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Abstract—Video streaming has established itself as the main
method to consume multimedia content on the Internet. The most
widespread technique is HTTP Adaptive Streaming which is used
by large video service platforms such as YouTube and Netflix. In
order to guarantee a high QoE, different adaptation strategies
have been developed that lead to different video playout patterns.
While some strategies may be more aggressive than others and
often adapt the video quality, it is not clear which strategy is the
best.

In this paper, we want to identify the trade-off between the av-
erage video quality and switches in the quality during playout. We
do this with a user-centric view and try to optimize the adaptation
depending on the user preference with a quadratic program.
This work allows us to put existing and future video adaptation
algorithms in perspective with respect to user preferences. Our
results show that the video quality can already be increased
greatly by allowing few switches while more switches lead to
diminishing gains. This is a novel discovery that is important for
user-centric QoE-management which is of high interest for ISPs
and video service providers.

Index Terms—Video streaming, quality, switches, optimization,
quadratic programming

I. INTRODUCTION

In the last few years a trend became visible, to go from
traditional television to Internet based video services. With
video streaming becoming the status quo in media consump-
tion, quality expectations are increasing. Low quality videos
are no longer considered acceptable in contrast to some
years ago. Therefore, Internet Service Providers (ISPs) and
video service providers are facing the challenge of providing
seamless multimedia delivery in high quality.

In adaptive video streaming the quality in which the next
segment is downloaded is determined by a number of factors
such as the state of the buffer or the current throughput. This
may lead to a high number of quality switches, depending on
the adaptation strategy. Even though stalling can be avoided in
most cases, a high number of quality switches may also have
a negative impact on the Quality of Experience (QoE) [1], [2].
A very passive adaptation strategy plays the video on a lower
quality in order to keep the number of switches at a minimum.
While some users may prefer watching a video with a high
average quality with many switches over low quality with
few switches, there is little research on the trade-off between
quality and switches and user preferences.
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Figure 1. Contribution and methodology of this paper. We propose an opti-
mization formulation which calculates an optimal HTTP adaptive streaming
segment picking strategy (adaptation path) for a given goodput pattern and
a switching aggressiveness parameter α. We evaluate the resulting adaptation
paths based on metrics related to the user experience and based on the selected
value for α.

In this paper we analyze the trade-off between average
video quality and quality switches with regard to a weighting
parameter. For this purpose, we use a quadratic program, that
optimizes adaptation in video streaming towards higher quality
and fewer quality switches. This is done with respect for the
users individual preference for these two QoE impact factors.
Our research question can be formulated as follows. What is
the trade-of between the average quality of a video and the
number of quality switches in adaptive video streaming?

Figure 1 summarizes the contribution and methodology of
this paper. We demonstrate the optimization of the adaptation
with a real mobile goodput trace and 41 different YouTube
videos. Various user preferences for the adaptation are re-
spected by conducting a parameter study for the adaptation
aggressiveness parameter α that defines how frequently the
player may switch to another quality. We then investigate
the resulting optimal adaptation paths and evaluate key QoE
indicators, such as the switching frequency, the average video
quality and the buffer level.

The next section discusses background and related work. In
Section III, the optimization problem is proposed. Thereafter,



the methodology of our evaluation is presented in Section IV.
In Section V, we present the results of our evaluation and
discuss them in detail. The following section gives a summary
of the results of the paper and discusses the implications of the
findings. Finally, we conclude the paper and give an outlook
on future work.

II. BACKGROUND & RELATED WORK

In HTTP adaptive streaming, a video is divided into seg-
ments of equal duration. Each segment is available in different
bit rates that result in different quality. Each time a new
segment is requested, based on the adaptation strategy it is
selected on which quality the segment is downloaded. This
choice is usually determined by a heuristic that relies on the
buffer state [3] or bandwidth estimations [4], [5]. Such adapta-
tion heuristics differ to a large degree in their implementation.
Some are aggressive and try to switch to a higher quality early
while others try to avoid many quality switches. A survey of
key rate adaptation techniques is presented in [6]. An overview
of the most important HAS algorithms is given in [7]. A
detailed analysis of the adaptation of YouTube is given in [8].

