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Abstract

In the present paper we mathematically prove several stability results concerning the problem of reconstructing binary pictures from
their noisy projections taken from two directions. Stability is a major requirement in practice, because projections are often affected by
noise due to the nature of measurements. Reconstruction from projections taken along more than two directions is known to be a highly
unstable task. Contrasting this result we prove several theorems showing that reconstructions from two directions closely resemble the
original picture when the noise level is low and the original picture is uniquely determined by its projections.
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1. Introduction

A binary picture can be considered as an n by n array of
pixels (or resolution cells) that are coloured either black or
white. A projection of a picture is an ordered set of values
that are sums over the grey levels of the pixel centres (typ-
ically 1 for black and 0 for white) each taken along a line
out of a set of parallel lines through the picture. The set
of parallel lines is called the projection direction, and given
some projections (usually from several projection direc-
tions) the general reconstruction problem is to reconstruct
the original picture or at least an approximation of it.

This reconstruction task is one of the most prominent
problems that is studied in the field of Discrete Tomography
(see [2] for a survey) and arises in many different contexts,
e.g., in electron microscopy [3,4], data security [5], medical
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imaging [6], combinatorial optimization [7,8], combinator-
ics [9] or image deconvolution [10]. In pattern recognition,
e.g., one often uses projections as a compressed representa-
tion of the picture, which usually is accompanied by a loss
of information. If the projections, however, uniquely deter-
mine the reconstruction then there is no such loss. Thus the
interest in studying the relationship between pictures and
projections for image processing applications is twofold:
On the one hand it is important to examine properties of
the projections that reflect the effect of image processing
operations such as addition, averaging and differencing,
on the pictures. Such results (see [11] for an example) per-
mit to work directly on the projections without having to
reconstruct the underlying pictures. On the other hand,
modifications of the projections can have drastic effects
on the reconstruction and need to be studied because pro-
jections are often obtained by measuring devices, which are
affected by noise. In this context the question is whether the
picture reconstructed from noisy projections is a good
approximation of the original picture. The reconstruction
process is called stable if a small amount of noise can only
lead to small differences in the reconstruction. This ques-
tion can be either approached directly or reversely by
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showing that a large difference in the reconstruction can
only occur if the difference of the noisy and noise-free pro-
jections is also large. In this paper, we consider binary pic-
tures and projections taken from two directions, and we
pursue both of the just described approaches.

Gale and Ryser [7,9] (and later Wang [12]) were the first
to state necessary and sufficient conditions for the two pro-
jections to uniquely determine the reconstructed picture.
Uniqueness is a reasonable requirement for a first step
towards a stable reconstruction since otherwise two dis-
joint pictures may exist with the same projections. In the
following we therefore always require that the original pic-
ture is uniquely determined by its projections.

In Section 3, we show that the reconstruction problem is
stable if the difference in the projections (called projection
error), measured in the ¢;-norm, is less or equal to 2 (The-
orem 19). This is in striking contrast to the unstable behav-
iour of the reconstruction from more than two projections
[13]. Note that a similar discrepancy holds for the algorith-
mic complexity: While reconstruction from two projections
can be solved in polynomial time it is well-known that it is
N[P-hard when more than two projections are taken [14].

It remains an open question whether a larger projection
error still permits stable reconstructions. However, we
show in Section 4 (Theorem 27) that a similar combinato-
rial reasoning leads to provable stability results when the
requirement of uniqueness for the original picture is weak-
ened to the assumption that in every reconstruction there
exists a suitable number of invariant points [15]. Indeed,
the upper bound for the difference in the pictures depends
on the number of invariant points. In Section 5, we deter-
mine a lower bound on the projection error in the case
where the original and reconstructed pictures are disjoint.
As a result we obtain that a smaller projection error has
to lead to a non-empty intersection of both pictures.

We close the introduction by giving some pointers to the
literature. Reports on the stable behaviour of reconstruc-
tion algorithms that incorporate a-priori knowledge can
be found in [16-19]. To our knowledge the only sources
containing theoretically proven stability results are
[16,17,20,21]. The relevant results in these papers concern-
ing projections from two directions either address recon-
structions with smaller projection errors [20] or they
require that even the reconstruction is uniquely determined
by its projections [17,21]. Our Theorem 19 is a generaliza-
tion of Theorem 5.1.18 in [16] and of Theorem 17 in [1].
More about the reconstruction of binary pictures from
noise-free projections in the context of (0, 1)-matrices can
be found in [22]. Invariant sets have been intensively stud-
ied, e.g., by [15,23-25].

2. Notations and statement of the problems

Since we consider projections taken from two directions
we can assume, without loss of generality, that these two
directions are the horizontal and the vertical ones, and
we will refer to them as the set of row and column sums.

Let Z* be the set of points with integer coordinates. A
binary picture on Z* can be represented by a 0/1-valued func-
tion £ whose value is 0 for all but finitely many points of Z*
corresponding to the black pixels (see e.g., [26]). Then, a
binary picture is a member of #* := {F C Z* : F is finite},
i.e.,itis a(finite) lattice set. The function fis the characteristic
function of F, usually denoted by 1p, ie., 1)) =1 if
(i,j) € F, and 1x(i,j) = 0, otherwise. Let us consider the hor-
izontal and vertical directions. Let 2 := {(x,y) € Z* : xpin <
X < Xmax, Vmin <V < ymax}, where X, = min(x,y) e Fx},
Ymin = min(x,y) S F{y}9 Xmax — MaX(x, y) F{x}a Ymax
maxy, ) e 1y}, denote the smallest rectangle containing F.
The projection of F along the ith row of #, the row sum, is
given by r;:= >, ,1(j,i), and the projection of F along
the ith column of %, the column sum, is given by
Ci = ZjeZIF(i>j)'

We use the convention that the rows and columns are
numbered starting from the left-upper corner of # (see
Fig. 1a). Since F is finite we can assemble the non-zero
r/’s and ¢;’s into two vectors (the row and column sum vec-
tors), that we denote by R and C, respectively. The ¢;-norm
of a vector v, being the sum of the absolute values of its
components, will be denoted by [[v]|;; the cardinality of F
will be denoted by |F|; and the symmetric difference of
two pictures F and F' by FAF'.

