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Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Kai-Uwe Bletzinger
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Abstract

In the field of ultrasonic nondestructive testing (US NDT), ultrasonic impulses are used to
detect flaws in the quality of components without causing any damage. Based on performing
experiments alone, it is possible to infer the state of the component – but recent methods
usually provide only limited details on its interior damage and inhomogeneities concerning
position, dimensions, form, or orientation. Furthermore, the number of sensors that can be
applied to record the signals is restricted to merely a few due to the shape and dimensions
of a typical specimen. In seismology, a wave-based technique, the so-called “full waveform
inversion”, has been shown to generate high-resolution imaging of the earth’s interior from
earthquake measurements. The fundamental idea of this dissertation is to combine field data
from lab experiments with a wave speed model of an intact workpiece and to adapt the model
in order to generate these experimental, sensory measurements. Formally, this is a nonlinear
optimization problem, so the wave speed model is adapted in such a way that the discrepancy
between the experimental measurements and the prognoses of the model output is minimized
using gradient-based iterative optimization. Here, full wave equation modeling is performed at
each iteration, while the adjoint sensitivity state method is used to efficiently calculate the
gradient of the high-dimensional objective. To adapt the method to US NDT and to further
enhance the imaging resolution, the actuator-sensor mode of common piezoelectric sensors is
employed. The important question of this paper is: Can full waveform inversion be adapted
to provide more information on the position, dimensions, and orientation of flaws in typical
NDT settings? Furthermore, and more generally, can the imaging resolution be enhanced by
putting more emphasis on the simulation model using full waveform inversion, as full wave
equation modeling is performed at each iteration? In comparison to commonly employed
methods, a simulation of the complete wave propagation in the workpiece is rather costly. This
thesis shows that full waveform inversion naturally extends model-based US NDT methods,
such as time reversal, and identifies them as an integral part of a mathematically rigorously
formulated nonlinear optimization problem. The applicability of the method for US NDT is
verified for the inspection of flawed structures, and is based on several examples. First, a flawed
emulated aluminum plate will be investigated. Due to only a small number of sources and
receivers available in typical US NDT applications, the number of sensors and sources needed
for a successful identification of different flaws will be analyzed. Second, the visualization of
reinforcement in concrete will be considered as an application in which an interior view of a
solid is made possible by employing full waveform inversion. Third, the position, form, and
depth of a drill into an aluminum plate with a manufactured defect will be reconstructed using
guided ultrasonic waves, and thus the suitability of this method validified.





Zusammenfassung

Die zerstörungsfreie Prüfung (ZfP) mit Ultraschall erlaubt die Qualität eines Werkstücks
zu testen, ohne es zu beschädigen. Sie ermöglicht die Untersuchung auf Schädigungen und
Inhomogenitäten aller Art und dient dem Nachweis von Fehlern sowie der Bestimmung deren
Lage, Form und Größe. Letzteres ist mit aktuellen Methoden nur bedingt möglich, weil
beispielweise die typischen Ausmaße von Proben oft nur eine geringe Anzahl an Sensoren
zulassen. Um dieses Problem zu lösen, bietet es sich an auf ein bildgebendes Verfahren aus
der Seismologie zurückzugreifen: die Full Waveform Inversion. Diese ist dazu in der Lage,
anhand von Erdbebenmessungen hochauflösende Bilder des Inneren der Erde zu generieren.
Die zugrundeliegende Idee ist es nun, dieses Verfahren auf die ZfP im Labor zu übertragen
und auf diese Weise ein Simulationsmodell des intakten Werkstücks iterativ so anzupassen,
sodass es möglich ist, die experimentellen Sensordaten zu rekonstruieren. Formal kann dies als
nichtlineares Optimierungsproblem formuliert werden, in dem die Wellengeschwindigkeit im
Simulationsmodell so korrigiert wird, dass der Unterschied zwischen dessen Prognosen und den
experimentellen Messungen minimiert wird. Zur Lösung wird mit dem L-BFGS Verfahren ein
iteratives gradienten-basiertes Verfahren verwendet, wobei in jeder Iteration der Gradient der
hochdimensionalen Zielfunktion mittels der Methode des adjungierten Zustands durch zwei
Vorwärtssimulationen bestimmt wird. Die vorliegende Dissertation untersucht, inwiefern die
Methode der "Full Waveform Inversion" für den Einsatz in der ZfP mit Ultraschall angepasst
werden muss, um die Bestimmung der Lage, Form und Größe von Schädigungen in Werkstücken
zu erlauben. Im Vergleich zu bestehenden Methoden bleibt zu berücksichtigen, dass hierfür eine
kostspielige Simulation der vollständigen Wellenausbreitung im Werkstück benötigt wird. In
der Arbeit wird gezeigt, dass Full Waveform Inversion auf natürliche Weise modellbasierte ZfP-
Methoden wie Time Reversal erweitert, indem sie diese als integralen Teil eines mathematisch
sauber formulierten nichtlinearen Optimierungsproblems identifiziert. Ihre Anwendbarkeit für
die ZfP wird an drei Fallbeispielen illustriert. Zuerst wird anhand einer beschädigten emulierten
Aluminiumplatte analysiert, ob die typischerweise geringe Anzahl an Sensoren in der ZfP
ausreicht, um die Lage, Form und Größe von unterschiedlichen Schädigungen zu bestimmen.
Das zweite Beispiel widmet sich der Bewehrungsortung in Stahlbeton und damit dem Fall
einer dreidimensionalen Inversion. Anschließend wird die Methode für den Einsatz in der ZfP
prototypisch validiert, indem gezeigt wird, dass sie es erlaubt, die Lage, Form und Tiefe einer
Bohrung in einer Aluminiumplatte mittels der ZfP mit geführten Wellen zu rekonstruieren.





Acknowledgments

First and foremost, I would like to thank my doctoral supervisor Prof. Ernst Rank for his
continuous support, guidance and belief in my project. I also want to thank Prof. Hans-Joachim
Bungartz for evaluating the thesis and being my second examiner as well as Prof. Kai-Uwe
Bletzinger for chairing the exam of my doctoral thesis.
Many thanks go to all my colleagues at the Chair for Computation in Engineering and the
Chair for Computational Modeling and Simulation.
This thesis would not exist without Hagen Wille, who started to examine Time Reversal for
the detection of micro cracks in bones. The presentation of his first results and his enthusiasm
motivated Prof. Rank and me to follow this direction of research. Furthermore, he also provided
his FDTD code that was used as the starting point of our own investigations.
As this thesis turned out to be very interdisciplinary, I have to express deep gratitude to
Prof. Christian Grosse and Katja Pinkert from the Chair for Non-destructive Testing for their
interest in the topic and their close collaboration.
I am deeply grateful to Prof. Andreas Fichtner, who invited me to stay with his exceptional
research group in Zurich and whom I always could turn to for help. I would also like to thank
Christian Böhm, who dramatically improved my understanding of the method and supported
me ever since. I can not stress enough how thankful I am to both of them and how important
they were for the success of the thesis.
Furthermore, I was very fortunate to meet Prof. Zheng Fan and Jing Rao from Nanyang
Technological University in Singapore at a NDT conference where they showed the first
successful application of full waveform inversion for US NDT. I am very grateful that they
agreed to share their lab data so that I could validate our Full Waveform Inversion code. My
deep gratitude also goes to Jing Rao, who took a lot of time to describe their experiment in
such detail that I could use their data for my validation.
Last, but definitely not least, I would like to thank my family for their ongoing support and
belief in me.





