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Abstract

Background: The development of anti-islet cell autoimmunity precedes clinical type 1 diabetes and occurs very
early in life. During this early period, dietary factors strongly impact on the composition of the gut microbiome. At
the same time, the gut microbiome plays a central role in the development of the infant immune system. A
functional model of the association between diet, microbial communities, and the development of anti-islet cell
autoimmunity can provide important new insights regarding the role of the gut microbiome in the pathogenesis of
type 1 diabetes.

Results: A novel approach was developed to enable the analysis of the microbiome on an aggregation level
between a single microbial taxon and classical ecological measures analyzing the whole microbial population.
Microbial co-occurrence networks were estimated at age 6 months to identify candidates for functional microbial
communities prior to islet autoantibody development. Stratification of children based on these communities
revealed functional associations between diet, gut microbiome, and islet autoantibody development. Two
communities were strongly associated with breast-feeding and solid food introduction, respectively. The third
community revealed a subgroup of children that was dominated by Bacteroides abundances compared to two
subgroups with low Bacteroides and increased Akkermansia abundances. The Bacteroides-dominated subgroup was
characterized by early introduction of non-milk diet, increased risk for early autoantibody development, and by
lower abundances of genes for the production of butyrate via co-fermentation of acetate. By combining our results
with information from the literature, we provide a refined functional hypothesis for a protective role of butyrate in
the pathogenesis of type 1 diabetes.

Conclusions: Based on functional traits of microbial communities estimated from co-occurrence networks, we
provide evidence that alterations in the composition of mucin degrading bacteria associate with early development
of anti-islet cell autoimmunity. We hypothesize that lower levels of Bacteroides in favor of increased levels of
Akkermansia lead to a competitive advantage of acetogens compared to sulfate reducing bacteria, resulting in
increased butyrate production via co-fermentation of acetate. This hypothesis suggests that butyrate has a
protective effect on the development of anti-islet cell autoantibodies.
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Background
The human holobiont is defined as the human host to-
gether with all its associated microorganisms [1] coloniz-
ing various regions of the human body. By far, the
largest community of microorganisms resides in the
large intestine where an estimated number of 1012 bac-
teria per gram can be found in stool samples [2]. The
microbial community of the gastrointestinal tract serves
several functions including fermentation of unabsorbed
nutrients, partnering the human immune system, or pro-
viding barrier against pathogenic attacks [2, 3]. Consti-
tuting an important ecosystem within the human body,
gut microorganisms are increasingly considered to play a
crucial role in the development of autoimmune diseases
[4, 5] such as type 1 diabetes (T1D).
T1D is an autoimmune disease that results in destruc-

tion of insulin producing cells in the islets of Langerhans
which is preceded by the development of islet autoanti-
bodies. Thus, seroconversion to islet autoantibodies is
considered to be an important checkpoint in pathogen-
esis of T1D [6]. Interestingly, in individuals with a high
risk background for T1D, incidences of seroconversion
to autoantibody positivity peak within the period of
9 months to 2 years of age and a second, less prominent
peak has been observed at approximately 8 years of age
[6]. Beyond this, the first months of life are a distinguished
period for the development of the human immune system.
Thus, major switches in the transformation of mucosal
barrier function in the gut reside within this time period
[7]. While it is generally agreed on that genetic back-
ground constitutes approximately 60 % of T1D risk [8],
the remaining propensity to disease has been attributed to
several environmental factors including diet, early infec-
tions, or mode of delivery [9, 10]. Among these, early diet-
ary factors along with early programming of the immune
system can be associated with microorganisms colonizing
the body. Being the organ where nutritional components
have to pass the epithelial barrier, as well as a site of high
metabolic activity, the gut ecosystem has the highest dens-
ity of immune cells within the human body [11]. This said,
reports on T1D risk being associated with gut bacteria do
not yet provide a clear picture [5, 12, 13].
Several studies have shown an association between al-