We are interested in theoretical results giving stability
guarantees if the row and column sums contain “noise”,
i.e., we have to compare an original set F and a possible
reconstruction F' € #* by taking |[FAF'|, and compare
the difference in their projections, called projection error,
by |R — R'||; +]||C — C'||; (where R’ and C' denote row
and column sums of F’). In doing so we assume that the
ith entries of R and R’ refer to the same row, which can
be achieved by inserting zero-entries. The same assumption
is made on the entries of C and C’. We note in passing that
the symmetric difference can be interpreted as |[1 — 1| in
an appropriate function space.

We will provide answers to the following problems.

Problem 1. Let F e 2 be uniquely determined by its row
and column projections R and C. Determine a sharp upper
bound for max|FAF'| where F' fulfills [R — R'|; +|C —
) <2.

col 1 col 2 col 3 col 4 col 5
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Fig. 1. Anillustration of sets F (black points) and F’ (white points). Points
of FN F' are coloured half white and half black. (a) The enumeration of
rows and columns. (b) An example showing F and F’ as in Lemma 15.
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We also consider a slightly more general problem where
Fis not uniquely determined, but contains invariant points.
Furthermore, we investigate:

Problem 2. Let F € 2 be uniquely determined by its row
and column projections R and C. Find a (close) lower
bound for maxy (||R — R'||; + ||C — C'||,), where R" and C’
are row and column projections of F’ fulfilling |F| = |F'|
and |FAF'| =2|F|.

Finally, some remarks about the assumption of unique-
ness: We can change the coordinates of each point in # by
first permuting the columns so that C is a non-increasing
vector, and then permuting the rows so that R is also a
non-increasing vector. This is a one-to-one function on
the points of the rectangle yielding a triangular shape when
the set is uniquely determined by its projections (it is a
maximal matrix with non-increasing row sums, see [9]).
So, we shall assume that F has a triangular shape, as in
Fig. 1a.

Remark 3. In summary, we assume in the rest of the paper
that F is a maximal matrix with sorted rows (or equiva-
lently, row and column sum vectors are monotone and
uniquely determine F).

A last remark concerning the notation. If p is a point of
F, lying in the ith row and jth column, we write row(p) =i
and col(p) =j. Sometimes we do not distinguish between
the row itself and its index.

3. Problem 1: a fixed projection error

The main part of this section comprises the results of
Sections 3-5 from [1]. However, Theorem 19 is a general-
ized version of its counterpart ([1], Theorem 17), as will
be discussed at the end of this section.

3.1. Preliminary remarks

Unless stated otherwise we will always assume |F| = |F'|
and |[R — R'||; +||C — C'||; = 2. We will drop these require-
ments only in the proof of Theorem 19. Assuming a pro-
jection error of 2 means that the error occurs on exactly
two lines of a single direction. This follows from the
assumption |F| = |F'|. Indeed the sum of the projection
values along the rows (or columns) equals the cardinality
of the set to be reconstructed (cf. [16,20]), and so if there
is exactly one line where the error is —1 (which will in the
following mean that there is one point more of F'\F than
of F\F' on the line), then there exists exactly one line with
a tl-error (meaning that there is one point more of F\F’
than of F'\F on the line). Furthermore, by possibly rotat-
ing F and F' we may assume that the error occurs along
horizontal lines (rows). If F’ contains a single point on a
horizontal line, then we can assume without loss of gener-
ality that it is row 1. Therefore, we assume in this section
that the error occurs in exactly two rows (consequently in
no columns).

Remark 4. Let p be any point of F/\F and let ¢ be any
point of F\F'.

(a) From the shape of F, we have:

- if col(p) = col(g), then row(p) > row(q);
- if row(p) = row(q), then col(p) > col(g).

(b) Since no column error occurs: the point p exists if and
only if the point ¢ exists, with col(p) = col(g). Similar-
ly, in the rows in which no error occurs: p exists if and
only if ¢ exists, with row(p) = row(g).

Lemma 5. Let i be the row where the —1 error occurs, and
let j be the row where the +1 error occurs. Then i > j.

Proof. Suppose that i <j; then we show that there is an infi-
nite sequence of points in FAF’ starting with a point p of
F\F in the ith row. Since the —1 error occurs in the ith
row, at least a point p of F'\ F exists in this row. By Remark
4 (a) and (b), for any p, a point ¢ of F\F' exists such that
col(p) = col(g) and i = row(p) > row(q). Since there is no
error in any row with index less than i, we conclude with
Remark 4 (a) that there exists also a point p’ of F'\F in
row(g), then again a point ¢’ of F\F/, etc., all of which lie
in a row with index less than i. This leads to an infinite
sequence of points in FAF’, which is not possible. [

3.2. Staircases

Definition 6. Let 4, B € #° with AN B=0. A staircase
T=(ty,...,t,) according to the columns is a sequence of an
even number m > 0 of distinct points t,,41 € A and 14> € B
for 0 <i<%— 1 such that

(1) col(tzi+1) = col(t2:+2) and row(tai41) > TOW(Z2i42) for

0<i< g - 1;
(i1) row(ty;) =row(tp;41) and col(ty;) <col(tp;;) for
1<i<2—1.