vii

Contents

1 Introduction 1

2 Model-based Ultrasonic Nondestructive Testing 11
2.1 The Acoustic Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Time Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Sensitivity kernel method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Full Waveform Inversion 31
3.1 Description as model-based NDT system . . . . . . . . . . . . . . . . . . . . . 31
3.2 Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Descent Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Efficient Computations - The Adjoint State Method . . . . . . . . . . . . . . . 45
3.3.1 Adjoint state method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Adjoint sensitivity state method . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Summary of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Applications 63
4.1 Aluminumplate: Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Number of sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 Number of sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Source frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.4 Source signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.5 Noisy flaw inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Full Waveform Inversion for Solids . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Reconstruction results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Validation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Description of experiment . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Reconstruction results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii Contents

5 Conclusion and Outlook 87
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Lagrangian Formulation 93

Bibliography 95



1

Chapter 1

Introduction

One aim of scientific computing is the simulation of functions that describe physical systems,
such as the propagation of sound, heat, seismic or electromagnetic waves, or the deformation of
a structure under loading. Here, media properties like density, wave speed, or heat and electrical
conductivity as well as the initial state of the process under study are known. Problems of this
type are called direct or forward problems. They start with the knowledge of causal factors of
a physical system and then calculate its unique effects.
But not all problems are straightforward. On the contrary, often it is precisely the media
properties that are unknown, and the goal is to obtain this information about the physical
system from measurements only indirectly related to these quantities, i.e., by recording sound
or measuring temperature or displacement at certain positions. These are inverse problems
as they begin with the observation of a physical quantity (in an experiment) and try to find
its causes. Therefore, it is the inverse of the classical direct problem as illustrated in Fig. 1.1.
A famous example is Newton’s determination of gravitation with Kepler’s laws by describing
the trajectories of planets. Here, the forward problem is concerned with the computation of
the bodies’ trajectories from the knowledge of forces, while the inverse problem focuses on
determining these forces by observing the trajectories.
Other examples can be found in almost all scientific disciplines, and in particular, in optics,
acoustics, medical imaging, computer vision, geophysics, astronomy, and nondestructive testing.
More specific examples include the use of sonar or radar for the detection of objects, computed
tomography (CT) scans, imaging of the Earth’s subsurface from seismic measurements, and the

cause physical system effect observation

inverse problem

Figure 1.1: Principle of inverse problem
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Physical system Governing equations Physical quantity Observable data

Gravitational field Newton’s law of grav-
ity

Density Gravitational field

Temperature field Heat equation Heat conductivity Temperature
Magnetic field Maxwell’s equations Magnetic

conductivity
Magnetic field

Seismic/Ultrasonic
waves

Elastic wave
equation

P- and S- wave
speed1

Particle velocity

Seismic/Ultrasonic
waves

Acoustic wave
equation

P-wave speed2 Pressure field

Table 1.1: Examples of inverse problems

design of light-weight structures. Table 1.1 displays examples of physical systems, governing
equations, the physical quantity of interest and the observable data.
Most inverse problems cannot be solved analytically, and thus, iterative computational methods
are essential for their solutions. The simulation of inverse problems has undergone a rapid
growth due to an increase in computing power as well as progress in numerical modeling.
Adjoint methods are often used as a synonym for the solution of inverse problems because they

are a necessary part of many iterative inversion schemes. Recently, there has been great interest
in tackling inverse problems throughout all disciplines in Computational Science, Engineering
and Finance (CSEF), which is well-documented in the increasing number of talks at scientific
conferences. In the summary of a Dagstuhl seminar on Adjoint Methods in Computational
Science, Engineering and Finance in 2014, the current status was described aptly3:

The human desire for meaningful numerical simulation of physical, chemical, bio-
logical, economical, financial (etc.) phenomena in CSEF has been increasing with
the growing performance of the continuously improving computer systems. As a
result of this development we are (and will always be) faced with a large (and
growing) number of highly complex numerical simulation codes that run at the
limit of the available high performance computing (HPC) resources. These codes
often result from the discretization of systems of PDE. Their run time correlates
with the spatial and temporal resolution which often needs to be very high in order
to capture the real behavior of the underlying system. There is no doubt that the
available hardware will always be used to the extreme. Improvements in the run
time of the simulations need to be sought through research in numerical algorithms
and their efficient implementation on HPC architectures. Problem sizes are often
in the billions of unknowns; and with emerging large-scale computing systems,

1speed of pressure and shear waves
2pressure wave speed
3http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14371

http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14371
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Figure 1.2: Illustration of US experiment in lab and result applying FWI

this size is expected to increase by a factor of thousand over the next five years.
Moreover, simulations are increasingly used in design optimization and parame-
ter identification which is even more complex and requires the highest possible
computational performance and fundamental enabling algorithmic technology. [...]

In all scientific disciplines in CSEF there is a trend to tackle large-scale inverse problems
because they arise naturally and their solution is of great value. The method proposed in this
thesis – full waveform inversion (FWI) – also aims to solve a specific inverse problem. In the
area of Nondestructive Testing (NDT), ultrasonic waves are used to inspect the interior of a
structure for flaws or inclusions. Mechanical waves in the kHz to MHz range are employed
to test mechanical structures for flaw sizes of mm to cm. NDT with ultrasound allows the
inspection of simple structures like plates or blocks as well as more complex ones like pipes
or airplane wings for internal damage without altering their physical properties. Fig. 1.24

illustrates a typical NDT setup for US inspection in the lab. The goal is to generate a 3D
model of the flawed interior of the block as shown on the right. The displacement of the block
due to an applied ultrasonic source on the top is recorded with only a few sensors. These
receiver signals carry information on the interior structure because the velocity of the traveling
waves depends on the material, and reflections occur at the flaws and inclusions. The problem
of reconstructing the material structure (or similarly, the wave speed) of the block from these
measurements is formulated as an optimization problem. Here, the US wave propagation is
described by a partial differential equation whereby the unknown material parameters are
assumed to be spatially heterogeneous. For this test, the wave propagation is simulated on a
computer. Depending on how fine the discretization of the material in the simulation model
is tuned, this approach may lead to thousands or even millions of material parameters. For
example, one for each grid point on a very fine three-dimensional grid, which has to be adapted
simultaneously to solve the inverse problem. This seems to be a very audacious goal at first
glance. The question is how is it possible to invert for thousands to billions of parameters
simultaneously? How optimize a function in this very high-dimensional space efficiently? As
it turns out, our inverse problem is formulated in a way that allows an efficient iterative
solution. Instead of trying to solve it in one step, we will try to find a solution following small

4US experiment setup for block of concrete, Centre for Building Materials (cbm), Pasing, Munich
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improvements. In fact, the iterative inversion approach tries to solve this problem step by step
by decreasing the difference between the actual observations at the sensors from the lab and
the predicted observations of our simulation model of the block.