tered gut microbial communities and autoimmunity
[14–19]. However, although several researchers analyzed
the gut microbiome after autoantibody development [14,
16, 19] or T1D onset [20, 21], few studies focus on the
period prior to autoantibody development [15, 17, 18].
Among the first, Giongo et al. [17] reported a shift in
the ratio of Bacteroidetes and Firmicutes in a group of
eight Finnish children. Recently, higher abundances of
Bacteroides dorei prior to autoantibody seroconversion
have been associated with increased risk of islet auto-
antibodies [15]. This finding aligns with earlier reports

on increases of abundances of Bacteroides spp. subse-
quent to islet autoantibodies and/or T1D disease onset
[14, 20, 21]. Brown et al. [16] presented a metagenomics
analysis showing lower portions of butyrate-producing
and mucin-degrading bacteria in autoantibody positive
children. In the German BABYDIET study, differences
on the level of the single bacterium could not be seen,
while the overall microbial community structure was
compromised in individuals who later developed islet
autoantibodies [18].
Early dietary effects, such as breast-feeding, have been

reported to influence T1D development. However,
contradictory results have been published. In general,
breast-feeding seems to exhibit a protective role for T1D
[22] in retrospective analyses, while prospective cohorts
[10, 23] have not been able to confirm this observation.
Rather, there is increasing evidence that increased risk
for T1D is associated with early introduction of complex
diet, in particular gluten and cereals [10, 24, 25], or
fruits and berries [23, 26].
To our knowledge, the German BABYDIET cohort

[18, 27] is currently the largest prospective cohort pro-
viding detailed dietary protocols as well as longitudinal
microbial 16S rRNA amplicon sequencing data and in-
formation about the development of islet autoantibodies.
Thus, this cohort provides a unique opportunity to
analyze the association between infant diet and gut mi-
crobial communities with respect to the development of
islet autoantibodies. Being a unique source, we reana-
lyzed the publicly available 16S rRNA amplicon data
with regard to the impact of the gut microbiome on the
development of islet autoimmunity prior to seroconver-
sion. Our aim hereby was to derive a functional hypoth-
esis which may provide guidelines for future design of
cohorts.
When addressing what key functionalities stabilize the

gut microbial community and balance its interaction
with the host, neither the properties on the level of the
community as a whole nor the taxonomic identities pro-
vide sufficient information. Thus, our objective was to
provide a level for functional analysis that reaches be-
yond a single microbial taxon and at the same time be-
ing finer than classical measures on the community level
such as microbial diversity. Through applying commu-
nity analysis on co-occurrence networks of bacteria, we
show that three communities can be identified repre-
senting functional groups of microbial genera. In par-
ticular, this intermediate level of observation allows
dissecting the “dietary age” of the children. The latter
turned out to have much stronger influence on the gut
microbial community than the actual biological age.
Stratification of children on the level of microbial com-
munities unravels alterations in the ensemble of mucin
degrading bacteria in the intestinal flora of children who
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later developed islet autoantibodies. Specifically, lower
abundances of Akkermansia in favor of Bacteroides, to-
gether with a functional shift in butyrate metabolism, as-
sociate with early introduction of non-milk diet, in
particular meat, as well as with higher risk of serocon-
version early in life. Summarizing, our analysis suggests
that instead of the biological age, the dietary age should
be considered for the analysis of the gut microbiome
with respect to autoantibody development. Due to sub-
stantial variations regarding the biological age at sero-
conversion, accounting for diet is of particular
importance when dealing with associations between mi-
crobial factors and seroconversion.

