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All that is gold does not glitter,
not all those who wander are lost;

the old that is strong does not wither,
deep roots are not reached by the frost.

— J.R.R. Tolkien

Exponential dependencies are nature’s ace in the hole
to make miracles become reality.

— A. M.





A B S T R A C T

Proteins are essential for life. To be able to perform their tasks, proteins
need to fold into their functional form. From a physicist’s perspective, na-
ture solves this ’folding problem’ by providing a multidimensional energy
landscape which efficiently guides a loose peptide towards a distinct three-
dimensional structure which is solely predefined by its unique amino acid
sequence. A powerful method to directly study the folding mechanics of pro-
teins is single-molecule force spectroscopy, which is used in this thesis. With
a variety of sophisticated analysis tools it is possible to derive transition state
positions and barrier heights up to entire one-dimensional projections of the
folding energy landscapes of proteins from single-molecule trajectories. Re-
cent technological advances to improve temporal and spatial resolution have
opened doors towards directly accessing protein folding transition paths. The
establishment of appropriate transition path analysis techniques and their cor-
rect interpretation was one of the main objectives of this work.

To this end, transition path analysis techniques were introduced and thor-
oughly tested using two-dimensional Brownian dynamics simulations. Using
this, a very high inter-dependence between the friction involved in protein dif-
fusion and the friction inherent to the detection system was revealed. Owing
to this inter-dependence, previously described methods which aim to localise
transition states from transition path ensembles or reconstruct barrier heights
from committors typically fail to directly provide correct results. Conversely,
the strong friction-dependence of detected transition path ensembles have en-
abled the introduction of a new, merely diffusion-based method of internal
protein friction determination. This new method was successfully applied to
experimental data of the three-helix bundle protein R15 and revealed the low-
est internal friction directly reported from optical tweezers experiments.

The second main objective of this work was the comparison between the
folding mechanics of natural and artificial proteins. One artificial protein, a
labile re-designed version of the Ferredoxin-like fold, was found to be a rela-
tively simple two-state folder. By contrast, another de novo designed protein,
the Rossmann fold, was revealed to have an extremely rough energy land-
scape as opposed to the naturally occurring ’ideal’ two-state folder R15. This
high energy landscape roughness of the Rossmann fold was characterized
by misfolds, multi-pathway folding, a greater effective roughness of εrms =
2.4 kBT with respect to R15, a local roughness of up to 10 kBT, two orders
of magnitude longer transition path time averages 〈τTP〉 and, hence, slower
folding. Various mutants showed the enforced key lock mechanism of the C-
terminal α-helix and its potential bending around position P86 to be the main
cause of the folding problems of the Rossmann fold.

The results presented in this work pave the way to a more detailed under-
standing of protein folding mechanics from a transition path perspective.
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Z U S A M M E N FA S S U N G

Proteine sind lebenswichtig. Um ihre biologischen Aufgaben erfüllen zu kön-
nen, müssen Proteine ihre funktionsfähige Form durch die sogenannte Fal-
tung annehmen. Aus physikalischer Sicht löst die Natur dieses ’Faltungspro-
blem’ mit Hilfe einer mehrdimensionalen Energielandschaft, in der ein loses
Peptid in seine dreidimensionale Struktur überführt wird, die ausschließlich
durch seine einzigartige Aminosäuresequenz vorbestimmt ist. Eine sehr mäch-
tige Methode zur direkten Untersuchung der Faltungsmechanik von Pro-
teinen ist die Einzelmolekül-Kraftspektroskopie, die auch in dieser Arbeit
zum Einsatz kommt. Mit einer Vielzahl anspruchsvoller Methoden zur Aus-
wertung von Einzelmolekül-Messungen wurde es möglich, die Position und
Energiebarrierenhöhe von Übergangszuständen bis hin zu vollständigen Pro-
jektionen eindimensionaler Energielandschaften der Proteinfaltung zu bestim-
men. Die jüngsten technologischen Fortschritte in Bezug auf die zeitliche
and räumliche Auflösung haben nun auch die Türen zur direkten Detektion
von Übergangspfaden der Proteinfaltung geöffnet. Die Einführung passender
Analysemethoden von Übergangspfaden und deren korrekte Interpretation
stellen wesentliche Ziele dieser Arbeit dar.

Um dies zu erreichen, wurden Analysemethoden von Übergangspfaden
eingeführt und im Rahmen von zweidimensionalen Brownschen Bewegungs-
simulationen umfassend getestet. Auf diese Art wurde eine starke Abhängig-
keit zwischen der Reibung der eigentlichen Proteinfaltung und der Reibung
im Messsystem festgestellt. Aufgrund dieser Abhängigkeit scheitern Metho-
den, die auf der Grundlage von Ensembles aus Übergangspfaden die Position
von Übergangszuständen festellen oder die Höhe von Energiebarrieren rekon-
struieren sollen, oft daran, auf direkte Weise korrekte Ergebnisse zu liefern.
Im Gegensatz dazu konnte die starke Reibungsabhängigkeit der Ensembles
aus Übergangspfaden dazu genutzt werden, eine neue, ausschließlich auf Dif-
fusion basierte Methode zur Bestimmung der inneren Proteinreibung zu ent-
wickeln. Diese neue Methode wurde erfolgreich am dreifachen Helixbündel-
Protein R15 angewandt und offenbarte dabei die bisher geringste Reibung,
die direkt von Messungen mit optischen Fallen berichtet wurden.

Ein weiteres wichtiges Ziel dieser Arbeit ist es, die Faltungsmechanik von
natürlichen und künstlichen Proteinen miteinander zu vergleichen. Ein künst-
liches Protein, welches ein explizit mechanisch labiles Design des Ferredoxin-
Faltungsmotivs repräsentiert, wies eine ’einfache’ Faltung auf. Ein weiteres de
novo Protein, das sogenannte Rossmann-Faltungsmotiv, wies hingegen eine
extrem raue Energielandschaft auf, die im völligen Gegensatz zu der ’idealen’
Zweizustandsfaltung des natürlichen Proteins R15 steht. Zusammengefasst
zeichnet sich die starke Rauheit des Rossmann-Proteins durch eindeutige Hin-
weise auf Fehlfaltungen, mehrere Faltungspfade, eine gegenüber R15 um εrms

= 2.4 kBT erhöhte effektive Reibung, eine lokale Rauheit von bis zu 10 kBT
und um zwei Größenordnungen längere mittlere Übergangspfadzeiten 〈τTP〉
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und damit eine entsprechend langsamere Faltung, aus. Verschiedene Mutan-
ten weisen darauf hin, dass der verstärkte Verriegelungsmechanismus der C-
terminalen α-Helix und deren Verkrümmung im Bereich der Prolinposition
P86 für die Probleme bei der Faltung des Rossmann Proteins verantwortlich
sein könnten.

Die Ergebnisse dieser Arbeit ebnen den Weg in Richtung eines besseren
Verständnisses der Proteinfaltungsmechanik sowohl im Allgemeinen als auch
im Besonderen aus der Sicht von Übergangspfaden.
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Part I

I N T R O D U C T I O N

Picking up the golden thread. A problem, a concept, and design.
And last but not least: a plan of action.





1
I N T R O D U C T I O N A N D M O T I VAT I O N

Proteins are among the smallest machines on Earth. Only a few nanometres
in size, proteins make and keep us alive. To perform a multitude of tasks like,
e. g., digesting food, transporting oxygen in our blood stream, or contracting
muscles for the movement of our body, proteins need to fold into their spe-
cific shape. Over millions of years, this folding process has been optimized
by evolution to guarantee proper function. However, misfolding and, hence,
a loss of function can still occur which, in the worst case, may lead to a num-
ber of neurodegenerative and other diseases [174]. With the protein folding
process being at the core of life, its fundamental understanding is the main
motivation for the protein mechanical studies in this thesis.

How is it experimentally possible to access protein folding? Among the
vast number of different experimental approaches which exist to investigate
the properties of proteins, one can discern single-molecule techniques from
ensemble based methods. With respect to ensemble measurements, experi-
ments on a single molecule level, while often times being more elaborate,
typically have the advantage of providing much more detailed information.
A very prominent single-molecule technique are Förster Resonance Energy
Transfer (FRET) experiments which allow distances within protein structures
to be resolved as well as detecting conformational changes under zero-force
conditions [44, 96, 198, 200]. Another very powerful method which directly
probes the folding mechanics of individual molecules is single-molecule force
spectroscopy. While this started out as an Atomic Force Microscope (AFM)
based technique, optical tweezers are now also well-established as a partic-
ularly useful tool to study protein folding in the lower picoNewton (pN)
regime [83, 181, 213, 242, 250, 260]. All experimental results presented in this
work have been performed on a custom-built high-resolution dual-beam op-
tical tweezers setup.

1.1 solved, or not solved? - the protein-folding problem

In 1961, Anfinsen and co-workers found that proteins can reversibly fold in
solution without need for an extra cellular machinery [2]. Back then, the first
published globular protein structure, myoglobin, had a surprisingly complex
shape which was lacking any of the expected symmetry and regularity [114].
Together, these two findings launched the protein-folding problem which can
be roughly encircled by the following three questions [62, 205]: First, what
general physical rules govern the folding of a disordered one-dimensional
amino acid chain into a functional three-dimensional structure? Second, by
which folding mechanism can proteins fold so fast into their distinct shape
despite an overwhelmingly large number of possible conformations? And
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4 introduction and motivation

third, is it possible to predict the native structure that an unknown protein
will adopt merely by knowing its amino acid sequence?

From Levinthal to Shakespeare

An illustration which addresses the second question from above and which
is often used to describe the astonishing complexity of protein folding is
’Levinthal’s paradox’. The paradox states that it would take an enormously
long time for proteins to fold if they had to find their native configuration
by a random search among all possible configurations. Yet it is known that
proteins can fold within time scales reaching down to a few microseconds
[45, 130]. In a typical example of Levinthal’s paradox, each bond connecting
two amino acids can have, e. g., three degrees of freedom, so that a protein
comprising 101 amino acids could exist in 3

100 possible configurations. Even
if the protein could sample through all configurations by testing one config-
uration every attosecond, one quintillionth of a second, this process would
last for about 10

22 years – more than ten orders of magnitude longer than the
universe has existed for [227].

A way to resolve the paradox is pointed out by Dawkins, an evolutionary
biologist, in the context of a slightly different question [53]: How long would
it take a randomly typing monkey to produce Hamlet’s remark ’Methinks it
is like a weasel’? Including spaces, this statement is 28 characters long with
each character having 27 possible ’configurations’, 26 letters and a space. In
total, this yields up to 28

27 necessary key strokes to ’produce’ the original
Hamlet. Naturally, a monkey will not be able to ’try’ out one configuration
every attosecond. Nevertheless, Dawkins observed that if the monkey cannot
change those letters that are already correctly in place, Hamlet’s phrase can
be realized by a random search in only a few thousand key strokes [263].
Whether it is writing Hamlet or folding proteins, the key to speeding things
up is a biased search as opposed to a completely random walk through con-
figurational phase space.

Solved parts of a growing puzzle

Which one of the three questions encircling the protein-folding problem have
already been answered? The first question asks for general folding rules
which corresponds to a search for forces that drive a protein into its three-
dimensional structure. It is known that among the contributing factors are:
hydrogen bonds which lead to the formation of α-helices and β-sheets, close-
ranged van der Waals interactions which govern tight protein packing, back-
bone angle preferences similar to the three degrees of freedom of the con-
necting bonds between amino acids from above, longer-range electrostatic
interactions which cause amino acids to attract or repel each other because of
different net charges, hydrophobic interactions which are also referred to as
the ’hydrophobic effect’ where hydrophobic amino acids are buried in a pro-
tein’s core and ’shielded’ from solution by polar amino acids on a protein’s
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surface, and, finally, chain entropy which acts against folding by entropically
favouring any random coil configuration over a distinctly folded structure.

Levinthal’s paradox illustrates the extent of the second question, which ad-
dresses the speed of protein folding. A solution to the paradox is given by the
commonly accepted picture of funnel-shaped energy landscapes which pro-
vide the necessary bias as they guide unfolded proteins energetically down-
hill towards their native structure. Since detailed studies of energy landscapes
which characterize the rate mechanism of protein folding mark an essential
part of this thesis, a few more thoughts on their concept and implications are
presented in Section 1.2.

Concerning sequence-based protein structure prediction, which is referred
to by the third and last question, scientists have improved the accuracy of
their prediction algorithms over the past decades. Since 1994, advances in pre-
diction are directly mirrored in the results of the biannual competition known
as the Critical Assessment of protein Structure Prediction (CASP) [151]. In
2010, the best predictions for about 10 % of all CASP target proteins reached
accuracies which are high enough to initiate drug discovery programs that
need structural errors to be less than 2 to 3 Å [62]. Now, the remaining chal-
lenge is to achieve excellent predictions for the other 90 %.

1.2 the energy landscape perspective

Inspired by statistical mechanics, energy landscapes provide a conceptual
framework for describing protein folding mechanisms as a thermodynami-
cally driven process of populating a diversity of possible states with a certain
probability [162, 240]. While protein folding was first believed to be limited to
very specific pathways, by now a more general picture of a funnel-shaped en-
ergy landscape has evolved, see Figure 1. This generalized view expands the
pathway concept of sequential events towards the funnel concept of parallel
events which ultimately lead to the same native structure. Common features
among a multitude of possible pathways can accumulate into ensembles of
configurations which are accessed by experimentalists as transition states, in-
termediates, and on- or off-pathway events [61].

Which general folding mechanisms are known? Proteins seem to fold in
units of secondary structure. Growth into more global structures appears to
be preceded by local structure formation. Along with structural growth, pro-
teins gain stability. This divide-and-conquer, local-to-global process is one of
the factors that enables proteins to fold so fast [62, 241].

As suggested by the funnel-shaped energy landscape in Figure 1, protein-
folding is a highly multidimensional problem. However, in force spectro-
scopic experiments, we are limited to measuring only one reaction coordi-
nate in space. This coordinate is the extension of unfolded polypeptide along
the direction of the acting force. The second important dimension in our ex-
periments is time. From measuring force-extension relations over time, it is
possible to recognize and characterize complex protein folding networks in-
volving multiple pathways and intermediates [189, 197, 216].



6 introduction and motivation

k, ∆x, ∆G,

Unfolded

Folded

pathways...

I

II

Figure 1: Illustration of a funnel-shaped protein folding energy landscape adapted
from [62]. Conformational entropy is indicated radially, energy and similar-
ity to the native structure by depth.

Proteins find their native configuration by following the principle of min-
imal frustration which may be compared to avoiding high energy barriers
and running preferentially downhill towards the bottom of a funnelled land-
scape [32]. In this context, slowed folding kinetics are attributed to frustrated
proteins. A way to describe frustration is by assuming higher internal pro-
tein friction which corresponds to a smaller diffusion coefficient and, hence,
slower diffusion in an energy landscape [238]. Alternatively, frustration is as-
sociated with rough energy landscapes where proteins need to pass through
many ’bumps’ before reaching their native state [262]. To resolve how these
two different perspectives relate to each other, this work addresses the follow-
ing general question:

• What does energy landscape roughness mean?

A general strength of the energy landscape perspective is its ability to pro-
vide a condensed and demonstrative overall picture. The experimental deter-
mination of essential energy landscape parameters such as transition state
positions ∆x along the reaction coordinate x and their corresponding energy
barrier heights ∆G further allows the modelling of specific protein folding
kinetics and provides deeper insights into general aspects of folding.

1.2.1 Transition paths - distilled essence of reactions

As illustrated in Figure 2, transition paths are defined as those pieces of tra-
jectories by which the actual event of barrier crossing occurs. In their role as
reactive trajectories, transition paths are immediate witnesses of a reaction
and bear essential information on the underlying reaction mechanism.

The ’speed limit’ for protein folding was both experimentally and theoret-
ically estimated to be ∼ 1µs [92, 119]. Hence, the ultimate prerequisite for a
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direct observation of transition paths in single-molecule experiments is a high
enough temporal resolution. By now, state-of-the-art optical tweezers setups
have reached a temporal resolution of the order of 10µs which puts the in-
vestigation of protein folding transition paths within reach [261]. And indeed,
right after protein transition path times were reported from single-molecule
FRET experiments [45], results from single-molecule force spectroscopy fol-
lowed, at first only for Deoxyribonucleic Acid (DNA) [154], and very recently
also for proteins [156, 157].

E
ne

rg
y

Reaction coordinate

state 1 state 2

Figure 2: General transition path definition in a simple double-well potential.

In this work, transition paths are extracted from equilibrium and non-
equilibrium protein folding trajectories. In addition to their duration, tran-
sition paths also provide spatial information. Ideas for how this information
can be used to learn something about the underlying reaction mechanisms
can be found in Transition Path Theory (TPT) [236, 237]. However, one also
has to be aware of the fact that measured transition paths are altered by the
measurement itself. With respect to the applied force spectroscopic approach
used in this work, effects arising from the additional friction inherent to the
detection system need to be addressed. The following key question expresses
the need for applicable transition path analysis techniques and their compre-
hensive understanding when being applied to force spectroscopic data:

• How and what can we learn from studying transition paths?

To answer this question, this work complements the well-established tool-
box of models based on Transition State Theory (TST), which dates back to
Eyring and Polyani [73, 74], with analysis methods based on TPT by following
thoughts presented in [101]. After testing the performance of a set of transi-
tion path analysis tools on simulated force spectroscopic experiments, these
tools are applied to experimental data for the first time.

Furthermore, some of the findings in this thesis were independently con-
firmed by a series of recent publications which, however, do not provide the
same level of insight as the results presented here [143, 155, 157].
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1.3 from protein prediction towards protein design

Protein design can be considered as the ’inverted’ protein-folding problem
[164]. Instead of trying to predict the structure for a given amino acid se-
quence, protein design looks for an amino acid sequence which folds into a
given protein structure1, see Figure 3. This way, scientists already have cre-
ated folds with topologies non-existent in nature, enhanced or inhibited en-
zyme activity, created new enzymes with new functions, and improved drug
development [47, 100, 244].

Prediction

Design

Amino acid sequence Protein structure

D I QVQV N I DDNGKN F D Y T Y

T V T T E S E L QK V L N E LMD Y I

KKQGAKR V R I S I T AR T KK E

A E K F AA I L I K V F A E L GY ND

I N V T F DGD T V T V EGQ L E

Figure 3: From protein prediction towards protein design. The designed 93 amino
acid long sequence on the left correctly folds into the protein structure on
the right which served as a template for design. This so-called Top7 protein
(pdbID: 1QYS) has a topology not found in nature [121].

After choosing a topology, protein design turns into an optimization prob-
lem. The basis for the optimization is provided by energy functions which
describe the forces that drive an amino acid sequence into a folded three-
dimensional structure2. With the aim being to find the amino acid sequence
that is lowest in energy out of all possible amino acid sequences, optimiza-
tion is done by sampling alternative backbone and side-chain conformations.
Here, the main challenge is the sampling of the backbone conformational
space3 which involves high numerical cost.

One of the most successful prediction and design algorithms is ROSETTA.
The way how this algorithm works can be learned from a protein folding
game called ’Foldit’4 [48]. A particular strength of the algorithm is a clever
combination of available experimental data and heavy computing [126, 205].

Since both success and failure in protein design provide insight into the
complex mechanisms governing protein folding, all necessary steps along the
road towards a full structural and functional control of proteins are promising
not only in view of the advances which were and will be brought to medical
research by the protein design approach.

1 Protein design inverts question number three which encircles the protein-folding problem.
2 See question one which encircles the protein-folding problem and its answer in Section 1.1.
3 Here, we are reminded of Levinthal’s paradox and question number two.
4 https://fold.it/portal/ - check it out! By solving puzzles for science, you can actively con-

tribute to gaining more insight into the complex mechanisms which govern protein folding.

https://fold.it/portal/
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1.3.1 Two designed ideal protein structures - Ferredoxin-like fold and Rossmann
fold

While Top7, shown in Figure 3, is the first designed fold with a topology
which does not exist in nature [121], the Ferredoxin-like fold (FL) and the 2x2

Rossmann fold (ROSS) shown in Figure 4 are the first fully designed proteins
which represent a topology that is abundantly found in nature [115]. Being
designed as ideal proteins using the ROSETTA algorithm, FL and ROSS are
intended to serve as building blocks for much larger proteins. While ROSS
can provide an ATP hydrolysis site and be a minimal core for designed en-
zymes, FL is a typical fold that can serve as a binding pocket for metals and
be involved in electron transport [118, 178, 190].

Ferredoxin-like fold

Rossmann fold

Figure 4: NMR structures of the Ferredoxin-like fold and the Rossmann fold (pdbID:
2KL8 and 2LV8). Both proteins are designed ideal structures having a topol-
ogy also found in nature [115].

As mentioned above, protein design aims at finding optimal amino acid se-
quences which fold into a desired shape. A successful design is then judged
based on the stability of the resulting protein as well as its similarity to the
original template which is evaluated by comparison to crystal or Nuclear
Magnetic Resonance (NMR) structures. However, in terms of actual folding
pathways which can be probed by using single-molecule force spectroscopy,
no comparison has ever been made between natural and designed, i. e., ar-
tificial proteins. A central question which will be addressed in this work by
detailed mechanical studies of FL and ROSS therefore is:

• Are natural and artificial proteins mechanically different?

The answer to this question has important implications on the design of
protein structures especially if pharmaceutical applications are intended. In
such a case, fast folding and the avoidance of kinetic traps have to be of higher
priority than mere overall stability.
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1.4 thesis outline

This thesis is divided into five parts. In the first part, I propose and justify
protein mechanical studies as a direct way to look for answers to the protein-
folding problem. Within this question, three different aspects are of central
interest: energy landscape roughness, the analysis of transition paths, and
the comparability of natural and artificial proteins.

The second part introduces the applied experimental method of single-
molecule force probing and its implementation, see Chapter 2. Here, results
from a newly developed reaction parameter screening for protein-DNA conju-
gation are presented in more detail in Section 2.2. In Chapter 3, all theoretical
models and analytical methods necessary for data analysis are explained. Af-
ter giving a broad overview of all applied and well-established analysis tech-
niques, in Section 3.8, this toolbox of techniques is expanded towards tran-
sition path analysis methods. Importantly, in Section 3.8.4, the barrier-shape-
dependence (∆G,∆x) of transition path time averages 〈τTP〉 is elaborated and
found to match experimental data.

The simulation results presented in the third part of this work establish
a sound basis for the evaluation and interpretation of experimental data. In
Chapter 4, two main foci lie on studying effects arising from energy landscape
roughness and implications of the difference in friction involved in actual
protein folding and its detection. Results include the necessity of sequential
transition path time calculations to better model asymmetric potentials; a nu-
merical confirmation of Zwanzig’s roughness concept; the development of a
dwell-time-based reconstruction technique for rough energy landscapes; the
finding that force-induced transition state switches have a similar yet stronger
impact on transition rates than the Hammond effect; the influence of friction
on measured kinetics; the detection limit for direct traces of protein folding
transitions, and, finally, the potential and limits of transition path analysis in
force spectroscopy.

In the fourth part, two chapters are dedicated to experimental results and
their detailed discussion. Chapter 5 can be considered as a showcase for
almost all state-of-the-art analysis techniques in single-molecule force spec-
troscopy. Besides the verification of an intentional labile re-design of the
Ferredoxin-like fold, in Section 5.2.3, the robustness and interconvertibility
of different analysis approaches and measurement techniques are also con-
firmed. Furthermore, force-dependent transition state movement reveals the
principle need to account for Hammond behaviour, see Section 5.3.1. More-
over, the role of the transition state position with respect to a proteins func-
tion is discussed in Section 5.4.3. A general trend between transition state
positions and combined rates is described for a whole set of proteins in Sec-
tion 5.3.4. Chapter 6 is a mechanical study which compares the artificial 2x2

Rossmann fold (ROSS) to a natural protein, namely the spectrin domain R15

(R15). A special feature of this chapter is the first application of transition path
analysis tools to analyse experimental force spectroscopic data (Section 6.2).
While R15 appears to be an ideal two-state folder, ROSS is shown to have
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an extremely rough energy landscape. In Section 6.4, this roughness is re-
vealed to be imposed by three on-pathway intermediates. Various mutants
and the realization of different pulling geometries are used to decipher the
multidimensional folding mechanism of ROSS, see Section 6.3. Furthermore,
a transition-path-assisted protein friction determination based on the transi-
tion path ensemble deformation is introduced in Section 6.4.2.

In the last part, the appendix, I provide additional information which was
found to be very important in performing optical tweezers experiments suc-
cessfully. Notably, details on the design and molecular cloning of coiled-
coil unzipping constructs have been written down. These details include the
choice of successful crosslinking positions, multiple sequence alignment for
cysteine-free mutant design, silent mutations, and the design of a cloning vec-
tor with tryptophan-enhanced protein absorption. Furthermore, all important
protocols from protein expression and purification up to sample preparation
and measurement at the trap are provided with troubleshooting sections.

Owing to the novel nature of the applied analytical methods and the ob-
tained results of this work, care has been taken to provide all necessary
details and information to enable the reader to reproduce the latter and to
understand all crucial lines of thought.





Part II

M E T H O D S , T H E O R I E S , A N D D ATA A N A LY S I S

How we do what. What and how we evaluate. Which theories are
used to conquer new territory.





2
E X P E R I M E N TA L S E T U P A N D I M P L E M E N TAT I O N

Probing the mechanics of a protein by single-molecule force spectroscopy is
an experimentally challenging task as it involves the precise manipulation
and detection of protein fluctuations on the nanometer scale. This chapter
introduces the setup and assay which were applied to perform the protein
mechanical studies underlying this thesis. Important technical details and ex-
perimental results crucial for assay development are included here. A key
method, namely the construction of protein-DNA conjugates, is highlighted.
For a first impression, data samples of measured protein mechanics are given
along with a brief overview of their standard evaluation methods. The chap-
ter closes with a set of data featuring experimental fingerprints of transition
paths of protein folding which constitute a central topic of this work.

2.1 how to apply force to a single protein molecule

The possibility to trap particles using radiation pressure was first shown by
Arthur Ashkin in the years 1969/70. In the late ’80s he again reported the
first single-beam trap for micron-sized dielectric particles as well as success-
ful trapping and manipulation of single cells [5, 6, 7]. In the 1990s scientists
started using optical tweezers for mechanical studies of single molecules, e. g.,
the movement of molecular motors, mechanical stretching of DNA, and the
folding/unfolding of single proteins [14, 79, 113, 223, 235]. Since then, optical
tweezers have become a well elaborated technique for performing force spec-
troscopic measurements at unprecedented resolution. Within a force range
between 0.5 and 100 pN, protein conformational changes can be discerned
at sub-nanometer resolution and characteristic timescales down to tens of
microseconds can be resolved [38, 261]. This makes optical tweezers a highly
valuable supplement with respect to alternative force spectroscopic techniques
like the AFM or magnetic tweezers [181, 218], especially in the low force
regime relevant for many cellular processes on the single-molecule level.

Principle of optical tweezers

The principle of optical tweezers is based on the interaction of electro-magnetic
waves, e. g., the light of a laser beam, with dielectric and, hence, refracting par-
ticles like glass beads. To trap a bead in a focused laser beam the scattering
force and the gradient force have to be accounted for. While the latter pulls the
bead into the region of highest laser intensity, i. e., into the laser focus, the
scattering force pushes the bead along the direction of beam propagation. In
brief, if the gradient force can compensate the scattering force, the bead re-
mains trapped slightly behind the laser focus. The forces acting on the bead

15
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arise due to transfer of momentum from either reflected or refracted light. As
suggested by its name, the gradient force ~Fg is proportional to the beam inten-
sity gradient ~Fg ∝ ~∇I0. For a Gaussian beam profile, the intensity distribution
at the trapping spot yields a harmonic, i. e., quadratic, trapping potential at
small deflections. Within this region optical tweezers can be described as if
they were Hookean springs [222].

2.1.1 Optical tweezers setup

Throughout this thesis, single-molecule force spectroscopic measurements
were performed using a custom-built high-resolution dual-trap optical tweez-
ers setup with back-focal plane detection similar to setups described else-
where [75, 83, 150, 225]. As shown schematically in Figure 5 and as described
in more detail in [230], the setup features a fixed and a steerable (mobile) trap
generated from a single 1064 nm laser beam which is split into two orthogonal
polarizations by polarizing beamsplitter cubes (PBSC).

Laser 1064 nm PBSC

PBSC

PBSC

PB
SC

Beam
Dump

AOMFaraday
Isolator

1st Objective

Piezo Table

QPDs

Bright Field Illumination Bright Field Detection

λ/2λ/2

Beam
Expander

1.7x Telescope

2nd
Objective

Piezoelectric
Tip/Tilt Actuator

Sample
Chamber 

λ/2

1x Telescope

Fluorescence Detection

Laser 532 nm

Feedback Detection

λ/2

AOM

λ/2 λ/2

SMOF

Figure 5: Schematic of the optical tweezers setup.

With respect to the published layout, three major modifications have to be
mentioned. At the front end, the laser beam passes a stabilization scheme to
enhance the power and pointing stability of the laser. Similar to remarks in
[38], the laser beam passes through an acousto-optic modulator (AOM)1, is
thereupon coupled into a single-mode optical fiber (SMOF), and finally the in-
tensity of a small part of it is detected to serve as a feedback for the AOM. At
the back end, the position sensitive devices used for detection are replaced by

1 The second AOM after the second PBSC is used as a frequency shifter between the two indi-
vidual trapping beams to reduce interference artefacts [140].
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quadrant photodiodes (QPDs) owing to their better temporal resolution [166].
Last but not least, an additional fluorescence laser and a fluorescence detec-
tion are incorporated to distinguish between fluorescently labelled and unla-
belled beads. By this means, the distinction between differently functionalized
and at the same time differently labelled glass beads needed to establish the
measurement configuration shown in Figure 6 is substantially facilitated.

More details concerning design considerations or the calibration procedure
can be found here [34, 146], further characterization or serial numbers of
individual parts here [166, 230].

Operational settings and measurement conditions

The stiffness calibration of the traps was performed using the method de-
scribed in [225]. Trapping strengths were adapted to experimental demands2

and ranged from 0.15 to 0.45 pN/nm for each individual trap with an esti-
mated calibration error of 10%.

All measurements were performed in standard Phosphate Buffered Saline
(PBS), pH 7.4, at a Room Temperature (RT) of about 23 ± 1

◦C (≈ 296 K). How-
ever, the temperature at the position of the tethered protein also depends on
laser-induced heating [168]. To reach a trapping strength of 0.3 pN/nm, an
overall laser power of about 1.2 W was used yielding approximately 303 K at
the measurement spot. This was independently verified by comparison to the
temperature implied by the viscosity of the medium surrounding the trapped
beads as provided by the calibration procedure [257].

Depending on the required temporal resolution, data were acquired at fre-
quencies ranging from 20 to 200 kHz. Prior to recording, signals were filtered
with a hardware low-pass filter set to a 3dB-frequency equal to half the acqui-
sition frequency. Crosstalk due to the imperfect behaviour of the polarization
beam splitter cubes and objectives [8] as well as crosstalk due to the proxim-
ity of the two trapped beads was subtracted after recording [82]. Final data
analysis was performed on the differential signal for a better signal-to-noise
ratio [150].

2.1.2 Experimental geometry: the dumbbell assay

The described dual-trap optical tweezers setup enables us to trap two in-
dividual beads, to measure the forces acting on each bead, and to change
the inter-trap distance. Hence, by tethering an individual protein between
the beads, single-molecule mechanical measurements can be performed. The
tether is realized with two DNA-handles each connecting one specific site of
the protein to one bead. This results in a dumbbell-like shape composed of
a stretched bead-DNA-protein-DNA-bead construct as shown in Figure 6. Fur-
thermore, Figure 6 also illustrates the three signals which are recorded to mea-
sure the mechanical properties of the tethered protein: the inter-trap distance

2 Note that lower trap stiffnesses can improve the signal-to-noise ratio. For an explanatory illus-
tration see FIGURE 5 in [141].



18 experimental setup and implementation

d and the deflection of each bead out of it’s respective trap center labelled x1
and x2. With R being the beads’ radius, the extension of the stretched tether
comprising both DNA-handles and the protein equals:

xtether = d− 2 · R− x1 − x2. (1)

With the calibrated trap stiffnesses k1 and k2, the force acting on the system
equals3 F = k1 · x1 = k2 · x2 = keff · (x1 + x2), where keff = (1/k1 + 1/k2)

−1 is
the effective spring constant.

Protein Streptavidin/Biotin
anti-Digoxigenin/
Digoxigenin

Cysteine-Link

Oligo

DNA-Handle

x

R

d

inter-trap distance

mobile trap center

1 x2

Figure 6: Schematic of the dumbbell configuration. Fluorescent labelling of the beads
is illustrated by their green (labelled) versus gray (unlabelled) shade.

By carrying either a biotin or a digoxigenin label on one end, DNA-handles
bind to dielectric beads that have been functionalized with streptavidin or
anti-digoxigenin, respectively. The other end of the DNA-handles comprises a
single-stranded (ss) overhang which is complementary to a ss-DNA oligonu-
cleotide that has been covalently attached to the protein using cysteine-based
chemistry. The two types of DNA-handles were produced by Polymerase Chain
Reaction (PCR), for details see Section A.3.4. In brief, while sense primers carry
either three biotin or three digoxigenin sites, anti-sense primers have an aba-
sic site in the middle, where the polymerase falls off which, in turn, leads
to the ss-overhang. The hybridization of a DNA-handle to an oligonucleotide
bound to the protein is highlighted in the inset of Figure 6.

3 Despite their opposing directions in Figure 6, here x1 and x2 are both considered positive for
a force stretching the tether.
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Beads were functionalized following an in-house protocol. The applied
chemistry is based on EDC/NHS4 crosslinking of the carboxylated silica
beads with the primary amines of either streptavidin or digoxigenin-antibod-
ies. In case of the latter additional TMR5-Bovine Serum Albumin is added as
a fluorescent label for distinction between the two bead types.

Even though polystyrene beads have a higher refractive index allowing for
higher trapping strengths to be reached, silica beads were found to offer im-
proved performance in the dumbbell assay. The major reasons are less sample
heating [168] and lowered damage to the sample due to a smaller amount of
free oxygen radicals being produced [123]. Another reason is the apparently6

improved force-clamping behaviour found for silica beads. When polystyrene
beads were used, the observed persistence length of DNA-handles was only
10 nm [83, 146]. This value increased to more than 20 nm when silica beads
were used under nearly7 the same experimental conditions [216]. The size of
the beads was chosen to be 1µm as a trade-off between handling and a fast
system response. While smaller beads have a lower hydrodynamic drag with
faster response times, they become more and more difficult to be seen in the
brightfield and more difficult to handle during functionalization.

To reduce the potential damage induced by oxygen radicals a Glucose/Glu-
cose-Oxidase/Catalase oxygen scavenging system (GODCAT) was used. How-
ever, a recent finding indicates significant nuclease contamination in many
commercially available catalase stocks. Hence, it is very important to ensure
the use of clean catalase [204]. In the long run, the protocatechuic acid/proto-
catechuate-3,4-dioxygenase oxygen scavenging system (PCA/PCD) may be a
promising alternative to GODCAT [1, 123]. A detailed step by step protocol
for the preparation of sample chambers, including the addition of oxygen
scavenger, can be found in Section A.3.5.

2.2 building protein-dna conjugates

Originally, entire DNA-handles were directly attached to the protein to form
the complete protein-DNA conjugates necessary to establish the dumbbell
configuration shown in Figure 6. However, after the first DNA-handle is bound,
it sterically shields the protein against the attachment of the second handle
[39]. To avoid this, the preparation of protein-DNA conjugates was split up
into two steps. First, short oligonucleotides (oligos) were attached to the pro-
tein forming the protein-oligonucleotide construct, and second, much larger
DNA-handles with complementary ss-overhangs hybridized to the already
bound oligos. While diffusing much faster, short oligos are expected to be
less repulsive as well, resulting in higher yields for protein-oligonucleotide
constructs and subsequent entire protein-DNA conjugates [82].

4 1-Ethyl-3-[3-Dimethylaminopropyl]Carbodiimide / N-HydroxySuccinimide
5 Tetramethylrhodamine
6 Until now, there is only the conjecture that polystyrene beads and/or their surface might be

somehow slightly deformable; this was not further investigated.
7 In between, the optical tweezers setup has been recalibrated.
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The assembly of stable and pure protein-oligonucleotide (protein-oligo)
constructs optimised for optical trapping setups is key to successful experi-
ments. In the following, the principle of protein-oligo construct purification is
briefly discussed. Further a reactivity test for maleimide oligos is introduced.
More details on the optimization of maleimide as well as thiol oligo attach-
ments including, e. g., protein activation, removal of oligo contamination, or
the necessary characterization of the purification system, are provided in the
protocol section of Appendix A.

2.2.1 Protein-oligonucleotide construct purification

Within the frame of this work, either thiol or maleimide oligonucleotides were
attached to thiol groups of cysteines engineered into the protein sequence at
the two positions, where the external force will be applied. For the attach-
ment reaction, protein and either thiol or maleimide oligos are mixed in a 1:1
ratio between oligos and cysteines, for details see Section A.3.2. Products of
an attachment reaction are purified by Size Exclusion Chromatography (SEC)
to separate unreacted oligos, unreacted protein, and protein with only one
attached oligo from the desired protein-oligo construct with two oligos.

Figure 7A shows a typical chromatogram generated during purification of
a protein + maleimide oligo reaction mixture in comparison to reference runs
of the individual reactants, namely pure protein and pure oligo(s). Recorded
signals reflect the absorption of the eluate leaving the chromatography col-
umn at the indicated time. To facilitate the comparison of different runs, de-
tected absorption signals were ’normalized’ by setting their enclosed area8

equal to one resulting in some kind of relative absorption. Figure 7C presents
the corresponding 260 nm/280 nm absorbance ratios which reveal high sam-
ple purity in the main peaks of the reactants. While the ratio of the purified
attachment reaction confirms that the absorbance signal of oligo containing
products is dominated by the oligos, the dip around 35 minutes originates
from unreacted protein. Owing to the dominant oligo signal, the difference of
normalized absorption signals of attachment reaction and pure oligos helps
to identify the peak of the desired protein-oligo construct as shown in Fig-
ure 7B.

In case of very small proteins, a precise and well characterized purifica-
tion system is crucial especially for getting rid of dimerized oligos which
drastically corrupt measurement efficiency. The necessary measures taken to
circumvent this problem are presented in Section A.3.3.

In order to provide a well-defined environment for the oligo attachment
and to improve protein solubility, additional proteins like ubiquitin can be
genetically inserted at the N- and/or C-terminus of the protein under study.
For proteins with contiguous termini, e. g., coiled coils, the Ferredoxin-like
fold, or the Rossmann fold, additional proteins are used to spatially separate
the oligo attachment positions and prevent them from (intra-)crosslinking.

8 For SEC parameters as indicated in Figure 7, the area enclosed by the recorded signals was
typically evaluated between 10 and 40 minutes.
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Figure 7: SEC purification of an oligonucleotide attachment. SEC parameters: Su-
perdex 200 column, 0.5 mL/min, 100µL-loop, PBS. (A) Superimposed ’nor-
malized’ SEC runs show pure protein, pure oligos, and an oligo attachment
reaction. (B) The difference between attachment reaction and pure oligos
visualizes the elution of individual (+)-marked products. The first peak cor-
responds to protein with two bound oligos, the second to protein with one
oligo. (C) 260 nm/280 nm ratio of each SEC run. The pure protein peak ap-
proaches a typical value around 0.5. The peaks of the other SEC runs show
a ratio of more than 1.8, indicating that absorption is dominated by the
contribution of DNA.

An important requirement for suitable ’spacer’ proteins is a high mechani-
cal stability to avoid interference with the actual mechanical measurements.
While ubiquitins are known to fulfil this requirement [83, 108, 188, 216, 261],
in this thesis it was shown that GB1 is less favourable as a spacer protein.
Even though ubiquitin and GB1 share a common fold and GB1 unfolds at
slightly higher forces in mechanical AFM-studies [35, 195], it undergoes slow
equilibrium fluctuations on a time scale of many seconds up to minutes at a
constant force bias of about 10 pN, see Figure 69A.

2.2.2 Maleimide reactivity test

The use of maleimide oligos for an oligo attachment has as a couple of ad-
vantages over thiol oligos. Besides their faster reaction with the thiols of the
protein’s cysteines, maleimide oligos do not require activation or ethanol pre-
cipitation as opposed to thiol oligos. Further, protein activation based on
Tris(2-carboxyethyl)phosphine (TCEP) is easier than the activation based on
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2,2’-Dithiodipyridine (DTDP) solved in dimethyl sulfoxide (DMSO) where a
risk of precipitation followed by protein loss has been observed. Most impor-
tantly, the maleimide oligo attachment reaction will not be completely inhib-
ited with TCEP being present [84]. As the presence of reducing agent prevents
neighbouring cysteines from crosslinking, the necessity of additional spacer
proteins for proteins with contiguous termini can be circumvented.
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Figure 8: Maleimide oligonucleotide reactivity test with DTT as an idealized protein
mimic. SEC parameters: Superdex 200 column, 0.5 mL/min, 100µL-loop, PBS.
Shown signals reflect the relative absorption at a wavelength of 260 nm.

However, the basic requirement for the maleimide oligo attachment to work
is, of course, reactivity of the maleimide itself. As this was not guaranteed by
the supplier, a reactivity test has been developed where Dithiothreitol (DTT)
is used as an idealized protein mimic. When added to maleimide oligos in
a 2:1 ratio between oligos and DTT, the two thiol groups of the DTT can each
react with one oligo resulting in dimerized oligos. If the oligos are reactive,
a clear gain in the amount of dimerized oligos after addition of DTT can be
visualized by SEC while non-reactive oligos appear indifferent as shown in
Figure 8. An alternative to SEC is to determine the remaining reactive thiols
after incubation of (excess) DTT with maleimide using Ellman’s reagent [69].
For both tests, the limited half-life of DTT needs to be accounted for [211].

Screening maleimide-thiol reaction conditions

The developed reactivity test allows the screening of various parameters which
influence the efficiency of maleimide-thiol reactions. An overview of represen-
tative data is given in Figure 9.

Time. Increasing the time9 from a few up to 30 minutes increases the
amount of desired product, i. e., the height of the oligo dimer peak as shown
in Figure 9A. A series of measurements comparing 1, 2, 4 and 24 hours lasting
reactions yielded no further product increase (data not shown). For proteins
2 h are typically enough, see Section A.3.2.

9 Indicated reaction times start right with initial mixing in a minimal reaction volume and end
with a quick dilution instantly followed by the actual SEC run. Until not being separated by
size, DTT and maleimide oligos can continue to react during the initial phase of the SEC run.
By this means, indicated reaction times are slightly underestimated.



2.2 building protein-dna conjugates 23

+V =

+time =

+T =
+pH =

+TCEP =

+/- r =

0.8

0.6

0.4

0.2

0.0

N
or

m
. a

bs
.

3432302826

 30 min
   8 min
   4 min
 blank

0.8

0.6

0.4

0.2

0.0
4038363432302826

 5 mM TCEP
 0.05 mM TCEP
 w/o TCEP
 blank

0.8

0.6

0.4

0.2

0.0

N
or

m
. a

bs
.

3432302826
Time [min]

 RT (+T)
 0° C
 blank

 10:1 (+r)
 2:2 (-r)

 18x (+V) 0.8

0.6

0.4

0.2

0.0
3432302826

Time [min]

 pH 8.4
 pH 7.7
 pH 6.7
 pH 6.1
 blank

A

C

B

desired
product

D

Figure 9: Screening maleimide-thiol reaction parameters. SEC parameters: Superdex
200 column, 0.5 mL/min, 100µL-loop, PBS. Signals reflect the relative ab-
sorption at a wavelength of 260 nm. If not stated differently, two PBS pH 6.7
solutions containing 0.1 mM maleimide oligos and 0.1 mM DTT were mixed
at a ratio of 2:1 and reacted for 30 min at RT prior to final dilution for SEC

purification. (A) Increasing reaction times from 4 to 30 min increases the
desired product amount. (B) Adding different amounts of TCEP. (C) Increas-
ing the reaction volume by immediate 18x dilution corresponds lowering
concentrations. The effect of temperature and reactant ratio on final prod-
uct amounts are monitored as well. (D) Screening the pH. Runs in (A) and
(B) use the same oligo batch. (C) and (D), each use different batches.

TCEP. As seen in Figure 9B, addition of similar molar amounts of TCEP as
compared to the reactants shows a reduction of reaction efficiency as expected
in [84]. High excess of TCEP completely inhibits the reaction and reveals that
TCEP appears to interact with maleimide. Similar to the finding of high molec-
ular weight TCEP after reaction with maleimide in [206], here, a shift of the
monomer oligo peak towards higher molecular weight is observed and in-
dicated by two small parallel arrows. The small arrow pointing at a peak
around 39 minutes highlights the characteristic elution volume of TCEP.

pH. Screening of the pH confirms high thiol reactivity at higher pH, see
Figure 9D. To maintain specificity of maleimide reactions with thiols, the pH
needs to be kept within the pH range of 6.5 - 7.5 [97].

Temperature. Working on either ice or at RT does not affect efficiency under
the indicated reaction conditions, see Figure 9C. This is another advantage of
maleimide over thiol oligos.
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Volume. Increasing the reaction volume by immediate dilution of an other-
wise standard reaction corresponds to using lower concentrations. As a result,
fewer oligo dimers are detected after 30 minutes.

Ratio. To realize as many oligo dimers as possible, the optimal mixing ratio
between maleimide oligos and DTT is 2:1 since a single DTT carries two thiols.
As expected, deviations from the optimal ratio reduce reaction efficiency.

2.2.3 Bioorthogonal chemical coupling alternatives

As an alternative to thiol or maleimide oligos, azide oligos can be used in a
copper-free click chemistry approach where the azide modified oligos attach
to dibenzocyclooctyne-maleimide bound to the protein’s cysteines [11, 257].
This approach still utilises the cysteines within the protein, as is the case
for the thiol and maleimide oligos. To be able to use cysteines within the
protein sequence for different purposes like, e. g., fluorescent labelling with
dyes, other oligo attachment approaches are needed.

Here, three considerable examples have been selected from the vast field of
bioorthogonal chemistry, namely the HaloTag, bacterial sortase, and unnatu-
ral amino acids. A general overview of the field can be found here [207].

The HaloTag covalently and irreversibly binds a synthetic ligand consisting
of a reactive linker and, in principle, any functional group. If the functional
group is used to bind to an oligo, the oligo can be specifically bound to
the binding pocket of the HaloTag through the reactive linker [133]. Being
a protein fusion tag, the HaloTag offers an easy implementation by genetic
fusion to the N- and C-termini of the protein of interest. A mechanical AFM-
study of the HaloTag protein suggests that it is stable enough to not unfold
at forces typical for equilibrium measurements with optical tweezers [171].

A second approach uses sortases. These enzymes anchor cell surface pro-
teins to the cell wall. In case of Staphylococcus aureus sortase A, a short C-
terminal recognition motif (LPXTG) on the target protein is cleaved, followed
by the formation of a covalent amide bond with the pentaglycine (GGGGG)
cross-bridge in the cell wall [173]. It has been shown that this mechanism can
be exploited for site-specific N- and C-terminal labelling of a single protein by
using sortases of different specificity [3]. Hence, this approach may be even
used to attach oligos with different sequences.

Finally, the expansion of the genetic code has enabled the incorporation of
unnatural amino acids with novel structural, chemical, and physical proper-
ties into the sequence of proteins [234]. This way, the click chemistry approach
with azide modified oligos can be used without depending on cysteines. So
far, up to three distinct labels could be attached to a single protein using in-
corporated unnatural amino acids [129]. Besides their application in labelling,
artificial amino acids have been successfully used for photo-induced inter-
crosslinking of protein substructures, which can be useful for the structural
interpretation of unfolding pathways [80].
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2.3 experimental modes of force probing

Prior to performing force spectroscopic measurements, the dumbbell configu-
ration shown in Figure 6 needs to be established. As this comprises the exper-
imentally most important step, detailed instructions on successful tether for-
mation including sample preparation, measurement mixes and troubleshoot-
ing sections, are given in Section A.3.5.

Constant velocity mode

Each force spectroscopic measurement starts in constant velocity mode. In
this mode, the mobile trap is repeatedly moved away from and back towards
the fixed trap. This repeated movement is performed at constant velocities
typically ranging from 10 to 1000 nm/s. After probing for a successful forma-
tion of the dumbbell configuration, constant velocity mode measurements are
used to screen typical force ranges of unfolding and refolding of the protein
under study.
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Figure 10: A force-extension trace measured in constant velocity mode. Intense
colours reflect moving-average filtered traces based on the full resolution
data shown in light gray. Left: Overall deflection x1 + x2 out of the trap
centres versus inter-trap distance d minus the two beads’ radii 2 · R. The
shown trace comprises an entire stretch-and-relax cycle (orange and dark
gray) corresponding to the highlighted cycle in the inset. Inset: Inter-trap
distance cycles over time at 500 nm/s. Right: Measured signals converted
into a force (F) versus extension (xtether) trace, where F = keff · (x1 + x2)
and xtether = d− 2 · R− x1 − x2, see Figure 6.

A representative trace of a so called stretch-and-relax cycle is shown in Fig-
ure 10. The given force versus extension relation of the entire tether is derived
from the recorded inter-trap distance and bead deflection signals. When the
inter-trap distance is increased, the ends of the entire tether are pulled apart
and the force acting along the direction of movement rises. This leads to an
increasing mechanical destabilization of the tethered protein which finally re-
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sults in its unfolding. Each unfolding event is characterized by the force Funf

of its occurrence and attended by a characteristic contour-length increase ∆L.
As the latter allows the beads to relax towards their respective trap centres, a
sudden drop in force indicates unfolding. After reaching a maximal inter-trap
distance, the mobile trap is moved back towards the fixed trap which relaxes
the force acting on the tether. If the unfolded protein is able to refold against
an acting force, a sudden increase of force due to a reduced contour-length
indicates refolding.

The contour-length changes upon protein unfolding and refolding are de-
termined by mechanical fits, see Section 3.1. These fits allow a transforma-
tion of the force-extension trace into the protein’s contour-length space to be
performed, where even very short-lived intermediate states within unfold-
ing or refolding transitions can be identified [12]. Finally, the detected length
changes can be assigned to the unfolding of a certain number of amino acids.
This permits a structural interpretation of the observed (protein) states with
respect to the protein’s solved crystal or NMR structure [59, 60].

After a tether has formed, hundreds of stretch-and-relax cycles can be per-
formed on a single protein molecule. The obtained force distributions for
unfolding (u) and (re-)folding (f) depend on the respective transition state po-
sition ∆xu/f and the intrinsic rate constants ku/f0 and, hence, reveal informa-
tion about the underlying energy landscape [103, 196]. Based on the obtained
rate constants, barrier heights can be estimated according to the Arrhenius
equation [4]. By varying the pulling velocity, the loading rate dependence of
the average unfolding and refolding forces can be examined to gain further in-
sight into the energy landscape shape and dimensionality [194, 197]. Despite
the non-equilibrium nature of constant velocity mode experiments, there are
methods to assess equilibrium free energies ∆G0 from their data by using,
e. g., Jarzynski’s equality or the Crooks fluctuation theorem [51, 112]. Fur-
thermore, an extension of Jarzynski’s equality has been shown to reconstruct
entire energy landscape profiles [91, 102]. Alternatively, if both rate constants
are known, estimates for ∆G0 can be obtained by applying the principle of
detailed balance [99]. Moreover, if stretch-and-relax cycles are considered as
multiple succeeding measurements at a locally constant force bias, even force-
dependent rates ku/f(F) can be calculated from long enough series of cycles
[161]. In Chapter 3 some of the aforementioned concepts are presented in
more detail.

Constant distance (passive) mode

When both traps are kept at constant distance, no additional external work is
performed on the (established dumbbell) system, which, hence, is in thermal
equilibrium. By tuning the distance, a desired constant force bias can be ap-
plied to the tethered protein. Provided that the folding barrier is low enough
to allow unfolding and refolding to occur at similar forces, conformational
equilibrium fluctuations between the folded and unfolded states of a protein
can be traced over time.
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Typical time traces revealing conformational fluctuations of a protein are
shown in Figure 11. As these fluctuations usually manifest themselves in
changes of the protein’s end-to-end distance, they can be observed as abrupt
changes in the overall bead deflection signal similar to the unfolding and re-
folding events in the above described stretch-and-relax cycles. By this means,
each populated conformational state automatically has its individual force
bias. This passive experimental approach yields superior temporal as well as
spatial resolution as opposed to techniques where the same force bias for all
occurring states is achieved either by an active regulation of the inter-trap dis-
tance, or by measuring the deflection within the flat (beyond linear) region of
the trapping potential of one of the two traps (which is set to a much lower
trapping strength than the other) [89, 124].
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Figure 11: Time traces measured in constant distance mode. The population propa-
bilities of the folded and unfolded states shift with force.

In particular, the time traces presented in Figure 11 show the fluctuations
of a two-state folder at three different pretensions. To assign a state to each
data point, a Hidden Markov model (HMM) is applied to each trace (see Sec-
tion 3.4.3 for details) yielding states indicated by different colours [175, 216].
From each assignment, the dwell times τiDwell spent in state i at the given
force bias can be readily collected to obtain a dwell time distribution for this
state. While the upper level with higher force represents the folded state (or-
ange), the lower level represents the unfolded (gray), more elongated state.
By increasing the force bias, the population shifts from predominantly folded
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to predominantly unfolded. This is directly reflected in the change in the
corresponding probability distributions10 p(x).

Stepping through the force range where equilibrium fluctuations can be
observed, the dwell time distributions and state occupancies can be used to
derive force-dependent microscopic kinetic rates kij/ji(F) as well as equilib-
rium free energies ∆Gij0 between two states i and j. Different models rang-
ing from extensions of Bell’s expression to more elaborate models based on
Kramers’ theory can be used to fit the chevron plots of rates versus applied
force [15, 116]. These fits reveal transition state positions, extrapolated zero-
force rate constants, and even energy barrier heights which are key features
related to the energy landscape describing the folding mechanism of the pro-
tein under study [67, 83, 196, 247].

However, irrespective of the model being used, the effective diffusion con-
stant or roughness parameter necessary to further quantify the energy land-
scape remains elusive without additional assumptions or information beyond
the force-dependence of rates. One way of gaining further information is the
deconvolution of the probability distributions from constant distance data to
subtract all additional thermal and mechanical contributions not originating
from the protein. This has been successfully used to reconstruct the entire
energy landscape shape including widths and curvatures along with energy
barrier heights for DNA-hairpins as well as coiled coil proteins [83, 98, 243]. Re-
cently, after having been introduced for testing the reaction coordinate quality,
the calculation of the splitting probability has been shown to recover the ap-
proximate shape and height of the transition barrier directly from constant
distance data without deconvolution [42, 143].

After the mechanics of a protein have been measured under a certain set of
conditions, it seems straightforward to simply change these conditions to find
out more about the protein under study. Possible ways of doing so are given
by varying salt or nucleotide concentrations, or by adding ligands, isomerases
or chaperones into the surrounding solution. From the observation of altered
states and stabilities induced by the new conditions, conclusions on affinities
and interactions between multiple partners can be drawn [12, 167, 188, 213,
215]. In all cases, the ability to measure under a stable, constant force bias
over tens of minutes at very high spatial and temporal resolution is key.

2.4 from transitions towards transition paths

A transition path is the interconnection between two states and can be re-
garded as the transition event itself. Usually, the transition between different
conformational states of a protein is so fast that its signature within force
spectroscopic data would essentially only reflect the damped relaxation of
the trapped beads as a response to the conformational change of the inves-
tigated protein. Nevertheless, by looking at transitions of a protein at very
high temporal resolution, we found transition path times of about a millisec-

10 The probability distributions in Figure 11 correspond to the black time traces - a moving-
average filtered version of the coloured 30 kHz data with a window size of 1.7 ms.
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ond under a force of around 10 pN, where relaxation times of only some tens
of microseconds are expected based on reported values from autocorrelation
analysis [261].

Examples of transition paths observed in measurements performed in ei-
ther constant distance or constant velocity mode are shown in Figure 12. The
long lasting transition path times τTP indicate that the studied protein’s un-
folding and refolding is slowed down due to the diffusion across multiple
barriers in a rough energy landscape [249].
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Figure 12: Transition paths from highly resolved transitions. On the left and right are
zooms into data recorded in constant distance and constant velocity mode.
Even for data recorded at 500 nm/s the force bias is almost constant while
passing the transition path region.

As transition paths reflect the system’s response during the event of barrier
crossing(s), they must contain all the information necessary to characterize
the underlying energy landscape. From this point of view, a method called
transition path sampling has been developed for simulation studies to reduce
sampling down to the mere events of barrier crossing making long lasting
simulations of equilibrium fluctuations obsolete [28, 55]. From the transition
path ensemble comprising many individual transition paths, the transition
state position and rate coefficients can be derived [20, 101]. Just recently, the
transition path analysis approach has been reported to identify the transition
state position for DNA-hairpin folding/unfolding [155]. An introduction to
transition path theory and an overview of transition path analysis techniques
is given in Section 3.8. Based on Langevin dynamics simulations, the poten-
tial and limitations of these techniques, when being applied to force spectro-
scopic data, are discussed in Section 4.3.4. Finally, the results presented in
Chapter 6 provide the first-time application of transition path analysis tools
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to experimental data including transition-path-assisted energy landscape re-
construction and a model-free diffusion-based protein friction determination.



3
T H E O RY A N D A N A LY S I S O F S I N G L E M O L E C U L E
E X P E R I M E N T S

To study the mechanics of an individual protein a comprehensive understand-
ing of the thermodynamics and kinetics of single molecule reactions is neces-
sary. A highly recommendable introduction into the basic principles govern-
ing single molecule reactions probed by force can be found here [224]. More
detailed explanations and derivations directly related to models and methods
developed or adapted and used at the biophysics chair in Garching can be re-
trieved from numerous theses, especially [19, 29, 193, 212, 257]. This chapter
gives a compact overview of the analysis tools on hand for single-molecule
force spectroscopy data. In Section 3.8, this ’classic’ toolbox is expanded to-
wards transition path analysis techniques.

3.1 polymer mechanics

When a protein loses its native form upon forced unfolding, the force re-
sponse of the remaining unstructured polypeptide can be described with the
Worm-like Chain (WLC) model [117]. An extrapolation formula suitable for
fitting force-extension traces of unfolded proteins is given by [33]:

FWLC (xP, [LP,pP, T]) =
kBT
pP

xP
LP

+
1

4
(
1− xP

LP

)2 −
1

4

 . (2)

Here, xP is the extension of the unfolded protein defined as its end-to-end
distance in space. The contour length LP is the actual length of the back-
bone. The persistence length pP is a measure for the distance over which the
polypeptide’s backbone orientation is correlated. Finally, T is the temperature
and kB the Boltzmann constant.

In addition to the protein under study the trap constructs comprise DNA-
handles as well. Their force response can be reproduced with an extensible
Worm-like Chain (eWLC) model [235]:

FeWLC (xD, [LD,pD, T,K]) =
kBT
pD

xD
LD

+
1

4
(
1− xD

LD
+ F
K

)2 −
1

4
−
F

K

 . (3)

With respect to the WLC model, here, the stretch modulus K is introduced to
account for the additional extensibility of DNA.

31
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Contour length gains from force spectroscopy and crystal structures

Within the time resolution of our experiments the entire trap construct com-
prising both DNA-handles and the protein can be assumed to experience the
same force, i. e., FeWLC = FWLC = F. The overall measured extension of the
tether xtether can then be written as the sum of the individual extensions:

xtether = xD(F) + xP(F) · Punf(F) . (4)

Here the extension of both DNA-handles has been summed up into xD(F)
which represents the inverse of Equation 3. The protein contributes xP(F), the
inverse of Equation 2, to the overall extension upon unfolding as indicated
by multiplication with the respective probability Punf(F). Typically, all DNA

parameters can be retrieved from a fit to the force-extension trace, where
the protein is still folded. Unfolding of the protein triggers a sudden gain in
contour length of the tethered construct, the extension of which is then fitted
with a WLC model with a fixed value for the protein’s persistence length pP
in series with an eWLC.

The choice of an appropriate persistence length is not obvious. So far, val-
ues ranging from 0.35 up to 0.9 nm have been reported [60, 166]. A possible
way to obtain a reasonable persistence length is by reducing the recorded
force-distance data to the mere contribution of the protein which can then be
directly fitted with the WLC model [166, 257]. Note that the persistence length
pP directly affects the contour length gains obtained from WLC fits as well
as the resulting average contour length gain per amino acid daa (see below)
[257]. Likewise, the equilibrium energy calculations presented in Section 3.2
are influenced by the choice of protein persistence length.

For a structural interpretation of measured contour length gains, a compar-
ison to values calculated from the protein’s crystal structure is key. Expected
contour length gains are calculated as follows:

∆Lcalc
P = Nunf

aa · daa − d
fold
init + dfold

remain . (5)

The number Nunf
aa of amino acids involved in unfolding is multiplied with

an average contour length per amino acid daa which is assumed to equal
3.65 Å [59, 60]. The resulting value is reduced by the initial distance dfold

init
between the two contact points of acting force before unfolding. If a part of
the protein still remains folded after an observed contour length gain, the
associated spatial distance dfold

remain along the axis of acting force needs to be
added. The distances dfold

init and dfold
remain are retrieved from the respective PDB

structures1.

3.1.1 Contour length transformation

Usually contour length gains obtained from WLC fits are averaged or plotted
in a histogram and fitted with a Gaussian distribution to identify the contour

1 Distances within PDB structures were measured using PyMOL software which can be found
under: https://www.pymol.org/.

https://www.pymol.org/
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length of an individual state from force-extension traces. A much more pre-
cise and advantageous method to find the contour length, especially for short
lived and rarely populated intermediate states, is by building accumulated
histograms of all unfolding or folding transitions which include all available
data points. To create this quasi non-equilibrium transition path ensemble2

from transitions occurring at different forces, the force-dependence of the ex-
tension needs to be overcome by transforming the force-extension traces into
force-independent contour space. This contour length transformation will be
outlined below. So far, this method has been proven useful for the investiga-
tion of short-lived intermediates upon the unfolding of, e. g., knotted proteins
or DnaK [12, 257].

The relation between an acting force and a protein’s extension xP can also
be interpreted as a dependence of the force on the relative extension Xp = xP

LP
.

Hence, by replacing the prefactor kBT
pP

with Z, Equation 2 can be rewritten as:

F (XP) = Z

[
XP +

1

4 (1−XP)
2
−
1

4

]
. (6)

After using Y = F
Z and regrouping the equation, a cubic expression in XP is

obtained:

X3P −

(
2+

(
Y +

1

4

))
X2P +

(
1+ 2

(
Y +

1

4

))
XP − Y = 0 . (7)

With further simplifications and substitutions, Equation 7 can be transformed
into a reduced cubic equation which can be solved using the Cardano formula
as shown in detail in [19]. The analytical solution for XP(F) is used to calculate
the contour length of an unfolded protein with an extension xP at force F
according to:

LP(F, xP) =
xP
Xp(F)

. (8)

Again, an appropriate value for the persistence length pP has to be chosen.
The inverse of Equation 2 indicated as xP(F) in Equation 4 is, in principle,
simply a conversion of Equation 8. In practice, xP = xtether - xD(F) where
xtether is measured according to Equation 1 and xD(F) is implied by XD(F)
derived from Equation 3 using the same formalism as indicated for XP(F).

The contour length transformation formalism can, of course, also be di-
rectly applied to constant distance traces.

3.2 free energy calculation

To calculate the free energy of the entire dumbbell system comprising two
trapped beads, two DNA-handles and a protein, it is sufficient to treat the
system as is if it only consisted of one bead, one handle, and one protein
[82]. While the dual-trap can be described by a single effective trap with an

2 The transition path ensemble is introduced in Section 3.8.1.



34 theory and analysis of single molecule experiments

effective spring constant keff = (1/k1 + 1/k2)
−1 and a bead displacement of

x = x1 + x2, the two DNA-handles are readily described by a single handle
with twice the contour length. Consequently, the energy stored in the dumb-
bell system consists of the Hookean energy stored in the displacement of
the effective trap Gbead, the mainly entropic energies stored in stretching the
DNA-handle GD as well as unfolded protein GP, and the free energy of folded
protein G0. When the protein is in state i with the entire system being at a
force Fi all contributions to the system’s free energy can be summed up:

Gi(Fi) = G
i
0 +G

i
bead(Fi) +G

i
D(Fi) +G

i
P(Fi) = G

i
0 +G

i
pot(Fi) . (9)

As an intrinsic property, the free energy Gi0 of the folded part of the protein in
state i, is force-independent. All other contributions including the stretching
of the unfolded part of the protein, which is on hand in state i, depend on
the force Fi. In Equation 9, these contributions are summarized in an over-
all potential energy Gipot(Fi) stored within the dumbbell configuration upon
stretching. In detail, these contributions are3

Gibead(Fi) =

∫xi(Fi)
0

dx Fspring (x) =
1

2
keff · x2i (Fi) =

1

2
Fi · xi(Fi) , (10)

GiD(Fi) =

∫xD(Fi)

0

dx FeWLC (x) , (11)

GiP(Fi) =

∫xiP(Fi)
0

dx FWLC (x) . (12)

When a protein undergoes a conformational change from state i to state j the
accompanying contour length change causes a change in acting force from Fi
to Fj. The resulting free energy difference is:

∆Gij(Fi, Fj) = Gj(Fj) −Gi(Fi) = ∆G
ij
0 +∆Gijpot(Fi, Fj) . (13)

The different elastic contributions to ∆G
ij
pot(Fi, Fj) are nicely illustrated in

[19, 193]. While taking care to choose the right bounds for integration to ac-
count for positive and negative energetic contributions, the resulting energy
difference can be shown to equal the area enclosed by corresponding stretch-
and-relax cycles [19]. Under force these contributions build up an additional
mechanical barrier for folding as well as unfolding. The force-dependent com-
position of this barrier is explicitly plotted in [193], which allows, e. g., the
discussion of the influence of effective spring constants on observed rates.

3 In practice, the polymers’ stretching energies are calculated from the inverse force functions
yielding, e. g., in case of Equation 11: GD(F) = F · xD(F) -

∫F
0 xD(F ′)dF ′.
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3.2.1 Force-dependent probabilities

If the dumbbell system is kept at equilibrium over a certain amount of time
during a constant distance measurement, probabilities of being in different
states identified at different bead positions x can be derived. The ratio of
their Boltzmann distributions (see Equation 17) allows the force-dependent
probabilities to be directly related to the free energy differences between the
respective states:

Pj(xj, Fj)
Pi(xi, Fi)

= exp
(
−
∆Gij(Fi, Fj)

kBT

)
. (14)

By exploiting the fact that the sum over all probabilities equals 1 and by
making use of Equation 13 and Equation 14 we can express the probability of
finding the system in state i in terms of free energy differences (β−1 = kBT):

Pi(Fi) =
1

1+
∑
j6=i exp

(
−β

(
∆G

ij
0 +∆Gijpot(Fi, Fj)

)) . (15)

By this means, as soon as the probabilities are known along with all elastic
energy contributions already introduced above, Equation 15 can be used as a
fit function to derive the folding free energy values ∆Gij0 . Typically, the state
probabilities are calculated from the sum of all lifetimes spent in a state iden-
tified by HMM analysis (see Section 3.4.3) divided by the entire length of the
respective constant distance trace. Errors accounting for the finite measure-
ment time are estimated as the standard deviation of probabilities obtained
from multiple Monte Carlo simulations performed under the assumption of
the measured transition rate constants.