Reference [2] investigates the impact of quality switches on
the QoE in comparison to stalling events. Their results show
that smooth switching only performs slightly better than abrupt
switching. They find that stalling and adaptation had similar
impact on the QoE. Furthermore, it is discovered that a high
number of quality switches does not lead to a significantly
lower QoE. In contrast, we only focus on application-layer
Quality of Service (QoS), as we investigate to what degree the
video quality can be increased if a high switching frequency
is allowed. Comprehensive surveys of important papers on
QoE are conducted in [9], [10]. Among others, the authors
discuss the impact of layer switches on the QoE. They consider
switching itself as a degradation and agree with other authors
[1], [11] that the number and amplitude of switching events
should be kept low. Furthermore, they find that the time that
is spend on each quality layer also impacts the QoE. In [12]
the impact of the switches and of the time on the highest layer
on the QoE is compared. The authors find that the time spent
on the highest layer is identified as the main influence factor
while the switches have no significant impact. As a conclusion,
they omit the switches from their QoE model. This dissent
concerning the importance of quality switches for the QoE
shows us that research in this area is not fully explored and
is still progressing. For this reason, we want to investigate at
what cost in terms of quality we can decrease the number of
switching events. What cost users are willing to pay is subject
of future work and is considered an unknown parameter in
this work.

In order to optimize the adaptation in video streaming, we
use a quadratic program which has already been presented
in previous work: [13] and [14] investigate a mobile video
streaming scenario in which a mobile client enters a tunnel.
Even though no data can be downloaded in the tunnel, no
stalling must occur in the video. To solve this problem
optimally, a quadratic program was defined which is compared

to an adaptation heuristic. The authors of [15] discuss the same
problem, but use a two-step approach for their optimization.
They propose to first maximize the mean quality and then
minimize the number of switches if possible. Furthermore,
a special linear case of the program was used in [16]. In
this previous work, the authors investigate how much data is
downloaded redundantly by YouTube’s adaptation heuristic.
The application-layer QoS of this scenario is compared to the
QoS in an optimal scenario with no redundantly downloaded
data. For this second scenario, the aforementioned linear
program was used. Another linear program that tries to solve
the problem of optimal rate allocation for video streaming in
mobile networks is discussed in [17].

III. PROBLEM FORMULATION

In the following, we present an exact formulation of the
problem that we want to optimize in this paper. Consider
a video that consists of n segments. Each segment i is
downloaded in exactly one of r quality layers. In order to play
a video without stalling, each segment i must be downloaded
before its deadline Di. The data that is available from the
initial video request at a point in time t is defined as V (t).
The initial startup delay is fixed to 5 s in the evaluation, i.e.
V (0) equals the sum of the goodput of the first 5 s. The size
of segment i on layer j is Sij and is given in Byte. If two
consecutive segments are downloaded on different layers, the
viewer experiences a quality switch. In order to maximize
the viewers quality of experience, we want to increase the
mean quality and reduce the number of quality switches. The
importance of these two parameters is set as α ∈ [0, 1]. Higher
values for α indicate that it is more important to avoid quality
switches than to increase the average quality. Different users
have different preferences in this regard and thus different
values for α. If a segment i is downloaded on layer j, then
we define xij := 1, otherwise xij := 0.

The goal is to decide, on which quality layer we must
download each segment in order to maximize the weighted
sum of mean quality and the number of quality switches while
avoiding stalling. This optimization problem can be formulated
as a quadratic program as follows.

max

r∑
j=1

(
α

nr

n∑
i=1

jxij −
1− α

2(n− 1)

n−1∑
i=1

(xij − xi+1,j)
2

)
(1)

s.t.

r∑
j=1

xij = 1 ∀i ∈ {1, . . . , n} (2)

xij ∈ {0, 1} ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , r} (3)
k∑

i=1

r∑
j=1

Sijxij ≤ V (Dk) ∀k ∈ {1, . . . , n} (4)