Methods
BABYDIET study and 16S rRNA gene sequencing
In total 298 stool samples from 44 children participating
in the BABYDIET study were used for microbiome ana-
lysis. These included 147 samples from 22 children who
developed persistent anti-islet cell autoantibodies at a
median age of 1.54 years (IQR 0.90 years and maximum
2.45 years) and 151 samples from 22 children who
remained anti-islet cell autoantibody negative. These lat-
ter subjects were also matched for date of birth. On
average 6.8 stool samples per child were taken from age
0.24 to 3.2 years. To analyze microbial communities be-
fore the development of the first autoantibody, we used
samples from children that had at least one probe be-
tween age 3 and 9 months. The probe closest to
6 months of age was used if several probes per child
were available. This resulted in a total of 40 children, in-
cluding 19 autoantibody positive and 21 autoantibody
negative children. None of these children had already
developed their first positive autoantibody. A detailed
description of the sample collection, the questionnaire
on dietary intake, and the BABYDIET cohort can be
found in [18] and [27]. In brief, data on breast-feeding,
the duration of breast-feeding, and the introduction of
solid food (gluten-free and gluten-containing cereals,
vegetables, fruits, potato, and meat) were taken from
daily food records completed by the child’s parents.
Written informed consent was obtained from the par-
ents. The study was approved by the ethics committee
of the Ludwig-Maximilian-University, Munich, Germany
(Ethikkommission der Medizinischen Fakultät der
Ludwig-Maximilians Universität No. 329/00). Stool sam-
ple collection and 16S rRNA gene sequencing was per-
formed as described in [18]. In brief, PCR was
performed at an initial denaturation temperature of 94 °
C for 3 min, followed by 20 cycles of 94 °C for 45 s, 50 °
C for 30 s, and 65 °C for 90 s. A final elongation step at
65 °C was run for 10 min. PCR products were purified
using the Qiagen™ PCR purification kit following the
manufacturer’s protocol [18]. The V4 region of the 16S

rRNA genes was used, and bacterial 16S genes were
amplified using the primers 515F and 806R. Deviating
from the procedure described in [18], sequences were
aligned to the Greengenes 13.8 database [28] at 97 %
identity using the USEARCH program version 6.022 and
low quality reads were trimmed as described in [15].
The Illumina 16S sequences are available from NCBI’s
short read archive (accession number SRP063271). To
account for the influence of sequencing artifacts, oper-
ational taxonomic units (OTUs) that were not present
with ≥50 reads in ≥10 samples were excluded from all
further analyses.

Statistical analysis
The aim of this study was to develop a method for the
identification of stable gut microbial communities from
interaction networks prior to the development of anti-islet
autoantibodies, and thus, providing a novel opportunity to
analyze gut microbial communities on a level beyond the
single bacterium and the microbial community as a whole.
In a first step, we estimated microbial communities based
on co-occurrence networks. Next, microbial communities
were validated by analyzing their association with dietary
factors and last but not least microbial communities were
tested for associations with the development of anti-islet
autoantibodies. In total, 1048 OTUs were detected, and
classified OTUs (N = 563) were aggregated on genus level
using the Greengenes 13.8 database [28]. To avoid bias
due to sequencing artifacts, genera with less than 0.01 %
abundance within the total number of reads were
neglected for community analysis. The CCREPE [29]
method was used to estimate Spearman’s rank correlations
(ρ) with P values corrected for compositional data. An
edge was set between two bacterial genera if the P < 0.05
and ρ > 0.4. For further network analysis, the largest con-
nected component of the network was selected. Commu-
nity analysis was applied to the network using the Markov
Dynamics clustering algorithm by [30] implemented in
MATLAB®. This algorithm allows identification of clique-
like communities within a continuous range of a param-
eter (i.e., Markov time), capturing dynamic characteristics
of processes on the network. To determine the number of
communities, we chose a number larger than two showing
longest stability with respect to Markov time (see Fig. 1a).
To analyze the association of the identified gut microbial
communities with diet and autoantibody development,
children were stratified based on genera in each of the
communities separately. Based on UniFrac distance [31],
clustering of children was performed with the Partitioning
Around Medoids method [32], and the number of clusters
was determined by the Calinski-Harabasz method imple-
mented in the R package fpc [33]. The number of food in-
gredients (potato, meat, vegetables, fruit, and formula
milk) was used to determine a score for the complexity of
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the diet for each individual. P values for the differences in
breast-feeding frequencies between subgroups of children
were obtained by comparing the number of children who
were still breast-fed vs. children who were no longer breast-
fed by two-sided Fisher’s exact tests. Similarly, P values for
food complexity were obtained by comparing individuals
who were already fed >3 vs. individuals who were fed ≤3
different food ingredients by two-sided Fisher’s exact tests.
Finally, the PICRUSt method [34] was used to infer in silico
metagenomes based on the KEGG database [35, 36] from
the 16S OTU table. To compare subgroups of children re-
garding their genetic potential to produce butyrate via the
phosphotransbutyrylase and butyrate kinase pathway
(K00634 and K00929) or the butyryl CoA:acetate CoA
transferase pathway (K01034 and K01035), we compared
the relative abundances of the KEGG genes (KOs) required
for the last steps in these pathways. All statistical analyses
were performed with R version 3.0.2 and MATLAB® 2012b.
The full documentation of all statistical analyses can be
found in Additional file 1, and the required OTU and KO
abundance tables can be found in Additional files 2 and 3.
If not mentioned otherwise, two-sided P values were used
throughout the manuscript.