3.3 fitting equilibrium unfolding/folding transitions

Already early force-spectroscopic measurements using the AFM technique re-
vealed fast equilibrium unfolding/folding transitions to show up as charac-
teristic kinks or humps within stretch-and-relax cycles [182]. Here, a model
for fitting such recorded traces by linking them to the entire system’s energy
function is briefly outlined in accord with [9, 261].

The force at inter-trap distance d equals the effective spring constant keff

multiplied with the measured mean value 〈x〉 of the overall bead deflection
signal. This mean value can be rewritten according to its definition as first
moment where p(x) is the distribution of x, see also Equation 44:

F(d) = keff · 〈x〉 = keff ·
∫+∞
−∞ dx x · p(x) . (16)

While considering x as a continuum of states, p(x) is linked to the entire
system’s energy function H(x) by a Boltzmann distribution where states of
lower energy have a higher probability of being occupied:

p(x) =
1

Z
· e−β·H(x) . (17)
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Here, Z =
∫+∞
−∞ dx e−β·H(x) is the canonical partition function comprising all

accessible states. Now only an appropriate energy function or ’Hamiltonian’
describing the entire system still needs to be formulated. Without loss of gen-
erality it is assumed that the recorded equilibrium transition reflects the fast
and independent unfolding/refolding of individual subunits each contribut-
ing an equal contour gain upon unfolding while storing the same fraction of
the overall folding free energy when folded. Given that there are N such sub-
units involved in the measured mean deflection signal 〈x〉, the Hamiltonian
H(x, i) of each of the N+1 possibly populated states i ∈ {0, 1, ...,N} reads:

H(x, i) =
(
1−

i

N

)
·∆G0 +Gbead(x) +GD(F(x)) +

i

N
·GP(F(x)) . (18)

All four energetic contributions correspond to the ones presented in Equa-
tion 9

4. The last term reflects a fraction of the maximal stretching energy
GP which is reached when all subunits are unfolded in state i = N. The
calculation of the last two summands implies the integration along the en-
tire stretched tether which is explicitly given by

∫d−2R−x
0 Ftether(x

′)dx ′ where
Ftether is the inverse of Equation 4 with Punf = 1. After summing up all states’
energy contributions by setting e−β·H(x) =

∑N
i=0 e

−β·H(x,i) in Equation 17 a
general expression for a force-distance relation under equilibrium conditions
described by Equation 16 can be derived:

F (d, [x,N]) =
keff∫+∞

−∞ dx∑Ni=0 e−β·H(x,i)
·
∫+∞
−∞ dx x ·

N∑
i=0

e−β·H(x,i) . (19)

Equation 19 allows the direct fitting of stretch-and-relax cycles. Only the over-
all folding free energy ∆G0 and the total contour length gain ∆Ltot included in
GP are used as free fit parameters. All other parameters including the number
of independent subunits N are kept constant for each individual fit. Typically,
N is iteratively increased until a satisfying goodness of fit judged from the
residuals is reached.

A characteristic feature of equilibrium unfolding/folding transitions is to
not show any hysteresis within experimental resolution. This allows the ∆G0
to be directly read off from the area enclosed by the stretch-and-relax cycle
and the mechanical fit to the fully unfolded construct, see [81].

An alternative way to fit equilibrium transitions by using the mid-force
F1/2 and total contour length gain ∆Ltot as free fit parameters was recently
presented and used to characterize the intrinsically-disordered protein α-
synuclein and the prion protein PrP [209, 249].

3.4 extracting force-dependent transition rates

Force-dependent transition rates can be retrieved from constant velocity as
well as constant distance measurements in different ways, three of which are
presented here.

4 Here, the ∆ in front of G0 is added for conformity with [261].
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3.4.1 Rates from force distribution histograms

Force distribution histograms p(F) directly relate to their corresponding rates
k(F) according to [19, 65]:

k(F) =
p(F) · Ḟ

1−
∫
p(F)dF

. (20)

A formula to convert an unfolding force histogram directly into a respective
rate versus force plot is, hence, given by [67]:

kunf (Fl) =
hl · Ḟ (Fl)(

hl
2 +
∑N
i=l+1 hi

)
·∆F

. (21)

The unfolding rate at force Fl = F0+
(
l− 1

2

)
·∆F, where l = 1, 2,... , is calculated

from a histogram with N bins of width ∆F starting at F0 and ending at FN =

F0 +N · ∆F. The parameter hl is the normalized height of the lth bin which
is calculated from the number of counts Cl in this bin according to hl =

Cl/ (Ntot ·∆F) with Ntot being the total number of counts. Ḟ denotes the force-
dependent loading rate which is further discussed in Section 3.6.1. For the
derivation of refolding rates the effective change of direction of integration
over p(F) needs to be considered, see Section 3.6.

3.4.2 Constructed equilibrium: Oberbarnscheidt’s method

A constant velocity experiment can be divided into a sequence of short seg-
ments with nearly constant acting force. Due to the assumed Markovian na-
ture of a protein’s conformational transitions, segments of same acting force
from multiple stretch-and-relax cycles can be stitched together into a virtual
quasi-equilibrium measurement obeying the same Poisson statistics that each
individual segment obeys. The transition rate k(F) at force F is then calculated
from the ratio between the number of observed transitions N(F) and the en-
tire time spent at this force given by the number M(F) of jointed segments of
duration ∆t [161]:

k(F) =
N(F)

M(F) ·∆t
. (22)

Typically, the considered force range of the stretch-and-relax cycles is binned
into small sections and the time spent in each bin is calculated according
to the modelled force-distance relation and the employed velocity. By this
means, the rate calculation becomes independent from the loading rate Ḟ and
therefore is also referred to as a model free rate determination.

As opposed to typical constant distance measurements, here, the force
range of observable transitions can be expanded by increasing the velocity.
This makes the described method a valuable supplement for force-dependent
rate constant determination. However, the most effective way to increase
statistics beyond equilibrium are jump experiments [189].
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Errors for obtained rates are estimated through division of the respective
rate by the square root of the number of events N from which the rate is cal-
culated. A more sophisticated error estimate based on the likelihood function
of the rate’s calculation can be found in [19].

In congruence with its author Leoni Oberbarnscheidt the presented method
is herein after referred to as OBS method [161].

3.4.3 Rates from lifetime distributions: Hidden Markov model analysis of equilib-
rium trajectories

The purpose of using a Hidden Markov Model (HMM) analysis is to unravel
a stochastically ’well-behaved’ interconnected network of states ’hidden’ be-
hind experimental data typically showing a poor signal-to-noise ratio. The
model describing the network of states is assumed to comprise a memory-
less continuous-time Markov process. This in turn allows the use of proba-
bilistic arguments to infer a distinct sequence of states S = {s0, s1, s2 ..., st,
..., sT } from a sequence of observables O = {o0, o1, o2, ..., ot, ..., oT } which
represent recorded snapshots of the hidden network. A HMM is characterized
by a set of emission probabilities Ei(ot) reflecting the probability to make an
observation ot while the system is in state i. Hence, these probabilities relate
measured data points to hidden states. The second important ingredient to
parametrize a HMM is the transition matrix Tij which specifies the transition
probability from state i to state j at each recorded time step. Being a N×N
matrix, Tij specifies the interconnectivity of all N states accessible to the hid-
den network. Together, the emission and transition probabilities constitute
the model parameter set M = {Ei(ot), Tij}.

While one of their early applications was to infer words from recorded
speech within speech recognition software [175, 176], over the past years
HMMs have become a versatile tool to analyse single-molecule data [18, 145,
216]. A detailed description of the HMM analysis applied within this thesis
to infer protein conformational states from bead deflection signals measured
with an optical trap setup can be found here [212, 214]. An example of a car-
ried out state assignment is given in Figure 11. In the following, the main
steps of a HMM analysis are presented in brief.

HMM analysis steps in a nutshell

As a preparative step, the input data, i. e., the raw difference signal of the
two bead deflections, is further binned to ease numerical calculations. Now,
at first, the HMM needs to be initialized. As a good first guess, the emission
probabilities which reflect the deflection distribution or Point Spread Func-
tion (PSF) of each supposed state are represented by Gaussians. Adequate
parameters for the positions and widths of the Gaussians are either guessed
by eye or retrieved from a multiple Gaussian fit to a histogram of the deflec-
tion signal. Furthermore, the transition probability matrix Tij is set up and
normalized such that the sum of all transition probabilities out of a state
equals 1. After initialization, an iterative state assignment process is started
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by estimating state probabilities for each data point. Therefore, a forward-
backward algorithm calculates, once forward and once backward in time5,
the probability of producing the sequence of recorded data points preceding
the currently analysed data point at which the system is assumed to be in
state i. From the product of the forward and backward probabilities a corre-
sponding posterior probability can be formulated for each data point to be
in either one of all possible states. The most probable state being assigned
to an analysed data point is revealed by the maximal posterior probability.
To this end all probability calculations are based on a fixed parameter set M.
However, after a state assignment through a run of the forward-backward al-
gorithm, the Baum-Welch algorithm can be used to optimize the parameter
set, in particular the emission probabilities. In order to do so, a new parameter
set M∗ is derived directly from the resulted state assignment and its maximal
forward and backward probabilities. It can be shown that by this means the
overall likelihood to produce the observed trajectory O = {o0, o1, o2, ..., ot, ...,
oT } is maximized given M∗ [13, 214]. Hence, together, the forward-backward
algorithm and the Baum-Welch algorithm constitute a maximum likelihood
method. The iterative state assignment and parameter optimization proceeds
until the assignment converges.

One way to supervise the performance of the HMM is by comparing the self-
optimized emission probabilities with expected PSFs, also see Section 3.7.1.
Furthermore, the quality of the assignment can be judged by the goodness
of single-exponential fits to extracted lifetime distributions. Sometimes, the
goodness of single-exponential fits can be enhanced by manual fine-tuning of
individual entries of the transitions matrix Tij.

Note that the performance of the Viterbi algorithm which is commonly
used in HMM analysis was found to be very sensitive to a good initial guess
for Tij while not being indispensible for a good analysis of our trapping data
[214, 229].

Accounting for missed events upon transition rate calculation

The above HMM based state assignment automatically yields a number of
dwell or lifetimes τ(Fi) spent in state i at force Fi. The corresponding normal-
ized integrated lifetime histograms are fit by a single exponential function
using the following formula [214]:

p(t) =
e−koff·t − e−koff·τmin

e−koff·τmax − e−koff·τmin
. (23)

Here, koff is a fit parameter representing the inverse lifetime τ and, hence,
the off-rate out of a state. The fixed values for τmin and τmax are chosen to
account for experimental limitations. While τmax is set equal to the full dura-
tion of the analysed trace to respect the finite measurement time, by τmin the

5 The forward-backward algorithm exploits the time-invariance of a Markov process to improve
calculation accuracy while concurrently allowing to calculate probabilities for data points at
time ’zero’ lacking a preceeding sequence ’forward’ in time.
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possibility of missed events due to a limited resolution is considered. The lat-
ter depends on the sampling frequency which defines the absolute minimum,
the response time of the entire measurement system, and the signal-to-noise
ratio, whereof the last two improve with rising force. Finally, the transition
rate from state i to state j is given by [214]:

kij(F(i)) =
kioff

1+
∑
k6=i

Nik

Nij

. (24)

The sum considers the that there may be more but one transition possible out
of state i. The value Nij reflects the number of detected transitions from state
i to state j.

Error bars given for calculated transition rates represent 1σ estimators [216],
more refined error estimates can be calculated according to [19, 43].

3.4.4 Pushing limits: autocorrelation analysis

If the equilibrium fluctuations of a protein are so fast and small that a state
identification within the measured difference signal is not even possible with
HMM analysis, there still remains another way to extract kinetic information:
autocorrelation analysis. The force-dependent decay of the autocorrelation
(AC) function of a recorded constant distance trace can be fitted by a double
exponential function yielding two rate constants provided by the decay times
τAC
D and τAC

P characteristic for the DNA-handles and the protein [261]. The
inverse of τAC

P reflects the combined or effective rate λ of protein folding and
unfolding – here denoted as kij and kji – at the measured average force F:(

τAC
P
)−1

= λ(F) = kij(F) + kji(F) . (25)

3.5 kinetic models

In order to interpret the information on a protein’s folding mechanism pro-
vided by experimentally determined force-dependent transition rates, kinetic
models characterizing this force-dependence are indispensable. Besides yield-
ing the crucial transition state position at ∆x, kinetic models are especially
useful for extrapolating rates from within the accessible force range towards
the zero-force rate constants kij0 . In addition to giving a more natural, i. e.,
force-free picture of the folding mechanism, zero-force rate constants serve as
an important consistency check when being compared to values from exper-
iments which use other denaturants than force to trigger protein unfolding
and folding. However one should keep in mind that a mechanically triggered
and spatially constrained pathway as observed in force spectroscopy must
not follow the same kinetics as it would in the absence of force. The follow-
ing section introduces different kinetic models in view of their meaning and
applicability.
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3.5.1 Blind spot at zero force: Arrhenius equation

In force-spectroscopy transitions of a protein between different conforma-
tional states are typically described as transitions between local minima of an
energy landscape where the folding free energy is plotted against a reaction
coordinate x, see Figure 13. In our case this reaction coordinate is the mea-
sured change in extension of the molecule under study along the direction of
the acting force. Albeit, this inferred one-dimensional energy landscape has to
be considered as a simplified projection of a complex and multidimensional
protein folding process.

While the probabilities of finding a system in either state i or j are fully
defined by their folding free energy difference ∆Gij0 (see, e. g., Equation 15),
the actual transition rate between two states crucially depends on the height
of the transition barrier separating them. This barrier, which is also referred
to as the activation free energy barrier, comprises a local energy maximum
located at the position of the transition state (TS) and has a height of ∆GiTS

0 or
∆G

jTS
0 with respect to the transition’s initial state. After reaching the transition

state further progress towards the final state is energetically favoured and,
hence, not rate limiting anymore. With no force involved as indicated by the
index ’0’, the transition rate kij0 from state i to state j decreases exponentially
with ∆GiTS

0 and is given by [4]:

k
ij
0 = kA · exp

(
−
∆GiTS

0

kBT

)
. (26)

The pre-exponential factor kA, as further elaborated in Section 3.5.4, is usu-
ally interpreted as a measure of the system’s fluctuation frequencies which
for their part reflect a kind of energy landscape roughness [40, 106]. There-
fore, intuitively the transition rate can be interpreted as an attempt frequency
inherent to the initial state times the probability of reaching the transition
state. The range of kA has been reported to cover 10

3 - 10
9 s−1 [23, 201], but

even 10
11 - 10

13 s−1 is used [148]. By this means Equation 26 can be applied
to estimate force-free energy barrier heights from zero-force extrapolated rate
constants only under the assumption of a reasonable value for kA [59, 83].

Even though Equation 26 is commonly known as Arrhenius equation, Svante
Arrhenius himself quoted it from Van’t Hoff who already stated the temperature-
dependence of the rate constant k of a chemical reaction to be given by [228]:
d/dT · log(k) = A/T2 +B.

3.5.2 The power of force: Zhurkov-Bell model

The Zhurkov-Bell model, henceforth abbreviated as ZB-model, was first de-
veloped to describe the strength of solids prior being applied to the fracture
kinetics of polymers [255, 256]. Since its follow-up application for the char-
acterization of cell to cell adhesion the ZB-model became more commonly
known as Bell model. In this model, the force-dependence of the transition
rate is calculated from the effect of an externally applied force F on the rate
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limiting barrier height at the position ∆x of the transition state according to
[15]:

kij(F) = kA · exp
(
−
∆GiTS

0 − F ·∆x
kBT

)
= kij0 · exp

(
F ·∆x
kBT

)
. (27)

While an applied force effectively tilts a protein’s energy landscape as shown
in Figure 13, the expression F ·∆x corresponds to the work that is performed
on or rather by a protein to either extend or compress it towards the transition
state. Depending on the corresponding sign6 of ∆x, the force-free transition
barrier ∆GiTS

0 is either reduced or increased by the external work which, in
turn, affects the transition rate. Equation 27 is used to fit rate versus force
plots as shown, e. g., in Figure 43C. The fit parameters kij0 and ∆x reflect the
intercept with the rate axis at zero force and the exponential slope of the fit.

Even though the simplicity of the ZB-model is very appealing it comes
along with a number of limitations when being applied to data from the dual-
optical trap assay. The overall work performed to reach the transition state is
assumed to increase linearly with force. This neglects all nonlinear contribu-
tions from the measurement apparatus including DNA-handles as well as the
unfolded polypeptide. Furthermore, the fit parameters kij0 and ∆x are con-
sidered to be constant at all forces. The pre-exponential factor kA included
within kij0 may be force-dependent though. And while the extensibility of a
folded protein is very small due to the strong but short-ranged interactions
keeping it in the folded state, the extensibility of the polypeptide chain of
an unfolded protein is highly force-dependent as implied by the WLC model.
By this means especially for refolding transitions a force-dependence of ∆x
needs to be accounted for.

Note that the value ∆x reflects a length change due to the stretching of
the entire measurement system. To not mix up the ∆x values obtained from
different kinetic models, the transition state positions extracted with the ZB-
model for a transition ending in state i will be indexed as ∆xZB

i .

3.5.3 Force-induced barrier: Schlierf-Berkemeier model

In contrast to the ZB-model, the Schlierf-Berkemeier (SB) model accounts for
all energetic contributions of the measurement system which add up to a
more refined force-dependent decrease or increase of the transition barrier.
After having been developed to model protein refolding observed at the AFM,
the SB-model was readily adapted for optical tweezers experiments; its gen-
eral formula reads [83, 196]:

kij(F) = kij0 · exp

(
−
∆GiTS

pot (F, FTS, [∆x])

kBT

)
. (28)

The force-induced barrier ∆GiTS
pot represents the part of the equilibrium free

energy difference between state i and the transition state TS which comprises

6 In this work, all ∆x values are given as positive values the true sign of which can be deduced
from the slope of the corresponding logarithmic rate versus force plots.
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Figure 13: Key parameters characterizing a folding energy landscape tilted by an
external force. Transitions between the two states i and j are controlled
by a barrier having its maximum at the position of the transition state TS.
Marked parameters are explained in the text.

the individual contributions of the beads, DNA-handles, and unfolded pro-
tein in accord with Equation 13. The only two fit parameters in Equation 28

are the zero-force rate constant kij0 given by Equation 26 and the transition
state position ∆x. The force-dependence of the latter is calculated from a WLC

model with contour length ∆LiTS
P to describe the transition state position in

contour space. The force FTS acting on the protein at the transition state is
obtained from the measured force F and the currently chosen ∆LiTS

P . All other
necessary parameters are known from mechanical fits and the calibration of
the traps.

Due to the included force-dependence of the transition state position ∆x,
SB-model fits show a curved shape with a slope equal to zero at zero force,
see, e. g., Figure 41A. This is a direct consequence of the force-dependent ex-
tension of the transition state position modeled by a WLC: at zero force the
average end-to-end distance of an unstructured polypeptide equals zero. The
curvature resulting from the force-dependence of ∆x also affects the zero-
force extrapolated rate constants. The good agreement between zero-force
free energies ∆Gij0 obtained from probabilities measured under force (see
Equation 15) and from extrapolated zero-force rate constants (see Equation 32)
proves the curvatures to be meaningful, see Section 5.2.3. Another proof of
principle for the SB-model is given if ∆LijP = ∆LiTS

P + ∆LjTS
P , which means that

the sum of the absolute values of the transition state position given in contour
length sum up to the total contour length gain observed for the corresponding
transition in force-extension or constant distance traces.
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All values declared as ∆xi without an upper index stem from SB-model fits
and are given in contour length of the protein.
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Figure 14: Three kinetic models for fitting force-dependent rates. The SB-model fits
were fixed at kf0 = 10

6 s−1, ku0 = 10
−3 s−1, ∆xu = 9 nm, and ∆xf = 15 nm.

The ZB- and DHS-models were fitted to match the SB-model plots within
the gray shaded area. Notably, ∆Gij0 ∼ 21 kBT implied for the SB-model
by ln(ku0 /k

f
0), see Equation 32, can also be reproduced from the zero-force

barrier height difference supplied by the DHS-model.

3.5.4 Getting in shape: using Kramers theory

Kramers developed his rate-theory for particles moving in a potential as de-
scribed by a Langevin equation, see Equation 59. This equation considers a
detailed energy landscape shape G(x) as the potential (see Figure 13 for an
example), a stochastically acting thermal force representing Brownian mo-
tion, and damping characterized by the friction coefficient γ which influences
the speed ẋ = v of particle diffusion. To calculate the rate kij0 over a bar-
rier separating two states i and j in a double-well potential as sketched in
Figure 13, Kramers derived the stationary probability current jTS at the transi-
tion barrier from a constructed probability density function ρ(x, v) that solves
the corresponding stationary Fokker-Planck equation around the barrier top
while meeting two further requirements – basically a Boltzmann distributed
particle population within the energy well around state i and a particle sink
beyond the transition state. The ratio of the resulting stationary current and
the population ni of particles in state i directly yield the transition rate accord-
ing to kij0 = jTS/ni, where jTS =

∫+∞
−∞ dv vρ(xTS, v) and ni =

∫
i−well dxdv ρ(x, v)

are given by ρ(x, v). The final result describes the thermally assisted escape
rate for a particle over a barrier for moderate up to high friction. The proba-
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bly most widely appreciated and simple appearing result is obtained in the
Smoluchowski limit, i. e., the overdamped case where γ� ωTS [95, 116]:

k
ij
0 =

ωi ·ωTS

2π · γ
· exp

(
−
∆GiTS

0

kBT

)
. (29)

Here,ωi andωTS represent a direct link to the energy landscape and describe
the oscillation frequencies around the minimum of state i and around the
barrier top at the transition state. These frequencies are further defined as the
absolute values of the square root of the respective local curvatures of the
(harmonic) potential G(x). Next, a more general expression for a particle’s
escape rate is given in terms of the mean first-passage time [95, 99]:

τmfpt =
(
k
ij
0

)−1
=

γ

kBT
·
∫xTS

xi

e−βG(x ′)dx ′ ·
∫xTS

x

eβG(x ′)dx ′ . (30)

The integrals around the transition state position as well as over the entire
potential well of state i stem from the above sketched formalism to calculate
the escape rate.

Within the framework of Kramers formalism, Dudko, Hummer, and Szabo
derived a kinetic model, in the following referred to as DHS-model, to de-
scribe the force-dependence of transition rates. In analogy to the emergence
of the ZB-model out of the Arrhenius equation, see Equation 27, here, the ef-
fect of an external force on the transition rate is introduced by setting G(x) =
G0(x) - F · x in Equation 30 which tilts the zero-force energy landscape G0(x).
The integrals inferred by Equation 30 for the expression kij(F)/kij0 can be eval-
uated analytically for different shapes of G0(x) that are distinguished by the
scaling factor ν within the unified form of the DHS-model [65]:

kij(F) = kij0 ·
(
1−

F ·∆x
∆GiTS

0

· ν
) 1
ν−1

· exp

{
∆GiTS

0

kBT

[
1−

(
1−

F ·∆x
∆GiTS

0

· ν
) 1
ν

]}
.

(31)

By setting ν = 2/3 or 1/2 the DHS-model assumes either a linear-cubic poten-
tial or a potential with a cusp-like barrier as zero-force energy landscape. For
ν = 1, the DHS-model converts into the ZB-model. Above the critical force,
where Fc ·∆x = ∆GiTS

0 , the DHS-model breaks down as a consequence of the
high-barrier limit at which Kramers theory holds. This limit requires7 ∆GiTS

0

� 1kBT to assure that only the transition barrier is rate limiting and no other
local roughness of the order of thermal noise. Without a doubt, a unique fea-
ture of the DHS-model is to provide the zero-force barrier height ∆GiTS

0 as a
fit parameter which is owed to the consideration of the full energy landscape
shape G(x) in Kramers formalism. Another noteworthy side effect is that the
curvatures of the force-dependent rate plots show expected Hammond be-
haviour for crossing the transition barrier in both directions, i. e., the more
the reaction product prevails the closer ’comes’ the transition state towards

7 For experimental data analyzed with Kramers rate-theory ∆GiTS
0 > 2kBT and ∆GiTS

0 > 3kBT

have been postulated [40, 44].
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the reactant in terms of a reaction coordinate [94]. An illustration of this effect
can be found on the left of Figure 26 in Section 4.2.4. However, as for the ZB-
model, the energetic contribution of the external force enters the DHS-model
only linearly. To overcome this drawback it may be an intriguing idea to re-
place the term F ·∆x in Equation 31 by ∆GiTS

pot (F, FTS, [∆x]) from the SB-model.
Transition state positions extracted with the DHS-model for transitions end-
ing in state i are declared as ∆xDHS

i .
For the first time, Equation 29 breaks down the pre-exponential factor kA

from Equation 26 into distinct contributions. One can see that kA is not neces-
sarily the same for kij0 and kji0 as in each case only the reactant’s side up to the
transition state is considered relevant for particle escape. As their experimen-
tal determination is quite challenging, involved oscillation frequencies are of-
ten assumed to be about the same for data interpretation [44, 86, 120, 201, 247]
unless they are directly assessed by, e. g., deconvolution of the underlying
energy landscape [154]. Attempts to resolve the diffusion constant8 D char-
acteristic for protein folding have led to different observations including an
expected temperature dependence [106, 159], coordinate-dependent diffusion
[21, 40, 132], and a potentially implied effective overall energy landscape
roughness9 ranging from 2 to 5 kBT which may even contain local traps of
up to ∼20 kBT [148, 154, 249].

Detailed balance

If two states i and j are in equilibrium with a folding free energy difference
∆Gij their equilibrium rate constant Keq is given by:

Keq =
kij

kji
= exp

(
−
∆Gij

kBT

)
. (32)

As a consequence of the principle of detailed balance, Equation 32 implies
that at a given folding free energy difference the rate of the forward direction
of a reaction predetermines the rate of the backward direction and vice versa.
This result directly follows from the equilibrium condition Pi · kij = Pj · kji
in connection with Equation 14. Alternatively it can be derived from, e. g.,
Equation 26 and the relation ∆GiTS - ∆GjTS = ∆Gij as illustrated in Figure 13.
Note that Equation 32 assumes the same pre-exponential factor kA for both
directions of the equilibrated reaction, in particular ωi = ωj with respect to
Equation 29, which neglects potential differences in energy landscape shape
which may even extend towards differences in local friction.

3.6 force distribution histograms

Force distribution histograms are a classical way to accumulate and present
unfolding and refolding forces collected from multiple stretch-and-relax cy-

8 The diffusion constant D is directly linked to the friction coefficient through the Einstein
relation [68]: D · γ = kBT.

9 The principle of an effective energy landscape roughness in terms of an energy ε is introduced
in Section 4.2.2.
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cles performed on a protein in constant velocity mode. By their nature, con-
stant velocity experiments impose a time-dependent force F(t) on the protein
under study. A force distribution histogram is, hence, a product of a transi-
tion rate which increases in time and a likelihood of survival in the original
state that decreases in time [71, 72]:

p(F) =
k(F)

| Ḟ |
· exp

(
−

∫F
Fstart

k(F ′)

Ḟ ′
dF ′

)
. (33)

Here, the absolute value compensates for a negative loading rate Ḟ experi-
enced during relaxation. The loading rate itself corresponds to an effective
harmonic spring κeff times the velocity v, where κeff incorporates all compli-
ances of the entire system as elaborated in Section 3.6.1 [10]:

Ḟ = κeff · v . (34)

Using Equation 33 and Equation 34 in conjunction with the ZB-model for the
transition rate’s force-dependence given in Equation 27 we arrive at a formula
for the probability distribution of unfolding forces by integrating from Fstart

= F(t = 0) = 0 up to F:

pZB
unf(F) =

ku0
κeff · v

· exp
{
F ·∆x
kBT

−
ku0 · kBT
κeff · v ·∆x

·
[

exp
(
F ·∆x
kBT

)
− 1

]}
. (35)

The two free fit parameters ku0 and ∆x are directly passed over from the
ZB-model10. For refolding during relaxation ∆x and v have negative values.
Furthermore, in a relaxation experiment integration starts at a higher force
as opposed to where it ends. Choosing Fstart high enough for refolding to be
impossible right at the start of a relaxation cycle effectively cancels out the
very last contribution in Equation 35 as given by the extreme case of e−∞
equals zero. The typical shapes of unfolding and refolding force distributions
are illustrated in Figure 15A.

In view of the generality of Equation 33 any of the kinetic models intro-
duced in Section 3.5 can be used to derive fitting functions for experimentally
determined force distributions [65, 169, 196].

3.6.1 Elastic compliance: loading rate determination

To calculate the loading rate given by Equation 34 it is crucial to be able to
evaluate the total system’s compliance represented by κeff at all forces. In the
dumbbell configuration κeff can be split up into three contributions:

(κeff)
−1 =

1

keff
+
1

kD
+
1

kP
. (36)

The three contributions comprise the effective spring constant keff of the two
optical traps as well as effective spring constants of the DNA-handles kD and

10 Note that the single index u is a simplified representation of the two indices ij in kij0 from
Equation 27. Here, u represents a simple two-state transition ending in the unfolded state.
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Figure 15: Force distribution histograms and elastic compliance contributions. (A)
Unfolding and folding force probability distributions at different con-
stant velocities according to the ZB-model and Equation 33. (B) Force-
dependence of kP according to Equation 37, Equation 38, and numerical
differentiation of a WLC. (C) All individual contributions to the system’s
compliance in a typical optical trapping experiment. The eWLC parameters
are pD = 25 nm, LD = 370 nm, and K = 400 pN. The effective trap stiffness
was set to keff = 0.2 pN/nm.

unfolded protein kP. While keff is constant within the chosen force range,
both kD and kP are force-dependent. Since kP represents unfolded protein, an
analytic expression for its force-dependent elastic contribution can be directly
obtained from the local slope of the corresponding WLC model:

kP =
∂FWLC

∂xP
=

kBT
pP

 1
LP

+
1

2LP ·
(
1− xD

LD

)3
 . (37)

To be able to express kP directly in terms of the acting force F, an alternative
interpolation formula has been proposed [67]:

kP ≈
3+ 5β · F · pP + 8 (β · F · pP)

5/2

2β · Lp · pP · (1+β · F · pP)
. (38)

Figure 15B shows a comparison between the force-dependence of kP for a
protein with LP = 27 nm and pP = 0.5 nm inferred by Equation 37, the inter-
polation formula in Equation 38, and a direct numerical differentiation of the
corresponding WLC model. From the residuals with respect to the analytic
expression in Equation 37 one can see that the interpolation formula mod-
els kP reasonably well but a direct calculation from the corresponding WLC

model should be preferred. Values for kD are henceforth also derived from
their related eWLC models. Figure 15C shows the force-dependent effective
stiffness κeff experienced at the protein’s DNA-handle attachment positions
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within a stretched dumbbell configuration. From the protein’s point of view
the effective spring constant keff of the two traps is drastically reduced at
forces below 10 pN, while at higher forces an almost constant reduction of
about 20 % can be observed. Taken together this highlights the importance of
a correct loading rate determination.

Within the limits of our optical trapping experiments the above made con-
siderations concerning the loading rate determination are reasonable. How-
ever, in some cases a further refinement of the loading rate may be considered
necessary [136, 226].

3.7 deconvolution of probability distributions

A very powerful method to fully reconstruct a protein’s folding energy land-
scape is given by deconvolution. If the equilibrium probability distribution
PP(x) of a fluctuating protein is known, the underlying energy landscape
G(x) is simply retrieved by a Boltzmann inversion:

G(x) = −kBT · ln (PP(x)) + const. . (39)

However, the measured probability distribution Pmsmt(x) of the fluctuations
of a protein recorded in a constant distance optical trapping experiment is
only a blurred version of PP(x) due to the coupling of thermal noise to the
entire measurement system. Mathematically, Pmsmt(x) can be interpreted as a
convolution of the probability distribution PP(x) with the probability distri-
butions of the fluctuations of the trapped beads and DNA-handles represented
by Ψx(x), i. e., the point spread function (PSF):

Pmsmt(x) = Ψx(x)⊗ PP(x) =
∫+∞
−∞ dx ′ Ψx(x− x ′)PP(x ′) . (40)

The index x within Ψx(x) indicates that the PSF itself depends on the mea-
sured extension x through the involved acting force, also see Section 3.7.1. To
remove the additional contributions of the beads and DNA-handles included
in Pmsmt(x), a constrained nonlinear iterative deconvolution can be performed
to reconstitute PP(x) [110]:

Pn+1P (x) = PnP (x) + r (P
n
P (x)) ·

[
P0P(x) −Ψx(x)⊗ PnP (x)

]
. (41)

Here, the relaxation function r (Pn(x)) = r0 · (1− 2|Pn(x) − 1/2|) constrains the
resulting probabilities between 0 and 1 to remain within physical boundaries.
Reported values for the amplitude r0 which controls the speed of convergence
are, e. g., 1 and 2. The iteration can be started by using P0P(x) = Pmsmt(x), al-
ternatively an educated guess based on complementary data providing, e. g.,
the transition state position, is equally justifiable. To reach convergence a few
hundred up to tens of thousands of iterations can be necessary [83, 243, 247].

An alternative approach turns the iterative deconvolution procedure for
reconstructing PP(x) out of Pmsmt(x) into an optimization problem where, in
principle, the convolved form of an estimated deconvolved energy landscape
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Ĝ(x) is fitted to Pmsmt(x) [98]. A numerical implementation of this approach
foresees the minimization of the following function [177]:

O =
〈∣∣ln (P̂P(x)⊗Ψx(x))− ln (Pmsmt(x))

∣∣〉
x
+ λ ·

∑
i

[
β · ∂2xĜ(x)|x̂i

]2
. (42)

As the estimated probability distribution of the protein is given by P̂P(x) =

exp
(
−β · Ĝ(x)

)
, the only unknown in this equation is Ĝ(x). Ĝ(x) itself is rep-

resented by a cubic spline which interconnects a number of equally spaced
base points denoted by x̂i. While the first part of Equation 42 represents an
average over all x values, the second part is a penalty function to ensure that
solutions found for Ĝ(x) are smooth. Typical values for λ are in the order of
10

−3 nm2 and smaller. Minimization of Equation 42 is initiated using P̂P(x) =
Pmsmt(x) and performed by an algorithm which varies the interpolation points
in order to find the best estimate for Ĝ(x). A quasi-Newton optimizer with
Moré-Hebden steps has been shown to decently fulfill this task while an inter-
esting alternative may also be provided by simulated annealing [56, 177]. An
example showing both the convolved energy landscaped inferred by Pmsmt(x)

as well as its deconvolved version obtained after optimization of Equation 42

is given in Figure 27C of Section 4.3.1.
After a change of variables ĜP(x → LP) which involves a contour length

transformation, see Section 3.1.1, the deconvolved energy landscape ĜP(LP,
Fmsmt) observed at pretension Fmsmt can be transformed to any other preten-
sion using Equation 13, see, e. g., Figure 44A in Section 5.3.1. After transfor-
mation to a common pretension, multiple energy landscapes can be combined
using the Weighted Histogram Analysis Method (WHAM) to enhance resolu-
tion [77, 98, 122]. Local stabilities are directly provided by the energy land-

scapes’ derivatives ∂ĜP(LP)∂LP
. Errors for deconvolved energy landscapes can be

estimated by bootstrapping [177].
Even though deconvolution provides a very useful tool for energy land-

scape reconstruction there certainly are limitations. To obtain good and mean-
ingful results the protein’s true energy landscape must be reducible to the sin-
gle dimension of our force-spectroscopic measurement. Only in that case the
measured changes in protein extension can be considered as a good reaction
coordinate given the spatial and temporal resolution are high enough.

There are other methods of energy landscape reconstruction which exist
besides the deconvolution of equilibrium data. Recently, a proposed recon-
struction from non-equilibrium constant velocity measurements was tested
on experimental data and verified by direct comparison to deconvolution
[91, 102]. Another approach suggests to apply deconvolution directly to non-
equilibrium data [104]. A way of reconstructing the shapes of energy barriers
by the analysis of transition paths is presented in Section 3.8.

3.7.1 Setting up the point spread function

The key ingredient of any deconvolution is the PSF which ideally enables us
to remove all interfering noise. It has been shown that the distribution of the
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detected position noise of beads in a stretched dumbbell configuration can be
described by a skewed Gaussian function Γ(x,µ,σ,γ, i), where µ is the mean,
σ the standard deviation, and γ the skewness of the distribution of deflec-
tion values measured while the protein is in state i [216]. It has been further
elaborated that the PSF needs to be adapted to the change of acting average
force as bead deflection changes in constant distance experiments operated
in passive mode [83]. To do so, Ψx(x) is derived for each deflection value by
a linear interpolation between µ, σ, and γ of the point spread functions at the
two extremal deflections marking the edges of Pmsmt(x):

Ψxmax(x) = Γ(x,µ,σ,γ, i)

Ψxmin(x) = Γ(x,µ,σ,γ, j) .
(43)

In case of transitions recorded from a simple two-state folder, the states i
and j correspond to the folded (closer to xmax) and unfolded state (closer to
xmin). By inserting the definition of a Boltzmann distribution, see Equation 17,
into the definition of the moments of a distribution, it is possible to directly
link the moments to the mechanical energy Gipot(Fi(x)) stored in the stretched
dumbbell with the protein in state i. The n-th moment of a distribution p(x)
about the origin is then given by [261]:

µn = 〈xn〉 =
∫+∞
−∞ dx xn · p(x) =

∫+∞
−∞ dx xn · exp

(
−β ·Gipot

)
∫+∞
−∞ dx exp

(
−β ·Gipot

) . (44)

The equations for calculating Gipot(Fi(x)) are implied by Equation 9 and Equa-
tion 13 for which all necessary parameters can be experimentally assessed.
As µ, σ, and γ can be directly calculated from their corresponding moments,
Equation 43 in combination with Equation 44 pave the way towards the cal-
culation of Ψx(x) for all deflection values. In detail, with the mean being the
first (raw) moment it is directly given by µ = µ1, the standard deviation be-
ing the positive square root of the variance, the second central moment, reads
σ =
√
µ2 − µ

2

1
, and the skewness equals γ = (µ3 − 3µ1µ2 + 2µ

3

1)/σ
3.

Note that the distribution moments calculated using Equation 44 are only
valid at infinite bandwidth [261]. Calibration factors accounting for the finite
experimental bandwidth can be derived by comparing the values inferred by
Equation 44 to those actually measured for dimerized oligos [177].

Instead of a linear interpolation between two extremal point spread func-
tions one might think of explicitly calculating Ψx(x) at all bead positions to ac-
count for the nonlinearity of Gipot(Fi(x)). However, besides being numerically
more time-consuming, this idea would require further assumptions about
how to transition between protein states. This could be feasible by consider-
ing additional information on individual state distributions and their overlap
with others.

3.8 transition path analysis

Inasmuch as transition paths are immediate witnesses of a reaction, they also
bear essential information on the underlying reaction mechanism. A frame-
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work for the statistical analysis of a representative ensemble of transition
paths is provided by transition path theory (TPT) [236, 237]. To date, this the-
ory was mainly used to interpret rare transition events acquired from molec-
ular simulations especially by using the transition path sampling method
[28, 55]. Recent advances in single-molecule force spectroscopy, however, al-
low the recording and extraction of experimental fingerprints of transition
paths, see, e. g., Figure 12, which now call for an appropriate analysis. Af-
ter introducing the key ingredients of TPT, its relationship with experimental
time traces is presented followed by emerging applications for experimental
data.

3.8.1 Path ensembles and commitment probabilities

Let x(T) ≡ {x0, x∆t, x2·∆t, ..., xT} be a random trajectory of duration T through
a system’s phase space represented by an ordered sequence of states sepa-
rated by a small time increment ∆t. If considering a Markovian process the
dynamical path probability of the entire path x(T) can be derived from the
product of short-time probabilities associated with the evolution of state xt

into state xt+∆t [55, 172]:

P [x (T)] = ρ (x0) ·
T/∆t−1∏
i=0

p
(
xi·∆t → x(i+1)·∆t

)
. (45)

Here, ρ(x0) denotes the probability distribution of the initial state x0 which,
for instance, can be represented by the canonical (Boltzmann) distribution at-
tributed to the system’s Hamiltonian H(x), i. e., ρ(x0) ∝ e−β·H(x0). For a sys-
tem evolving according to a Langevin equation, see Equation 59, the single
step transition probability can be expressed as p (xt → xt+∆t) =

√
2π · σ2

−1 ·
exp (−(∆x)2/2σ2) in the high friction limit. This Gaussian distribution re-
flects the statistics of the random displacement ∆x resulting from a thermally
driven Gaussian random force, see Section 4.1 for more details. Having a
zero mean, the width for the random displacement depends on the time step
and the temperature, σ2 = 2 (kBT/γ) · ∆t. Next, the random path ensemble
represented by Equation 45 is restricted to merely reactive trajectories [55]:

Pij [x(T)] ≡
1

Zij(T)
· hi(x0) ·P [x(T)] · hj(xT) , (46)

where the characteristic function hi(x) forces the path to start in state i, and
hj(x) constrains the path to end in state j according to:

hi,j =

1 if x ∈ i, j

0 if x /∈ i, j .
(47)

The normalization factor Zij(T) has the form of a partition function and
is defined as Zij(T) ≡

∫
Dx(T)hi(x0) · P [x(T)] · hj(xT), where

∫
Dx(T) ≡∫

...
∫
dx0dx∆tdx2·∆t...dxT indicates a summation over all pathways x(T). Taken
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together, the probability functional given by Equation 46 is a statistical de-
scription of all reactive pathways of duration T connecting states i and j. This
set of paths where each path has its own statistical weight proportional to
P [x (T)] is termed the transition path ensemble.

i

j

A B

i j

t

0.5

0

1

jp

Figure 16: Illustration of the transition path ensemble and the commitment proba-
bility. (A) A transition path connects stable regions i and j (thick solid
line). The transition path ensemble consists of all pathways interconnect-
ing these two regions; examples are indicated (thin lines). (B) The com-
mittor pj(r, ts) for a time slice t along a transition path (thick solid line,
top panel) reflects the fraction of pathways initiated from a configuration
r that reach stable region j within time ts. Transition states lie along the
separatrix (red dashed line), where pj ≈ 0.5 ≈ pi.

The commitment probability11, in short committor, plays a central role in
the analysis of transition paths as it allows the definition and the study of the
ensemble of transition states positioned on the separatrix - a surface dividing
basins of attraction of stable states. In principle, the committor calculates the
relaxation probability of a system into a final state, here i, within a short time
ts given that the system is in the initial configuration r [28]:

pi (r, ts) ≡
∫
Dx(ts)P [x(ts)] δ(r0 − r) · hi(xts)∫

Dx(ts)P [x(ts)] δ(r0 − r)
. (48)

The delta function on the right hand side assures that only traces x(ts) which
start in configuration r0 = r contribute to pi (r, ts). The denominator effec-
tively represents the equilibrium probability distribution for configuration r
and is used for normalization. For a two-state system with stable states i and
j the condition pi (r, ts) = pj (r, ts) = 0.5 defines the configuration r as a tran-
sition state. Owing to their relation to the transition state ensemble which
comprises all configurations critical for a reaction, committor distributions
which peak around a value of pi/j = 0.5 serve as proof for a good choice of
reaction coordinate.

11 The commitment probability is also known as the splitting probability. In the context of protein
folding the terms pfold and punfold are typically used [42, 143].
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Finally the whole introduced set of constrained and unconstrained path
ensembles and characteristic functions can be used to calculate reaction rate
constants as well as free energies within the TPT framework [26, 28, 237].

3.8.1.1 Committor calculation from equilibrium trajectories

The experimentally recorded equilibrium fluctuations of a protein’s extension
are nothing but a series of concatenated forward and backward transition
paths which are only constrained in time by the duration of the experiment
and not by default as in Equation 48. Therefore, under the assumption of
overdamped Langevin dynamics with constant diffusion coefficient D, it is
also possible to estimate the commitment towards state i for a given reaction
coordinate value x from an observed equilibrium trajectory X(t), t ∈ [0,T]12,
according to [42]:

p̂i(x) =

∫T
0 dt δ (x−X(t)) · cxi(t)∫T

0 dt δ (x−X(t))
. (49)

Here, the hitting function cxi(t) does the characteristic function’s job by con-
trolling whether X(t) hits an absorbing boundary at xi (representing the lo-
cation of state i along the reaction coordinate) before xj (representing the
location of another state j) immediately following time t in which case it as-
sumes unity, and zero otherwise. In other words, as indicated by the delta
functions, the denominator counts all crossings of X(t) at position x while
the numerator counts only those crossings which are followed by a crossing
at position xi prior to a crossing at position xj. Numerically this is accom-
plished by filling up histogram bins for an appropriate number of positions
x between xi and xj. Figure 17 visualizes what is effectively calculated by
Equation 49.

3.8.2 Committor-based barrier shape reconstruction

Consider a double-well potential G(x) with absorbing boundaries xi and xj
placed in the vicinity of the two minima representing states i and j as de-
picted in Figure 17A. Then, for a diffusive process governed by overdamped
Langevin dynamics, the probability of first encountering xi before xj starting
from x ∈

[
xi, xj

]
is given by [42, 179]:

pi (x) =

∫xj
x dx

′D(x ′)−1 · eβ·G(x ′)∫xj
xi
dx ′D(x ′)−1 · eβ·G(x ′)

. (50)

Here, the denominator represents the equilibrium distribution peq(x) of all
data points within the two boundaries. A potential dependence of the dif-
fusion constant D on the position x is indicated. Figure 17C illustrates the
distributions described by the integrals in Equation 50.

12 Here, t is a running variable and no maximal duration value as in Equation 48.
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Figure 17: Commitment probability calculation and committor-based barrier shape
reconstruction. (A) Potential G(x) used for a 1D diffusion Monte Carlo
simulation. Dashed lines indicate positions of absorbing boundaries. (B)
Representative stretch of simulated time trace with positional distribution
to the left. Colour-coded commitment to state i (orange) or j (gray) for-
ward in time. (C) ’Split’ probability distributions (upper panel) and a zoom
into the critical transition region (lower panel). (D) Resulting commitment
probabilities calculated using Equation 49. Dashed lines represent commit-
tors directly calculated from the underlying potential. (E) Reconstructed
barrier shape (dark orange) according to Equation 51.

By inversion of Equation 50 a direct relation between committors and their
determining energy profile G(x) can be established [143]:

G(x) = β−1 · ln
(
[D (x)] ·

∣∣∣∣dpi(x)dx

∣∣∣∣) . (51)

As Equation 51 only holds to within a constant offset, D(x) may be omitted if
it is assumed to have the same value at all positions x. In that case, ln (D) can
be separated as another additional constant offset which does not affect the
overall barrier shape. As shown in Figure 17E, Equation 51 allows the shape
of the barrier of G(x) to be reconstructed from the corresponding committors.

3.8.3 Bayesian path statistics localise transition states

Transition path segments isolated from equilibrium trajectories can be used
to estimate the transition path (TP) ensemble p (x|TP), a conditional phase-
space density, from histograms of points x along the isolated segments, see
Figure 18B. As individual path lengths are variable in terms of their duration,



56 theory and analysis of single molecule experiments

each path enters the transition path ensemble with a relative weight 1/τTP

to ensure detailed balance. By applying a Bayesian relation between equilib-
rium and transition path ensembles, the conditional probability of being on a
transition path given that the system is at position x is given by [101]:

p (TP|x) =
p (x|TP) · p (TP)

peq (x)
. (52)

Here, peq (x) represents the equilibrium probability distribution of the entire
trajectory and p (TP) indicates the fraction of time spent on transition paths
within the trajectory. While p (TP) serves as a normalizing factor, p (x|TP) and
peq are normalized probability distributions the ratio of which ’measures’ the
significance of x in transitions between stable states.
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Figure 18: Transition path probability calculation and transition state localization. (A)
Potential G(x) used for a 1D diffusion Monte Carlo simulation. Dashed
lines confine the transition path region to within the inflection points of
G(x). (B) Isolated forward (orange) and backward (gray) transition path
segments. Right panel: transition path ensemble distributions of forward
and backward paths perfectly overlap. (C) From left to right: potential
G(x) used to produce a simulated trajectory yielding the equilibrium
distribution peq (x), properly weighted transition path ensemble p (x|TP)
of all forward and backward transitions, and transition path probability
p (TP|x). (D) Dashed lines represent comittors and the transition path prob-
ability directly calculated from G(x). The black solid line shows p (TP|x)
from the right of (C).

As can be seen in Figure 18C, the transition path probability p (TP|x) is
sharply peaked at the transition state position where it ideally reaches a value
of 0.5 in case where x is a good reaction coordinate for capturing the dynamics
of a two-state system.
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Furthermore, the transition path probability directly relates to the product
of the system’s commitment probabilities according to [101]:

p (TP|x) = 2 pi (x) · pj (x) = 2 pi (x) · [1− pi (x)] , (53)

where the factor of two arises from the fact that a forward and backward path
can always be swapped [27]. The correlations implied by Equation 53 are illus-
trated in Figure 18D. Subsequently, the committor-based barrier shape recon-
struction introduced in Section 3.8.2 can be achieved by calculating p (TP|x)
as well.

3.8.4 Transition path times and kinetic rates

The average transition path time 〈τTP〉 which is necessary for crossing a
harmonic barrier by one-dimensional diffusion is approximately13 given by
[44, 101, 138]:

〈τTP〉 ≈
ln
(
2eγE ·β ·∆GTS

)
β ·D ·ω2TS

=
γE + ln

(
2β ·∆GTS

)
ωK

. (54)

Here, γE ≈ 0.577... is Euler’s constant, ω2TS is the curvature at the barrier top,
and β ·D ·ω2TS = ωK. Equation 54 is valid in the high-barrier limit, i. e., ∆GTS

> 2 kBT, and assumes a constant diffusion coefficient D.
The right-hand side of Equation 54 implies that 〈τTP〉 is composed of two

contributions, where γE/ωK appears to be a mere diffusive term. However, it
can be shown thatωK depends on the barrier height throughωTS. Due toω2TS
=
∣∣∂2G(x)/∂x2

∣∣ at the barrier top, it is possible to express ω2TS in mere terms of
∆GTS and ∆xTS for different types of potentials G(x) yielding the following
universal dependence:

ω2TS = κ? ·
∆GTS

(∆xTS)
2

, (55)

where κ? corresponds to either κharm = 4, κsin = π2/2, or κcubic = 6 for a har-
monic, sinusoidal, or linear-cubic potential14, respectively. Hence, Equation 55

implies that ωK changes proportionally to changes of the barrier height ∆GTS

if the distance between the minima of the double-well potential is kept con-
stant, see inset of Figure 19A. Respecting this interdependence, the relation of
〈τTP〉 to characteristic parameters of G(x) can be deduced from Equation 54.
For the case of a harmonic potential, Figure 19A and Figure 19C illustrate15

13 The underlying analytic expression reads 〈τTP〉 = D−1 ·
∫xj
xi
e−β·G(x) · pi(x) · pj(x)dx ·∫xj

xi
eβ·G(x)dx, where G(x) is the free energy as the function of the reaction coordinate x and

pi(x) and pj(x) are defined by Equation 50.
14 The potentials used to derive Equation 55 are constructed such that they provide a well-

defined ∆xTS and ∆GTS. In detail, Gwell
harm(x) = 2∆GTS · (x/∆xTS)2 in combination with a turned

and shifted Gbarrier
harm (x), Gsin(x) =

1
2∆G

TS · cos (π · (x/∆xTS)), and Gcubic(x) =
3
2∆G

TS · (x/∆xTS) −

2∆GTS · (x/∆xTS)3.
15 Parameters used for the calculations in Figure 19 were chosen such that 〈τTP〉 reaches the

expected speed limit of about 1µs for a protein comprising 100 amino acids [119].
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the inferred dependence on the barrier height ∆GTS and the position of the
transition state ∆xTS while the respective other parameter is kept constant.
Both dependencies were tested and confirmed by one-dimensional diffusion
simulations as described in Section 4.1, data not shown.
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Figure 19: Transition path time averages and distributions. Constant parameters are
∆GTS = 7 kBT, ∆xTS = 36.5/2 nm, a friction coefficient of γ = 4× 10

−8 pN ·
s · nm−1, and thereby D = kBT/γ = 10

8 nm2 · s−1 at 300 K. (A) Barrier
height-dependence of 〈τTP〉 for a fixed transition state position. (B) Proba-
bility distributions of τTP according to Equation 56 and Equation 57 with
κ = 1 kBT. The mean values of the distributions agree well with 〈τTP〉 esti-
mated by Equation 54. (C) Dependence of 〈τTP〉 on the transition state po-
sition at constant harmonic barrier height. (D) Experimentally determined
stem-length dependence of transition path times for DNA hairpin unfold-
ing fitted by a quadratic function. Data adapted from [154]. (E) Barrier
height-dependence of pCM (τTP) for a fixed transition state position.

In contrast to the strong force-dependence of kinetic rates which typically
change over several orders of magnitude (see Section 3.5), the transition path
time shows a much weaker dependence on both the barrier height and the
transition state position. An increasing ∆GTS leads to a shorter 〈τTP〉 as a re-
sult of confining the probability distribution of transition path times to those
from transition paths with non-vanishing dynamical path probabilities. This
confinement can be recognized in Figure 19E. As expected, 〈τTP〉 becomes
longer by increasing the distance between the two stable configurations and,
hence, by increasing ∆xTS, see inset of Figure 19C.
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It is remarkable that in agreement with the quadratic dependence on the
transition state position, the experimentally determined stem-length depen-
dence of transition path times of DNA hairpin unfolding is very well fitted by
a quadratic function, too, see Figure 19D. To further investigate this correla-
tion, a corresponding analysis of protein coiled-coil constructs with different
transition state positions can be considered based on constructs and construct
design introduced in Section A.1 and Section A.2.2.

An approximate expression for the distribution of transition path times is
given by [41, 251]:

pCM (τTP) ≈
ωK
√
β ·∆GTS

1− erf
(√

β ·∆GTS
) · exp

[
−β ·∆GTS · coth (ωK · τTP/2)

]
sinh (ωK · τTP/2) ·

√
2π · sinh (ωK · τTP)

,

(56)

where erf (...) is the error function and the superscript refers to Chaudhury
and Makarov (CM) who presented the explicit form of Equation 56. Another
formula to calculate the probability distribution of transition path times has
been introduced by Malinin and Chernyak (MC) [138]:

pMC (τTP) =
(
2ωK ·∆GTS/κ

)
· exp

{
−ωK · τTP −

(
2∆GTS/κ

)
· e−ωK·τTP

}
. (57)

Here, κ describes the noise strength16 in units of kBT. Apart from different
variables, Equation 57 is of the same form as for a distribution of refolding
forces, see Section 3.6. The typical shape of transition path time distributions
is shown in Figure 19B.

Finally, the average time needed to transit between two states i and j relates
to the corresponding transition rates according to [101]:

kij ≈ p (TP)
2 〈τTP〉 · Pi

. (58)

While p (TP) is the fraction of time spent on transition paths, Pi is the equi-
librium probability of being in state i. By this means, Equation 58 requires
detailed knowledge of the entire equilibrium trajectory.

3.8.5 Extracting transition paths

In order to extract transition paths from an equilibrium trajectory it is neces-
sary to first choose the transition path boundaries. A transition path is then
typically defined as the shortest interconnection between the chosen bound-
aries where after crossing the first boundary the second boundary must be
reached prior to recrossing of the first one.

Figure 20A shows the effect of different boundary positions xTP
i and xTP

j on
the transition path ensemble and probability extracted from a one-dimensional
diffusion Monte Carlo simulation (for simulation details see Section 4.1). Even

16 For κ = 1 kBT, the average transition path time derived from Equation 57 exactly matches
Equation 54 [138].
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though the transition path ensembles p (x|TP) look quite different, the transi-
tion path probabilities p (TP|x) calculated according to Equation 52 perfectly
match each other. This confirms the robustness of Equation 52 which allows
the transition path boundaries to be flexibly chosen within the range of a
vanishing transition path probability. Basically, this is possible because the
normalizing factor p (TP) compensates for the altered height of the normal-
ized transition path ensemble along with the altered transition path times τTP

which in turn have to be interpreted with care.
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Figure 20: Transition path extraction from simulated and experimental trajectories.
(A) Transition path ensembles (upper panel) and probabilities (lower
panel) for differently chosen transition path boundaries between either the
minima (red) or the inflection points (black) of the underlying potential
(gray) of a 1D diffusion simulation. The theoretically expected transition
path ensemble is shown as a dashed line. (B) The equilibrium distribution
of a measured protein folding trajectory (left) is used to locate transition
path boundaries either at the maxima or the inflection points indicated
by red or black dashed lines. For an individual transition (right) the read-
out of transition path times between maxima τm2m

TP or inflection points
τinfl

TP differs drastically. The transition path time suggested by HMM analy-
sis assuming multiple very short-lived states along the transition path is
marked in blue.

Other than for simulations, the original folding energy landscape underly-
ing experimentally recorded protein fluctuations is hidden behind additional
thermal noise coupling to the measurement system, see Section 3.7. On this
account, the entire region between maxima of the equilibrium distribution of
the differential bead position signal has to be considered to extract transition
paths as exemplified in Figure 20B. This assures the transition state position
to be included which is an issue especially with regard to protein folding
energy landscapes potentially being asymmetric. Furthermore, this way the
transition path involves the crossing of the full barrier height which becomes
relevant for transition path time calculations as introduced in Section 3.8.4
and confirmed in Section 4.2.1.
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Besides an unknown exact energy landscape shape, another issue of ex-
perimental data is their limited resolution. Alongside strong filtering which
in turn leads to a reduction of spatial information, one can consider to treat
transition paths as a series of adjoining short-lived intermediate states. A cor-
responding HMM analysis will then allow the differentiation between thermal
noise along the transition path and actual transition path boundary crossing.
This method is particularly useful when the lifetimes of the two considered
stable states are much longer then the lifetimes of potential high-energy in-
termediates identified along their interconnecting transition paths, see Sec-
tion 6.2.3.





Part III

S I M U L AT I O N R E S U LT S

Binary-supported tests of theories and hypotheses.





4
L A N G E V I N D Y N A M I C S S I M U L AT I O N S

Numerical simulations are a powerful tool for testing theoretical models and
hypothesis derived from experimental observations. One particular strength
of simulations lies within providing the environment for and the control over
a completely self-contained deterministic system. In the follwing, the princi-
ple of the simulation of our entire force-spectroscopic measurement system
is briefly introduced. Thereafter, simulations are performed to test different
formulas, to investigate different concepts of roughness, and to analyse the re-
sponse of the measurement system to different underlying energy landscapes
of protein folding with a particular focus on friction.

4.1 simulation principle

The Brownian motion of a particle in an external potential G(x) can be de-
scribed by the following Langevin equation [17]:

m · ẍ(t) + γ · ẋ(t) + ∂xG(x(t)) =
√
2kBT · γ · ζ(t). (59)

The three terms on the left describe forces acting on the particle which arise
from inertia inferred by the mass m of the particle, friction induced by the
surrounding medium characterized by the friction coefficient γ, and the local
potential gradient. The term on the right of Equation 59 represents a Gaussian
random force uncorrelated in time and satisfying the fluctuation dissipation
theorem. Therefore, ζ(t) is an uncorrelated (white) noise function with mean
value 〈ζ(t)〉 = 0 and variance 〈ζ(t)ζ(t ′)〉 = δ(t− t ′) [142]. In the limit of high
friction which is also referred to as the overdamped case, the inertial term
in Equation 59 can be omitted. Now, after transiting from continuous time to
discrete time steps by replacing ẋ = ∆x

∆t , where x still implies x(t), rewriting
of Equation 59 leads to1:

∆x =
∆t

γ
·
(
−∂xG(x) · kBT +

√
2kBT · γ/∆t · ζ(t)

)
. (60)

After choosing an initial position xinit at time t = 0, the simulation of a trajec-
tory of a diffusing particle is performed by iteratively evaluating Equation 60

at each time step ∆t and adding the resulting ∆x to the current position such
that x(t+∆t) = x(t)+∆x. Replacing G(x) with H(x, i) from Equation 18 turns
Equation 60 into an equation suitable to simulate the differential signal of our
optical trapping experiments where the currently populated state i of the pro-
tein is decided upon by a Monte Carlo step based on predefined values kij

[212].

1 The additional factor of kBT is applied in units of pN · nm to compensate for G(x) being given
in units of kBT. The amplitude of the random force is additionally divided by

√
∆t to assure

an effective variance of σ2 = 2 (kBT/γ) ·∆t for the thermally driven random displacement.

65
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A purely mechanical and, hence, more general approach for setting up a
simulation of the entire force-spectroscopic measurement system is achieved
by moving from discrete protein states i towards a continuous protein energy
landscape where the contour length LP of unfolded polypeptide serves as
reaction coordinate. By this means and in analogy to Equation 18, a two-
dimensional Hamiltonian H(x,LP) is introduced to describe the full energy
function of the system when held at constant trap separation d [177]:

H(x,LP) = G0(LP) +
1

2
keff · x2 +

∫d−2R−x
0

Ftether(xtether,LP)dxtether . (61)

The coordinate x again comprises the sum of the two bead deflection sig-
nals x1 + x2. The extension xtether of DNA-handles and unfolded protein is
given by Equation 1 and Equation 4, where xP(F) ·Punf(F) is replaced by xP(F)
alone and defined by LP. The acting force Ftether is given by the correspond-
ing inverse of Equation 4. The most central ingredient of the Hamiltonian is
the zero-force energy landscape G0(LP) which is tilted by the force acting at
inter-trap distance d. To simulate the time evolution of the system described
by H(x,LP), the current values for x and LP are updated according to their
stochastic equations of motion at each time step ∆t:

∆x =
∆t

γB
·
(
−∂xH(x,LP) · kBT +

√
2kBT · γB/∆t · ζ(t)

)
∆LP =

∆t

γP
·
(
−∂LPH(x,LP) · kBT +

√
2kBT · γP/∆t · ζ(t)

)
.

(62)

With the beads being the largest components of the system, the friction along
the measurement coordinate x is dominated by Stokes friction. Hence, for the
sake of simplicity, γB = 6π · η · R is used within the simulations, where R =
500 nm for the bead radius and η = 10

−9 pN · s · nm−2 for the viscosity. The
friction coefficient γP in the protein potential is usually adapted such that
experimental rates are recovered by the simulation. At room temperature it
can attain2 values of γP ∼ 10

−8− 10
−3 pN · s ·nm−1. The time step ∆t between

simulated data points crucially depends on the smallest friction coefficient
within the system and needs to be chosen such that the underlying energy
landscape is fully sampled by the simulation. Here, ∆t = 10

−9 s is used if
not stated differently. As experimentally recorded time traces typically have
much bigger time steps ∆trecord due to slower sampling, only each (∆trecord/∆t)-
th simulated data point is saved to realize time traces directly comparable to
experiments.

In Figure 21 a simulation example of a constant distance experiment is il-
lustrated by showing the two-dimensional energy landscape defined by Equa-
tion 61 as well as the resulting time traces calculated according to Equation 62.
In the upper panel of Figure 21B black arrows indicate lost transitions when
sampling is reduced from full resolution at 1 GHz (black) down to 200 kHz

2 Reported values for intrachain diffusion in unfolded proteins typically reach DP ∼ 10
7 −

10
8 nm2 · s−1. However, DP can drop down to 10

3 − 10
5 nm2 · s−1 in case of particularly slow

diffusion or misfolding transitions [92, 153, 231, 249]. Friction and diffusion are linked over
temperature: DP · γP = kBT.
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Figure 21: Hamiltonian and time traces of an energetically coupled two-dimen-
sional Langevin dynamics simluation. Parameters are T = 300 K, γB =
9.4·10

−6 pN · s · nm−1, γP = 4·10
−8 pN · s · nm−1, and ∆t = 10

−9 s. (A) Up-
per panel: Hamiltonian calculated according to Equation 61 for a two-state
system under force. Lower panel: the underlying zero-force protein energy
landscape G0(LP) (gray) is tilted by force (red). Parameters: inter-trap dis-
tance d = 479 nm, keff = 0.11 pN/nm, pP = 0.7 nm, LD ∼ 370 nm, pD ∼

50 nm, K ∼ 200 pN, and T = 300 K. (B) Simulated time traces for protein
diffusion (top) and bead displacement (bottom) based on H(x,LP) shown
in (A). Traces are sampled at 1 GHz (black, full resolution) and 200 kHz
(red, maximal experimental resolution). Arrows indicate lost transitions
(black) and missed events (red) due to differences in sampling and fric-
tion.

(red) pointing out the need for a high enough resolution. In contrast, owing
to much higher involved friction, a resolution of 200 kHz appears sufficient
to fully recover the bead displacement shown in the lower panel. However,
due to higher friction the effect of missed events needs to be considered (red
arrows). Going further one can already slightly see how the slower bead dif-
fusion affects the diffusion in the protein potential by comparing the outer
border of the time trace of the protein to the average bead position (see solid
gray lines to guide the eye). For even higher differences in friction, this can
induce drastic shifts in transition rates as the assumption of a constant force
bias breaks down.

As a final remark it needs to be noted that by merely following the coor-
dinates of bead deflection and diffusion in a protein potential the presented
simulation only provides a minimal representation of our entire measure-
ment system. One central assumptions is that the DNA-handles and unfolded
polypeptide are in equilibrium with the beads at all times. This is legitimate
as the beads are the system’s slowest component [142]. Further, by introduc-
ing the differential signal as one coordinate which combines both beads, the
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latter need to be assumed close to equilibrium, too. Under force, this assump-
tion can be considered valid for time scales down to ∼ 10µs [261].

4.2 studies on one-dimensional rough energy landscapes

All one-dimensional diffusion simulations performed in this section are based
on Equation 60. At first, equations to estimate transition path times, their dis-
tribution, and their connection to transition rates are tested. Next, the pre-
dicted effect of an average overall energy landscape roughness on transition
path times is investigated. Thereafter, a method for energy landscape recon-
struction from transition path times resulting from local roughnesses repre-
sented by high-energy intermediates is introduced. Finally, the effect of force-
induced transition state switching on overall transition rates is studied using
the example of an energy landscape with a single high-energy intermediate.

4.2.1 Predicting transition path times and kinetic rates

To test the qualitative significance of simulation results, here, the transition
path times and their distribution, and kinetic transition rates extracted from a
simulated time trajectories are compared to their theoretical predictions. The
relevant data is retrieved from the same trajectory already used in Section 3.8
to exemplify and confirm more quantitative transition path analysis methods
including the calculation of committors and transition path probabilities.

The average transition path time out of 871 simulated forward and back-
ward transitions between the two minima of the double-well potential3 de-
picted in Figure 22A is 〈τsim

TP 〉 = 0.66 ± 0.21µs. This value compares very
well to a theoretical value of 〈τTP〉 = 0.75µs predicted by Equation 54. The
distribution of transition path times from the simulated trajectory shown in
Figure 22B reveals a tendency towards shorter transition path times, too. How-
ever, the distribution obtained from the simulation compares reasonably well
to the distribution expected according to Equation 56. In contrast, the inset of
Figure 22B reveals that the distribution of transition path times extracted for
transitions merely between the inflection points of the underlying potential
are way too short to match with the theory.