J(m) = 1
2

∫
Ω

T∫
0

Ns∑
i=1

[u(m;x, t)− u0(x, t)]2 · δ(x− xri ) dt dx,

where u0(xri , t) is the observed ultrasonic signal for sensor at position xi over the time period
[0, T ], written using the Kronecker-Delta δ and u(m;x, t) is the solution of the acoustic wave
equation for a given material model m(x) := v2

p(x), vp(x) being the wavespeed at location x.
The goal is to try to minimize the misfit J(m) by adapting m(x) in the simulation model.
This way the model gets closer and closer to the desired output. The important factor is the
gradient of the cost function. It tells us how we have to update the material model in the
simulation to push the results of our model in the right direction.

That this simple iterative approach leads to the desired result is astonishing and not obvious
at all. The key building block is the availability of the very high-dimensional gradient of
our nonlinear objective function with respect to the material parameters for our large-scale
optimization problem. This is made possible with what Andreas Griewank, the inventor of the
“reverse mode” in computer science (Griewank, 2012), calls the cheap gradient principle.
The renowned optimizer Phil Wolfe noted already in (Wolfe, 1982):

There is a common misconception that calculating a function of n variables and its
gradient is about (n+ 1) times as expensive as just calculating the function. This
will only be true if the gradient is evaluated by differencing function values or by
some other emergency procedure. If care is taken in handling quantities, which are
common to the function and its derivatives, the ratio is usually 1.5, not (n + 1),
whether the quantities are defined explicitly or implicitly, for example, the solutions
of differential equations [...]

If the problem is formulated in the right way, gradient information is available at low cost. Of
course, this does not hold in general, but a large number of interesting problems, such as the US
inspection of specimen, can be formulated in such a manner that this principle is fulfilled. This
is completely counterintuitive because a simple approximation of the cost function using finite
differences would need at least n+ 1 function evaluations. The cheap gradient principle leads
to what Griewank effusively called the holy grail of large-scale optimization (Griewank,
2012):

If everything is organized correctly, the cheap gradient principle generalizes to what
one might call the holy grail of large scale optimization, namely

Cost(Optimization)
Cost(Simulation) ≈ O(1)

By this we mean that the transition from merely simulating a complex system (by
evaluating an appropriate numerical model) to optimizing a user specified objective
(on the basis of the given model) does not lead to an increase in computational cost
by orders of magnitude. Obviously, this is more a rule of thumb than a rigorous
mathematical statement.
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This principle allows us to tackle the material reconstruction problem in US NDT, although
the costs of solving the wave propagation problem may be high. Interestingly, historical trends
of solution methods for specific inverse problems can be traced back to various disciplines
at the same time, such as computational fluid dynamics, shape optimization (Bletzinger
et al., 2010; Bletzinger and Maute, 1997; Bletzinger and Ramm, 2014; Bletzinger et al., 2005;
Gauger, 2002; Giles and Pierce, 1997; Newman III et al., 1999; Othmer, 2014; Pironneau, 1974),
machine learning, seismology (Fichtner, 2011; Tarantola, 1984; Virieux and Operto, 2009), and
predominantly the training of deep neural networks (Bishop, 2006; Martens, 2010; Pearlmutter,
1994; Rumelhart et al., 1986; Schraudolph, 2002).
The theoretical framework was already derived in the mid-80s of the last century, but could

only be employed to solve unrealistic, simple toy problems. Nowadays, the increased computing
power and storage as well as advances in numerical modeling permit tackling realistic inverse
problems. An important research field is general computational imaging techniques, which
have played an extensive role in many fields of science and engineering over the past decades.
Just to name a few areas of application, modern medicine would not be imaginable without the
tremendous progress in computed tomography systems; seismology gained important insight
into the structure of the Earth thanks to computational imaging techniques; and nondestructive
testing can process different types of signals with suitable reconstruction techniques to improve
the quality control of materials and structures. The fields of application are as diverse as the
computational methods developed over more than forty years. Some of the most important
ones will be briefly discussed before turning to the more specific preliminary work in the field
of nondestructive testing.

The technological evolution of imaging instrumentation and computerized signal analysis as
well as image processing for medical purposes have increased the patient’s chances of healing
with early disease diagnosis and treatment evaluation (Brooks and Chiro, 1976; Dhawan,
2011). Continuous development of imaging instrumentation has, in turn, triggered a gradual
transition towards automated scanning systems and multichannel sensor arrays to enable
scanning and focused usage. The first medical computed tomography (CT), invented by
Hounsfield in 1972 (Hounsfield, 1973), reconstructed three-dimensional tissue properties from
two-dimensional measurements based on the filtered-backprojection of linearly propagated
X-rays. Today, ongoing development of reconstruction algorithms for medical tomographic
imaging is heading towards an iterative reconstruction that provides solutions for incomplete
data set evaluation and minimizes artifacts (Buzug, 2008; Kunze, 2008). The overall advan-
tages of these technological enhancements are the acceleration of the examination process —
resulting in a reduction of the radiation dose for the human body — as well as the increase
in spatial resolution and reduction of artifacts during image reconstruction. Two methods
of examination are applied in medical, ray-based computed tomography (CT). Emission
CT images the metabolism processes for functional diagnosis, determining the density of
radioisotopes injected into the bloodstream beforehand. X-ray transmission CT, on the other
hand, which serves to determine the distribution of attenuation coefficients and density of
matters, images tissue morphology with high resolution (Brooks and Chiro, 1976; Dhawan,
2011). Previous to the evolution of imaging techniques for medical applications during the
past century, the analysis of the Earth’s structure was conducted by seismic tomography,
based on the evaluation of seismic rays (mechanical waves). Stimulated by an excitation
source, these rays are assumed to travel through a medium along straight lines. Structural
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features were reconstructed by the filtered backprojection (based on the Radon transform),
approximating high examination frequencies for poor scattering materials (Chapman, 1987).
Numerous mathematical approaches have been taken and refined for seismic tomographic
evaluation (Aki et al., 1977; Chen et al., 2007; Courboulex et al., 1996; Dessa and Pascal, 2003;
Husen and Kissling, 2001; Loris et al., 2007; Meier et al., 2007; van der Hilst and de Hoop, 2005).
However, due to ray scattering at materials’ inhomogeneities, highly nonlinear inverse problems
(Dimri, 1992) have to be solved to reduce artifacts and, hence, to significantly improve the
spatial resolution of structure evaluation. During the past two decades, full waveform inversion
has gained a lot of interest in the field of seismology. It has been applied very successfully
to identify the internal (material) structure of the Earth up to a degree that was not possi-
ble before (Afanasiev et al., 2016; Bunks et al., 1995; Fichtner, 2011; Virieux and Operto, 2009).