The definition of a staircase according to the rows is
obtained by exchanging the words “row” by “column”
and “4” by “B”.

A staircase can be interpreted geometrically. It is a rook
path of alternating points of 4 and B with end points #; and
t,.. We refer to (5, 12:+1) as a horizontal step and to (tp11,
tri+o) as a vertical step of T. Since 4 and B are finite, every
staircase has a finite number of points. A staircase that is
not a proper subset of another staircase is called a maximal
staircase. Below we will show that there is only one single
maximal staircase if 4 = F'\F and B= F\F'. The points
of A will be called white points, and the points of B will
be called black points.

3.3. Technical lemmas

In the following we will speak about staircases in FAF’,
which implicitly means that 4 = F'\F and B = F\F'. Now,
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we are going to show that the symmetric difference of F and
F' is a maximal staircase in FAF',

Remark 7. Notice that for every p € FAF' there exists a
staircase 7T = (¢y,...,¢,) (possibly constituted by two
points) such that p is an element of 7. This can be easily
deduced from Remark 4.

Lemma 8. Any two maximal staircases in FAF' have the
same starting point and the same end point.

Proof. Let Ty =(t,...,t,) and T>=(sy,...,s,) be any
two maximal staircases in FAF'. We are going to show that
t; = sy and t,, = s,,. Since the —1 error occurs in exactly one
row (say i), it follows that row(#;) =row(s;) =i If
col(z;) # col(sy), a black point, say ¢, exists in the ith row.
By Remark 4, a white point p exists such that col(p) =
col(g) and row(p) > i. Since there is no error in any row
k > i this leads to an infinite sequence of points in FAF'.
Analogously, since the +1 error occurs in exactly one
row (say j), we have row(t,,) = row(s,,) =/, and col(t,,) =
col(s,) because otherwise (with Remark 4) there is an infi-
nite sequence of black and white points in FAF'. O

Remark 9. By Lemma 8 every maximal staircase starts in a
white point ¢#; and ends in a black point #,. So, there is
exactly one white point in row(#;) and col(¢;) and one black
point in row(¢,,) and col(z,,). Moreover there is no black or
white point outside the rectangle that is made up of the
rows between row(#;) and row(t,), and the columns
between col(¢;) and row(z,,).

Lemma 10. Any two maximal staircases in FAF' coincide.

Proof. Let T, = (¢, ...,t,)and T» = (51, ... ,S,) be any two
maximal staircases according to the columns in FAF'. We
are going to show that m =n and t;,=s; for i=1,...,m.
Since #; = s there is no white point other than ¢, in col(¢)
by Remark 9. It follows that exactly one black point lies on
this column, that is, #, = s,. Analogously, we can conclude
that ¢,,_; =s,,_1. Consider now T1\{¢,¢,} and T>\{s1,s,}.
They are two staircases according to the rows. Proceeding
as before, we conclude that 13 =53 and ¢, _,=1s,_>. We
repeat the procedure alternatingly on a staircase according
to the rows and one according to the columns until an empty
set is achieved. So, t;=s;fori=1,...,m. O

The previous lemmas prove the following proposition.

Proposition 11. The points of FAF' constitute a maximal
Sstaircase.

3.4. Bounds

In this section, we give an upper bound for the number
of points on any maximal staircase, when we fix F but may
vary F'. This gives a sharp bound on |FAF'| since the max-
imal staircase contains exactly the points of FAF'.

Let T=(t,...,t,) denote this staircase, and let
R=A{1,...,a} x {1,...,b} be the rectangle containing F
having non-empty rows and columns. Clearly, there is at
most one point ¢, of T'outside of #, and for this point we have
1 < col(#;) < b, while all the other points of T are inside of
. Without loss of generality we can assume that
Fc{0,...,a} x{1,...,b}. So, we have Re N and
CeNg.

Proposition 12. Let R € Nj and C € Ng uniquely determine
Fe Z2 Then,

max |FAF'| <2min(a+ 1,b).
F'eZ2(F)

Proof. Since FAF' forms a staircase 7, it is immediately
clear that an upper bound for the symmetric difference
can be obtained by counting two times the number of verti-
cal steps in 7 that, in turn, is less than ». But another bound
is given by adding 2 (for including #; and 7,,) to two times the
number of horizontal steps. Since ¢, is the only point that
can lie outside %, we have maxpz g |FAF| <
min(2a + 2,2b) =2min(a + 1,b). O

Proposition 13. Under the same hypothesis of Proposition 12,
let I be the number of pairwise different row sums of F. Then,

max |FAF'| <21
F'eF2(F)

Proof. Clearly, |7] equals two times the number of vertical
steps in 7. Since by definition of staircases, row(ty;) = r1-
OW(t2;+1) and col(ty;12) = col(tzp4i) With 1y, 1940 € F\F'
and 5,11 € F'\F, we know that the number of points of F
in row(?y,) is less than the number of points of F in
row(fy;42). So the maximal number of vertical steps in
any staircase 7 for Fequals /. [

The next two lemmas provide lower bounds on FAF'.
These are used later to show that the derived bounds are
sharp.

Lemma 14. For every n € N there exist F, F' € F2 with
|F| = |F'| = in(n + 1) such that FAF' is a staircase with 2n
points.

Proof. Taking the sets F={(i,)): 1<i<n,
1<j<n+1-1i} and F = {(i,)): 1<ig<n—1,
1<j<n—i}u{(iin+2—1i):2<i<n+1} one can easi-
ly verify that the desired properties are fulfilled. [

Lemma 15. For every k, n € N with 0 <k <n, there exist F,
F' € 72 with |F| = |F'| =1n(n — 1) + k such that FAF' is a
staircase with 2(n — 1) points.

