively applied,'*!®!"
and served partially as inspiration for the procedure
developed here. Invoking the nondimensional time
T = wyt, the particular form for the Hill's equation of
our problem can be conveniently expressed as

2
ﬂﬂ+((41)+M%Mﬂ+@@wwﬁaw=o
UAY 14

S,
(12)
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Three dimensionless numbers are identified: S, y
and M,. The Stokes number S, and the densities ratio
y were introduced in the previous two sections. The
nondimensional number M, = 2nil./Jwr is in fact an
acoustic Mach number (M, = u./¢, where the speed
of sound is ¢ = Af,). An alternative interpretation of
this number is the acoustic displacement #./f,A, which
is the ratio of the oscillation displacement (u./f,) and
wavelength (1).

Presumed solution
Initially, periodic solutions are sought, thus, a complex

Fourier series is assumed to satisfy equation (12)

n=+o00

E Cnel)‘ll'

n=—00

q(t) = (13)

Taking the second derivative for the series, the Euler
formula for sinus and cosinus and replacing them into
equation (12), results in

n=-+o0o 1 2n=-+o00
znr int
— E I’l cpe — E cpe
n=— (477,’5,)

n=—o0
M, (e —e'" 2M,
+(JTS, ( 20 ) + y (

_,T n=+oo
)) Z cne m‘c =0
n=—0o0
(14)

Developing the product, grouping the exponents and
performing a change of indexes, the following is

obtained
n=+00 n=+o00
int 2 int lM _%
e (e (is) ) o e (6 7)
n=+o00
int iM, Mu
e =0 15
+Y ome (- - 2) (15)

Then, the series can be factorized and a recursive
relation for the coefficients ¢, is derived

iM, M, +2+12+1M¢1M 0
“oms, oy ) TN T \ams,) )T \aws, Ty ) T

(16)

Equation (12) has a nontrivial solution in form of a
complex Fourier series (13) only if the coefficients ¢, are
all not zero. This condition is guaranteed if the deter-
minant of the linear system that results from the collec-
tion of the recursive relations to find the coefficients ¢,
is zero (det(Hy) = 0). A finite limit to the series N can

be taken based on the property of convergence of the
Hill’s determinant,'® which yields for the present case

det(Hy) =
2 2 iM, M
N+ (4715, 2773‘”} - 7“ 0 0 0 0 0
ks e .. 0 0 0 0
0 ) 0 0
0 0 . 0 0
0 0 0 AU . 0
0 0 0o 0 ... .. s —
. 2
00000 g W)
If det(Hy) = 0 is resolved an algebraic equation is

obtained. Although this algebraic equation is implicit
(it can not be expressed explicitly for any contained
parameter), it can be eventually factorized producing
different branches (roots of the implicit equation) in
its solution. The number of branches is equal to the
limit of the series N. In Figure 2, such implicit equation
is plotted for N=18, N=22, and N =26 as function of
the parameters S, and M, for y=816. Setting a large
limit (N) for the series ensures the convergence of the
branches close to the M,=0 axes.

The solid lines in Figure 2, which have a tongue
shape, can be interpreted as combinations of param-
eters that produce a periodic solution for ¢(¢) composed
by a combination of N harmonics. As the solution for
these tongues are periodic, this would suggest that in
the points that do not belong to these lines some decay/
growth rate in the response could be expected. In order
to extend the analysis for these points, the assumed

5
4,
3,
<&
-
2,.
1}
0 ' L 1 1 i
0 001 002 003 004 005 006
St

Figure 2. Roots of the implicit equation derived from the Hill’s
determinant and its convergence as the series limit N is aug-
mented (--- N=18, — = N=22, — N =26). Continuous lines
indicate the combination of parameters that lead to periodic
solutions for q(t) (equation (12)) composed by the combination
of N harmonics (y =816).
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solution needs to be modified in order to include a real
growth/decay rate w,, and, since there are no additional
equations available, it needs to be decided which har-
monic is dominant. Additionally, as in the parametric
equation (9) a sub-harmonic response could be
involved, is also incorporated in the presumed solution,
making it more general. This yields

(%’/’-H%) T
cpe

n=+o00

gn= >

n=—00

(17)

Since x,(f) = q(t)e‘%’ , an unstable response will be
reached for x,(7) if g(r) grows faster than e, which
determines a critical grow rate of C/2 that produces
periodic solutions in x,(f). These exponential and peri-
odic contributions can be seen more clearly in terms of
the particle trajectory equation

n=-+oo

(@—CE
x,(1) = E Cpe r et
N— e — —

n=—0o0

(18)

exponential periodic

A stable particle response occurs if the grow rate is
negative (w, — C/2 < 0), which implies that the particle
will be attracted to the closest velocity node. In con-
trast, an unstable response occurs for a positive grow
rate (w, — C/2 > 0), where the particle oscillation
grows indefinitely.