Since the late 1930s, the necessity of quality assurance, maintenance and process monitoring
in civil and mechanical engineering has led to a focus on the development of nondestruc-
tive testing techniques for industrial applications (Burrascano et al., 2015; Karbhari, 2013;
Meyendorf et al., 2004; Nakahata et al., 2015; Taffe et al., 2008; Zelenyak et al., 2016). NDT
determines structural features (the material’s composition and geometric characteristics) of the
tested object without altering any of its physical and chemical properties. It offers a wide field
of possible examination methods (Schiebold, 2015). The physicochemical properties of test
materials determine the specific interaction of constructive structures with energies (response
to initiating rays, waves or fields). Evaluating the NDT results requires a suitable analysis
and presentation of the measured signals in order to quantify the material’s composition and
geometric characteristics of structures (Burrascano et al., 2015). Driven by the effectiveness
and profitability of modern, lightweight structures that are comprised of complex, porous,
layered and fiber-reinforced materials, a great demand for high-resolution 3D NDT imaging
systems has emerged to ensure high quality during the production process as well as regarding
service and maintenance (Karbhari, 2013; Meyendorf et al., 2004). In the field of NDT, it is
necessary to improve these techniques to be able to image these physical systems.

Compared to high-resolution radiological NDT imaging (X-ray Transmission CT), ultrasonic
(US) NDT imaging, which uses elastic waves, enables an adequate evaluation of structural
features on a full scale and with regard to real constructions without the need for complex
radiation protection, and serves as a basis for cheap and fast inspection processes. In order to
develop new US NDT imaging systems for solid structures, the methodological progress gained
in the field of seismology to solve inverse problems will be transferred and adapted accordingly.
As FWI has proven to be a vital tool to inspect the composition of the Earth in seismology
(Fichtner, 2011; Pratt et al., 1998; Virieux and Operto, 2009), we propose adapting the method-
ology of FWI on a smaller scale in a lab environment.

Most recently, there have been significant advances in applying FWI to both medical imaging
and US NDT. In the former, Sandhu et al. use FWI for breast cancer imaging (Sandhu et al.,
2015, 2016). They invert for wave speed, density and damping simultaneously. To model wave
propagation, a 2D acoustic approximation was applied in the frequency domain and recently
extended to 3D (Sandhu et al., 2017). This simple model is suitable for medical imaging of
human tissue where the difference in wave speed between tissue and cancer cells is usually
minimal. From a methodological point, a simple steepest descent method is applied for the
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optimization.

As concerns US NDT, Rao et al. were possibly the first who successfully applied FWI to a
problem in US NDT and validated their results with real data from their own lab experiments
(Rao et al., 2016a,b, 2017). Similar to Sandhu, the wave equation is solved in frequency domain
using a multiscale inversion and a 2D acoustic approximation that performs a large number of
experiments.

The work in this thesis is different to both approaches in the following ways: 1) We do not
use an approximation in frequency domain, but rather solve the wave equation directly in time
domain by applying an explicit time stepping scheme of the finite-difference equations. The
method to use is clearly problem dependent (Vigh and Starr, 2008). In general, using a single
frequency, and therefore the frequency domain approach for the inversion, is equivalent to
applying a sinusoidal source in time domain, and thus the time domain approach is the more
general one. When a range of frequencies is used, the frequency domain method is equivalent
to that of the time domain when using the same range of frequencies. The frequency domain
approach is more efficient when many experiments with different source positions have to be
performed. In the frequency domain approach, the acoustic wave equation is transformed
into the Helmholtz equation for one frequency. Discretization leads to a large sparse linear
equation system that can be solved cheaply for a large number of experiments after a LU
decomposition has been computed. For 3D problems, this approach will possibly lead to huge
memory requirements and preconditioned iterative solvers will have to be employed (Warner
et al., 2008), too.

The general time domain approach uses all of the ‘wiggles‘ in the data available for the
reconstruction of the flaws, has significantly smaller memory requirements, and can be applied
to 3D problems. One disadvantage is a significant computation time for the forward modelling,
especially if the time increment of the explicit time-stepping scheme has to remain small. The
cost for a simulation is approximately the same in every experiment, but this approach allows
a simple, coarse-grain parallelism by distributing multiple experiments on multiple processors
and then summing the results.

As described previously, the goal of this work is to investigate whether FWI is well-suited
for imaging of flaws in US NDT applications, especially when only few sensor measurements
are available. Therefore, we decided to model the wave propagation in time domain. Another
important difference to both applications is that with L-BFGS, we use a very efficient, state-
of-the-art gradient-based optimization scheme. This leads to far fewer function and gradient
evaluations (and therefore, less expensive solutions of the wave equation) and faster convergence
than simple steepest descent.
In addition, as our research did not start with FWI, our approach is also conceptually different.

As illustrated in Fig. 1.3, we started by investigating the simple concept of experimental time
reversal as introduced by Fink and Prada to locate flaws in structures. Inspired by the work of
Leutenegger, Kocur and Givoli, we saw the potential to apply simulation methods for wave
propagation for US NDT applications. The complexity of our approach was only increased
when it was really necessary. As we were not able to automatically find the position and time
of the waves’ scattering in time-reversed wavefields, we next investigated adjoint methods and
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Figure 1.3: Conceptional overview

the topological energy method in US NDT. So, the lack of detecting multiple flaws of different
dimensions led us to full waveform inversion. Unable to generate good results with only one
experiment then caused us to exploit the actuator-sensor mode of piezo-electric sensors, while
the rather slow convergence of the optimization resulted in an extension of simple gradient
descent with the L-BFGS method. This finally allowed us to verify the applicability of the
method for plate and solids as described in Sec. 4.1 and 4.2. The validation results of Rao et
al. (Rao et al., 2016a), who used guided waves to derive the dimensions and depth of a drilled
hole in an aluminum plate using only every fourth sensor measurement and experiment, were
thereby extended.
The method proposed in this thesis has various advantages over other NDT systems as it

• evaluates the full ultrasonic wave signal and, thus, the maximal information available

• delivers a tomographic image and, as flaws are generally treated as deterioration of
material parameters, allows for nondestructive testing

– by identifying position, orientation and shape of flaws
– by simultaneous detection of multiple flaws of different sizes
– without prior knowledge of flaw occurrence or its specific characteristics

• is model-based, enabling easy incorporation of data from multiple NDT experiments, e.g.
by

– improving image quality by additional experiments
– allowing measurements at different points in time without an enforcing a positioning

of sensors at identical spatial coordinates.
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The general complexity of the proposed approach is justified by the potential to fully automate
the imaging of complex structures using US NDT, a major milestone for the quality assurance
in civil and mechanical engineering.