Proof. We define (see Fig. 1b)

Sy ={(i,)): 1<i<n—21<<n—i—1}, Sy={(in—i):1<i<k},
B ={({,n—i+1):1<i<k}, Bo={(i,n—i):k+1<i<n—1},
Wi={(i+1,n—i+1):1<i<k}, Wo={(i+1L,n—i):k+1<i<n—1}.
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Then, F:SIUSZUBIUBzandF’ S]USzUWIUW2
are sets with |F| = |F'| = in(n — 1) + k. It is easy to see that
F has a triangular shape. The points FAF =

B, U Wy U W, form a staircase with 2(n — 1) points, name-

ly T=(p1,42,P2 G, - - - sPn—2,Gn—>) With
_{(n+l—i,i)eW2 1<i<n—k—-1

(m—i+1l,i+1)ew n—k<i<n-1
and
_{(n—i,i)eBz c1<i<n—k-1
T V\n—iit1)eB : n—k<i<n—1. O

The next lemma is used in the following for bounding
the number of different consecutive row sums for a given
set F.

Lemma 16. For any n + j integers vy = ... = 1,y = 1 with
neN, je Ny and

n+,
(i) j = 1 and Znﬂ{r, =n(n+1),0
(i) j=0and >, <jn(n+1)
there are at most n — 1 pairwise different r,’s.

Proof. Suppose there are more than n — 1 pairwise differ-
ent r;’s, which means that in r; > --- > r,4; we have at
least n—1 times a strict inequality. This implies
r; = n—i+rn+] for 1<i<n—-1, and r; = r,,; for

n < i< n+j. Summation yields the contradiction
n+j n—1
Zr,— = (n+)rpy+nn—1) = i
i=1 i=1
. 1 1 .
=n+j+nn-1) —zn(n— 1) zzn(n—&—l)—&—].

O

Lemma 17. Let F€ 7° with |F| =1n(n+1) for an n € N.
Then, we have maxp .z |FAF'| = 2n.

Proof. By Lemma 14, we have maxyc ;> ) |[FAF'| = 2n. If
F has n + j non-empty rows, where j > 1, then we have by
Lemma 16 (i) at most n — 1 different consecutive row sums.
This leads only, by Proposition 13, to a staircase with at
most 2(n — 1) points. If F has less than n + 1 non-empty
rows, then we again conclude (by Proposition 12) that

any staircase contains at most 2z points. [
Lemma 18. Let F € 77 within(n — 1) < |F| < ln(n+ 1) for
an n € N. Then, maxp g |FAF'| = 2(n — 1).
Proof. Because of Lemma 15, we have maxp e ) |FAF'| >

2(n—1) for any F with In(n—1) < |F| <in(n+1). If F
has n + jnon-empty rows (j = 0), then we have, by Lemma
16 (ii), at most n — 1 different row sums. Consequently, by
Proposition 13, this leads to a staircase with at most
2(n — 1) points. If F has less than n non-empty rows, then
we conclude again (by Proposition 12) that any staircase
contains at most 2(n — 1) points. [

Now, we can summarize the results in the following
theorem.

Theorem 19. Given F, F' € #?* with row sum vector R, R’
and column sum vector C,C’, respectively. Suppose the
following properties are fulfilled:

(i) Fis uniquely determined by its row and column sums R
and C;
(ii) [R= R, +]C=Cli<2

Then, we have

FAF'| < 2n+1: if |[F|=in(n+1)foranneN
| SVt if L (n71)<|F]<n( +1)foranneN.

(1)
These bounds are sharp and imply

IFAF'| < 24/2|F| + 1. 2)

Proof. Let us define oo(F) := 2n + 1 if |[F| = in(n + 1) with
ann € N,and o(F) == 2n — Lifin(n — 1) < |F| <In(n+1)
with an n € N. Thus (1) reads as |[FAF'| < «(F). Using the
triangle  inequalities  |[|R[; — |R|| <||R — R’} and
Al = ICh < |IC = C'||; together with the fact that
IR, =l = |F| and ||[R'|l; =||C'|l; = |F'|, we observe that
the assumption

2F| = [F[| < [IR=R +]IC=Cl; <2
of Property (ii) can only be fulfilled if either |F|=
|[F| — |F/| = 1. We treat both cases separately.

Let |F|=|F'|. The projection error ||R — R'||; +|C —
C'||; has to be an even number, as we already remarked in
Section 3.1. Assertion (1) follows immediately if
[R— R +|C—C|; =0 since then we have F=F
(because F is uniquely determined). If |R — R'|; +|C —
C'|; =2 then we obtain |[FAF'| < o(F) — 1 from Lemmas
17 and 18, and thus (1).

Let |F| = |F'| + 1. By the upper triangle inequalities, we
can only have |R — R'||; +||C — C'||; =2, and more specif-
ically |[R — R||; +||C — C'|; =1, i.e., there is exactly one
row and one column containing a projection error, namely
a+ 1 error. Let p € Z* denote the point where these two
error lines intersect.

|F'|or

(a) Suppose p ¢ F'. Then F':={p} UF has the same
cardinality as F and no projection error (compared
with F). Since F is uniquely determined we must have
F=F' ie., |[FAF|=1<ofF).

(b) Suppose p € F'. We set F':= {q}UF where ¢ is an
arbitrary point of ¢ € F\F' lying on the vertical line
through p. Such a ¢ must exist,otherwise the vertical
error on this line would be less than +1. Compared
with F’ we thus reduced the column sum error (from
+1 to 0), and hereby we introduced a new —1 error
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on the horizontal line through ¢. So we are in the case
that |F'|=|F| and |R—R'|+|C-C|=2+0,
which we considered already above, so we have
|FAF'| < a(F) — 1= |FAF| < a(F).

In both cases (a) and (b), we therefore established (1).