Developing the same procedure outlined before, the
corresponding recursive relation for the response in
terms of sub-harmonics with grow/decay rate (equation

(17)) is

My M) (i 2+ Ly ¢
S,y ) wr 2 47, !

w > Cf2

11 Stable . s
5 < Cf2
w < Cf w=0Cf2 )
0 " I 1 1 1
0 001 002 003 004 005 006
St

+(5re = )ana =0 (19)
As a total of N growth/decay rates w, were intro-
duced, an additional assumption needs to be made. Let
us consider that only the first sub-harmonic has a crit-
ical growth rate w; = C/2 (then w; /wy = 1/47S,), while
w, =0 for n # 1. The stability map derived from this
recursive relation is plotted in Figure 3, where two
unstable regions with a growth rate in the first sub-
harmonic satisfy equation (9). It predicts the nature
of the response of the linearized equation (9) for any
combination of the parameters S, and M, (y =816).

Limits of physical validity

The calculated isolines for the maximum Re, and the
relative  Mach number M, = |u, —u.|/¢ (assuming
Stokes flow in the governing equation) obtained for
the particle oscillatory motion help to establish the
limits of physical validity of the approach. Some of
these lines are plotted in Figure 3 (right). For the
stable region, the zones of Stokes and non-Stokes
flow are limited by the isoline Re, = 1. It can be appre-
ciated in Figure 3 (right) that there is an important
regime of nonlinear drag in the stable region
(Rep > 1). The limit of nonlinear drag for the Schiller
and Naumman extension Re, ~ 800 is even beyond the
interval shown in Figure 3.

For low particle Reynolds numbers, the drag coeffi-
cient Cp uniformly decreases as the relative Mach
number M, increases.'> This dependence, Cp(M,), not
accounted for in the governing equation, can be neg-
lected in most of the stable region, given that the values
of the isolines of M, are relatively small. However, in a
resonant response (unstable region) the relative Mach
number can be large and Cp will diminish accordingly,

E——
e Ep————
-

M,

0.5

e

Figure 3. Principal stability map for equation (9) for the intervals 0 < St < 0.06 (left) and 0 < St < 2 (right). The two filled regions
indicate that the particle response has a growth rate and are unstable. Note that the filled tongue of the left figure is not visible on the
right one. The unstable and stable regions are divided by the dashed line that determines if the response is resonant or not (N=25

and y =816).
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introducing a different dynamics on the particle than
predicted by the stability map. This reduction in the
drag is due to the rarefied flow, in which the thickness
of the shock wave and related drag wave is comparable
to the particle size.'® Instead of creating a shock wave
on the particle, in the rarefied flow, the particle is
engulfed by the shock wave. The dependence of Cp
on M, cannot be overlooked for unstable regions.
However, it does not affect severely either the predicted
responses in the stable region or the inception of
unstable responses determined by the line that separates
stable from unstable regions.

It can be argued that, in practice, high values of M,
would be difficult to obtain since high acoustic standing
wave amplitudes were required, which, in addition,
cannot be described with linear acoustics theory. In
fact, for large acoustic pressure amplitudes, one of the
nonlinear effects is the harmonic standing waveform dis-
tortion due to the shock wave development.?® The sinus-
oidal waveform turns into an N shape for high
amplitude acoustic pressures in an effect known as
acoustic saturation. In this sense, it could be pointed
out that means to generate high amplitude acoustic
standing waves preventing shock waves have been pro-
posed. This can be reached with shape optimization of
the cavity where the standing wave is produced, or by
the use of multiple Helmholtz resonators. Acoustic pres-
sures obtained with the former method can reach four
times the ambient pressure.”' Therefore, the potential
model limitation of assuming a sinusoidal waveform in
the excitation can be suppressed, at least technically,
even for high amplitude (or nonlinear) acoustics.

Particle drift velocity

The particle drift velocity, i.e. the velocity at which the
particle approaches to the node in each oscillation, can
be estimated by means of the predicted decay rate w; in
the stable region. In fact, the exponential part of equa-
tion (18) evolves the oscillatory trajectory of the par-
ticle to the equilibrium point. For M,=0 (infinite
wavelength), the decay rate is w; = C/2 and there is
no drift velocity. Since there are no nodes the particle
oscillates with a calculable entrainment factor (see sec-
tion ‘“‘Particle in an oscillating flow field”). As M,
grows from zero, in the stable region, the decay rate
decreases from w; = C/2 to the line where w; = 0 indi-
cated in Figure (3). In this zone, the response is domi-
nated by the first harmonic as the decay rate for the first
sub-harmonic is smaller. Above the line where w; = 0,
the first sub-harmonic becomes dominant, because its
decay rate is larger than the decay rate of the first har-
monic. The first sub-harmonic decay rate grows con-
tinuously until it reaches the line of resonant response
w; = C/2 (dashed line in Figure 3).