The objective function (Equation 1) maximizes the weighted
sum of the mean quality and the number of quality switches.
In order to receive values between 0 and 1, we normalize the
mean quality by the maximum quality r, we normalize the
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Figure 2. Low, medium and high goodput traces from a vehicular mobility
scenario with means of 0.33 Mbps, 0.67 Mbps and 1.34 Mbps. The horizontal
lines show the mean goodput of the three traces. The coefficient of variation
(CV) is the same for the three traces. The stars at the bottom mark the different
starting timestamps of the video playback used in the evaluation.

switches by the highest possible number of switches n−1 and
we add the factor 1/2 to the quadratic term since it increases
by 2 with every switch. Constraint 2 and 3 ensure that each
segment is download in exactly one quality. Constraint 4
ensures that each segment k is downloaded before its deadline
Dk while not more data than V (Dk) is downloaded.

IV. EVALUATION METHODOLOGY

The primary objective of the evaluation is to assess the
influence of the parameter α on the average playback quality,
on the number of switches and on the buffer level during the
playback. For the evaluation we choose a challenging scenario
based on a mobile goodput trace collected while riding by car
through a city. The segment sizes, i.e. the videos, were selected
from YouTube based on specified properties, e.g. based on
duration and number of quality levels. In the following we first
introduce the mobile pattern in detail. Afterwards we discuss
the selection of the videos.

A. Mobile Goodput Trace

The goodput trace defines the instantaneous application-
layer downlink throughput of a client’s network connection.
The trace was collected in December 2012 while driving by
car in and around Klagenfurt, Austria. A single large HTTP
GET request was send via a UMTS stick and the resulting
goodput of the download recorded continuously for a duration
of 750 s. For the evaluation, the original recorded trace is
scaled to a mean of 0.33 Mbps, 0.67 Mbps and 1.34 Mbps,
while keeping the coefficient of variation (CV) the same
(0.38). The patterns have an autocorrelation of 0.80 for a lag
of 1. We denote the resulting three patterns as low, medium
and high. Furthermore, we define seven shifted versions of the
patterns where we move the starting point forward and append
the skipped goodput samples to the end of the patterns. The
starting timestamps are {0 s, 120 s, ..., 720 s}. Thus, we use
in total 7 · 3 = 21 goodput patterns in the evaluation for each
video sequence.

Figure 2 depicts the three patterns. The average goodput
of each pattern is indicated as horizontal bar. The stars at
the lower axes indicate the three shifting timestamps. The
figure shows the challenging nature of the vehicular mobility
patterns in terms of goodput variation. The goodput drops
frequently to less than 0.1 Mbps and two times, at about 510 s
into the measurement, to zero. Furthermore, there is no period
of more than 60 s without a significant drop. The maximum
observed goodput per pattern is 0.67 Mbps, 1.34 Mbps and
2.68 Mbps. The traces of the three patterns are available in
the supplemental material to the paper [18].

B. Videos

We use in total 41 different videos for the evaluation.
The videos represent the content mix of the videos up-
loaded to YouTube and are randomly chosen by popular-
ity at time of the study. The characteristics of the video
set is summarized in Table I. The videos have a length
of one to ten minutes (average 5.3 minutes) and are from
different video categories (”minecraft”, ”music”, ”funny
cats”, ”gopro”, ”game”). All videos have five quality lev-
els ({144p, 240p, 360p, 480p, 720p}) with an average bitrate
ranging from about 0.1 Mbps for the lowest quality level to
1.3 Mbps for the highest quality level. Based on the down-
loaded video files, we split the videos in segments with a
duration of 5 seconds and use the segment sizes as input for
the optimization. For details about the video selection process
we refer the reader to a previous study [19] where the same
videos were used.