The case |F|+ 1 =|F| follows analogously to the just
treated case of |F| = |F'| + 1. In summary, we proved that
(1) holds in all cases.

If |[F|=1n(n+1) we have 2n+1=2,/2|F|+4. For
|Fl=In(n—1)+k with k€N we have 2|F|=
(n =17 +14+2k thus 27 —1=22[F—1/4— 2. In
any case we obtain from (1) that |FAF'| <24/2|F|+1
holds.

The constructions given in Lemmas 14 and 15 show that
for any prescribed cardinality ¢ € N there exist F, F' € 7>
with |F|=|F'|=c¢ and |FAF|=uoF)— 1. Adding an
arbitrary point ¢ ¢ FU F’ on the +1 error row to obtain
F':={q} UF still gives |R — R"|, +]|C— C"|l; =2 but
|FAF"| = |FAF'|+ 1 =a(F). This shows that (1) is
sharp. O

A stability result of a similar type has been given in [1]
(Theorem 17). However, Theorem 19 generalizes the previ-
ous result in several ways. If one interprets F as the original
binary picture, then Theorem 19 states that if one knows in
advance that Fis uniquely determined by its row and column
sums (without actually knowing F'), and that the error in the
measurements (projection error) is not larger than 2, then a
certain upper bound is given — guaranteeing that any recon-
struction F’ cannot differ too much from the original picture.
Theorem 17 of [1]was more restrictive in the sense that prior
to reconstruction one had to know additionally the cardinal-
ity of F(cf. Theorem 17 (ii), [1]), and one had to know that a
measurement error really occurred (with norm 2). Clearly,
the requirements of Theorem 19 are more realistic. As for
the bound (1) it is notable that the right hand side only
increased by 1, when compared to Theorem 17 of [1].

We remark that there is a different interpretation of The-
orem 19. Suppose nothing is known about the original pic-
ture F, and the reconstruction yields a picture F’ that is
uniquely determined by its row and column sums (which
can be easily checked by Ryser’s criterion [9]). Then, The-
orem 19 gives the guarantee that F does not differ too much
from F’ (if the projection error is not larger than 2).

4. Problem 1: a generalized version

In this section, we study the stability problem under the
weaker condition that the projections do not uniquely
determine the set F, but we have some “invariant” points.
In this section, we assume first that |F|=|F| and
IR = Rl +|C - C'ly =2.

Let % (R, C) denote the class containing lattice sets hav-
ing row and column sum vectors R and C. The class is nor-
malized if R and C are monotone. If R and C do not

b
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Fig. 2. The illustrations used in Section 4. (a) The typical form of the
lattice sets in %(R,C) with invariant points. (b) The four possible
configurations of Remark 24.

determine F, then more than one set belongs to % (R, C).
In this context it is meaningful to study the case where
U (R, C) has some invariant points (these are points belong-
ing to every set in (R, C), or to none of these sets).

It is well-known ([22]) that the normalized class % (R, C)
has invariant points if and only if the lattice sets in % (R, C)
are of the form illustrated in Fig. 2a. To be more precise, let
#=A{1,...,a} x{1,...,b} be the rectangle containing F;
there exist pairwise disjoint subsets K, ..., K, c {1, ...,a}
and pairwise disjoint subsets Ly, ...,L, c {l,...,b} such
that 2\ U'_ K, x L, contains only invariant points. For
example, the black points in the Fig. 2a are invariant points
belonging to every set in (R, C) (also called 1-invariant
points), while the smaller dots indicate invariant points
not belonging to any set of %(R, C) (also called 0O-invariant
points).

Remark 20. We assume that #(R,C) is normalized,
|F| = |F|, and the projection error is 2, so again we assume
that the error occurs in two rows.

Let p be any point of F'\F and let ¢ be any point of
F\F'. Clearly, statements (a) and (b) of Remark 4 hold
when p or ¢ is not in U"_| K, x L,.

Remark 21. Consider a so called non-trivial component
K,xL,u€e{l,...,h}, and suppose that no error occurs
on the lines intersecting this component.

- Let ¢ € F\F' with row(q) € K, and col(q) € L, (implying
that ¢ is anl-invariant point). Then, there exists either
one point p’ € F\F such that row(p’) € K, and
col(p’) & L,, or one point ¢’ € F\F' such that col(¢’) € L,
and row(q’') € K,,.. Otherwise we would obtain a contra-
diction to the assumption about the shape of % (R, C),
and the assumption that there is no error in the rows
and columns intersecting K,, X L,.

Similarly, let p € F'\F with row (p) € K,, and col(p) ¢ L,
(meaning that p is a 0-invariant point). Then, there exists
either one point ¢’ € F\F' such that row(¢’) € K,, and
col(¢’) € L,, or one point p’ € F'\ F such that col(p’) € L,
and row(p’) € K.

Suppose now that exactly one error occurs on a line
intersecting K, x L,. From the assumptions about the
shape of % (R, C) there follows:
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- If the —1 error occurs, then there exists ¢’ € F\F’ such
that col(¢’) € L, and row(q’) € K,;

- If the +1 error occurs, then there exists p’ € F'\F such
that row(p’) € K, and col(p’) € L,.

From the previous remark there easily follows that, if
not both rows 7 (the row with —1 error) and j (the row with
=+1 error) intersect the same non-trivial component, then
we have i >j as in Lemma 5.

Definition 22. Let 4,B € 7> with AN B=0. An (4, B)-
switching component (or a switching component for short)
is a sequence of an even number m > 0 of distinct points
t,...,t, such that 1€ A, € B, C01(12i+1) =
col(tz42) for 0 <i<%—1, row(tyz) =row(tz3) for
0 <i<5—2, and row(?;) = row(z,,).