In this thesis, full waveform inversion is proposed as a novel, model-based US NDT method
that is based on a full numerical simulation of ultrasonic wave propagation. This method,
which is extensively employed in exploration geophysics, should be adapted to the needs of US
NDT. As full waveform inversion analyzes the entire signal, it may be able to provide more
details about the shape and orientation of flaws and inclusions than common NDT methods.
These details may then be used as input for procedures to predict an early failure of a structural
component or to schedule necessary maintenance.
The goal of this thesis is to provide a first, prototypical implementation of full waveform
inversion for US NDT. Importantly, after our concept has been proved and validated for US
NDT, the method can be extended to a broader spectrum of NDT problems by considering
the elastic wave equation as done previously in seismology.

The following research questions will be answered.
(1) Can full waveform inversion be employed to provide more information on the position,
dimensions, and orientation of flaws than common, model-based US NDT methods by putting
stronger emphasis on the simulation when full wave equation modeling is performed at each
iteration? (2) Can the resolution of the imaging be enhanced by adapting the method to a
typical NDT setup? (3) Can the method be validated for US NDT using experimental data?

The present work is organized as follows: this section, namely Chapter 1, ’Introduction”,
presents the topic of this thesis and outlines the major questions concerning US NDT methods.
Chapter 2, "Model-based Ultrasonic Nondestructive testing", provides an introduction
to this testing technology. Classical ultrasonic NDT methods utilize only parts of the measured
signals to decide if a specimen is flawed. In contrast, employing model-based NDT methods
allows an exploitation of the entire signal information by performing a full numerical simulation
of the wave propagation to reconstruct position, dimensions, and orientation of the flaws
inside a specimen. Wave propagation is modeled by the acoustic wave equation. It is derived
mathematically, and its numerical solution will be presented employing finite-differences. In
order to do so, an explicit finite-difference time-domain method (which is fourth-order accurate
in space and second-order accurate in time) will be formulated. Moreover, the conditional
stability of the explicit time stepping scheme on the CFL condition will be discussed.
In the central part of this chapter, the Time Reversal Method will be presented as a well-
known, model-based US NDT method that determines the origin of measured waves by playing
them backward. Computational time reversal, where the backpropagation of measurements
is performed numerically, suffers from the fact that the area and time of refocusing of the
backplayed wavefield cannot be easily determined. As one possible solution, the sensitivity
kernel method will be introduced. It solves the problem of refocusing with a clever combination
of the time reversal wave field and the simulated forward wave field of the unflawed specimen.

In Chapter 3, "Full Waveform Inversion for Ultrasonic Nondestructive Testing", full
waveform inversion is presented as a novel, model-based NDT method. It exploits the complete
waveform to iteratively reconstruct the velocity model of the flawed specimen. Mathematically,
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the problem is posed as a nonlinear optimization of the least-squares misfit of experimental
and simulated data with the acoustic wave equation as the constraint. A gradient-based
optimization is applied to solve this problem iteratively. To provide the gradient information of
the high-dimensional objective, the adjoint sensitivity state method will be taken into account.
The basics necessary for nonlinear optimization will be summarized, the L-BFGS method
described for the iterative minimization, and full waveform inversion formulated for US NDT.

Chapter 4, "Applications", verifies the applicability of full waveform inversion for two-
and three-dimensional problems of a simulated aluminum plate and reinforced concrete. A
study on the influence of the positioning and the necessary number of sensors and source
characteristics of the attainable resolution will be performed. Finally, a first successful valida-
tion of full waveform inversion for US NDT using experimental data will be accomplished by
reconstructing the thickness of an aluminum plate with a drilled hole.

Chapter 5, "Conclusion And Outlook", summarizes the results of this thesis and presents
some possible improvements and further possibilities for research.
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Chapter 2

Model-based Ultrasonic
Nondestructive Testing

Nondestructive testing (NDT) consists of a wide range of analysis techniques that evaluate
properties of material or structural components without altering the inspected specimen. They
are routinely applied in industries where a failure of a component would cause severe damage.
Here, damage is defined as a change in either material or geometric properties of the specimen
and the goal is the extraction of damage-sensitive features from measurements. Application
areas are weld verification, radiography in medicine or structural mechanics. In the latter a
controlled pulse is applied to a structure and displacements or accelerations are measured at
different sensor locations. Then, the observed output is compared to the expected output
of a healthy structure. Thus, differences in outputs may indicate an inappropriate model or
failed component. In general, a wide range of methods from different fields are employed
including radiological, electrical, magnetic, and ultrasonic methods. Typical examples are
X-ray tomography, thermography, eddy current or ultrasonic testing. An overview of different
methods is given in (Blitz and Simpson, 1996; Drinkwater and Wilcox, 2006; Liu et al., 2008).
Test specimen can range from homogeneous to strongly inhomogeneous structures consisting
of carbon-fiber-reinforced polymer (CRFP) or fiber composites.
The most widely used testing method is ultrasonic NDT. It is based on the propagation of low
amplitude waves through the material, measuring travel time and intensity of the waves at
specific sensors. In principle, flaws and other discontinuities hidden in the structure produce
reflective interfaces and can thus be detected using ultrasonic NDT. It is often utilized to
inspect steel, metal or alloy components and, less often, to investigate wood, concrete or
composites (Carlson and Johnson, 1992; Kumar et al., 2003; Prassianakis and Prassianakis,
2004; Sandoz et al., 2000). Commonly used frequencies of applied pulses range from 0.1 - 20
MHz resulting in wavelengths of centimeter to millimeter. The main advantage of US NDT is
that it is suitable to detect flaws deep inside the specimen. Further, it serves to estimate the
size, orientation and shape of defects.
The conventional analysis of NDT results is comprised of specific US wave signal parameters
extracted from transmitted or reflected wave signals to plot point, line or area scan results
(A-scan, B-scan, C-scan) (Krautkrämer and Krautkrämer, 1983).
Testing of a general volume (3D) will yield projected 2D results and the manual comparison

of signal parameters to reference measurements of a "flawless specimen" is employed to detect
flaws as illustrated in Fig. 2.1.
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Figure 2.1: Conventional US NDT result (manual signal comparison)

To quantify the dimension and geometry of internal flaws and therefore evaluate US-NDT
results a numerical comparison of signal characteristics of measured and simulated signals is
made. We refer to this as simulation-model-based or simply model-based NDT. Assuming that
the wavelength of the source is much smaller than the anomaly or defect, the propagation of
waves through a medium can be approximated as propagation of wave packets along definite
paths called "rays" similar to light rays in geometrical optics. Ray theory is based on the high
frequency assumption that the propagating wave is a spike (Bleistein et al., 2001). In this case,
neglecting amplitude and phase information, only arrival times of US waves are considered
to construct a velocity estimate for the specimen. Well known model-based NDT methods
like SIRT and ART are popular examples of ray-based methods (Liu et al., 2008; Ohtsu, 2016;
Oliveira et al., 2011).