Results
Co-occurrence network-based bacterial communities at
age 6 months
The analysis of microbial co-occurrence patterns can
provide valuable insights into factors driving the assem-
bly of functional microbial communities. Co-occurrence

networks were analyzed at 6 months of age as the focus
of our approach was on the functional role of the gut
microbiome with regard to the development of the in-
fant immune system prior to autoantibody seroconver-
sion. Furthermore, at this age, diet has a substantial
impact on the microbial community as changes from
breast-feeding to more complex food ingredients often
occur at approximately 6 months of age. Using an a
priori criterion for stability based on Markov time
(see the “Methods” section), three clique-like stable
communities (C1, C2, and C3) could be clearly identi-
fied in the association network of genera determined
in samples of 6 months of age (Fig. 1; Additional file
4: Figure S1). Community C1 consisted to a signifi-
cantly larger part of the taxonomic orders Enterobac-
teriales (38 %, P < 0.00001) and Lactobacillales (21 %,
P = 0.002, Fig. 1b) when compared to C2 and C3 and
was the only community that included genera from
the order Bifidobacteriales. Community C2 constituted
mainly of Clostridiales (65 %, P < 0.00001) and Erysi-
pelotrichales (15 %, P = 0.02, Fig. 1b), both from the
phylum Firmicutes. Thus, this group contained several
specialists that are characteristic for an adult-like commu-
nity, such as Ruminococcus, Blautia, or Akkermansia
(Fig. 1b). Community C3 included a large proportion of
Bacteroidetes (22 %, P = 0.002, Fig. 1b). Although
Firmicutes were also providing the majority within
this community (67 %), there were much less Clostri-
diales (22 %) present within this group compared to a
significant portion of Bacillales (44 %, P = 0.00002). Also
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Veillonella and some other Veillonellaceae fell within
the third community. Next, we analyzed the temporal
development of abundances of genera in the commu-
nities using the extended longitudinal data set (see
the “Methods” section) gained from samples taken
over 2 years. While the majority among dominant
bacteria in communities C1 and C2 showed decreasing
(C1) or increasing (C2) abundances, respectively,
community C3 consisted of both, bacteria expressing
increasing as well as decreasing abundances over time
(Additional file 4: Figure S2).

Microbial communities are associated with dietary factors
The associations of the gut microbial composition with
breast-feeding and the introduction of solid food have
been extensively described in the literature [37]. We
therefore analyzed the association of diet with the three
microbial communities as a validation of our approach
to identify functional groups of bacteria on a community
level. The taxonomic composition of communities C1
and C2 already suggested that diet might be a major fac-
tor being reflected through bacteria in these communi-
ties. In contrast, no obvious dietary pattern was seen for
community C3, suggesting that this group characterizes
additional factors influencing community composition.
Stratification of children based on abundances of
genera in each community (Additional file 5: Table
S1) confirmed that diet associated with abundances
in communities C1 and C2. While community C1
showed increased abundances in breast-fed individ-
uals (G11 and G12 in Additional file 4: Figure S3B,
P = 0.012) and decreased abundances in children who
were fed a more complex diet (G13 and G14 in
Additional file 4: Figure S3C, P = 0.00006), commu-
nity C2 revealed the opposite pattern with decreased
abundances in breast-fed children (G21 and G23 in
Additional file 4: Figure S4B, P = 0.011) and in-
creased abundances in children that were given a
more complex diet (G22 in Additional file 4: Figure
S4C, P = 0.010). While children in the Bifidobacter-
ium-dominated subgroup G11 were mostly breast-fed
without being fed formula milk in addition (Add-
itional file 4: Figure S3B and S3D), subgroup G12
had almost equal abundances in Bifidobacterium,
Streptococcus, and some Proteobacteria. At the same
time, this subgroup included more children that
were fed formula in addition to breast milk (Add-
itional file 4: Figure S3B and S3D). In contrast, chil-
dren showing higher abundances of Akkermansia,
Ruminococcus, Clostridium, and Blautia (G13 in
Additional file 4: Figure S3C, S3E and G22 in Add-
itional file 4: Figure S4C and S4E) reflect the fact
that the complexity of the food taken by those indi-
viduals was clearly higher. Although stratification of