Definition 23. Let # be a rectangle of size a x b containing
the disjoint sets 4,B € >, and let Ki,...,K, and
Ly, ...,L, be pairwise disjoint subsets of {1,...,a} and
{1, ...,b}, respectively. An almost-staircase 7' = (f1, . .. ,1,,)
according to the columns in Z is a sequence of an even num-
ber of m > 0 distinct points t5;+ € 4,112 € B,0 <i <% — 1
such that:

(i) For every i € Ny with 0 <7 <% — 1 it holds that col
(t2i11) =col(t2;45) and, if 6 UK, XL, or
iy € Ul K, X Ly, then row(tz;41) > r0W(12:12);

(i) For every i€ Ny with 0 <i<%—2 it holds that
rOW(lz,'Jrz) = I'OW(Z‘2,7+3) and if biyo g Uﬁ:lKu x L, or
vy € U'_ K, X L, then col(2;12) < col(12;13);

(ii1) For every i € N with 1 < i < m, we have that ¢, is no
member of an (A4, B)-switching component.

An almost-staircase is a staircase ‘“‘almost everywhere”
except that the properties in (i) and (i) of Definition 6
are relaxed for points in components K, X L,,.

Remark 24. If for a staircase T=(t,...,t,) and a
component K,x L, we have {z,...,t,}N(K,%xL,)=
{t;y...,t;} with i>1 and j<m then, by definition of
almost-staircases, the following cases can arise:

-If ti € B, then t,_; € A, and (a) col(¢;) = col(#;;;) implies
tyy1 € B, whereas (b) row(?;)=row(y;) implies
tir1 € 4;

-If ;€ A4, then ;1€ B, and (c) row(t) =row(t;+;)
implies 74, whereas (d) col(#) =col(¢+;) implies
I € B.

If i = 1, then either case (a) or (b) occurs, and if j = m, then
either case (a) or (d) occurs. Fig. 2b illustrates the four con-
figurations: the three kinds of rectangles represent K, X L,,.

The rectangle of configuration (b) in Fig. 2b is coloured
black because the number of black points inside is greater
than the number of white points; the rectangle of configu-

ration (d) is coloured white because the number of black
points inside is smaller than the number of white points,
and finally the rectangles of configurations (a) and (c) have
dotted edges because the numbers of white and black
points inside are the same. Again, a maximal almost-stair-
case is an almost staircase that is no proper subset of
another almost-staircase.

Lemma 25. Any two maximal almost-staircases in FAF'
have the same starting point and the same end point.

Proof. We just stress the differences in the proof of Lemma 8
by using the same notations. The case that remains to be con-
sidered is the following: row(t;) =row(s|) =i € K, X L,
col(z;) > col(sy), and a black point ¢ on row i is in K,, X L,
and this point is not in a switching component (otherwise
the error would be too large). Since there is no error on the
columns, a white point exists such that col(p) = col(g) but
we cannot claim that row(p) > row(g). Anyway, points
alternate each other such that this sequence visits a black
point to the left of the rectangle or a white point to the bot-
tom of the rectangle (leading to an infinite sequence), or it
infinitely alternates within K, x L,, or forms a switching
component with ¢. In all cases, this is a contradiction to
the assumptions. [

Lemma 26. Any two maximal almost-staircases in FAF'
coincide.

Proof. The proof follows as in Lemma 10. Indeed the case
to analyse is that of ¢ = s; € K, X L,,. One can easily show
that if there is another white point in col(#,), then it belongs
to the same K, X L,, so proving that ¢, = s,. Similarly, one
deduces that #,, | = s,.;. This allows to apply the procedure
used in the proof of Lemma 10. [

Again, every p € FAF' (outside of a switching component)
is contained in an almost-staircase that is possibly consti-
tuted by two points (see Remarks 21 and 24). Because
of the shape of F and F' we also have that points in a
switching component can only lie in a single component
K,xL,.

Let 2 :={pe FUF':pliesin an(F,F’) — switching
component} and Ty,,x denote the maximal almost-staircase.
Then, we can summarize the results as follows:

Theorem 27. Given F, F' € F with row sum vector R, R' and
column sum vector C,C', respectively. Suppose the following
properties are fulfilled

(i) % (R, C) has invariant points;
(i) |F| = |F'| and
(iii) |[R = Ry +||C = C'l = 2.

Then, FAF' = T U 2.

This theorem can be used to obtain a bound (similar to
Section 3.4) that depends only on Zﬁzl |K, x L,|, R, and on
C.
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5. Problem 2: a fixed symmetric difference

In the previous sections we investigated a fixed upper
bound on the projection error and asked for reconstruc-
tions that differ most from the original set. We reverse this
approach and ask for a lower bound on the projection
error when the original and reconstructed sets are disjoint.
Such a bound is again a stability result in the following
sense: If, in practice, one can guarantee that the projection
error introduced by the measuring process is under this
bound, then such a result (as Corollary 30) ensures that
the original and reconstructed sets are not disjoint. Focus-
ing here on FN F' = means that we investigate a worst
case scenario for the reconstruction.