The importance of sub-harmonics

The need to develop solutions in terms of sub-harmo-
nics is not arbitrary. It is derived from the fact that
parametric resonance occurs when the frequency of
parameter modulation is twice the natural frequency
oscillation of the system.'® In a resonant condition,
when the amplitude of the source f{¢) provides energy
to the system in such a way that exceeds the energy
dissipated by the damping term C (see equation (9)),
the net work done by the modulated “spring” force,
F(t) = f()x,(t), during one period of oscillation is
equal to the change of energy of oscillation in the
same period. If the differential work done by the
force F(t) is dW=—F(t)dx, and dx,=u,d?, the work
done in a period of oscillation is

T
W= [ 10 20)
0

The maximal work is given when the principal fre-
quency of the response x,(f) (or u,(f)) is half of the
parameter modulation frequency, ws/2. In this condi-
tion there is a maximal energy transfer from the modu-
lated parameter to the system,'’ although energy
transfer is also possible, with less intensity, at different
frequencies.

Verification of the theoretical model

The nature of the particle response is corroborated
numerically by resolving both the original nonlinear
and the linearized systems, equations (7) and (8),
respectively, close to the first equilibrium point
X, = 4/4. In both cases the same numerical Runge—
Kutta algorithm and initial conditions
(x, =1.024/4, X, =0) were employed. A particular
Stokes number of S; = 0.04 and several values of M,
were taken, as illustrated with dots in Figure 3 (left). As
expected, there is an impressive variety of solutions
dominated by the first harmonic and sub-harmonic in
stable, periodic and unstable forms.

The particle response for the parameters M, = 0.5,
M,=1, and M, =2.4 are plotted in Figure 4. The
responses for M, = 0.5 and M,=1 belong to a stable
region where the particle approaches always to the
nearest velocity node. Both responses, the nonlinear-
ized and linearized, are identical as the solution is not
resonant and initially close to the point of linearization.
The solution for M, = 0.5 is far from the influence of
the sub-harmonic critical growth rate, therefore, the
response is dominated by the first harmonic. The solu-
tion for M,=1 is closer to a line in the stability map
(Figure 3) for a periodic sub-harmonic solution, but
still in the stable region. Thus, this response is dictated
by this mode decaying as shown in Figure 4. The
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0256 As long as the particle trajectory moves away from
— the point of linearization (velocity node), as shown in

4 Figure 5, for M, = 3.5, the nonlinearized solution
0.252 behaves differently than the linearized solution. The
~ latter, in fact, predicts an exponential growth of the
xR Br oscillation amplitude. As the nonlinear resonant oscil-
= 028 lation approaches a neighbor node (equilibrium point),
' as appreciated in Figure 5, the nonlinear effect becomes
0.246 evident. This nonlinear effect, denominated as paramet-
ric regeneration, restricts the resonant growth of the
0.244 oscillation.!” The velocity nodes act as particle attrac-

0 27 4w 6r 8m

Figure 4. Numerical solutions of equations (7) and (8) (linear-
ized and nonlinearized solutions are identical) close to the first
equilibrium point (or velocity node), with initial conditions
up(0) =0, x,(0)/A = 1.02/4. S, = 0.04, for — M; =0.5, — - -
My,=1land . - -M, =24 (y=816).

i
1.4 [
- SR I'. \ Node
’ The oscillation crosses i ‘I
1 the nearest node !
&)
< 0.8 ... INode
06}
0.4 _
02 F 7N Node
0 b
= OO | | 2 3
0 = 2w 3w 47 5w 67 7w 8w
T
Figure 5. — Numerical solution of the nonlinear system
(equation (7)) and — - — Numerical solution of the linearized

system (equation (8)). The initial particle position,
xp(0)/1 = 0.255, is close to one node but the response is res-
onant. St=0.04, M, = 3.5, and y=8I6.

solution for M, = 2.4 falls in the line of Figure 3 that
predicts a periodic solution dominated by the first sub-
harmonic and this nature of the response is evidenced
with the dotted line in Figure 4. Additionally, this peri-
odic solution is not traced by a sinusoidal function,
which legitimizes the need to describe the particle
response by the interaction of several sub-harmonics
and use a Fourier series for this effect in the presumed
solution.

From M, > 2.4 (S, =0.04) the response is reson-
ant, as predicted by the first branch of the unstable
region denoted in Figure 3 (left). The virtual line that
separates the stable and unstable regions in the map
is called here line of parametric resonance (dashed
line in Figure 3).

tors that establish the regenerated particle trajectories.

Conclusions

In this work, two nonlinearities present in the particle
response to an acoustic field have been faced attempt-
ing a maximum generalization of the response based on
its parameters. A theoretical approach for the solution
of the nonlinear equation of motion for the particle in
an acoustic standing wave close to an equilibrium point
has been presented. For this case, a remarkable variety
of stable and parametric resonant responses have been
predicted theoretically and corroborated numerically.
The dependence of the response, and consequently its
stability, has been reduced from seven parameters to
only three: the Stokes number S;, the acoustic Mach
number M, and the densities ratio y. Thus, a proper
generalization of the particle response has been
reached. A stability map for the first sub-harmonic
has been constructed for this reduced amount of non-
dimensional numbers, which predicts the nature of the
particle trajectories for any combination of parameters
under the discussed limits of validity. The characteris-
tics of the resonant response and the particle drift vel-
ocity for a nonresonant response were also outlined.
Future work contemplates the need to include the
drag coefficient dependence on large Mach numbers
in order to extend the validity of the stability map.
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