In the common NDT setting where only a few sensor measurements are available, neglect-
ing amplitude and phase information severely limits the accuracy of the inspection. More
importantly, the description of wave propagation as rays is no longer valid when some velocity
features behave more like scatterers than a simple refracting surface element which is true in
many NDT applications. When the wavelength of the source is similar to the anomaly that
should be detected, small scatterers produce secondary wave fields and a simple description of
the propagation as rays is not valid any more. In these situations using the full wavefront is
necessary.
This amounts to a full numerical simulation of the wave propagation in the medium which is
described by the elastic or acoustic wave equation. Its numerical solution for realistic problems
only became possible recently due to improved performance of computer systems. The acoustic
wave equation and its numerical solution are described next.

2.1 The Acoustic Wave Equation
The propagation of sound through an elastic medium is described by the elastic wave equation.
Ultrasound can be used to explore the physical condition of an object made of linear elastic
material. All sorts of waves can be used to inspect objects but longitudinal waves are most
important from an NDT point of view because they are the only waves propagating in
gas and liquids and are the fastest propagating waves in elastic media (Krautkrämer and
Krautkrämer, 1983). Here, oscillations occur only in longitudinal direction, that is the direction
of propagation. They are also called compression, pressure or P-waves. For determining the
propagation of pressure waves in an elastic medium, the simpler acoustic wave equation can
be used as approximation. Even though, in general, it only describes the phenomenon of
mechanical vibrations and their propagation in liquid and gaseous materials, it is appropriate
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for elastic solids when the data is restricted to the first-arriving P-waves. Consequences of this
simplification are the absence of waves that travel along the surface of solids, known as Raleigh
waves, in the model which are frequently used in NDT for detecting defects. Additionally,
when a P-wave hits an interface, e.g. between solid and liquid, it can be reflected as a S-wave.
This P-to-S conversion is ignored in the simple model. Despite these issues, seismologist have
modeled the earth as fluid medium with variable parameters instead of an elastic medium
to reduce computational cost (Bleistein et al., 2001) for a long time. As the acoustic wave
equation is a scalar equation it leads to less memory requirements and runtime than the elastic
wave equation, which is a vector equation.
Following (Claerbout, 1985) the acoustic wave equation is derived from Newton’s law of
momentum conservation.
Newton’s law of momentum conservation states that a small volume within a fluid will accelerate
if there is an applied force. The force arises from pressure differences at opposite sides of the
small volume. Exemplary considering only one dimension, this yields:

ρ
∂u

∂t
= −∂P

∂x
. (2.1)

Here, ρ describes the density of the fluid, u the velocity flow of the fluid in the x-direction
and P its pressure. If the small volume between x and x+ ∆x is expanding it must lead to a
pressure drop. The amount of the pressure drop is in proportion to the incompressibility K of
the fluid. In one dimension the equation is

−∂P
∂t

= K
∂u

∂x
. (2.2)

In multiple dimensions ∂u
∂x

is replaced by the divergence ∇ · u.
Deriving Eq. 2.1 with respect to x yields:

∂

∂x

∂

∂t
u = − ∂

∂x

1
ρ

∂P

∂x
. (2.3)

Deriving Eq. 2.2 with respect to t gives:

∂2P

∂2t
= −K ∂

∂t

∂

∂x
u. (2.4)

Inserting Eq. 2.3 into 2.4 yields the scalar acoustic wave equation:

∂2P

∂2t
= K

∂

∂x

1
ρ

∂P

∂x
. (2.5)

Now, assuming that ρ varies much more slowly than the pressure field P , this expression can
be further simplified to

∂2P

∂2t
= K

ρ
(∂

2P

∂2x
). (2.6)

In three dimensions, a similar derivation shows:

∂2P

∂2t
= K

ρ
∆P, (2.7)
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or

∂2P

∂2t
= v2

p∆P, (2.8)

where vp =
√

K
ρ
is the wave speed of the pressure wave. This shows that wave motion in fluids

can be described by a scalar field P . The acoustic wave equation is extended by initial and
boundary conditions and an inhomogeneous source term fs(x, t). Furthermore, the variable u
is used to describe the pressure field P to be concise with literature, where u is identified as
general state variable.
To summarize, the acoustic wave equation is used to model the propagation of compression
waves in the medium with a spatially variable wave speed vp(x).

utt(x, t)− v2
p(x)∆u(x, t) = fs(x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ] (2.9a)

u(x, 0) = ut(x, 0) = 0, on Ω (2.9b)
u = 0on ∂Ω (2.9c)

Equation 2.9 describes the pressure field u induced by an applied ultrasonic impulse fs in a
two- or three-dimensional domain Ω for a time span of T microseconds. All boundaries are
assumed to be rigid. Impulse fs is modeled as a point source, fs = A(t) · δ(x− xs), where xs is
the source position and A(t) the time-varying excitation.
As analytical solutions to the acoustic wave equation exist only for simple models, numerical
methods have to be employed for the simulation of wave propagation. The simplest method is
based on finite-differences and is introduced next.

2.2 Numerical Solution
The commonly applied numerical methods can be divided into finite-difference, finite element
and finite volume methods. The finite-difference method is the most frequently used method
for the numerical simulation of wave propagation in geophysics (Fichtner, 2011). This is due to
the ease of its implementation and its easy understanding. It is often utilized for a prototypical
implementation. As already discussed in Sec.1, we follow this approach in this thesis. However,
it is important to note that finite-differences are clearly not limited to simple problems as they
are also applied to solve demanding large-scale 3D wave propagation problems (Etgen and
O’Brien, 2007).
The principle of finite-difference approximations is presented first following (LeVeque, 2007) and
then applied to the scalar wave equation to derive the finite-difference time-domain (FDTD)
method. For the mathematical treatment of finite-differences see (Durran, 1999). A good
introduction into finite-difference modeling of earthquakes can be found in (Moczo et al., 2014).

Spatial discretization
The finite-difference method solves a PDE by approximating its solution on a finite set of
grid points. For this, derivatives in the differential equation are discretized by finite-difference
equations that depend on the knowledge of function values at neighboring grid points. We
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restrict ourselves to a uniform partition in both, space and time. As example, a one-dimensional
domain in space is discretized using a spatial x0, . . . , xI and temporal mesh t0, . . . , tN , where

xi = x0 + i · h, i = 0, . . . , I (2.10)
tn = t0 + n · k, n = 0, . . . , N (2.11)

Thus, xi−1 and xi+1 denote the left and right neighbor of grid point xi, respectively. The
numerical approximation of the solution at grid points is represented by

uni := u(xi, tn). (2.12)
Assuming that the solution u of the one-dimensional wave equation is sufficiently smooth, and
disregarding its temporal dependence for the moment, a Taylor series expansion about a point
x leads to:

ui+1 = ui + h
∂u

∂x
+ h2

2
∂2u

∂x2 + h3

6
∂3u

∂x3 +O(h4), (2.13)

and

ui−1 = ui − h
∂u

∂x
+ h2

2
∂2u

∂x2 −
h3

6
∂3u

∂x3 +O(h4). (2.14)