Table I
VIDEO TESTSET CHARACTERISTICS

Avg. bit-rates 140p 240p 360p 480p 720p
Min (Mbps) 0.08 0.16 0.04 0.08 0.14
Mean (Mbps) 0.10 0.23 0.36 0.68 1.33
Max (Mbps) 0.11 0.24 0.56 1.05 2.08
Std 0.00 0.01 0.13 0.24 0.48
Segmentsize 5s
Duration {1, 2, ..., 10} minutes, avg 5.3 m

Figure 3 illustrates the progression of the bit-rate through
the video as an example for the video CRZbG73SX3s, a first-
person-view sports clip. The average goodput of the three
traces from Figure 2 are shown as transparent horizontal lines.
The figure shows that the maximum bit-rate is limited by the
encoder. Furthermore the figure depicts that low motion or
low detail scenes are encoded more efficiently and the average
bit-rate drops frequently. The two lower quality levels do not
exhibit any significant variations in bit-rate compared to the
upper three levels. The video segment sizes are available in
the supplemental material to the paper.

V. EVALUATION

Under the assumption that the player does not do breaks
in between segment downloads and that the player buffer is
unlimited, the following holds true. An aggressive switching
behavior results in a high average quality, high number of
switches and a low average buffer level. A conservative
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Figure 3. Example video segments for video CRZbG73SX3s and the quality
levels {144p, 240p, 360p, 480p, 720p} (from bottom to top). Each segment
has a duration of 5 s. The horizontal bars mark the average goodput of the
traces in Figure 2. The two lowest levels do not exhibit significant variations,
the three highest levels exhibit bit-rate drops in low motion/detail scenes.

switching behavior decreases the average quality, decreases
the number of switches and increases the average buffer level
in the player. From this it follows, that the main objectives
of a QoE-aware streaming player, i.e. to increase the average
quality, to decrease the number of switches and to avoid
stalling by keeping the buffer level high, are contradictory. The
main question of the evaluation is: Can we keep the average
quality high while at the same time reduce the number of
switches and increase the average buffer level?

In the following we first discuss the influence of the α
parameter by example. Figure 4 illustrates the adaptation path
for three different values of α for the video CRZbG73SX3s
under the medium traffic pattern and a starting timestamp
of 0 s. � denotes the average quality of the playback. It
can be observed that for α = 0 the adaptation path is very
conservative as there are zero quality switches and quality
level 3 is selected from start until the end of the playback.
For α = 0.5, the number of switches increases to five and the
average quality to 3.29 as the adaptation path is able to show
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Figure 4. Adaptation path for three different values of α for the example
video CRZbG73SX3s, medium goodput pattern and a starting timestamp of
0 s. � denotes the average quality. An increase in α increases the switches
and the quality. From α = 0.5 to α = 1.0 the increase in quality is only
0.01 quality levels, while the switching frequency increases dramatically.
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Figure 5. Average and maximum buffer level for video CRZbG73SX3s
for the medium goodput pattern. Aggressive choices of α decreases the
observed average buffer level compared to very conservative choices. Results
are presented as median over all seven starting timestamps.

for three periods during the playback a higher quality level. For
α = 1, the adaptation path is very aggressive with 32 quality
switches, i.e. about 3.5 per minute, and one period where
even quality level 5 is selected. However, the average quality
increase is marginal with 0.01 compared to five switches for
α = 0.5. It follows that in this example the α parameter
is able to adjust the aggressiveness of the adaptation path.
Furthermore, we see that a high number of switches is not
necessarily helpful in increasing the average quality.

A. Observations for example video CRZbG73SX3s

Next we illustrate the relationship between the choice of
α and the average and maximum buffer level by example.
Figure 5 shows the average and maximum buffer level in
seconds for video CRZbG73SX3s for the medium goodput
pattern. The average buffer level is the time-dependent average
over the buffer level values observed during the playback. The
maximum is the highest buffer level observed during playback.

Two major observations can be made from the figure. First,
the buffer level decreases for more aggressive values of α.
For a conservative choice of alpha, e.g. α = 0.05, the buffer
level is on average about 53 s and maximum 100 s. For an
aggressive choice, e.g. α = 1.0, the buffer level is only 17 s on
average and a maximum of 40 s is observed. The second major
observation is the fact that the buffer level on average is around
40 s, for the conservative switching behavior as well as more
aggressive values up to α = 0.6. Larger buffer levels reduce
the risk of stalling events due to wrong adaptation decisions.
From this it follows that an adaptation logic can prefer higher
average quality and still keep a comfortable buffer level during
playback.