A possible explanation for the slightly shorter transition path times pro-
vided by the simulation could be a lack of resolution. However, no notice-
able change in the average extracted transition path time is obtained at an
increased resolution of ∆t = 10

−10 s (data not shown). Another more tangi-
ble reason for the systematic tendency towards shorter transition path times
is given by the actual energy landscape shape though. As can be seen in
Figure 22A, the curvatures at the minima are significantly higher than the
curvature at the barrier top. Yet, only the latter is considered when estimat-
ing the average transition path time according to Equation 54 which, by this
means, appears to be a simplified estimate considering ωTS = ωi = ωj. An-

3 The potential G(x) = ∆GTS ·
(
(x/∆xTS)2 − 1

)2
is adapted from [101].
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other simulation performed in a double-well potential which complies with
this simplification indeed provides an average transition path time of 〈τsim2

TP 〉
= 0.69 ± 0.23µs which deviates from the theoretical value by less then 10%
(data not shown). Hence, for a more accurate prediction, transition path times
should be calculated under consideration of the entire barrier shape. The sim-
plest way to do so is by splitting up the barrier into four path segments
delimited by the two energy minima, the maximum, and the inflection points
in between. Now, by treating the energy minima as inverted barrier tops, each
path segment can be attributed a curvature ωseg and a barrier height ∆Gseg

which equals twice the maximal energy difference along the respective path
segment. The time provided by a path segment to the overall transition path
time for crossing the entire barrier is then approximately given by one quar-
ter of the time resulting from feeding ∆Gseg and ωseg into Equation 54. The
thereupon improved predictive capabilities of Equation 54 were confirmed by
one-dimensional diffusion simulations as described in Section 4.1 (data not
shown). Note that the briefly outlined sequential transition path time calcula-
tion is particularly useful to get more accurate results for asymmetric energy
landscapes like, e. g., in Section 6.4.1.
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Figure 22: Analysis of transition path times and rates from a 1D diffusion simula-
tion performed at T = 300 K with γ = 4× 10

−8 pN · s · nm−1. The data set
comprises a 0.5 s lasting time trajectory with 1 GHz resolution; also see
Figure 17 and Figure 18. (A) Underlying double-well potential G(x) with
∆GTS = 7 kBT separating states i and j. (B) Transition path time histogram
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crossing the entire barrier between both minima. Expected (black) and fit
(red) distributions are calculated according to Equation 56. Inset: Fit tran-
sition path time histogram of all transitions between the inflection points
of G(x). Dashed lines refer to the curves from the main figure. (C) Graph-
ical representation of the results listed in Table 1 with the methods being
numbered according to their row of entry.
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The red line in Figure 22B shows a perfectly matching fit to the extracted
transition path time distribution based on Equation 56. As expected, due to
shorter transition path times, the fit yields an overestimated barrier of ∆GTS

= 10.7 ± 0.9 kBT and a curvature increased by a factor of 1.3. In contrast, if
the curvature is kept fixed as the value implied by the underlying potential,
the energy barrier is underestimated as ∆GTS = 5 ± 0.4 kBT. In combination
with extracting transition path times from transitions covering only the dis-
tance between the inflection points of the potential, fixing the value for the
curvature at the barrier top leads towards a substantial underestimation of
the barrier height ending up in ∆GTS = 1 ± 0.2 kBT. Within limits, this con-
nection may partially explain the large discrepancy between barrier heights
obtained either by deconvolution or from transition path time distributions
of transitions covering the middle half of the total distance between the two
main energy minima reported in [156]. Considering the weak dependence
of 〈τTP〉 on ∆GTS as depicted in Figure 19A, deducing barrier heights from
transition path times involving mere barrier crossing is highly error-prone by
default.

METHOD kij kji λ REFERENCE

[s−1] [s−1] [s−1]

Kramers theory 1785 1785 3570 Equation 29

Counting transitions 1831 1653 3484 see text for kij#
HMM 1873 1652 3525 Equation 24

〈τsim
TP 〉 1899 1714 3613 Equation 58

Table 1: Rate constant calculations: comparing theory with simulation. Calculations
are based on indicated references. The evaluated data set is the one described
in Figure 22, as well as Figure 17 and Figure 18.

Based on Kramers rate-theory in the high friction limit represented by Equa-
tion 29, the transition rates between states i and j shown in Figure 22A are
expected to be kij = kji = 1785 s−1. Together, both rates yield a combined rate
of λ = kij + kji = 3570 s−1. To extract the transition rates from the simulated
trajectory for comparison, three different methods are applied. The most di-
rect method is simply based on counting the number of observed transitions
per second #tij from initial state i into final state j with respect to the fraction
of time spent in the initial state. For a two-state system this is simply given
by kij# = #tij/Pi, where Pi is the equilibrium probability of being in state i.
The two other methods for extracting rates are by performing a HMM analysis
(see Section 3.4.3) and by using the information provided by transition paths
in combination with the entire equilibrium trajectory (see Section 3.8.4). All
results are listed in Table 1 and illustrated in Figure 22C. With respect to the
predicted values, all extracted rates are faster for kij and slower for kji. This
is simply caused by a slight asymmetry within the state occupancies which is
owed to the limited duration of the simulation where Pi ∼ 0.47 and Pj ∼ 0.53,
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see Figure 17B. The combined rate resulting from counting the transitions
slightly underestimates the predicted value. This deviation can be attributed
to the limited resolution and is considered within the HMM analysis (see Equa-
tion 24 in combination with Equation 23) which yields a combined rate very
close to the theoretical value. The combined rate retrieved from the average
transition path time 〈τsim

TP 〉 slightly overestimates the theoretical value, which,
to some extent, may be caused by the underestimated transition path time
average, see Equation 58. All in all, as all deviations are smaller than 2.5 %,
theory and simulation are found to match each other perfectly. Most impo-
rantly, by this means, Kramers rate-theory allows very precise estimates to be
made not only for transition rates but also for expected average dwell times
τi = (kij)−1.

Note that during the simulation, as expected, starting from the energy min-
imum of either state i or state j, the transition state position at the barrier top
is reached about twice as often as entire transitions to the respective other
state actually occur.

4.2.2 Diffusion in a rough energy landscape

Slowed down diffusion in a potential is often put down to an increased overall
energy landscape roughness typically conceived as being composed of many
small potential barriers randomly distributed along the reaction pathway [106,
132, 159, 238, 249]. A simple relation introduced by Zwanzig can be used to
quantify roughness through its effect on observed diffusion [262]:

D? = D · exp

(
−

[
εrms

kBT

]2)
. (63)

Here, D? is the effective diffusion coefficient in an effective smooth poten-
tial G(x) which replaces the original diffusion coefficient D in the originally
rough potentialG(x)+Grough(x). The parameter εrms is the root-mean-squared
roughness, ε2rms = 〈G2rough〉, which reflects the typical amplitude of the pertur-
bation superimposed on G(x). For the case of a mere sinusoidal perturba-
tion with amplitude επ, Zwanzig introduced the less frequently used rela-
tion D? = D · exp (−2επ/kBT) indicating Arrhenius behaviour valid specif-
ically for low temperatures, where επ/kBT is very large. Figure 23A illus-
trates smooth potentials to which an either quasi-random or a simple periodic
roughness have been added4. Next to its typical amplitude, an energy land-
scape roughness is characterized by its typical length scale ∆xr over which
the amplitude averages out to zero. An important key for Equation 63 to be
valid is that ∆xr is small enough to be well separated from any other motion
in the potential. Zwanzig chose ∆xr to be of the order of 0.1 in units of x.

4 The quasi-random roughness Grdm
rough(x) = εrms · [cos (0.01 · 167x) + sin (0.01 · 73x)] is built on

the basis of the potential used in [262] with the additional factor 0.01 corresponding to
∆xr/∆xr

appl (see text and caption of Figure 23). The simple periodic roughness is constructed
according to G2π

rough(x) = επ · sin (0.01 · 73x− π). To match with typical scales in contour length
space of protein folding, here, x assumes ’nm’-units.
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Figure 23: A thousandfold increase in transition path times induced by energy land-
scape roughness. Simulation parameters are T = 300 K, γ = 4× 10

−8 pN ·
s · nm−1, and ∆t = 10

−9 - 10
−11 s. (A) A quasi-random (red) and a sim-

ple periodic (blue) roughness superimposed on a smooth energy land-
scape (black). Both types have a root-mean-squared roughness equal to
2.63 kBT and a typical length scale ∆xr

appl ∼ 10 nm. (B) Transition path
times from diffusion in energy landscapes with different degrees of ran-
dom (red squares) and simple periodic (blue squares) roughness scaled ac-
cording to ∆xr/∆xr

appl with ∆xr = 0.1 nm. Error bars represent the standard
deviation. Red stars at zero and ’full’ roughness are predictions based on
Equation 54 in combination with Equation 63. The black square is the sim-
ulation result for the smooth energy landscape (see Section 4.2.1). The blue
star is predicted based on D? = D · exp (−2επ/kBT), επ = 3.72 kBT. Thick
lines are logarithmic fits of x (solid) and 1/x (dashed) to guide the eye.

Since hopping between the many minima of a rough energy landscape
involves many additional dwell times along the reaction pathway, it appears
to be straightforward that the effective diffusion in a rough potential slows
down as implied by Equation 63. However, this is not obvious right away. In
fact, if the time needed to cross over a rough energy barrier is considered
to be composed of the sum of all individual dwell and transition path times
inferred by the roughness, one arrives at a paradox: by introducing more
and more dwells and barriers, the mere sum of all dwell and transition path
times approaches zero. This follows directly from the dependence of dwell
and transition path times on the inverse of the curvatures of the underlying
energy landscape (see the inverse of Kramers rate equation, Equation 29, for
the expected dwell time average and Equation 54 for 〈τTP〉). The curvatures in
turn are proportional to the inverse of the squared distance of the transition
state

(
∆xTS

)
2 to which dwell and transition path times thus directly relate (see

Figure 19C in Section 3.8.4). If keeping this in mind, doubling the amount
of dwells within a fixed overall distance automatically divides all ∆xTS in



4.2 studies on one-dimensional rough energy landscapes 73

half which then leads to all dwell and transition path times being multiplied
with an extra one half squared (barrier heights are kept constant). By this
means, the expected effect of roughness has to arise rather from revisiting the
same dwells for multiple times than from merely summing up all dwell and
transition path times along the reaction pathway.

Assuming that Equation 63 is true means that a root-mean-squared rough-
ness of εrms = 2.63 kBT leads to a thousandfold decrease of the effective dif-
fusion coefficient. In contrast, as a consequence of its inverse dependence on
the diffusion coefficient, the average transition path time 〈τTP〉 is expected
to increase accordingly, see Equation 54. The simulation results shown in Fig-
ure 23B prove this conclusion as well as Equation 63 to be right. By decreasing
the typical length scale ∆xr

appl of the applied roughness to approach a value
of ∆xr = 0.1 nm necessary for Equation 63 to be valid, the predicted increase
of 〈τTP〉 over several orders of magnitude is reproduced5. Furthermore the
importance of a good separation of length scales for diffusion versus the over-
all motion between the indicated states i and j is well illustrated. In the end,
this separation effectively hides the global barrier shape away from the diffus-
ing particle such that vanishing dynamical path probabilities are bygone and
longer and longer overall transition path times become possible. The shorter
transition path times observed for the simple periodic roughness confirm this
picture. Here, an even smaller ∆xr would be necessary to satisfy the theoretic
prediction. In return, the larger variety of energy well depths and barrier
heights in the potential with a quasi-random roughness obviously helps to
hide the global barrier shape away. In principle, the high-resolution simula-
tion data provides all necessary information to further analyse and quantify
the interplay between smaller and larger energy well depths with respect to
revisiting frequencies of individual minima and the resulting change of the
effective diffusion coefficient.

Hence, an ideal general roughness is comprised of many potential minima
of varying depth where the frequency of revisiting deeper wells is promoted
by more shallow wells around them. If so, it seems legitimate to alternatively
consider roughness to be composed of only a few and, hence, experimentally
easier to access high-energy intermediates which represent locally merged
deeper wells and their shallow promoters. Starting from this simplified view
on roughness, it is possible to extract key parameters of folding energy land-
scapes from transition path times as will be shown in Section 4.2.3. Moreover,
this view allows to overcome two limitations of the general overall rough-
ness picture introduced by Zwanzig, namely the restriction to one dimen-
sion as well as the assumption of an overall constant diffusion coefficient.
While off-pathway intermediates allow the introduction of multidimension-
ality, position-dependent well depths of the high-energy intermediates can
compensate for a position-dependent diffusion coefficient.

5 Simulations further approaching ∆xr
appl = ∆xr = 0.1 nm were not performed due to high nu-

meric cost.



74 langevin dynamics simulations

4.2.3 Energy landscape reconstruction from transition path times reflecting local
roughness

When additional energy minima are located along a transition path connect-
ing two stable states, the dwell times emerging from passing through those
minima contribute a certain amount of time to the detectable overall tran-
sition path time necessary to complete a transition between the two stable
states. In case of only a few but deep additional minima, the distribution of
collected transition path times basically reflects a combined dwell time dis-
tribution. This can be exploited to estimate the barrier heights determinant
for the dwell times if complementary information on the positions of relevant
minima and transition states is available.

A simple example of an additional energy minimum is depicted in Fig-
ure 24A where all transitions between states i and m pass through an inter-
mediate j. The dwell time τjDW spent in the intermediate state corresponds
to the inverse off-rate (kjoff)

−1 = (kji + kjm)−1, which due to the symmetry
in the shown example can be alternatively written as (kjoff)

−1 = (2 · kji)−1 =
(2 · kjm)−1. The inverse of Kramers rate equation, Equation 29, then yields
τ
j
DW = 16.7µs based on the curvatures provided by the detailed energy land-

scape in Figure 24A.
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Figure 24: Barrier height dependence of dwell times for a given transition state posi-
tion. Calculation parameters are T = 300 K and γ = 4× 10

−8 pN · s · nm−1.
(A) Energy landscape with three local minima representing states i, j, and
m. Thick dashed lines are reconstructions for τjDW = 16.7µs. (B) Barrier
height dependence of τjDW calculated from the inverse of Kramers rate
equation, Equation 29, for a transition state position fixed at ∆xTS = ∆xTS

jm

as marked by black stars in (A). The barrier shapes are calculated for either
harmonic, sinusoidal, or linear-cubic potentials.

Now, what if only the average dwell time τjDW and the transition state
positions ∆xTS with respect to the intermediate j were known? In this case,
the determinant barrier height ∆GTS can still be estimated by making use of
the fact that the curvatures of an energy landscape G(x) can be expressed in
mere terms of ∆xTS and ∆GTS as indicated by Equation 55. By this means and



4.2 studies on one-dimensional rough energy landscapes 75

for constant temperature T and friction coefficient γ, Kramers rate equation
can be rewritten in mere terms of ∆xTS and ∆GTS, too. Figure 24B shows
the expected average dwell time τjDW as a function of the barrier height for
a symmetric barrier6 with a fixed transition state position. Within the high-
barrier limit such a plot allows a numerical estimate for an unknown barrier
height to be directly read off as the value corresponding to the known dwell
time.

For the theoretically expected dwell time of 16.7µs in the case of the en-
ergy landscape depicted in Figure 24A, the plot shown in Figure 24B in-
dicates a harmonic barrier height of ∆GTS,jm

harm = 5.38 kBT. As the original
value is ∆GTS,jm = 5.41 kBT, the thick dashed black line in Figure 24A, which
shows the reconstructed harmonic energy well of the intermediate j, almost
perfectly overlaps with the original landscape. Owing to the strong barrier
height dependence, τDW ∝ exp(∆GTS)/∆GTS, even a rough estimate of an aver-
age dwell time will already yield a good guess for the determinant barrier
height. If, for example, the estimated average dwell time is wrong by a factor
of 2, the derived energy barrier height is wrong by not more than 0.7 kBT as
∆GTS ∝ ln(τDW) for high enough barriers.

4.2.3.1 Testing reconstruction capabilities on simulated time trajectories

Figure 25 illustrates how the above outlined method of a dwell-time-based
energy landscape reconstruction works under various conditions. The left
column shows the potentials used to perform one-dimensional diffusion sim-
ulations. While Figure 25A shows a three-state potential7 with, in terms of
their energy level, two evenly high, and, in terms of their position, equidis-
tant transition states, in case of Figure 25D a three-state potential with one
predominant transition state is depicted. The four-state potential shown in
Figure 25G has two additional minima located before and after the main tran-
sition state.

The central column in Figure 25 displays distributions of transition path
times extracted for transitions8 between the two outermost minima of the
respective potentials on the left all of which include diffusion through interja-
cent minima. Since these additional minima are quite deep, their dwell times
add up to the overall transition path times as their main contribution. By this
means, each transition path time distribution can be alternatively interpreted
as a dwell time distribution. As such, the dwell time distributions can be fit
to extract the corresponding average dwell times. As indicated in each graph,
all fit results yield dwell times τfit which are in very good agreement with
theoretical predictions. In Figure 25B and Figure 25E single exponential fits
perfectly match the overall transition path time distributions which confirms
their interpretation as dwell time distributions of the corresponding single ad-
ditional minimum along the overall transition path. In case of the distribution

6 Here, for simplification ωi = ωTS is assumed in Equation 29.
7 The potentials in Figure 24A and Figure 25A are the same.
8 The distributions in Figure 25B, Figure 25E, and Figure 25H are based on N = 898, N = 2242,

and N = 1257 transitions, respectively.
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Figure 25: Energy landscape reconstruction from transition path times reflecting lo-
cal roughness. Simulation parameters: T = 300 K, γ = 4×10

−8 pN · s ·nm−1,
and ∆t = 10

−8 s. (A), (D), (G) Potentials G(x) underlying the simulation.
(B), (E), (H) Red lines are fits to extracted transition path time distributions
which reflect high-energy intermediate dwell times. (C), (F), (I) Partially
reconstructed energy landscape profiles. See text for more details.

shown in Figure 25B, the indicated theoretic value τtheory = 17.0µs comprises
a dwell time contribution of τjDW = 16.7µs, as derived above, and a mere tran-
sition path time contribution of 〈τimTP 〉 = 0.3µs for crossing all barriers between
states i and m. The latter value is derived by applying Equation 54 and sum-
ming up all included path segments. The dwell time distribution obtained in
Figure 25H is not single exponential due to two substantial additional min-
ima contributing to the overall transition path time. Dwell time distributions
exhibiting two determinant rates can be fit according to [184]:

p (τ1+2) =
k1 · k2
k1 − k2

·
(
e−k2·τ1+2 − e−k1·τ1+2

)
. (64)

Here, k1 and k2 represent off-rates out of the two intermediate states of the
potential drawn in Figure 25G while τ1+2 reflects their combined dwell time.
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To assure that Equation 64 is applicable, the central out of the three relevant
transition states has to be either first or second in the hierarchy. This way the
probability to pass through an intermediate for multiple times during a tran-
sition is minimized. The excellent agreement between the measured distribu-
tion and its fit in Figure 25H again confirms the overall picture of additional
dwell times being the main contribution to the extracted transition path times.
Note that even though all obtained transition path time averages show quite
large standard deviation errors due to the non-Gaussian nature of all three
transition path time distributions, they are still in very good agreement with
the theoretic values: for Figure 25B, Figure 25E, and Figure 25H the average
values are 18.7 ± 19.7µs, 27.7 ± 26.4µs, and 25.0 ± 17.7µs, respectively.

Finally, the resulting reconstructed energy landscape profiles are shown in
the right column of Figure 25. Red barriers are derived following the above
described dwell-time-based reconstruction method using the fit results ob-
tained from the extracted transition path time distributions. Black barriers
are reconstructions based on the observed effective overall transition rates
between the outer minima. In combination with Kramers rate equation ex-
pressed in terms of ∆xTS and ∆GTS, the overall rates can reveal at least one
barrier height in case of an outer minimum being located directly next to
the predominant transition state. For all reconstructions it is assumed that all
important landmarks of the underlying energy landscape, i. e., all positions
of relevant minima and transition states, are known. The same holds for the
relative height of the transition states. The claim of kij = 2 · kim in Figure 25C
directly follows from symmetry: a particle reaching intermediate j starting
from state i has a fifty percent chance of reaching back to state i and a fifty
percent chance of going further to statem. In Figure 25F the situation is differ-
ent. Here, a particle reaching intermediate j starting from state i is most likely
proceeding towards state m. Note that except for the completely symmetric
energy landscape in Figure 25C, the relative heights between the minima are
not exactly known. To better visualize the good reconstruction capabilities,
the reconstructed barriers were intentionally aligned with the transition states
of the original energy landscapes shown as dashed lines. Taken together, the
presented simulation results confirm the robustness of the introduced energy
landscape reconstruction based on dwell time estimates.

4.2.3.2 Road map towards an application to experimental data

Good knowledge of all relevant landmark positions ∆xTS
?? is an important

prerequisite for the dwell-time-based reconstruction of localised energy land-
scape roughness along a transition path. Further, the relative heights among
the transition states are of interest, too. Finally, an appropriate choice for the
friction coefficient γ and, hence, the diffusion coefficient D, in combination
with meaningful curvatures ω? is necessary.

To localise all populated states and intermediates, histograms of contour
length gains obtained from WLC fits to force-extension traces are good first
indications. Under certain circumstances, accumulated histograms of entire
transitions may yield an improved resolution especially in case of short-lived
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and rarely populated intermediates, also see Section 3.1.1. Histograms can
be accumulated either over an entire force range or for a constant force level.
In the latter case, deconvolution can be helpful to further increase resolution.
Deconvolution is also the method of choice to unravel intermediate states
from entire equilibrium trajectories, see Section 3.7, provided an overlap of
multiple pathways can be excluded.

Transition state positions are typically provided either by fits to force dis-
tribution histograms or by kinetic model fits to extracted force-dependent
transition rates, see Section 3.4, Section 3.5, and Section 3.6. In case of transi-
tion rates involving the crossing over multiple transition states, striking devi-
ations from kinetic models are expected over larger force ranges due to the
force-induced changes of the transition states’ predominance as outlined in
Section 4.2.4. A correct interpretation of these changes allows a good guess
for the positions of the different involved transition states to be made. Here,
the force-dependent determination of transition path probabilities may also
be of interest for localizing the predominant transition state position, see Sec-
tion 3.8.3 and Section 4.3.4.

Concerning the curvatures at the bottom of energy wells and at the top
of energy barriers, the simplest way of their determination is through direct
deconvolution of equilibrium trajectories [154]. If deconvolution is not appli-
cable due to the multidimensionality of the underlying energy landscape or
poor resolution, it may yet provide useful information on curvatures of pre-
dominantly populated states. As a good first approximation, the curvature at
a suspected transition state position may simply be chosen to be the same as
the curvature of a neighbouring state [44, 247]. For a further refinement, the
curvatures of all other states and barriers may be calculated based on a lin-
ear interpolation with respect to their relative positions, which, in principle,
corresponds to the concept of the linearly interpolated point spread function
used for improved deconvolution results, see Section 3.7.1.

The determination of an appropriate diffusion coefficient D can be viewed
as the calculation of a correction term. In case of the entire folding energy
landscape shape being already known by deconvolution,D is typically chosen
such that experimentally observed force-dependent rates are in agreement
with complementary diffusion simulations [143, 177]. This basically means
that the diffusion coefficient is adapted to match Kramers rate-theory for al-
ready given curvatures and energy barrier heights. In such a scenario, a possi-
ble procedure is to numerically tilt the deconvolved energy landscape to zero
force and then derive D inferred by Equation 29 upon using the zero-force
extrapolated folding rate provided by a kinetic model, see Section 5.3.1. Fur-
ther, if a protein’s transition path time average is known, an alternative way
to derive D is given by using Equation 54 which directly relates transition
path times to barrier heights and curvatures, see also Section 6.4.1. However,
if detailed information on the energy landscape shape is not available, D has
to be adjusted to conform with force-dependent rates dominated by single
barriers similar to the situation depicted for kim in Figure 25F, as well as ob-
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served transition state switches discussed in Section 4.2.4, and detectable free
energy differences according to Section 3.2.

The application of the transition-path-assisted reconstruction of locally con-
centrated energy landscape roughness to experimental data holds an inter-
esting advantage over the analysis of entire equilibrium fluctuations. By fo-
cussing on transition paths, the analysis is reduced down to ’productive’
events while fading out all potentially confusing side reactions. This way,
yet barely noticeable on-pathway intermediates may be identified and even-
tually even further characterized up to unprecedented resolution. A detailed
transition-path-assisted energy landscape reconstruction based on experimen-
tal data is presented in Section 6.4.4.

4.2.4 A fingerprint for roughness: predominant transition state switching induced
by force

The slope of a rate plot directly relates to the transition state position ∆x

of the observed reaction, see Section 3.5. Hence, a change in slope within
a rate plot implies a reaction coordinate-dependent change of the transition
state position. The occurrence of drastic changes in slope, i. e., kinked rate
plots, are typically explained by either switches between different pathways
or by switching of the predominant transition state along a reaction pathway
with multiple sequential barriers [131, 191]. In the following, the scenario of
a transition state switch inferred by two sequential barriers flanking an on-
pathway high-energy intermediate is investigated.

Figure 26A depicts a simple symmetric two-state energy landscape G0 (x)
(thick black line) and linearly tilted versions of it calculated according to
GF? (x) = G0 (x) - F? · x. The constant F? is given in units of kBT · nm−1 and
denotes the direction and extent of tilt by sign and size. Within each of the
shown potentials, 5 minute long diffusion trajectories are simulated. From
each trajectory transition rates kforward and kbackward are extracted using HMM

analysis, see Section 3.4.3. The results are plotted as empty circles in the rate
versus tilting force F? plot shown in Figure 26B. Drawn in dashed and solid
lines are rate predictions by the ZB- and DHS-model based on Equation 27

and Equation 31, respectively. Necessary model parameters are derived from
G0 (x), namely ∆x = 18.5 nm, ∆GTS

0 = 7 kBT, and ν = 2/3. The average value of
kforward and kbackward at zero tilting force F? is chosen as (pseudo) zero-force
rate constant k0 = 6.9 s−1 which is in excellent agreement with Kramers theory
that predicts k0 = 7.1 s−1 according to Equation 30. In contrast to Figure 26A,
Figure 26C shows a symmetric energy landscape with two sequential barri-
ers flanking an additional high-energy intermediate (thick black line). In the
following, this landscape will be referred to as complex two-state rather than
three-state in accordance with [131]. Figure 26D presents the overall tran-
sition rates extracted from simulations within the potentials of Figure 26C.
Here, dashed and solid lines are rate predictions by the ZB- and DHS-model
calculated under the assumption of an effective transition state right in the
middle between the two outer states. The respective model parameters are
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Figure 26: Force induced transition state switching as a fingerprint for roughness.
Simulation parameters are T = 300 K, γ = 10

−5 pN · s · nm−1, ∆t = 10
−6 s,

and ∆trecord = 5 × 10
−6 s. (A) Simple symmetric two-state energy land-

scape G0 (x) (thick black line) and tilted versions of it. (B) Transition rates
versus tilting force F? (empty circles) obtained from 5 min diffusion tra-
jectories in the potentials shown in (A) using HMM analysis. Colours refer
to (A). Dashed and solid lines are rate model predictions based on G0 (x).
(C) Complex symmetric two-state energy landscape and tilted versions
of it. Short arrows highlight the predominant transition state switch. (D)
Overall transition rates versus tilting force. See text for more details.

∆x = 18.25 nm, ∆GTS
0 = 7 kBT, ν = 2/3, and k0 = 7.0 s−1. Additional dotted

lines are ZB-model predictions reflecting the expected rate dependence in
case only one of the two sequential barriers existed. Red dotted lines consider
the left barrier marked by a short red arrow in Figure 26C and use ∆xforward

= 10.1 nm and ∆xbackward = 26.4 nm, where necessarily ∆xforward + ∆xbackward

= 2 ·∆x. Gray dotted lines consider the opposite configuration.
The rate plots presented in Figure 26 disclose a number of important results.

As expected, in case of zero tilting force there is kforward = kbackward due to the
symmetry of both simple and complex two-state energy landscapes. Even
though being a trivial result, this is another rudimentary proof of the sim-
ulation’s integrity. Furthermore, the transition rates in Figure 26B obtained
upon linearly tilting a simple two-state energy landscape feature a moder-
ately curved shape in accord with expected Hammond behaviour [94]. The
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causative transition state movement inferred by tilting G0 (x) can be seen in
Figure 26A; for a more elaborate illustration of the Hammond effect see [78],
for an explanation directly referring to the force-spectroscopic framework see
[254]. Since the DHS-model (solid lines) accounts for Hammond behaviour,
see Section 3.5.4, its prediction clearly outperforms the simpler ZB-model
(dashed lines). This section’s key result, however, is highlighted within the
red and gray shaded areas of Figure 26D. The more the complex two-state
energy landscape is being tilted away from its symmetric configuration, the
higher the deviation of the extracted overall transition rates from simple two-
state mechanics. This deviation is caused by a switch in predominant transi-
tion state which is highlighted by short arrows in Figure 26C and manifesting
itself as a prominent kink within the rate plots shown in Figure 26D. The kink
is located at zero tilting force where the two sequential barriers equally con-
tribute to the overall transition. Within the force range covered by the simula-
tions one can see that in both directions of tilt the three outermost extracted
rates are parallel to the ZB-model predictions which assume only one of the
barriers to be predominant (dotted lines). In summary, the conducted sim-
ulations prove that sequential barriers along a reaction pathway can indeed
explain kinked rate plots.

Since force-induced pathway switches as well as switching of the predomi-
nant transition state have already been suggested for protein folding [83, 197],
the results from this section are of high interest. In Chapter 5, experimental
results obtained from force-spectroscopic experiments performed on a small
artificial protein give experimental evidence for Hammond behaviour to be
relevant for protein folding, see Section 5.3.1. Further, the data also suggest
a force-induced transition state switch due to a prominent kink within the
force-dependent rates, see Section 5.2.4.

4.3 energetically coupled two-dimensional diffusion

The simulations performed in this section are based on Equation 62 which
allows time traces conforming with experimental measurement conditions to
be deduced from traces with much higher resolution. By this means, the sim-
ulations are intended to serve as numerical benchmark experiments. After
an initial consistency check, the impact of the difference in friction inherent
to the actual protein folding process with respect to the friction involved in
the detecting system is analysed. Thereafter, detectable traces of protein fold-
ing within transition averages are sought. Finally, the transition path analysis
tools introduced in Section 3.8 are tested for their applicability and potential
benefit in force spectroscopy.

4.3.1 Deconvolution as a link between dimensions

As described in Section 3.7, deconvolution can serve as a tool to reconstruct
protein folding energy landscapes out of the equilibrium fluctuations mea-
sured in a force-spectroscopic experiment. Here, deconvolution is used as a
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consistency check of the two-dimensional diffusion simulation introduced in
Section 4.1 by testing whether the zero-force protein folding energy landscape
serving as the simulation’s input can be reconstructed from the simulated
measurement signal.

In Figure 27 the energetically coupled protein and bead diffusion trajecto-
ries provided by a 2 s long two-dimensional diffusion simulation are analysed
in matters of the energy landscapes derived from the corresponding probabil-
ity distributions. Each plot in Figure 27 includes a red dashed line which is
basically a projected average of the two-dimensional energy function H(x,LP)
defined in Equation 61 on one of its two axes. While x reflects the bead de-
flection signal which is accessible to the experimentalist, Lp holds the infor-
mation to which extent the protein under investigation is actually folded in
measures of unfolded contour length. The black lines in Figure 27A and Fig-
ure 27B show the Boltzmann inverted probability distributions9 of the bead
and protein diffusion trajectories. Figure 27C presents the protein folding en-
ergy landscape (dark blue line) resulting from deconvolving the probability
distribution of the bead trajectory by minimizing Equation 42. This protein
folding energy landscape is then further transformed into contour space as
shown in Figure 27D, also see Section 3.1.1. Finally, the deconvolved and
transformed protein folding energy landscape is further transformed to zero
acting force based on Equation 13. The result is depicted by the light blue
line in Figure 27E. The black dashed line illustrates G0 (LP) which serves as
input for the simulation, the dark blue and the red dashed line in Figure 27E
are the same energy landscapes as in Figure 27D. The insets in Figure 27 il-
lustrate a direct (single arrow) or indirect (dashed line plus arrow) origin of
the probability distributions which are used to derive the depicted energy
landscapes.

Red dashed lines in Figure 27 reflect the energy landscape shape expected
for the equilibrium described by H(x,LP) along the indicated reaction coor-
dinate. The expectations are perfectly met by the Boltzmann inverted equi-
librium probability distributions of the simulated bead and protein diffusion
signals shown in Figure 27A and Figure 27B. Though already having the cor-
rect barrier height, the deconvolved protein energy landscape presented in
Figure 27C has a striking asymmetric shape. Generally speaking, this shape
is a result of the interplay between non-linear effects inherent to the measure-
ment system, a non-constant acting force, as well as a position-dependent
point-spread function. However, after a contour length transformation, the
deconvolved energy landscape perfectly complies with the expected shape as
can be seen in Figure 27D. This, in turn, confirms the asymmetric shape in Fig-
ure 27C to be correct. Convincing proof for the two-dimensional simulation
to be fully consistent is given in Figure 27E. Here, the deconvolved protein
folding energy landscape is transformed back to zero force (light blue line)
reproducing the zero-force energy landscape input G0 (LP) of the simulation
(black dashed line) very well.

9 Here, Boltzmann inversion means solving Equation 17 for H (x).
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Figure 27: Boltzmann inversion and deconvolution confirm an energetically con-
sistent two-dimensional diffusion simulation. Simulation parameters are
T = 300 K, γB = 9.4·10

−6 pN · s · nm−1, γP = 4·10
−8 pN · s · nm−1, and

∆t = 10
−9 s. (A) - (E) Red dashed lines are projections of H(x,LP) on

the respective coordinate. Calculation parameters: inter-trap distance d =
494.4 nm, keff = 0.11 pN/nm, pP = 0.7 nm, LD ∼ 370 nm, pD ∼ 50 nm, K ∼

200 pN, and T = 300 K. (A) Boltzmann inverted probability distribution
(black) of the bead deflection signal. (B) Boltzmann inversion (black) of
the protein diffusion signal. (C) Protein folding energy landscape (blue)
deconvolved from the bead deflection signal. (D) Contour length trans-
formation (blue) of the deconvolved protein folding landscape shown in
(C). (E) Zero-force transformation (light blue) of the protein folding en-
ergy landscape (blue) and the input G0 (LP) (black dashed line) used in
the simulation.

The correct calculation of H(x,LP) basically implies a convolution of all
relevant signals contributing to the modelled force-spectroscopic experiment.
Hence, from a different perspective, the simulation-based analysis illustrated
in Figure 27 reveals excellent performance of the method applied for decon-
volution. In this context, however, it needs to be remarked that even though
the correct point-spread function is exactly known due to H(x,LP), the de-
convolution result is quite sensitive to an appropriate choice of optimization
parameters including the number of interpolation points as well as the pref-
actor λ of the penalty function10, see Section 3.7 and Equation 42.

Note that the friction coefficients γB and γP have no effect on H(x,LP), see
Equation 61. Hence, the shape of the equilibrium probability distributions
obtained from simulated trajectories will not be affected by any change in
friction as long as the trajectories are long enough to sample equilibrium. As
a consequence, energy landscapes obtained by deconvolution are insensitive
towards changes in friction.

10 The deconvolved energy landscape shown in Figure 27C was obtained by using 11 base points
and λ = 10

−2 nm2.
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4.3.2 The impact of anisotropic friction on rates, transition path times, and transi-
tion path ensembles

Since there is no way to directly measure the internal friction of a protein,
its determination is a very challenging task for experimentalists. In this sec-
tion, exact knowledge of the friction involved in a simulated protein diffusion
process is utilized to investigate effects arising from the difference in friction
between actual protein folding and the system used to detect the protein fold-
ing transitions. After starting off with example traces for speed limit protein
folding under force, an extensive study of transition rates and transition path
times in dependence of the friction coefficient γP is presented. Further, two-
dimensional representations of transition path ensembles give insight into a
transition process altered by friction.

4.3.2.1 ’Watching’ speed limit protein folding under force

The friction coefficient of γP = 4·10
−8 pN · s · nm−1 which is used to charac-

terize protein diffusion in Section 4.3.1 conforms with the highest reported
values for intrachain diffusion in unfolded proteins, see Section 4.1. Hence,
this choice of γP can be expected to reflect protein folding at the speed limit.
An example of a protein unfolding and refolding process at the speed limit
while the protein is being held under tension is extracted from the simulation
performed in Section 4.3.1 and presented in Figure 28. The folding transi-
tions are shown at full resolution, i. e., a sampling frequency of 1 GHz which
allows detailed insight into the transition paths. In case of the protein diffu-
sion trace, transition paths are marked in blue. The same stretches are also
marked within the bead diffusion trace. Coloured dashed lines in Figure 28

indicate the location of the minima of both folded and unfolded states while
black dashed lines refer to the respective transition state position.

An eye-catching result provided by Figure 28 is the much higher noise level
within the protein diffusion trajectory as compared to the bead trajectory. This
is a direct consequence of the over 200 times smaller friction coefficient γP
with respect to γB which results in larger steps of ∆LP per iteration of the
diffusion simulation, see Equation 62

11. However, even though the friction
coefficient γP is very small, the transition paths (marked in blue) of protein
diffusion last way too long to reflect folding at the speed limit. Given the
energy landscape shown on the upper right of Figure 28, a transition path
time of about 3µs is expected12 according to Equation 54. Being a few tens of
microseconds long, the transition paths of protein diffusion provided by the
simulation clearly stand in conflict with this expectation. Another striking
observation are multiple distinct barrier crossings within a single transition

11 Note that the local slopes of the energy landscapes characterizing protein and bead diffusion,
i. e., ∂LP

H(x,LP) and ∂xH(x,LP) in Equation 62, are within the same order of magnitude.
12 The protein folding energy landscape displays ∆LP = 76 nm upon a transition. This corre-

sponds to ∼ 200 amino acids being involved in a folding process, see Section 3.1 for details.
Since the speed limit for foldingN residues is estimated to be N/100µs, see [119], here we reach
at 2µs. The good match confirms a reasonable model system.
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Figure 28: An example of speed limit protein folding under tension. Simulation pa-
rameters are the same as in Figure 27. Upper panel: Stretches of protein
unfolding and refolding in contour space. The characteristic protein fold-
ing energy landscape is shown on the right. Transition paths are high-
lighted in blue. Lower panel: Simultaneous stretches of the bead diffusion
trajectory. Blue stretches correspond to those in the upper panel.

path of protein diffusion. Compared to the protein trajectory, the bead signal
complies much better with the expectations. Note that the shown transition
of the bead trajectory represent entire transition paths interconnecting the
folded and unfolded states. By this means, the transition path time detected
by the beads is obviously much longer than the time needed by the protein
as indicated by the double arrows in Figure 28. Further, note that the protein
folding transitions seem to occur only during a phase where the bead diffuses
around the transition state position of its convolved energy landscape while
having a slight bias towards higher forces, i. e., towards the folded state. This
observation suggests that in the given scenario the protein folding rate is
under strong influence of bead diffusion.

The above critical look at Figure 28 suggests that the anisotropic friction
involved in force-spectroscopic measurements has a crucial impact on rates
and transition path times. In the following, a detailed analysis of friction-
dependent kinetics aims at finding the detection limits inherent to force-
spectroscopic systems.

4.3.2.2 Quantitative analysis of protein and bead diffusion trajectories

Figure 29 presents the results of a detailed evaluation of transition path times
and transition rates in dependence of the friction coefficient γP. While chang-
ing γP within the simulation, the energy function H(x,LP) and the friction
coefficient γB of the beads are kept constant. To provide good statistics at rea-
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sonable numeric cost, the time steps of the simulation were increased along
with γP up to a maximal value of ∆t = 10

−6 s. The overall duration of the sim-
ulated trajectories ranges from 2 up to 1000 s. Transition path time averages ex-
tracted from protein and bead diffusion trajectories are shown in Figure 29A
as filled blue and red circles. Interconnecting lines are there to guide the eye.
Dashed lines indicate transition path times expected according to Equation 54

based on parameters of the corresponding energy landscapes shown on the
right of Figure 28. Figure 29B displays combined rates determined by count-
ing successful transitions13, see Section 4.2.1 for details. Here, dashed lines
correspond to predictions by Kramers rate-theory, see Equation 29. The four
stars at the bottom of Figure 29B refer to values of γP which were derived
from force-spectroscopic experiments. In detail, these values refer to folding
of the native prion protein (I), DNA unzipping (II), coiled coil unzipping (III)
[143, 177, 247], and folding of the re-designed Ferredoxin-like fold (IV). While
the first three values are taken from literature, the last one is derived in this
thesis, see Section 5.3.1. The right of Figure 29 depicts transition path ensem-
bles obtained for three different values of γP. Here, the ensembles comprise
unfolding as well as refolding transitions since no clear differences were seen
upon distinction. Dashed lines indicate the expected transition path ensemble
distributions. To calculate the expected distributions, at first committors are
derived from the known energy profile by solving Equation 51 for pi (x). Af-
ter rescaling pi (x) to its correct range, the transition path probability p (TP|x)
can be derived according to Equation 53. Finally, the transition path ensemble
is given by Equation 52 after solving for p (x|TP) followed by renormalization.

There are two important questions to be raised for the discussion of the
results from Figure 29. First: Can the experimentalist see what happens? And
second: Can this, what is happening, be modelled? The first question ad-
dresses the fact that the bead deflection signal reflects the experimentalist’s
measurement of the actual protein folding process. The second question puts
the predictive capabilities of the applied theoretical models to test.

In Figure 29A, the data points for speed limit folding confirm the observa-
tions already made in Figure 28. The average transition path time for protein
folding is an order of magnitude too long with respect to its prediction. In
contrast to that, the average transition path time of the bead signal matches
its prediction perfectly while being another order of magnitude longer than
the actual protein transition path time average. Due to the much higher fric-
tion coefficient of the bead in case of speed limit folding, the bead effectively
slows down the protein’s transition path time. This situation is just the other
way around in case where the protein experiences much higher friction than
the bead, see the data points obtained for γP = 4·10

−4 pN · s · nm−1. Right
in between, the intersection of the transition path time predictions is an out-
standing ’sweet’ spot marked with an empty black circle in Figure 29A. Even
though the friction of the bead is slightly higher at this intersection (γB =

13 Here, this technique can be successfully applied since H(x,LP) is chosen such that the state
levels of the bead trajectory are well seperated to avoid counting thermal artefacts. Otherwise,
HMM analysis should be preferred.
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Figure 29: Friction-dependence of transition path times, rates, and path ensembles of
protein folding probed by force. Simulation parameters are the same as
in Figure 27 except for the indicated increase of γP. (A) Dependence of
transition path times on γP while γB is kept constant. Connected circles
are data provided by the simulation for protein (blue) and bead (red) dif-
fusion. Dashed lines are predictions according to Equation 54. (B) Friction-
dependence of rates. Dashed lines are predicted by Kramers theory, see
Equation 29. (C) Transition path ensembles in contour and deflection space
obtained for γP = 4·10

−8 pN · s · nm−1. Dashed lines are ensembles ex-
pected from the equilibrium distributions. (D) and (E) Same as in (C) but
with γP = 4·10

−6 and 4·10
−4 pN · s · nm−1.

9.4·10
−6 pN · s · nm−1 at all times), the friction coefficients are effectively the

same as right here, differences in barrier height and distance compensate for
each other. Importantly, close to this spot even the extracted transition path
times agree well with each other and their prediction.

When looking at the combined transition rates in Figure 29B the situation
seems better than for transition path times. Here, rates obtained for bead and
protein diffusion almost perfectly match each other at all times. This means
that the actual protein transition rates are reasonably well detected. However,
when moving away from the above mentioned ’sweet’ spot towards smaller
protein friction coefficients, protein folding rates are increasingly underesti-
mated with respect to their prediction. A simple explanation for this obser-
vation is directly suggested by the overall shape of the rate versus protein
friction plot with respect to predicted rates: The slowest component within a
force-spectroscopic measurement system acts as a low-pass filter. Hence, in
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case the friction coefficient of the protein is effectively larger than the one
of the bead, very good agreement between actual protein folding rates, their
detection and their prediction can be expected. An interesting quantity which
indirectly confirms the suppression of faster transition rates by the system’s
slower component is the factor between the number of times the faster com-
ponent reaches the transition state out of a state’s minimum and the number
of successful transitions. As already noted at the end of Section 4.2.1, a factor
of 2 is expected for unimpeded diffusion. Here, in case of speed limit fold-
ing, the protein reaches the transition state about 7 times more often than an
actual transition occurs.

The transition path ensembles shown on the right of Figure 29 confirm
the conclusions already drawn from transition path times and rates. In addi-
tion, the extracted ensembles directly visualize the friction-induced distortion
of equilibria extracted from long-term fluctuations during the comparatively
short time scales of transition paths. Figure 29C depicts the speed limit fold-
ing scenario. Again, the transition path ensemble of the slower component,
i. e., the bead, is in accord with the theoretically expected shape14. In contrast
to bead diffusion, the ensemble obtained from protein diffusion is strongly
deformed with respect to its prediction and shows a much higher probability
on the side of the more folded state. This, in turn, leads to a shift of the tran-
sition path probability of protein diffusion (not shown) into the direction of
this state. Note that this shift is in accord with the bias of the bead transition
stretches during the protein transitions shown in Figure 28. In the opposite
scenario presented in Figure 29E where protein friction is much higher than
the friction of the bead, the protein transition path ensemble matches its pre-
diction very well. Here, the ensemble of the bead is completely inverted with
respect to its expected shape. The most interesting transition path ensem-
bles are obtained close to the ’sweet’ spot with effectively almost isotropic
friction, see Figure 29D. While the protein’s ensemble matches its prediction
almost perfectly, the ensemble of the bead already strongly deviates from the
expected shape. This has to do with the preference of the minimal energy
gradient transition path for crossing the higher protein folding barrier in this
scenario, see discussion of Figure 30 below. The result that the bead’s tran-
sition path ensemble already deviates from its prediction in case of similar
friction coefficients allows an important conclusion. A deviation of the bead
ensemble from its prediction is direct evidence for another process being the
driving force behind observed transitions which dominates over mere bead
diffusion. In other words, measured transitions indeed reflect protein folding.

To summarize the results obtained from Figure 29, here, the two questions
raised at the beginning of the results’ discussion are answered. In general,
a correct detection of the transition path times of a protein is impossible.
The only exception is distinguished at the ’sweet’ spot with an effectively

14 Note that the theoretically expected transition path ensembles for protein and bead diffusion
are quite different in shape even though both are derived from simple two-state energy land-
scapes. Basically, this is owed to the relatively higher curvature at the barrier top with respect
to the state’s minima in deflection space as opposed to contour space. By this means, the
probability to diffuse around the barrier top while being on a transition path is reduced.
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isotropic friction where actual protein folding, its detection, and its predic-
tion all agree with each other. In contrast to transition path times, protein
folding rates are correctly detected at all times. However, since the slower
component of the force-spectroscopic system acts as a low-pass filter, a rate
detection of protein folding in conformity with its prediction is only possible
in case the protein experiences higher friction than the bead. Taken together,
the predictive capabilities of one-dimensional diffusion models when being
applied to a two-dimensional diffusion problem are limited. The significance
of measured transition path ensembles with respect to the protein folding
process is analysed in detail in Section 4.3.4.

All reported values for γP which are shown at the bottom of Figure 29B
were derived from optical tweezers experiments. Despite differences in instru-
mentation, applied models, and referred coordinate space, all friction coeffi-
cients are higher but altogether close to the indicated case of isotropic friction
(the ’sweet’ spot). A discussion of whether this is mere coincidence, a system-
atic deviation, or a universal property goes beyond the scope of this work. In
view of the above outlined limited applicability of one-dimensional diffusion
models typically used to derive values for γP, the reported values can be seen
as meaningful correction factors while their absolute validity should be han-
dled with care. Note that for all values γP < γB the underestimation of the
protein folding rate automatically leads to an overestimation of the friction
coefficient γP while relevant barrier heights, if derived by deconvolution, are
insensitive towards γP, see Section 4.3.1.

The elastic compliance involved in force-spectroscopic measurements has
direct influence on the detection limits. By changing, e. g., the trap stiffness,
the distances ∆xTS for barrier crossing in deflection space will change accord-
ingly. As suggested by Equation 55, a change in ∆xTS affects the curvature
at the barrier top which, in turn, has strong influence on the transition path
time average given by Equation 54. By this means, changing the systems com-
pliance should allow the ’sweet’ spot marked in Figure 29A to be moved. An
alongside determination of the friction coefficient γP may answer the ques-
tion whether or whether not the obtained result is independent from the
measurement apparatus. However, note that changing the compliance on the
detection’s side also affects the barrier height in deflection space which can
act against expected changes in curvature.

All elaborated results and conclusions presented in this section stand in
strong agreement with recent publications dedicated to the numerical inves-
tigation of effects arising from anisotropic diffusion [16, 49]. Note that these
publications introduce and confirm an analytic expression based on Langer
theory, a multidimensional generalization of Kramers rate-theory, which can
be used to characterize effective rates [95, 125]. Next, two-dimensional transi-
tion path ensembles are evaluated for a better understanding of how anisotropic
friction induces effective rates and transition path times which stand in con-
flict with expectations derived from equilibrium distributions.
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4.3.2.3 Anisotropic friction acts as a switch between preferential transition paths

Thin lines in Figure 30 are lines of equal potential representing the Hamil-
tonian H(x,LP) which is used throughout this section. Thick dashed lines
display minimal energy gradient paths for barrier crossing with preferred
directionality. These paths are directly calculated from H(x,LP) and indicate
the energy minima within slices of either constant deflection (red) or constant
contour length (black). Numbers in the top right corner of each plot specify
the friction coefficient γP in units of pN · s · nm−1. The background of Fig-
ure 30A shows the equilibrium probability distribution (different shades of
earth color) of the entire two-dimensional simulation for speed limit folding
where γP = 4·10

−8 pN · s · nm−1. Thick lines refer to the maximal probability
of the distribution along slices of either constant deflection (green) or con-
stant contour length (light blue). Figure 30B presents the two-dimensional
ensemble of all transition paths interconnecting the minima of H(x,LP) ac-
cording to diffusion in deflection space. Red thin dashed lines mark the rel-
evant boundaries. The whole transition stretches shown in Figure 28 are the
one-dimensional representation of two examples which belong to the ensem-
ble in Figure 30B. The projection of this ensemble into mere deflection space
can be seen on the right of Figure 29C. The ensemble of transition paths in-
terconnecting the minima of H(x,LP) according to diffusion in contour space
is displayed in Figure 30C. Figure 30D and Figure 30E show the same as
Figure 30B and Figure 30C but for different values of γP. For simplicity, all
plots aside from Figure 30A show only the maximal probability within slices
of the coordinate being determinant for the presented ensemble. Further, all
distributions in Figure 30 are not normalized.

With their preferred direction of propagation being in parallel to either de-
flection or contour space, thick dashed lines in Figure 30 proceed along a
minimal local energy gradient between the two minima of H(x,LP). By this
means, thick dashed lines represent the energetically most favourable transi-
tion path which is expected for propagation along an axis with its associated
friction coefficient. For the equilibrium probability distribution obtained from
diffusion in the potential of H(x,LP), the probability to propagate along the
thick dashed lines is maximal for each preferred direction, see Figure 30A.
Note that this is independent of the choice of γP because the latter does not
affect the shape of a well sampled equilibrium distribution.

In case of the transition path ensemble which is composed of transitions in
deflection space shown in Figure 30B, the maximal probability in slices of con-
stant deflection (green) excellently matches its prediction. This is not the case
for the maximal probability in slices of constant contour length (light blue)
derived from the transition path ensemble comprising transitions in contour
space presented in Figure 30C. Here, black arrows indicate the strong de-
viation from the prediction (black thick dashed line). Since Figure 30B and
Figure 30C reflect transition path ensembles obtained for speed limit fold-
ing where, within this study, the anisotropy in friction is highest, they suit
very well to directly illustrate effects arising from anisotropic friction. Simply
speaking, anisotropic friction implies a clash of time scales. While protein dif-
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Figure 30: Friction acts as a switch between preferential transition paths. (A) Lines of
equal potential represent H(x,LP). Shades of earth colour show an equilib-
rium probability distribution. Thick dashed lines mark preferential transi-
tion paths with respect to contour (black) and deflection (red) space. Green
and light blue lines are preferential paths extracted from the distribution.
(B) and (C) Transition path ensembles of full transitions in deflection and
contour space. (D) and (E) Same as (B) and (C) with varied γP. See text
for more details.

fusion is very fast in case of speed limit folding, bead diffusion is unable to
follow the protein’s fast movement. Hence, a full transition in contour space
has to occur within a relatively small bead displacement. Energetically this
is only feasible in case the bead already diffuses around the transition state
region. The result can directly be seen in Figure 30C where the most proba-
ble transition path for protein diffusion is completely off its – with respect to
equilibrium – energetically favoured path ending up in transitions almost or-
thogonal to deflection space. The two-dimensional distribution of this ensem-
ble displays the same asymmetry already seen on the left of Figure 29C with
the same bias towards the folded state in both contour and deflection space,
for the latter see Figure 28. Figure 30C offers a graphical explanation for this
bias which has to do with energetic considerations. The spatial separation
between the two energetically favourable transition paths is smaller on the
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more folded side (with higher deflection values) than on the more unfolded
side. Further, the effective spatial orientation of both paths is more resem-
blant to one another. This, in turn, reduces effects arising from anisotropic
friction and allows an overall longer time to be spent on the more folded side
during protein folding transitions. In the end, the asymmetry of the ensemble
in Figure 30C reflects the asymmetry of H(x,LP) which is directly visible on
closer inspection of its two-dimensional representation. One reason for this
asymmetry is the more compact nature of the folded state.

By stepwise increasing γP, in Figure 30D and Figure 30E the situation dis-
cussed for Figure 30B and Figure 30C changes towards the other extreme
where the bead can diffuse much faster than the protein. Red arrows in the
outermost right plot of Figure 30D indicate the deviation of the most probable
transition path in deflection space from its energetically favoured one. Again,
transitions are almost orthogonal to the axis representing the coordinate with
higher friction. The only configuration where transitions in deflection space
completely capture protein folding transitions is approximately given for γP
= 4·10

−6 pN · s · nm−1 which is closest to the ’sweet’ spot with effectively
isotropic friction. It is remarkable that the transition path ensembles based
on transitions in deflection space continuously change along with γP while
contour space ensembles remain unchanged as soon as protein friction dom-
inates the transitions. Basically, this has to do with the higher barrier for
protein folding transitions in contour space.

In summary, Figure 30 illustrates how anisotropic friction shifts the most
probable transition paths away from their energetically favoured route. These
shifts, in turn, directly explain the aforementioned conflicting transition path
times and rates shown in Figure 29. The degree of shifting stands in direct
relation to the difference in friction as well as the difference in barrier height.

Finally, the finding of a continuously changing transition path ensemble in
deflection space in response to changes of the friction coefficient γP suggests
a new approach to measure protein friction. In this approach, the deviation
of a measured transition path ensemble from its theoretically expected shape
serves as a direct measure of protein friction. If all relevant mechanical pa-
rameters as well as the deconvolved protein folding energy landscape of a
force-spectroscopic experiment are known, the Hamiltonian H(x,LP) describ-
ing the entire system can be calculated. Based on H(x,LP), a numerical deter-
mination of γP is straight forward. The first-time application of this approach
to experimental data is presented in Section 6.4.2, see also Figure 65.

4.3.3 Transition averages at experimental resolution: seeking traces of protein fold-
ing

As elaborated in Section 4.3.2, transitions which are detected in a force-spec-
troscopic experiment rarely fully capture entire protein folding transitions.
Here, transition averages from bead diffusion are analysed at experimental
resolution to find out down to which time scale the measurement system is
sensitive enough to directly reveal traces of protein folding within detected
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transitions. Thereafter, the effect of basic protein folding energy landscape fea-
tures on the shape of detected averaged transitions is investigated. Features
comprise the transition state position as well as on-pathway intermediates.

4.3.3.1 Dynamic fingerprints: introducing transition averages

Before being averaged, transitions are detected with the help of HMM analysis
and aligned in two different ways. One way, is to use the location of the in-
stant transitions within the HMM state classification trace for alignment. Alter-
natively, transitions are aligned at their starting point which is located right
before the last crossing of the initial state level. Henceforth, HMM-centred
transition averages are referred to as ’averaged transitions’, while the other
averages are termed ’bead relaxation curves’. Both types of transition aver-
ages can be seen in Figure 31. Dashed vertical lines indicate the positions of
alignment, dashed horizontal lines represent the state levels.

The averaged transitions shown in Figure 31A are based on over 3000 tran-
sitions extracted from a one-dimensional diffusion simulation in the poten-
tial depicted in Figure 27A with γ = γB = 9.4·10

−6 pN · s · nm−1. The time-
reversed representation of one of the two transition directions reveals that the
averaged transitions are exactly the same for both directions. This is expected,
since the same barrier is being crossed independent of direction. The black
thick dashed line is a sigmoidal fit to the averaged transitions according to
the following adapted equation of the logistic function [248]:

X (t) =
A

1+ e−α·(t−t0)
+X0. (65)

Here, X is the measured deflection at time t, A is a scale factor, X0 is an offset,
t0 is the time right at the middle of the averaged transition, and α reflects
the slope of the transition. While A adapts to the distance between the two
state levels, X0 equals to their mean value. Further, averaged transitions are
aligned such that t0 = 0. Judging from the quality of the fit in Figure 31A, a
sigmoidal shape characterizes the averaged transitions reasonably well.

Figure 31B presents averaged transitions based on about 100 transitions ex-
tracted from the deflection signal of the two-dimensional diffusion simulation
characterized in Figure 27. By this means, transitions belonging to Figure 31B
effectively pass through the same potential which is used for one-dimensional
diffusion in Figure 31A. However, in Figure 31B additional speed limit pro-
tein folding transitions are present. While the red line is a sigmoidal fit to
the data, the black dashed line displays the fit from Figure 31A representing
one-dimensional bead diffusion unaltered by protein folding.

The full and empty circles shown in Figure 31C are bead relaxation curves
calculated from the same transitions as in Figure 31B. Red lines are single
exponential fits to the data. Again, black dashed lines refer to transitions from
one-dimensional diffusion. Even though the single exponential fits capture
the trend within the data fairly well, the two-dimensional bead relaxation
curves reveal deviations from an ideal exponential decay. These deviations
are similarly observed for one-dimensional diffusion (data not shown).
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Figure 31: Averaged transitions of the deflection signal with and without inherent
speed limit protein folding. (A) Averaged transitions (full and empty cir-
cles) from one-dimensional diffusion in the bead’s effective energy land-
scape shown in Figure 27A using γ = γB = 9.4·10

−6 pN · s · nm−1 while
sampling at 200 kHz. The dashed black line is a sigmoidal fit to the data,
see Equation 65. (B) Same simulation as in Figure 27 sampled at 200 kHz.
Averaged transitions detected upon two-dimensional diffusion involving
speed limit protein folding. The red line fits the data, the black dashed line
refers to (A). (C) Bead relaxation curves from the same data set as used
in (B). Red lines are single exponential fits to the data, black dashed lines
refer to the data set represented in (A).

The key result of Figure 31 is directly put across by nearly identical fits for
one- and two-dimensional diffusion: for the given set of parameters, measur-
able transitions do not give a hint at traces of protein folding even if the for-
mer are caused by the latter. In other words, speed limit protein folding tran-
sitions are invisible to the detection system. Note that the higher noise level
within the averaged transitions from two-dimensional diffusion has nothing
to do with protein folding but is solely a result of less statistics, see above.
Note as well that besides the relaxation curves also the averaged transitions
show a faint but orderly aberration from the shape of their sigmoidal fit. To
perform a quantitative analysis of transition averages, the systematic devi-
ations within the data require adjustments of the fit functions in order to
extract more accurate characteristic lifetimes.

4.3.3.2 In search of the detection limit for protein folding transitions

Now, the detection limit for direct traces of protein folding is determined
based on simulations. Therefore, the friction coefficient γP is stepwise in-
creased to slow down protein diffusion in contour space. In Figure 32, the
thereupon obtained transition averages in deflection space (empty circles) are
directly compared to the corresponding fit from one-dimensional diffusion
(black thick dashed lines). Here, sigmoidal and exponential fits (solid lines)
are modified to adapt to the systematic deviations seen in Figure 31. The
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sigmoidal fits in Figure 32A are complemented by a second sigmoid which
allows the averaged transitions to be split up into two regimes. One regime
characterizes the steep slope around the alignment position t0, while the
other one fits the exponential decay towards each state level more accurately.
Concerning the exponential decay of the bead relaxation curves in Figure 32B,
a combination of three time shifted exponentials was found to reproduce the
data best. To combine two time shifted decays, a third exponential with op-
posite amplitude is needed to compensate for the overlap of the other two
around time zero. Coloured dashed lines in Figure 32B are simple exponen-
tial fits.
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Figure 32: Averaged transitions of recorded bead dynamics reveal the inherent pro-
tein folding time scale. Simulation parameters are the same as in Figure 31

except for the indicated change of γP. (A) Empty circles are averaged tran-
sitions obtained upon varying γP. Solid lines are double sigmoidal fits.
The black thick dashed line is a fit referring to one-dimensional diffusion.
(B) Bead relaxation curves (empty circles) fit by time shifted exponentials
(solid lines) for different values of γP. Coloured dashed lines are single
exponential fits. Data and color code are the same as in (A). The black
dashed line refers to one-dimensional diffusion.

For a friction coefficient of γP = 4·10
−7 pN · s · nm−1 which is ten times

higher than for speed limit protein folding, the transition averages in Fig-
ure 32 already reveal a noticeable deviation from unperturbed one-dimension-
al diffusion, i. e., from the black dashed lines. Along with increasing friction,
deviations become stronger and stronger. Hence, above a critical value for
γP, transition averages can give direct proof for protein folding. Further, the
distinct deviation from unperturbed bead diffusion represents a fingerprint
of the protein’s characteristic folding time scale, while no detectable devia-
tion indicates, at least, an upper limit of the folding time. Thanks to their
modification, all fits in Figure 32 reproduce the data very well. In Figure 32B,
the time shifted exponential fits (solid lines) clearly outperform their single
exponential alternatives (short dashed lines). A selection of the fit results is
presented and discussed next.



96 langevin dynamics simulations

Table 2 lists average transition path and relaxation times of transitions ex-
tracted from one- and two-dimensional diffusion simulations. The relaxation
times τbead

relax and τbead
α are provided by single exponential and sigmoidal fits to

transition averages. In case of the sigmoid, relaxation times are calculated ac-
cording to τbead

α = 2/α in units of seconds [s], where α is the slope defined by
Equation 65. Relaxation times marked with the index ’opt’ are the longest re-
laxation times provided by the customized exponential and sigmoidal fits, see
above. By this means, τbead

relax,opt and τbead
α,opt characterize the slowest exponential

decay found within a transition average. Values in brackets are theoretical
predictions based on Equation 54 with the addition that curvatures at the
barrier top as well as at the bottom of the potential wells are proportionally
considered, see discussion in Section 4.2.1.

γB γP 〈τprot
TP 〉 〈τbead

TP 〉 τbead
relax τbead

α τbead
relax,opt τbead

α,opt

[pN · s · nm−1] [µs]

9.4·10
−6 - - 162 (173) 96 52 69 69

- 4·10
−8

3.2 (2.8) - - - - -

9.4·10
−6 4·10−8

26 158 91 53 58 66

9.4·10
−6 4·10−7

82 191 115 70 73 77

9.4·10
−6

4·10
−6

400 383 232 172 153 197

9.4·10
−6

4·10
−5

3263 1876 1617 1248 1048 1400

Table 2: Detection limit for protein folding transitions. Transition path and relaxation
times from one- and two-dimensional diffusion simulations. Above a crit-
ical value for γP, the measurement system’s characteristic relaxation time
is slowed down by protein diffusion. Most of the presented results are ex-
tracted from data presented in Figure 29, Figure 31, and Figure 32.

For one-dimensional diffusion, transition path time averages listed in Ta-
ble 2 agree very well with their theoretical predictions confirming, once again,
integrity of the simulations. Concerning bead relaxation times, there is a
pronounced difference between τbead

relax and τbead
α especially for fast transitions

where 〈τbead
TP 〉 is shorter than 200µs. This difference is a consequence of the

discrepancies between the transition averages and their simple fit functions
visible in Figure 31: while simple sigmoidal fits underestimate the relax-
ation times, single exponentials clearly tend to overestimate them. In con-
trast, τbead

relax,opt and τbead
α,opt match each other much better. The relaxation times

obtained for one-dimensional bead diffusion listed in the first row do almost
not change in case of speed limit protein folding presented in row number
three. Compared to speed limit folding in row three, substantially longer re-
laxation times in row four clearly detect the increase in protein friction γP.
So what does this particular case reveal about the general detection limit for
direct protein folding transitions? To answer this question, it suffices to in-
clude the theoretically expected transition path times for protein folding into
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the picture. As indicated in row two, protein folding transitions are expected
to last 2.8µs in case of unperturbed speed limit protein folding. Hence, in
row four, an average protein folding time of 28µs is theoretically expected as
γP is ten times higher. This leads to the plausible result that traces of protein
folding transitions can be directly detected when unperturbed protein folding
times are of the same order of magnitude (or longer) as the (slowest) relax-
ation time of unperturbed bead diffusion. Here, this critical relaxation time
lies between 60 and 70µs. In summary, the detection limit for direct protein
folding transitions is predetermined by the response time of the detection
system.

Concerning the superior quality of the customized fits, of course, fitting
becomes easier by introducing more fit parameters. The important advantage
of the expanded fits is that by entirely modelling the data they provide a
more accurate relaxation time of the slowest system’s component which is
determinant for the detection limit. Importantly, the relaxation times τbead

relax,opt

and τbead
α,opt are in good agreement with results provided by single exponentials

which are locally fit to the transitions within their last third before reaching
the final state.

The apparent step right in the middle of all averaged transitions looks very
much like an alignment artefact. Instead of using the HMM state classification
trace, one might think of fitting the logistic function to each transition and
use the provided t0 for alignment, see [248]. However, fitting a sigmoid to
individual transitions already anticipates a symmetric shape for their average
which, in general, is not the case, see below. The problem whether the de-
viations observed for bead relaxation curves are a mere (alignment) artefact
or the result of, say, two time shifted exponential decays reflecting diffusion
within a potential well and diffusion over a barrier and into a well, is beyond
the scope of this work.

By comparing experimentally determined transition path time averages to
their theoretical (= ’protein-free’) predictions in Figure 53 of Section 6.2.3,
both faint as well as pronounced traces of protein folding are revealed.

4.3.3.3 Averaged transitions reveal basic protein folding energy landscape features

Typically, protein folding energy landscapes are not symmetric. Therefore, the
influence of asymmetric potentials in contour space on the shape of transition
averages measured in deflection space are qualitatively studied in the last
part of this section. Figure 33 illustrates the effect of either a non-centred on-
pathway high-energy intermediate or an asymmetric predominant transition
state (TS). The upper panel of Figure 33A shows two protein folding energy
landscapes, one with (solid line) and one without intermediate (dashed line).
Below, their corresponding bead diffusion potentials are displayed. Note that
the (almost) symmetric potentials represented by the black dashed lines are
the ones which are also used for the other two-dimensional diffusion studies
in this section. Full and empty circles in Figure 33B display averaged transi-
tions detected upon diffusion in the energy landscape with intermediate. The
dashed sigmoid is a fit to averaged transitions obtained from diffusion in the
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energy landscape without intermediate. The same fit and associated data are
depicted in Figure 31B. Red lines in Figure 33C are single exponential fits to
the bead relaxation curves obtained for diffusion influenced by the additional
intermediate. Again, thick dashed lines refer to diffusion without intermedi-
ate; associated data are fit and shown in Figure 31C. In an analogous manner,
Figure 33D - Figure 33F demonstrate the impact of an asymmetric transition
state position. Note that, in Figure 33D, the red protein folding energy land-
scape shape is designed such that forward and backward transition rates are
about equal according to Kramers rate equation, see Equation 29.
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Figure 33: Averaged transitions reveal basic features of protein folding energy land-
scapes. Same simulation parameters as in Figure 31B. (A) - (C) An ad-
ditional on-pathway intermediate deforms detected averaged transitions.
Thick black dashed lines in (B) and (C) are reference fits from averaged
transitions detected upon diffusion in a potential without intermediate.
(D) - (F) Effect of an asymmetric protein folding potential on detected
transition averages. See text for more details.