Using Eq. 2.13 and 2.14, the second derivative of u is approximated by(
d2u

dx2

)central,2

i

= ui+1 − 2ui + ui−1

h2 , (2.15)

with accuracy up to O(h2). The subindex i indicates that the derivative is evaluated at position
xi and the superscript indicates that it is approximated with central differences of order O(h2).
Especially in the case of wave propagation problems where smooth pulses with small support
are propagated, it is important to have an accurate spatial approximation. An important
high-order approximation of the second derivative is(

d2u

dx2

)central,4

i

= −ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12h2 . (2.16)

Here, the difference equation incorporates not only information of the neighboring grid points
but also of grid points further away to increase the approximation order to O(h4). Finite
difference formulas of arbitrary approximation order can be created employing the method of
undetermined variables (LeVeque, 2007).
The extension of finite differences to two and three dimensions is straight-forward. If the
function value u at grid position (xi, xj, xk) in 3D is denoted by ui,j,k then the discrete finite-
difference approximation in direction j at position i, j, k can be written for an equidistant grid
as (

d2u

dx2
j

)central,4

i,j,k

= −ui,j+2,k + 16ui,j+1,k − 30ui,j,k + 16ui,j−1,k − ui,j−2,k

12h2 . (2.17)

Therefore, approximating the Laplacian ∆u in Eq. 2.9 yields

∂2u

∂t2
− v2

i,j,k ·

[(
d2u

dx2
i

)central,4

i,j,k

+
(
d2u

dx2
j

)central,4

i,j,k

+
(
d2u

dx2
k

)central,4

i,j,k

]
= fi,j,k. (2.18)

The next step is a temporal discretization of the acoustic wave equation.
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Time discretization
The application of any space discretization method to the semi-discretized wave equation 2.18
results in a system of ordinary differential equations (ODEs) that can be formulated compactly
as

M
d2u(t)
dt2

+ Ku(t) = f(t), (2.19)

where M and K are the mass and stiffness matrix, respectively. The vectors u and f are
composed of all coefficients ui,j,k and fi,j,k, respectively.
It is of tremendous importance for an efficient solution that M is easily invertible. For the
explicit finite-difference discretization 2.18, M is the identity matrix. Furthermore, note that
both matrices are not set up in actual codes as only their matrix-vector products are needed
when applying explicit methods. Dropping the explicit dependence on time t,

d2u
dt2

= M−1[f −Ku]. (2.20)

A straight-forward approach is to also apply second-order central differences for the time
discretization. This leads to

un+1 − 2un + un−1

k2 = M−1[f −Kun]. (2.21)

Thus, the final dynamic evolution equation is given by

un+1 = 2un − un−1 + k2M−1[f −Kun]. (2.22)

Here, the wave field at time t + k depends only on information at prior time steps. If the
solution is initialized at consecutive time steps u0,u−1, this information is used to compute
the wave field for the next time step u1. This process is iterated until the desired final time T
is reached.
Alternatively, other well known low-order time integration schemes like Newmark or the leap-
frog scheme are often employed, especially for spectral or finite elements (Peter et al., 2011;
Tromp et al., 2008).

Stability
For every numerical method for transient problems it is important to investigate how errors
made at one time step in the calculation affect the numerical solution. In the end, the
asymptotic behavior of the numerical and analytical solution should agree. For this a von
Neumann analysis (VonNeumann and Richtmyer, 1950) of the finite difference scheme is
performed. For the analysis we follow (Igel, 2016) and investigate the one-dimensional acoustic
wave equation with a second-order central finite-difference approximation in space and time.
Extending the method to more general finite-difference schemes and higher dimensions is
straight-forward.
We start by recalling the one-dimensional source-free acoustic wave equation with constant
wave speed vp:

utt − v2
p · uxx = 0. (2.23)
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Using a spatial mesh 0, . . . , xI and temporal mesh 0, . . . , tN , where

xi = i · dx, i = 0, . . . , I (2.24)
tn = n · dt, n = 0, . . . , N (2.25)

let us formulate the finite-difference solution at grid points by

uni := u(xi, tn). (2.26)

Applying second-order central finite-differences in space and time leads to

un+1
i − 2uni + un−1

i = v2
p

dt2

dx2 [uni+1 − 2uni + uni−1]. (2.27)

The analytical solution of the source-free acoustic wave equation is given by a plane harmonic
wave for pressure u propagating in x-direction with wavenumber k and angular frequency ω

u(x, t) = ej(kx−ωt). (2.28)

Here, j =
√
−1 is the imaginary unit. Plugging in the analytical solution in the finite-difference

approximation 2.27, we will use:

uni = ej(kidx−ωndt), (2.29)
uni+1 = ej(k(i+1)dx−ωndt), (2.30)

= ejkdxuni , (2.31)
un+1
i = e−jωdtuni . (2.32)

(2.33)

Replacing all terms in Eq. 2.27 by above formulas and dividing by uni on both sides yields

ejωdt + e−jωdt − 2 = v2
p

dt2
dx2 (ejkdx − e−jkdx − 2). (2.34)

Applying the expression for cosx in terms of exponential functions

cosx = 1
2(ejx − e−jx) (2.35)

results in

cos(ωdt)− 1 = v2
p

dt2
dx2 (cos(kdx)− 1). (2.36)

Finally, applying

sin x2 = ±
√

1− cosx
2 (2.37)

yields

sin(ωdt2 ) = vp
dt
dx sin(kdx2 ). (2.38)
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The equation has only real solutions when

ε = vp
dt
dx ≤ 1. (2.39)

where 0 < ε < 1 is called the CFL1 number. It depends on both, the numerical scheme and
the spatial dimension of the problem. Solving for the timestep size yields the CFL condition.

dt ≤ ε · dx
vp
, (2.40)

It limits the maximal time step for a stable numerical simulation, and therefore the efficiency
of any explicit method. As consequence the space-time discretization can not be arbitrarily
chosen but depends on the medium properties. The space discretization is often chosen by
the smallest wave speed in the medium. The CFL condition determines the time step dt and
therefore the number of time steps necessary to achieve a certain simulation length.
A second important requirement simulating the propagation of waves is that the number of
grid points per shortest wavelength is large enough to achieve accurate solutions. The exact
number is problem dependent but often in a range of 10− 20 points per dominant wave length
(Igel, 2016). For small US pulses this results in a fine spatial discretization and consequently
also in a fine time discretization.
As mentioned in (Fichtner, 2011), it is remarkable that explicit low-order time integration
schemes work so well for wave propagation problems and commonly no high-order and implicit
schemes like Runge-Kutta or predictor corrector methods are employed for seismic simulations.
It has been shown empirically that this is due to the numerical error being dominated by the
spatial discretization error and not the time integration.
The next section describes how a full numerical simulation of wave propagation employing

the acoustic wave equation can be used to inspect workpieces.