Lemma 28. Let the non-increasing vectors
R=(r1,...,ri,) €N and C = (c1,...,c,) € NE uniquely
determine F€ #. For any F € Z° with |F|=|F|,
FNF=0 and row and column sum vectors R € N¥I,
C' e Nk, respectively, it holds that

IR=R,+lc=Cl, = (2ri = r1)
ie{l,..k;} with 2ri—r; =0

+ Z (2¢; — 1)

i€{l,...ha} with 2¢;—c; >0

Proof. We  define H:=Z\{row(p):pcF} and
V :=2Z\{col(p) : p € F}, the sets of row and column indi-
ces, respectively, that contain no point of F. First, we show
for every column i € {1, ... ,k,} with 2¢; — ¢; = 0 the fol-
lowing inequality:

lei =Y (i) + > 1p(i,j) = 2ci—c1. (3)

Jjez JjeH

We assume 2c¢;—¢; > 0, and denote ¢ := Ziezlp(i,j).
Then we distinguish two cases "

(i) If ¢; + ¢} < ¢; then we obtain

|ei — Z 10 (i, j)| + Z 17(i, )

jez JEH
PR / (*l) /
> e — ZIF’(%JN =i — | =ci—
jez
(2)
2 Ci —C +Ci:2Ci—C1.
The equality (%;) holds because of ¢;+ ¢} <
¢1 < 2¢; = ¢! < ¢;. The inequality (%») holds, because
¢; < ¢ — ¢;. Therefore, we have shown (3).
(i) If ¢; + ¢} > ¢, then, because of the maximality of A4,
we have

Hpe F'\F:collp)=i}| = ci+c —c >0.

This means that there are ¢; + ¢} — ¢; rows j € H such
that 1 (7, ) = 1. Thus,
lei=> e (i )|+ Y 1p(ij) =lei—c| +ei+c—e

Jjez JEH

>2ci_cla

showing (3).

In the same way as we proved (3) in both cases (i) and

(ii), one can obtain a similar inequality for i € {1, ...k}

with 2r; — r; = 0, namely

|ri_le’(j7i)|+ZlF’(j:i) = 2ri—r. (4)
JjeZ jev

Let I={ie{l,....k}:2ri—ry =0} and J.={ie {l,
. ko}:2¢;—¢; = 0}. Using IN H=JN V=0 we obtain:

IR=R, +lIC=Cl, =

S = S G+ SIS 1 G) = 316G )

JjezZ icH jeZ Jjez
+Z|ci - ZIF’(jvi)| +Z|ZIF(,]71) - ZIF’(jai)|
ieJ jez eV jez jez
= Z |ri — Z 1= (j,8) + Z Z 14, 1)
iel Jjez icH jeZ
+Z|Ci - ZIF’(jvi)| +Z ZIF’(jai)
ic jez icV  jeZ
S =G+ 3 S 1)
iel JjeZ iel jeH
+3 e =Y @)+ Y D> 1)
icj jez ieJ jev
Ug) Z(Zri —r)+ Z(zci —c)
i€l ieJ

Here (%3) holds because of I, J C Z, and (%,4) because of
(3) and (4). This concludes the proof. [

Now we are able to prove the following theorem.

Theorem 29. Given F,F’' € F2 with row sum vector R, R’
and column sum vector C,C’', respectively. Suppose the
following properties are fulfilled

(i) F is uniquely determined by its row and column sums R
and C;

(i) |F| = \,F' ;

(ii)) FNF = (.

Then, we have:
IR=R|, +IC=C|l; = [2V|F|].

Proof. From Lemma 28, we immediately obtain the (weak-
er) bound

IR=R, +IC=Cll = ri+er.

This is a bound for a prescribed set F. To establish a bound
for every uniquely determined set F with cardinality |F'| we
have to take the minimum of all realizable r; + ¢;’s taken
over all uniquely determined sets with fixed cardinality |F|.
For every uniquely determined set F we have c¢r; > |F]|
(notice that the ¢; and r; are ordered). For arbitrary
cirp = 0 with ¢yr; = |F| we have

c1+r = 2«/01]"1 = 2\/ |F|,
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Fig. 3. An illustration showing the sets F (black points) and F’ (white
points) of Remark 31 for n =3, 2, 1.

which means that
IR =R +llc =€l > 2V/[FT,
proving the theorem. [

A direct consequence of this theorem is the following
stability result.

Corollary 30. Given any two sets F,F' € 7 with |F|=|F/,
where F is uniquely determined by its row and column sums R
and C. If ||R — R'||; + [|C = C'||; < [2+/|F|] then FN F # .

Remark 31. Theorem 29 gives a lower bound on the pro-
jection error of two disjoint sets ' and F’, which is asymp-
totically of order O(1/|F|). This bound might be improved,
however we show in the following that an asymptotically
lower bound of O(|F]) is not achievable. For every n € N
a construction of two disjoint sets F,F’' € %> is given,
where F is uniquely determined and |F| = |F/| = 2" 4+ n2" ",
but for which no ¢ € R, (independent from n) exists with
c|FI<||R = Ry +|C - C|;, showing that there is no
O(|F|) bound. For n € N the construction is follows: Let
M:={(,1)je{1,...,2"}} and for i€ {0,...,n— 1} let
M= {(k)2 <k<2t'je{...,2"7""1}}, then

n—1 n—1
Fi=MU| M, F = ((2,0)+ M) U J(2"",0) + M)).
i=0 i=0

It can be easily seen that |F|=|F|=2"+n2"" and
[R — R, +]|C - C|; =2"*" (the projection error occurs
only in columns, and sums up to 1-2"+2"-1 — see
Fig. 3). Since

IR-Rll, +IC—Cll, _ 2 4
|F| 2" 42"t 24
and ﬁ < ¢ for every ¢ € R,, provided that we choose n

large enough, we conclude that there is no fixed c¢ fulfilling
R—FR c-C
BRI +1C=Clly
|F]
< IR =Rl + €= Cly

c<|

for all |F], proving that there is no O(|F|) bound on the pro-
jection error.

6. Conclusion

We proved several stability results related to the problem
of reconstructing binary pictures from two projections under

the assumption that the original picture is uniquely deter-
mined by its projections. In particular, we showed that any
reconstruction resembles the original picture quite closely,
at least when the projection error is at most 2. This comple-
ments the results of [13] and is in striking contrast to the
instabilities for the reconstruction from more than two pro-
jections. Furthermore, we demonstrated that by similar tech-
niques one can obtain stability results for the more general
case where the original picture contains invariant points. A
necessary condition on the size of the projection error was
given in order to lead to a reconstruction that is disjoint from
the original picture. It remains an open question to what
extent the stability persists in the case of larger projection
errors.