The additional intermediate of the protein folding energy landscape shown
in Figure 33A has a considerable impact on the barrier shape of the convolved
bead diffusion potential. This asymmetric deformation leads to a deviation of
the averaged transitions from a symmetric shape represented by the sigmoid
in Figure 33B. As indicated by the orange arrow, detected diffusion from or
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into the folded state, i. e., the upper state level, is effectively slowed down due
to the intermediate. Further, the transition state shift, which is pointed out in
the lower panel of Figure 33A, can also be seen within the averaged transi-
tions: their alignment position is clearly off the middle between the two state
levels. In Figure 33C, the red fits to the bead relaxation curves are almost iden-
tical to the ones obtained for the symmetric folding energy landscape (black
dashed lines). This indirectly suggests that bead relaxation times are rather
dominated by the shape of energy wells than by the shape of the crossed bar-
rier since, regardless of the presence of the intermediate, in Figure 33A, all
energy wells have almost identical shapes within their respective coordinate
space. On the other hand, a direct comparison between Figure 33C and Fig-
ure 31C may lead to believe that relaxation times are slightly prolonged due
to the deformation of the barrier caused by the additional intermediate.

As one can see in Figure 33D, a strongly asymmetric protein folding energy
landscape causes a corresponding asymmetry in deflection space. While the
barrier shape around the shifted transition state position still remains rather
symmetric, now, the energy wells of the convolved bead potential show a
strong asymmetry which manifests itself in a gain (+ω) or loss (−ω) in curva-
ture. Again, the alignment position of the averaged transitions in Figure 33E
reflects the shifted transition state position in deflection space. In addition, as
indicated by black arrows, diffusion out of or into the upper state level is ac-
celerated, while diffusion into or out of the lower state level is slowed down.
A comparison between the exponential fits in Figure 33F reveals an asymmet-
ric deviation: while bead relaxation curves from the upper towards the lower
state level do not indicate any deviation from the reference fit obtained from
the symmetric energy landscape (black dashed line), the inverse transition
seems to be slowed down. In a certain way, this observation suggests that
relaxation times for barrier crossing are rather dominated by the time needed
for reaching the barrier than for leaving it.

The results in Figure 33 represent the speed limit protein folding case.
Hence, detected averaged transitions and bead relaxation curves are not ad-
ditionally deformed by protein diffusion, see Figure 31. From this follows
that all deviations from a symmetric shape basically reflect the asymmet-
ric features of the convolved bead potential. In case of averaged transitions,
slowed down or accelerated diffusion can be directly explained by the relative
changes in deflection space inferred by the asymmetric protein folding energy
landscapes. Therefore relevant are changes in barrier height ∆GTS, barrier po-
sition ∆xTS, as well as all involved curvatures, see Figure 19 in Section 3.8.4
and the discussion in Section 4.2.1. Under consideration of the named pa-
rameters, the slight prolongation of relaxation times observed in Figure 33C
appears to be reasonable. The different relaxation times in Figure 33F suggest
a direction-dependence which stands in conflict with the perfect overlap of
the respective averaged transitions. Further, an equilibrium process should
not yield direction-dependent times for barrier crossing. In view of these con-
tradictions, a more in-depth analysis will be necessary to understand the ori-
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gin of the apparent direction-dependence and to rule out artefacts potentially
arising from a lack of statistics or resolution.

In summary, in case of speed limit protein folding, detected averaged tran-
sitions reflect basic features of the convolved bead potential. One feature com-
prises the transition state position in deflection space which is marked by the
inflection points of the averaged transitions and located right at their align-
ment position. This result is particularly relevant as it reveals that symmetric
sigmoidal fits introduced in [247] are really useful only in the exceptional
case of perfectly symmetric energy landscapes.

Another important result is the fact that both the additional intermediate
and the shifted predominant transition state in contour space have an over-
all similar effect on the detected transitions. This means that as long as the
protein friction coefficient is unknown, asymmetric averaged transitions need
careful interpretation. In addition to asymmetries in the protein folding en-
ergy landscape, non-constant diffusion coefficients may cause asymmetric av-
eraged transitions as well.

The barrier determining the intermediate’s dwell time in Figure 33A is so
small that Kramers rate-theory in the high-barrier limit can only provide an
upper limit, see Figure 24B. In the analysed case, i. e., for γP = 4·10

−8 pN · s ·
nm−1, the expected upper limit of the intermediate’s dwell time is as short
as 1.4µs and thus far below the detection limit, see above. In this context, the
mere ability to detect the deformation of the convolved bead potential caused
by the intermediate is already remarkable.

In principle, averaged transitions can be interpreted as temporal commit-
tors or splitting probabilities. Hence, the inflection points of averaged transi-
tions mark a (time-dependent) transition probability of 0.5 as they coincide
with the transition state position. From this perspective, it will be interest-
ing to see what effects on the shape of asymmetric averaged transitions arise
upon an increase of protein friction.

4.3.4 Transition path analysis in force spectroscopy

In this section, two-dimensional diffusion simulations are used as a test bed
for transition path analysis tools introduced in Section 3.8. Since these tools
have not been applied to experimental force-spectroscopic data so far, here,
their applicability and informative value are analysed under consideration of
a whole set of different boundary conditions. These conditions comprise two
protein folding energy landscapes with either a central or an asymmetric tran-
sition state position. In addition, three different protein friction coefficients
are considered to cover cases of speed limit protein folding with dominating
bead friction, effective isotropic friction, and predominating protein friction,
see Section 4.3.2 for details on the differentiation. The analysis focuses on
the committor-based barrier shape reconstruction, see Section 3.8.2, as well
as the transition state localization based on the calculation of transition path
probabilities, see Section 3.8.3.
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Full lines in Figure 34A represent commitment probabilities derived from
deflection signals ’measured’ for diffusion in the same two-dimensional en-
ergy landscape but with different protein friction coefficient values γP. Dashed
lines are theoretically expected committors derived from the potentials shown
in Figure 34B. Details on the derivation of committors from barrier shapes
are given in Section 4.3.2. The inset in Figure 34A is a zoom into the intersect
region of the commitment probabilities. While the red dashed line in Fig-
ure 34B reflects the convolved bead potential expected from the Hamiltonian
H(x,LP), the dark blue dashed line represents the deconvolved bead poten-
tial. Note that these potentials are the same as the ones shown in Figure 27C.
Full lines in Figure 34B are committor-based barrier reconstructions accord-
ing to Equation 51. All curves in Figure 34C are transition path probabilities
directly calculated from the committors shown in Figure 34A according to
Equation 53.
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Figure 34: Commitment probability calculation and barrier reconstruction for a sym-
metric protein folding energy landscape. Same simulation as in Figure 27

sampled at 200 kHz with γP = 4·10
−8 (black lines), 4·10

−6 (orange), and
4·10

−4 pN · s · nm−1 (light blue). (A) Full lines represent committment
probabilities derived from equilibrium trajectories according to Equa-
tion 49. Dashed lines are theoretically expected committors based on the
dashed potentials shown in (B). (B) Committor-based barrier shape recon-
struction based on Equation 51. Dashed lines represent the convolved (red)
and deconvolved (dark blue) bead potential. (C) Transition path probabil-
ities derived from committors in (A) based on Equation 53.

In case of speed limit protein folding, commitment probabilities in Fig-
ure 34A (black lines) are very close to the shape expected for unaltered bead
diffusion (dashed red lines). When protein friction is increased, commitment
probabilities become considerably steeper around the intersect region as indi-
cated by black arrows. At the same time, only a marginal difference between
isotropic (orange) and high protein friction (light blue) can be seen. The inset
highlights that all committors intersect very close to the intersection derived
from the convolved bead potential. Figure 34B shows that the speed limit fold-
ing scenario yields an almost perfect barrier reconstruction of the convolved
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bead potential. Further, reconstructed barrier heights increase along with pro-
tein friction. Independent of differences in friction, all reconstructed barrier
shapes have more resemblance to the convolved than to the deconvolved bar-
rier. In case of isotropic friction (orange), the reconstructed barrier height is
about as high as the deconvolved barrier (dashed dark blue line). The transi-
tion path probabilities in Figure 34C are solely a different representation of
their corresponding committors and become more pointed with increasing
protein friction. As for the committors, the deformation of the transition path
probabilities is slightly asymmetric with a tendency towards accounting for
the shape expected for the deconvolved bead potential.

The subsequent interpretation of evaluated simulation data shown in Fig-
ure 34 is based on the demand that committors, reconstructed barriers, and
transition path probabilities match the respective curves derived from the de-
convolved energy landscape (dashed dark blue lines) as the latter is expected
to represent protein diffusion in deflection space. From this point of view,
the results in Figure 34 lead to the following conclusions. As illustrated in
Figure 34B, an exact barrier reconstruction in terms of height and shape is
impossible. At least, in case of effective isotropic friction, the reconstructed
barrier (orange) yields an acceptable estimate of the protein folding barrier
height. Altogether, the committor-based barrier reconstruction technique ap-
pears to be quite sensitive and, hence, not very robust. This can be deduced
from the fact that committors for isotropic and high protein friction (orange
and light blue) are almost identical while their inferred barriers are substan-
tially different in barrier height. Note that the similarity between the commit-
tors stands in agreement with the similarity between the respective transition
path ensembles of protein diffusion shown on the left of Figure 29D and
Figure 29E. According to Section 3.8.1, a commitment probability of 0.5 indi-
cates a transition state configuration. By this means, each intersection in the
inset of Figure 34A marks a presumable transition state position. The zoom
into the intersect region of the committors reveals a relatively bad committor-
based transition state localization for protein diffusion. While the best result
is obtained for isotropic friction, all intersections are considerably closer to
the transition state position of the convolved bead potential than to the posi-
tion expected for protein diffusion. However, all intersections show the right
tendency and deviate by less than 1.1 nm from the expected position which
corresponds to less than 5 % of the total distance between the two state levels.

Figure 35 presents transition path probabilities derived from transition path
ensembles according to Equation 52. The figure is subdivided into two main
columns and three rows. While the left column compares data from speed
limit folding simulations (black lines) to predictions (dashed lines), the right
column compares data recorded for different protein friction coefficients γP.
Note that predictions are independent of γP. Full lines in the top row are
equilibrium distributions of entire trajectories in deflection space. The middle
row displays transition path ensembles which include all detected unfolding
and refolding transitions. Emerging transition path probabilities are depicted
in the bottom row. While results represented by full lines are derived from
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trajectories sampled at 200 kHz, dotted lines in the middle row are derived
from the same trajectories at full 1 GHz bandwidth15. In accordance with Fig-
ure 34, thick dashed red and dark blue lines reflect theoretically expected
shapes based on the convolved and deconvolved bead potentials. Transition
path probabilities shown in Figure 35C and Figure 35F are based on the mea-
sured probability distribution. In contrast, probabilities shown in Figure 35G
are obtained upon using the deconvolved probability distribution as peq(x) in
Equation 52. The inset number in Figure 35G reflects the evaluated additional
(re-)normalization factor16 which has not been applied upon calculation.
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Figure 35: Transition path probability calculation for a symmetric protein folding en-
ergy landscape. Simulations and color code as in Figure 34. (A) Equilib-
rium distribution peq(x) of the bead deflection signal (black line). Dashed
lines represent the deconvolved (dark blue) and convolved (red) distribu-
tion. (B) Extracted transition path ensemble p(x|TP) (black line). (C) Tran-
sition path probability p(TP|x) according to Equation 52 (black line). (D) -
(F) Same as (A) - (C) but with varied γP. (G) Same as (F) but using the de-
convolved distribution as peq(x) in Equation 52. See text for more details.

15 Dotted lines in the middle row are the same transition path ensembles as in Figure 29.
16 The additional normalization factor is defined as the integral over the ratio between decon-

volved and convolved probability distributions, see supporting information for [155].
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Independent of the protein friction coefficient γP, all measured equilibrium
distributions in the top row of Figure 35 are about the same and, hence, match
the convolved distribution (red dashed line in Figure 35A) expected from the
simulation’s Hamiltonian H(x,LP). In contrast, transition path ensembles in
the middle row show high sensitivity towards changes in γP, for a detailed
discussion see Section 4.3.2. Here, one can also see that detected ensembles
are slightly broader17 when sampled at experimental resolution. Despite huge
differences between the transition path ensembles, all transition path proba-
bilities in the bottom row have very similar shapes which basically differ only
by amplitude. Transition path probabilities in Figure 35C and Figure 35F peak
at the transition state position of the convolved bead potential. If the decon-
volved equilibrium distribution is used for their calculation as in Figure 35G,
probabilities peak at the transition state position of the deconvolved bead
potential. Independent of their calculation, probabilities get smaller with in-
creasing protein friction. In case of speed limit protein folding, directly calcu-
lated transition path probabilities almost perfectly match the shape expected
for the convolved bead potential, see black line in either Figure 35C or Fig-
ure 35F. Probabilities based on the deconvolved equilibrium distribution per-
fectly match the shape derived from the deconvolved bead potential in case
of effective isotropic friction, see orange line in Figure 35G.

A surprising result in Figure 35 is provided by the transition path probabil-
ities derived upon using the deconvolved probability distribution as peq(x) in
Equation 52. Even without multiplication with the additional normalization
factor, the probability for speed limit folding, see black line in Figure 35G,
exceeds the maximally possible value of 0.5. Furthermore, all probabilities
in Figure 35G would exceed a meaningful maximum after multiplication
with the corresponding normalization factor of 18.4. A possible explanation
may be a literal mistake in the supporting information of [155]. If using∫x2
x1
pdeconvolved(x)dx/

∫x2
x1
peq(x)dx instead of

∫x2
x1
pdecon(x)/peq(x)dx to quan-

tify the fraction of statistical weight in the transition region, here, a factor of
∼ 1 instead of� 1 would be reached.

Transition path probabilities are maximal at the transition state position.
When using Equation 52 to calculate transition path probabilities, the location
of the maximum strongly depends on the shape of peq(x): the smaller peq(x),
the higher the weighting of the measured transition path ensemble at the
respective position. As probability distributions have a minimum at their cor-
responding transition state position, this position gets the highest additional
weight. The peak positions of differently calculated probabilities in Figure 35

confirm this interdependence: after division of the ensembles by peq(x), re-
sulting probability maxima are close to the transition state position inferred
by the equilibrium distribution. This suggests that an exact transition state lo-
calization is barely possible when calculations are merely based on measured
probability distributions which typically differ from deconvolved ones.

17 The slight broadening of transition path ensembles sampled at experimental resolution may be
caused by a less accurate identification of the beginning and end of transition paths which, in
turn, results in a tendency towards more additional points in the outer transition path regions.
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Compared to the comittor-based probabilities in Figure 34C, transition path
probabilities derived from transition path ensembles bear more information
as they are not set to a maximal value of 0.5 by default. Independent of their
calculation, all transition path probabilities get more narrow with increasing
protein friction. This narrowing reflects an effective reduction of the region
in deflection space which is relevant for barrier crossing. By this means, nar-
rowed transition path probabilities are a directly measurable effect of the
friction-induced switch between preferential transition paths which is dis-
cussed in Section 4.3.2. Importantly, this noticeable and verified relation be-
tween the shape of a transition path probability and the relevance of the
respective coordinate in terms of reactivity confirms the potential of the for-
mer as an indicator of reaction coordinate quality. However, in combination
with the findings from Section 4.3.2, results in Figure 35 reveal that transition
path probabilities alone are likely to be misinterpreted when reaction coordi-
nate quality is tested. The directly calculated probability in Figure 35C almost
reaches a maximal value of 0.5 which identifies the deflection signal as a very
good reaction coordinate, see Section 3.8.3. While in case of speed limit pro-
tein folding this is true for bead diffusion, for protein diffusion this is not,
see Figure 30B and Figure 30C. Orange lines in Figure 35F and Figure 35G
represent the effective isotropic friction case where the deflection signal cap-
tures protein diffusion best according to Section 4.3.2. This is confirmed by
the probability based on the (typically not available) deconvolved equilibrium
distribution and its maximal value of 0.5 in Figure 35G. Opposed to that, the
directly calculated probability in Figure 35F only has a maximal value of 0.2
suggesting that the deflection signal is only a mediocre reaction coordinate.
Taken together, these examples already illustrate that the use of transition
path probabilities as a reliable test for reaction coordinate quality is limited
in case of two-dimensional diffusion with anisotropic friction.

For completeness it should be noted that there is another parameter which
is rarely directly mentioned but nevertheless crucial for transition path prob-
ability calculations and their interpretation: p(TP). While representing the
fraction of time spent on transition paths, p(TP) is directly proportional to the
probability height according to Equation 52. This makes p(TP) co-determinant
for reaction coordinate quality tests. Arising from the frequency and duration
of transition paths, p(TP) depends on detected transition path times and rates.
By this means, the height of transition path probabilities also depends on the
position chosen for the borders of the transition path region and on the qual-
ity of spatial and temporal resolution.

Next, an asymmetric protein folding energy landscape is used to test the
performance of different transition path analysis tools. Figure 36 shows an
analysis of this landscape in the style of Figure 27. In Figure 36A and Fig-
ure 36B, Boltzmann inverted probability distributions (black lines) derived
from simulated trajectories perfectly match the shapes expected fromH(x,LP)
(dashed red lines). The dark blue line in Figure 36A represents the decon-
volved energy landscape which, after transformation, also matches the shape
expected in contour space quite well, see Figure 36B. The zero-force transfor-
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Figure 36: Deconvolution of an asymmetric protein folding energy landscape. (A)
- (C) Boltzmann inversion and deconvolution of a two-dimensional dif-
fusion simulation with an asymmetric protein folding energy landscape
input. Except for G0 (LP), all simulation parameters are the same as in Fig-
ure 27. Figures are kept in the style of Figure 27C - Figure 27E. Dark blue
lines are based on deconvolution. Additional black lines are Boltzmann
inverted probability distributions of the respective individual simulation
trajectories.

mation in Figure 36C confirms a good reconstruction of the simulation input
G0 (LP). Since deconvolution represents the most solid energy landscape re-
construction technique on hand, in the following, the obtained deconvolved
energy landscape is used as reference for retrievable information on protein
diffusion concealed within the analysed deflection signals.

Figure 37 presents the exact same evaluation as Figure 34 with the only dif-
ference being the underlying asymmetric protein folding energy landscape.
As one can see, the results provide the exact same overall picture. Concerning
the transition state localization, tendencies towards the transition state of the
deconvolved energy landscape are stronger, see inset of Figure 37A. In case
of effective isotropic friction (orange lines), committors even almost intersect
at the transition state position of the deconvolved energy landscape (dashed
dark blue lines). As already seen in Figure 34A, the intersection moves back
towards the transition state of the convolved energy landscape in the high
protein friction case (light blue). This can be explained by an increased rel-
ative diffusional freedom of the bead which allows the transition barrier in
deflection space to be probed more often than the protein gets close to its
transition state in contour space.

In Figure 38, transition path probability calculations are presented in the
same way as in Figure 35. Again, results from diffusion in an asymmetric pro-
tein folding energy landscape correspond to those obtained from diffusion in
the symmetric case. In case of isotropic friction, the transition path probability
in Figure 38F (orange line) even shows a marginal tendency towards the tran-
sition state position of the deconvolved potential (dark blue vertical dashed
line). The maximal probability height, however, is already smaller than for
the symmetric case presented in Figure 35F and only marginally higher than



4.3 energetically coupled two-dimensional diffusion 107

1.0

0.5

0.0

C
om

m
itm

en
t P

ro
ba

bi
lit

y

1051009590
Deflection 'x' [nm]

A B

CP
+ γ

Deflection 'x' [nm]

0.5

100.099.599.098.5 0.5
0.4
0.3
0.2
0.1
0.0TP

 P
ro

ba
bi

lit
y

1051009590

10
8
6
4
2En

er
gy

 [k
BT

]

120110100908070

Figure 37: Commitment probability calculation and barrier reconstruction for an
asymmetric protein folding energy landscape. (A) - (C) Arrangement,
color code for γP, and sampling are the same as in Figure 34.

for high protein friction (light blue). A possible explanation could be a loss
in spatial resolution due to the smaller distance between the two state lev-
els in case of the asymmetric protein folding energy landscape. Further, the
condition of effective isotropic friction has been adopted from the symmetric
case which, hence, is only a rough estimate. A two-dimensional analysis as in
Section 4.3.2 may help to better understand these details.

In summary, with respect to expected barrier reconstructions and transition
state localizations, tested transition path analysis tools have shown poor per-
formance within the frame of anisotropic two-dimensional diffusion. While
best results are obtained in case of almost effectively isotropic friction, ex-
pectations risen by the excellent performance shown for one-dimensional dif-
fusion in Section 3.8 are not met. However, all expectations are based on a
deconvolved energy landscape reflecting transitions in equilibrium. In case
of anisotropic friction, results in Section 4.3.2 clearly show that transitions do
not match expectations from equilibrium. From this perspective, the appar-
ent poor performance of transition path analysis tools is direct proof of the
fact that detected bead diffusion is altered by the tethered protein. Narrowed
and reduced transition path probabilities directly reflect the gain in protein
friction which leads to transitions truly guided by protein diffusion. Along
these lines, interpretations of maximal transition path probability values in
terms of reaction coordinate quality need to be done with care. Another im-
portant finding of this section is that transition state localizations based on
Equation 52 are strongly biased towards the minimum of the applied equilib-
rium probability distribution. Further, the high sensitivity of transition path
ensembles towards protein friction advises their explicit consideration when
analysing transition paths.

The results obtained in this section are highly relevant with respect to a se-
ries of recent publications, in particular [42, 143, 155, 156, 157]. In addition to
two-dimensional diffusion and one-dimensional position-dependent friction
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Figure 38: Transition path probability calculation for an asymmetric protein folding
energy landscape and the effect of friction. Same simulations and color
code as in Figure 37. (A) - (G) Arrangement as in Figure 35.

considered in [42], here, the impact of anisotropic friction on commitment
probabilities has been investigated for the first time. In [143], the comittor-
based barrier reconstruction technique was introduced for force-spectroscop-
ic experiments where γB ≈ γP. This basically represents the isotropic friction
scenario of this work which is the exceptional case yielding acceptable results.
And, finally, the supposedly improved transition path probability calculation
which involves the deconvolved probability distribution as well as an addi-
tional (re-)normalization factor, see [155], has been revealed to simply yield
the transition state position implied by the deconvolved distribution. Given
that the deconvolved energy landscape must be already known in advance,
this technique does not provide new insight with respect to the transition
state. In addition, even without applying the (re-)normalization factor, a sig-
nificant overestimation of resulting probabilities has been observed, see Fig-
ure 35G and Figure 38G, which results in meaningless probability values.
Note that in [155], transition paths are restricted to the region between the
inflection points of the convolved bead potential. This has remarkable effects
on transition path ensembles p(x|TP) and transition path times which further
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affect p(TP), see Section 3.8.5 and Section 4.2.1. According to the results from
this section, reported probabilities of almost 0.5 correspond to the speed limit
protein folding scenario. In this scenario, deflection signals are typically not
a truly good reaction coordinate, see Section 4.3.2.

4.4 summary and outlook

Evidence for self-contained simulations

The one-dimensional diffusion simulation performed in Section 4.2.1 shows
that Equation 54 is a good approximation for expected average transition path
times 〈τTP〉. In case of identical curvatures at the barrier top and the bottom
of the energy wells, discrepancies between theory and simulation are smaller
than 10 %. If curvatures differ, transition path times should be calculated as
a sum of correspondingly weighted path segments where energy wells are
treated like inverted barriers starting from the respective inflection points.
Furthermore, rates kij extracted from the simulation confirm the predictive
capabilities of Kramers rate equation, see Table 1. Here, theory and simulation
differ by less than 2.5%. Importantly, the good agreement between theory
and simulation proves that simulation time steps ∆t are chosen such that the
discretization in Equation 60 and Equation 62 is fine enough to fully capture
the modelled diffusive processes.

In Section 4.3.1, the consistency of the two-dimensional diffusion simula-
tion is confirmed by a correct reconstruction of the simulation input G0 (LP)
from the output of the simulation. The reconstruction itself is based on de-
convolution of the simulated measurement signal.

Different types of roughness and their characterization

Section 4.2.2 presents the first numerical verification of the roughness con-
cept introduced by Zwanzig. Inspired by the principle of frequently revisited
deeper minima which lead to increased overall transition path times, a sim-
plified concept for roughness represented by only a few high-energy inter-
mediates has been proposed. However, since Zwanzig’s roughness is charac-
terized by a relatively small typical length scale ∆xr compared to the spatial
dimension of the overall barrier, Equation 63 does not apply to the simplified
concept.

A method to reconstruct the energy well depth of high-energy on-pathway
intermediates based on measured transition path times is introduced in Sec-
tion 4.2.3. Direct application to different scenarios including one or two inter-
mediates confirmed the robustness of the method, see Figure 25.

Simulations performed in Section 4.2.4 confirm Hammond behaviour and
prove that kinked chevron plots can indeed be attributed to a rough energy
landscape comprised of high-energy intermediates, see Figure 26.
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Dynamic fingerprints of protein folding

Two types of transition averages are introduced in Section 4.3.3. These aver-
ages can be modelled with sigmoidal or exponential fits to extract character-
istic lifetimes inherent to the transitions. Transition averages deviating from
the shape expected for unperturbed one-dimensional bead diffusion are di-
rect proof for traces of protein folding. The detection limit for protein folding
transitions is determined by the fastest possible response of the measurement
system which is defined by the typical relaxation time for unperturbed bead
diffusion. By this means, apparently unperturbed transition averages auto-
matically yield an upper limit for protein folding times. Further, HMM-centred
averaged transitions reveal features of the convolved bead potential which, in
turn, reflects basic properties of the underlying protein folding energy land-
scape.

Anisotropic friction is a troublemaker

The friction inherent to a force-spectroscopic system which is used to detect
protein folding is typically different from the friction involved in the actual
protein folding process. Consequences arising from this anisotropy with re-
spect to rates, transition path times, and transition path ensembles are studied
in Section 4.3.2. In general, a correct detection or prediction of the transition
path times of a protein is not possible. The only exception is observed close
to the ’sweet’ spot standing out due to an effectively isotropic friction. In
contrast to transition path times, protein folding rates are correctly detected
at all times. However, since the slowest component of a force-spectroscopic
system acts as a low-pass filter, detected protein rates only conform with
their prediction if the protein experiences higher friction than the bead. Two-
dimensional representations of transition path ensembles in Figure 30 illus-
trate how anisotropic friction shifts transition paths away from their ener-
getically favoured routes. The degree of shifting stands in direct relation to
differences in friction and barrier height. Altogether, this leads to one cen-
tral finding: transitions exposed to anisotropic friction do not meet expecta-
tions derived from equilibrium. And further, the predictive capabilities of one-
dimensional diffusion models are strongly limited in case of two-dimensional
diffusion with anisotropic friction.

In Section 4.3.4 two-dimensional diffusion simulations are used as a test
bed for transition path analysis tools. At first sight, the tools fail to meet
expectations risen by the excellent performance shown for one-dimensional
diffusion in Section 3.8. Only in case of isotropic friction, techniques for recon-
structing barrier shapes or localising transition states yield acceptable results.
At second sight, transition path analysis tools are very sensitive indicators for
deviations from unperturbed bead diffusion and, hence, give proof for the
presence of protein folding transitions. While reaction coordinate quality tests
do indeed give an idea of the extent to which the measured deflection signal
overlaps with the signal of interest, i. e., actual protein diffusion, a transition
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path probability of 0.5 does not automatically mean that the measurement
coordinate is a good representation of the signal of interest.

Ideas for improvement and potential applications

This chapter proves that simulations are a mighty tool for testing theories and
evaluation techniques for their applicability and informative value within a
controlled environment. To further improve precision of the two-dimensional
diffusion simulation especially with respect to speed limit protein folding one
can consider to split the deflection coordinate ’x’ up into the two contributions
x1 and x2 of a dual-trap setup. Besides eventually yielding an even more
realistic picture, the influence of differences in trapping strength could be
studied.

Since detected transition path ensembles are found to continuously change
along with the protein friction coefficient γP they could be used as a measure
of the latter. A successful attempt to do so is presented in Section 6.4.2. More-
over, in this context, a variation of trapping strength or linker parameters may
be used for a controlled manipulation of the system’s Hamiltonian H(x,LP).
The calculation of expected two-dimensional off-equilibrium transition paths
based on the shape of H(x,LP) and the friction coefficients γB and γP is the
final missing link for bringing into play an entire two-dimensional theoretical
model to study measured transition paths.





Part IV

E X P E R I M E N TA L R E S U LT S

The experimentalist’s fun-part - a two-course menu: How simple
things can be useful. How complicated simple can be.





5
F E R R E D O X I N - L I K E F O L D : M E C H A N I C S O F A
T W O - S TAT E F O L D E R

This chapter introduces results from single-molecule force spectroscopic mea-
surements performed on an artificial protein that was designed to be mechan-
ically labile. Along with the mechanical characterization, the measurement
modes presented in Section 2.3 and the evaluation of obtained data based on
models described in Chapter 3, are showcased. Data from both measurement
modes independently confirm the desired low stability of the re-designed
Ferredoxin-like fold. Further, indications found for a deviation from simple
two-state mechanics are discussed, which brings the crucial role of the transi-
tion state position into focus.

5.1 a re-designed ideal protein for tissue engineering

Owing to their potential applicability in tissue engineering, protein-based hy-
drogels have begun to attract considerable attention over the past years [135].
Inspired by biological materials like, e. g., muscles, the idea behind incorpo-
rating proteins into a hydrogel is the incorporation of sacrificial bonds to in-
crease the overall toughness of the material [181, 208]. Simply speaking, when
a protein-based hydrogel is stretched, the acting forces induce unfolding of
the incorporated proteins which results in a massive dissipation of energy
[220]. Via such a mechanism, the overall hydrogel can be prevented from be-
ing destroyed too easily. Furthermore, after the unfolded proteins refold upon
relaxation, all initial mechanical properties of the hydrogel are restored.

A crucial step in engineering highly elastic and tough protein hydrogels
is, of course, to find suitable proteins. Since, as a response to an externally
induced overall deformation, hydrogels are expected to exert forces of only
a few picoNewtons (pN) on the individual incorporated proteins, one impor-
tant requirement for suitable proteins is a rather low mechanical stability [76].
If the proteins were too stable, they would not unfold upon stretching of the
hydrogel and, hence, no energy could be dissipated to prevent breakage. A
search for potential candidates was conducted with the help of protein de-
sign techniques. Protein design is aimed at finding an optimal amino acid
sequence which folds into a desired, unique protein structure. Along with
the optimization for attaining the desired structure, the absolute value of
the folding free energy of the protein is usually maximized to energetically
favour one distinct fold, see also Section 1.3. This, however, interferes with the
required low mechanical stability. The candidate that was found to meet all
of the aforementioned requirements, is a re-designed (’red’) Ferredoxin-like
fold, hereafter referred to as FLred.
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Figure 39: Positions of the 16 point mutations of the re-designed Ferredoxin-like fold
(FLred) assigned to the structure of the original ideal fold (FL) (pdbID:
2KL8). The left and right show the same structure viewed from opposite
sides.

In principle, FLred is a ’negative’ design of a previously designed ideal
protein which was optimized towards assuming the classical Ferredoxin-like
fold (FL) [76, 115]. The re-design comprises 16 point mutations within the
sequence of FL; exact sequences are given in Section A.1. In Figure 39 the
mutations and their positions are indicated within FL’s solution NMR struc-
ture. Even though no crystal or NMR structure has been determined for FLred,
its tertiary structure is predicted to be the same as for FL. This appears rea-
sonable regarding almost 80 % sequence identity as well as the fact that all
mutations are chosen such that they still fulfil the basic design rules that
were used to create FL. In contrast to the expected same shape, bulk measure-
ments reveal an enormous drop in folding free energy from 9.1 kcal/mol for
FL down to 3.8 kcal/mol for FLred1. To understand, how this dramatic drop
could be achieved to reach the desired low mechanical stability for FLred,
one has to look at the point mutations in more detail. In brief, the mutations
reflect a weakening of the hydrophobic effect and an increase of solvent con-
tact area, both leading to destabilization. This can be deduced from the fact
that almost all mutations replace hydrophobic side-chains with bulkier, polar
or even charged side-chains. As the mutations are located especially at transi-
tions between secondary structural motifs and within surface exposed loops,
negative effects on the original fold are minimised.

Whether or not FLred really assumes the predicted Ferredoxin-like fold
remains speculative as long as no crystal or NMR structure has been deter-
mined. In contrast, the mere fact of being mechanically less stable by more
than a factor of 2 as compared to the original ideal protein gives rise to an-
other concern: undesired additional energy minima with a depth similar to
the global energy minimum. To rule out the possibility of kinetic traps, wrong

1 At a temperature of 303 K, the values given in kcal/mol correspond to 15.1 and 6.3 kBT for FL
and FLred, respectively.
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folds, or off-pathway intermediates arising, a mechanical characterization on
a single molecular level is needed to address the following questions:

• Does FLred completely fold?

• Is there a simple and reliable unfolding/folding mechanism?

• How fast can FLred – if at all – refold against force to restore the gel’s
mechanical properties?

• Can the folding free energy from bulk be confirmed?

The data from single-molecule measurements obtained to answer these and
more questions are presented in the next section.

5.2 from simple towards complex two-state mechanics

5.2.1 Slowing down: approaching equilibrium

The mechanical characterization of a new protein starts in constant velocity
mode to look for the protein’s fingerprint which comprises typical unfold-
ing and refolding pattern(s). Figure 40 shows typical fingerprints of FLred
recorded at different pulling velocities.
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Figure 40: Typical force-extension traces of FLred recorded at 1000, 100, and 10 nm/s
pulling speed. Stretch cycles are shown in orange, relax cycles in gray.
Light colours show full resolution data, dark colours a smoothed version.
Black lines are mechanical fits to the folded and unfolded state.

By decreasing the velocity from 1000 down to 10 nm/s, one can observe
that the unfolding/refolding approaches a hump-like transition similar to
what has been reported for the ultra-fast folding villin headpiece [9, 261]. At
100 nm/s one can repeatedly observe unfolding followed by refolding and
vice versa within both the stretch and relax cycle. This indicates that FLred
is able to refold against force at a rate of at least some tens per second. Fur-
thermore, the fingerprints reveal that the transition mid-force, at which the
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protein spends half the time in the folded and the other half in the unfolded
state, is positioned at about 5 pN.

To address the question whether FLred is completely folded, we compare
measured contour length gains with the value expected upon unfolding of
the fully folded protein. In the solution NMR structure of the original ideal
protein the N- to C-terminal distance of the folded structure, which comprises
76 amino acids, equals 0.49 nm. Given these numbers, we end up with an
expected contour length gain of Lcalc

P = 27.25 nm according to Equation 5. This
value compares remarkably well with the average measured contour length
gain2 of LCV

P = 27.1 ± 1.5 nm. The corresponding histogram of contour length
gains is shown in Figure 41C. Thus, our measurements clearly suggest that
FLred is completely folded. Note that the contour length gains were obtained
using a persistence length of pP = 0.5 nm to model the unfolded polypeptide
chain.

After collecting unfolding and refolding forces from multiple stretch-and-
relax cycles, the built-up statistics allow the extraction of force-dependent
unfolding and refolding rates according to Oberbarnscheidt’s method pre-
sented in Section 3.4.2. To do so, data were collected and pooled from cycles
performed at 100, 500, and 1000 nm/s. Note that it is important to read off
the initial, i. e., the first unfolding event within a stretch as well as the first re-
folding event within a relax cycle to create meaningful statistics. The resulting
force-dependent rates are given in Figure 41A. The intersection where unfold-
ing and refolding rates equal each other is confirmed to lie at 5.1 pN. Here,
both rates equal about 40 s−1. From SB-model fits to the force-dependent rates,
the transition state position is determined to be at ∆xu = 10.4 ± 1.7 nm for
unfolding and ∆xf = 16.1 ± 1.1 nm for refolding. Both lengths add up to
26.5 ± 2.0 nm which, within error, is in perfect agreement with the contour
length gain expected and observed for FLred. This suggests that the reaction
coordinate of folding and unfolding of FLred is very well described by our
measurement coordinate of changing bead deflection. Note that this is not
necessarily the case for any protein. The deflection signal reflects contour
length changes of the investigated protein as a response to an acting force.
The value of this acting force is measured along the axis of two attachment
points. How the acting force vector ’splits up’ into forces ’felt’ by individual
parts of the protein remains speculative. Here, in case of a two-state folder
with the attachment points being at N- and C-termini, the reaction coordi-
nate and the measurement coordinate can be expected to nicely overlap.

To directly assess the folding free energy of FLred we can make use of its
close-to-equilibrium unfolding/refolding transition at very slow pulling ve-
locities where stretch-and-relax cycles average out into hump-like transitions
which perfectly superimpose. By applying the fit described in Section 3.3 to
multiple slowly pulled cycles we obtain ∆GEQ

0 = 5.7 ± 0.6 kBT. A representa-
tive trace and fit are shown in Figure 41B. Indirectly, the folding free energy

2 Here, the average contour gain is deduced from WLC-Fits to N = 125 force-extension traces
from six molecules. A persistence length of pP = 0.5 nm was chosen for the unfolded polypep-
tide chain. The average DNA-handle parameters are pD = 24 nm, LD = 369 nm, and K = 550 pN.
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Figure 41: Energy landscape parameter reconstruction from data obtained in con-
stant velocity mode. (A) Force-dependent rates (empty squares) derived
with the OBS method and SB-Model fits (solid lines). (B) Equilibrium tran-
sition fit (blue line) to a slow 10 nm/s stretch cycle (orange). Dashed lines
are mechanical fits to the folded and unfolded state. (C) Histogram of
contour length gains and Gaussian fit.

can be estimated by exploiting the principle of detailed balance. Provided that
the zero-force extrapolation of the SB-model applied to the force-dependent
rates is correct, the logarithm of the rate constants’ ratio should yield the
desired folding free energy, see Equation 32. Here, we get ∆Gk0,CV

0 = 5.8 ±
0.6 kBT, which is in perfect agreement with the previous result from the equi-
librium transition fit.

Within all stretch-and-relax cycles, neither unfolding events with a strik-
ingly different contour length, nor an accumulation of successive unexpect-
edly low unfolding forces could be observed. From this point of view, wrong
folds or kinetic switches can be excluded. As a result FLred appears to be a
perfect two-state folder.

5.2.2 Varying distance: shifting equilibrium populations

The constant velocity data suggest equilibrium fluctuations of FLred around
5 pN. Examples of time traces showing these fluctuations at constant trap dis-
tance are given in Figure 11. The time traces’ state assignment is done by
using HMM under the assumption of simple two-state behaviour. Examples
of extracted integrated lifetime histograms at different force biases are shown
in Figure 42A. The histograms are well fitted by single exponentials which
is strong evidence for the assumed underlying two-state folding mechanism.
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The rates derived from the exponential fits are plotted against force3 in Fig-
ure 42B. In Figure 42C, the corresponding state occupancies are shown.
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Figure 42: Energy landscape parameter reconstruction from data obtained in con-
stant distance mode. (A) Integrated lifetime histograms (lighter colours)
and single-exponential fits (darker colours) at different force biases. (B)
Force-dependent rates (empty circles) of one single molecule. Lines are SB-
Model fits. (C) State occupancy probabilities (empty circles) and fits (lines).
For comparison, (B) and (C) are complemented with rates and probabili-
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The force-dependent change in deflection of each time trace upon unfold-
ing and refolding can be transformed into a contour length change, see Sec-
tion 3.1.1. The average contour length gain from all constant distance traces
which contribute to Figure 42B is LCD

P = 27.2 ± 1.1 nm. With respect to the
above constant velocity data, this result independently confirms complete
folding of FLred.

By fitting the SB-model to force-dependent rates, the transition state posi-
tion can be determined. The sum of ∆xu = 10.2 ± 0.2 nm and ∆xf = 17.2 ±
0.5 nm from the particular fits shown in Figure 42B perfectly matches all mea-
sured as well as calculated values for the entire protein contour length. At the
intersection of the two exemplary SB-model fits, here we find a common rate
of 45 s−1 at 5.2 pN.

There are several ways to determine the folding free energy of a protein
from constant distance data. As suggested by Equation 13 in Section 3.2, fold-
ing free energies can be calculated for each time trace individually. Here, the
average from all analysed trajectories is ∆GCD,indiv

0 = 5.8 kBT. Further, the fold-
ing free energy can be obtained from different molecules by global fits to their
state occupancies according to Equation 15. This way, an average of ∆GCD,glob

0

= 5.5 kBT is reached. Finally, considering detailed balance, the zero-force rate

3 The forces indicated in Figure 42 refer to the force acting on the state out of which the final
state of a transition is reached.
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constants resulting from fitting the SB-model to the individual molecule high-
lighted in Figure 42B return ∆Gk0,CD

0 = 6.4 kBT. For all calculated energies,
here, the estimated error is 10 %. Due to the best statistics among all derived
energies, ∆GCD,indiv

0 = 5.8 ± 0.6 kBT is further considered as the final experi-
mentally determined folding free energy value of FLred.

5.2.3 How well do different analysis methods agree?

’There is more than one way to skin a cat.’, says a common proverb. In the
context of collecting and analysing force spectroscopic data of protein fold-
ing this proverb holds as well. The special properties of the mechanically
labile FLred with a fast combined rate λmid around the mid-force allows us
to compare results from non-equilibrium constant velocity experiments with
constant distance measurements at equilibrium within a common force range.
This overlapping force range manifests itself in the near-equilibrium fast un-
folding/refolding transition of FLred at very slow pulling velocities.

Table 3 lists contour length gains and folding free energies calculated from
data obtained in either constant velocity or constant distance mode using
different fitting procedures. While contour gains are crucial for a structural
interpretation of observed unfolding and refolding events, folding free ener-
gies are useful to compare single-molecule results with bulk measurements.
The corresponding discussion of measured and expected values can be found
in Section 5.2.3.1.

METHOD Text reference LP ∆G0

[nm] [kBT]

Const. Velocity LCV
P & ∆GCrooks

0 27.1 ± 1.5 n.d.

Const. Velocity LEQ
P & ∆GEQ

0 27.4 ± 0.7 5.7 ± 0.6

Const. Distance LCD
P & ∆G

CD,indiv|glob
0 27.2 ± 1.1 5.8 | 5.5 ± 0.6

Reference values Lcalc
P & ∆Gbulk

0 27.25 6.3

Table 3: Contour gains and folding free energies from different analysis methods
and modes. LCV

P is derived from WLC-fits to the folded and unfolded state.
∆GCrooks

0 was not determined but is included for the sake of completeness.
Values in the second row stem from equilibrium unfolding/folding tran-
sition fits to 10 nm/s traces. ∆GCD

0 is calculated from individual constant
distance trajectories and, in case of enough data points per molecule, from
global probability fits. LCD

P is derived through contour length transformation.

One can recognize strong agreement between the contour length gains and
folding free energies listed in Table 3 even though different fitting methods
as well as measurement modes were used to obtain these values. In Table 4

kinetic parameters resulting from SB-model fits to force-dependent rates are
compared to each other. Here, the rates were either extracted from constant
velocity data based on Oberbarnscheidt’s method or from constant distance
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data using HMM analysis. The total accord between the kinetic parameters
based on data from equilibrium fluctuations and non-equilibrium pulling ex-
periments emphasizes the robustness especially of Oberbarnscheidt’s method.
Taken together, the excellent agreement between different measurement modes
and analysis methods confirms the possibility of using and combining all of
them especially in cases where force ranges do not overlap and, hence, one
or the other method may not be applicable.

METHOD log10k
f
0 log10k

u
0 ∆xf ∆xu ∆Gk0

0

[s−1] [s−1] [nm] [nm] [kBT]

OBS rates (CV) 3.2 ± 0.1 0.6 ± 0.2 16.1 ± 1.1 10.4 ± 1.7 5.8 ± 0.6

HMM rates (CD) 3.5 ± 0.1 0.7 ± 0.1 17.2 ± 0.5 10.2 ± 0.2 6.4 ± 0.6

Table 4: Kinetic parameters from measurements in constant velocity (CV) and con-
stant distance (CD) mode. Given values result from fitting the SB-model to
force-dependent rates extracted from either CV data using the OBS method
or from CD data using HMM analysis.

For completeness, Table 4 also includes the ∆Gk0

0 values which are the free
energy values derived from the zero-force extrapolated rate constants based
on the principle of detailed balance, see Equation 32. The perfect agreement
with all other values obtained is very good evidence for a consistent data set
and analysis.

5.2.3.1 Comparing single-molecule results to calculated values and bulk measure-
ments

While the measured contour gains match the value calculated from the so-
lution NMR structure of FL perfectly, the single-molecule folding free ener-
gies slightly deviate from bulk measurements. Even though the bulk value of
∆Gbulk

0 = 6.3 kBT is recovered within error, most single-molecule results show
a tendency of being a bit too small, see Table 3 and Table 4 in Section 5.2.3. A
simple explanation could be a possible destabilization of FLred through the
presence of an additional GB1 protein at the N-terminus of the entire protein
construct that was used for the mechanical measurements at the optical trap.
In contrast, this additional GB1 was not yet included in the construct used
for chemical denaturation experiments. For a subdomain of calmodulin an
energetic destabilization of 7 % has been reported due to N- and C-terminal
ubiquitins [212]. As ubiquitins share a same fold with GB1, here we might
observe a similar effect for FLred.

Another reason for a lower folding free energy value from single-molecule
mechanical measurements as compared to bulk may be rooted in the persis-
tence length pP = 0.5 nm which was chosen to model the unfolded polypep-
tide chain. A bigger persistence length would result in a bigger folding free
energy along with a shorter overall contour length gain. While the perfect
match between measured and calculated contour lengths argues against a
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bigger persistence length, we have to consider that this may also be mislead-
ing since the calculation of an expected contour length, see Equation 5, is
based on an assumed average contour length per amino acid daa which in
turn is affected by the choice of pP. Due to the very small folding free en-
ergy we cannot completely exclude that a small fraction of FLred potentially
unfolds at very low forces below our detection limit. If that was the case, a
shorter measurable contour length gain would be the consequence. Addition-
ally, as long as no crystal or NMR structure of FLred exists, the assumption of
completely attaining the Ferredoxin-like shape of FL is only based on predic-
tions. A solution to finding the correct pP-value could be to extract the mere
protein contour gain contribution from the difference between folded and un-
folded parts along stretches of overlapping forces within force-distance traces
as described in [257]. Unfortunately the very narrow force range for overlaps
at small forces does not allow a clear statement on which persistence length
fits the data best to be made. However, a tendency towards a slightly higher
persistence length of about pP = 0.6 nm seems possible (data not shown).

5.2.4 Deviations from simple two-state mechanics at low forces

The mechanical characterization of FLred in Section 5.2.1 and Section 5.2.2
clearly revealed the behaviour of a simple two-state folder. However, for the
derivation of force-dependent rates from constant velocity measurements, all
unfolding and refolding events that occurred below 4 pN were yet not con-
sidered. The data shown in Figure 43 by contrast, include the entire available
data set. As can be seen in Figure 43A, the additional points below 4 pN mark
a considerable deviation from the SB-model, which was only fitted to rates at
forces above 4 pN yielding the same result as already shown in Figure 41A.

On the left of Figure 43C unfolding and refolding rates are fitted separately
for forces below and above 4.5 pN using the ZB-model. For lower forces, the
transition state position is located at ∆xZB

u,low = 7.6 ± 1.0 nm and ∆xZB
f,low = 2.2

± 0.8 nm. For higher forces, the transition state appears much closer to the
native state at ∆xZB

u,high = 3.4 ± 0.4 nm and ∆xZB
f,high = 5.8 ± 1.2 nm. Within

each force range, the data are fitted very well by the ZB-model. However,
the strong divergence between both force ranges implies a force-dependent
change of the predominant barrier position.

Figure 43B shows ZB-model-based fits to unfolding force histograms re-
trieved from data recorded at pulling speeds of 100, 500, and 1000 nm/s. As
the unfolding forces increase along with the pulling velocity one can observe
the same transition from a more distant towards a much closer transition
state with respect to the native conformation. This confirms the indication
of a force-dependent change of the predominant barrier position along the
unfolding pathway. In principle, unfolding or refolding force histograms are
nothing but a different representation of force-dependent rates. Figure 43D
shows force-dependent unfolding rates directly derived from unfolding force
histograms according to Equation 21. As expected, the rates scatter around
the ZB-model fits obtained from the corresponding OBS rates. This agree-
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Figure 43: Deviations from simple two-state mechanics at low forces. (A) OBS rates
including forces below 4 pN. Lines are SB-model fits to data above 4 pN.
(B) Unfolding force distributions fitted by Equation 35 (gray lines). Dotted
lines are calculated distributions inferred by the ZB-model fits in (C). (C)
Left: Full and dashed lines are ZB-model fits at lower (red) and higher
(black) forces. Right: Lines are DHS-model fits to the upper force range.
(D) Rates derived from unfolding force histograms according to Equa-
tion 21. Dashed lines are ZB-model fits from (C).

ment is again proof for a consistent data set and an example for the many
interchangeable ways of analysing force spectroscopic data.

Finally, also the DHS-model is applied4 to fit unfolding and refolding rates
as shown on the right of Figure 43C. When the upper force range of measured
unfolding rates is considered, the DHS-model yields ∆xDHS

u = 8.1 ± 0.9 nm,
ku,DHS
0 = 0.02 ± 0.02 s−1, and ∆Gu,DHS

0,TS = 10.5 ± 1.6 kBT. While the transition
state is located very close to ∆xZB

u,low = 7.6 nm obtained with the ZB-model
at forces below 4.5 pN, the zero-force extrapolated rate constant lies between
the two ZB-model values for lower and higher forces. Fitting the upper force
range of folding rates with the DHS-model results in ∆xDHS

f = 2.2 ± 0.2 nm,
kf,DHS
0 = 1700 ± 500 s−1, and ∆Gf,DHS

0,TS = 0.3 ± 1.4 kBT. Again, the transition

4 Here, the scaling factor in Equation 31 is set to ν = 2/3 which assumes an underlying potential
that contains linear and cubic terms.
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state position for folding matches the low force value ∆xZB
f,low = 2.2 nm of the

ZB-model. Further, the obtained zero-force rate constant for folding corre-
sponds well to the SB-model fit: kf,SB

0 = 1400 ± 400 s−1. However, a barrier
height of less than 3 kBT indicates that the DHS-model is applied beyond its
validity.

Compared to the SB- and ZB-model fits, here, the curvature of the DHS-
model fit captures the overall tendencies within the data best. This suggests
that the force-dependent change of the predominant barrier position to some
extent may be owed to Hammond behaviour. Albeit, none of the three models
is able to reproduce the kinetics of FLred over the entire force range by means
of a single two-state model fit.

5.3 discussion

5.3.1 Force-induced transition state movement: confirming Hammond behaviour by
deconvolution

In Figure 43, the best fit over the entire force range of unfolding rates of
FLred is provided by the DHS-model. The curvature of the fit reflects Ham-
mond behaviour: shifting a reaction towards the product side is accompanied
by a transition state movement towards the reactants side [94]. Hence, for un-
folding in a force spectroscopic assay: with rising force, the transition state
moves towards the native state which increasingly resembles the unfolded
denatured state by being more and more destabilized [107]. In contrast to the
DHS-model fits for unfolding, corresponding SB-model fits show an oppo-
site curvature. Here, the transition state position is fixed to a certain contour
length, adapting a force-dependent extension which increases with force ac-
cording to a WLC-model, see Section 3.5.3. In case of refolding, both the cur-
vatures of the DHS-model and the SB-model, are in accord with Hammond
behaviour: the lower the force the more the native configuration is stabilized
and easier ’to reach’ from the unfolded state, which is reflected by a transition
state movement towards the unfolded state. This is one reason for the good
agreement between the zero-force extrapolated folding rates provided from
both models. However, in case of the SB-model, the apparent accord with
Hammond behaviour is simply owed to the fact that with decreasing force
the extension of the WLC-modelled but otherwise fixed ∆xf, decreases, too.

In this section, deconvolution is used to analyse to which extent Hammond
behaviour is involved in the measured mechanics of FLred. Figure 44A shows
an example of an energy landscape deconvolved from equilibrium fluctua-
tions of FLred recorded at a pretension of 6.4 pN. The transformation of this
energy landscape to lower as well as higher pretensions reveals a consid-
erable force-induced transition state movement as expected for Hammond
behaviour. The quality of the transformation is approved by very good agree-
ment between transformed landscapes and directly deconvolved ones as de-
picted in Figure 44B. Importantly, this approval additionally confirms the re-
vealed transition state movement to at least be valid within the entire range
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accessible to equilibrium fluctuation measurements, i. e., within 4 to 8 pN.
Further, the zero-force extrapolated energy landscape shows a folding free
energy of ∆G0? = 6.0 kBT which perfectly complies with all previous results
listed in Table 3. This is another proof for a meaningful deconvolution and
energy landscape transformation.
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Figure 44: Transition state movement revealed by deconvolution and energy land-
scape transformation. (A) Energy landscape of FLred deconvolved at
6.4 pN pretension on the folded state (solid line) and transformed to
other starred pretensions. The zero-force energy landscape yields ∆G0? =
6.0 kBT. (B) Comparison of transformed landscapes (dashed lines) from (A)
to landscapes directly deconvolved from traces measured at the indicated
pretension. The good agreement proves the quality of energy landscape
transformation along with the deduced transition state movement.

At this point, the results obtained from deconvolution and energy land-
scape transformation clearly indicate the presence of Hammond behaviour
as something that needs to be considered when analysing the mechanics of
proteins. In case of FLred, the small size and the low folding free energy in
combination with an almost vanishing folding barrier at zero force, enhance
force-induced transition state movement within a relatively small force range.
Whether Hammond behaviour can explain the kinked chevron plots of FLred
and the implications on the prediction capabilities of different kinetic models
are discussed after the following passage as well as in Section 5.3.2.

Given the shape of the zero-force extrapolated energy landscape and the ex-
trapolated zero-force rate constant, it is possible to deduce the internal friction
coefficient of FLred under force-free conditions. After solving Equation 29

from Kramers rate-theory for γ we reach at γFLred = 5.1·10
−6 pN · s · nm−1.

For the calculation kf,SB
0 = 3000 ± 400 s−1 was used as obtained by fitting

the SB-model to constant distance data, see Table 4 and Figure 42B. The re-
sulting friction coefficient compares very well with values reported for other
constructs, see Figure 29B in Section 4.3.2, suggesting the friction for FLred to
be on the rather low side. However, this result needs to be handled with care
since its derivation is sensitive to the model used for the zero-force rate ex-
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trapolation, the considered coordinate space (here unfolded contour length),
as well as additional friction involved in the measurement, see Section 4.3.2.

Can Hammond behaviour explain the kinked chevron plots of FLred?

The transition state movement revealed by the transformed energy landscapes
in Figure 44A starts from an unfolding barrier position of ∆xdecon

u,0pN = 15.9 nm
at zero force. With increasing force, the distance of the unfolding barrier de-
creases according to Hammond behaviour. At 4 pN, the transition state is
only ∆xdecon

u,4pN = 13.5 nm away from the native state. This distance in unfolded
contour length corresponds to about half the entire contour length gain ex-
pected for FLred and, hence, indicates a perfectly symmetric energy land-
scape in terms of transition state position. A further increase of force up to
8 pN reduces the distance between the native and the transition state down
to ∆xdecon

u,8pN = 7.7 nm of unfolded contour length. By this means, the unfolding
barrier distance decreases down to about half its value upon an increase of
force up to 8 pN.

To judge, whether the transition state movement uncovered by deconvolu-
tion can explain the kinked chevron plots of FLred shown in Figure 43, here,
the ratio between unfolding and folding barrier distances ∆xu/∆xf is intro-
duced as a measure of the relative transition state position. This value allows
a simplified comparison between barrier positions retrieved in different ways.

METHOD

Deconvolution SB-model ZB-model

Force [pN] 0 4 8 4 - 8 3 - 4.5 4.5 - 8

∆xu/∆xf 1.4 1.0 0.4 0.6 3.5 0.6

Table 5: The relative transition state position of FLred depends on force. Values listed
for deconvolution and the SB-model are based on time trajectories and fits
to HMM rates from constant distance data, see Section 5.2.2. ZB-model values
are deduced from fits to OBS rates extracted from constant velocity data, see
Section 5.2.4.

In Table 5, the force-dependence of the relative transition state position
is specified for different analysis methods and data pools. For deconvolu-
tion, a decreasing ratio along with an increasing force directly reflects the
observed force-induced Hammond behaviour. The value of ∆xu/∆xf = 1.0
at 4 pN indicates the above mentioned symmetry where ∆xu ∼ ∆xf. The val-
ues obtained from the SB- and ZB-model are given for their respective fitting
range. A value of 0.6 supplied by fitting the SB-model to HMM rates extracted
from constant distance data measured at forces ranging from 4 to 8 pN lies
right in between the values returned by deconvolution at the edge of this
force range. This result indicates two things. First, as the transition state po-
sitions extracted from deconvolution and the SB-model are both measured
in changes of unfolded contour length, the dataset is self-consistent. Second,
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over a certain force range, the SB-model obviously provides an averaged tran-
sition state position. The excellent agreement between the relative transition
state positions indicated by the SB-model and the ZB-model within their over-
lapping force ranges confirms the suitability of the barrier distance ratio to
compare transition state positions supplied by different models. Finally, there
is an eye-catching discrepancy between the relative transition state position
indicated by the deconvolved energy landscape that has been transformed to
zero force and the relative position obtained from fitting the ZB-model to the
lower force range of experimentally determined force-dependent rates. This
deviation is strong evidence for the change in predominant barrier position,
as implied by the kinked chevron plots in Figure 43, to not be reproducible
by mere Hammond behaviour.

Taken together, studying the force-dependence of the relative transition
state position of FLred revealed the following. For forces above 4 pN, all
methods are in agreement with the occurrence of force-induced Hammond
behaviour. However, mere Hammond behaviour is not enough to explain
the mechanics observed at forces below 4 pN. On this account, a more pro-
nounced effect has to be considered as the reason for the kinked chevron
plots of FLred which is further elaborated in Section 5.3.3.

5.3.2 Case study FLred: a comparison between the predictive capabilities of different
kinetic models

The mechanics of FLred reflect a simple two-state folder with superimposed
Hammond behaviour at forces above 4 pN. For forces below 4 pN, a deviation
from this simple two-state mechanism is observed. In this part, influences of
these conditions on the quality of energy landscape parameter predictions by
different kinetic models are investigated. Among the compared kinetic mod-
els are the ZB-, DHS-, and SB-model, which are all introduced in detail in
Section 3.5. The main differences between these models consist of the refer-
enced reaction coordinate space, the considered force-induced effects on the
returned transition state position, and the treatment of energetic contributions
involved in the modelled kinetics.

In brief, the ZB-model assumes a fixed transition state position within a
force-independent reaction coordinate space which basically reflects absolute
changes within the measured deflection signal. The same reaction coordinate
space is used within the frame of the DHS-model. However, the value of
the transition state position returned by the DHS-model refers to a fixed
zero-force position which changes according to force-induced Hammond be-
haviour. The SB-model assumes a fixed transition state position in unfolded
contour length space. As the unfolded contour length is force-dependent, it
is modelled with a WLC which effectively serves as an interconversion be-
tween the measured deflection signal and energetically relevant distances.
By this means, the SB-model rescales the reaction coordinate space to adapt
to experimental conditions, i. e., to force-dependent distances of the deflec-
tion signal, while the DHS- and the ZB-model assume a fixed and therewith
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force-independent reaction coordinate scale. Concerning energetic contribu-
tions, the ZB- and the DHS-model consider an overall energy which changes
linearly with force. In addition, the DHS-model includes a fixed zero-force
transition barrier height which changes in response to an applied force. In
contrast to the ZB- and DHS-model, the SB-model accounts for all linear and
non-linear energetic contributions of the entire measurement system includ-
ing beads, DNA-handles, and unfolded protein.

Table 6 gives an overview of the results5 obtained from all SB-, ZB-, and
DHS-model fits shown in Figure 43. Among the listed parameters are the
relative transition state position ∆xu/∆xf reflecting some sort of spatial res-
olution, the sum of the transition state distances ∆xu + ∆xf as an overall
reaction coordinate space control, and the folding free energy ∆Gk00 resulting
from applying the principle of detailed balance to the zero-force extrapolated
rate constants, see also Equation 32. The latter value can be considered as an
indirect control parameter of a correct treatment of the involved energies.

MODEL

ZB DHS ZB SB

Force [pN] 3 - 4.5 4 - 8 4.5 - 8 4 - 8

∆xu/∆xf 3.5 3.7 0.6 0.7

∆xu +∆xf [nm] 9.8 10.3 9.2 26.5

∆Gk00 [kBT] 11.9 11.3 10.8 5.8

Table 6: Energy landscape parameter prediction capabilities of different kinetic mod-
els when applied to FLred data. All listed values are based on fits to OBS
rates, see Section 5.2.1 and Section 5.2.4. When the principle of detailed bal-
ance is applied, only the SB-model yields a reasonable folding free energy.

When merely judging the quality of the fits in Figure 43 by eye, all three
models nicely approximate the force-dependent rates of FLred for forces
above 4 pN. The main reason for that is the restricted force range which is too
small to allow pronounced curvatures to be observed within the experimen-
tally determined rate plots. Hence, even the above confirmed force-induced
Hammond behaviour, which results in a transition state movement of about
20 % with respect to the entire reaction coordinate space, does only marginally
affect the curvature of the chevron plots of FLred between 4 and 8 pN. How-
ever, despite an overall good approximation of the data through all three
models, the interpretation of their fit results presented in Table 6 reveals two
striking contradictions. First, the relative transition state position provided
by the DHS-model strongly deviates from the corresponding results of the
ZB- and the SB-model. And second, the folding free energies derived from

5 The zero-force extrapolated rates of the ZB-model used to calculate the ∆Gk0

0 values in Table 6,
are: kf,ZB

0,low = 871 ± 94,s−1, ku,ZB
0,low = 0.006 ± 0.005 s−1, and kf,ZB

0,high = 30000 ± 14000,s−1, ku,ZB
0,high

= 0.6 ± 0.3 s−1. The corresponding fits are shown in Figure 43C.
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the zero-force extrapolated rate constants of the ZB- and the DHS-model are
about twice as big as the energy calculated for the SB-model which, in turn,
is already known to be correct, see Section 5.2.3.

As a consequence of neglecting force-induced Hammond behaviour, the
SB- and ZB-model provide an averaged transition state position for forces
between 4 and 8 pN, also see Table 5. In contrast, the DHS-model is con-
form with Hammond behaviour and its provided transition state position
refers to a zero-force extrapolated energy landscape. This is the simple rea-
son why in Table 6, the relative transition state position ∆xu/∆xf from the
DHS-model does not match the corresponding values from the other models
which directly refer to the fitted force range. Yet, the barrier distance ratio
of 3.7 supplied by the DHS-model is also in disagreement with the relative
transition state position of 1.4 indicated by deconvolved energy landscapes
transformed from within the fitted force range to zero force, see Table 5. This
suggests a zero-force extrapolation failure of the DHS-model. Obviously, for
the given dataset of FLred, the inherent strength of the DHS-model, which
consists of extrapolating force-dependent mechanics towards a force-free en-
ergy landscape, becomes a weakness. The deviation from a simple two-state
folding mechanism at lower forces clearly means that FLred fails to meet the
requirement of two-state behaviour at all forces, necessary for applying the
DHS-model.

The sum of the transition state distances ∆xu+∆xf is nearly the same for all
fits obtained with the ZB- and the DHS-model even including different force
ranges. This confirms a common and apparently force-independent reaction
coordinate space for both models. For the SB-model, the sum of the transition
state distances confirms the fully unfolded contour length of FLred to be the
relevant reaction coordinate space for the conformational mechanics.

Finally, the strong deviation of the ∆Gk00 values provided by the ZB- and
DHS-model is evidence for their failure of an energetically adequate extrapo-
lation6 of the zero-force rate constants. Especially at forces below 10 pN, the
overall measurement system’s compliance consists of strongly non-linear and
force-dependent contributions as illustrated in Figure 15C of Section 3.6.1.
Besides the wrong assumption of mere linear energetic contributions, the as-
sumed force-independent reaction coordinate space is an oversimplification
of the force-dependent distances measured within the deflection signals, par-
ticularly at very low forces.

In summary, out of all three models, the SB-model performs best in terms
of its predictive capabilities. As already confirmed by deconvolution, the SB-
and the ZB-model yield a correct relative transition state position average
valid for within their fitted force range. Further, only the SB-model yields
zero-force extrapolated rate constants which are conform with the principle
of detailed balance. Concerning the DHS-model, in literature it was shown
to successfully reproduce force-dependent unfolding rates of DNA hairpins

6 The difference between the zero-force unfolding and folding barriers supplied by the DHS-
model implies a folding free energy difference of ∆Gu,DHS

0,TS - ∆Gf,DHS
0,TS = 10.2 kBT. This value is

about consistent with the wrong energy suggested by the zero-force rate constants.
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as well as proteins [66, 249]. However, as the results from the DHS-model
refer to an experimentally inaccessible energy landscape at zero force, they
give no direct insight into the fitted force range and, hence, need to be inter-
preted with care. As shown for the case of the yet rather simple FLred, any
slight deviation from perfect two-state mechanics lets the DHS-model fail to
make predictions that are conform with any of the other applied models and
methods. All in all, to characterize and understand the mechanics of a protein
within an experimentally accessible force range, the results obtained with the
SB-model are suited best and appear to not be negatively affected by Ham-
mond behaviour.

5.3.3 Qualitative energy landscape reconstruction

As stated above, the observed deviation of FLred mechanics from simple
two-state behaviour at low forces cannot be explained by mere Hammond
behaviour. Then, if the unfolding and refolding of FLred is considered as a
process in a strictly one-dimensional energy landscape with conserved end-to-
end and force vector directions, this deviation must point at a force-induced
switch in predominant transition barrier analogous to simulations in Sec-
tion 4.2.4 as well as considerations in [83, 197]. A switch in transition bar-
riers, in turn, implies the existence of an additional transiently populated
intermediate state along the reaction coordinate. Interestingly, high-energy
intermediates implied by curved chevron plots have already been reported
for Ferredoxin-like folds [131, 163, 191]. In a recent computational study the
loop length connecting the N- and C-terminal beta sheets with the alpha he-
lices has been identified to determine the presence or absence of intermediate
states. A longer loop length was found to reduce the overall cooperativity
between the two ascertained folding units of FLred designated in Figure 45B
and, hence, to favour sequential folding [219].