children based on abundances in community C3
showed a tendency for increased food complexity in
a subgroup dominated by Bacteroides (G33 in Fig. 2),
no significant associations of the subgroups could be
observed with breast-feeding or food complexity
(Fig. 2b, c).

Association of a Bacteroides-dominated community with
anti-islet autoantibody development
After successfully validating our approach for microbial
community detection in terms of their functional associ-
ation with infant diet, microbial communities at
6 months of age were analyzed for their association with
anti-islet autoantibody development. Stratification of
children based on communities C1 and C2 did not
reveal associations with autoantibody development
(Additional file 4: Figure S3B and S4B). Clustering of
children with respect to the abundances in commu-
nity C3 resulted in three clusters (Fig. 2a, Additional
file 5: Table S1). While microbial ensembles derived
from children in subgroup G33 were dominated by
the genus Bacteroides and showed almost no abun-
dances in Akkermansia, samples from subgroups
G31 and G32 had low Bacteroides and increased
Akkermansia abundances (Fig. 2e, f ). In line with re-
ported associations of increased Bacteroides abun-
dances in children that developed anti-islet
autoimmunity or T1D, subgroup G31 comprised sig-
nificantly more autoantibody negative children, com-
pared to subgroup G33 (Fig. 2b, P = 0.041, one-sided
Fisher’s exact test). Strikingly, compared to both,
G31 and G32, subgroup G33 showed a significantly
increased risk of early autoantibody development
(Fig. 3a, P = 0.021, HR = 2.8). The increased abun-
dances of Bacteroides in G33 observed at age
6 months could not be observed at later time points
(Fig. 3b). Similarly, Akkermansia abundances be-
tween the subgroups became more similar at later
time points (Fig. 3c). Interestingly, Bacteroides
showed significantly increased abundances in chil-
dren that already had meat in their diet (P = 0.007,
data not shown).
To identify indications of possible functional differ-

ences of genera belonging to community C3, we com-
pared functional traits predicted via imputed
metagenome data. We observed differences in the pro-
duction of butyrate via the classical buk-pathway (indi-
cated by the presence of phosphotransbutyrylase and
butyrate kinase genes; K00634 and K00929) and the po-
tential to produce butyrate by co-fermentation of acetate
(indicated by the presence of butyryl CoA:acetate CoA
transferase genes; K01034 and K01035), further on re-
ferred to as but-pathway. One can note that the route
via co-fermentation yields higher butyrate outcome
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compared to the buk-pathway [38]. Interestingly, the ra-
tio of but- vs. buk-genes was significantly lower in sub-
group G33 (Fig. 3d, P = 0.00015) compared to the other
two communities. As a whole, clustering based on com-
munity C3 revealed a significant association of early
autoantibody development in a subgroup with high Bac-
teroides and low Akkermansia abundances.