Acknowledgement

The first author was supported (while finishing the pa-
per) by a Feodor Lynen fellowship of the Alexander von
Humboldt Foundation (Germany).

References

[1] A. Alpers, S. Brunetti, On the stability of reconstructing lattice sets
from X-rays along two directions, in: E. Andres, G. Damiand, P.
Lienhardt (Eds.), Digital Geometry for Computer Imagery, Lecture
Notes in Computer Science, vol. 3429, Springer Verlag, Berlin, 2005,
pp. 92-103.

[2] G. Herman, A. Kuba, Discrete Tomography: Foundations, Algo-
rithms and Applications, Birkhduser, Boston, 1999.

[3] P. Fishburn, P. Schwander, L. Shepp, R. Vanderbei, The discrete
Radon transform and its approximate inversion via linear program-
ming, Discrete Appl. Math. 75 (1997) 39-61.

[4] C. Kisielowski, P. Schwander, F. Baumann, M. Seibt, Y. Kim, A.
Ourmazd, An approach to quantitative high-resolution transmission
electron microscopy of crystalline materials, Ultramicroscopy 58
(1995) 131-155.

[5] R. Irving, M. Jerrum, Three-dimensional statistical data security
problems, SIAM J. Comput. 23 (1994) 170-184.

[6] C. Slump, J. Gerbrands, A network flow approach to reconstruction
of the left ventricle from two projections, Comput. Graph. Image
Process. 18 (1982) 18-36.

[7] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957)
1073-1082.

[8] R. Gardner, P. Gritzmann, D. Prangenberg, On the computational
complexity of determining polyatomic structures by X-rays, Theor.
Comput. Sci. 233 (2000) 91-106.

[9] H. Ryser, Combinatorial properties of matrices of zeros and ones,
Can. J. Math. 9 (1957) 371-377.

[10] B. Sharif, B. Sharif, Discrete tomography in discrete deconvolution:
deconvolution of binary images using Ryser’s algorithm, Electron.
Notes Discrete Math. 20 (2005) 555-571.

[11] A. Shliferstein, Y. Chien, Some properties of image-processing
operations on projection sets obtained from digital pictures, IEEE
Trans. Comput. 26 (1977) 958-970.

[12] Y. Wang, Characterization of binary patterns and their projections,
IEEE Trans. Comput. 24 (1975) 1032-1035.

[13] A. Alpers, P. Gritzmann, L. Thorens, Stability and instability in
discrete tomography, in: G. Bertrand, A. Imiya, R. Klette (Eds.),
Digital and Image Geometry, Lecture Notes in Computer Science,
vol. 2243, Springer Verlag, Berlin, 2002, pp. 175-186.

[14] R. Gardner, P. Gritzmann, D. Prangenberg, On the computational
complexity of reconstructing lattice sets from their X-rays, Discrete
Math. 202 (1999) 45-71.



1608 A. Alpers, S. Brunetti | Image and Vision Computing 25 (2007) 1599-1608

[15] H. Ryser, The term rank of a matrix, Can. J. Math. 10 (1958) 57-65.

[16] A. Alpers, Instability and stability in discrete tomography, Ph.D.
thesis, Technische Universitit Miinchen, ISBN 3-8322-2355-X,
Shaker Verlag, Aachen, 2003.

[17] S. Brunetti, A. Daurat, Stability in discrete tomography: some
positive results, Discrete Appl. Math. 147 (2005) 207-226.

[18] S. Matej, A. Vardi, G. Herman, E. Vardi, Binary tomography using
Gibbs priors, in: G.T. Herman, A. Kuba (Eds.), Discrete Tomogra-
phy: Foundations, Algorithms and Applications, Birkhéduser, Boston,
1999, pp. 191-212.

[19] C. Valenti, An experimental study of the stability problem in discrete
tomography, Electron. Notes Discrete Math. 12 (2003) 12.

[20] A. Alpers, P. Gritzmann, On stability, error correction and noise
compensation in discrete tomography, SIAM J. Discrete Math. 20
(2006) 227-239.

[21] S. Brunetti, A. Daurat, Stability in discrete tomography: Linear
programming, additivity and convexity, in: I. Nystrom, G. Sanniti di
Baja, S. Svensson (Eds.), Discrete Geometry for Computer Imagery,
Lecture Notes in Computer Science, vol. 2886, Springer Verlag,
Berlin, 2003, pp. 398-407.

[22] R. Brualdi, Matrices of zeros and ones with fixed row and column
sum vectors, Linear Algebra Appl. 33 (1980) 159-231.

[23] R. Haber, Term rank of 0,1 matrices, Rend. Sem. Mat. Univ. Padova
30 (1960) 24-51.

[24] A. Kuba, Determination of the structure class «/(R,S) of (0, 1)
matrices, Acta Cybernet. 9 (1989) 121-132.

[25] H. Ryser, Matrices of zeros and ones, Bull. Am. Math. 66 (1960) 442—
464.

[26] R. Klette, A. Rosenfeld, Digital geometry, Morgan Kaufman, San
Francisco, 2004.



	Stability results for the reconstruction of binary pictures from two projections
	Introduction
	Notations and statement of the problems
	Problem 1: a fixed projection error
	Preliminary remarks
	Staircases
	Technical lemmas
	Bounds

	Problem 1: a generalized version
	Problem 2: a fixed symmetric difference
	Conclusion
	Acknowledgement
	References