Subsequently, we take a look at the tradeoff between the
average quality and the switching frequency as the median of
the different starting timestamps for the video CRZbG73SX3s
for the medium goodput pattern. Figure 6 shows the average
playback quality (left axis) and the switching frequency (right
axis) for different values of α.

For α ≤ 0.07, the number of switches is zero and the
average playback quality is 3.0, as also observed in Figure
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Figure 6. Average playback quality versus switching frequency for video
CRZbG73SX3s for the medium goodput pattern as median over the pattern
starting timestamps. Starting from α = 0.1 a more aggressive switching
strategy does not result in increasing average playback quality.

4. For values of α between 0.07 and 0.55, the switching
frequency increases to 0.1 switches per minute and the quality
increases rapidly to 3.28. The difference in average quality
compared to Figure 4 is due to the fact that we consider
here all starting timestamps of the goodput pattern, while
Figure 4 shows only one particular. Starting from α = 0.6 to
α = 0.94, the switching frequency increases up to 0.8 switches
per minute, while the average quality stagnates at around 3.31.
If α is further increased, the switching rate increases rapidly
up to 4.2 switches per minute while the average quality only
increases marginally to 3.32. This example is in line with
the previous observations that a more aggressive switching
frequency does not necessarily benefit the average playback
quality. In contrary, the experience of the user is diminished
by frequent quality switches while on average the playback
quality can not be increased by the frequent switches.

B. Observations for all videos

Next we evaluate the following question by looking at the
whole set of videos. What is the maximum achievable gain in
terms of average playback quality when using an aggressive
switching strategy compared to a conservative one? Figure
7 presents the difference in switches rate and difference in
average playback quality between α = 0.01 and α = 1.0 (Fig.
7(a)) and between α = 0.1 and α = 1.0 (Fig. 7(b)) for the
three goodput patterns over all 41 videos. The shaded areas
denote the 2 dimensional standard deviation of the samples.
The dots represent the mean of the samples.

Multiple conclusions can be drawn from the figure. First,
the lowest gain in quality can be observed for the high goodput
pattern. This is due to the fact that there are many videos in
the set where the high goodput pattern offers enough traffic
volume to download always the highest quality level. There
are no switches needed for those videos. Second, the mean of
the low goodput pattern reaches 4.6m−1 switching rate and
a difference of 0.8 quality level for α = 0.01. This means
that on average in a low goodput scenario you can improve
the average quality level by 0.8 by aggressively switching the
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Figure 7. Difference in average quality and switching rate between α = 1.0
and α = {0.01, 0.1} for the three goodput patterns low, medium and high.
The shaded areas denote the 2 dimensional standard deviation of the samples.

quality level on average every 13 s. Third, the difference in
average quality drops considerable when comparing α = 0.1
with α = 1.0. For example, the maximum achievable gain
for the low goodput pattern drops from 0.8 to about 0.4.
Consequently, from the user’s perspective there is only a small
gain in switching with a higher aggressiveness than α = 0.1.

VI. SUMMARY & DISCUSSION

We first summarize the methodology and the findings of
the evaluation. Afterwards we discuss the implications of the
findings and the application of this paper to the future work
in this area.

At first we discuss the methodology and we propose a
modification of an existing optimization formulation which
allows us to calculate an optimal adaptation path for a given
video, a given goodput pattern and a given switching-versus-
quality trade-off parameter. This trade-off parameter defines
the aggressiveness of the quality switching behavior and is
denoted by α. Choosing α = 0 results in an adaptation path
with zero quality switches and α = 1 results in an adaptation
path which tries to optimize the average quality at all cost,
i.e. with as many quality switches as necessary. Based on
an example video we observe that the average buffer level
drops fast for values of α between 0.0 and 0.1. For α > 0.1,
the average buffer level stays close to 42 s and starting from
α = 0.6 drops linearly to 20 s. Afterwards we take a look
at the average playback quality and the switching frequency
for the example video. The results show that the switching
frequency increases with α ≥ 0.6 rapidly, while the average
quality increases fast and reaches its maximum early at about
α = 0.1. An evaluation of 41 randomly selected videos from
YouTube shows that on average an increase of up to one
quality level is possible by increasing the switching frequency
by 5 switches per minute. However, the evaluation also shows
that this increase is half due to the sharp increase in average
quality for α = 0.01 to α = 0.1.