The qualitative energy landscape reconstruction, which characterizes me-
chanical features of FLred, is essentially done in two steps. At first, transition
state positions are deduced from kinetic information. And second, a poten-
tial intermediate state is assigned upon structural considerations. From the
relative transition state positions supplied by the ZB- and SB-model, the first
transition state TS1, which dominates at higher forces, is located in contour
space about 10 nm away from the native state and about 17 nm away from
the unfolded state. At lower forces the second transition state TS2 dominates
unfolding and refolding. Assuming the sum of transition state distances to
recover the entire contour length of FLred as is the case at higher forces, TS2

is about 21 nm away from the folded state when considering the ZB-model7.
The search for a possible candidate for an interemediate is illustrated in Fig-

7 Note that the SB-model also yields a reasonable fit for refolding at low forces (fit not shown).
The fit result indicates TS2 to be positioned at ∆xSB

f,low = 7.8 ± 1.3 nm away from the unfolded

state; the zero-force refolding rate constant is kf,SB
0,low = 321 ± 93 s−1. This implies a distance of

about 19.5 nm between TS2 and the native state, which is in good agreement with the 21 nm
retrieved from the relative transition state position supplied by the ZB-model.
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Figure 45: The two potential folding units of FLred. (A) Secondary structure elements
of FLred assigned to the solution NMR structure of FL. (B) Schematic repre-
sentation of the folded FLred structure (top) and the unfolded polypeptide
chain (bottom). Reported folding units are highlighted. The folding unit
α1β2β3 should fold more readily out of a stretched conformation while,
eventually, competing with the non-native conformation β2β3α2.

ure 46B, where one structural element of FLred is unfolded after the other.
Here, only more reasonable configurations were allowed and projected onto
their expected gain in contour space. This is why, e. g., unfolding is only con-
sidered to start from the C-terminal beta strand β4 located at the outer edge
of the beta-sheet, as the more likely initiation of forced unfolding compared
to ripping out the N-terminal beta strand β1 out of its central beta-sheet po-
sition. The most promising candidate for representing the intermediate state
I12 is the configuration where the central two beta strands β2 and β3 and the
N-terminal alpha helix α1 are folded. Together, α1β2β3 form a folidng unit
that has been identified to be one of the two folding cores of Ferredoxin-like
folds, where the second core consists of β1α2β4 [219], see Figure 45B.

The positions of TS1, TS2, and of potential intermediates, are indicated
within the schematic energy landscapes depicted in Figure 46A. The land-
scapes drawn with solid lines illustrate the force-induced switch in the main
barrier position. While at forces below 4.5 pN TS2 dominates (red), TS1 be-
comes the prevailing transition state at higher forces (black). The energy well
depth of the intermediate is as yet only putative. Gray dashed lines are energy
landscapes transformed to zero and 8 pN after deconvolution, see Figure 44A,
where transition state movement is merely based on Hammond behaviour
and clearly does not recover the transition between TS1 and TS2.

Along with the projection of possible unfolded configurations of FLred into
the energy landscape picture, the folding pathway of FLred under force can
be hypothesized (unfolding follows the reverse course of events). First, the
folding core α1β2β3 attempts to form in the transition state region around
TS2. The intermediate state region I1 is reached upon successful formation
of the first folding core. In the transition state region around TS1 the second
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Figure 46: Qualitative energy landscape reconstruction for FLred. (A) Energy land-
scape of FLred before and after a force-induced transition state switch.
The relative energy level of the transiently populated intermediate state
I1 is hypothesized. For reference, gray dashed lines refer to the decon-
volved and transformed energy landscape already shown in Figure 44A.
(B) Force as a guide through conformational space. Different conforma-
tions of FLred are arranged along the axis of their expected unfolded
contour-length.

folding core folds and FLred ends up in its final folded configuration. In this
rather sequential view, force restricts cooperativity through confinement of
configurational space which is accessible to the stretched polypeptide chain.
Out of the two identified folding cores α1β2β3 and β1α2β4, it appears rea-
sonable to assume that the first one is more readily formed under a residual
force as the involved structural elements follow one after the other within the
protein’s sequence, as indicated at the bottom of Figure 45B. Prior to forma-
tion of the second folding core, the N- and C-terminal ends need to get close
enough to each other.

Further considerations and perspectives

Data below 4 pN have a rather poor resolution which makes the correct de-
tection of unfolding and refolding forces difficult. To exclude systematic er-
rors, improved statistics will strengthen the argument for a switch in transi-
tion barriers. Furthermore, data recorded at higher temporal resolution and
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lower trap stiffnesses8 than the up to now used 30 kHz bandwidth and 0.3 -
0.4 pN/nm of individual trapping strength may allow a more detailed anal-
ysis of individual unfolding and folding transitions. So far, only unfolding
events at higher forces, where the folded and unfolded state separate more
clearly, seem to directly give slight hints of a transiently populated interme-
diate state (data not shown). At higher forces, the deconvolution of some
equilibrium traces indicate a subtle intermediate state located around the
proposed position for the formation of the folding unit α1β2β3 (data not
shown). These yet rather vague observations support the occurrence of a force-
induced cooperativity breakdown between the two folding units which form
FLred.

In the context of protein design, an intentional transiently populated in-
termediate state can be interpreted as a guide through conformational space.
Besides helping to avoid undesirable misfolding, an intermediate enables a
protein to refold against higher forces as well [196]. In other words, the ob-
served switch in barrier position may point at a roughened energy landscape
where sequential folding allows higher mechanical stability to be reached
at the cost of overall cooperativity. However, beyond the scenario of a one-
dimensional energy landscape governed by sequential barrier transitions, al-
ternative scenarios such as multiple paths or ground state effects need to be
accounted for [192, 197, 246]. For this purpose complementary Monte Carlo
simulations based on mere kinetic models or the diffusion in an underlying
energy landscape as described in Chapter 4, can be a very helpful control.

An alternative explanation for the kinked chevron plots of FLred may be
a competing pathway which introduces a second dimension into the energy
landscape picture. As suggested at the bottom of Figure 45B, the folding unit
α1β2β3 may compete with the non-native conformation β2β3α2. If this con-
formation forms a kinetic trap, i. e., an off-pathway intermediate (Ioff), with
an increasing probability of being reached at lower forces with respect to the
obligatory on-pathway intermediate (I12 = Ion), it could trigger a reduced ef-
fectiveness of folding of FLred at low forces. The simplest kinetic scheme to
describe such a situation is: F
 Ion 
 U
 Ioff.

One key to understanding the origin of experimentally observed transition
state movement might be the intrinsic dynamics of the transition state position.
If a transition state is very close to the native state, i. e., ∆xu is very small, then
any force-induced transition state movement by tilting the folding energy
landscape can be expected to have a much smaller effect than for a large ∆xu.
Compared to natural proteins like, e. g., titin (Ig4, Ig8, or I27), GB1, ubiquitin,
Green Fluorescent Protein (GFP), or domain 4 from filamin (ddFLN4), with
reported ∆xZB

u values far below 1 nm, any ∆xu found for FLred is very big
[36, 37, 59, 181, 194, 195]. However, this can only be a lead as the reported
values all stem from AFM-experiments where the measured ∆xu is affected

8 Under force, a lower trapping strength results in a larger separation of the average dwell
levels of the measured deflection signal. Therefore lower trap stiffnesses may increase spatial
resolution especially at higher forces.
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by a much higher tether stiffness as compared to experiments with optical
tweezers.

5.3.4 Mechanical parameters of designed and natural proteins: revealing a key role
of the transition state?

How do the mechanical properties of the designed protein FLred compare
with natural proteins ’optimized’ by evolution? To better judge the measured
folding free energy and rates under force, we want to compare two charac-
teristic values of FLred with values obtained for natural proteins: the com-
bined rate λmid measured at the mid-force Fmid and the average folding free
energy per amino acid ∆G0/aa. The average folding free energy allows an
approximate comparison of energies stored within protein folds of different
size. The combined rate is the sum of unfolding and refolding rates λmid =
kumid +kfmid measured at the mid-force. As Fmid marks the unique spot where
the rate plots intersect due to equal unfolding and refolding rates, λmid can
be a useful parameter to compare rates of different proteins under force espe-
cially around equilibrium. Table 7 lists the parameters Fmid, λmid, and ∆G0/aa
for multiple proteins. To complete the picture, the zero-force folding rate kf0,
the total number of amino acids (aa), and the transition state position ratio9

∆xu/∆xf are included as well. This last parameter is a measure of the sym-
metry of the underlying energy landscape.

All proteins listed in Table 7 have been mechanically characterized using
optical tweezers. The data shown for the domain 20 of human filamin A in
either cis or trans configuration (FLNa20cis/trans)10 are derived from [187, 188].
Values for the spectrin domain R15 originate from the mechanical characteri-
zation presented in Chapter 6. The range of values covering the correct fold-
ing and unfolding transitions of two EF hands into a subdomain of calmod-
ulin (CaM)11 at 10 mM Ca2+, namely F1234 � F12, F1234 � F34, F12 � U,
and F34 � U, were taken from [212, 213]. The mechanical parameters for
LZ26I1I2 were extracted for the transition between two intermediates (I1 �
I2) of a GCN4 leucine zipper construct investigated in [83]. Data for the wild-
type as well as a stable variant of the villin headpiece (HP35WT/ST)12 were
selected from [261]. Among all listed proteins, only FLNa20 consists solely of
beta sheets. While FLred contains a mix of beta sheets and alpha helices, all
other proteins only comprise alpha helices. Most of the proteins have a globu-

9 The transition state position ratio is reminiscent of Leffler’s proportionality constant indicating
resemblance of the transition state to either product or reagent. Applied to the given case it
would correspond to αu = ∆xu/(∆xu +∆xf) and range from 0 to 1 [107, 128]. However, here,
∆xu/∆xf was chosen to indicate perfect symmetry when a value equal to 1 is reached.

10 For FLNa20 the specified number of amino acids only comprises the part involved in folding.
The N-terminal beta sheet which would bind to the preceding domain 19 and the follow-up
loop region need to be disregarded as can be guessed from [187].

11 For CaM folding and unfolding of a single subdomain is considered while the second subdo-
main is either correctly folded or unfolded. Hence, the amount of involved amino acids equals
about half the entire amino acid sequence of CaM.

12 Including HP35ST, all transitions in Table 7 are assumed to be two-state upon fitting the re-
spective folding and unfolding rates.
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PROTEIN log10k
f
0

∆xu
∆xf

λmid Fmid
∆G0

aa No. aa

[s−1] [s−1] [pN] [kBT]

FLNa20cis
2.6 0.12 ∼ 10−1

7 0.19 57

R15 3.8 0.12 ∼ 10−1
8 0.15 106

CaMdomains
5.0 - 0.10 - 100 - 9 - 0.20 - 74

- 5.8 - 0.24 - 101 - 10 - 0.28

FLNa20trans
2.0 0.39 ∼ 101

3 0.06 57

FLred 3.5 0.59 ∼ 102 5 0.08 76

LZ26I1I2
7.8 1.05 ∼ 103

14 0.41 58

HP35WT
5.4 0.83 ∼ 104

7 0.14 35

HP35ST
6.1 0.65 ∼ 104

10 0.28 35

Table 7: Mechanical features of the designed FLred and natural proteins. Listed are
the zero-force folding rate constants kf0, the transition state position ratio
∆xu/∆xf, the combined rate λmid at the mid-force Fmid, the average folding
free energy per amino acid ∆G0/aa, and the total number of amino acids con-
tributing to the folding/unfolding of different proteins. Details of proteins
and listed values can be found in the text.

lar structure. Only R15 and LZ26I1I2 make an exception as they have a rather
stretched conformation by folding into a three-helix bundle and a coiled coil,
respectively.

The entries in Table 7 are ordered from top to bottom by ascending λmid.
Within the entire range covering six orders of magnitude, the combined rate
of about 10

2 s−1 for FLred is positioned on the faster side. As an increase
of protein size, i. e., a higher number of amino acids, may be considered to
slow down λmid, FLred is surprisingly fast. This is favoured by the low energy
stored within the re-designed fold which results in a smaller barrier having to
be crossed at equilibrium and therefore enables faster transition rates. In addi-
tion, FLred has no off-pathway intermediates which slow down the transition
rates as, e. g., in case of CaM.

The average folding free energy per amino acid ∆G0/aa of FLred is of the
same order as for the highly destabilized FLNa20trans, which indeed under-
lines a successful labile design. Furthermore, ∆G0/aa can be seen to increase
along with the mid-force. This can be expected as the energy landscape of a
protein with a very high folding free energy needs to be tilted much more
until an equilibrium between the folded and the unfolded state is reached.
Interestingly, in case of FLNa20trans the reduced ∆G0/aa value as compared
to FLNa20cis also results in a much faster λmid. The particularly high ∆G0/aa
value of 0.41 kBT for LZ26I1I2 is a speciality of coiled coils which can store up
to 4.42 kBT within a single helix turn13 theoretically allowing a maximal value
of ∆G0/aa = 0.63 kBT [30].

13 As coiled coils are dimers, the formation of a 3.5 amino acid long helix turn comprises 7 aa.
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The extrapolated rate constants kf0 for folding at zero force almost cover
eight orders of magnitude, which is basically the entire range of what has
been reported in literature so far. By taking a closer look at Table 7 one can
see that kf0 has a general tendency to increase along with Fmid. If all ∆xu, ∆xf,
and λmid were the same, this observation would, of course, be trivial. But even
given the large deviations, the zero-force rate constants more or less directly
relate to the mid-force.

It is a striking observation that the transition state position ratio14 ∆xu/∆xf
increases along with λmid. From this finding it appears as if a symmetric
energy landscape favours faster rates within equilibrium fluctuations under
force. Especially at higher forces, a rather central transition state or at least
similar ∆xu/f values for folding and unfolding seem to enable equilibrium
fluctuations to occur in the first place. There are two further examples that
corroborate this picture. The α-helical linker of the C-terminal immunoglob-
ulin domain My12 of myomesin (α12), which was mechanically investigated
with an AFM, shows a λmid value of 10

2 s−1 at a mid-force of 40 pN and a
transition state position ratio ∆xu/∆xf of 0.94. The 14 amino acids involved
in the reversible unfolding of α12 under load store a folding free energy
of 16 kBT, which implies an extraordinarily high ∆G0/aa value of 1.14 kBT
[18, 19]. However, this value originates from the special pulling geometry
where the main part of My12 adjacent to α12 is not being pulled upon while
still providing a stabilizing interface. A similar stabilization can be considered
for the mechanical characterization of a fast-folding subpart of the ATP-lid in
the active pulling geometry of the thermophilic variant of adenylate kinase
(thADK42 − 144). At a mid-force of about 17 pN the combined rate λmid is
of the order of 10

3 s−1 for thADK42− 144 [166]. With a ∆xu/∆xf value15 of
0.75 we again find a quite central transition state position along with fast
equilibrium transitions at a comparably high force.

As all of the aforementioned proteins are very different from each other,
the observed relations between combined rate and transition state position as
well as zero-force folding rate, mid-force and stored energy may be a mere
coincidence. However, precisely because of their observation despite huge
differences, these relations might be universally valid.

In summary, the comparison of the characteristic values λmid and ∆G0/aa of
the designed protein FLred with the corresponding values of natural proteins
reveals the following. First, the folding free energy of FLred is indeed very
small. And, second, the combined rate at the mid-force is comparably fast.
The latter is clearly a result of the small folding free energy and, additionally,
seems to be favoured by a rather symmetric energy landscape. Taken together
this speaks for a mechanically labile but sound design.

14 Note that all data represented in Table 7 were extracted from fitting the SB-model to experi-
mentally determined force-dependent rates. The only exception is CaM, where ∆xu was deter-
mined using the Zhurkov-Bell model. Hence, the given range for ∆xu/∆xf must be considered
as a lower estimate for the two domains of calmodulin.

15 By way of personal communication from Benjamin Pelz: ∆xu = 2.1 nm, ∆xf = 2.8 nm.



138 ferredoxin-like fold : mechanics of a two-state folder

5.4 summary and outlook

5.4.1 Successful protein design verification

The single-molecule mechanical characterization leaves no doubt about FLred
being a successful re-design of the original FL. The 16 point mutations on
FL, which make up 21 % of the entire protein sequence, lead to an almost
three times smaller folding free energy of about 5.8 kBT for FLred versus
15.1 kBT for FL. This result also confirmed the folding free energy obtained
from bulk measurements. Furthermore, the measurements clearly indicate
that FLred comprises an entirely folded protein structure which is even able
to completely refold against small residual forces. At a mid-force of about
5 pN, the unfolding and refolding rate both equal to about 40 s−1. Based on
Kramers rate-theory, the zero-force folding rate constant of kf,SB

0 = 3000 s−1

in combination with the zero-force extrapolated deconvolved energy land-
scape of FLred implies a comparably low internal friction coefficient of γFLred

= 5.1·10
−6 pN · s · nm−1. Taken together, FLred meets all requirements as a

candidate for being applied in a protein-based hydrogel as formulated in Sec-
tion 5.1. And indeed, hydrogels containing chemically cross-linked multimers
of FLred were shown to be highly stretchable and able to fully recover their
massive hysteresis [76].

The folding of FLred, thought previously to be a simple two-state mech-
anism was revealed to be of a more complex nature. It is not yet entirely
clear whether a very broad transition state ensemble or two distinct tran-
sition states are the reason for the strong deviation from simple two-state
behaviour at forces below 4 pN. Transition state movement in accord with
Hammond behaviour was reproduced by deconvolution but could not en-
tirely explain the kinked chevron plots. Therefore, under the assumption of
a discrete force-induced transition state switch, a transiently populated on-
pathway intermediate was hypothesized comprising the folding unit α1β2β3.
Such an intermediate suggests a force-induced cooperativity breakdown be-
tween the two folding units forming FLred. From a protein design perspec-
tive, including a transiently populated, relatively confined intermediate state
appears reasonable as stepwise or sequential folding of a protein can help to
avoid misfolded states as well as to refold against force.

Improved statistics and data recorded at higher resolution along with com-
plementary Monte Carlo simulations will help to unravel the true nature be-
hind the complex two-state folding of FLred. Especially higher resolution
data may enable alternative measures of transition state movement like, e. g.,
force-dependent splitting probabilities or even more advanced transition path
analysis methods introduced in Section 3.8.

Finally, an investigation of the much more stable ideal Ferredoxin-like fold
(FL) could be of interest. Here, several scenarios are possible. Eventually, an
overly transition state movement will not be directly detectable for FL as
force ranges for unfolding and refolding might not sufficiently overlap due
to potentially higher transition barriers. In that case, a sum of transition state
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positions which does not match the full contour length gain might still in-
dicate transition state movement. Another option is that the hypothesized
intermediate shows up as expected. However, due to a much higher folding
free energy being involved, it may even be possible to detect more than just
one intermediate including misfolded states from non-native pathways.

5.4.2 Application as an in vivo force sensor

By using genetically encoded tension sensors it has become possible to mea-
sure forces in vivo, i. e., within living cells. The working principle of these
tension sensors is the combination of distance-dependent FRET, which can
be observed from the outside of cells, with the force-dependent extension of
polymers by placing the latter as a force-sensitive element between a pair of
fluorophores that can undergo efficient FRET [88]. For a correct interpretation
of FRET-signals obtained from the force sensing modules after insertion into
cells, it is crucial to have a comprehensive understanding of the mechani-
cal behaviour of the force-sensitive element. Therefore, a single-molecule me-
chanical characterization of isolated force sensing modules appears to be the
best and most direct approach.

Within the framework of this thesis a model was developed to calculate
an expected FRET-force relation for in vivo force sensing modules based on
force-dependent probability distributions extracted from single-molecule me-
chanical measurements. In brief, for a given force, the model assigns a FRET-
efficiency value to each populated state based on the FRET-distance relation16

of the fluorophores E (x) and the inverted force-extension relation xi (F) of
each individual state i. Then, all states’ contributions are weighed with their
respective force-dependent probability pi (F) of being populated at the given
force and added up to an expected overall FRET-efficiency. Hence, in case of a
two-state folder, the FRET-force relation E (F) simply reads [9]:

E (F) = E (xi (F)) · pi (F) + E
(
xj (F)

)
· pj (F) . (66)

The model was first applied to rigorously mechanically characterized ten-
sion sensors based on the villin headpiece peptide, namely HP35-TS and
HP35st-TS (here, TS stands for tension sensor; for details on sensor design,
see Section A.1.5). The predicted difference in force sensitivity was indirectly
confirmed by subsequent in vivo measurements, which also marked an im-
portant step ahead in expanding the accessible force range for tension sen-
sors [9]. Due to the model’s very general approach, in principle, a probability
distribution measured for any kind of protein can be readily converted into
a FRET-force relation. However, among other aspects, the timescales for reach-
ing the equilibrium described by the probability distributions at a given force
need to be accounted for. A general list of requirements that should be met
by a protein serving as a force-sensitive element as well as considerations on
how to expand the current toolbox of single-molecule calibrated FRET-based
tension sensors can be found here [81].

16 The FRET-distance relation is calculated after the inverse 6
th power law of FRET [111].
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The near-equilibrium transition of FLred at very slow pulling speed shown
in Figure 40 is strongly reminiscent of the humplike transitions reported for
HP35-TS and HP35st-TS [9]. The mechanical properties of the HP35-based
sensors can be characterized by their folding free energies of ∆GHP35

0 = 5.6
± 1 kBT and ∆G

HP35st
0 = 10.4 ± 1 kBT accompanied by total contour length

gains of LHP35

P = 10.7 ± 0.4 nm and LHP35st
P = 10.9 ± 0.4 nm. At the transition

mid-points located at the forces FHP35

mid = 7.4 ± 0.5 pN and F
HP35st
mid = 10.6 ±

0.4 pN, combined rates of λHP35

mid = 1.7 × 10
4 s−1 and λHP35st

mid = 2.1 × 10
4 s−1

were extracted by autocorrelation analysis analogous to [261]. Even though
the combined rate of FLred at its transition mid-point at 5 pN is about 200

times slower than the ones of the HP35-based sensors, FLred still equilibrates
within just a few tens of milliseconds. Given an almost three times longer
contour length gain of LFLred

P = 27.1 ± 1.5 nm along with an only slightly
bigger folding free energy of ∆GFLred

0 = 5.8 ± 0.6 kBT as compared to HP35-
TS, FLred can be expected to yield a much sharper force sensitivity within
the lower range of HP35-TS.
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Figure 47: Force sensor performance of FL-TS with FLred as force-sensing element
compared to TSmod, HP35-TS and HP35st-TS. The illustrated renormal-
ized sensor sensitivities reflect the absolute value of the local FRET-force re-
lation slopes from the inset; a fixed normalization factor was introduced to
set the maximum for TSmod equal to 1. Inset: Same color code as for main
figure. Calculated FRET-force relations of FL-TS with either 30 (green) or
45 % (orange) starting FRET-efficiency. Data for the other curves are taken
from [9, 88]. Above 9 pN values for TSmod are set constant.

Figure 47 shows force sensitivity plots for different sensors including curves
describing the expected performance of FLred as a force-sensing module
within FL-TS. The sensitivities represent the renormalized absolute values of
the derivative of their corresponding FRET-force relations. The calculation of
the FRET-force relation for FL-TS is based on the probability distributions in-
ferred by a two-state model which fits slowly pulled force-extension traces of
FLred very well, see Figure 41B. This does not contradict the rather complex
two-state nature of FLred, as the deviations from simple two-state behaviour
only arise at forces below 4 pN, which is already beyond the ’active’ sensor
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region ranging from 4 to 6 pN. As FL-TS is assumed to have the same fluo-
rophores as the HP35-based sensors, the same Förster distance of 5.8 nm as
well as starting FRET-efficiency of 30 % is considered for the relevant part of
the FRET-distance relation. However, owing to the shorter N- to C-terminal
distance of FLred as compared to HP35, a maximum of up to 45 % of start-
ing FRET-efficiency could be expected in the case where there is no other
steric hindrance. When comparing all sensitivity plots with each other, FL-
TS clearly shows outperforming precision in measuring forces around 5 pN
and thereby blends in perfectly between the well-established TSmod and the
recently developed HP35-TS. Hence, FLred appears to be a promising candi-
date not only for being applied in protein-based hydrogels but also within
force-sensing modules. Note that this hypothesis has recently been verified
by a collaborative publication [185].

5.4.3 Force spectroscopy - a test bench for protein design, folding concepts, and
models

The mechanical characterization of FLred has proven single-molecule force
spectroscopy to be a valuable tool for testing principles used to design artifi-
cial proteins. The observed folding properties could be reasonably explained
by the physical concept of an underlying folding energy landscape. To in-
terpret the information extracted from force spectroscopic data, suitable the-
oretical models are needed. Thanks to the still rather simple mechanics of
FLred, a whole arsenal of models and their fit functions could be tested and
compared to each other. The overlapping force range equally accessed by
non-equilibrium and equilibrium measurement techniques turned out to be
especially useful to confirm excellent agreement between data obtained and
analysed in different ways.
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Figure 48: Affecting rates by shifting the transition state position. For both, the SB-
and the DHS-model, equilibrium rates kmid are strongly affected by the
transition state position ratio ∆xu/∆xf, while Fmid almost remains con-
stant. Zero-force rate constants are kept constant yielding a folding free en-
ergy of ∆Gk0

0 = 11.5 kBT. Further, for the DHS-model, the barrier heights at
the transition state position are fixed to ∆Gu,DHS

0 = 16.5 kBT and ∆Gf,DHS
0

= 5 kBT in accord with ∆Gk0
0 .
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When comparing the mechanical properties of FLred to naturally occur-
ring proteins, FLred was found to have an extremely low folding free energy.
In addition, similarly to other proteins with a rather central transition state
position, the combined rate λmid of FLred at the transition mid-point is com-
parably fast, see Table 7. Besides a possible hint towards an energy landscape
of a downhill folder17, the transition state position can drastically affect the
combined rates at the transition mid-point no matter which rate model is
used. This is exemplified in Figure 48, which also reveals that at a fixed tran-
sition state ratio ∆xu/∆xf the λmid values are nearly the same for both the
SB- as well as the DHS-model. The difference in force range for Fmid can be
attributed to the difference in slopes, i. e., not perfectly matched ∆xtot values.

While the observed result can be expected from the SB-model, obtaining
the very same result with the DHS-model is remarkable. Here, the question
arises on how much the model is undermined by keeping the zero-rate con-
stants fixed. Apart from the diffusion constant, the zero-force rate constants
also comprise the curvatures of the underlying energy landscape which, in
principle, need to change upon transition state movement.

A possible interpretation of the interplay between transition state position
and force-dependent rates can be the following. Proteins, which are intended
to mechanically withstand high forces, should rather have a transition state
very close to the folded state along with a high unfolding barrier. This way,
the effect of an external force on the transition state position and the barrier
height for unfolding is minimized. However, in case the protein does unfold
or ’rupture’, refolding under load is not very likely either. In contrast, if a
protein is involved in mechanical processes, where it is important to main-
tain a folded structure under mechanical load like, e. g., in case of the villin
headpiece or coiled coil proteins, the transition state may preferably be lo-
cated more centrally between the folded and unfolded states. This way, much
faster refolding under load is possible to keep up proper functioning. Finally,
if the transition state gets close to the unfolded state, the intended protein’s
task should be a permanent fluctuation as unfolding and folding occur at
the fastest possible rates. In summary, the transition state position can po-
tentially reveal whether a protein’s task is to withstand forces, to maintain a
folded structure under load, or to fluctuate.

17 It seems intuitively clear that the energy barriers resulting from tilting the energy landscape
towards the transition mid-point will be as small as possible for a downhill folder regardless
of the location of the transition state.
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R O S S M A N N F O L D : A N A RT I F I C I A L P R O T E I N I N
T R O U B L E

The basis of this chapter is a comparative mechanical study of an artificial
and a natural protein. While the artificial protein is specifically designed to
have a high folding free energy by a computer algorithm, the natural protein
is optimized towards reliable folding by evolution. Besides other aspects, the
results of the single-molecule force spectroscopic measurements reveal that
high folding free energies come at the cost of cooperativity and an increased
energy landscape roughness. A special feature of this chapter is the first-time
application of transition path analysis tools to experimental data.

6.1 design meets evolution : rossmann vs . r15

The two proteins of the comparative mechanical study are a designed 2x2

Rossmann fold (ROSS) and the naturally occurring spectrin domain R15 (R15).
While being similar in size, the proteins have very different shapes as can
be seen upon inspection of their structures in Figure 49. ROSS, a designed
representative of the Rossmann fold, comprises four βα-repeats forming a
parallel β-sheet sandwiched between two α-helices on each side. Taken as
a whole, ROSS is a densely packed globular protein. R15, in contrast, has a
rather extended shape. Consisting of three α-helices wrapped around each
other, R15 represents a fold termed helix bundle.

2x2 Rossmann foldSpectrin domain R15

origin:
pdb ID:
No. aa:
weight:

origin:
pdb ID:
No. aa:
weight:

Rosetta algorithm
2LV8
100
12 kDa

Gallus gallus
1U4Q
114
13 kDa

Figure 49: Crystal and solution NMR structures of the spectrin domain R15 and the
2x2 Rossmann fold.

Besides their difference in shape, ROSS and R15 also differ in terms of their
reported folding free energies being 14.9 kcal/mol for ROSS and 6.8 kcal/mol

143
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for R15
1 [115, 203]. By this means, in terms of folding free energy, ROSS is

more than twice as stable as R15. This appears reasonable since ROSS has a
comparably smaller solvent-exposed surface area due to its compact structure.
Further, this compactness also implies a larger stabilizing interface area which
allows formation of a relatively higher number of native contacts. The folding
free energy per amino acid values ∆G0/aa of ROSS and R15 set them in
relation to other mechanically characterized proteins, see Table 7. A value
of 0.25 for ROSS compares well with individual domains of calmodulin or
the artificially stabilized villin headpiece. In case of R15, a value of 0.10

2

relates best to the wild type of villin or the artifically destabilized FLred. As
R15 is part of the cytoskeleton, one of its biologically relevant functions is to
maintain the shape and structure of a cell. Owing to that function, R15 can
be expected to show considerable mechanical stability despite its relatively
small folding free energy.

Note that with respect to the Rossmann fold there exists a structurally very
similar fold known as the P-loop3 or Walker fold [232]. The only difference
between their tertiary structures are the swapped two β-strands in the middle
of the central β-sheet. Interestingly, although being designed according to the
same design rules of one and the same protein design study, the P-loop has
a folding free energy of 4.8 kcal/mol which is 3 times less as compared to
ROSS.

6.2 a multidimensional and rough energy landscape – a two-
state perspective

This section introduces the results of a study which compares the mechanical
behaviour of the natural protein R15 to the designed protein ROSS. To facil-
itate comparison, all figures are typically arranged in the style of Figure 49:
data referring to R15 are coloured in brick red and positioned next to the
respective results obtained for ROSS which are coloured in dark blue. If not
stated differently, transitions between fully folded and entirely unfolded pro-
tein states are evaluated from a two-state perspective which enables uniform
data processing.

6.2.1 Multiple fingerprints and multi-modal unfolding

In the following we start off with constant velocity measurement results
which reveal that R15 behaves like a perfect two-state folder while ROSS has
a rough and multidimensional folding energy landscape.

Figure 50 displays typical force spectroscopic fingerprints, i. e., stretch-and-
relax cycles of R15 and ROSS recorded at 500 nm/s. While there is only one

1 At a temperature of 298 K, the values given in kcal/mol correspond to 25.2 and 11.5 kBT for
ROSS and R15, respectively.

2 Note that the indicated value of 0.10 is derived from literature while the value of 0.15 in Table 7

is based on measurements performed in this thesis.
3 P-loop stands for phosphate-binding loop.
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Figure 50: Force spectroscopic fingerprints of R15 and ROSS recorded at 500 nm/s.
Percentages indicate the relative occurrence of the respective fingerprint.
(A) Typical force-extension trace of R15 showing unfolding during stretch-
ing (brick red) and refolding during relaxation (grey). Black lines are
WLC-fits to the folded and fully unfolded state. (B) Force-extension trace
of ROSS representing the predominating ’native’ unfolding and refold-
ing pattern. (C) Representative ’native-like’ (NL) stretch-and-relax cycle of
ROSS. (D) ’Proline-like’ (PrL) unfolding and refolding pattern of ROSS. (E)
Typical ’rescue’ (Rc) pattern of ROSS.

characteristic ’native’ fingerprint for R15, see Figure 50A, at least four differ-
ent fingerprints can be discerned for ROSS, see Figure 50B - Figure 50E. Ac-
cording to the predominating ’native’ fingerprint of the artificial Rossmann
fold, unfolding typically occurs around 15 pN via two short-lived on-pathway
intermediates, see dashed WLC-fits in Figure 50B. In addition, the native (N)
fingerprint often features pre-flipping into the first on-pathway intermediate
prior final unfolding. During relaxation, usually partial refolding attempts
can be observed until ROSS finally refolds at forces around 6 pN. Second in
observed frequency is the ’native-like’ (NL) fingerprint of ROSS which typi-
cally unfolds at forces around 10 pN upon passing through one short-lived on-
pathway intermediate. Next in relative occurrence is the ’proline-like’ (PrL)
fingerprint shown in Figure 50D which represents a very unstable configura-
tion that already unfolds below 5 pN. Most importantly, the PrL only appears
in a series of multiple stretch-and-relax cycles which, along with the low sta-
bility, makes it reminiscent of the proline-switch observed for filamin A [189].
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As ROSS indeed has a proline at position P86, see Section A.1.2 for the exact
protein sequence and Figure 59A for the position within the solution NMR

structure, the proline-switch hypothesis is tested with proline-free mutants
in Section 6.3.1. The fourth identified fingerprint for ROSS comprises a ’res-
cue’ (Rc) pattern within the stretch cycle: after partial unfolding at relatively
low forces, ROSS refolds against higher force into the (presumably) native
configuration before complete unfolding, see Figure 50E.

Since PrL and Rc are each clearly distinguishable from all other fingerprints,
their relative occurrence of 5 % and 1 %, see Figure 50, can be directly derived
by merely counting them among all observed stretch-and-relax cycles per-
formed at 500 nm/s. The remaining 94 % comprise the N and NL fingerprints
which are more difficult to discern due to their overlapping force ranges. In
short and in anticipation of the following paragraphs, the relative amount
between N and NL is obtained by fitting two proportionate distributions to
the unfolding force histogram of the remaining 94 % of complete unfolding
events, see Figure 51B.
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Figure 51: ROSS has a multi-modal unfolding force distribution. Displayed distribu-
tions stem from stretch-and-relax cycles performed at 500 nm/s. (A) Un-
folding force histogram of R15 (brick red bars) fitted based on Equation 35

(black line). (B) The unfolding force histogram of ROSS (dark blue and
pink bars) has three distinct peaks. The black line fits two proportionate
force distributions (dashed lines) to the dark blue histogram. (C) and (D)
Refolding force histograms (grey bars) and fits for R15 and ROSS.

The force distribution histograms in Figure 51 totally comply with the
above made classification of fingerprints. In case of R15, both the unfolding
and refolding force distributions in Figure 51A and Figure 51C are single-
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peaked and can be well fitted according to Equation 33 which is based on a
two-state model. Further, the force distribution for unfolding is broader than
for refolding which indicates a transition state position relatively close to the
folded state. All in all, these data support that R15 is a worthy representative
of naturally occurring proteins which fold in a simple two-state manner and
have only one single typical fingerprint.

In contrast to both single-peaked distributions of R15, the unfolding force
distribution of ROSS shows three distinct peaks which can be attributed to
the three fingerprints N, NL, and PrL, see Figure 51B. Due to the unique
unfolding pattern of the PrL fingerprint, its force distribution can be clearly
identified and is therefore given its own pink color while still being part of
the overall unfolding force distribution of ROSS. Unfolding forces observed
after a ’rescue’ transition in Rc patterns intrinsically do not fully sample the
unfolding force distribution and are therefore not included in the histogram
of Figure 51B to not obscure the statistics of ’clean’ N and NL fingerprints.
By this means, the double-peaked dark blue part of the unfolding force his-
togram representing pN+NL

unf (F) of ROSS can be used to derive the relative
amount between N and NL unfolding events. To do so, two independent dis-
tributions are simultaneously fit4 to the histogram according to

pN+NL
unf (F) = (1−ϕNL) · pN

unf(F) + ϕNL · pNL
unf(F), (67)

where ϕNL is the fraction of NL unfolding and pN
unf(F) and pNL

unf(F) are cal-
culated according to Equation 35. In Figure 51B, the black bi-modal fit yields
ϕNL = 0.25 which in turn corresponds to 25 % of the 94 % of N and NL among
all observed fingerprints of ROSS. An important conclusion which can be di-
rectly drawn upon seeing the multi-modal unfolding force histogram is that
the mechanics of the artificial Rossmann fold go beyond a simple single-path
picture [64]. In other words, the observed multi-modal force distribution is
a direct signature of multi-pathway conformational transitions which deter-
mine the mechanics of ROSS [170]. When moving over to the folding force
distribution of ROSS, multi-modality seems to be gone, see Figure 51D. How-
ever, the shown distribution only comprises the majority of refolding events
of N, NL and Rc fingerprints which are marked by a relatively distinct tran-
sition as the ones shown in Figure 50. For simplicity, a variety of ’creeping’
refolding transitions were not taken into account to which PrL refolding be-
longs, too.

Table 8 lists all parameters which characterize the fits to the force distribu-
tions of R15 and ROSS in Figure 51. When comparing R15 to the predomi-
nating native fingerprint of ROSS, there are no drastic differences. However,
upon closer inspection, the transition state of ROSS appears to be more central
and, hence, further away from the folded state as compared to R15. Further,
an asymmetric divergence of the probability maxima positions of the two pro-
teins stands out: while R15 withstands pulling up to higher forces than ROSS,
ROSS is able to refold against higher forces than R15. In addition to a shifted
transition state position, the ability to refold against higher forces may also

4 Note that for actual fitting pN+NL
unf (F) is renormalized to have an area of one on its own.
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be a result of the higher folding free energy of ROSS which is intended by
design. The higher resistance of R15 against unfolding can be interpreted as
a proof for use-oriented natural design by evolution. Despite its more than
two times lower folding free energy, R15 withstands higher mechanical stress
during stretch-and-relax cycles than ROSS which makes R15 a better mechan-
ical stabilizer. Besides being a three helix bundle which involves shearing all
three helices against each other to induce unfolding upon stretching, an im-
portant key to the performance of R15 appears to be its high cooperativity
which is expressed by its simple two-state behaviour. Finally, a comparison
between the characteristic parameters of N and NL unfolding kinetics reveals
that NL is basically a less stable version of ROSS which has an almost two or-
ders of magnitude higher zero-force unfolding rate constant according to the
ZB-model. However, as NL contributes about the same overall contour length
gain as N upon unfolding, both N and NL are difficult to be distinguished
especially within the overlapping force range of their unfolding force distri-
butions.

PROTEIN log10k
f,ZB
0 log10k

u,ZB
0 ∆xZB

f ∆xZB
u Ffold

max Funf
max

[s−1] [s−1] [nm] [nm] [pN] [pN]

R15 6.8 ± 0.3 -3.3 ± 0.1 9.5 ± 0.4 2.1 ± 0.2 4.9 21.1

ROSS (N) 6.3 ± 0.8 -3.5 ± 0.1 7.2 ± 0.5 2.9 ± 0.3 6.0 16.5

ROSS (NL) - -1.7 ± 0.1 - 2.5 ± 0.4 - 10.3

Table 8: Kinetic ZB-model fit parameters of R15 and ROSS based on force distribution
histograms collected from 500 nm/s constant velocity measurements, see Fig-
ure 51. Based on Equation 67, the fraction ϕNL of NL unfolding among all
unfoldings of N and NL was determined to be 0.25. Ffold

max and Funf
max refer to

the mode of the respective distribution.

Besides force spectroscopic fingerprints and force distributions, the eval-
uation of constant velocity measurements also provides experimentally de-
termined contour length gains upon forced protein unfolding. Here, the ob-
served contour length gains5 from all constant velocity measurements of R15

and ROSS yield an average of LCV,R15

P = 33.4 ± 1.1 nm and LCV,ROSS
P = 34.7 ±

0.9 nm. These values are in excellent agreement with the contour length gains
expected for full unfolding of the respective structure, i. e., Lcalc,R15

P = 34.47 nm
and Lcalc,ROSS

P = 34.51 nm which were calculated according to Equation 5. By
this means, both R15 and ROSS have to be fully folded since otherwise signif-
icantly shorter gains would have been measured.

In summary, both R15 and ROSS are fully folded. While R15 has only one
typical fingerprint, ROSS shows at least four different typical unfolding pat-

5 Average contour gains of R15 | ROSS are deduced from WLC-Fits to the folded and maximally
unfolded states of N = 204 | 809 force-extension traces from 4 | 11 molecules. Persistence
lengths of pP = 0.5 | 0.7 nm were chosen to model the unfolded polypeptide chain. Average
DNA-handle parameters are pD = 23 | 31 nm, LD = 360 | 364 nm, and K = 180 | 200 pN.
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terns followed by refolding. This observation is supported by the respective
force distributions from which we can deduce that R15 is a highly cooperative
and simple two-state folder, whereas the mechanical behaviour of ROSS in-
volves multi-pathway conformational transitions within a multidimensional
energy landscape. Further, all transitions of ROSS between its folded and un-
folded states typically involve short-lived on-pathway intermediates which
are direct reporters of a rough energy landscape.

6.2.2 Split and kinked rate plots

As a next step, constant distance measurement results are introduced to com-
plement the available data set of R15 and ROSS. In this subsection, the major
focus lies on force-dependent transition rates which, in case of ROSS, give
clear indications for a rough energy landscape. In contrast, R15 continues
being a perfect ’role model’ for simple two-state behaviour.

In Figure 52, rates extracted from constant distance measurements based
on HMM analysis are represented by full circles while empty squares refer to
rates derived from constant velocity measurements using the OBS method. In
case of R15, unfolding (grey) and refolding (brick red) rates are each nicely
fitted over the entire accessible force range by a single SB-model fit (thick
solid lines) as shown in Figure 52A. This confirms that R15 folding can be
adequately modelled by simple two-state mechanics. The kinetic parameters
provided by the SB-model fits are given in Table 9. Thin dotted lines represent
the ZB-model which, instead of directly fitting the data in Figure 52A, uses
the parameters obtained from fitting the force distributions in Section 6.2.1,
see Table 8. Especially the good agreement with the OBS rates speaks for
a consistent data set. However, with respect to a correct treatment of all in-
volved energetic contributions, see Section 3.5, the SB-model outperforms the
ZB-model. In Table 10, a comparison of the respective folding free energies
∆Gk0

0 and ∆Gk0(ZB)
0 to the energy ∆Gbulk

0 from bulk confirms a much better
zero-force extrapolation by the SB-model. For a detailed discussion of the
predictive capabilities of different kinetic models see Section 5.3.2.

For ROSS, the rate plots in Figure 52B look way more complicated as com-
pared to R15. Due to multiple kinks, here, the SB-model only locally fits the
data, see Table 9 for all obtained fit parameters. The kinks hint at an unfold-
ing and refolding process of ROSS which involves the crossing of multiple
sequential barriers. This in turn can be interpreted as a fingerprint for rough-
ness, see also Section 4.2.4. In case of refolding (dark blue data points), three
different force ranges (I - III) can be discerned for fitting, see all lines in Fig-
ure 52B with a negative slope. The respective force ranges are I: 5 - 6 pN, II:
6 - 7 pN, and III: 7 - 9.5 pN. Force range III comprises refolding rates from
both constant velocity and constant distance mode. The only direct fit (thick
grey line) to the unfolding rates of ROSS (all grey data points presumably
belong to ’native’ (N) unfolding, see below) is made for the highest accessible
force range (IV) covering 16.5 up to 18 pN. The red dashed line is not directly
fit to the unfolding rates but modelled based on its ’counterpart’ which fits
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Figure 52: ROSS has split and kinked rate plots. Empty squares represent OBS rates,
full circles are rates from constant distance measurements extracted by
HMM analysis. (A) Thick solid lines are SB-model fits to the data. Dotted
lines represent the ZB-model according to previously extracted fit param-
eters from corresponding force distributions, see Table 8. (B) All lines are
local SB-model fits to the data. Fitting ranges are I: 5 - 6 pN, II: 6 - 7 pN,
and III: 7 - 9.5 pN for refolding; IV: 16.5 - 18 pN for unfolding. The red
dashed line with a positive slope is derived from its ’counterpart’ (red
line) based on detailed balance and assuming ∆xu + ∆xf = LP.

refolding within force range III (red line). Therefore, the unknown zero-force
rate constant ku0 is derived according to the principle of detailed balance, see
Equation 32, upon using the fitted kf0 in connection with the experimentally
determined folding free energy of ∆GCD,indiv

0 = 27.7kBT for ROSS, see Ta-
ble 10. The unknown slope ∆xu is inferred by the assumption that transition
state positions obtained with the SB-model add up to about the full contour
length change which is involved in the transition6, i. e., ∆xu + ∆xf = LP in
our case. While measured rates from constant distance measurements are not
precise enough to confirm the correctness of the ’inferred’ fit, the shape of
this fit adequately catches the overall trend within the experimental data.

Besides multiple kinks, the unfolding rates of ROSS also feature splitting.
The two encircled unfolding branches in Figure 52B mark the two regimes
where either NL (black empty squares) or N (grey empty squares) predomi-
nate. Here, the split rates are the rate plot analogy to the bi-modal unfolding
force histogram in Figure 51B which, again, proclaims multi-pathway transi-
tions in a multidimensional energy landscape [170]. It is important to note
that the unfolding rates extracted from constant distance measurements do
not overlap with the unfolding rates of NL. This means that a constant force
bias allows the separation of N and NL kinetics and that all folding transitions
into the ’native’ configuration of ROSS can be correctly identified.

6 Note that this assumption is confirmed for FLred in Section 5.2.2.
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PROTEIN log10k
f
0 log10k

u
0 ∆xf ∆xu λmid Fmid

[s−1] [s−1] [nm] [nm] [s−1] [pN]

R15 3.8 ± 0.1 -1.7 ± 0.1 23.7 ± 0.2 2.9 ± 0.1 0.1 7.8

ROSS (I) 2.1 ± 0.1 - 3.1 ± 0.7 - - -

ROSS (II) 3.8 ± 0.1 - 12.6 ± 0.2 - - -

ROSS (III) 6.4 ± 0.2 - 22.4 ± 0.4 - < 0.1 9.5

ROSS (IV) - -1.3 ± 0.4 - 3.0 ± 1.1 - -

Table 9: Kinetic SB-model fit parameters of R15 and ROSS based on OBS and HMM
rates extracted from all constant velocity and constant distance measure-
ments, see Figure 52. Parameters were obtained by local fits covering the
following force ranges I: 5 - 6 pN, II: 6 - 7 pN, and III: 7 - 9.5 pN for refolding;
IV: 16.5 - 18 pN for unfolding.

The fit results collected in Table 9 suggest that the folding energy landscape
of ROSS has at least four distinct transition state positions. Further, local DHS-
model fits (not shown) confirm that the observed kinks within the rate plots
are stronger than the bending which is expected due to mere Hammond be-
haviour7. By this means, the amount of four transition states is not a result
from overfitting the data. On the contrary, all four identified transition states
stand in agreement with the up to three transiently populated high-energy
on-pathway intermediates identified upon closer inspection of all transition
events in Section 6.4.3. Note that the force ranges over which the SB-model
fits capture the tendencies within experimental rates become broader with
rising force. This additionally supports the view of force-induced transition
state switching: transition states which are closer to the folded state become
predominant with increasing force while, at the same time, the force lever
becomes shorter.

Table 9 also includes the combined rate λmid = kumid +kfmid measured at
the mid-force Fmid where unfolding and refolding rates equal each other. To
a large extent, the substantially higher Fmid value of ROSS is a result of its
more than two times higher folding free energy. On top of that, the smaller
λmid attests ROSS a higher durability than R15 under a constant force bias.

As the kinked rate plots suggest a rough energy landscape which implies
a multitude of states one might obviously ask: Why not using HMM for a
more detailed analysis and characterization of the equilibrium fluctuations
of ROSS? One reason for not doing so is the high numeric cost which is in-
volved when the applied HMM algorithm faces hundreds of minutes of high-
resolution 200 kHz data in combination with at least 6 necessary states8. Due
to the very short-lived intermediates and the very slow overall folding and un-

7 For a discussion of transition state movement inferred by Hammond behaviour see Sec-
tion 5.2.4 together with Section 4.2.4 and Section 5.3.1.

8 The necessary states are two folded states representing N and NL, three on-pathway interme-
diates and one unfolded state.
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folding rates under a constant force bias, unfortunately both high resolution
and very long trajectories are necessary.

PROTEIN ∆Gbulk
0 ∆Gk0

0 ∆G
k0(ZB)
0 ∆GCD,indiv

0 Lcalc
P LCV

P

[kBT] [nm]

R15 11.5 12.7 ± 1.3 23.3 ± 2.3 16.1 ± 1.6 34.47 33.4 ± 1.1

ROSS 25.2 - 22.6 ± 2.3 27.7 ± 2.8 34.51 34.7 ± 0.9

Table 10: Average contour length gains and folding free energies of R15 and ROSS.
LCV
P values represent the average from all constant velocity data.

Table 10 lists differently obtained folding free energy values for R15 and
ROSS. In case of R15, the ∆Gk0

0 value of 12.7 ± 1.3 kBT is further considered
as the best experimental result of this study as it is based on the largest
amount of available data. For ROSS, ∆GCD,indiv

0 provides the most reliable
result of 27.7 ± 2.8 kBT. For both R15 and ROSS, the single molecule folding
free energies are in very good agreement with the results reported from bulk
measurements.

The investigation of force-dependent transition rates combined from both
constant distance and constant velocity measurements confirmed that R15

mechanics can be well modelled by assuming a simple two-state mechanism
over the entire force range. Equally, signs for both roughness and multidi-
mensionality of ROSS are found in its rate plots represented by at least four
distinct slopes and two distinct unfolding branches. Further, under a constant
force bias, its higher folding free energy makes ROSS more durable than R15.

6.2.3 Transition averages and prolonged transition path times

In this part we start to move on from the mere detection of protein conforma-
tional transitions towards a direct evaluation of transition events themselves.
Here, both transition averages and individual transition path times will reveal
that typical time scales of R15 and ROSS folding are separated by more than
two orders of magnitude.

As elaborated in Section 4.3.3, averages of detected protein folding transi-
tions are dynamic fingerprints which provide information on typical protein
folding time scales. To get down to this information, detected averages need
to be compared to averages from unperturbed (= ’protein-free’) bead diffu-
sion. Figure 53 presents such a comparison for R15 and ROSS which includes
averaged transitions as well as bead relaxation curves. In Figure 53A, the av-
eraged transitions of R15 unfolding and refolding (empty circles) are nearly
as fast as what is expected for unperturbed bead diffusion (black dashed line).
Here, the expected shape is based on over a thousand transitions extracted
from a one-dimensional bead diffusion simulation in the experimentally de-
termined bead potential according to Equation 60 using the known bead fric-
tion coefficient γB = 9.4·10

−6 pN · s · nm−1. Note that the higher noise level
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within the detected averages is due to their limited statistics. In contrast to
R15, the averaged transitions of ROSS are much slower as one would expect
for unperturbed bead diffusion, see Figure 53B. Now, following argumenta-
tion in Section 4.3.3.2, merely by comparing detected to expected averaged
transitions we can already tell that the upper limit for R15 folding is a few
tens of microseconds while for ROSS it takes about a millisecond to fold.
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Figure 53: Transition averages of R15 and ROSS. (A) Empty circles represent aver-
aged transitions of 55 unfolding (grey) and 55 time-reversed refolding
(brick red) events from one individual constant distance trajectory of R15.
The black dashed line is the average of 1817 transitions obtained from
a one-dimensional bead diffusion simulation which mimics ’protein-free’
diffusion. (B) Averaged ROSS transitions from 6 unfolding and 6 refolding
events. The thick black dashed line is based on 4563 simulated transitions.
(C) Bead relaxation curves of R15 based on the same data set as in (A). Red
lines are single-exponential fits. Thick black dashed lines are respective fits
to the ’protein-free’ signal. (D) Bead relaxation curves of ROSS.

The bead relaxation curves shown in Figure 53C and Figure 53D clearly il-
lustrate the retardation effect inferred by additional protein diffusion for both
R15 and ROSS. A simple way to quantify this effect is by comparing the mea-
sured relaxation times τrelax to the expected ones τ1D

relax. The corresponding
single-exponential fit results are listed in Table 11. While for R15 the fastest
possible system response represented by τ1D

relax is delayed by only +10µs, for
ROSS it is already about +0.5 ms.

After studying transition averages, now we go into further detail by eval-
uating the transition path time τTP provided by each transition. Examples of
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Figure 54: Individual equilibrium transitions and transition path time distributions
of R15 and ROSS. (A) and (B) Zoom into 10 successive unfolding/refold-
ing transitions of R15 and ROSS (light colors). Transition paths are high-
lighted (dark colors). Horizontal lines mark the folded/unfolded state lev-
els. (B) and (C) Transition path time distributions of R15 and ROSS based
on 259 and 201 equilibrium transitions. Black lines are fits according to
Equation 57. Dashed lines are fits referring to unaltered bead diffusion.

individual R15 and ROSS transitions are illustrated in Figure 54A and Fig-
ure 54B. Here, dashed horizontal lines mark the levels of the folded (top) and
unfolded (bottom) state. In case of R15, transition paths are defined as the
shortest interconnection between these two levels within direct proximity of
a two-state transition identified by HMM analysis. The identification by HMM

is necessary to discern actual transitions from mere thermal noise. In case
of ROSS, already the beginning and end of transition paths are thermally
blurred due to their relatively long duration. This is why transition paths of
ROSS are treated as if they were composed of a series of two adjoining, short-
lived, and rapidly exchanging intermediate states9. The corresponding HMM

9 The choice of two on-pathway intermediates is not by chance. Figure 66 in Section 6.4.3 re-
veals that there are at least two obligatory on-pathway intermediates involved in (un-)folding
transitions of ROSS.
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analysis then effectively does the differentiation between thermal noise along
the transition path and actual crossing of the folded and unfolded state level,
see also Figure 20B in Section 3.8.5. As both folded and unfolded states have
much longer lifetimes than the assumed intermediates along the transition
paths, the HMM-assisted transition path identification is readily implemented.

Graphically the information provided by the analysis of extracted transi-
tion path times τTP is presented in Figure 54C and Figure 54D. Here, the
transition path time distributions of R15 and ROSS are fitted according to
Equation 57 (black solid lines) and compared to respective fits of unperturbed
bead diffusion (black dashed lines). Besides a fixed temperature of T = 298 K,
the ’protein-free’ reference fits as well as the fit to the R15 distribution as-
sume a fixed diffusion coefficient of D = kBT/γB, where γB is the bead friction
coefficient. In case of ROSS, D needs to be a free parameter to enable conver-
gence of the fit. However, the parameters provided by all fits which further
include the barrier height ∆GTS and curvature ω2TS at the barrier top, are not
of primary interest. Mainly this is due to the numerical study performed in
Section 4.2.1 which revealed that parameters obtained from fitting transition
path time distributions are highly error-prone. The two characteristic param-
eters which are deduced from the transition path time distributions in Fig-
ure 54 are the most probable transition path times τmax

TP as well as transition
path time averages 〈τTP〉, see Table 11.

PROTEIN τ1D
relax τrelax τmax,1D

TP τmax
TP 〈τ1D

TP〉 〈τTP〉
[µs]

R15 23 33 19 43 60 83

ROSS 31 555 32 690 57 3923

Table 11: Transition path time averages and bead relaxation times of R15 and ROSS.
The additional ’1D’ superscript is given to reference values from one-
dimensional bead diffusion simulations unaltered by protein diffusion.

All experimentally determined time scales listed in Table 11 are characteris-
tic for the protein folding transitions of R15 and ROSS. However, all these time
scales are basically a convolution of two time scales comprising bead and pro-
tein diffusion. The results of the extensive numerical study in Section 4.3.3.2
give insight into the relative and absolute effects of different protein friction
coefficients on expected and measured characteristic time scales, see Table 2.
By mere comparison, here, we can make a first rough guess on the absolute
protein folding transition path times of R15 and ROSS under force. In case of
R15, which leads to an increase of +10µs for τrelax and +23µs for 〈τTP〉 with
respect to the ’protein-free’ values, a rough estimate for the actual R15 tran-
sition path time is 〈τR15

TP 〉 ∼ 10 - 30µs. For ROSS, the additional contribution
by bead diffusion is negligible and, hence, 〈τROSS

TP 〉 ∼ 3.9 ms. Further, it may
be of interest to note that in case of ROSS there is a relatively huge difference
between the most probable transition path time and its average due to a quite
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broad distribution. With respect to the results from the previous sections it
seems legitimate to claim that this broad transition path time distribution
provides another piece of evidence for a roughened energy landscape.

Of course, results in Table 2 and Table 11 are based on different energy
landscape parameters and, hence, are not directly interconvertible. But, after
all, the dimensions of the deconvolved protein folding energy landscapes of
R15 and ROSS, see Section 6.2.4, at most differ only by a factor of 2 from the
landscape used in the numerical study, see Section 4.3.1.

Taken together, this section’s results confirm that the direct evaluation of
individual transitions provides useful information to get rough time scale
estimates of the involved protein folding. Here, in particular, the estimated
average transition path times are 〈τR15

TP 〉 ∼ 10 - 30µs for the natural protein
R15 and 〈τROSS

TP 〉 ∼ 3.9 ms for the artificial Rossmann fold. Based on these
values, the artificial protein is lagging behind the natural one by over two
orders of magnitude.

6.2.4 Deconvolution and commitment probabilities

In the following, deconvolution will be applied to get hold of the folding en-
ergy landscapes of R15 and ROSS in their entirety. Alongside, the committor-
based barrier shape reconstruction, see Section 3.8.2, is put into practice.
While the latter yields meaningful results with respect to deconvolution, the
deconvolved energy landscapes themselves partially stand in conflict with
previous kinetic results.

The deconvolved energy landscapes shown as dashed light blue lines in
Figure 55B and Figure 56B are Boltzmann-inverted probability distributions
deconvolved from measured distributions of R15 and ROSS. Here, measured
distributions are obtained from single equilibrium trajectories recorded for
several minutes in constant distance mode around the respective mid-force,
see Table 9 for Fmid. Red dashed lines represent energy landscapes directly in-
ferred by Boltzmann inversion of the measured probability distributions prior
deconvolution. The relevant probability distributions themselves are shown
in Section 6.2.5 in Figure 58A and Figure 58D respectively. The barrier shapes
of the directly measured and deconvolved energy landscapes can be used to
calculate the corresponding committors by solving Equation 51 for pi (x) fol-
lowed by rescaling of the resulting pi (x) to its correct range between 0 and
1. Final results are indicated as dashed lines in Figure 55A and Figure 56A
where full lines represent committors directly calculated from the respective
equilibrium trajectory according to Equation 49. Finally, Figure 55C and Fig-
ure 56C presents the transition path probabilities directly derived from the
committors in Figure 55A and Figure 56A according to Equation 53.

For both R15 and ROSS, the overall shape of their committors which are
directly calculated from the respective equilibrium trajectory (solid lines in
Figure 55A and Figure 56A) are more resemblant to the commitment proba-
bilities derived from the deconvolved energy landscapes (dashed light blue
lines) than to those derived from the directly measured potential (dashed
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Figure 55: Committor-based barrier reconstruction for R15. Dashed lines are theoreti-
cally expected curves based on the measured (red) and deconvolved (light
blue) probability distribution of the analysed trajectory. (A) Committment
probability of R15 (full line) derived from an equilibrium trajectory ac-
cording to Equation 49. (B) Committor-based barrier shape reconstruction
according to Equation 51. Dashed lines represent the convolved (red) and
deconvolved (light blue) bead potential. The indicated force is the mean be-
tween forces acting on the folded and unfolded state levels. (C) Transition
path probability derived from committors in (A) based on Equation 53.

red lines). By this means, also the barrier heights in Figure 55B and Fig-
ure 56B are reconstructed reasonably well with respect to the deconvolved
potential. However, one can also see that the barriers’ curvatures are more re-
semblant to those of the energy landscapes directly inferred by the recorded
motion of the beads. Like their respective committors, transition path proba-
bilities in Figure 55C and Figure 56C are clearly more similar to expectations
risen by deconvolution than by direct measurement. Taken together, these
results attest the committor calculation based on Equation 49 as well as the
committor-based barrier reconstruction according to Equation 51 reasonable
performance with respect to deconvolved energy landscapes.

Next, the results of this section are viewed in relation to simulations in
the same matter presented in Section 4.3.4. Since the deconvolved energy
landscapes of R15 and ROSS are both slightly asymmetric, simulation results
presented in Figure 37 are of highest interest followed by results in Figure 34.
What experiments and simulations definitely have in common is the ’con-
servation’ of the barrier shape of the directly measured bead potential when
trying to reconstruct the deconvolved barrier. A simple but yet important con-
clusion directly follows from the commitment probabilities of R15 and ROSS
by being more resemblant to the ones expected from deconvolution than to
those expected for mere bead diffusion: both R15 and ROSS are not folding
at the speed limit (see black lines in Figure 34A and Figure 37A) which is
in perfect agreement with our previous results. Further there are hints which
potentially reveal that R15 effectively experiences less while ROSS most likely
experiences more friction than the beads. All these hints basically originate
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Figure 56: Committor-based barrier reconstruction for ROSS. Dashed lines are theo-
retically expected curves based on the measured (red) and deconvolved
(light blue) probability distribution of the analysed trajectory. (A) Com-
mittment probability of ROSS (full line) derived from an equilibrium tra-
jectory according to Equation 49. (B) Committor-based barrier shape recon-
struction according to Equation 51. Dashed lines represent the convolved
(red) and deconvolved (light blue) bead potential. The indicated force is
the mean between forces acting on the folded and unfolded state levels.
(C) Transition path probability derived from committors in (A) based on
Equation 53.

from a shallower slope of the commitment probability of R15 and a steeper
slope of ROSS when being compared to the respective shape expected from
deconvolution. Hence, other resulting hints might be the lower versus higher
than expected reconstructed barriers as well as the broader versus more nar-
row than expected transition path probabilities. With respect to Section 4.3.2,
effectively experiencing different friction than the bead corresponds to R15

and ROSS having a friction coefficient different from the ’sweet spot’ where
transition path times in contour as well as deflection space are about equal.
Along these lines, the results from this section potentially imply that γR15

P

< 1.5·10
−6 pN · s · nm−1 while γROSS

P > 3·10
−6 pN · s · nm−1. Additionally, in

case of R15, the protein folding speed limit implies a lower border for the
friction coefficient. Based on the simple formula N/100µs, where N repre-
sents the number of amino acids involved in unfolding, full-length speed
limit unfolding of all 114 amino acids of R15 would happen as fast as in
1.14µs [119]. From this very short transition path time it follows that γR15

P >

4.8·10
−8 pN · s · nm−1, where specifically ’>’ instead of ’>’ is used since R15

folding is slower than expected for speed limit protein folding.
Altogether, the direct commitment probability calculations from equilib-

rium trajectories, their comparison to expectations risen by the respective de-
convolved energy landscapes, and the review of this section’s results in the
context of similar simulations revealed a couple of things. Concerning the
committor-based barrier shape reconstruction, barrier heights are reasonable
with respect to deconvolution while their shapes tend to be more resemblant
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to the measured bead potential which has been similarly observed in simula-
tions. Independent of deconvolution and, hence, more importantly, both R15

and ROSS are not folding at the speed limit which directly follows from the
strong deviation of their commitment probabilities from the shape expected
for mere bead diffusion. Further, R15 effectively experiences less while ROSS
effectively experiences higher friction than the beads. In combination, this
yields 4.8·10

−8 pN · s · nm−1 < γ
R15

P < 1.5·10
−6 pN · s · nm−1 for the friction

coefficent of R15 and γROSS
P > 3·10

−6 pN · s · nm−1 for ROSS.

6.2.4.1 Kinetic parameter mismatch: deconvolution versus kinetics

This subsection briefly compares kinetic key parameters provided by decon-
volution to those obtained from fitting force-dependent rates. Despite a gen-
erally good agreement, two discrepancies are noteworthy as they corroborate
an insensitivity of deconvolution towards strong asymmetries and short-lived
intermediates.

Figure 57 presents deconvolved energy landscapes of R15 and ROSS which
were transformed from bead deflection into (unfolded) contour length space.
Note that the darker coloured lines in Figure 57 correspond to the landscapes
shown as dashed light blue lines in Figure 55B and Figure 56B. After a zero-
force transformation (lighter colours), the folding free energy ∆G0? between
folded and unfolded states is readily extracted, see dashed horizontal lines.
The obtained values are in very good agreement with ∆GCD,indiv

0 calculated
from individual constant distance trajectories, see Table 10. By this means,
the relative energy between the two states separated by a barrier is correctly
determined by deconvolution. Another important characteristic of a barrier
is the position of the barrier top, i. e., the transition state position typically
denoted as ∆xu and ∆xf for unfolding and folding transitions. In Figure 57,
the transition state position provided by deconvolution is marked by black
horizontal arrows. In contrast, red horizontal arrows reflect transition state
positions derived from SB-model fits to the force-dependent rates of R15 and
ROSS, see Table 9. The discrepancies between transition states marked by
black and red arrows obviously raise a few questions which are discussed in
the following.

In case of R15, the transition state position identified as ∆xf for folding tran-
sitions in Figure 57A is about the same for both deconvolution and measured
folding kinetics. However, for unfolding, the values for ∆xu differ by more
than a factor of four. By this means it seems as if deconvolution is not capa-
ble of reproducing the high asymmetry which is measured for R15 kinetics,
see Figure 52A. Instead, the transition state position ratio ∆xu/∆xf formerly
introduced as a measure of symmetry in Section 5.3.1 changes from 0.12 im-
plied by kinetics to 0.63 implied by deconvolution which already approaches
perfect symmetry which would be given in case of 1.0. Two aspects need to
be addressed in view of the observed discrepancy between the (unfolding)
transition state position provided by either kinetics or deconvolution: Ham-
mond behaviour and the ’missing’ contour length when trying to reproduce
the full contour length LP of R15 by adding up ∆xu and ∆xf provided by
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Figure 57: R15 and ROSS point towards two fundamental weaknesses of deconvo-
lution. Red arrows indicate transition state positions according to the SB-
model fits in Figure 52, for parameters see Table 9. (A) Asymmetry: de-
spite the strongly asymmetric rate plots of R15, the deconvolved potential
shows only weak asymmetry. (B) Short-lived high-energy intermediates:
deconvolution is insensitive to the energy landscape roughness of ROSS
which is suggested by its kinked rate plots.

the SB-model. As the SB-model fits the unfolding rates of R15 over the entire
experimentally accessible force range, a mere force-induced transition state
movement known as Hammond behaviour can be excluded as an explana-
tion for the observed discrepancy10. Concerning the ’missing’ contour length,
one possible interpretation could be a very broad transition state ensemble of
R15 which, to a certain extent, would prove both ∆xu values to be right. An-
other possible explanation would be a folding mechanism of R15 which is par-
tially orthogonal to the acting force and, hence, invisible to the measurement
signal. As deconvolution innately assumes a purely one-dimensional folding
mechanism, the transition state position provided by the deconvolved energy
landscape may be interpreted as some sort of effective position. So does the
hypothesis of a limited capability of reconstructing strong asymmetries by
deconvolution hold? The strongest argument in support of this hypothesis is
given by the two-dimensional diffusion simulations performed in an asym-
metric protein folding potential in Section 4.3.4. In particular, in Figure 36B,
deconvolution of the simulated deflection signal followed by a contour length
transformation yields a more central transition state position than the used
protein folding energy landscape actually had. Upon closer inspection of all
deconvolved energy landscapes, see Figure 34B, Figure 37B, Figure 55B, and
Figure 56B, it is striking that all deconvolved transition state positions are
within close proximity of the transition state of the convolved potential. This
leads to a more refined hypothesis: deconvolution is capable to resolve asym-

10 See Section 4.2.4, Section 5.3.1, and Section 5.3.2 for detailed discussions about rate plots,
transition state positions, Hammond behaviour, deconvolution and different kinetic models.
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metries in protein folding energy landscape transition state positions to an
extent which goes only slightly beyond what is already provided by the con-
volved potential.