Discussion
The analysis of co-occurrence patterns clearly allows dis-
entangling dietary effects on gut community compos-
ition. Children showing higher abundances in
community C1 are still in a state of prevailing milk diet.
We can identify two dietary sub-patterns through ana-
lyzing this community. There is a Bifidobacterium-domi-
nated pattern (Additional file 4: Figure S3D, subgroup
G11) that associates with higher percentages of breast-

fed individuals. Moving towards an intermediate state of
mixed diet including breast-milk and formula is reflected
in a microbial composition which shows a more bal-
anced community composition with lactic acid bacteria
and Proteobacteria (Additional file 4: Figure S3D, sub-
group G12). Likewise, community C2 comprises Clostri-
diaceae, Ruminococcaceae, and Lachnospiraceae,
reflecting the ability of the microbial consortium to de-
grade an increasing variety of dietary sources, such as
complex polysaccharides. This is commonly accompan-
ied with rising abundances of genera from the phylum
Firmicutes, primarily of the order Clostridiales [39].
Thus, abundances of genera belonging to community C2
indicate an advanced dietary age of the host (Additional
file 4: Figure S4E and C, subgroup G22). Overall, com-
munities C1 and C2 validate the assumption that the
chosen community approach is a suitable way to identify
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functional groups of bacteria, reflecting adaptation of
the microbial ensembles to dynamic changes in their
host-defined habitat.
Turning away from such direct dietary effects, com-

munity C3 dissects alterations with respect to the risk
for developing anti-islet autoantibodies. There is a sig-
nificant increase of autoantibody positive cases in sub-
group G33 of children showing a community pattern
with increased abundances of Bacteroides (Fig. 2f, b).
Considering progression to autoimmunity, the effect be-
comes even more pronounced (Fig. 3a). Linking these
observations to dietary patterns, the number of children
exposed to complex diet (i.e., with five food compo-
nents) is higher in subgroup G33 compared to G31 and
G32 (Fig. 2c). Additionally, Bacteroides abundances were
significantly increased in children that had meat in their
diet, an observation which has also been made in an-
other study [40]. Overall, we support observations made
in the prospective cohorts, that early introduction of
higher food complexity increases the risk for auto-
immunity [23–25, 41]. Asking what compensates for
lower abundances of Bacteroides in subgroups G31 and
G32, it is striking that both subgroups have higher levels
of Akkermansia (Fig. 2e). Akkermansia muciniphila is

characterized by its potential to grow on mucin [42].
Within this habitat, Akkermansia markedly represents a
specialist with a genome containing a high number of
enzymes for degradation of human-derived mucins [43].
Unlike Bacteroides species, which are also able to utilize
mucins, Akkermansia cannot switch to carbohydrate fer-
mentation derived from luminal content [42, 44]. Gener-
ally, higher abundances of Akkermansia have been
associated with a healthy gut community in several stud-
ies [45, 46]. Most mucin degraders such as Clostridium,
Bifidobacterium, and Bacteroides are not able to fully de-
grade mucins [47]. Therefore, mucin-degrading bacteria
are frequently associated with sulfate-reducing bacteria
(SRB), which use sulfate for gain of energy, thereby re-
leasing sulfide [47]. Indeed, mucin fermentation in the
colon has been demonstrated to increase the amount of
released sulfate [47]. In contrast, Akkermansia are able
to fully degrade mucins and its genetic content enables
assimilatory utilization of sulfate [48]. Functionally, SRB
as well as methanogens compete with acetogens such as
Blautia and Ruminococcus for H2 produced during
carbohydrate fermentation. Since hydrogen inhibits fur-
ther production of short chain fatty acids (SCFAs) [39],
the hydrogen gradient is a sensible driver for SCFA
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balance. In the presence of sulfate, SRB would typically
outperform methanogens and acetogens in H2 utilization
[49]. On the other side, H2 utilization by acetogens
raises levels of acetate which then fosters higher effi-
ciency in butyrate production via the but-pathway [38].
Butyrate has several health promoting effects. First of all,
it is the major energy source for intestinal epithelial cells
[50, 51]. Consequently, butyrate has been shown to in-
crease mucus production [52, 53]. Indeed, we observed
that in contrast to children in the Bacteroides-dominated
subgroup (G33), children in the Akkermansia-dominated
subgroups (G31 and G32) harbor a microbiome that
seems to prefer butyrate-production through co-
fermentation of acetate (Fig. 3d). Thus, our data leads to
the hypothesis (Fig. 4) that alterations in the ensemble
of mucin degraders, Bacteroides and Akkermansia,