In general the results show that aggressive switching behav-
ior is not necessary rewarded with a higher average playback
quality. From the evaluation also follows that a good starting
point for future evaluation of the α parameter is α = 0.1.
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Figure 8. Application of our contribution for future work. The optimization
formulation enables us to determine the Pareto frontier for any given HAS
adaptation algorithm, a given goodput pattern and a given video in terms of
the trade-off between average quality and switching frequency. In combination
with a future sophisticated QoE model, this allows for a novel evaluation and
classification of adaptation algorithms for HAS video streaming.

Higher, more aggressive, values do not increase the average
playback quality much further.

Figure 8 illustrates qualitatively the application of our
contribution to the future work in the area of HAS adaptation
research. The optimization formulation allows us to determine
the Pareto frontier for any given HAS adaptation considering
the trade-off between maximizing the average quality and min-
imizing the number of quality switches during playback. This
means that no existing or future HAS adaptation can reach a
higher average quality for a given number of switches than the
Pareto frontier. Furthermore, we know from the evaluation that
the Pareto frontier quickly saturates in terms of average quality.
It is ongoing user-experience research to determine a model
for the lower bound for the average playback quality and an
upper bound for the switching frequency. In combination with
such a future sophisticated QoE model, the Pareto frontier
allows for a novel evaluation and classification of adaptation
algorithms for HAS video streaming.

VII. CONCLUSION

In this paper, we investigated the trade-off between the
average quality and the number of quality switches in a video
streaming session. For this purpose we use a quadratic program
that includes these two values in its optimization function in
order to receive optimal values.

Our results show that high average quality can be achieved
with few switches while a very high number of switches is
necessary to achieve the highest possible quality. We conclude
that it is advisable to rely on conservative strategies that do
not switch with a high frequency. However, it is still subject of
future work to what degree the number of switches actually
impacts the QoE. In future work, we plan to determine the
Pareto frontier for the trade-off between the average quality
and the number of quality switches for HAS.
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Design and Performance Evaluation of New Mechanisms for
the Future Internet – New Paradigms and Economic Aspects).

REFERENCES

[1] M. Zink, J. Schmitt, and R. Steinmetz, “Layer-encoded video in scalable
adaptive streaming,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp.
75–84, 2005.

[2] S. Egger, B. Gardlo, M. Seufert, and R. Schatz, “The impact of
adaptation strategies on perceived quality of http adaptive streaming,” in
Proceedings of the 2014 Workshop on Design, Quality and Deployment
of Adaptive Video Streaming. ACM, 2014, pp. 31–36.

[3] T.-Y. Huang, R. Johari, and N. McKeown, “Downton abbey without
the hiccups: Buffer-based rate adaptation for http video streaming,” in
Proceedings of the 2013 ACM SIGCOMM workshop on Future human-
centric multimedia networking. ACM, 2013, pp. 9–14.

[4] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with festive,” in
Proceedings of the 8th international conference on Emerging networking
experiments and technologies. ACM, 2012, pp. 97–108.

[5] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran,
“Probe and adapt: Rate adaptation for HTTP video streaming at scale,”
IEEE Journal on Selected Areas in Communications, vol. 32, no. 4, pp.
719–733, 2014.

[6] J. Kua, G. Armitage, and P. Branch, “A survey of rate adaptation
techniques for dynamic adaptive streaming over http,” IEEE Commu-
nications Surveys & Tutorials, 2017.

[7] C. Timmerer, M. Maiero, and B. Rainer, “Which adaptation logic? an
objective and subjective performance evaluation of http-based adaptive
media streaming systems,” arXiv preprint arXiv:1606.00341, 2016.
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