When it comes to ROSS, we lack a pair of ∆xu and ∆xf values from SB-
model fits with an overlapping force range which could be directly compared
to deconvolution. Nevertheless, the indicated force bias of 9.3 pN which acts
on the deconvolved energy landscape of ROSS in Figure 57B falls into force
range III of refolding rates fitted by the SB-model in Figure 52B. The appro-
priately marked red arrow in Figure 57B indicates a similar ∆xf for both
deconvolution and the SB-model. What is remarkable about the deconvolved
energy landscape of ROSS is that any sign of roughness is missing. By con-
trast, the kinked rate plots of ROSS strongly suggest an underlying rough en-
ergy landscape with multiple distinct transition states the existence of which
will be further proven in Section 6.4.3 and Section 6.4.4. Then why does the
deconvolved energy landscape of ROSS only have one transition state with a
smooth barrier? A simple explanation is the small weight of the short-lived
on-pathway intermediates within the overall probability distribution. In other
words, the roughness of ROSS lies beyond the resolution of deconvolution.

In short, transition state positions cannot be correctly resolved by deconvo-
lution unless they lie within proximity of the transition state positions already
provided by the convolved potential. Short-lived and rarely populated inter-
mediates which are ’deeply buried’ within the thermodynamic noise of pre-
dominantly populated states are likely not to be resolved by deconvolution at
all. Differently speaking, deconvolution does not provide the most accurate
kinetic parameters and details. However, by representing a smoothed average,
deconvolved energy landscapes can be expected to provide a robust overall
picture which roughly characterizes the underlying kinetics.

What do the above findings mean for our results and their interpretation?
Since the deconvolved energy landscape shapes are put under question, so
have to be the thereupon based transition path time and friction coefficient
calculations. In general, transition state positions derived by deconvolution
may not provide the best reference for reaction coordinate quality tests. An
exception are systems which do have a relatively central transition state and
a folding mechanism which fully projects onto the acting force axis as, for
instance, is given for DNA-hairpin or coiled-coil protein unzipping.

6.2.5 Transition path ensembles and probabilities

In addition to the temporal information provided by transition path times,
transition paths also provide spatial information which is now introduced by
the experimentally determined transition path ensembles of R15 and ROSS.
While the measured ensembles confirm the presence of protein folding, the
thereupon based transition path probabilities fail to directly localise decon-
volved transition state positions.

Figure 58 presents all ingredients which are necessary to calculate the con-
ditional probability of being on a transition path from experimental trajecto-
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Figure 58: Transition path probability calculations for ROSS and R15. Dashed red and
light blue lines are theoretically expected curves based on measured and
deconvolved probability distributions. (A) Measured and deconvolved
probability distributions of R15. (B) Transition path ensemble of R15 based
on 110 consecutive unfolding/refolding transitions. (C) Transition path
probabilities of R15 according to Equation 52 using measured (brick red)
or deconvolved (orange) data (not to scale). (D) - (F) Equilibrium distri-
butions, transition path ensembles and probabilities of ROSS based on 12

consecutive unfolding/refolding transitions. See text for more details.

ries based on Equation 52. The measured (brick red) and deconvolved (light
blue) probability distributions of an equilibrium trajectory of R15 are shown
in Figure 58A. Below, in Figure 58B, the measured transition path ensemble
of R15, which is the probability distribution of all points recorded along ex-
tracted transition paths, is illustrated. Here, dashed red and light blue lines
represent theoretically expected ensembles based on the measured and de-
convolved probability distributions from above. The derivation of expected
transition path ensembles is described in detail in Section 4.3.2.2. And finally,
(conditional) transition path probabilities of R15 implied by Equation 52 are
depicted in Figure 58C. In more detail, the brick red transition path probabil-
ity is derived upon using the measured equilibrium distribution as peq (x) in
Equation 52, while the pale red probability is based on the deconvolved equi-
librium distribution and an additional normalization factor according to [155].
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Note that in Figure 58C, expected shapes are drawn to scale while the peak
values of experimentally determined probabilities are indicated separately.
All corresponding graphs of ROSS are presented in Figure 58D - Figure 58F
right next to the results of R15. The additional thin grey line in Figure 58E
depicts the transition path ensemble of ROSS obtained upon extracting tran-
sitions paths delimited by mere folded and unfolded state level crossing as
opposed to passing through two HMM-identified on-pathway intermediates,
see also Section 6.2.3. The associated transition path probability is represented
by the thin grey line in Figure 58F and only calculated using the measured
equilibrium distribution.

The transition path ensembles of R15 and ROSS neither match shapes ex-
pected for unperturbed bead diffusion (red dashed lines) nor shapes derived
from deconvolved probability distributions (light blue dashed lines), see Fig-
ure 58B and Figure 58E. By contrast, both measured ensembles are more or
less centrally peaked distributions which, according to simulations in Sec-
tion 4.3.2.3, is expected to arise from and to increase with protein friction. By
this means, the measured ensembles indirectly reveal the presence of protein
folding. Compared to ROSS, deviations in case of R15 are less pronounced
which is in accord with previous results suggesting that ROSS has a much
higher protein friction coefficient. However, as it is R15 which behaves like a
simple two-state folder, the deviation of its transition path ensemble is further
analysed in Section 6.4.2 to make an estimate of the involved protein friction
based on simple diffusion.

There are two important aspects when it comes to transition path probabili-
ties: the position and the absolute probability value of their main peak. While
the peak position is supposed to identify the relevant transition state position,
the absolute value is considered as a measure of reaction coordinate quality
which is best if the theoretical maximum of 0.5 is reached, see Section 3.8.3.
In the following, we will first focus on the overall transition path probability
shapes and peak positions.

The brick red line in Figure 58C illustrates the transition path probability of
R15 where the directly measured probability distribution enters Equation 52

as peq (x). The resulting shape and peak position pretty much fulfil expec-
tations for unperturbed bead diffusion (dashed red line). By contrast, if the
deconvolved equilibrium probability distribution is used as denominator for
the transition path probability calculation, the resulting orange line is almost
identical to the dashed light blue one which represents the shape and peak
position implied by the deconvolved potential. In congruence with simulation
results obtained in Section 4.3.4, the strong dependence on peq (x) discloses
a general weakness of the transition path probability calculation: the overall
shape of the resulting probability is basically predefined by the probability
distribution entering Equation 52. By this means, an intended transition state
localization essentially loses its foundation as the final result already enters
the calculation. When moving on to the shape of the transition path probabil-
ity of ROSS, a very similar scenario can be seen. If the deconvolved light blue
probability distribution from Figure 58D enters Equation 52, the shape of the
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resulting pale blue transition path probability in Figure 58F is almost identi-
cal to the expected dashed light blue one. At least, the dark blue probability,
which is based on the measured probability distribution of ROSS, reveals a
clear tendency away from the shape expected for unperturbed bead diffusion
towards the deconvolved shape. Here, this is mainly due to high enough pro-
tein friction which accordingly alters bead diffusion. However, the thin grey
probability reveals that the information of a slight transition state shift away
from the one of the bead potential is lost when the transition path ensemble
of ROSS is derived from transition paths that are merely delimited by folded
and unfolded state level crossings.

Now, the absolute transition path probability values get into focus. Judg-
ing from the extremely small transition path probability maxima of R15 in
Figure 58C, the reaction coordinate quality seems to be very poor. To a large
extent, these extremely low probabilities are due to a very small p (TP), i. e.,
the relative amount of time spent on transition paths. As transition paths of
R15 are preselected by HMM, all ’pseudo’ transitions within the noise are not
considered which technically reduces p (TP). On the other hand, in case of
the measured equilibrium distribution, all noise remains still included which
yields relatively large values for peq (x) around the transition state position. In
combination, these two effects strongly reduce the transition path probability
of R15. As deconvolution basically removes noise from the measured equi-
librium distribution, application of the deconvolved equilibrium distribution
as peq (x) in Equation 52 automatically yields a much higher transition path
probability. This probability is then further increased by the additional nor-
malization factor which, in principle, can be interpreted as being supposed
to come up for a reduced p (TP) value. However, a maximal probability of
5·10

−3 still indicates a poor reaction coordinate. A poor reaction coordinate,
in turn, would match the previously mentioned possibility that folding transi-
tions of R15 partially proceed orthogonal with respect to the acting force, see
Section 6.2.4.1. Similar to R15, the transition path probability of ROSS which
is based on the deconvolved equilibrium distribution is about two orders of
magnitude higher than the one which is derived directly, see Figure 58F. How-
ever, reaching an impossible probability of 7.9 puts the whole transition path
probability calculation under question. In case of ROSS one can argue that
protein folding occurs on longer than expected time scales which obviously
yields a too high p (TP) value.

Two central results were elaborated in this section. First, transition path en-
sembles can directly reveal the presence of protein folding. Second, transition
path probabilities do not localise correct transition state positions unless they
are provided with this information upon their calculation. Further, a mean-
ingful interpretation of transition path probabilities only seems possible when
additional information is available. Other than that, new insights which go be-
yond the information provided by transition path ensembles are not offered.
All these findings are backed by simulations performed in Section 4.3.4.
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6.3 mutants

This section is dedicated to a further investigation of the folding mechanism
of ROSS. At first, the proline-switch hypothesis, which is proposed due to PrL
fingerprints in Section 6.2.1, is tested by measuring the mechanics of proline-
free mutants. Thereafter, different pulling geometries are realized to facilitate
the structural interpretation of on-pathway intermediates which are indicated
in Figure 50B of Section 6.2.1 and postulated in Section 6.2.2.

6.3.1 P86A and P86S: proline-free mutants reveal that proline serves as a stabiliz-
ing design element

By providing arguments for as well as against the proline-switch hypothesis,
the following mechanical study of proline-free mutants of ROSS neither fully
confirms nor disproves it. Alongside, the collected data disclose that proline
plays a crucial role in the folding mechanism of ROSS by noticeably influenc-
ing the unfolding barrier and yielding the highest folding free energy.
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Figure 59: Proline-free mutants of ROSS by substitution: P86A and P86S. (A) Position
of P86 within the solution NMR structure of ROSS. (B) and (C) PrL finger-
prints of P86A and P86S recorded at 500 nm/s. (D) and (E) Unfolding
force histograms of P86A and P86S based on all stretch-and-relax cylces
performed at 500 nm/s. Dashed lines and unfilled histograms refer to N,
NL, and PrL of ROSS with proline P86 being present, see Figure 51B.

Figure 59A highlights the position of the only proline within the sequence
of the designed Rossmann fold. Within the solution NMR structure of ROSS,
P86 is located at the N-terminal end of the α-helix which comprises the last
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C-terminal secondary structural element. To realize proline-free mutants of
ROSS, alanine (A) and serine (S) were chosen as two alternative subsitutes for
P86. The reasons for choosing these two replacements are, in brief, alanine’s
high helix propensity and serine being favourable at N-capping positions, for
more details see Section A.1.2 [63, 165]. In Figure 59B and Figure 59C, stretch-
and-relax cycles of P86A and P86S are shown which look like typical PrL
fingerprints of ROSS, compare also to Figure 50D in Section 6.2.1. Though
occurring less often than in case of ROSS, the mere observation of PrL fin-
gerprints within proline-free mutants proclaims that a proline-switch cannot
be their only explanation. Here, another detail becomes relevant: other than
observed for ROSS, in case of P86A and P86S the number of successive PrL fin-
gerprints is strongly reduced down to very few repetitions within 500 nm/s
stretch-and-relax cycles. While for ROSS at least 4 and typically even more
PrL fingerprints were observed in a row, P86A and P86S often only showed
single isolated PrL fingerprints. The unfolding force distributions of P86A
and P86S depicted in Figure 59D and Figure 59E feature the same multi-
modal shape already seen for ROSS. This indicates that the point mutations
within P86A or P86S do not strongly affect the overall folding mechanism of
ROSS which involves multiple fingerprints and multi-modal unfolding. How-
ever, there are two differences. First, the relative fractions of N, NL and PrL
are altered. And, second, the peak positions of N and NL are shifted towards
lower forces. The latter can be directly seen when comparing the fits to the
double-peaked distributions representing N and NL (full black lines) to the
respective fit from ROSS (dashed dark blue lines) taken from Figure 51B. This
shift towards lower forces is an indication for a lower mechanical stability of
P86A and P86S with respect to ROSS.

PROTEIN LCV
P N NL PrL Rc ∆GCD,indiv

0

[nm] [%] [kBT]

ROSS/P86 34.7 ± 0.9 71 ± 3 23 ± 2 5 ± 2 1.3 ± 0.9 27.7 ± 2.8

P86A 34.4 ± 0.9 81 ± 3 16 ± 3 2.5 ± 1.2 0.7 ± 0.7 25.9 ± 2.6

P86S 34.5 ± 0.9 84 ± 2 15 ± 2 0.4 ± 0.4 1.0 ± 0.8 26.1 ± 2.6

Table 12: Contour length gains, relative fingerprint occurrences during 500 nm/s con-
stant velocity measurements, and folding free energies from constant dis-
tance measurements of ROSS, P86A, and P86S.

The numbers listed in Table 12 support the above discussion of Figure 59.
With LCV,P86A

P = 34.4 ± 0.9 nm and LCV,P86S
P = 34.5 ± 0.9 nm, the average con-

tour length gains11 of P86A and P86S are identical to the gain observed for
ROSS. This confirms that both proline-free mutants are fully folded. Further,

11 Average contour gains of P86A | P86S are deduced from WLC-Fits to the folded and maximally
unfolded states of N = 747 | 913 force-extension traces from 5 | 10 molecules. The persistence
length pP = 0.7 nm was chosen as for ROSS. Average DNA-handle parameters are pD = 32 |

32 nm, LD = 364 | 362 nm, and K = 200 | 210 pN.
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Table 12 quantifies the above mentioned changes in relative occurrence of N,
NL, and PrL fingerprints12. While the drop in relative occurrence of NL is
nearly the same for both proline-free mutants, the drop of PrL occurrence is
way more drastic for P86S than for P86A. More precisely, for P86A a drop
from 5 to only 2.5 % corresponds to a change by a factor of 2, whereas in
case of P86S the occurrence of PrL fingerprints drops by about a factor of 10.
However, for both proline-free mutants, the occurrence of PrL does not drop
down to zero as would have been expected if only a proline-switch was its
reason. Interestingly, the relative occurrence of Rc fingerprints as defined by
Figure 50E remains about the same for ROSS, P86A, and P86S. This indicates
that the refolding competence of partially unfolded protein against force re-
mains conserved for both proline-free mutants. And, finally, we reach to the
folding free energies ∆GCD,indiv

0 of P86A and P86S which were extracted from
constant distance measurements. As one can see, both proline-free mutants
have a very similar folding free energy of about 26 kBT which is almost 2 kBT
less than for ROSS. Together with the above mentioned higher mechanical
stability, the higher folding free energy directly approves the intended overall
stable design for ROSS.

PROTEIN Type ϕNL log10k
u,ZB
0 ∆xZB

u Funf
max λmid Fmid

[s−1] [nm] [pN] [s−1] [pN]

ROSS/P86 N - -3.5 ± 0.1 2.9 ± 0.3 16.5 < 0.1 9.5

P86A N - -3.8 ± 1.1 3.2 ± 0.2 15.7 . 0.4 8.9

P86S N - -3.5 ± 0.1 3.1 ± 0.3 15.4 . 0.5 9.2

ROSS/P86 NL 0.25 ± 0.02 -1.7 ± 0.1 2.5 ± 0.4 10.3 - -

P86A NL 0.17 ± 0.03 -1.8 ± 0.5 3.1 ± 1.0 9.7 - -

P86S NL 0.15 ± 0.02 -1.5 ± 0.1 3.4 ± 0.5 9.4 - -

Table 13: Comparing the kinetics of ROSS and the proline-free mutants P86A and
P86S. Kinetic ZB-model fit parameters are based on unfolding force distri-
bution histograms collected from 500 nm/s constant velocity measurements,
see Figure 51B, Figure 59D, and Figure 59E. Combined rates λmid at mid-
forces Fmid represent averages from multiple constant distance trajectories
which yield similarly scattered data points for P86A and P86S as shown for
ROSS in Figure 52B.

As already stated above, the occurrence of the same fingerprints as for
ROSS suggests that P86A and P86S still share the same folding mechanism.
The kinetic fit parameters listed in Table 13 confirm this view, see ku,ZB

0 and
∆xZB
u values. Here, the tendency of slightly broader ∆xZB

u values for the NL
unfolding force distribution simply results from the smaller relative fraction
ϕNL which causes an effectively broader distribution. Note that ϕNL values

12 Errors in relative occurrence were derived by bootstrapping and indicate confidence intervals
of 95 %.
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identify a reduction of NL fingerprints by about 10 % with respect to the
entire double-peaked distributions. Relatively, this means a 40 % reduction
of NL occurrence. The specified Funf

max values indicate an overall shift of the
unfolding force distributions of P86A and P86S by up to 1 pN towards lower
forces while the relative distance of about 6 pN between the two peaks of N
and NL stays about constant, see Figure 59D and Figure 59E. Mid-forces Fmid

only slightly drop by about 0.5 pN which is in agreement with the relatively
small loss in folding free energy. However, combined rates λmid increase by
about one order of magnitude despite slightly smaller mid-forces. This is
strong evidence for an effectively reduced unfolding barrier which confirms
the lower mechanical resistance of P86A and P86S already suspected above.

What can we learn from the above results about the folding mechanism of
ROSS? First of all, proline P86 plays a central role in clamping together the
designed Rossmann fold by some sort of ’key lock’ mechanism which forces
the C-terminal helix to close. This follows from the position of P86 in the solu-
tion NMR structure, see Figure 59A, in connection with the higher unfolding
barrier13 and higher folding free energy of ROSS as opposed to the proline-
free mutants. However, the higher stability obviously comes at the cost of
undesired side reactions represented by NL and PrL fingerprints. Next, we
can discuss possible reasons for the observed reduction of undesired side re-
actions for the proline-free mutants. The ’population’ of NL fingerprints is
equally reduced by about one half for both P86A and P86S. Since both mu-
tants are missing the proline, the equal reduction may point towards the lost
forced key lock mechanism of P86 which, in turn, seems to block rearrange-
ments necessary to avoid NL fingerprints. One way to test this hypothesis
may be by comparing the refolding forces which, in case the key lock snaps
in too fast, would be lower for P86A and P86S. Now what about the much
higher reduction of PrL fingerprints in case of P86S as opposed to P86A?
When trying to judge about this effect, the main problem is that there is no
clue about the mechanism which causes successive PrL fingerprints in the
absence of a proline-switch other than ’dead’ states, see also [212]. Because of
that, at this point, only a vague guess can be made: serine might be a slightly
better promoter of α-helix formation at a N-capping position and, at the same
time, provide higher backbone flexibility of the unfolded polypeptide chain.
In particular the backbone flexibility may play a crucial role in finding the
correct native fold.

To close this section, we finish with a summary of facts and insights con-
cerning the folding mechanism of ROSS which were gained by comparison to
the proline-free mutants P86A and P86S. Contrary to expectations, PrL finger-
prints, which were previously thought to be caused by a proline-switch, still
occur even without any proline being present. However, in view of an overall
reduced occurrence and a strongly reduced accumulation of successive PrL
fingerprints, the proline-switch hypothesis cannot be completely disproved.

13 Basically, P86 increases the energy of the transition state for unfolding which is most likely
represented by a loosened C-terminal α-helix. Note that this is in accord with the first on-
pathway unfolding intermediate identified in Section 6.4.3 and characterized in Section 6.3.2.
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Importantly, for both proline-free mutants a reduction of unfolding barriers,
folding free energies (by about 2 kBT), and the occurrence (by about one half
and more) of undesirable side reactions represented by NL and PrL finger-
prints is observed. Together with the position of P86 within the solution NMR

structure of ROSS, all these results support the hypothesis of a key lock mech-
anism of the C-terminal α-helix which is enforced by proline P86 to clamp
ROSS together. This hypothesis is further manifested in Section 6.3.2.

6.3.2 S49Cc: directed unfolding of the C-terminal half of ROSS uncovers an ener-
getic imbalance

Thanks to the S49Cc construct, a detailed mechanical characterization of an
obligatory high-energy on-pathway intermediate of ROSS based on constant
distance measurements becomes possible. Corresponding results provide ev-
idence for an energetic imbalance within ROSS. Moreover, indications for a
structural interpretation of NL fingerprints are found and further elaborated.

By changing DNA-handle attachment positions, it is possible to target me-
chanical forces at selected substructures of a protein. In this section, the
Rossmann fold is subjected to force after using the mutation S49C as attach-
ment position instead of the N-terminal cysteine, for details see Section A.1.2.
Since the resulting S49Cc construct automatically restricts unfolding to the C-
terminal half of the Rossmann fold, here, this is termed ’directed unfolding’.

The typical force-extension trace of S49Cc shown in Figure 60A features
the very same pre-flipping already seen for the predominating native finger-
print of ROSS in Figure 50B. Further, the unfolding force distribution of S49Cc
presented in Figure 60B reveals the same multi-modal unfolding which origi-
nates from N, NL, and PrL fingerprints. In addition, the peak positions of the
N and NL ’populations’ of S49Cc are exactly the same as for ROSS, see also
Table 15. Taken together, these results are very strong evidence for S49Cc to
have the same unfolding pathway as ROSS. This is a very important finding
is it implies that many insights gained upon studying S49Cc are valid for
ROSS, too. One of these insights is that unfolding of ROSS starts from the
C-terminus and passes through an obligatory on-pathway intermediate. For
S49Cc, the contour length gain histogram of this intermediate and its only
possible structural interpretation are depicted in Figure 60C. As highlighted
in red within the inset NMR structure of ROSS, the intermediate of S49Cc
comprises unfolding of the C-terminal α-helix and β-sheet. Resulting aver-
age contour length gains14 of the intermediate as well as of full unfolding of
S49Cc are listed in Table 14. Since LCV,S49Cc

P = 16.5 ± 0.6 nm very well matches
the expectation for full unfolding of S49Cc, here, a fully folded protein is on
hand.

Despite the similarities between S49Cc and ROSS, there are also interesting
differences when it comes to their relative fingerprint occurrences listed in

14 For S49Cc, average contour gains are deduced from WLC-Fits to N = 338 force-extension traces
from eight molecules. In accord with ROSS, the protein’s persistence length was set to pP =
0.7 nm. Average DNA-handle parameters are pD = 33 nm, LD = 359 nm, and K = 220 pN.
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Figure 60: Directed unfolding of the C-terminal half of ROSS: S49Cc. (A) Typical
force-extension trace of S49Cc recorded at 500 nm/s featuring an obliga-
tory on-pathway intermediate upon unfolding during stretching (green)
followed by refolding during relaxation (grey). Black lines are WLC-fits
to the folded and fully unfolded state. The red dashed line is a fit to
the intermediate. Inset: Solution NMR structure of ROSS: the C-terminal
half which is subjected to force when pulling on the S49Cc construct is
highlighted in green. (B) The unfolding force histogram of S49Cc, which
is based on 500 nm/s cycles, has three distinct peaks (green and pink).
The black line fits the green double-peaked histogram according to Equa-
tion 67. The dashed line and the unfilled histogram refer to N, NL, and
PrL of ROSS. (C) Contour length gain histograms of S49Cc based on WLC-
fits to the intermediate (red) and unfolded (green) state of S49Cc. Inset:
The C-terminal α-helix and β-sheet, which unfold upon formation of the
intermediate, are highlighted in red.

Table 14. While PrL fingerprints occur about as frequently and cumulated for
both S49Cc and ROSS, in case of S49Cc, the relative amount of observed NL
fingerprints drops drastically and Rc fingerprints seem to have completely
disappeared. Since P86 is located within the C-terminal half of ROSS, it is
also involved in the unfolding and refolding process of S49Cc. Therefore, the
similar PrL occurrence makes sense, see also Section 6.3.1. The drastic drop
of NL fingerprints, by contrast, potentially hints towards their actual origin: a
non-native interaction between the C- and N-terminal halves of ROSS which
is, at least partially, inhibited by the pulling geometry of S49Cc. With the
still upcoming folding free energies of S49Cc being in support of this idea,
the potential origin of NL fingerprints is further discussed in Section 6.3.2.1.
The disappearance of Rc fingerprints may simply be owed to difficulties in
resolving them within S49Cc measurements. Alternatively, statistics may not
be high enough to detect a strong reduction of Rc fingerprints. In the latter
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case, Rc fingerprints would directly relate to NL fingerprints. This, in turn,
would explain Rc fingerprints as ’rescue’ transitions out of a NL into a N
configuration via partial unfolding followed by rearrangement and refolding.

PROTEIN Transition Lcalc
P LCV

P N NL PrL Rc

[nm] [%]

ROSS F
 U 34.51 34.7 ± 0.9 71 ± 3 23 ± 2 5 ± 2 1.3 ± 0.9

S49Cc F
 U 16.74 16.5 ± 0.6 88 ± 6 7 ± 5 5 ± 2 0

S49Cc F
 I 8.68 8.0 ± 0.9 - - - -

Table 14: Contour length gains and relative fingerprint occurrences of S49Cc com-
pared to ROSS.

Especially for N fingerprints, the kinetic ZB-model fit parameters listed in
Table 15 manifest the similarities between S49Cc and ROSS unfolding. For NL
fingerprints, the zero-force extrapolated rate constant ku,ZB

0 and the transition
state position ∆xZB

u of S49Cc have to be handled with care as the correspond-
ing part of the distribution provides too few data points for good convergence
of the fit, see Figure 60B. However, Funf

max values are in perfect agreement with
those of ROSS for both N and NL fingerprints. The remarkable difference be-
tween the combined rates and mid-forces of S49C and ROSS already foretells
two advantages of the S49Cc construct with respect to mechanical studies: the
about two orders of magnitude faster rates at significantly higher forces pro-
vide much better statistics within shorter time at increased spatial resolution.
These advantages are exploited next for a thorough mechanical characteriza-
tion of S49Cc based on constant distance measurements.

PROTEIN Type ϕNL log10k
u,ZB
0 ∆xZB

u Funf
max λmid Fmid

[s−1] [nm] [pN] [s−1] [pN]

ROSS N - -3.5 ± 0.1 2.9 ± 0.3 16.5 < 0.1 9.5

S49Cc N - -4.1 ± 0.3 3.2 ± 0.3 16.8 5.6 12.9

ROSS NL 0.25 ± 0.02 -1.7 ± 0.1 2.5 ± 0.4 10.3 - -

S49Cc NL 0.08 ± 0.05 (-1.8 ± 1.4) (4.0 ± 3.9) 10.2 - -

Table 15: Comparing the kinetics of S49Cc and ROSS. Kinetic ZB-model fit param-
eters are based on unfolding force distribution histograms collected from
500 nm/s constant velocity measurements, see Figure 51B and Figure 60B.
For S49Cc, combined rates λmid at mid-forces Fmid refer to the intersection
of SB-model fits to F ⇀ I and U ⇀ I transitions in Figure 61B.

To assign states within constant distance trajectories of S49Cc like the one
depicted in Figure 61A, the HMM algorithm introduced in Section 3.4.3 is con-
figured to assume a three-state model which only allows transitions between
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next neighbours. The resulting lifetime distributions are single exponential
and thereby support the finding of an obligatory on-pathway intermediate
for unfolding as well as refolding of S49Cc. By scanning through the force
range which is accessible to equilibrium fluctuations, force-dependent rates
of all three states of S49Cc can be extracted and fitted as shown in Figure 61B.
Corresponding state occupancy probabilities are presented in Figure 61C. The
kinetic results obtained from analysing all constant distance trajectories of
S49Cc are summarized in Table 16.
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Figure 61: Detailed characterization of the on-pathway intermediate of S49Cc by con-
stant distance measurements. (A) Constant distance trajectory of S49Cc.
Folded (green dots), unfolded (grey) and intermediate (red) states are clas-
sified by HMM. The indicated force of 12.4 pN acts on the intermediate state
level. The black trace is a moving average filtered version of the trajectory.
(B) Force-dependent rates (empty circles) of one single molecule. Lines
are SB-Model fits. (C) State occupancy probabilities (empty circles) and
fits (lines). For comparison, (B) and (C) are complemented with additional
data points from other molecules (different shapes in light colours).

As confirmed by the transition state positions listed in Table 16, the rate
plot of S49Cc is relatively symmetric with respect to the position of the inter-
mediate state. Together, all transition state distances add up to 15.1 nm which
is almost as much as the contour length gain measured upon full unfolding of
S49Cc, see Table 14. The confirmation of this expectable but not always given
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relation will prove beneficial for the energy landscape reconstruction of ROSS
in Section 6.4.4. And, with respect to the rate plot of S49Cc, another aspect is
also worth mentioning: while having very shallow slopes and, hence, being
relatively insensitive against force, rates for leaving the on-pathway interme-
diate stem from dwell times typically being of the order of milliseconds. By
this means, the dwell-time of the on-pathway intermediate which is character-
ized in this section can be expected to substantially contribute to the overall
transition path time of ROSS which is 3.9 ms on average at forces around
9.5 pN, see also Section 6.2.3.

Transition log10k
f
0 log10k

u
0 ∆xf ∆xu ∆G

CD,indiv|glob
0

[s−1] [s−1] [nm] [nm] [kBT]

F
 I 3.2 ± 0.3 -2.7 ± 0.1 1.4 ± 0.4 5.6 ± 0.2 14.9 | 15.3 ± 1.5

I
 U 4.6 ± 0.1 1.9 ± 0.1 7.2 ± 0.2 0.9 ± 0.3 6.0 | 6.1 ± 0.6

F
 U - - - - 20.9 | 21.4 ± 2.1

Table 16: SB-model fit parameters and folding free energies of S49Cc and its obliga-
tory on-pathway intermediate.

An important key to understand the folding mechanics of ROSS is provided
by the folding free energies derived from the constant distance measurements
performed with the S49Cc construct. With respect to the folded state, the
intermediate has a folding free energy of about 15 kBT while full unfolding
of S49Cc releases about 21 kBT, see Table 16. Together with the fact that full
unfolding of the entire Rossmann fold releases up to 28 kBT, see Table 10

in Section 6.2.2, these numbers allow two conclusions. First, the difference in
released folding free energy upon full unfolding of S49Cc and ROSS indicates
that a residual energy of about 7 kBT is still stored within the N-terminal
half of the otherwise unfolded S49Cc construct. And second, upon unfolding
into the intermediate more than half of the entire folding free energy of the
designed Rossmann fold is set free while three quarters of the entire protein
still remain folded.

Since the N-terminal half of S49Cc needs to hold up a certain structure to
store the residual energy after unfolding of the C-terminal half, non-native
interactions between these two halves are likely to be suppressed. As non-
native interactions are suspected to cause NL fingerprints, their indirectly
proven partial inhibition can explain the drastic decrease of NL fingerprints
for S49Cc. Furthermore, when a significant amount of energy is still being
stored within a substructure of an otherwise unfolded protein, also another
aspect comes to mind: cooperativity. Here, the mere fact of a residual energy
suggests that the design of ROSS is geared towards sequential folding.

The release of more than half of the folding free energy of ROSS upon
unfolding of only one quarter of its structure points towards an energetic
imbalance. However, the imbalance between the N- and C-terminal part of
ROSS is not as drastic as it seems at first sight. One reason is that upon
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unfolding of the C-terminal α-helix and β-sheet of S49Cc, a huge amount of
energy is lost due to the exposure of a large interface area of the protein to
the surrounding solvent. To get an idea by how much the folding free energy
stored within the C-terminal half of ROSS does exceed the energy stored
within the N-terminal half, we do a gedankenexperiment. Let’s assume an
equally distributed folding free energy throughout the Rossmann fold. By this
means, the N- and C-terminal halves would each store 7 kBT by themselves as
this is the remaining energy after the C-terminal half is unfolded, see above.
Accordingly, another 14 kBT are stored within the interface when the N- and
C-terminal halves are brought together to form the Rossmann fold. Now, if
the C-terminal α-helix and β-sheet are being unfolded, a maximal amount of
half the interface energy, i. e., 7 kBT, is being released due to symmetry and
the assumption of equally distributed energies. Further, upon breaking up
4 out of 5 interfaces within the N-terminal half of ROSS, i. e., one interface
between the two β-sheets and three out of four interfaces between α-helices
and β-sheets, another 4/5 · 7 kBT are maximally released. Together, this results
in 12.6 kBT for the unfolding of the C-terminal α-helix and β-sheet which
is 2.3 kBT less then observed. This gedankenexperiment oversimplifies the
actual situation, but it provides a lower estimate of the energetic imbalance
between the N- and C-terminal halves of ROSS being on the order of 10 %
more energy within the C-terminal half.

Based on an energetic imbalance of at least 10 % between the two halves
of the Rossmann fold, another idea suggests itself. The imbalance might ex-
plain the relatively high amount of undesirable side reactions of ROSS into
mechanically weaker or even completely labile folds represented by NL and
PrL fingerprints. Figuratively speaking, the C-terminal half of ROSS is so ea-
ger to fold onto any interface provided by the N-terminal half that it does
not wait until the correct interface has been formed. This idea is supported
by the fact that the amount of NL fingerprints is significantly reduced for
proline-free mutants of ROSS which have about 2 kBT less folding free energy
stored within their C-terminal half, see Table 12 in Section 6.3.1. Note that
these 2 kBT less are also in the same ballpark as the lower estimate for the
energetic imbalance from above.

So far, directed unfolding based on the S49Cc construct confirmed that un-
folding of the Rossmann fold starts from the C-terminus and passes through
an obligatory on-pathway intermediate with millisecond lifetimes. In addi-
tion, a residual energy of 7 kBT within the N-terminal half of the otherwise
unfolded S49Cc points towards a sequential folding mechanism of ROSS. The
uncovered energetic imbalance between the two halves of the Rossmann fold
may actually be an important reason for the relatively high amount of unde-
sirable non-native side reactions represented by NL, PrL, and Rc fingerprints.
Further, the results obtained in this section indicate that NL fingerprints oc-
cur upon non-native interactions between the N- and C-terminal halves of
ROSS. Moreover, Rc fingerprints are likely to be a spin-off of NL fingerprints
by representing rescue attempts out of NL and into the native configuration.
And, for completeness, no further insight into an alternative origin has been
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found for PrL fingerprints which, hence, remain vaguely related to problems
of the protein backbone.

6.3.2.1 Swapped β-sheets might explain NL fingerprints

This subsection addresses the question about the origin of the most prominent
non-native NL fingerprint of the Rossmann fold. After finding evidence for a
non-native structural arrangement, potential explanations including swapped
β-sheets and flipped α-helices are discussed.

In Section 6.3.2, it has been shown that after full unfolding of the C-terminal
half, the N-terminal half of S49Cc basically remains folded. This automatically
reduces the number of potential non-native interactions between the N- and
C-terminal halves of ROSS (N/C-interactions). At the same time, the occur-
rence of NL fingerprints is drastically decreased for S49Cc. Though being
non-sufficient as proof, the concurrence of these two results suggests that
non-native N/C-interactions might lead to NL fingerprints.
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Figure 62: Why β-sheet swapping might cause ’native-like’ fingerprints. (A) Upper
panel: scatter plot of full contour length gains versus unfolding forces of
ROSS (500 nm/s cycles). Black horizontal lines mark average LP values
for forces below and above 11.9 pN. Lower panel: the corresponding fit
to the unfolding force distribution of ROSS is composed of the native
and ’native-like’ populations (dashed curves) which intersect at 11.9 pN.
(B) Solution NMR structures of the 2x2 Rossmann fold (pdbID: 2LV8) and
P-loop (pdbID: 2LVB) illustrate that the N-terminal β-sheet (coloured in
red) can take different positions within a four βα-repeat protein. A non-
native N-terminal β-sheet position automatically changes dfold

init and, by
this means, measured contour length gains LP, see Equation 5.

As illustrated in the lower panel of Figure 62A, so far, the only way to
discriminate between N and NL fingerprints of ROSS is by force. If that was
the only difference between N and NL, a force-induced pathway switch in-
volving a lower unfolding barrier for NL would be the only explanation on
hand for this kind of mechanical behaviour while the actual origin of this
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switch remained unclear. However, motivated by indications of non-native
N/C-interactions to cause NL fingerprints, now, the most prominent and di-
rectly measured structural information is examined in more detail: the total
contour length gain upon unfolding of ROSS. Therefore, a scatter plot of con-
tour length gains versus unfolding forces is presented in the upper panel of
Figure 62A. And in fact, when separated by force, one can already see by
eye that the average contour length gain of N and NL fingerprints differs by
∆L

N/NL
P = 0.9 ± 0.6 nm which is direct evidence for a structural difference

prior unfolding. In particular, as NL fingerprints show shorter contour length
gains upon unfolding, the initial distance dfold

init between the N- and C-termini
of the NL-related structure of ROSS has to be larger, see also Equation 5.
Note that when being in the unfolded state, force-extension traces of N and
NL fingerprints perfectly overlap.

What kind of wrong arrangement could possibly occur upon attempting to
fold into the Rossmann fold structure? An interesting option are swapped β-
sheets right in the core of the Rossmann fold which would result in a P-loop
as illustrated in Figure 62B. The folding motifs of these two artificial proteins
cannot be discriminated by the rules according to which they were designed
and the preference for one of these motifs was only influenced by adapting
secondary structure lengths [115]. Further, unintentional β-sheet swapping
occurred for designed 2x3 Rossmann folds which folded into their P-loop
variant when being expressed15. In view of the fact that the designed P-loop
has a 3 times lower folding free energy than Rossmann, also a reduced unfold-
ing barrier would be plausible and, by this means, the difference in unfold-
ing forces of N and NL fingerprints could be explained. The remaining all-
dominant question is whether a β-sheet swap in the core of ROSS can result in
a difference in dfold

init of the order of 0.9 nm? Distances between the N-terminal
ends of the four β-sheets and the C-terminal end of the C-terminal α-helix
within the solution NMR structure of the Rossmann fold range from 1.26 nm
to 1.58 nm. Importantly, the shortest distance is the one between the N- and
C-termini of the native Rossmann fold. The distance from the C-terminus to-
wards the β-sheet residing at the P-loop position is only slightly larger with
1.33 nm. The longest distance is measured with respect to the surface exposed
β-sheet within the N-terminal half of ROSS. So, if the remaining structure of
ROSS would still decently fold upon non-native P-loop formation, another
0.8 nm would be missing to reach the difference in length observed for NL
fingerprints. By contrast, in case of a β-sheet swap within the N-terminal half
of ROSS, only 0.6 nm were missing. Considering that a hydrophobic β-sheet
is removed from the core and instead being solvent exposed, here, an addi-
tional 0.6 nm due to a less densely packed fold seem possible. So, in principle,
β-sheet swapping is an option for non-native interactions which result in NL
fingerprints.

Other important aspects which may influence the occurrence of non-native
N/C-interactions or, differently speaking, misfolds, are the energetic imbal-
ance as well as the sequential folding mechanism of ROSS, see Section 6.3.2.

15 By way of personal communication from David Baker, University of Washington, 2014.
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Further, the restricted and uneven spatial separation of secondary structure
elements due to the pulling geometry needs to be taken into account, see also
Figure 45B in Section 5.3.3.

In the future, NL fingerprints can be studied in more detail by a number
of further investigative steps. One step would be to separate refolding events
which precede either N or NL unfolding to look for any potential differences
concerning their distribution, duration, etc. Based on unfolding and refolding
cycles, folding free energies could be determined for NL fingerprints using,
e. g., Crooks theorem. Further, Molecular dynamics (MD) simulations could be
helpful to check different ’swapping’ geometries for sanity. An experimental
approach towards deciphering the true nature behind NL fingerprints may
be given by photo-induced crosslinking of the N-terminal β-sheet to one of
its neighbouring secondary structure elements within the N-terminal half of
the Rossmann fold. This way, potential non-native interactions could be selec-
tively inhibited. For more suggestions see also Section 6.5.

In summary, a direct comparison between the measured contour length
gains of N and NL fingerprints of ROSS revealed that NL fingerprints provide
by ∆LN/NL

P = 0.9 ± 0.6 nm shorter lengths. This is direct proof for a differently
folded structure with a larger initial distance dfold

init between N- and C-termini.
Inspired by the structurally very similar P-loop fold, the idea of swapped β-
sheets and/or eventually even flipped α-helices with respect to the original
Rossmann fold may well explain the occurrence of NL fingerprints due to
non-native interactions between the N- and C-terminal halves of ROSS.

6.3.3 S49Cn and S85Cn: tracing another intermediate

Directed N-terminal unfolding of ROSS reveals a much higher mechanical
barrier as opposed to C-terminal unfolding. In addition, unfolding of S85Cn
discloses another on-pathway intermediate of ROSS with sub-millisecond av-
erage lifetimes.

As for the S49Cc construct, the S49Cn construct is based on using the S49C
point mutation within a surface exposed loop region of the Rossmann fold
as an alternative DNA-handle attachment position. In case of S49Cn, this at-
tachment position is used instead of the C-terminal cysteine of the ROSS
construct, for details see Section A.1.2. This way, unfolding of the Rossmann
fold is restricted to its N-terminal half coloured in yellow in the inset of Fig-
ure 63A. The same principle is valid for the S85Cn construct which uses the
S85C point mutation instead of S49C.

Already on first sight, typical force-extension traces of S49Cn and S85Cn
in Figure 63 disclose relatively high unfolding forces. For both constructs, un-
folding in 500 nm/s stretch-and-relax cycles occurs at about 37 pN on average.
This is far above all unfolding forces observed for ROSS and speaks for a very
high mechanical unfolding barrier in case of blocked C-terminal ’un-locking’
due to the new pulling geometry inferred by construct design. Especially in
case of S49Cn, unfolding directly involves pulling the N-terminal β-sheet out
of the hydrophobic core of the Rossmann fold. In view of this scenario, a



178 rossmann fold : an artificial protein in trouble

10
8
6
4
2
0

302520151050
Contour Length Gain [nm]

A B

C D

40

30

20

10

0

Fo
rc

e[
pN

]

400350300
Extension [nm]

40

30

20

10

0

Fo
rc

e 
[p

N
]

400350300
Extension [nm]

##

I
(~ I2)

UU

20
15
10
5
0

302520151050
Contour Length Gain [nm]

Figure 63: Directed N-terminal unfolding of ROSS: S49Cn and S85Cn. (A) Typical
force-extension trace of S49Cn recorded at 500 nm/s. Black lines are WLC-
fits to the folded and fully unfolded state. Inset: NMR structure of ROSS:
the N-terminal half which is subjected to force when pulling on the S49Cn
construct is highlighted in yellow. (B) S85Cn features an on-pathway inter-
mediate upon unfolding indicated by the pale green dashed WLC-fit. Inset:
The part which is subjected to force when pulling on the S85Cn construct
is highlighted in dark red. (C) Contour length gain histogram of S49Cn.
(D) Contour length gain histograms of S85Cn based on WLC-fits to the in-
termediate (pale green) and unfolded (dark red) state of S85Cn. Inset: The
C-terminal structural elements, which are suspected to be unfolded upon
formation of the intermediate of S85Cn, are highlighted in pale green.

higher unfolding barrier with respect to (sequential) C-terminal unfolding
is expected. Further, S49Cn and S85Cn do not unfold during every constant
velocity cycle, see ’p (U)’-labeled column in Table 17, and sometimes only
during relaxation after stretching. In view of the limited force range of the
experimental setup, this indicates that corresponding force distributions are
not fully sampled with respect to high forces. Also, the above average unfold-
ing force of 37 pN does only represent a lower estimate. Compared to S49Cn,
S85Cn unfolds over 10 times less often. This is most likely owed to the differ-
ence in pulling geometry which involves shearing of a larger internal surface
area in combination with a potentially less effective force lever in case of
S85Cn. Furthermore, unfolding of S85Cn might start along a different path as
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compared to S49Cn. Note that the average contour length gains16 of LCV,S49Cn
P

= 16.5 ± 0.3 nm and LCV,S85Cn
P = 27.8 ± 0.7 nm listed in Table 17 for full un-

folding of S49Cn and S85Cn very well match expectations indicated by Lcalc
P

values. This confirms correctly folded as well as fully (re-)folding competent
constructs.

PROTEIN Transition Lcalc
P LCV

P p (U) p (I|U) min(Funf)

[nm] [nm] [%] [%] [pN]

S49Cn F
 U 16.65 16.5 ± 0.3 44 ± 10 0 13

S85Cn F
 U 28.06 27.8 ± 0.7 3 ± 1 72 ± 13 7

S85Cn F
 I 9.68 10.4 ± 1.2 - - -

Table 17: Contour length gains, the probability p (U) to observe unfolding and the
conditional probability p (I|U) of seeing intermediates upon unfolding, and
minimal unfolding forces of S49Cn and S85Cn. Here, unfolding means
within a single 500 nm/s stretch-and-relax cycle covering forces from zero
up to at least 30 pN or, typically, more. This also includes unfolding only
during relaxation after stretching. By contrast, minimal unfolding forces
min(Funf) only refer to unfolding during stretching.

Even though the force distributions of S49Cn and S85Cn were not fully sam-
pled during 500 nm/s constant velocity cycles, it is still possible to make a few
remarks on additional NL, PrL and Rc fingerprint occurrences which charac-
terize the multi-modal unfolding of ROSS. The easiest candidate are PrL fin-
gerprints as unfolding out of their mechanically unstable configuration is easy
to discern from other rupture events: PrL fingerprints were neither observed
for S49Cn nor for S85Cn. This can be expected, because the entire C-terminal
α-helix which includes proline P86 at the critical N-capping position is never
directly involved in unfolding and refolding. With 13 and 7 pN, minimal un-
folding forces min(Funf) which were observed during stretching of S49Cn and
S85Cn, see Table 17, are relatively small with respect to the lower estimate of
an average unfolding force of 37 pN. Especially the 7 pN for S85Cn could
originate from an additional unfolding force distribution similar to the addi-
tional population observed for NL fingerprints in case of ROSS. Moreover, if
such an additional population was missing for S49Cn, this would be another
indication for non-native interactions between the N- and C-terminal halves
of ROSS (N/C-interactions) to cause NL fingerprints: with respect to S85Cn,
N/C-interactions are automatically more suppressed for S49Cn where only
the N-terminal half is forced to unfold. However, current statistics do not
clearly speak for or against an additional population within the unfolding
forces of either S49Cn or S85Cn. Alternatively, another straightforward expla-

16 Average contour gains of S49Cn | S85Cn are deduced from WLC-Fits to N = 108 | 820 force-
extension traces from 8 | 12 molecules. The persistence length pP = 0.7 nm was chosen as for
ROSS. Average DNA-handle parameters are pD = 28 | 20 nm, LD = 364| 363 nm, and K = 320 |

300 pN.
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nation for the relatively small min(Funf) values could be given by a very small
transition state distance ∆xZB

u which leads to a broad distribution of unfolding
forces. Finally, no Rc fingerprints were observed during directed N-terminal
unfolding experiments. As previous results suggest that Rc fingerprints rep-
resent rescue transitions out of the NL configuration, a lack of Rc fingerprints
is expected upon the very few and uncertain unfolding events which might
be attributed to NL unfolding. Along with the just made considerations one
also has to be aware of the fact that S49Cn and S85Cn are forced to have
a different initiation of unfolding than ROSS. By this means, both constructs
may choose completely different pathways for unfolding as opposed to ROSS,
P86A, P86S, and S49Cc.

The contour length gain histogram in Figure 63D reveals that unfolding of
S85Cn typically involves an on-pathway intermediate. As listed in Table 17,
the corresponding average contour length gain is LCV,S85Cn−I

P = 10.4 ± 1.2 nm.
Among all possible configurations, unfolding of the C-terminal secondary
structural elements β4α3, see inset of Figure 63D for their position within
the solution NMR structure of ROSS, yields the most likely structural inter-
pretation of the S85Cn intermediate with an expected contour length gain
Lcalc
P of 9.68 nm which is closest to the measured value. In contrast to S85Cn,

not even slight hints of any intermediates were observed upon unfolding of
S49Cn. This indirectly supports the structural interpretation of the S85Cn in-
termediate which comprises unfolding of the outermost C-terminal β-sheet
and α-helix which are subjected to force within the S85Cn construct but not
within S49Cn.

Besides a structural interpretation, what else can we say about the S85Cn
intermediate? First of all, the S85Cn intermediate (S85Cn-I) does not show
any sign of pre-flipping as opposed to the unfolding intermediate of S49Cc
which basically corresponds to the first encountered unfolding intermediate
of ROSS. This indicates that S85Cn-I is only populated after passing the pre-
dominant transition state of unfolding. With the additional information that
S85Cn-I is populated at unfolding forces ranging from 6.5 up to 50 pN, one
can conclude that the main transition state of S85Cn unfolding is shorter than
S85Cn-I at almost all accessible forces. Another important quantity which
characterizes S85Cn-I is the (uncorrected) observed average dwell time17 be-
ing τS85Cn−I

DW = 438µs. Already in the sub-millisecond regime, τS85Cn−I
DW is one

order of magnitude shorter than the total transition path time of ROSS. Due
to the fact that most S85Cn data were only sampled at 30 kHz, dwell times of
less then τc = 100µs are likely to be missed18. To account for missed events,
here, it suffices to simply subtract τc from the measured average dwell time
to get a good estimate for the ’true’ dwell time τ? which is hence given as

17 The average dwell time τS85Cn−I
DW is based on 26 unfolding events during constant velocity and 7

unfolding or refolding events during constant distance measurements without differentiating
between forces.

18 To clearly detect intermediates, at least two successive points with similar deflection values
and out of reach of both folded and unfolded states are necessary within a transition. With
the additional time needed to diffuse into and out of the intermediate, this results in roughly
3 necessary point ’durations’ when sampling at 30 kHz which adds up to ∼ 100µs.
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τ
?,S85Cn−I
DW = 338µs, see also [212]. According to these numbers, the expected

fraction of missed events is then given by fmiss = 1 - exp
(
τc
τ?

)
which yields

about 26 % [214]. This value, in turn, fully explains why only 72 % of all un-
folding events clearly show an intermediate, see the conditional probability
p (I|U) in Table 17. By this means, S85Cn-I is not only a short-lived but also
an obligatory on-pathway intermediate of S85Cn.

To be able to fully sample the unfolding force distributions of S85Cn or
similarly mechanically resistant constructs within reasonable time, one might
consider to complement data from optical tweezers with data from AFM ex-
periments. Here, the recently reported microsecond resolution could further
be useful to resolve and characterize intermediates in more detail [250].

Taken together, the much higher mechanical resistance which acts against
directed N-terminal unfolding of ROSS confirms that forced mechanical un-
folding of the native Rossmann fold starts from the C-terminus. Further, the
on-pathway intermediate of the Rossmann fold which was detected within
folding transitions of S85Cn is obligatory. Structurally, this intermediate most
likely represents a fully folded N-terminal half of the Rossmann fold and
still aligned core β-strands. After a correction for missed events, the average
dwell time of τ?,S85Cn−I

DW ∼ 300µs places the intermediate’s lifetime into the
sub-millisecond regime.

6.4 extended discussion

The following discussion aims at studying two main aspects. One aspect is
the further investigation of observed protein diffusion of R15 and ROSS from
a simple two-state perspective. Here, analysis results from Section 6.2 are di-
rectly used to derive an effective roughness εrms as well as friction coefficients
γP for both proteins. Further, a merely diffusion based method for protein
friction determination from the deformation of transition path ensembles is
introduced and applied to R15 data. The second aspect comprises a more de-
tailed characterization of the folding energy landscape of the Rossmann fold.
Inspired by results from Section 6.3, on-pathway intermediate state positions
are localised. Thereafter, a detailed energy landscape reconstruction based on
transition path time distributions and folding rates of ROSS is conducted in
the style of the technique elaborated in Section 4.2.3.

6.4.1 Effective roughness and friction under force

Based on experimentally determined transition path time averages and decon-
volved energy landscapes from Section 6.2.3 and Section 6.2.4, here, the pro-
tein friction coefficient γP and the effective roughness εrms of R15 and ROSS
are derived according to Equation 54 which relates transition path times to
energy landscape parameters and Equation 63 which characterizes the rough-
ness concept of Zwanzig, see Section 3.8.4 and Section 4.2.2.

Deriving an effective roughness εrms based on Equation 63 basically means
to compare a measured quantity to a reference value which both relate to
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the diffusion constant D. So, strictly speaking, the thereupon obtained εrms

only represents an additional effective roughness with respect to the reference.
Now, since transition path times are inversely proportional to the diffusion
coefficient D, see Equation 54, we commence with the straightforward deriva-
tion of the effective roughness of R15 and ROSS directly inferred by their
measured transition path time averages with respect to the theoretical pro-
tein folding speed limit given by N/100µs, where N is the number of amino
acids which need to fold [119]. While relevant transition path times are listed
in Table 18, the inferred additional effective roughness of εR15

rms = 1.7kBT and
εROSS

rms = 2.9kBT is illustrated by the gray potentials in Figure 64A and Fig-
ure 64B. Note that the superimposed effective roughness shown in Figure 64

is only an illustration which is not drawn to scale with respect to the x-axis.
Here, the applied root-mean-squared roughness has a typical length scale of
∆xr

appl = 5 nm which is fifty times longer than necessary to meet Zwanzig’s
specification of ∆xr = 0.1 nm in case of nanometre scaling.
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Figure 64: Effective energy landscape roughness of R15 and ROSS derived from tran-
sition path times measured under force. (A) With 〈τR15

TP 〉 ≈ 20µs, R15 is 18

times slower than N/100µs = 1.14µs which would be expected for speed
limit folding of the N = 114 amino acids of R15. This difference can be
explained by a smaller diffusion coefficient inferred by an additional effec-
tive roughness εrms superimposed onto the folding energy landscape of
R15, see Section 4.2.2. A representative illustration of the corresponding
rough energy landscape is shown in light grey. (B). The additional rough-
ness of ROSS with respect to speed limit folding is illustrated in light grey.
Light red is the relative gain in roughness of ROSS with respect to R15 af-
ter ruling out differences in the respective energy landscape shapes. Red
is the gain in roughness with respect to the diffusion coefficient of the
designed protein FLred.

An additional roughness of εR15

rms ∼ 2kBT as derived for R15 is of the same
order as the additional roughness which has been reported for RNA with re-
spect to DNA hairpin unzipping [154]. Concerning ROSS, with respect to
literature, a value of εROSS

rms ∼ 3 kBT already corresponds to the additional
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roughness observed for misfolding of the prion protein PrP which represents
a massive energy landscape distortion [249]. But how do R15 and ROSS di-
rectly compare in terms of roughness? This question is addressed next.

Given the deconvolved energy landscape shapes of R15 and ROSS as well as
their average transition path times, it is possible to derive their corresponding
friction coefficient γ(P) = kBT/D according to Equation 54. To account for the
asymmetric barrier shapes within calculations, Equation 54 was individually
applied to the four transition path segments delimited by the minima (which
provide the relevant curvatures within the respective path segment), the max-
imum, and the deflection points in between. This way, as shown by diffusion
simulations in Section 4.2.1, transition path time predictions based on Equa-
tion 54 are more accurate. Resulting friction coefficients γP(τTP,G(LP)) are
listed in Table 18 and can be used to directly compare R15 and ROSS with
one another since now differences in energy landscape shapes are ruled out.
The 270 times higher friction coefficient of ROSS yields an additional effec-
tive roughness of 2.4 kBT with respect to R15 which is illustrated by the light
red potential in Figure 64B. Note that without accounting for the different
deconvolved energy landscape shapes of R15 and ROSS, the mere difference
between their transition path time averages only yields a 195 times higher
friction coefficient.

PROTEIN Speed limit Experiment

〈τTP〉 γP(τTP,G(LP)) 〈τTP〉 γP(τTP,G(LP))

[µs] [pN · s · nm−1] [µs] [pN · s · nm−1]

R15 1.14 4.8·10
−8

20 9.7·10
−7

ROSS 1 6.6·10
−8

3900 2.6·10
−4

FLred 0.77 - - (5.1·10
−6)

Table 18: Theoretical speed limit versus experiment: protein friction coefficients im-
plied by transition path times. Speed limit folding times are estimated ac-
cording to N/100µs. Protein friction values γP(τTP,G(LP)) are inferred by an
optimized sequential application of Equation 54 to respective deconvolved
energy landscape shapes G(LP) in connection with the indicated overall
transition path times τTP (see text). The friction coefficient of FLred is listed
for reference, see Section 5.3.1 for its (different) derivation.

With respect to protein friction coefficients explicitly reported from single-
molecule force spectroscopy experiments (corresponding values are marked
at the bottom of Figure 29B), the value of γR15

P (τTP,G(LP)) = 9.7 · 10
−7 pN ·

s · nm−1, which is obtained for R15, appears to be the lowest [143, 177, 247].
Compared to the friction coefficient of the designed protein FLred which was
derived in Section 5.3.1, the Rossmann fold has an only about 50 times higher
value which corresponds to an additional roughness of 2.0 kBT.

Note that the friction coefficients inferred by the theoretical speed limit
folding times of R15 and ROSS very well match the value of γP = 4·10

−8 pN ·
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s · nm−1 used to simulate speed limit protein folding in Section 4.3. In princi-
ple, this confirms that the choice of unfolded contour length space as reaction
coordinate is suitable to actually model speed limit protein folding.

In summary, R15 experiences an effective roughness of εR15

rms ∼ 2 kBT with
respect to speed limit protein folding while ROSS has a significantly higher
roughness of εROSS

rms ∼ 3 kBT. Upon direct comparison, ROSS has a remark-
able additional roughness of 2.4 kBT with respect to R15. Further, together
with the deconvolved energy landscape shapes, measured transition path
times imply γR15

P (τTP,G(LP)) = 9.7·10
−7 pN · s ·nm−1 and γROSS

P (τTP,G(LP)) =
2.6·10

−4 pN · s · nm−1 which lie both within the ranges found in Section 6.2.4.

6.4.2 Transition-path-assisted protein friction determination

As suggested by two-dimensional diffusion simulations in Section 4.3.2 and
Section 4.3.4, the shapes of detected transition path ensembles are sensitive to-
wards changes in protein friction. Here, after introducing a measure ∆p(x|TP)
for relative transition path ensemble deformation, the detected friction-in-
duced deformation of the transition path ensemble of R15 is used to derive
its corresponding friction coefficient γR15

P (∆p).
A straightforward way to characterize the relative deformation of an en-

semble p (x|TP) with respect to a reference p0 (x|TP) is by deriving their non-
overlapping area. This can simply be done by integrating over the absolute
values of the ensemble difference:

∆p (x|TP) =
∫xmax

xmin

dx |p (x|TP) − p0 (x|TP)| . (68)

Here, the borders xmin and xmax should be chosen such that both distribu-
tions are completely included. In the following, Equation 68 will be applied
to already normalized distributions. Then, together with a common reference
p0 (x|TP), ∆p(x|TP) values which result from different ensembles p (x|TP) can
be directly compared to each other. If, as in our case, the distributions are nor-
malized and the scaling in ’x’ is given in nanometres, a maximal deformation
of 2 nm can be reached for non-overlapping distributions19.

The top row of Figure 65 introduces the principle of the merely diffusion-
based protein friction determination. While the full line in Figure 65A shows
the experimentally determined transition path ensemble of R15, full lines in
Figure 65B display transition path ensembles obtained from two-dimensional
diffusion simulations based on the deconvolved energy landscape of R15.
Dashed lines in Figure 65A and Figure 65B refer to ensembles expected
for unperturbed one-dimensional bead diffusion according to theory (red)
and simulations sampled at 200 kHz (black). In Figure 65B, the difference in
shape among the simulated ensembles results from varying the respective
protein friction coefficient γP from low (black) towards high friction (light
blue). Next, the deformation values ∆p(x|TP) of the simulated ensembles are

19 Non-overlapping distributions could, in principle, arise due to endless friction which, in turn,
would result in a delta function.
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plotted against their corresponding friction coefficients which yields the mas-
ter ’curve’ represented by full squares in Figure 65C. Finally, the friction coef-
ficient of R15 is given by the intersection of the friction-induced deformation
observed for R15 with the master curve. With ∆p (R15) being represented by
the dashed horizontal line in Figure 65C, the intersection yields γR15

P (∆p) ∼

1·10
−6±1.5 pN · s ·nm−1 as highlighted by the empty square. Here, the error in

friction indicates the maximal uncertainty implied by the error in ∆p which,
in turn, was found by bootstrapping, see below.
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Figure 65: Friction coefficient determination of R15 based on the friction-induced de-
formation of the measured transition path ensemble. (A) Measured tran-
sition path ensemble of R15 (brick red). Dashed lines in (A) and (B) refer
to ensembles expected for unperturbed one-dimensional bead diffusion.
(B) Black, orange, and light blue lines represent ensembles derived from
two-dimensional R15 diffusion simulations where γP = 4·10

−8, 1·10
−6,

and 4·10
−4 pN · s · nm−1. (C) Deformation values ∆p (x|TP) provided by

bootstrapped ensembles in (A) and (B). (D) Stepwise evaluation of Equa-
tion 68 reaches at final values shown in (C). (E) and (F) Stepwise evalua-
tion of Equation 68 along transition path ensembles from highly resolved
two-dimensional diffusion simulations in symmetric and asymmetric po-
tentials, see Figure 35 and Figure 38. See text for more details.

The bottom row of Figure 65 illustrates the stepwise evaluation of Equa-
tion 68 which reaches final ∆p(x|TP) values (squares) when ’x’ reaches xmax.
In Figure 65D, the measured and simulated ensembles of R15 from Figure 65A
and Figure 65B are evaluated. To account for effects arising from limited reso-
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lution, see Section 4.3.4, here, ensembles from unperturbed one-dimensional
bead diffusion simulations sampled at 200 kHz are used as common reference
p0 (x|TP) in Equation 68 to better comply with experiments. Figure 65E and
Figure 65F depict the stepwise evaluation of ensembles from other friction-
dependent simulations performed in Section 4.3 which, in this context, serve
as a proof of principle. Owing to much higher sampling at 1 GHz and better
spatial resolution, in this case, theoretical ensembles for unperturbed bead
diffusion were used as p0 (x|TP). The respective results clearly show that an
increase in friction results in an increase of deformation values calculated
according to Equation 68.

In Figure 65, all final ∆p(x|TP) values and their errors were determined by
bootstrapping20, i. e., random sampling with replacement of transition paths
to repeatedly create transition path ensembles based on a given transition
path pool21. This, in turn, allows a repeated evaluation of Equation 68 to be
made. Note that lines in Figure 65D - Figure 65F do not represent an average
from repeated evaluation of Equation 68, but a single evaluation of an overall
transition path ensemble average which was adapted to match final ∆p(x|TP)
values if required. Opposed to simulations in Figure 65E and Figure 65F, in
Figure 65B - Figure 65D a friction coefficient of γR15,sim

P = 1·10
−6 pN · s · nm−1

was chosen instead of 4·10
−6 pN · s ·nm−1. The different choice is intended to

account for potential non-linearities of the friction-dependence of ∆p(x|TP)
around the friction expected for R15 based on the previously derived value
listed in Table 18.

Despite their similar protein friction coefficients, simulations in the bot-
tom row of Figure 65 yield considerably different final deformation values
∆p(x|TP). This divergence is mainly caused by differences in spatial separa-
tion of the folded and unfolded states which are affected by the acting force22

in combination with the unfolded contour length23, see deflection values ’x’.
Further, the relatively large error of the final deformation value of the exper-
imental transition path ensemble of R15 is owed to relatively small statistics
provided by only 49 transitions compared to at least 325 transitions from
simulations sampled at the same frequency. However, in combination with
bootstrapping, still a very reasonable result is obtained which speaks for the
robustness of the presented method.

As transition path ensembles relate to their underlying energy landscapes,
so do the friction-induced transition path ensemble deformations. Note that
stretches of steep ascent of the stepwise evaluation of Equation 68 in Fig-
ure 65D - Figure 65F correspond to regions with locally increased or de-
creased ’path-dwelling’ times which are expected around the maxima or min-

20 Here, errors in ∆p(x|TP) indicate confidence intervals of 95 %.
21 Results in Figure 65 are based on the following amount of transition paths. R15, Figure 65A,

Figure 65C, Figure 65D - experiment: 49; simulations from low to high γP : 970, 2924, 325.
Simulations, Figure 65E - symmetric potential from low to high γP : 136, 557, 105. Simulations,
Figure 65F - asymmetric potential from low to high γP : 392, 3488, 3133.

22 Here, keff ∼ 0.1 pN/nm for all simulations as well as the experiment. Acting forces are given
by multiplication of keff with corresponding deflection values ’x’.

23 Unfolded contour lengths in Figure 65D - Figure 65F are: ∼ 33 nm, ∼ 76 nm, ∼ 52 nm.
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ima of the underlying potential. Corresponding tendencies can already be
seen in Figure 65A and Figure 65B. Here, upon close inspection, the friction-
induced deformation has a slight asymmetry with a higher path weight on
the folded side. This correctly relates to the transition state position of R15

which was already found to be much closer to the folded than the unfolded
state based on kinetics, see Table 8 or Table 9.

Another interesting point of speculation is the pronounced deviation be-
tween the experimental and simulated trajectory of R15 in Figure 65D which
are both based on ensemble averages and which both end up having about
the same final ∆p(x|TP) value. Partially, this may be explained by differences
between the respective unperturbed bead diffusion references p0 (x|TP), see
black dashed lines in Figure 65A and Figure 65B. However, an even more in-
triguing explanation would be a position-dependent, non-uniform friction co-
efficient γR15

P (∆p ( ′x ′)) to which measured transition path ensembles should
be sensitive in accord with similar thoughts published elsewhere [137, 158].
Given the method introduced in this section, direct proof for position-depen-
dent protein friction is, hence, only a bit more statistics and preferably slightly
better resolution away.

In addition to potentially paving the way towards detecting position-de-
pendent protein friction, what are the advantages of the herein introduced
alternative method for deriving protein friction coefficients? By being purely
diffusion-based, this method probably represents the most direct way of de-
riving a diffusion constant D where the complex interdependence of protein
and bead diffusion is automatically considered by a relatively simple simula-
tion. Given that, the method is independent of any additional model which
is typically needed to relate diffusion-altered kinetic rates or transition path
times to the shape of an underlying potential. Further, provided that statistics
are high enough, deriving protein friction coefficients based on the deforma-
tion of detected transition path ensembles should even be possible for older
force-spectroscopic measurement data including AFM experiments.

Taken together, the friction coefficient of γR15

P (∆p) ∼ 1·10
−6±1.5 pN · s ·nm−1

which results from the detected friction-induced transition path ensemble de-
formation of R15 very well matches the transition path time based value
γ

R15

P (τTP,G(LP)) from Section 6.4.1. In return, the value from this section
implies an average transition path time of 24µs which is in perfect agree-
ment with previous results from Section 6.2.3. By this means, the herein in-
troduced method to derive protein friction coefficients based on detectable
friction-induced transition path ensemble deformations ∆p(x|TP) yields very
reasonable results. Importantly, already a relatively small number of transi-
tion events, here 49, is enough to get meaningful protein friction coefficient
estimates.
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6.4.3 Localization and structural interpretation of high-energy intermediates of the
Rossmann fold

This section is dedicated to a more detailed inspection of the folding transi-
tions of ROSS. As already pointed out during analysis of different mutants
in Section 6.3.2 and Section 6.3.3, transitions of the Rossmann fold typically
involve passing through intermediates. In the following, these intermediates
are localised based on WLC-fits as well as transition path histograms and en-
sembles from constant velocity and constant distance data.