directly affect competition among hydrogenotrophic
bacteria, which indirectly leaves an impact on butyrate
production. Due to decreased available sulfate levels in
Akkermansia-dominated communities, acetogens might
have an indirect advantage which then leads to a butyro-
genic effect via the but-pathway. Closing the argument
towards an increased risk for anti-islet autoimmunity,
there are several hypotheses currently discussed. Lower
butyrate availability might impair gut integrity, thus
allowing larger molecules to penetrate the epithelial bar-
rier (leaky gut hypothesis). This line of thought frames
within the context of the perfect storm hypothesis and
hygiene hypothesis [12, 13]. On the other hand, butyrate
might also directly modulate immune function, in par-
ticular inflammation [50]. A third option lies in the cap-
ability of co-evolved gut inhabitants, in particular

butyrate

epithelial
cells

mucins

acetate H2 sulfate

sulfide

SRBacetogens

butyrate producer Akkermansia Bacteroides

Fig. 4 Model for the indirect influence of Bacteroides or Akkermansia on butyrate production. Incomplete degradation of mucins in microbial
communities dominated by Bacteroides leads to increased levels of sulfate. In contrast, Akkermansia can fully degrade mucins and use sulfate in
an assimilatory manner. Concerning hydrogenotrophs, acetogens might outperform sulfate-reducing bacteria in microbial communities with
increased Akkermansia abundances. Furthermore, acetate production by acetogens enhances butyrate production via co-fermentation of
acetate (but-pathway)
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Bacteroides spp. to trigger immune signals of the host in
order to defend their ecological niche [54].
Considering the host, dietary patterns clearly impact

the ecological balance just discussed. Breast-feeding, for
example, prepares the gut ecosystem for later
colonization with mucin-degrading specialists [55], since
human milk oligosaccharides (HMO) are similar in pro-
tein structure to mucins produced by gut epithelial cells
[56]. It therefore seems likely that through an early
introduction of complex carbohydrates, the ecological
advantage for Akkermansia provided by HMO might be
compromised, in favor of other mucin degraders, which
can also feed on alternative substrates as, e.g., resistant
starch. Being the dominant end-product of lactate fer-
mentation in the human intestinal communities [57],
acetate provides a main source of butyrate production
[58, 59]. Note that it was shown that milk-dominated di-
ets support the butyrogenic effect of co-colonization of
Bifidobacterium with acetate utilizers [60].
In silico analysis of 16S rRNA gene fragments derived

from SRBs revealed a high number of unclassified se-
quences at genus level within the different groups of sul-
fate reducers deposited in the databases (data not
shown). Thus, the majority of SRB could not be resolved
on genus level due to under-representation in OTU
databases. Thus, we can only provide indirect support
concerning the role of sulfate in shaping the hydrogeno-
trophic community. A diet rich in meat has been shown
to increase exogenous sulfide in feces [61]. Thus, our
observation of an association between meat consump-
tion and increased abundance of Bacteroides is in line
with the part of the hypothesis claiming that increased
abundances of Bacteroides may come along with higher
levels of sulfate being available in the system, thereby
shifting the hydrogenotrophic community towards
sulfide-releasing SRBs. Note that the presence of B.
thetaiotaomicron had significant impact on the growth
of SRB in an animal study [62].
The observation of increased abundances of Bacter-

oides preceding anti-islet autoimmunity shows striking
parallels with other autoimmune diseases, in particular
Celiac disease (CD) [63]. De Palma et al. [64] associated
an HLA-DQ2 genotype being associated with both, in-
creased risk for CD and T1D with higher abundances in
the Bacteroides-Prevotella group in stool samples of chil-
dren of less than 1 month of age. Of interest for our
work is the fact that individuals at higher risk have been
reported to harbor significantly higher abundances of
SRB [64]. Sánchez et al. [63] analyzed the diversity of
Bacteroides spp. in greater detail showing that infants
with high HLA risk for CD showed higher prevalence of
Bacteroides vulgatus. Note that in samples from adults,
Leitch et al. [65] found B. vulgatus to be the only Bacter-
oides species detected growing on mucin. Davis-

Richardson et al. [15] also relate increased abundances
of B. dorei, a close relative of B. vulgatus, with increased
risk of islet-autoimmunity in the Finnish DIPP cohort.
Along with observations made in the Finnish cohort
[15], it seems likely that the period determining possible
effects of the microbial community on pathogenesis of
T1D falls within the first year of life. As can be seen
from temporal data, alterations in abundances of Akker-
mansia fade within the second year of life (Fig. 3c). The
same holds true for Bacteroides (Fig. 3b). It also appears
likely that increased abundances of Bacteroides in G31
within the first year of life are due to other representa-
tives of the genus than the abundances showing up later
at the age of 2 years (Fig. 3b). A characteristic property
of the genus Bacteroides, following from their long
co-evolution with the human host, is the ability to
switch from carbohydrate fermentation to digestion of
endogenously-derived mucins [66]. Thus, depending
on the availability of glycan sources in the lumen,
Bacteroides community composition is expected to vary.
Overall, the combination of our results with an ex-

tensive literature search leads to a refined functional
hypothesis explaining a possible role of the gut mi-
crobial community in pathogenesis of anti-islet auto-
immunity. In summary, these observations support
the hypothesis that increased availability of butyrate
in the intestinal tract has a protective effect on devel-
opment of autoimmunity and T1D. Concerning the
risk of developing anti-islet autoantibodies and/or
T1D several studies associated an increased risk with
early introduction of complex food [10, 23–25] while
protective effects of breast-feeding are discussed con-
troversially [10, 22, 23]. The influence of diet, in par-
ticular breast-feeding on microbial composition in the
large intestine is well documented. Basically, breast-
feeding as well as formula-feeding seems to associate
with higher abundances of lactic acid bacteria and
Bifidobacterium spp. [67, 68]. Nevertheless, the over-
all net-effect with respect to the development of dis-
ease in our hypothesis depends on cross-feeding
effects between mucin degraders, hydrogenotrophs,
and butyrate producers. Thus, breast-feeding alone
might or might not alter the risk, depending on the
composition of the microbial ensemble. With the ef-
fect of diet on the gut microbial community being
profound, evaluations of the role of the microbiome
in host-microbial homeostasis and in particular its as-
sociation with autoimmunity should indispensably
take the nutritional habits of the subject, i.e., the diet-
ary age into account. This conclusion is of peculiar
importance for the period between birth and 3 years
of age, where dramatic changes in diet leave their
trace on the developing microbial ecosystem. The
proposed approach using community detection in
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association networks of bacteria provides a basis for
analyzing such effects on a level beyond the single
bacterium and the whole community.

Conclusions
Based on a novel approach for the identification of micro-
bial communities from co-occurrence networks, we provide
a functional model for the association of gut microbial
communities and the development of early anti-islet cell
autoantibodies. Compared to Akkermansia-dominated sub-
groups of children, Bacteroides-dominated subgroups were
associated with early autoantibody development and de-
creased potential of butyrate production via the co-
fermentation of acetate. The data suggest that differences in
mucin degradation capabilities between the generalist Bac-
teroides and the specialist Akkermansia may lead to shifts
in the abundances of acetogens vs. sulfate-reducing bac-
teria. Due to incomplete degradation of mucins in Bacter-
oides-dominated communities, sulfate-reducing bacteria
might have a competitive advantage compared to acetogens
regarding the removal of hydrogen. In contrast, in Akker-
mansia-dominated communities, abundance of acetogens
might be increased due to lower levels of sulfate, leading to
increased levels of butyrate via the co-fermentation of acet-
ate. Additionally, early introduction of solid food compo-
nents, such as meat can provide Bacteroides with a
competitive advantage as Bacteroides is able to switch from
endogenous to exogenous nutrient sources. Thus, we pro-
vide evidence that butyrate has a protective effect on the
development of anti-islet cell autoimmunity and that this
effect is associated with differences in composition of
mucin-degrading bacteria and the early introduction of
complex food. Our model provides a first step into the dir-
ection of a functional understanding of the role of the gut
microbiome in the pathogenesis of type 1 diabetes. How-
ever, this model needs to be validated in larger sample size
cohorts including metagenomics data.
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