The top of Figure 66 displays a selection of ROSS unfolding transitions
recorded during 500 nm/s constant velocity cycles. Thanks to the contour
length transformation outlined in Section 3.1.1, events which occur at differ-
ent forces can be directly aligned for better comparison. Figure 66B presents
a contour length gain histogram based on WLC-fits to intermediates within
unfolding transitions as well as to the fully unfolded state. Here, data are
based on 309 transitions of one single molecule without making a difference
between N, NL, and Rc fingerprints. The transition path histogram shown
in Figure 66C stems from another molecule’s 85 unfolding transition paths
observed during 500 nm/s constant velocity cycles. In Figure 66A, 8 of these
paths are highlighted by darker colors24. Again, all except PrL fingerprints are
included. Transition path ensembles depicted in Figure 66D represent five
different constant distance trajectories from four different molecules before
(dashed lines) and after deconvolution (full lines). To better fit into one graph,
ensembles from before and after deconvolution do not have the same y-axis
scaling. On average, ensembles in Figure 66D include 13 transition paths ex-
tracted from successive equilibrium unfolding and refolding transitions, see
Figure 54B for examples. Figure 66E details the deconvolved ensembles from
Figure 66D after their transformation into contour space. Here, the contour
length transformation makes possible the comparison of the spatial informa-
tion provided by transition path ensembles from different experiments.

An overview of the results obtained from analysing the data presented
in Figure 66 is given in Table 19. The top row indicates contour length gains
which are expected upon unfolding of the secondary structural elements spec-
ified in brackets below. Here, the particular choice of unfolded secondary
structure assumes that unfolding proceeds from C- to N-terminus and that
expected contour length gains should be as close as possible to the experimen-
tal ones. The second row holds the results from fitting a Gaussian four-peak
distribution (thick black line) to the histogram shown in Figure 66B. While
originating from only one single molecule, the value for the completely un-
folded state (U) compares very well to LCV

P = 34.7 ± 0.9 from Table 10 which
is based on all measured molecules. Hence, values obtained for the three pre-
dominant on-pathway intermediate positions can be expected to very well
represent all molecules. Results from the Gaussian three-peak distribution

24 As for constant distance trajectories, transition paths from constant velocity measurements
of ROSS were identified by HMM analysis to overcome issues with thermal noise, see also
Section 6.2.3. Here, the analysis was directly done in contour space.
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Figure 66: Localization and structural interpretation of short-lived on-pathway inter-
mediates of ROSS. (A) Unfolding transitions from 500 nm/s pulls trans-
formed into contour space. (B) Contour length gain histogram based on
WLC-fits. (C) and (D) Transition path histogram and ensembles extracted
from constant velocity and constant distance data. (E) Deconvolved ensem-
bles from (D) transformed into contour space. See text for more details.

(thick black line) to the transition path histogram depicted in Figure 66C are
listed in the next to last row of Table 19. As one can see, the contribution of
the third peak (light blue dashed line) to the entire histogram in Figure 66C
is very small by only having a relative area of 4 % with respect to 86 % and
10 % for the other two peaks. However, residuals in the top of Figure 66C
confirm that the best fit result is obtained with a three-peak distribution. The
good agreement with the WLC-fit results from the above row is another proof
for the existence of a third on-pathway intermediate. All errors for contour
lengths extracted from constant velocity (CV) data are standard deviations
derived from the Full Width at Half Maximum (FWHM) values of the fitted
Gaussian peaks according to σ = FWHM/2

√
2·ln(2). An important difference be-

tween Figure 66B and Figure 66C is that in addition to spatial information,
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the transition path histogram in Figure 66C already includes temporal infor-
mation in the sense of relative state occupancies weighted according to the
probed force distribution. By this means, the difference in relative peak area
in Figure 66C already suggests that the first intermediate I1 has the longest
and the third intermediate I3 the shortest dwell time average which can also
be estimated by eye in Figure 66A. The last row in Table 19 contains the two
main peak averages of the deconvolved transition path ensembles shown in
Figure 66E. While the third intermediate I3 could obviously not be resolved
by deconvolution due to its very short dwell time, the very good agreement
of the I1 and I2 positions with respect to alternative results confirms that
it is possible to extract on-pathway intermediate positions by deconvolving
transition path ensembles. Note that these intermediates were invisible upon
deconvolution of the entire equilibrium distributions.

METHOD I1 I2 I3 U

[nm]

Lcalc
P (Equation 5) 7.49 / 9.9 16.13 / 19.31 26.82 34.51

(α4/α4β4) (α4 - α3/α4 - β3) (α4 - β2) (α4 - β1)

WLC-fits (CV) 8.3 ± 1.1 17.6 ± 1.9 26.5 ± 2.1 34.6 ± 0.8

TP histogram (CV) 8.6 ± 4.0 18.0 ± 3.3 27.6 ± 5.3 -

TP ensemble (CD) 7.3 ± 0.8 17.9 ± 1.7 - -

Table 19: Predominant on-pathway intermediate positions of ROSS given in mea-
sures of unfolded contour length. Results are based on data presented in
Figure 66. The fully unfolded state (U) is included for completeness. Struc-
tural elements which are unfolded upon reaching the corresponding inter-
mediate are indicated in brackets.

According to results from Table 19, up to three on-pathway intermediates
were resolved upon a detailed inspection of the folding transitions of the
Rossmann fold. In Figure 66A, coloured dashed horizontal lines indicate the
three positions which were derived from the transition path histogram in
Figure 66C. Here, upon closer inspection, it even seems as if identified inter-
mediates were comprised of more fast interchanging intermediates. This is
why found intermediate positions are referred to as predominant. For this
reason, let us have another look at intermediate I1 of ROSS which ought to be
the same as intermediate ’I’ observed for S49Cc (S49Cc-I) in Section 6.3.2. For
ROSS, in Table 19, the WLC-fit average for I1 is considerably longer than the
calculated value expected for the mere unfolding of the C-terminal α-helix
α4 but still too short to be identified as the full unfolding of the C-terminal
α-helix and β-strand α4β4. In Table 14, the average for S49Cc-I is already
further away from α4 and closer to α4β4 but still remarkably shorter than
expected for full unfolding of α4β4. Hence, I1 could be an effective super-
position of two fast interchanging intermediates. A plausible reason for such
fluctuations may, e. g., be the recently reported differences in internal friction
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involved in the formation of (α-)helices and (β-)hairpins where, according
to all-atom simulations, hairpins experience less friction [252]. By this means,
the intermediate I1 of ROSS might comprise β4β3 hairpin fluctuations. Along
the same lines, I2 of ROSS might include β3β2 hairpin fluctuations which are
slightly more biased towards an open hairpin configuration as compared to
S85Cn.

Another point of debate with respect to the structural interpretation of the
predominant intermediates of the Rossmann fold is the following question.
Is the assumption that unfolding of ROSS proceeds from C- to N-terminus
justified? In short: yes. The strongest evidence for this assumption to be cor-
rect is given by the independent structural interpretation of the intermediates
S49Cc-I and S85Cn-I from Section 6.3.2 and Section 6.3.3 which basically cor-
respond to the intermediates I1 and I2 of ROSS. And, in anticipation of their
derivation in Section 6.4.4, by lasting ∼ 2.5 ms and ∼ 135µs, the typical dwell
times of I1 and I2 also match those observed for S49Cc-I and S85Cn-I which
were independently found to lie within the millisecond and sub-millisecond
regime. In view of these numbers, the difference in relative area of the three
peaks in Figure 66C implies that I3 should have typical dwell times of less
then 100µs. With respect to its relatively broad distribution in Figure 66B, an
exact structural interpretation of I3 as given in Table 19 is not really possible.
Similar to previous thoughts on fast interchanging intermediates, I3 might
be any combination of two or three secondary structural elements of the N-
terminal half of ROSS.

In addition to a direct investigation of the productive transitions of the
Rossmann fold as conducted in this section, there exist other ways of tracking
down folding intermediates which are not resolvable by mere deconvolution
of entire equilibrium fluctuations. One of these ways has been applied in
reference [248], where histograms of the folded and unfolded state are fitted
separately with multiple skewed Gaussian distributions which represent the
system’s characteristic PSF. Considering the multitude of unsuccessful folding
attempts of the Rossmann fold which can be seen in the lower (unfolded) state
level of the constant distance trajectory in Figure 12, this kind of analysis may
be used to look for additional off-pathway intermediates which do not match
positions of the on-pathway intermediates characterized here. Another way
to reveal very fast transitions which go beyond the detection limit of all other
techniques is by autocorrelation analysis, see Section 3.4.4. This could be of
particular interest for a further analysis of the folded state of ROSS.

In conclusion, the principle result of this section is that the folding tran-
sitions of the Rossmann fold pass through three predominant on-pathway
intermediates I1, I2, and I3 which corroborate the picture of a sequential fold-
ing and unfolding process. Data are consistent with unfolding to start from
the C-terminus and to proceed towards the N-terminal end which is strongly
supported by close to identical structural interpretations and dwell times of
I1 and I2 with respect to the independently measured obligatory on-pathway
intermediates of S49Cc and S85Cn. Further, intermediates I1 and I2 seem to
involve fast β4β3 and β3β2 hairpin fluctuations. Within the experimentally
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accessible range, I3 was found to have the shortest dwell times and the most
undefined structure.

6.4.4 Transition-path-assisted energy landscape reconstruction

If a rough energy landscape is composed of a number of localised high-
energy on-pathway intermediates, overall transition path times basically re-
flect a sum of dwell times. To decipher the energy landscape roughness of the
Rossmann fold, here, the dwell-time-based energy landscape reconstruction
technique, which was developed and tested using simulations in Section 4.2.3,
is now applied to experimental data.

At this point, all important landmarks which characterize the (native) fold-
ing energy landscape of the Rossmann fold are known. With respect to the
folded state (N), unfolded contour lengths of the four transition states (TS1 -
TS4), three intermediates (I1 - I3), and the fully unfolded state (U) are listed
in Table 9 and Table 19. All these positions are marked by dark blue squares
in the reconstructed landscape in Figure 67A. Now, starting only from the
known positions, the already plotted barrier heights of the energy landscape
can be iteratively reconstructed by using the information provided by the
transition path time distribution and the rate plots shown in Figure 67B and
Figure 67C. In a nutshell, the fits included in both graphs provide dwell times
which characterize different barrier crossings at different forces. Given that
relevant transition state positions ∆xTS are already known, expected dwell
times for crossing an assumed harmonic barrier can be directly calculated as
a function of the barrier height ∆GTS based on Equation 55 in combination
with Kramers rate equation Equation 29, see Section 4.2.3 for details. From
such a dwell time versus barrier height plot, an unknown barrier height can
be directly read off as the value corresponding to the measured dwell time,
see also Figure 24B. Naturally, the friction coefficient which was previously
derived for ROSS based on its average transition path time is not applicable
in this part. Instead, here, γP = γFLred = 5.1·10

−6 pN · s · nm−1 from the more
’well-behaved’ artificial protein FLred is used for calculations. Further, ow-
ing to the relatively long dwell times, transition path times for actual barrier
crossing can, for the moment, be neglected.

According to requirements in Section 4.2.3.2, we are now fully set to begin
with the reconstruction. Fitting Equation 64 to the transition path time dis-
tribution in Figure 67B yields τ1 = 2.5 ± 0.4 ms and τ2 = 135 ± 46µs. This
leaves us with two dwell times for transition path times arising from passing
through three intermediate states. Since we already know that I3 is barely
resolved within constant distance measurements, τ1 and τ2 can essentially be
attributed to I1 and I2. Importantly, these values completely agree with the
millisecond and sub-millisecond lifetimes which were independently derived
for I1 and I2 by the S49Cc and S85Cn constructs. To be still able to deter-
mine a barrier height for I3, we make use of the information provided by the
transition path histogram in Figure 66C to derive an upper dwell time limit
τ3 for I3 with respect to τ2: compared to the 10 % of total area for I2, the
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Figure 67: Transition-path-assisted energy landscape reconstruction for ROSS at
9.5 pN. (A) Assembled energy landscape of ROSS reconstructed accord-
ing to the method elaborated in Section 4.2.3. Blue squares are landmarks
based on average contour length gains of WLC-fits (minima) and slopes
of SB-model fits (maxima), see Table 19 and Table 9. Barrier heights are
marked according to their derivation being either based on dwell times τ,
predominant rates, or transition state switches within effective rates. See
text for details. For reference, the dashed red line shows a deconvolved
energy landscape of ROSS tilted towards 9.5 pN. (B) Transition path time
distribution from Figure 54C fitted by Equation 64. (C) Zoom into the
force-dependent rate plots from Figure 52B. Background colours mark
force ranges I to IV of the only locally valid SB-model fits. Arrows point
towards forces with a transition state switch.

4 % of I3 correspond to 40 %. As these areas correlate with the relative time
spent within proximity of the respective states, this leads us to an estimate
of τ3 ∼ 50µs. Next, we need to know which barrier is determinant for each
dwell time. This is where the rate plots shown in Figure 67C come into play
as they indicate which transition state is predominant at which force. Since
the distribution in Figure 67B only comprises transition path times from con-
stant distance trajectories recorded around the mid-force Fmid of 9.5 pN, see
full circles in Figure 52B, the previously determined dwell times belong to
force regime number III where transition state TS2 is predominant. From an
energetic perspective, this puts TS1 and TS3 below TS2, and TS4 below TS3.
To prevent confusion: regimes I - IV, i. e., going from low to high force in
Figure 67C, provide transition state positions TS4 - TS1 in Figure 67A. Finally,
after finding the determinant barrier positions, we can derive the following
barrier heights25 for intermediates I1 - I3: ∆GI1·TS1

9.5 ∼ 6 kBT, ∆GI2·TS3

9.5 ∼ 2 kBT,
and ∆GI3·TS4

9.5 ∼ 1.5 kBT.
After having determined one barrier for each intermediate, how can we

derive the second one from which we only know that, at 9.5 pN, it must

25 Note that in this section, all barrier heights are unsigned for convenience.
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be significantly higher? The key to answer to this question is provided by
force-induced predominant transition state switches. When a transition state
switch is on hand, rates for crossing either of the two neighbouring transi-
tion states are equal when starting from the minimum located in between
them, see also Figure 25A. Moreover, according to findings in Section 4.2.4,
force-induced transition state switches cause kinks within force-dependent
rate plots which allows to localise them easily. In Figure 67C, forces at which
a transition state switch occurs within the folding transitions of the Rossmann
fold are marked by black arrows. Now, after tilting26 a known barrier of an in-
termediate towards the force of the relevant transition state switch, the tilted
barrier provides a transition rate from which the unknown barrier height can
be directly derived since it has to provide the exact same rate. Thereafter, the
newly found barrier height simply needs to be tilted back to 9.5 pN. As an
example, let us consider the second barrier for intermediate I1. Here, the rele-
vant transition state switch III/IV between regime III and IV occurs at 15 pN.
Tilting ∆GI1·TS1

9.5 towards this force yields ∆GI1·TS1

15 ∼ 10 kBT. By setting kI1·N
15 =

kI1·I2
15 , we reach at ∆GI1·TS2

15 ∼ 10 kBT. After tilting barriers back to 9.5 pN, we
arrive at ∆GI1·TS2

9.5 ∼ 13 kBT. The same procedure was done for I2 and I3 as
well. Note that the example of I1 further means that at 15 pN a maximal local
roughness of about 10 kBT is attained.

The last two missing barrier heights are ∆GN·TS1

9.5 and ∆GU·TS4

9.5 . Both barriers
are the only ones which can, in principle, be directly derived from measured
transition rates which lie far enough within force ranges IV and I, respectively.
However, to be on the safe side, it is best to use the rates provided at transition
state switch positions III/IV and I/II as there the respective measured overall
transition rate is exactly half the rate for crossing the barrier we want to esti-
mate, see also Figure 25C. Now, before stitching all energy barriers together,
we add one more essential piece of information to the overall picture. In addi-
tion to transition path times and effective rates, another known quantity is the
zero-force folding free energy ∆G0 of the Rossmann fold which indicates the
relative energy between the folded and unfolded state. By tilting this energy
difference, we arrive at ∆GN·U

8 ∼ 0.8 kBT. Note that the folding free energy
was only tilted towards 8.0 instead of 9.5 pN. This is done to account for a dif-
ference in force of about 1.5 pN between the folded and unfolded state which
arises due to the passive mode of our constant distance measurements.

What can we say about the final result of the fully reconstructed energy
landscape of the Rossmann fold shown in Figure 67A? In general, compared
to the red dashed line which represents a deconvolved energy landscape
tilted towards 9.5 pN, the reconstructed landscape has a much higher level
of detail. Notably, the main transition state position as well as the relative
energy levels between the native and unfolded states are almost the same for
the deconvolved and reconstructed landscapes. However, within the recon-
structed landscape, there is a shaded area which illustrates an energy mis-
match of about 5 kBT which occurs around transition state position TS4. In

26 Note that the folding energy landscape needs to be tilted in deflection space to correctly apply
changes in acting force which, basically, corresponds to ∆GF = ∆G0 - F ·∆xtether.
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principle, this mismatch arises from matching the energy difference between
folded and unfolded state to the value obtained from tilting the overall fold-
ing free energy. Among potential reasons for the origin of this mismatch are
artefacts arising from inaccuracies of the reconstruction, the already known
multi-dimensionality of the Rossmann fold which involves multiple finger-
prints, position-dependent friction, additional unresolved intermediates, or
anything else which can originate from projecting the folding of a globular
protein on our single measurement coordinate along the vector of the acting
force. Then, how do we know whether the reconstructed energy landscape
provides any meaningful information? Here, we can test this by comparing
the zero-force extrapolated folding free energy of intermediate I1 provided by
the reconstructed landscape to the energy derived for the intermediate I from
S49Cc measurements in Section 6.3.2. Since ROSS and S49Cc share the same
unfolding pathway and (first) intermediate, the respective energies should
match. And indeed, the value of ∆GN·I1

0 ∼ 17 kBT from the reconstructed land-
scape corresponds very well to the ∆GF·I

0 ∼ 15 kBT from S49Cc listed in Ta-
ble 16. Such a good match is very strong evidence for a meaningful energy
landscape reconstruction.

Note that the superposition of the reconstructed and deconvolved land-
scapes in Figure 67A is somewhat reminiscent of the superposition of a ran-
dom roughness onto the deconvolved energy landscape of the Rossmann fold
depicted in Figure 64B. However, in agreement to findings in Section 6.4.3,
here, the previously assumed relatively high effective roughness of the Ross-
mann fold is unmasked to essentially be constituted of a limited number of
discrete on-pathway intermediates.

Altogether, here, we showed that in combination with a more detailed anal-
ysis of transition paths, a five state energy landscape can be reconstructed
from data provided by an otherwise simple two-state analysis. By reaching a
much higher level of detail as compared to deconvolution, the herein applied
dwell-time-based energy landscape reconstruction technique, which was de-
veloped in this work, has proven to be very useful. In addition to the result
that the energy landscape roughness of the Rossmann fold is essentially con-
stituted of 3 predominant intermediates, we also found that at 15 pN, a max-
imal local roughness of 10 kBT is reached in terms of the highest on-pathway
intermediate energy well depth. Notably, the reconstructed energy landscape
provides almost the exact same folding free energy of ∆GN·I1

0 ∼ 17 kBT for the
intermediate I1 as has been previously found for the corresponding interme-
diate I of S49Cc from constant distance measurements.

6.5 summary and outlook

This final section is divided into two parts. In the first part, previous experi-
mental results are reviewed in the context of comparing the artificial proteins
ROSS and FLred to the natural protein R15. This includes two additional fea-
tures one of which focuses on the folding mechanism of the Rossmann fold
and the other one summarizes gained insights into energy landscape rough-
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ness in general. The second part is dedicated to answer the question of how
and what we can learn from studying transition paths. After a brief summary,
prospects of the newly developed method of protein friction determination
based on transition path ensemble deformations ∆p(x|TP) are discussed in
view of a number of other protein systems which have been measured dur-
ing this thesis. Further, an expansion of the analysis of transition paths from
equilibrium towards off-equilibrium data is proposed.

6.5.1 Folding reliability: evolution outperforms design by means of reduced com-
plexity

While R15 is a highly cooperative and simple two-state folder, ROSS is a
sequential multi-state folder with high stability. This statement is based on
a multitude of fingerprints which involve off-pathway transitions, a multi-
modal distribution of unfolding forces as well as on kinked rate plots which
were all observed to characterize the mechanics of the artificial Rossmann fold
in Section 6.2. By contrast, folding of the natural R15 protein is well described
with one distinct fingerprint, an unimodal unfolding force distribution, and
rate plots having constant slopes over the entire accessible force range.

Figure 68A and Figure 68B present a few key parameters which distinguish
the mechanics of R15 and ROSS. With respect to general protein-folding, there
are two crucial differences between R15 and ROSS, namely the success rate
and the duration of folding into the native (N) configuration. With a 100 %
success rate and transition path times in the low microsecond regime, R15 is
an extremely reliably and fast folding protein. On the other hand, the Ross-
mann fold is prone to getting trapped in non-native configurations which, in
case of 500 nm/s constant velocity cycles, almost make up a total of 30 % of
all folding transitions, see Figure 68C. In addition to unreliable folding under
force, in case of ROSS, the process of folding itself lasts a few milliseconds.
Hence, while R15 appears to have a relatively smooth energy landscape, ROSS
seems to experience an additional energy landscape roughness which can be
quantified by an additional effective roughness of εrms = 2.4 kBT with respect
to R15, see Section 6.4.1. Another important consequence of the long transi-
tion path times of the Rossmann fold is its slow folding rate at zero force
kf,ROSS
0 which only reaches about 100 s−1, see also force range I in Table 9.

With kf,R15

0 being 10.000 s−1, R15 folds way more efficiently than ROSS. Note
that transition path times of less than 100µs are necessary to achieve folding
rates of 10.000 s−1 while transition path times of 4 ms only allow folding rates
of up to 250 s−1 to be achieved.

With respect to reliability, speed, and efficiency, the natural protein R15

clearly outperforms the artificial Rossmann fold. However, ROSS has one ad-
vantage over R15 which is given by storing twice the folding free energy per
amino acid. In combination with its sequential folding mechanism, the high
folding free energy enables ROSS to refold against significantly higher forces
and to longer resist against unfolding around its higher mid-force compared
to R15, see Ffold

max in Figure 68A and Figure 68B, and see also Table 9. In conclu-
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Figure 68: Reaction schemes for R15 and ROSS. (A) The measured mechanical be-
haviour of R15 corresponds to behaviour expected for an ideal two-state
folder. (B) The mechanics of ROSS are much more complex than simple
two-state. In addition to obligatory on-pathway intermediates, the rough
energy landscape of the artificial Rossmann fold also comprises misfolded
states in the style of kinetic traps. (C) Interconnections between observed
fingerprints of ROSS. Percentages symbolize the reaction flux based on
fingerprint occurrences during 500 nm/s constant velocity cycles.

sion, the comparison between natural and artificial proteins seems to result
in having to choose between higher cooperativity which apparently comes
along with reliable and efficient folding or higher folding free energies which
tend to promote undesirable non-native interactions in parallel to providing
more resistant structures. In cells, proteins need to function properly and reli-
ably at all times, they do not typically need to store a lot of energy. Or to put
it differently: like happiness does not lie in money alone, the protein-folding
problem is not solved by stability alone.

Hence, to guarantee optimal protein functionality in terms of reliable, re-
peated and fast folding, the folding free energy is not the only parameter that
needs attention when designing proteins. This finding is indirectly supported
by the fact that a designed destabilization helped Top7 to become a cooper-
ative folder, see [245]. Importantly, this work even provides ’designed’ proof
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of how a labile design can result in more efficient and reliable folding. This
proof is given by the labile re-design of the Ferredoxin-like fold called FLred
in Chapter 5. Compared to ROSS, FLred shows much faster folding rates at
zero force, i. e., 1.000 - 10.000 s−1 (see Table 4), while not providing any evi-
dence for multiple pathways or misfolding. On the other hand, compared to
ROSS, FLred stores less than one third of folding free energy per amino acid.

Folding mechanism of ROSS

According to a detailed investigation of individual folding transitions in Sec-
tion 6.4.3, native folding of the Rossmann fold involves passing through three
predominant on-pathway intermediates I1, I2, and I3. This corroborates the
picture of a sequential folding and unfolding process which is further quanti-
fied in Section 6.4.4. The mechanical data suggest that unfolding starts from
the C-terminus and proceeds towards the N-terminal end which is strongly
supported by close to identical structural interpretations and dwell times of
I1 and I2 with respect to the independently measured obligatory on-pathway
intermediates of S49Cc and S85Cn, see Section 6.3.2 and Section 6.3.3. More-
over, intermediates I1 and I2 seem to involve fast β4β3 and β3β2 hairpin
fluctuations. An essential feature of the overall stability of the Rossmann fold
is provided by the enforced key lock mechanism of the C-terminal α-helix.
The enforcement seems to arise from a proline-induced stiffening of the back-
bone at the N-terminal capping position of this helix, namely at position P86,
see Section 6.3.1.

In addition to native (N) folding transition pathways (N/U), the Rossmann
fold sometimes ’loses its way’ and ends up in non-native configurations as
revealed by at least four different typical fingerprints in Section 6.2.1. These
additional fingerprints involve at least 3 more possible pathways which can
be identified as transitions between NL/U, PrL/U, and NL-Rc/Rc-N in Fig-
ure 68C. Concerning the nature of NL (native-like) transitions, a comparison
of its contour length gains to those provided by native (N) transitions in Sec-
tion 6.3.2.1 revealed by ∆LN/NL

P = 0.9 ± 0.6 nm shorter lengths for NL. This
is direct proof for a different structural arrangement which seems to explic-
itly involve non-native interactions between the N- and C-terminal halves
of ROSS. Since the relative occurrence of Rc (rescue-transition) fingerprints
scales with the occurrence of NL, Rc is likely to be a spin-off of NL finger-
prints by representing rescue attempts out of NL and into the native config-
uration, see also Section 6.3.2. The mechanical study of proline-free mutants
performed in Section 6.3.1 could neither confirm nor disprove that a proline-
switch is the only cause for the occurrence of PrL (proline-like) fingerprints.
Since no further insight into an alternative origin has been found, the PrL
configuration remains vaguely related to problems of the protein backbone.

An important reason for the relatively high amount of undesirable non-
native interactions may be given by the energetic imbalance between the N-
and C-terminal halves of the Rossmann fold which was uncovered in Sec-
tion 6.3.2 and which attests the C-terminal half to store more energy than the



6.5 summary and outlook 199

N-terminal half. A tangible result which confirms this hypothesis is given by
findings for the proline-free mutants P86A and P86S in Section 6.3.1. Here,
a reduction in folding free energy by about 2 kBT within the C-terminal half
of ROSS led to a significant reduction of the occurrence of undesirable non-
native interactions represented by NL and PrL, see Table 12. Furthermore, this
observation confirmed that the use of proline P86 is a design element which
increases the overall mechanical stability of the Rossmann fold by stiffening
its backbone. However, the reduction of undesirable non-native interactions
upon replacement of the proline, which comes along with a reduction in fold-
ing free energy, reconfirms the above statement that the folding free energy
is not the only thing which needs to be optimized by design.

If all intermediates as well as their hypothesized β-hairpin fluctuations are
considered, solely native folding of ROSS already involves at least 7 states.
Furthermore, the four identified different pathways contribute at least an-
other two additional states, namely NL and PrL. With four different path-
ways and 9 different states, to date, the Rossmann fold probably provides the
most complicated folding network which has been characterized with optical
tweezers for a protein of this size. In this context, it is of high interest to men-
tion that all αβ-proteins including the Rossmann fold which originate from
the same design study have one issue in common: while all αβ-proteins have
well-resolved NMR structures, none of them does crystallize to provide a crys-
tal structure27 [115, 199]. This observation could imply that all these proteins
do not exist in exactly one configuration28 which would be absolutely crucial
for crystallization. From this perspective, the complicated folding network
found for ROSS is the first experimental explanation for the crystallization
issues of the designed αβ-proteins.

Note that the folding mechanism of the designed 2x2 Rossmann fold has
a lot in common with the naturally occurring thermophilic variant of Adeny-
late kinase (thADK) which has a very similar folding motif [166]. The two
on-pathway intermediates which were identified upon unfolding of thADK
are structurally identical to I1 and I2 of the Rossmann fold. Additionally, un-
folding of I1 also involves a typical pre-flipping. Unfolding out of the second
intermediate appears to be initiated by a traceable hairpin unzipping. Further-
more, there seems to be a hint towards a third, very short-lived on-pathway
intermediate which is located very close to the fully unfolded state of thADK.
And finally, thADK, which incorporates a number of prolines, shows the same
proline-like behaviour as the designed Rossmann fold. Now, in perspective of
the folding mechanism of a naturally occuring protein with a similar fold, the
folding issues of ROSS can be boiled down to one single problem: NL finger-
prints, i. e., the non-native interactions between the N- and C-terminal halves
of ROSS.

With respect to its complicated folding network, ROSS is reminiscent of be-
ing a miniaturized version of the much bigger Hsp90 protein, a large molec-

27 By way of personal communication from Po-Ssu Huang after a talk he gave at the Technical
University of Munich in September 2017.

28 The particular reason why additional populations expected for NL and PrL are not ’resolved’
by NMR remains unsettled.



200 rossmann fold : an artificial protein in trouble

ular machine which has been reported to also show multi-pathway folding
and misfolding in single-molecule experiments [109]. For Hsp90, a strongly
reduced reaction scheme has been used to separate successful (N) and unsuc-
cessful (W = ’wrong’) folding attempts out of the unfolded (U) state according
to: N 
 U 
 W. The similarity to the reduced scheme shown in Figure 68B,
where the additional X merely represents the entire interconnecting space
within the folding funnel except for states N, W, and U, is obvious. Now, if
we consider all non-native interactions of the Rossmann fold to be included
in a single population W, then the logarithm of the ratio of the probabilities of
being either native or non-native should yield the energy difference between
these two hypothetical states which is ln(p(N)/p(W)) ∼ 1kBT . In view of an
overall folding free energy of almost 30 kBT this seems quite small, however,
this energy difference of about 1 kBT has the same order of magnitude which
caused a significant reduction of non-native interactions due to the replace-
ment of proline P86, see above.

Energy landscape roughness and internal protein friction - two sides of the same coin

What is energy landscape roughness? And what does internal protein friction
mean? In literature, roughness is described in different ways. Sometimes it is
simply expressed as elevated internal friction due to ’frustration’ [40, 238], al-
ternatively, changes in friction are paraphrased as additional effective rough-
ness εrms which can typically range from 2 up to 5 kBT [159, 209], or, distinct
local energy minima of up to 15 kBT are brought into play to characterize a
rough energy landscape [148].

All the above ways of describing roughness are also used in this work.
While R15 was found to have an internal friction coefficient of γR15

P = 9.7·10
−7

pN · s · nm−1, ROSS had a coefficient of γROSS
P = 2.6·10

−4 pN · s · nm−1. Hence,
ROSS has an elevated internal friction that can be expressed as an additional
energy landscape roughness of about 2.4 kBT with respect to R15, see Sec-
tion 6.4.1. A detailed analysis of the transition paths of the Rossmann fold
revealed that the actual reason for its apparently elevated friction are three
distinct predominant on-pathway intermediates which reach a distinct local
roughness of up to 10 kBT, see Section 6.4.3 and Section 6.4.4. This observa-
tion is a key finding which directly relates elevated internal friction to distinct
minima in an energy landscape. Such an understanding of friction can also
be found in recently published simulation studies [253].

Friction γ is linked to diffusion D by temperature according to γ = kBT/D.
Similar to the speed of light which sets a limit to the propagation speed
of light in space, diffusion sets a limit to the speed of protein folding. The
friction which corresponds to the experimentally determined diffusion limit
of cytochrome c (CyC) equals γCyC

P = 8.8·10
−8 pN · s · nm−1 at a temperature

of 298 K [92]. Compared to this value, the friction measured for R15 is about
one order of magnitude higher, see above paragraph. From this perspective,
one can deduce that there is still a remaining ruggedness present which is
’invisible’ to our experiments. In this context, when assuming that the internal
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friction coefficient of ROSS was that of cytochrome c instead of FLred as being
assumed in Section 6.4.4, then the maximal local roughness which was found
for ROSS would even reach up to 15 kBT.

In summary, friction or effective roughness are qualitative measures of
quantitative effects inferred by distinct energy landscape roughness. When-
ever experiments cannot resolve its origin, speaking of elevated internal fric-
tion serves as a circumvention to describe roughness. In this context, effective
roughness can be considered as a theoretical construct which translates ap-
parent differences in friction into the energy landscape perspective. In other
words, effective roughness is an intuitively clear illustration of something
which has not yet been understood in detail. A consequence of our better
understanding of energy landscape roughness is that experimentally deter-
mined friction coefficients should be considered as upper limit estimates as
there always remains the possibility of experimentally unresolved rugged-
ness.

An outlook towards more data, theories, design, and mutants

Most constant velocity measurements of the Rossmann fold, its mutants, and
different pulling geometries were performed at a speed of 500 nm/s. By screen-
ing through different speeds and looking for changes within the relative fin-
gerprint occurrences one might learn more about the hierarchy of folding and
unfolding events or force-induces pathway switches. In particular, a loading
rate dependent study of the essentially bi-modal unfolding force distribution
of ROSS seems to be an ideal occasion to test a theory which was recently de-
veloped to distinguish signatures of multipathway conformational transitions
[170]. Following experiments which were performed on Hsp90, one could test
the effect of additional waiting times at zero or very low force on the success
rate of folding into the native state of ROSS [109].

Since the designed Rossmann fold showed many similarities to the natu-
rally occurring thADK with a very similar fold, see above, it seems intriguing
to compare the ideal two-state mechanics of R15 to a designed three-helix
bundle like, e. g., α3D [233]. Furthermore, the mechanical characterization of
any re-design of a naturally occurring protein which has already been me-
chanically characterized like, e. g., calmodulin [216], can lead to a lot of new
insights on folding mechanisms, design rules, the impact on a protein’s func-
tionality, etc.

Proline-free versions of S49Cc, the construct for directed C-terminal unfold-
ing in Section 6.3.2, are likely to provide more precise results on the effect of
the P86A and P86S mutation on the folding mechanism of ROSS particularly
with regard to the folding free energy of its first predominant on-pathway
intermediate I1. Besides, the ’simple’ three-state mechanics which were ob-
served for S49Cc may serve as an experimental reference for the effect of
transition state switches on overall transition rates which is discussed on the
basis of one-dimensional diffusion simulations in Section 4.2.4.
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A new S9Cc construct may help to figure out whether the N-terminal β-
sheet is truly not involved in the formation of unfolding intermediate I2.

Sometimes, truncation mutants can help to find out whether a substruc-
ture of a protein is stable enough to keep up a folded structure on its own.
Potential candidates for truncation mutants of ROSS could be its N- and
C-terminal halves for which there are two reasons. First, measurements on
S49Cc revealed that after unfolding of the C-terminal half, a residual energy
of 7kBT still resided in the N-terminal half, see Section 6.3.2. And second,
upon full unfolding, intermediate I2 represents a fully folded C-terminal half,
see Section 6.4.3. However, it should be noted that already the attempt of
measuring a less radical truncation mutant, which had only the C-terminal
α-helix deleted, unfortunately failed29.

Circular permutations are a very promising approach to address a cou-
ple of questions related to the folding mechanism of the Rossmann fold. For
such permutations, the proximity of the N- and C-terminal ends of ROSS
proves beneficial. To illuminate interactions within the N-terminal half of
ROSS which comprises the very short-lived intermediate I3, an interesting
circular permutation would be given by closing the N- and C-termini with a
loop and opening another loop right after position S49. This would yield a
new variant of the S49Cn construct where unfolding is not restricted to start
by pulling the N-terminal β-sheet out of the hydrophobic core. Another inter-
esting circular permutation could address the enforced key lock mechanism
and the bending issue of the C-terminal α-helix around position P86. There-
fore, again, N- and C-termini are closed by inserting an additional loop and
instead, the loop next to P86 is opened.

6.5.2 Transition paths - high potential with imposed limits

In force spectroscopic single-molecule trajectories, transition paths enclose
temporal and spatial information. These are provided by their transition path
times and the shape of their transition path ensembles. The direct evaluation
of individual transitions provides useful information to derive rough time
scale estimates of the involved protein folding. Here, estimated average tran-
sition path times were 〈τR15

TP 〉 ∼ 20µs for the natural protein R15 and 〈τROSS
TP 〉

∼ 3.9 ms for the artificial Rossmann fold, see Section 6.2.3. In case of time
scales being similar to the response time of the measurement system, special
care has to be taken to account for mixing between actual protein folding
and its detection, see Section 4.3.3.2. In this work, both transition path times
and ensembles were used to derive the measured protein’s internal friction
γP, see Section 6.4.1 and Section 6.4.2. Furthermore, based on the information
provided by transition paths, a newly developed approach enabled the recon-
struction of a protein-folding energy landscape with a much higher level of
detail as compared to deconvolution which itself is one of the most advanced
reconstruction techniques at hand, see Figure 67A in Section 6.4.4.

29 Besides smeared out multiple peaks during SEC-runs, no interpretable fingerprints different
from randomly arranged polypeptide were seen during trap measurements. Data not shown.
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In agreement with results obtained from simulations in Chapter 4, transi-
tion path probability calculations, as described in Section 3.8.3, were found to
be incapable of providing correct information on transition state positions or
reaction coordinate quality without additional information provided by, e. g.,
deconvolution, see Section 6.2.5. Concerning committor-based barrier shape
reconstructions described in Section 3.8.2 and performed in Section 6.2.4, bar-
rier heights are reasonable with respect to deconvolution while their shapes
tend to be more resemblant to the measured bead potential which also has
been similarly observed in simulations, see in particular Section 4.3.4. Es-
sentially, the observed limitations of the predictive capabilities of different
transition path analysis tools are imposed by our measurement procedure.
As elaborated in Section 4.3.2, the projection of a multidimensional folding
process into one dimension is additionally distorted by differences in friction
with respect to protein and bead diffusion.

Similar to transition path times and ensembles which are altered by the ad-
ditional presence of protein diffusion, the shape of committors can be used to
detect the presence of protein folding by comparison to the shape expected for
unperturbed bead diffusion. Furthermore, the slopes of committors indicate
whether the involved protein friction effectively lies below or above the fric-
tion inherent to the detection system. This way it was found that both R15 and
ROSS are not folding at the speed limit which directly follows from the strong
deviation of their commitment probabilities from the shape expected for mere
bead diffusion, see Figure 55A and Figure 56A in Section 6.2.4. Further, R15

effectively experiences less while ROSS effectively experiences higher fric-
tion than the beads. In combination, this yielded 4.8·10

−8 pN · s · nm−1 <

γ
R15

P < 1.5·10
−6 pN · s · nm−1 for the friction coefficent of R15 and γROSS

P >

3·10
−6 pN · s · nm−1 for ROSS. In case of ROSS, the indicated values only

hold upon assuming two-state folding.

From landscape reconstruction towards friction maps

In total, three different ways of protein friction coefficient determination were
used in this thesis. A typical way to derive γP is based on solving Kramers
rate equation for γ, see Equation 29. One way to implement this approach is
given by using zero-force extrapolated folding rate constants and the shape of
their corresponding deconvolved energy landscape which provides necessary
curvatures at critical barrier positions, i. e., γP is given as γP

(
kf0,G0 (LP)

)
.

This derivation was applied for the designed protein FLred in Section 5.3.1
of Chapter 5 and yielded γFLred

P = 5.1·10
−6 pN · s · nm−1. The two other ap-

proaches which were used in Chapter 6 to determine γP are based on in-
formation provided from transition paths. In Section 6.4.1, average transition
path times 〈τTP〉 were used in connection with their corresponding decon-
volved energy landscapes and yielded values γP

(
τTP,G (LP)

)
after solving

Equation 54 for γ = kBT/D. Together with the corresponding deconvolved en-
ergy landscape shapes, measured transition path times of R15 and ROSS im-
ply γR15

P = 9.7·10
−7 pN · s · nm−1 and γROSS

P = 2.6·10
−4 pN · s · nm−1. The third
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approach which was newly developed in this thesis to derive protein friction
based on a minimal (implicit) mechanical model is introduced and applied in
Section 6.4.2. Here, the measurable friction-induced deformation of transition
path ensembles is used in combination with corresponding two-dimensional
Langevin Dynamics simulations to derive the inherent protein friction accord-
ing to γP (∆p(x|TP)), see also Equation 68. Application to data provided by
the measurements on R15 yielded γR15

P (∆p) ∼ 1·10
−6±1.5 pN · s · nm−1 which

is in excellent agreement with the result obtained from transition path times.
Both transition-path-based protein friction determinations have certain ad-

vantages over the determination based on extrapolated rates. While transition
path times are experimentally directly accessible, zero-force folding rate con-
stants strongly depend on the model which is used for their extrapolation.
Furthermore, while transition path times only weakly depend on experimen-
tally determined barrier heights, see Figure 19A, Kramers rate equation in-
volves an exponential barrier height dependence which can lead to much
larger errors. A particular advantage of the newly developed protein friction
determination technique which is based on friction-induced transition path
ensemble deformations ∆p (x|TP) is that already a relatively small number
of transition events is enough to get meaningful protein friction coefficient
estimates. Here, a single constant distance trajectory with a few transitions
is already enough to find the right order of magnitude in protein friction.
By contrast, multiple trajectories with many transitions over a large enough
force range are necessary to be able to reasonably model rates. Owing to
their asymmetric distribution, see Figure 19B, transition path times also need
enough sampling to yield a good average value.

The theoretical possibility of extracting protein friction coefficients from
shapes of dominant transition paths, which, in our case, are represented by
transition path ensembles, can also be found in literature [137]. After seeing
remarkable differences among diffusion constants which were derived from
transition path times of different DNA-hairpins, experimentalists foresee a pos-
sibility to measure position-dependent diffusion constants in the near future
[158]. Here, a way to directly extract position-dependent information on the
diffusion constant, i. e., the inverse friction coefficient, has already been pro-
posed to be given by the stepwise evaluation of Equation 68 along measured
transition path ensembles. Strong deviations from corresponding simulations
which assume constant friction and, by this means, a fixed diffusion constant,
directly indicate corresponding changes in γ and D, respectively; for an ex-
ample see Figure 65D. Further, stretches of steep and shallow ascent of the
incremental evaluation of Equation 68 along measured and simulated transi-
tion path ensembles shown in all graphs at the bottom row of Figure 65 can
be related to energy landscape features such as transition state positions or
inflection points.

In the future, a possible proof of principle measurement, which could also
help to fully establish the herein introduced transition-path-ensemble-based
friction determination, is the measurement of a ’speed limit’ or low-friction
reference. Such a reference would be given by a protein which folds so fast
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Figure 69: A ’speed limit’ reference and candidates for sequence-resolved friction
maps. (A) GB1: a potential ’speed limit’ reference. (B) Anti-parallel
heterodimeric coiled-coil: U2LZ shows fast folding/unfolding transi-
tions around 6 pN. (C) Parallel homodimeric coiled-coil from Drosophila
melanogaster: NS2n shows neck, stalk 1, and stalk 2 unfolding transitions.
The force-distance relation on the right is a zoom into the high-resolution
force-extension relation from the left (light blue).

that it yields transition path ensembles which are almost identical to what
would be expected for unperturbed bead diffusion. A candidate for such a ref-
erence may already be given by GB1 which, during this thesis, was found to
undergo folding transitions at constant distance measurements around 10 pN,
see Figure 69A. Further, statistics on transitions can be easily increased by
force-jump experiments to higher forces which simultaneously increases res-
olution due to correspondingly larger changes in the deflection signal. Impor-
tantly, from FRET measurements it is already known that the transition path
time of GB1 can be expected to be shorter than 10µs [45].

While measuring absolute values for internal protein friction might always
be a bit tricky due to experimental limitations, relative changes in friction
among different proteins of similar size and/or structure can be readily as-
sessed by calculating their γP (∆p(x|TP)) values. In this context, another class
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of proteins which has also been studied during this thesis might be of partic-
ular interest: coiled coils. The main graph in Figure 69C depicts a constant ve-
locity cycle of a 834 amino acid30, homodimeric coiled coil from the Drosophila
melanogaster Kinesin(-1) Heavy Chain. This NS2n construct comprises the
neck (N), stalk 1 (S1), and stalk 2 (S2) domains and is being unzipped from
the N-terminal (n) end, see Section A.2 for more details. The six WLC-fits mark
five distinct transitions starting from the neck and proceeding towards the sec-
ond stalk domain. Relative to each other, all these transitions can provide a
certain amount of friction which is involved in their unfolding and refolding.
Due to the simple coiled coil structure, it is also easy to isolate all these transi-
tions within correspondingly shorter unzipping constructs for their detailed
study. The results from such studies may then be used to build sequence re-
solved friction maps as a complement for sequence resolved stability maps.
Does friction go hand in hand with stability? Is friction unaltered by stability?
Does friction depend on the direction of unzipping? These and many more
question may be addressed in the future. Along these lines, another question
could be: is there a fundamental difference in friction between parallel homod-
imeric and antiparallel heterodimeric coiled coils? This could be answered
by studying the antiparallel heterodimeric U2LZ construct which shows fast
folding/unfolding transitions around 6 pN and, hence, should yield good
statistics on short time scales, see Figure 69B. Note that the reaction coordi-
nate for coiled coil unzipping is typically way more ’direct’ than for forced
globular protein unfolding. This way, coiled coils provide an ideal model
system to further fathom the potential which is concealed within transition
paths.

Transition path analysis beyond equilibrium

In this work, transition path analysis mainly focused on evaluating equilib-
rium trajectories from constant distance (CD) measurements. Due to the rel-
atively slow equilibrium rates of both R15 and ROSS, the accumulation of
measured equilibrium transitions for good enough statistics was very time
consuming. However, these measurements were necessary to prove that mea-
sured unfolding and refolding pathways provide the same information. A
very efficient way to increase statistics is by using off-equilibrium techniques
which are given by constant velocity (CV) measurements or force jump exper-
iments [189, 202].

The high potential which lies within gathering information from off-equi-
librium measurements is illustrated in Figure 70A. The upper panel shows a
scatter plot of force versus transition path times which were extracted from
repeated stretch-and-relax cycles of one single molecule and the lower panel
shows corresponding data which were pooled from all available CD trajecto-
ries of all molecules. While the CV measurement yields 532 data points within
10 minutes, data which were collected from many CD trajectories include 201

30 To our knowledge, this is the longest coiled coil construct which, up to date, has ever been
unzipped at once.
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Figure 70: Force-dependent transition path times, histograms, and ensembles. (A)
Scatter plots of force versus transition path times. The upper panel dis-
plays transition path times extracted from unfolding and refolding tran-
sitions (grey and dark blue empty circles) of an individual molecule
studied in 500 nm/s constant velocity (CV) mode. Below, transition path
times from constant distance (CD) trajectories are pooled together from all
molecules. (B) Transition path histograms from CV measurements clearly
provide spatial information that changes with force.

data points from measurements lasting for hours. Note that indicated forces
refer to the force bias which acts on the transition’s initial state. When extract-
ing transition paths from CV measurements (as opposed to direct force jump
experiments), a point of concern might be the constantly changing inter-trap
distance. For transition paths which last only a few milliseconds, this addi-
tional change in force bias during the actual transition event is almost negligi-
ble, see also Figure 12. In fact, during stretch-and-relax cycles, the direction of
movement of the traps typically compensates for the non-constant force bias
which is inferred by changes in unfolded contour length.

As highlighted by dashed circles in the upper panel of Figure 70A, the un-
folding and refolding force distributions of the Rossmann fold can be found
again in the scatter plot. Furthermore, the dashed arrow suggests a slight
trend towards longer transition path times with increasing force. While this
trend might be surprising on first sight, it can be directly explained with the
fact that intermediate I1, which has the highest impact on transition path time
durations of ROSS, reaches its highest energy well depth not until 15 pN, see
also Figure 67A. This correlation can also be seen in Figure 70B which shows
normalized histograms that are composed of transition paths from CV mea-
surements separated by force. Clearly, in Figure 70B, force-dependent differ-
ences in resolution and individual intermediate state contributions are well
noticeable and reveal a wealth of information.

When restricting transition path histograms from CV measurements to
within a very narrow force range, these histograms automatically become
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ensembles. In view of the possibility of measuring force-dependent transi-
tion path times and ensembles, also force dependent transition path analy-
sis might be put into practice. This could theoretically start with estimating
force-dependent transition state movement and end at a fully transition-path-
assisted energy landscape reconstruction without the need for additional in-
formation like rates. Abrupt force-dependent changes of transition path en-
semble shapes could indicate a change in predominant reaction pathways.
Furthermore, a potential force-dependence of internal protein friction could
be investigated to find out whether force might be one of the things which
cause elevated friction.

In view of the results presented in this work, an appropriate evaluation of
single-molecule protein-folding transition paths provides very valuable infor-
mation which can, for example, be used for energy landscape reconstruction
or internal protein friction determination. Hence, the analysis of transition
paths measured in as well as out of equilibrium represents a promising way
of learning more about the ’secrets’ of protein-folding.
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M AT E R I A L S A N D M E T H O D S

a.1 protein sequences

If not stated differently, all listed proteins were expressed in Escherichia coli
(E.coli) using a pET-28a(+) vector. Details of applied molecular cloning tech-
niques and protocols for protein expression, protein purification and attach-
ment of oligos are given in Section A.2 and Section A.3. All necessary pro-
tein parameters, such as their molecular weight or extinction coefficients,
were calculated using the Protparam tool which can be found under http:

//web.expasy.org/protparam/.
For an easier reading of the sequences the following rules have been ap-

plied. The sequence of the protein which is meant to be unfolded has bold,
black letters. Mutations are indicated by bold, blue letters. Parts serving as
unstructured spacers and/or originating from restriction sites are gray. The
cysteines (C) for oligo attachments are red. The rest in normal, black ’letters’
has a certain function, i. e., the first methionine (M) to start expression, lysins
(K) next to red cysteines to create ’hot-cysteines’ for better oligo attachment,
the His-Tag comprising 6 histidines for purification, as well as additional en-
tire proteins. Among the latter are ubiquitin, GB1 and fluorophores. The first
two serve as additional spacers to spatially separate oligo attachment points,
to especially prevent crosslinking of reactive cysteines within a construct.

a.1.1 Ferredoxin-like fold

The mechanically extremely labile Ferrodoxin-like fold (FLred) used to engi-
neer a highly elastic and tough protein-based hydrogel [76] is a re-design of
the de novo designed ideal Ferrodoxin-like fold (FL) [115]. The sequence of
the latter is taken from the published solution NMR structure (pdbID: 2KL8).
Including the first methionine, the core sequence of FL comprises 77 amino
acids. A sequence alignment with FLred reveals 16 mutations which mechan-
ically destabilize the fold, namely: M3F, G9T, L12D, A14Q, A18V, I23N,Q25R,
F29D, L37R, L42F, V49I, P50S1, V53N, A61V, F68Q and I76E. Underlined
amino acids of FL and blue coloured amino acids of FLred indicate the muta-
tions within the given sequences. In brief, the mutations reflect a weakening
of the hydrophobic effect and a potential increase of solvent contact area,
both leading to destabilization. This can be deduced from the fact that almost
all mutations replace hydrophobic side-chains with bulkier, polar or even
charged side-chains. The mutations are located especially at transitions be-
tween secondary structural motifs and surface exposed loops, see Figure 39.

1 Structurally this mutation very much resembles the P86S mutation in the proline-free version
of the Rossmann fold where it was shown to indeed mechanically destabilize the protein.
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The sequence of FL is only given for comparison. FL was designed and
expressed at the University of Washington in Prof. Baker’s group with the
sequence having been cloned into plasmid pET-29b by GenScript. It has not
been designed and expressed as a construct suitable for mechanical studies
with optical tweezers yet.

fl - stable design. MEMDIRFRGDDLEAFEKALKEMIRQARKFAG
TVTYTLDGNDLEIRITGVPEQVRKELAKEAERLAKEFNITVTYTIRLEHH
HHHH

The FLred sequence features a design for N- to C-terminal mechanical un-
folding/folding measurements with optical tweezers. For an easier thiol oligo
attachment, incorporated cysteines are spatially separated via an additional
GB1 at the N-terminus. The construct was designed and cloned into the ex-
pression vector pQE-80L, expressed, purified, and lyophilized at the Univer-
sity of British Columbia in Prof. Li’s group (UBC).

flred - labile design. MRGSHHHHHHGSCMTYKLILNGKTLKGETT
TEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTERSMGEFDIR
FRTDDDEQFEKVLKEMNRRARKDAGTVTYTRDGNDFEIRITGISEQN
RKELAKEVERLAKEQNITVTYTERGSLERSKC

a.1.2 Rossmann fold

The investigated Rossmann fold is also a de novo designed ideal protein [115];
(pdbID: 2LV8). As sequence similarity suggests, for the first trap construct of
the Rossmann fold the same design approach as for FLred was used.

ross-gb1 . MRGSHHHHHHGSCMTYKLILNGKTLKGETTTEAVDAATA
EKVFKQYANDNGVDGEWTYDDATKTFTVTERSMLLYVLIISNDKKLIEE
ARKMAEKANLELRTVKTEDELKKYLEEFRKESQNIKVLILVSNDEELDK
AKELAQKMEIDVRTRKVTSPDEAKRWIKEFSEEGGSLERSKC

A previous mechanical characterization of GB1 with AFM yielded average
unfolding forces above 150 pN [35]. At first glance this suggests an even more
stable behaviour than for ubiquitin, which also had been characterized using
an AFM showing a little bit smaller unfolding forces around 150 pN [195]. Nev-
ertheless, in our optical tweezers experiments, GB1 already unfolds within
tens of seconds at a constant force-load of merely 10pN (data not shown). As
this is not the case for ubiquitin [83, 108, 188, 216, 261], new constructs were
designed using ubiquitins instead of GB1 (constructs not shown). Finally, the
use of maleimide oligos made it possible to use TCEP during the attachment
reaction. Hence, a pure Rossmann fold with cysteines directly at its contigu-
ous N- and C-termini was provided by UBC and named ROSSorg.
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rossorg . MACKMLLYVLIISNDKKLIEEARKMAEKANLELRTVKTED
ELKKYLEEFRKESQNIKVLILVSNDEELDKAKELAQKMEIDVRTRKVTS
PDEAKRWIKEFSEEGGSKCLEHHHHHH

The relatively low yield of the oligo-attachments and the very short spacer
sequences between the reactive cysteines and the protein motivated an opti-
mized Rossmann fold design called ROSSopt. Besides slightly longer spacers,
the C-terminal negatively charged glutamic acid (E) of the XhoI restriction
site of the expression vector, was removed. In fact, an improved attachment
efficiency with respect to ROSSorg was attained: the ratio of proteins with
two attached oligos versus one oligo increased significantly from 3:4 to al-
most 2:1, see Figure 77 in Section A.3.3. This indicates that enough space
between the reactive cysteines indeed is an issue not only for undesirable
inter-crosslinking. ROSSopt and all following Rossmann fold constructs were
designed and expressed by the author. Genes, which were cloned into plas-
mid pET-28a(+), were obtained from GenScript.

rossopt. MACKGSMLLYVLIISNDKKLIEEARKMAEKANLELRTVKT
EDELKKYLEEFRKESQNIKVLILVSNDEELDKAKELAQKMEIDVRTRKV
TSPDEAKRWIKEFSEEGGSSGKCLHHHHHH

Proline-free Mutants

The Rossmann fold showed an additional population of unfolding forces
around 5 pN very similar to the additional population found for filamin A
caused by a so called proline-switch [189]. Hence, we suspected Proline P86

to be the reason for our observation as it is the only proline within the en-
tire 100 amino acid long sequence of the Rossmann fold. While in filamin A
the responsible proline P2225 is located within a loop region between 2 β-
sheets, P86 sits right at the beginning of an α-helix. To test the proline-switch
hypothesis, two proline-free Rossmann fold mutants were designed, namely
P86A and P86S.

The alanine in P86A was chosen by following the sequence design protocol
of the Rossmann fold itself [115]. This protocol states that proline is only al-
lowed in loops and at the beginning of helices and strands, i. e., the beginning
of a helix in our case. Even though glycine (G) seems to be a good candidate
to replace proline due to the similar small size, it is only allowed for loops
and therefore glycine was omitted. Next in size comes alanine (A), which is
allowed for helices and loops in the core and at the boundary. Due to its high
helix propensity, this made alanine the first choice [165].

p86a . MACKGSMLLYVLIISNDKKLIEEARKMAEKANLELRTVKTEDE
LKKYLEEFRKESQNIKVLILVSNDEELDKAKELAQKMEIDVRTRKVTSA
DEAKRWIKEFSEEGGSSGKCLEHHHHHH

Nevertheless, while being slightly solvent-exposed, P86 is not located at a
middle position, but right at the N-terminal end of the helix (N-capping posi-
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tion), such that alanin may not be an optimal replacement after all. Therefore,
serine (S), the next in size, was considered in P86S, as it has polar uncharged
side chains, is allowed at the surface according to the sequence design pro-
tocol, and is favourable at a N-capping position [63]. Furthermore, P86S re-
sembles the P50S mutation made in the re-design of the Ferredoxin-like fold,
where P50 is located at the beginning of an α-helix as well.

p86s . MACKGSMLLYVLIISNDKKLIEEARKMAEKANLELRTVKTEDE
LKKYLEEFRKESQNIKVLILVSNDEELDKAKELAQKMEIDVRTRKVTSS
DEAKRWIKEFSEEGGSSGKCLEHHHHHH

Directed unfolding mutants

To gain deeper insight into the unfolding pathway of the Rossmann fold,
further mutants with altered pulling geometries were designed. As the 2x2

Rossmann fold has a very symmetric α-β-repeat structure, it is obvious to
pull on either the N- or the C-terminal half. This was realized with the S49Cn
and S49Cc constructs, where ’n’ indicates unfolding of the N-terminal half
and ’c’ indicates unfolding of the C-terminal half. As the serine S49 is located
at a surface exposed loop position right in the middle of the Rossmann fold
it is the ideal candidate to be mutated into a structurally almost identical
cysteine for oligo attachment. Besides the S49C mutation, the entire sequence
is kept exactly the same as for the ROSSopt construct with two exceptions:
the unnecessary cysteine is mutated into a serine and the C-terminal glutamic
acid is not left out (as it has not been for any Rossmann fold mutant).

s49cn. MACKGSMLLYVLIISNDKKLIEEARKMAEKANLELRTVKTED
ELKKYLEEFRKECQNIKVLILVSNDEELDKAKELAQKMEIDVRTRKVTS
PDEAKRWIKEFSEEGGSSGKSLEHHHHHH

s49cc . MASKGSMLLYVLIISNDKKLIEEARKMAEKANLELRTVKTED
ELKKYLEEFRKECQNIKVLILVSNDEELDKAKELAQKMEIDVRTRKVTS
PDEAKRWIKEFSEEGGSSGKCLEHHHHHH

As the C-terminal α-helix plays a crucial role in unfolding, a third directed
unfolding mutant has been designed, where the entire protein without this
helix is being unfolded. This is realized by pulling at the N-terminus and the
surface exposed loop position S85 in the S85Cn mutant.

s85cn. MACKGSMLLYVLIISNDKKLIEEARKMAEKANLELRTVKTED
ELKKYLEEFRKESQNIKVLILVSNDEELDKAKELAQKMEIDVRTRKVTC
PDEAKRWIKEFSEEGGSSGKSLEHHHHHH

a.1.3 R15

The three-helix bundle protein R15 is part of the natural cytoskeletal protein
spectrin (pdbID: 1U4Q). The trap construct comprises the amino acids 1658-
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1771 of spectrin, which include 4 N- and C-terminal amino acids from the
neighbouring spectrin domains to provide a good folding environment. The
construct was provided by Thomas Suren with oligos already attached, for
details see [221].

r15 . MACKELGGKLKEANKQQNFNTGIKDFDFWLSEVEALLASEDY
GKDLASVNNLLKKHQLLEADISAHEDRLKDLNSQADSLMTSSAFDTS
QVKDKRETINGRFQRIKSMAAARRAKLNESHRLSHRLGGTKCLEHHH
HHH

a.1.4 GB1

To prove that GB1 causes additional unfolding events in the GB1 containing
constructs FLred and ROSS-GB1, first a GB1-tetramer (GB1-4) was designed
(pdbID: 3GB1). All GB1 constructs where provided by UBC.

gb1-4 . MRGSHHHHHHGSCMTYKLILNGKTLKGETTTEAVDAATAE
KVFKQYANDNGVDGEWTYDDATKTFTVTERSMTYKLILNGKTLKGET
TTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTERSMTYK
LILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATK
TFTVTERSMTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGV
DGEWTYDDATKTFTVTERSC

Next, a single GB1 construct flanked by two ubiquitins (pdbID: 1UBQ) was
designed. Note that an additional aspartic acid (D) was inserted right after
the first methionine of GB1.

gb1-2ubi . MACKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPP
DQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGELMDTYKLILNG
KTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVT
EGTMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQ
LEDGRTLSDYNIQKESTLHLVLRLRGGKCLEHHHHHH

Finally, a pure GB1 construct was designed to avoid additional ubiquitin un-
foldings.

gb1 . MACKMDTYKLILNGKTLKGETTTEAVDAATAEKVFKQYAND
NGVDGEWTYDDATKTFTVTEKCLEHHHHHH

a.1.5 Tension sensors: Ypet-HP35(st)-mCherry

The in vivo tension sensors (TS) consist of three proteins which comprise
a FRET-pair connected via the C-terminal subdomain of the actin-binding
protein villin as force-sensing element. The subdomain, also called villin
headpiece (HP), includes the amino acids 42 to 76 of villin (pdbID: 1YU5),
i. e., 35 amino acids, and is being called HP35. The N-terminal fluorophore
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called Ypet is an evolutionary optimization of a previously used already
optimized variant of Yellow Fluorescent Protein (YFP) called Venus (pdbID:
1MYW) [88, 152]. The mutations of Ypet with respect to Venus are: I47L2,
L68V, S208F, and V224L [160]. The last 11 amino acids of Ypet comprise an un-
structured region and were omitted to increase fluorophore proximity within
the fusion protein. Two native cysteines of Ypet (marked in green) were not re-
moved as they are not expected to interfere with the oligo attachment – C71

3

is burried inside the core, while the potentially reactive group of C49 points
inside the protein. The C-terminal fluorophore is mCherry (pdbID: 2H5Q).
Two single GS-linkers connect the fluorophores with HP35. The entire con-
struct is called HP35-TS.

The genes encoding the sensors were cloned into pLPCX plasmid and ex-
pressed using HEK293 cells. Design and expression were performed in Dr.
Grashoff’s group at the Max Planck Institute of Biochemistry (MPIB).

hp35-ts . MACKMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
ATYGKLTLKLLCTTGKLPVPWPTLVTTLGYGVQCFARYPDHMKQHDFFK
SAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGN
ILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQ
NTPIGDGPVLLPDNHYLSYQSALFKDPNEKRDHMVLLEFLTAAGSLSDED
FKAVFGMTRSAFANLPLWKQQNLKKEKGLFGSMVSKGEEDNMAIIKEF
MRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDI
LSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQ
DSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALK
GEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNED
YTIVEQYERAEGRHSTGGMDELYKKCLEHHHHHH

By two point mutations deduced from rational protein design, namely N27A
and K29M4, HP becomes mechanically more stable (st) [22]. Hence, a different
force range can be probed with HP35st-TS.

hp35st-ts . MACKMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGE
GDATYGKLTLKLLCTTGKLPVPWPTLVTTLGYGVQCFARYPDHMKQHDF
FKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDG
NILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQ
QNTPIGDGPVLLPDNHYLSYQSALFKDPNEKRDHMVLLEFLTAAGSLSDE
DFKAVFGMTRSAFANLPLWKQQALMKEKGLFGSMVSKGEEDNMAIIK
EFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAW
DILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVT
QDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGAL
KGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNE
DYTIVEQYERAEGRHSTGGMDELYKKCLEHHHHHH

2 In [160] the count starts after the first methionine of Ypet, i. e., valin in this case.
3 Here the count starts from the first methionine of Ypet (M5 of YVCwt).
4 Here, the amino acid count starts from the first out of the 35 amino acid long villin subdomain

HP35. The corresponding mutations in villin are N68A and K70M.
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a.1.6 Anti-parallel heterodimeric coiled coil: U2LZ

The heterodimeric coiled coil construct is an anti-parallel leucine zipper (LZ)
flanked by two ubiquitins (U2) and named U2LZ. The two zipper sequences
that are seperated by a triple GS-repeat, have been designed and shown to
promote anti-parallel dimerization [85]. When folded, the N- to C-terminal
first 29 amino acid sequence aligns with the C- to N-terminal second 30 amino
acid sequence. Note, that the C-terminal glycine (G) has originally been a glu-
tamin (Q). The gene of U2LZ was cloned into a pET-28a(+) vector, expressed,
and purified at MPIB.

u2lz . MACKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQ
RLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGELALKKELQANKKEL
AQLKWELQALKKELAQGSGSGSEQLEKKLQALEKKLAQLEWKNQALE
KKLAGGTMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIF
AGKQLEDGRTLSDYNIQKESTLHLVLRLRGGGGMDELYKCLEHHHHHH

a.1.7 Homodimeric coiled coils from kinesin-1

Sequences of coiled coil unzipping constructs derived from Drosophila melano-
gaster Kinesin(-1) Heavy Chain are given in Section A.2.

a.2 molecular cloning

During this work, a lot of effort has been spent on designing, cloning and
measuring the unzipping of homodimeric coiled coil constructs isolated from
Drosophila melanogaster Kinesin(-1) Heavy Chain (DmKHC, hereafter also re-
ferred to as ’kinesin’). Hence, some background information, used techniques,
new findings and successful designs as well as further possible constructs are
presented to encourage and to support future projects.

a.2.1 Functional regions and domains of kinesin-1

The pGEX-6P vector5 containing the gene of DmKHC between the BamHI
and NotI restriction sites, was kindly provided by Stephan Roche. Thorough
gene sequencing by GATC revealed 20 silent mutations6 and a stop codon
after amino acid Q950. Therefore the rest of kinesin’s overall 975 amino acids
is shown in gray. Functional regions have cyan letters, predicted coiled coil
domains interesting for unzipping experiments have bold letters.

dmkhc . MSAEREIPAEDSIKVVCRFRPLNDSEEKAGSKFVVKFPNNVEE
NCISIAGKVYLFDKVFKPNASQEKVYNEAAKSIVTDVLAGYNGTIFAYGQT

5 Be aware that in contrast to the kanamycin resistance of the predominantly used pET-28a
vector, the pGEX-6P vector carries an ampicillin resistance.

6 Most likely attributed to a sequence optimization, the silent mutations are important to know
for optimal amplification and mutation primer design.
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SSGKTHTMEGVIGDSVKQGIIPRIVNDIFNHIYAMEVNLEFHIKVSYYEIYM
DKIRDLLDVSKVNLSVHEDKNRVPYVKGATERFVSSPEDVFEVIEEGKSNR
HIAVTNMNEHSSRSHSVFLINVKQENLENQKKLSGKLYLVDLAGSEKVSK
TGAEGTVLDEAKNINKSLSALGNVISALADGNKTHIPYRDSKLTRILQESL
GGNARTTIVICCSPASFNESETKSTLDFGRRAKTVKNVVCVNEELTAEEWK
RRYEKEKEKNARLKGKVEKLEIELARWRAGETVKAEEQINMEDLMEAS
TPNLEVEAAQTAAAEAALAAQRTALANMSASVAVNEQARLATECERLY
QQLDDKDEEINQQSQYAEQLKEQVMEQEELIANARREYETLQSEMARI
QQENESAKEEVKEVLQALEELAVNYDQKSQEIDNKNKDIDALNEELQ
QKQSVFNAASTELQQLKDMSSHQKKRITEMLTNLLRDLGEVGQAIAPGE
SSIDLKMSALAGTDASKVEEDFTMARLFISKMKTEAKNIAQRCSNMETQQ
ADSNKKISEYEKDLGEYRLLISQHEARMKSLQESMREAENKKRTLEEQI
DSLREECAKLKAAEHVSAVNAEEKQRAEELRSMFDSQMDELREAHTR
QVSELRDEIAAKQHEMDEMKDVHQKLLLAHQQMTADYEKVRQEDAE
KSSELQNIILTNERREQARKDLKGLEDTVAKELQTLHNLRKLFVQDLQQR
IRKNVVNEESEEDGGSLAQKQKISFLENNLDQLTKVHKQLVRDNADLR
CELPKLEKRLRCTMERVKALETALKEAKEGAMRDRKRYQYEVDRIKEAV
RQKHLGRRGPQAQIAKPIRSGQGAIAIRGGGAVGGPSPLAQVNPVNS

Kinesin consists of a N-terminal globular head domain (roughly up to K331)
and a rather extended rod domain (starting at the green A345 until end).
While being the catalytic motor domain, the head is connected via a short,
flexible neck-linker (T332 - T344, deriven from T324 - T336 in human kinesin
via sequence alignment, [149]) to the rod domain [180]. The mainly α-helical
rod is subdivided into neck (N), stalk (S), and tail (T) domains [239]. The
predicted coiled coil regions of these domains are connected via rather un-
structured regions, i. e., the hinge (H1) between neck and stalk and the kink,
also called hinge 2 (H2), between the first (S1) and second coiled coil (S2) of
the stalk [54, 87, 90]. The middle of H2 is marked by the helix breaker pro-
line P587 directly followed by glycine G588 [210]. After S2, follows a stalk-tail
linker region to which the Kinesin Light Chains (KLC) bind (V810 - K834,
deriven from V789 - K813 in human kinesin via sequence alignment, [57]),
which in turn are able to bind cargo. Finally, after the tail forms a coiled coil
[217], it terminates in a globular tail region. This terminal region carries a
highly conserved motif for regulatory function of the kinesin-1 superfamily,
here QIAKPIRS (Q941 - S948, deriven from Q919 - P926 in human kinesin
via sequence alignment), which directly interacts with the Switch I region in
the head domain (R197 - H212, deriven from R190 - H205 in human kinesin
via sequence alignment). The Switch I region is associated with nucleotide
binding and, hence, is essential for motor activity. It ends with the highly
conserved SSRSH motif [58].

DmKHC structure and coiled coil prediction

While the globular head domain of DmKHC has a well resolved crystel struc-
ture (pdbID: 2Y5W), the extended rod domain is only known to consist of
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multiple extended parts due to coiled coil formation. The exact coiled coil
regions and their stability remain unclear. A combined approach based on
coiled coil prediction and direct mechanical single-molecule characterization
is expected to clarify the true nature of the rod domain. This is especially in-
teresting due to the fact that besides dimerization the rod domain is involved
in many processes necessary for correct biological function of the kinesin mo-
tor, e. g., KLC binding or regulatory functions (see above).

Already in 1953 Francis Crick described the ’knobs-into-holes’ packing of
two α-helices forming a coiled coil structure [50]. A typical ’heptad’ repeat
(positions indicated with a, b, c, d, e, f, and g) of generally apolar amino
acids at positions a and d would give rise to a hydrophobic inner surface be-
tween the two helices. Furthermore, charged residues would be preferentially
solvent exposed and thus found at the other positions [46]. Based on these
rules, coiled coil prediction algorithms evolved which calculate the probabil-
ity of a given amino acid sequence to form a coiled coil. Generally, these
algorithms also consider amino acid sequences already known to form coiled
coils. The two algorithms used in this theses were COILS [134] and Paircoil2
[144]. Analysing the entire DmKHC sequence with Paircoil2 yielded an 85 -
100 % coiled coil probability for the bold typed regions of the sequence. On
average a probability of 92 % at a window size of 26 residues is reached. These
regions, hence, mark the dimerization of kinesin driven through coiled coil
formation of the neck, stalk (S1 & S2), and tail. The rest of DmKHC has a
probability of less than 15 % to form a coiled coil. Interestingly, COILS pre-
dicts a further extension of coiled coil formation especially for the C-terminal
tail region even at reduced window size. Else, all local features of Paircoil2,
e. g., the helix breaker P587, are reproduced by COILS as well.

a.2.2 Design and cloning of coiled coil unzipping constructs

The unzipping geometry of a coiled coil is the same as for DNA unzipping
[25]. The major difference are two identical α-helices in case of a homod-
imeric coiled coil as compared to the different complementary DNA strands.
As repetitive pulling cycles of entire coiled coil unzipping and re-zipping of
one single molecule are desired, strand separation of the dimeric construct
needs to be prevented. This has been achieved by introducing a covalent cys-
teine crosslink at the opposite end with respect to force application [30]. To be
able to use our cysteine chemistry for oligo attachment, an additional ubiqui-
tin molecule is inserted between reactive cysteine and individual coil on the
side of force application [83]. So in contrast to the cysteines for crosslinking,
the cysteines for oligo attachment are spatially separated. As the mechanical
stability of ubiquitin is known to be much higher than the stability of the
investigated coiled coils, the ubiquitins can be expected not to interfere with
the mechanical characterization measurements [195].
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Cloning procedure

After a certain coiled coil region of DmKHC has been chosen as investiga-
tive target, it was transferred from the pGEX-6P vector into a specially de-
signed pET-28a-2Ubi vector already containing two ubiquitins. The specific or-
der of relevant restriction sites, cysteines (C) for oligo attachment, ubiquitins
(Ubi) and His-Tag (H6) for purification is: NcoI7—C—Ubi—SacI8—HindIII—
Ubi—C—XhoI—H6. To create a coiled coil construct, where unzipping starts
from the N-terminus, the pET-28a-2Ubi vector is cut at the restriction sites
SacI/XhoI and treated with Antarctic Phosphatase9 to prevent re-ligation. The
same restriction sites are accordingly added to the gene of the chosen coiled
coil region upon PCR amplification from the pGEX-6P vector. For this purpose
specially designed amplification primers10 are used, which also insert the cys-
teine necessary for crosslinking. After cutting the amplification PCR products
as well, they are ligated into the cut pET-28a-2Ubi vector. Finally, the resulting
expression vector encoding a N-terminal ubiquitin followed by a coiled coil
is transformed into competent cells. Using the restriction sites NcoI/HindIII
yields the opposite construct, i. e., a coiled coil that can be unzipped from
the C-terminus. An example for resulting amino acid sequences of constructs
being unzipped starting from either N- or C-terminus can be found in Sec-
tion A.2.2. To create monomer constructs, where ubiquitins are usually added
to the N- and C-termini of the respective protein [188, 216, 261], the restriction
sites SacI/HindIII would be used11.

kits , cultures and details . After treatment with restriction enzymes
or polymerases, plasmids and PCR products were always purified with the
QIAGEN Plasmid Mini Kit and QIAquick PCR Purification Kit (Qiagen).
All restriction enzymes12 as well as ligases were from New England Biolabs
(NEB). Besides the Quick Ligation Kit (M2200L), the standard T4 DNA Lig-
ase (M0202S) was used, especially for very long inserts. Due to its 50-fold
lower error rate as compared to usual Taq Polymerase, the Phusion High-
Fidelity Taq DNA Polymerase (F-530L, Finnzymes as part of Thermo Fischer
Scientific) was used for amplification PCR. Successful treatment with Antarc-
tic Phosphatase (M0289S, NEB) was tested via a parallel attempt to ligate the

7 For amplification primer design an eye should be kept on the frame-shifted encoding of a
methionine within the NcoI restriction site, especially, as expression can start from there.

8 The used vector actually has two SacI restriction sites. Hence, the amount of used restriction
enzyme has to be adapted. For simplicity the second SacI was omitted in the main text.

9 Antarctic Phosphatase and the necessary amount of buffer were added during the last 15

minutes of cutting.
10 In principle, the restriction sites are introduced as 5’-overhangs to the amplification primers.

To ensure proper cutting, a ’non-sense’ ACCTCTG-sequence is added to the 5’-end resulting
in: 5’-ACCTCTG—restriction-site—coiled coil.

11 In the pET-28a-2Ubi vector there is another restriction site right between HindIII and the fol-
lowing ubiquitin, namely KpnI, which can be used as well.

12 Note that the units per volume [U/mL] can vary for different enzyme supplies. Hence, the
used amounts need to be adapted, especially, when applying multiple restriction enzymes in
the same reaction. Enzyme activity should be tested separately.
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cut pET-28a-2Ubi vector without addition of untreated insert. Ideally, after
transformation no cells should be able to grow.

After transformation, cells were plated on agarose gels and grown overnight.
The next day, Crimson Taq DNA Polymerase (NEB) was used for colony PCR

to screen multiple colonies for the correct insert size. Therefore, colonies were
picked, shortly dipped into a prepared PCR reaction and put into LB medium.
Positive colonies were grown overnight and their plasmid was purified using
the QIAprep Spin MiniPrep Kit and sent to GATC for sequencing. The glyc-
erol cultures of competent cells with confirmed exact sequences were stored
at -80

◦C. Glycerol cultures consisted of 250µL cell culture being well mixed
with 750µL glycerol.

For transformation of ligation products either XL10-Gold Ultracompetent
or XL1-Blue Supercompetent Cells were used. These cells served as indirect
plasmid ’storage’ since fresh plasmid could be purified from overnight cul-
tures inoculated from the glycerol stocks whenever needed. For expression
BL21-CodonPlus (DE3)-RIPL Competent Cells13 were used. All cells origi-
nated from Agilent Technologies (AT).

Cell competence was tested by transforming uncut plasmid. Cell growth
was tested with untreated cells in LB medium without antibiotics. Untreated
cells were also tried to be grown in LB medium with antibiotics to assure
selectivity for plasmids containing antibiotics resistance. If cells without in-
trinsic resistance were still able to grow, they must have gotten contaminated.
A 50 mL falcon containing only LB medium without cells but other than that
being treated all the same was incubated overnight as well and served as a
zero growth reference and a control of uncontaminated LB medium. In this
thesis carbenicillin was used instead of ampicillin.

All primers used for amplification or mutation reactions were ordered from
metabion. Mutations include removal of native restriction sites, cysteine re-
placement and tryptophan insertions as described below. Mutations were per-
formed using the QuikChange Lightning Multi Site-Directed Mutagenesis Kit
(AT), which allowed up to five successful mutations in one step.

Essentially, protocols were adopted as supplied by the companies.

Choosing crosslinking positions

The design of coiled coil unzipping constructs requires a cysteine at one end
to establish a covalent crosslink between the two coils. To promote the for-
mation of the disulfide bond between the two reactive thiol groups of the
cysteines, they are positioned on either a or d positions within the heptad
repeat. Furthermore, the amino acid, which is being replaced by the cysteine,
should originally be hydrophobic as required for good coiled coil formation.
This increases chances for choosing a working crosslinking position as the
hydrophobic residues can be expected to ’hide away’ from the solvent by
pointing inside the coiled coil and thus towards one another, which should

13 For BL21-Codon Plus cells 20 seconds are recommended for heat shock transformation. This
is only half of the 45 seconds typically used for usual BL21, XL1 or XL10 cells.
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promote crosslinking. All four coiled coil regions of DmKHC highlighted in
bold letters where chosen such that they start and end at either a or d po-
sition. Confirmed and potential crosslinking positions are coloured in green
and orange, respectively.

Cysteine-free mutant design based on multiple sequence alignment and coiled coil
prediction

The cysteine-based chemistry for attaching oligos as well as the engineered
cysteine crosslink of the dimer can interfere with naturally occurring cys-
teines within the rest of the protein sequence. In the sequence of DmKHC all
natural cysteines are coloured in magenta, i. e., five cysteines within the head
domain (C17, C45, C309, and C310) and neck-linker region (C338) and five
cysteines within the rod domain (C441, C632, C695, C880, and C891).

To find a good substitute for each cysteine, sequences of 18 different ki-
nesins were aligned. This helped to determine the either rather hydrophobic
(suggested substitutes from alignment were valine, leucine or isoleucine) or
rather hydrophilic (suggested substitutes from alignment were serine, threo-
nine, lysine or arginine) surrounding of each cysteine. Interestingly, for the
rod domain these results match perfectly well with the assigned positions
within the heptad repeat, i. e., a and d positions for hydrophobic and the rest
for hydrophilic environments. The best steric mimic of a cysteine was then
chosen for substitution, i. e., serine for a rather hydrophobilic and valine for
a rather hydrophobic environment.

As oligo attachment and cysteine crosslinking occur after the monomeric
protein has folded, in the case of the head domain only surface exposed cys-
teines need to be mutated. Hence, only mutations C17S and C338S were made
to create ’cysteine-light’ constructs to investigate proposed neck-linker dock-
ing of an active motor with the optical tweezers setup [52, 93, 105, 180]. Im-
portantly, motor activity, though reduced in speed with respect to literature
values, was confirmed for these constructs. When mutations within an active
domain are made, verification of activity is crucial as completely inhibited
motor activity has been reported for entirely ’cysteine-free’ mutants [93].

The following mutations were made14 for the rod domain: C441V, C632V,
C695V, C880S, and C891S. While the first three mutations concern cysteins on
hydrophobic a positions within the heptad repeat of the predicted coiled coil
formation, the last two mutations are cysteins on postions f and c.

Silent mutations to delete native restriction sites

As explained above, stretches of DmKHC were amplified via PCR from the
pGEX-6P vector and ligated into a specially designed pET-28a(+) vector ei-
ther using the restriction sites NcoI/HindIII or SacI/-XhoI. As the DmKHC
gene itself also contained NcoI, SacI and XhoI restriction sites, these needed

14 Mutation primer design can be performed with the online tool QuikChange Primer Design:
http://www.genomics.agilent.com/primerDesignProgram.jsp

http://www.genomics.agilent.com/primerDesignProgram.jsp
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to be deleted via silent mutations. These mutations are called silent as they
comprise changes on DNA level, which result in an unchanged amino acid
sequence. Or, in other words, a different amino acid codon is used. All silent
mutations are underlined within the DmKHC sequence: dNcoI-T612T, dXhoI-
L684L, dSacI-L740L, and dNcoI-T892T. The ’d’ stands for deletion of the re-
spective restriction site. Upon designing mutation primers, special care was
taken to use the most frequent and possible codon of the expression system,
i. e., E.coli, based on a modified overview from [139]. In case of dNcoI-T612T,
the DNA sequence ACC.ATG.GCG encoding the amino acids T.M.A was mu-
tated into ACG.ATG.GCG. The nucleic acids in bold type mark the restriction
site specific sequence. As methionine only has one unique codon and the en-
coding for alanine needs to start with a guanine, only the threonine could be
considered for a silent mutation.

Tryptophan-enhanced protein absorption

If a selected coiled coil region has neither a tryptophan nor a few tyrosines, it
is very difficult to detect the expressed protein during purification. Since the
additional ubiquitin carries only a single tyrosin, the absorption signal of the
entire construct will be very low up to almost invisible when using standard
ultraviolet spectrophotometry. To overcome this problem, additional trypto-
phans were inserted into the expression vector to increase the detectable ab-
sorption signal of the expressed protein, see sequences in Section A.2.2. As
a result, up to 8-fold higher extinction coefficients were reached, which ex-
tremely facilitated protein purification and subsequent attachment of oligos.

Explicit example: stalk 2 domain unzipping

Construct names refer to the kinesin regions where the construct originates
from. The neck coiled coil is called N, the coiled coils of stalk 1 and 2 are
S1 and S2 and the shortest tail coiled coil is simply called T. As the length
of the tail coiled coil is unclear and three potential C-terminal crosslinks are
hypothesized, the longer versions are called T2 and T3. The ultimate goal is to
map the entire energy landscape of the kinesin rod domain. Hence, combined
constructs are needed to characterize the transition regions between the coiled
coils. Therefore almost all possible subparts, e. g., NS1

15, S1S2, NS2 or S2T2,
were cloned including the longest possible construct16: NT3.

The S2 constructs S2n and S2c serve as representative examples for all
cloned homodimeric DmKHC coiled coil constructs for mechanical unzip-
ping studies. The ending in the name indicates N- or C-terminal unzipping
from the side where additional ubiquitins were engineered into the construct
to serve as oligo attachment points. While cysteines for oligo attachment are

15 NS1 means that the construct starts with the neck coiled coil N and ends with the C-terminal
end of S1 including the hinge between the two.

16 The construct NT3 ranges from A345 to V928 and comprises two times 584 amino acids result-
ing in an expected contour gain of about 426 nm.
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still coloured in red, blue cysteines at the opposite end are mutations meant
to form a crosslink upon dimerization. While the C695V mutation is coloured
in blue as well, the silent mutations dXhoI-L684L and dSacI-L740L are addi-
tionally underlined. Additional tryptophans (W), which increase the protein’s
absorption for enhanced detection during purification, are purple.

s2n. MAWGCKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPD
QQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGELISQHEARMKSL
QESMREAENKKRTLEEQIDSLREEVAKLKAAEHVSAVNAEEKQRAEE
LRSMFDSQMDELREAHTRQVSELRDEIAAKQHEMDEMKDVHQKCLE
WHHHHHH

s2c . MGCSQHEARMKSLQESMREAENKKRTLEEQIDSLREEVAKLK
AAEHVSAVNAEEKQRAEELRSMFDSQMDELREAHTRQVSELRDEIAA
KQHEMDEMKDVHQKLKLGTMQIFVKTLTGKTITLEVEPSDTIENVKAKI
QDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGKCLE
WHHHHHH

Successful and potential crosslinking positions

Successful unzipping experiments were performed with the constructs S1n,
S2n, S2c, NS1c and NS2n. These experiments confirm the following positions
to work as engineered cysteine crosslinks: A345, L556, I660 and L761. The
position W376 has already shown successful crosslinking in [31].

Crosslinking tests with SDS-gels of expressed constructs comprising the tail
yielded that especially V928 seems to be a good crosslinking candidate. The
positions Q850 and L882 also showed crosslinking potential, while position
A910 remained unclear.

a.3 protocols

This section specifies all essential steps in advance to the mechanical char-
acterization of a single protein at the optical tweezers setup. The steps com-
prise protein expression and purification, oligo attachment, DNA-handle PCR

and measurement chamber preparation. Many footnotes and troubleshooting
sections include crucial details and helpful recommendations.

a.3.1 Protein expression and purification

The prerequisite for protein expression is a cell culture containing an expres-
sion vector encoding the desired protein’s sequence. Here, this is a glycerol
culture of BL21-CodonPlus (DE3)-RIPL Competent Cells stored at -80

◦C.
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Expression

• Inoculation 1. Inoculation of 20 mL LB medium containing suitable an-
tibiotics (usually kanamycin) with cells picked from a glycerol culture
using a 200µL-pipette. Grow overnight (ON) in an incubator set to 37

◦C
and shake at ∼169 rpm.

• Inoculation 2. Inoculation of 400 mL LB medium containing suitable
antibiotics in a 1 L-flask with the ON-culture from Inoculation 1. Grow
at 37

◦C and shake at ∼169 rpm for 2 to 5 h until OD600 = 0.6 is reached.

• Induction with IPTG. Add IPTG17 and induce for 3 h.

• Harvesting. Centrifuge for 30 min at 4.600 rpm in two 200 mL-flasks in
a centrifuge18 pre-cooled to 4

◦C. Discard supernatant and resolve pel-
let: add 10 mL of NaP19 buffer to the first flask and vortex thoroughly.
Transfer everything into the second flask and vortex again. Collect in
50 mL-falcon. Repeat procedure with another 10 mL of Soni buffer to
collect remains.

• Storage. Store at -20
◦C until purification.

To test, whether the expression worked fine, compare expression test refer-
ences from before and after IPTG-induction with a SDS-PAGE20 run (SDS-gel).
As a reference, simply withdraw 2 mL cell culture, spin down, remove the su-
pernatant, and store the pellet at -20

◦C until the actual expression test. Note
the corresponding OD600-value to better adapt the amount of cell extract be-
ing loaded on the SDS-gel. The reference from after induction should show
an over-expressed band corresponding to the size of the desired protein.

Purification

Always work on ice and as clean as possible. Ensure that all used buffers
are fresh, clean, filtered and degassed where necessary. When working with
chromatography systems avoid air bubbles by all means. Never allow a direct
mixture of salt containing buffers with ethanol containing cleaning and/or
storage buffers.

• Thaw. Thaw harvested cells at RT (to be faster) or gently on ice. When
thawed, keep on ice.

• Disrupt cells. Cells are disrupted mechanically21 with an automated
French Press22 at a pressure of 1.6 bar. Right after the 20 mL of thawn

17 Isopropyl β-D-1-thiogalactopyranoside.
18 Rotanta 460R, Hettich.
19 50 mM NaH2PO4 x 2 H2O, 50 mM Na2HPO4 x 12 H2O, 300 mM NaCl, adjust pH to 8.0. Do

not yet add imidazole to prevent increased foam formation during vortexing.
20 Sodium Dodecyl Sulfate PolyAcrylamide GEl.
21 Additional cell lysis may be considered prior or instead of mechanical cell disruption. This was

not done for the purification of expressed coiled coil or Rossmann fold protein constructs. Nev-
ertheless, for the activity of purified kinesin motor domains, addition of protease inhibitors
into the lysis buffer turned out to be crucial.

22 TS Series Benchtop, Constant Systems.
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cell culture have passed, another 20 mL of NaP buffer are applied to the
French Press to collect remains. From now on, work fast to allow as little
unwanted reactions, e. g., the formation of cystein crosslinks, to happen
as possible.

• Centrifuge. Centrifuge23 disrupted cells for 30 min at 17.000 rpm and
4
◦C using the rotor JA-17. The supernatant contains the desired protein.

• Sterile filtration and imidazole addition. Filter the supernatant two
times using membrane filters24 with 0.2µm pore size. Add 20 mM imi-
dazole while maintaining pH 8.0.

• Purification 1: metal ion affinity. In the first purification step, a Ni-NTA
column25 is mounted onto an automated affinity chromatography pro-
tein purification system26. The buffers used for washing and for elution
during this standard purification procedure are based on the NaP buffer
supplemented with 20 mM and 500 mM imidazole respectively and pH
adjusted to 8.0. The 2.5 mL eluate is collected in a 15 mL-falcon set on ice.
Right along with elution, the system evaluates the protein concentration
X based on the provided absorption coefficient27.

• DTDP activation/passivation. Immediately after elution, a 5- to 10-fold
excess of DTDP with respect to reactive cysteines is added to the eluate.
Therefore, a fresh solution of 100 mM DTDP solved in dimethyl sulfox-
ide28 (DMSO) is prepared in advance. For a protein with two reactive
cysteins, the necessary volume V of DMSO-solution for adding a 5-fold
excess of DTDP to the 2.5 mL eluate can be calculated according to:

250 ·X [mg/mL]
m [kDa]

= V [µL] , (69)

where m is the molecular weight of the purified protein. As too much
DTDP can promote precipitation, right after addition of DTDP the sample
needs careful and at the same time quick mixing; avoid a final concen-
tration of more than 5 mM DTDP. Let stand for 45 to 60 min at RT.

Background: The disulfide bond of a DTDP molecule gets broken open
by a reactive thiol group of the protein’s cysteine resulting in a thiol-
pyridine activated cysteine and a pyridine-2-thione [39]. DTDP-excess
is necessary to prevent not yet activated cysteines from reacting with
already activated ones by breaking up the disulfide bond with the pyri-
dine ring. When all cysteines are thiol-pyridine activated, the protein
solution is passivated against cystein crosslinking.

23 Avanti J-E, Beckman Coulter.
24 Filtropur S 0.2, Sarstedt.
25 HisTrap, GE Healthcare; or Ni-NTA Superflow Cartridge, Qiagen; both 1 mL.
26 Profinia, Bio-Rad.
27 Extinction coefficient divided by molecular weight.
28 DMSO has a melting temperature above 0

◦C, hence, do not put on ice.
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• Concentrate. Pre-spin the passivated protein for 10 min at 4.600 rpm
and 4

◦C to get rid of eventual aggregates which appear as a pellet. Con-
centrate or dilute the supernatant up or down to 14 mg/mL29. Use a cen-
trifugal filter30 for concentrating at 4.600 rpm and 4

◦C for 10 to 60 min31.

• Purification 2: size-exclusion. For SEC an appropriate column32 is con-
nected to a HPLC33 system34 and equilibrated in PBS buffer (pH 7.435) in
advance. Mount a 500µL-loop and load it with 7 mg36 of protein. Start a
60 min run at a flow-rate of 0.5 mL/min and collect37

30 s long fractions.
Here, the relevant collection window of the mounted column ranges
from ∼15 to 45 min. Besides getting rid of larger unspecifically bound
proteins and protein multimers, all excess DTDP (peak at ∼57 min) is re-
moved, too. If the collector was not set on ice, set collected fractions on
ice immediately.

• SDS-gel control. To identify the fractions containing the desired protein,
the most direct way is to screen all potential fractions on an SDS-gel.
Therefore at least 10µL per fraction are needed. In case of coiled coil
constructs a preliminary test of the engineered cystein crosslink can be
performed by running the same fraction with and without the reducing
agent β-mercaptoethanol in the laemmli buffer, see Figure 71.

• Storage. Pool and concentrate38 desired fractions to reach 2 nmol39 of
protein within less than 100µL. Flash freeze40 the aliquots and store
at -80

◦C. These aliquots will be directly used for the oligo attachment
discussed in Section A.3.2.

a.3.2 Oligonucleotide attachment details

To covalently attach oligos to the thiol groups of two cysteines specifically
engineered into the protein of interest, either thiol or maleimide modified

29 Consider the concentration provided by the first purification step.
30 Amicon Ultra 4 mL with matching membrane size, Merck Millipore.
31 High amounts of imidazole can cause clogging of the membrane resulting in very long cen-

trifugation times. Switching to a second centrifugal filter can be helpful.
32 Superdex 200 10/300 GL, GE Healthcare.
33 High-Performance Liquid Chromatography.
34 HPLC system from Jasco.
35 If a thiol oligo attachment is intended, one should consider pH 8.0 to reach higher reactivity.

In case of a maleimide oligo attachment a further buffer exchange will follow to reestablish
the cysteines’ thiol groups and to set the pH below 7.4.

36 Unspecific binding might falsify the estimated protein amount in the eluate of purification
step 1. Therefore the specified maximal load of 10 mg is avoided.

37 Fraction collector: CHF 122SC, Advantec MFS.
38 Use centrifugal concentrators (Vivaspin 500 with appropriate pore size, Vivaproducts) for a

benchtop centrifuge ideally pre-cooled to 4
◦C (Perfect Spin 24R, Peqlab).

39 This amount is adapted to match the 4 nmol of reactive oligos added to the oligo attachment
reaction, where, in principle, a 1:1 ratio between reactive cysteins and oligos is intended. For
coiled coils try to reach 4 nmol as there is only one reactive cysteine per protein monomer.

40 Before freezing, addition of 10 % glycerol may be considered to impose less stress on the
protein construct. This was not necessary for any of the investigated constructs though.



228 materials and methods

Figure 71: Test of an engineered cystein crosslink on an SDS-gel. SDS-gel after
metal ion affinity purification of the coiled coil construct S1n with 21 kDa
per coil. The (-)-lane containing laemmli buffer w/o reducing agent β-
mercaptoethanol clearly shows a thick double-sized band whereas the (+)-
lane with reducing agent does not. This indicates that the cystein mutation
L556C within DmKHC works as a crosslink. Thinner bands are degrada-
tion products to be removed by subsequent SEC.

oligos41 were used. The position of the modification is located at the 3’-end
of the 34 nucleotides long sequence and marked with bold letters:

oligo. 5’-GGCAGGGCTGACGTTCAACCAGACCAGCGAGTCG-3’

Thiol oligos

After their activation and ethanol precipitation, thiol oligos are directly added
to thiol-pyridine activated protein; see Section A.3.1 for preparative protein
treatment. Here, the activation and ethanol precipitation of thiol oligos are
described in a step by step protocol.

1. Thaw necessary amount of 100µM thiol oligo solution.

2. Activation: add 10 mM TCEP42 and let stand at RT for 30 min.

3. Add 1/10 volume sodium acetate (3 M, pH 5.2) and mix gently. By now
the sample should be in a 1.5 mL LoBind reaction tube.

4. Precipitation: add 2 volumes 100 % EtOH (-20
◦C pre-cooled).

41 Thiol oligo synthesis was performed by IBA GmbH and delivered as 100µM solution, malei-
mide oligos were synthesized and lyophilized by biomers.net GmbH.

42 For example by adding 1/10 volume of 100 mM TCEP solved in either H2O or 10x PBS. Both
solutions are acidic with pH 2 to 4, both of them worked fine.
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5. Keep at -80
◦C for 1 h.

6. Centrifuge for 30 min in a benchtop centrifuge pre-cooled to 0
◦C at max-

imum speed.

7. Carefully remove supernatant, pellet may or may not be visible.

8. Wash with 200µL of 70 % EtOH.

9. Centrifuge for 10 min at 0 to 4
◦C at maximum speed.

10. Carefully remove supernatant.

11. Let air dry43 for ∼15 min at RT or 37
◦C until white.

12. Resuspend pellet in appropriate amount44 of buffer; pH 8.0 is recom-
mended.

Next, the attachment reaction for thiol oligos with thiol-pyridine activated
protein and the successive purification by SEC are outlined.

1. Measure the thiol oligo concentration45 of resuspended oligo pellet(s).

2. Attachment reaction mix: add purified thiol-pyridine activated protein
to the oligo solution in a 1:1 up to 1:2 ratio between cysteins and thiol oli-
gos. Excess of thiol oligos showed higher protein-oligo construct yields46.
Let stand at RT for 24 h.

Optional: As oxygen promotes thiol reactivity, insert a small pipette tip
into the reaction tube as a stirring element and place on a rotor47.

3. Purification: make a SEC run similar to the second protein purifica-
tion step in Section A.3.1 - 0.5 mL/min, PBS, 100µL-loop, 30 s fractions,
Superdex 200 column. An example is shown in Figure 72. Make 5µL
aliquots48 from the correct fraction(s), flash freeze, and store at -80

◦C.

Figure 72 shows a typical SEC purification run of a thiol oligo attachment
similar to the run shown for maleimide oligos in Figure 7. Besides the two
peaks of the final protein-oligo construct with two attached oligos and protein

43 Eventually cover open reaction tube with Nescofilm and let only a small slit open to prevent
(dust-) contamination.

44 To reach higher concentrations, an initial volume of, e. g., 40µL thiol oligos is being resus-
pended in half that volume at the end.

45 The final concentrations have been found to fluctuate a lot no matter what may be expected
from the initial 100µM concentration. Therefore an individual determination at the Nanodrop
is highly recommended for each reaction tube.

46 Not all thiol oligos are reactive after precipitation and resuspension. This is supported by the
reactivity test of thiol oligos performed with the crosslinker BM(PEG)2. Importantly, cross-
reaction between thiol oligos themselves was observed to be very poor, see Figure 73.

47 Additional rotation and stirring resulted in 40 % more protein-oligo construct as compared to
a parallel reaction from the same attachment reaction mix.

48 As a rule of thumb, peaks lower than 50 mV should be concentrated, below 25 mV neighbour-
ing fractions should be pooled and concentrated.
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Figure 72: SEC purification of a thiol oligo attachment. (A) Normalized SEC runs of
pure protein (280 nm), pure thiol oligos (260 nm), and oligo attachment
reaction products (260 nm). (B) The difference of attachment product and
pure oligos visualizes the elution of individual (+)-marked products. The
first peak corresponds to protein with two bound oligos, the second to pro-
tein with one oligo, and the third to dimerized oligos. (C) 343 nm absorp-
tion signal (in mV) tracking thiol-pyridine activated cysteines. (D) 260/280

ratio of the SEC runs. The pure protein peak shows a value below 1. The
peaks of the other runs show a ratio larger than 1, indicating that absorp-
tion is dominated by the contribution of DNA.

with only one attached oligo, the difference signal shows an additional peak
due to the self-dimerization of thiol oligos. Due to a large enough protein size
of S2c (about 45 kDa), the 260/280 ratio shows a dip around the elution vol-
ume of the protein with only one oligo being attached. This directly monitors
the relatively higher protein absorption contribution per oligo as opposed
to the protein-construct with two oligos. Furthermore, the absorption signal
measured at a wavelength of 343 nm helps to track the remaining pyridine
ring still bound to the thiol-pyridine activated cysteine where no oligo yet
got attached to. The switched relative peak height at 343 nm as compared to
260 nm is due to all pyridine rings being replaced by thiol oligos in the elution
volume of the desired protein-oligo construct.
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Reactivity and cross-reaction tests for thiol oligos

Inspired by the reactivity test for maleimide oligos presented in Section 2.2,
here, 1,8-Bismaleimido-diethyleneglycol (BM(PEG)2) instead of DTT was used
as crosslinking agent to test the reactivity of thiol oligos. Figure 73 shows
that at least 40 % of the thiol oligos, pretreated as described above, are reac-
tive. Another test was performed to investigate the cross-reactivity of thiol
oligos, i. e., their tendency to form dimers, by letting them stand at RT for 24

hours after resuspension in buffer without any further additives. As a result,
Figure 73 shows that only up to 7 % of the thiol oligos dimerized within a
day. This is an important result, as it allows for adding excess oligos into the
attachment reaction mix without risking that all reactive oligos form dimers
and, hence, cannot attach to the protein any more.
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Figure 73: Thiol oligo reactivity test with BM(PEG)2. Left: The crosslinking reac-
tion of activated thiol oligos with BM(PEG)2 for 30 min at RT shows that
at least 40 % of the oligos are reactive. Right: A cross-reaction of thiol oli-
gos among themselves for 24 h at RT reveals that only 7 % of the oligos
dimerized.

Screening the pH for crosslinking maleimide oligos with DTT confirmed the
highest thiol reactivity to be around pH 8.0, see Figure 9. To further improve
the thiol oligo attachment, the influence of temperature and additional oxy-
gen were investigated. Therefore one attachment reaction mix was split into
three reactions with different reaction conditions, where the first was kept
standing at RT, the second stood at 4

◦C, and the third was placed on a ro-
tor at RT with a small pipette tip inserted into the reaction tube as a stirring
element, which helps increasing the air contact area of the reaction mix. All
three reactions lasted 24 ± 1 hours. With respect to the first reference reaction,
the reaction at 4

◦C resulted in -20 % and the reaction with an increased air
contact area in +40 % final protein-oligo construct (data not shown).

Maleimide oligos

If a maleimide oligo attachment is intended, the DTDP activation/passivation
step of the protein purification can be omitted. To prevent protein oligomer-
ization via the cysteines, enough reducing agent should be added along with
the purification. Right before the attachment reaction, 10 mM TCEP are added
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to the purified protein to ensure reduction of all cysteines. However, as TCEP

showed to reduce maleimide oligo reactivity, see Figure 9, it needs to be re-
moved before final mixing of the attachment reaction. Similarly, thiol-pyridine
activated protein can be reduced for attaching maleimide oligos.

Here, the preparation and characterization of maleimide oligos are de-
scribed in a step by step protocol. The characterization comprises the deter-
mination of concentration, monomer fraction, and reactivity of the maleimide
oligos and should be performed for every new batch (see Figure 76A).

1. Carefully dissolve lyophilized maleimide oligos in PBS, pH 6.749.

2. Measure the concentration50 of maleimide oligos.

3. Aliquot51, flash freeze, and store at -80
◦C.

4. Determine fraction of potentially reactive monomers via SEC52.

5. Test reactivity with DTT as described in Section 2.2.

Next, the protein activation for an attachment reaction with maleimide oli-
gos, the attachment reaction and successive purification by SEC are outlined.

1. Activiation: reduce protein with 10 mM TCEP53 for 30 min at RT.

2. Remove TCEP by exchanging buffer with a desalting column54. Exchange
towards PBS, pH 6.7.

3. Concentrate55 eluate to above 100µM56 and verify final concentration.

4. Attachment reaction mix: add activated protein to an aliquot of freshly
thawn maleimide oligo solution in a 1:1 ratio between activated cys-
teines and maleimide oligos - a formula is given in the following text.
Let stand on ice or at RT for about 2 h57.

5. Purification: make a SEC run - 0.5 mL/min, PBS, 100µL-loop, 30 s frac-
tions, Superdex 200 column. An example is shown in Figure 7. Make
5µL aliquots from the correct fraction(s), flash freeze, and store at -80

◦C.

49 Make sure the buffer is filtered and thoroughly degassed. The low pH ensures specificity of
the maleimide-thiol reaction and should not surpass a maximum of 7.4.

50 Typically 80µM are reached when the indicated amount of buffer to reach 100µM are added.
51 Typically 2 nmol oligos are aliquoted in 10 to 20µL depending on concentration.
52 Use one aliquot for the SEC run and determine the relative area under the monomer peak;

examples of obtained results are given in Figure 76.
53 Note that TCEP is highly acidic. Prepare a 100 mM TCEP-solution in PBS and titrate to a

suitable pH using 10 M NaOH. Add 1/10 volume.
54 PD MiniTrap G-25, GE Healthcare. Using the gravity protocol yielded best results with less

than 10 % protein loss.
55 Vivaspin 500 with appropriate pore size, Vivaproducts.
56 Higher concentrations help minimize the final reaction volume leading to higher attachment

yields, see Figure 9.
57 In special cases ON reactions in the cold room may be considered to increase very low yields.

In general, reaction times exceeding 1 hour did not show any increase in yield neither for the
test with DTT nor for proteins.
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To calculate the appropriate amount of protein to be added to a maleimide
solution for an efficient attachment reaction, the following formula was used:

coligo · Voligo

2 · cprot
· frac(mono) · frac(reactive) = Vprot . (70)

Here, V stands for volume, c for concentration, frac(mono) for the fraction
of oligo monomers, and frac(reactive) for the fraction of reactive monomers.
The denominator 2 reflects the amount of activated cysteines per protein. The
highest observed value for frac(reactive) was 0.77 for the U2LZ construct.

Protein-oligo construct test

Besides a sophisticated interpretation of the detected absorption signals of
oligo attachment SEC purification runs, a simple and direct test can be per-
formed to identify the fractions which contain protein with two covalently
bound oligos [82]. For this test, purified and eventually pooled and concen-
trated protein-oligo constructs are mixed with DNA-handles carrying a ss-
overhang complementary to the oligos bound to the protein and incubated
at RT for at least 30 minutes. Thereafter, the reaction mix is subjected to an
agarose gel electrophoresis run. With the DNA-handles having a characteris-
tic size slightly bigger than 500 base pairs (see Section A.3.4), a protein-oligo
construct with two bound oligos and two handles hybridized to them will
typically appear as a band slightly larger than 1 kilobase, see Figure 74.

This test is also helpful for tuning the mixing ratio between protein-oligo
construct and DNA-handles as well as the incubation time for the final mea-
surement mix, see Section A.3.5. Nevertheless, a detectable band on an agarose
gel is not obligatory for successful single molecule experiments.

Troubleshooting - purification issues and attachment reaction conditions

A well conducted purification of the oligo attachment reaction is crucial for
successful experiments. Initially, the combination of bad column performance,
product contamination with dimerized oligonucleotides and uncorrected col-
lection time shifts, made it almost impossible to purify small protein-oligo
constructs. Figure 75A compares the performance of an old and a new col-
umn on the same sample. Characteristic collection time shifts are shown in
Figure 75B and Figure 75C. The issue with dimerized oligonucleotide contam-
ination is dealt with in Section A.3.3.

To correctly interpret SEC purification runs of oligo attachment reactions, it
is highly recommended to make reference runs of the two individual com-
ponents, namely pure oligos and pure protein, as depicted in Figure 8 and
Figure 72. If, like in case of the tension sensors, larger fluorescent proteins are
involved, consider that the protein peak with no oligos bound can contribute
a substantial additional peak close to the other peaks of interest.

Minimize losses by filling up the sample to full loop volume before loading.
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Figure 74: Protein-oligo construct test by agarose gel electrophoresis. Lanes labelled
with H were loaded with purified DNA-handles; as expected, their charac-
teristic band size is slightly bigger than 500 base pairs. The lane labelled
with H + FERR is the corresponding protein-oligo construct incubated
with DNA-handles - a white arrow points towards the double-sized band
of two handles hybridized to the two oligos of the construct.

To minimize the effective loop size for an increased SEC resolution, an in-
teresting option is to use an additional small Ni-NTA column in front of the
SEC column as described in Section A.3.3.

Thorough vortexing of the buffer used to resuspend thiol oligo pellets is
expected to increase the amount of oxygen bound in the buffer and therewith
to increase thiol reactivity.

Even if it may seem contradictory, increasing the protein amount with re-
spect to oligos sometimes helped a lot to improve the yield of a thiol oligo
attachment and, hence, may be considered when dealing with low yields. A
possible explanation can be that not all cysteines got (thiol-pyridine) activated
or are somehow hard to access.

a.3.3 SEC in series with Ni-NTA

After an oligo attachment reaction, products are purified by SEC. Here, the
major goal is to get rid of any oligos which did not attach to the protein. This
is crucial as all oligos are complementary to the overhangs of the DNA-handles
and, hence, compete with the protein-oligo construct during incubation with
handles to form the final protein-DNA chimeras.

When thiol oligos are used, they can also react with each other during an
attachment reaction and form oligo dimers, see Figure 73. Such dimers can
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Figure 75: Superdex 200 SEC column characterization: resolution and collection time
shift. SEC runs on PBS, at 0.5 mL/min flow-rate, and with 100µL-loop. (A)
Maleimide oligonucleotide attachment reaction with ROSSorg purified
with a new (red line) and an old (black line) column. Seven peaks and
shoulders distinguished by the new column collapse into two peaks re-
solved by the old column marking an extreme loss in resolution. The two
main peaks were aligned in time. (B), (C) Black curves are oligo monomer
peaks detected with the HPLC systems in lab 3167 (chemistry, (B)) and lab
3118 (formerly origami, (C)). Blue dots are concentrations of collected 10 s
fractions measured at the Nanodrop. Red lines are local Gaussian fits.

bind two DNA-handles forming constructs which result in stretching mere
DNA during mechanical measurements at the trap (D events, see troubleshoot-
ing part in Section A.3.5). These events can heavily undermine experimental
efficiency. Importantly, even though maleimide oligos are not able to form
dimers during an attachment reaction, their lyophilized supply was found
to contain contaminations showing dimer-like properties including the oc-
curence of D events which strongly corrupted measurement efficiency, too;
see Figure 76A for the contaminations58. Hence, complete removal of oligo
dimers or dimer-like constructs is key to successful experiments. An explana-
tion for the dimer-like constructs observed with maleimide oligos could be a
contamination of the basic oligonucleotides with DTT as reported in [127].

If a Superdex 200 column is used to purify the protein-oligo construct af-
ter an attachment reaction, it is not possible to completely remove oligonu-

58 The relative amount of contaminants was derived from the area under their peaks relative to
the overall area including all peaks.
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comparison with BSA (from Sigma Aldrich) shows that the elution volume
of the dimer-like fraction of maleimide oligos equals the one of BSA.

cleotide dimers in case of small proteins like, e. g., the Rossmann fold con-
struct with about 14 kDa, see Figure 7. In SEC runs, the rather stretched con-
formation of the short oligonucleotides makes them appear bigger than com-
pact globular proteins of similar weight59. This leads to an overlap of the
products of the attachment reaction. Even though a single oligonucleotide
has a a molecular weight of about 10 kDa, it already elutes around a volume
of 15.5 mL, i. e., 31 minutes at a flow-rate of 0.5 mL/min, along with globular
proteins of about 35 kDa in size according to the column’s specifications (In-
structions 71-5017-96 AK). The oligonucleotide dimers yet elute after 14 mL
along with BSA (66 kDa), see Figure 76C.

To circumvent this problem, an additional metal ion affinity chromatogra-
phy purification step using a Ni-NTA column was taken before the SEC run.
This step makes use of the His-Tag engineered into the protein constructs.
After loading the entire oligo attachment reaction on the Ni-NTA column,
unreacted oligos and oligo dimers can be washed away, while all protein re-
mains bound,i. e., protein with no, one or two attached oligos, see Figure 77.

Next, the three major steps of Ni-NTA column cleaning, loading and wash-
ing a sample on a Ni-NTA column, and elution of a sample from the Ni-NTA

59 The same was observed for coiled coil constructs as well. In SEC runs they would elute much
earlier than expected due to their rather stretched conformation.
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column in series with a SEC column, are logged. Individual steps are sepa-
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Figure 77: Improved purification of an oligo-attachment reaction by an additional Ni-
NTA column. The green run shows that all unreacted maleimide oligos
still present in the blue and red trace were successfully removed. Most im-
portantly, the same holds for the removal of the dimer-like contamination.
Note that ROSSopt binds two oligos way more efficiently than ROSSorg
due to a more flexible design of attachment points (see sequences in Sec-
tion A.1): the ratio of the peak height of the elution volume between two
oligos bound to the Rossmann fold and only one bound oligo increased
from 3:4 for ROSSorg to almost 2:1 for ROSSopt.

Clean and restore column

Clean and restore a Ni-NTA column. Wash with 10 column volumes (CV) of
destilled water (ddH2O); 10 CV 0.5 M EDTA60; 10 CV ddH2O; 10 CV 0.2 M
NaOH; 5 CV ddH2O; 10 CV cleaning buffer: 6 M Guanidinium chloride +
0.5 M Imidazole in 50mM Tris pH 7.5; 10 CV ddH2O; 5 CV 0.1 M Ni-II-Chloride
Hexahydrate61; 10 CV ddH2O; for long-term storage: 5 CV 20% EtOH.

Load and wash sample

Load the sample62 on a Ni-NTA column and wash away unbound oligonu-
cleotides. If the column is not yet on water, first equilibrate with: 10 CV
ddH2O; then: 10 CV sample buffer63; load sample: use a volume appropri-
ate for easy sample loading while minimizing losses; optional: 10 CV sample

60 Solve in ddH2O; for solubility: stepwise adjust to pH 7-8 with 10 M NaOH.
61 Solve in Tris, pH can be anything as long as no protein is involved; avoid buffers containing

phosphates to not reduce solubility. Even as little as 5 mM may be used: less Ni will be bound
and, hence, the column will be very specific.

62 Here, the sample is the entire oligo-attachment reaction.
63 If the protein’s pI supports it, here, up to pH 8 may be considered for high His-Tag affinity.
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buffer; wash away unbound oligonucleotides: 10 CV 2 M potassium chloride64

(KCl); optional: 10 CV sample buffer; 10 CV SEC buffer65.

Elute and separate by size

Elution of a sample bound to a Ni-NTA column coupled to a SEC column.
Mount Ni-NTA column before SEC column66; inject 0.5 mL of 0.5 M Imidazole
buffer67 as ’pseudo’-sample into the 0.5 mL-loop of the equilibrated68 HPLC
system; start SEC run: 60 min run length, 0.5 mL/min flow-rate, and 30 s time
intervals for collecting fractions are typical settings.

a.3.4 DNA-handle PCR

The two types of DNA-handles that are able to either bind to streptavidin or to
anti-digoxigenin coated beads, are produced in one single PCR on a λ-phage
DNA template. The single reaction is accomplished by using a 1:1 ratio of two
different sense primers69 carrying either three biotin or three digoxigenin
sites, other then that their sequences are exactly the same. The anti-sense
primer is the same for both types of handles and has an abasic site in the
middle, where the polymerase falls off. The remaining ss-overhang is comple-
mentary to the oligos reacted to the protein, see Section A.3.2. This way the
DNA-handles can hybridize to the protein-oligo construct after mixing70.

Bold letters in the sense primer’s sequence mark the position of the biotin
or digoxigenin modifications. The position of the abasic site within the anti-
sense primer is marked with a bold x. The gray sequence is complementary
to the protein-oligo.

sense primer . 5’-GGCGATCTGGTCGTTGATTTG-3’

anti-sense primer . 5’-CGACTCGCTGGTCTGGTTGAACGTCAGCCC
TGCCxCCTGCCCGGCTCTGGACAGG-3’

The primers bind to a region with especially high GC-content, i. e., 61 % for
the 511 nucleotide bases ranging from number 10557 to 11067 of λ-phage DNA.
Together with the additional 34 bases from the overhang, two handles yield
an overall expected contour length of approximately 371 nm71.

64 Solved in sample buffer; adapt pH to be protein- + HisTag-friendly.
65 Usually PBS pH 7.4.
66 The Ni-NTA column’s additional volume yields a corresponding time shift in SEC runs.
67 Solve imidazole in appropriate buffer and adjust pH.
68 Pass 2 CV of SEC column for equilibration. Superdex 200: 100 min run at 0.5 mL/min flow-rate.
69 All primers for the DNA-handle PCR are purchased from IBA GmbH.
70 Note that this statistically leads to 50% of all trapping constructs having two DNA-handles

with the same functionalization. These constructs will most likely bind to a single bead with
the respective coating.

71 Here, 0.34 nm contour length per base pair are assumed. This exactly yields 371.28 or 370.6 nm
when including or excluding the abasic site upon counting.
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Reagent Volume [µL]

ddH2O 232

ThermoPol buffer 30

dNTP 6

λ-phage DNA 6

sense primer biotin 5

sense primer digoxigenin 5

anti-sense primer 10

Taq Polymerase 6

Table 20: Reaction premix for DNA-handle PCR.

Step Temperature [C◦] Time [min : sec]

1 95 2:00

2 95 0:25

3 55 0:45

4 68 0:37

5 go to step 2 repeat 44x

6 68 5:00

7 4 hold

Table 21: Temperature step protocol for DNA-handle PCR.

PCR protocol details

All primers for the DNA-handle PCR were ordered from IBA. Lambda DNA
(N6-methyladenine-free) was used as template (N3013S, NEB). The PCR is
conducted using the Taq DNA Polymerase with ThermoPol Buffer (M0267S,
NEB) in a Routine PCR, i. e., an extra annealing step is included in contrast to
a Routine 2-Step PCR. The total 300µL reaction premix itemized in Table 20 is
equally split into 6 standard PCR tubes. The temperature72 step protocol for
the PCR is given in Table 21. The PCR-products are purified with the QIAquick
PCR Purification Kit (Qiagen).

DNA-handle test

The DNA-handles’ ability to bind to the protein-bound oligos can be easily
tested. After reaction with dimerized oligonucleotides, an agarose gel elec-
trophoresis is run including a pure DNA-handle reference band. A band at
about double the size of a single handle should show up in case of working

72 Melting temperatures for primers can be calculated using the Oligo Calc tool: http://www.
basic.northwestern.edu/biotools/oligocalc.html

http://www.basic.northwestern.edu/biotools/oligocalc.html
http://www.basic.northwestern.edu/biotools/oligocalc.html
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handles; also see Figure 74 for the resulting gel of a protein-oligo construct
test with identical principle. For a better interpretation of the test, it is recom-
mended to include an additional reference consisting of DNA-handles that are
known to work.

Dimerized oligonucleotides mimicking a protein-oligo construct can be ob-
tained from DTT- or BM(PEG)2-tests for maleimide or thiol reactivity, thiol oligo
reactions with protein, and maleimide-oligo dimer-like contaminations.

Troubleshooting

According to its specification, the QIAquick PCR Purification Kit removes
all unreacted primers or fragments smaller than 40mers from a PCR-product.
As the anti-sense primer is a 54mer, unreacted primers can remain in the
final elution. This is critical as the anti-sense primer includes the sequence
complementary to the protein-bound oligo and, hence, can compete against
the much slower diffusing DNA-handles when mixed with the protein-oligo
construct. Subsequent removal of unreacted primers can be achieved using
the QIAquick Gel Extraction Kit (Qiagen) after running the purified DNA-
handles through an agarose gel.

To minimize chances of having unreacted primers, an increased number
of 44 repeated PCR-cycles has been chosen. Further the amount of anti-sense
primers was kept slightly below the sum of both sense primers.

As primers are delivered on different days and aliquoted with different
pipettes by different people, aliquot volumes should be reviewed to guarantee
the same amount of the two different sense primers.

a.3.5 Sample preparation and measurement at the trap

All measurements were performed in filtered and degassed PBS buffer with
pH 7.4 (P4417, Sigma Aldrich).

Sample chamber assembly

To assemble a sample chamber, two stripes of Parafilm M (P7793, Sigma
Aldrich) are placed on a bigger cover slip (LH25.1, Carl Roth) such that a
channel along the longer axis is formed. A smaller cover slip (LH22.1, Carl
Roth) is placed on top of the channel. Next, the sample chamber arrange-
ment is placed on a heat plate preheated to 85

◦C and the smaller cover slip
is slightly pressed down using the cleaned73 edge of a microscope slide. The
ready-to-use sample chamber is removed from the heat plate. Prior filling
with the final measurement mix (see below for it’s preparation), the channel
is being incubated with about 40µL BSA buffer (10 mg/mL BSA (A0281, Sigma
Aldrich) solved in PBS and filtered) for at least 10 minutes to passivate the
glass surfaces of the channel. After incubation, the channel is flushed with
100µL of PBS buffer. Now the final mix can be filled into the channel which

73 Note that prior use, all slips and slides are manually cleaned with Kimwipes (7551, Kimtech
Science by Kimberly-Clark).
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is thereafter being sealed with vacuum grease (Baysilone-Paste of medium
viscosity, GE Bayer Silicones).

Final measurement mix

The necessary components for the final measurement mix are DNA-handles
(for preparation see Section A.3.4), the protein-oligo construct (for prepa-
ration see Section A.3.2), PBS measurement buffer, commercially available
streptavidin-coated silica beads (CS01N 1µm, Bangs Laboratories), in-house
functionalized anti-digoxigenin-coated and fluorescently labelled silica beads
(anti-digoxigenin: Anti-digoxigenin Fab fragments, 11214667001, Roche; fluo-
rescent label: albumin from bovine serum (BSA), tetramethylrhodamine (TMR)
conjugate, A23016, Molecular Probes as part of Thermo Fischer Scientific;
beads: SC03N 1µm, Bangs Laboratories) and the oxygen scavenging system
GODCAT (26 U/mL glucose oxidase (G2133, Sigma Aldrich), 1.700 U/mL cata-
lase (C3155, Sigma Aldrich) and 0.6 % (w/v) glucose (G8270, Sigma Aldrich)).

The amounts given for the composition of GODCAT refer to the final mea-
surement mix and are deduced from [259]. The amount of glucose matches
well with the v/v values given in [123, 258]. Instead of PIPES buffer, MOPS
has been used without addition of magnesium and EDTA. All three compo-
nents of GODCAT were prepared as 50 x solutions, aliquoted, and stored74 at
-20
◦C. Therefore, glucose oxidase and catalase solutions contained 50 % (v/v)

glycerol.
An example for pipetting a final measurement mix is given in Table 22 and

explained in detail in this paragraph. First, the final protein-DNA chimeras
have to be formed by letting the DNA-handles (H) hybridize to the protein-
oligo construct (P) in an optimized ratio (H:P usually 1:2 up to 1:10) during
an optimized time (ranging from 10 minutes to 2 hours as well as overnight
reactions) on either ice or at RT. During and/or after the hybridization re-
action, additional measurement buffer (B) is added for further dilution; this
results in the PHB mix. Next, 0.3µL of PHB are added to 40µL of B and well
mixed. Then 0.5µL of a 1:10 dilution75 of commercially available streptavidin
beads (cS10) in measurement buffer B are added to react for 7 minutes at RT;
this results in the cS∗PHB mix (the reaction time highly depends on the bind-
ing affinity of the beads; for low binding affinities also overnight reactions on
a rotor in a cold room may be considered). In parallel 0.5µL of a 1:10 dilu-
tion of anti-digoxigenin beads (A10) in measurement buffer B are added to
an extra 40µL of B; this results in the A∗ mix (similar treatment of both bead
types showed better reproducibility of amounts of beads in the final mixes,
especially in the case of multiple sample chambers per day). The final mix is
prepared such that a final volume of 100µL is reached. First, 3 times 2µL of

74 As claimed by the supplier Calbiochem, stock solutions of catalase are stable for 1 month at
-20
◦C. Hence, stocks need to be refreshed accordingly.

75 Usually, both types of beads are kept in private 1:10 dilutions that can be used over months.
Hence, dilutions help saving stock solutions and keeping the stocks clean through less frequent
usage. While dilutions in PBS were observed to be stable for months, dilutions in Tris seem to
be stable for a few weeks only.
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Step Mixed amounts [µL] Comment

1.1 5 P + 1 H + 0 B 2 hours at RT

1.2 + 4 B = PHB optional dilution

2.1 40 B + 0.3 PHB mix well

2.2 + 0.5 cS10 = cS∗PHB mix well; 7 minutes at RT

3 40 B + 0.5 A10 = A∗ in parallel to step 2.2

4 84 B + 3 x 2 GODCAT = F mix well; start before 2.2 ends

5 F + 8 cS∗PHB + 2 A∗ = F∗ mix well

Table 22: Final measurement mix example as applied for HP35st-TS.

the 50 x stock solutions of the GODCAT are added to 84µL of B and well mixed;
this results in the F mix. Second, 8µL of cS∗PHB and 2µL of A∗ are added to F
and mixed; this results in the F∗ mix. The apparent uneven ratio of cS∗PHB and
A∗ is due to uneven bead concentrations and needs to be adapted whenever
a new bead stock is being used. Now, the final measurement mix is ready to
be filled into the sample chamber.

Measurement procedure

After mounting the sample chamber between the two water immersion ob-
jectives (use immersion medium Immersol W 2010, Carl Zeiss), force spectro-
scopic measurements can begin at the warmed up76 setup shown in Figure 5.
At the beginning, the two trap centres are kept apart at an initial distance
of about 8µm. Now, two differently functionalized beads that can be des-
tinguished by fluorescence are caught within the two traps. After recording
their power spectra for calibration according to [225], the beads are brought
in close proximity to each other by moving the mobile trap at constant veloc-
ity towards the fixed trap until both beads slightly touch each other. During
this initial approach77 no tether is yet established and, hence, the measured
signals serve as a trap distance dependant baseline for zero (tether-induced)
force78, for details see [212]. After the beads have touched, the mobile trap is
again moved away from the fixed trap and repetitive stretch-and-relax cycles
are performed. If a tether forms, first, its integrity is tested and then data at
desired constant (mobile trap) velocities are being collected. Typical stretch-
and-relax cycles resulting from constant velocity measurements are shown in

76 Warming up takes about an hour with the trapping laser switched on. During this time a filled
and sealed (dummy) sample chamber is used to let the detection side warm up as well.

77 Local correlations between the two traps’ signals ideally allow to exactly assign the point of
zero tether extension, i. e., the inter-trap distance at which the surfaces of the two beads start
touching [212]. This point coincides with the inter-trap distance at which the apparent force
quite suddenly drops in direction of smaller distances while the signals’ noise gets reduced at
the same time.

78 The small apparent forces that are detected in the baseline are most likely originating from
crosstalk due to the proximity of the two laser foci and eventually they may even reflect
hydrodynamic interactions between the two beads [147].
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Figure 10. Next, various constant trap distances are stepped through to per-
form equilibrium measurements at a constant force bias. Typical equilibrium
data measured in constant distance mode are shown in Figure 11. During
extremely long equilibrium measurements, a few short constant velocity cy-
cles are run between each constant trap distance step to not inadvertently
miss eventual drift during the measurement. Even data containing only small
drift have to be handled with care. If all data were collected and the mea-
surement was neither terminated by a breaking tether nor by a third bead
accidentally falling into one of the traps, the tether was ripped apart. After a
couple of empty cycles marking the end of a successful measurement, both
beads were calibrated (ideally for a second time) after the traps were moved
back to their initial distance of about 8µm. If the calibration values lie within
the expectable range, the measurement was not corrupted by small nearly
invisible particles eventually falling into the trap during data recording.

Troubleshooting - influences on successful tether formation

The important factors influencing successful tether formation can be split
into two categories. One category concerns the individual quality and per-
formance of the used components, namely the protein-oligo construct, the
DNA-handles, both types of beads and the oxygen scavenging system79. The
second category applies to the interplay of all components, i. e., the use of the
right amounts, concentrations and reaction times for mixing the final mea-
surement mix.

For creation of the final protein-DNA chimeras, optimal amounts of protein-
oligo construct and DNA-handles as well as the reaction time used in step
1.1 of Table 22 can be screened with the protein-oligo construct test through
agarose gel electrophoresis as described at the end of Section A.3.2. This test
presumes correct function of the DNA-handles, which can be independently
tested with dimerized oligonucleotides mimicking the protein-oligo construct
according to Section A.3.4. Nevertheless, single molecule measurements may
still be possible even if the protein-oligo construct test did not show a de-
tectable positive result on an agarose gel.

In step 2, the order of first diluting PHB in B and then adding the beads
is very important. If the wrong order is used, concentrated protein-DNA
chimeras will be locally added by pipetting into well diluted beads. This
results in a lot of constructs being bound to very few beads while most of the
beads will not have any construct bound at all.

The most important way to find the right concentrations for incubating
protein-DNA chimeras with functionalized beads in step 2.2, is to ’read’ and
interpret the experiments. Therefore, statistics80 of observed events for all
tested bead pairs are collected. These events include: nothing (N; no tether
formation at all), sticking (S; beads would completely stick together and even-

79 Uncontaminated, filtered and degassed measurement buffer as well as the purity of any other
additive, e. g., nucleotides, are assumed.

80 When a component was changed, at least 25 entirely different pairs of beads per sample
chamber were tested to establish relevant statistics.
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tually rip apart at very high forces), DNA only (D; tether formation with the
correct contour length of DNA-handles but without any protein unfolding),
too much DNA (2mD; tethers with too short contour length without any pro-
tein unfolding), protein (P; the desired protein fingerprint is there), too much
protein (2mP; too short tether with protein-like unfolding events usually of a
different way from the expected fingerprint), unzipping (U; a plateau region
around 15 pN as known from DNA(-hairpin) unzipping [70, 183]), weird and
long tethers (wlT; tethers with too long contour length and indefinable unfold-
ing events with little or no hysteresis), half tethers (hT; D or P events with half
of the expected contour length for the DNA-handles), DNA-handle crap (aka
crappy linker: cL; ∼2 to 12 nm contour length flipping events localized or
distributed over the entire force range and protein-like unfolding/refolding
events repeatedly showing considerable hysteresis), and ripping tethers (rT;
P events, where tethers rip off at forces below 30 pN after only a very few
stretch-and-relax cycles).

A good rule of thumb is to tune step 2 towards a probability of tether
formation equal to about one third. In this case, the probability of having a
single tether, i. e., the desired single molecule event P, equals approximately
80 % [146]. This can be derived upon assumption of a Poisson distribution
of protein-DNA chimeras randomly attached to the bead similar to the at-
tachment of molecular motors to beads in in vitro assays [24, 186]. The given
rule is not that strict though, as there are more indications for a true sin-
gle molecule event, e. g., the contour lengths of the DNA-handles and of the
protein unfolding as well as the measured kinetics.

If the number of events N is above two thirds of all events, too few protein-
DNA chimeras have bound to the beads during incubation in step 2.2. Hence,
the amount of PHB needs to be increased in step 2.1 and/or the incubation
time prolonged in step 2.2. For rather short incubation times where diffusion
will play an important role, one might also consider decreasing the overall
reaction volume by decreasing the amount of buffer B in step 2.1. In case
that the events S, 2mD and 2mP dominate, obviously too many tethers are
forming at the same time and the amount of PHB and/or its reaction time
with the beads need/s to be decreased.

A high amount of D events usually originates from a contamination with
dimerized oligonucleotides. How to get rid of this contamination is described
in Section A.3.3.

Observation of unzipping (U) events are an indication of too many DNA-
handles being used with respect to the protein-oligo construct. In contrast, too
few DNA-handles may cause the occurrence of hT events with only half of the
expected contour length. The latter can also show up because of protein-oligo
constructs that have only one oligo attached. DNA-handle crap (cL) points to-
wards deficient handles and a new DNA-handle PCR is highly recommended.

Weird long tethers (wlT) can be observed when beads are overloaded with
protein and/or DNA-handles. An explanation could be that the formation of
protein-DNA chimeras is highly inefficient such that a lot of PHB is applied in
step 2. This further leads to unspecific unfolding events with too long contour



A.3 protocols 245

lengths instead of sticking which is the usual observation for application of
too much PHB.

The frequent rupture of tethers (rT) at forces below 30 pN can have multi-
ple reasons. In brief, either the oxygen scavenging system has gone bad, or
the functionalized DNA-handle primers or the handles themselves are not in
best shape, or the binding to the beads is somehow corrupted. To exclude the
latter, a fresh preparation of new bead stocks surely is one option81. Besides,
one might also consider to simply wash the beads to get rid of gradually
detached streptavidin or anti-digoxigenin from the storage buffer to not inter-
fere during incubation in step 2.2.

In principle there is no clear preference for the type of beads being used to
incubate with the protein-DNA chimeras in step 2.2. Here, the commercially
available beads with a more reproducible reactivity were preferred. If the
other bead type is less reactive, more repeats per bead pair will be needed
upon trying to establish a tether. This can be inverted by letting a higher
concentration of protein-DNA chimeras react with the less reactive beads over
a longer time (preferably on a rotor). Picking up a tether will be possible with
fewer attempts provided that in step 2.2 a few protein-DNA chimeras have
reacted to the beads at all.

To end up with about the same amount of each bead type in the final mix
F∗ after step 5, it is helpful to estimate the relative concentrations of their
initial 1:10 stock dilutions. This is achieved best by making a 1:1000 dilution
and directly filling it into an unpassivated sample chamber. In this chamber,
the beads will stick to the glass surface and an average number of beads per
bright field screen can be counted. From this number the necessary ratio for
the final mix can be derived. Another way would be to make statistics of
the beads encountered during a measurement and to adjust their amounts
accordingly for the next sample. This presumes perfect distinction through
the fluorescent label as well as perfect mixing82 during all the steps of creating
the final measurement mix. So far, the best distinction between different types
of beads was possible through slightly differently sized beads.

Good mixing between each step is crucial and achieved best by tapping
the reaction tubes; mostly, vortexing (more foam) or pipetting up and down
(additional shear stress; consider cutting off a little bit from the pipette tip
for a bigger opening) is fine for mixing as well but it was passed down to
be harmful to the activity of sensitive proteins such as molecular motors.
One can slightly shake the pipette to initially better spread the beads upon
addition to solution. Directly prior to pipetting beads, their solution always
needs to be (re-)mixed.

81 A test to quantify the binding ability of beads is presented in the supplement of [123].
82 Perfect mixing of beads has not been observed during this thesis; the two types of beads

would rather show up in larger areas of one type. Concerning the fluorescent labelling, its
homogeneity and intensity have shown quite some variability within one stock.
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To assure good reproducibility of pipetted amounts, always use the same
pipettes and avoid volumes of less then 0.5µL83 unless very precise pipettes
are available.

83 The correct amount of 0.5µL can still be estimated quite well by checking the volume in a
standard 10µL pipette tip by eye.
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