2.3 Time Reversal
As discussed before, simple ray-theoretical models only use the arrival times of the recorded
waves to estimate the velocity inside a specimen. Clearly, there exists a lot more information
about the geometry in a waveform signal than in its arrival time and using the full waveform
to inspect the specimen is desirable. For this, a numerical solution of the wave equation is
necessary.
Mathias Fink, a pioneer in time-reversed acoustics, showed that US waves can be used to
locate US sources by measuring waves and sending them back to their origin as if time has
been reversed (Fink, 1992, 1997, 1999; Fink et al., 2000). This is possible due to the time
reversal invariance of the wave equation that describes the propagation of waves in a medium.
As illustration, suppose one excites an US source and measures the pressure field p(rs, t) on a
surface around it. When the time-reversed signals p(rs, T − t) are re-emitted on the surface
in a first-in last-out fashion, the emitted waves seem to propagate backwards in time and
the resulting wave field converges back to its initial source. This focusing occurs on a spot
whose dimensions are on the order of the smallest wavelength of the source. The procedure,
called time reversal (TR), can be used to detect active sources as well as passive sources like
scatterers.

1named after Richard Courant, Kurt Friedrichs and Hans Lewy (Courant et al., 1928)
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(a) Recording step (b) Reconstruction step

Figure 2.2: Two step process of time reversal method, from Fink (1992)

From a mathematical point of view being able to backpropagate waves is possible because
the wave equation contains only second-order derivatives in time and therefore is time reversal
invariant. To see this, recall the finite-difference approximation of the acoustic wave equation
in Eq. 2.27 for advancing one step in time tn → tn + dt:

ui(tn + dt) = 2ui(tn + dt)− ui(tn − dt) + v2
pdt

2∆hui(tn), (2.41)

where ∆hui(tn) = ui+1(tn)−2ui(tn)+ui−1(tn)
dx2 is an approximation of the Laplacian ∆ui(tn). Now,

instead of advancing one time step, consider going back one step in time from tn to tn − dt.
Then,

ui(tn + (−dt)) = 2ui(tn + (−dt))− ui(tn − (−dt)) + v2
p

(−dt)2

dx2 ∆hui(tn) (2.42)

= 2ui(tn − dt)− ui(tn + dt) + v2
p

dt2

dx2 ∆hui(tn). (2.43)

Comparing this equation to Eq. 2.41, this shows that the same dynamic equation can be
used to propagate acoustic waves forward and backward in time. (Assuming that the medium
is non-dissipative). A more rigorous proof involves the self-adjointness of the acoustic wave
equation operator as discussed in Sec. 3.3.1
There exist extensive application areas where this concept can be applied including source de-
tection, scatterers and obstacle identification, damage identification in structures, undersurface
geophysical structure identification and pulse-echo detection, where the goal is to detect and
image passive reflective targets, (Ammari et al., 2013; Chen et al., 2013; Deneuve et al., 2010;
Tromp et al., 2004).
In acoustics, piezo-electric transducers combine the function of microphone and loudspeaker
and can therefore be used in TR. Some recent applications in NDT are time reversal employing
Lamb waves, the inspection of composite plates, structural concrete and reinforced concrete
beams (Kocur, 2012; Kocur et al., 2015; Park et al., 2007; Xu and Giurgiutiu, 2007).
Ultrasonic time reversal is a two-step process:

1. Recording step. An ultrasonic source emits a wave front that propagates through the
medium, is possibly distorted, and transducers detect the arriving waves.
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2. Reconstruction step. Each measurement point acts as point source with corresponding
excitation signal. All transducers excite the structure simultaneously, playing back the
signals in reverse, in a first-in last-out fashion. The original wave is recreated traveling
backward.

Following this approach, the reversibility property of wave propagation allows to determine
the origin of a wave front. The process is illustrated in Fig. 2.2 from (Fink, 1992). In the
recording step, a point-like source generates a wave front that is distorted by heterogeneities.
The pressure field is recorded at the receivers indicated by circles. In the reconstruction step,
the recorded signals are time-reversed and re-emitted at the sensor locations. The time-reversed
pressure field propagates back in the medium and refocusing occurs at the time and location
where the wave field was excited.
The process can be utilized not only to detect active sources like explosions or earthquakes but
also to detect unknown scatterers. This is possible because scatterers act as secondary sources.
If a wave field reaches a scattering object part of the wave will be reflected. If these reflected
waves are recorded at some sensors time reversal can be applied to find the positions of the
scatterers.
The work of Fink focuses on experimental time reversal. The time-reversed waves are re-emitted
back into the experimental structure in the lab. One problem with this approach is that one
has to have already a good idea where and when the focusing occurs. With no prior information
the complete structure has to be scanned to determine the peak amplitude position. This can
be a very tedious task or even impossible when the focusing occurs inside a 3D solid.
As the reversibility of waves is not limited to physical experiments, the TR method was
recently adapted by substituting the wave backpropagation in the experiment with a simulation
model. This approach, called computational time reversal (CTR), is used in mechanics as a
computational tool for scatterers detection (Amitt et al., 2014; Givoli, 2014; Givoli and Turkel,
2012) and in seismology for source identification (Kremers et al., 2011; Larmat et al., 2010).
One advantage of CTR over experimental TR is that the backpropagated wave field is known
not only at certain sensor locations but everywhere in the domain and therefore it is possible
to find the spot of refocusing even inside a 3D specimen.
Leutenegger was possibly the first who used CTR in NDT to determine the presence of a defect
and its exact position in a cylindrical structure (Leutenegger and Dual, 2002). He showed
that it is possible to simulate the reverse wave propagation numerically. This is possible if the
simulated structure has the same geometry, material parameters and boundary conditions as
the sample used in the experiment. Additionally, the physics of the wave propagation have
to be described appropriately by the simulation. Signals from the physical experiment are
recorded by transducers and numerically re-emitted as source in a time-reversed manner.
In the case of acoustic waves, the time reversal problem is described by the following PDE:

uTR
tt (x, t)− v2

p(x)∆uTR(x, t) =
N∑
i=1

u0(xri , T − t) for x ∈ Ω, t ∈ [0, T ] (2.44a)

uTR(x, 0) = uTR
t (x, 0) = 0, on Ω (2.44b)

uTR = 0on ∂Ω (2.44c)

Here, uTR describes the back-propagation of the US impulses in the domain Ω ⊂ R3 and vp
is the speed of the pressure waves in the material. The US source is built as a superposition
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t = t∗

Figure 2.3: Example of propagation of time-reversed waves back into homogeneous medium. The US
source is depicted by a circle and sensors as boxes.

of sources that act at single points, the sensor positions, and its time function consists of the
time-reversed measured data u0(xri , T − t).
To verify the applicability of time reversal for NDT a numerical experiment is considered next.

This allows to check the concept and test the accuracy. Furthermore, the following uncertainties
and errors that might be present between experiment and simulation are eliminated in the
verification process:

• the material parameters and geometry of the defective structure are known,

• the recording and retransmission positions agree exactly,

• the excitation of a purely axis-symmetric wave mode is possible,

• the recordings are free from noise.

For the numerical verification, a 10 mm thick aluminum plate of dimensions 1000× 1000 mm2

is inspected. A short US impulse with frequency 35 kHz is applied in the middle of the plate
exciting flexural waves that propagate through the medium and are recorded at eight sensors
positioned on a circle around the center. In this setup the propagation of flexural waves can
be described by a 2D acoustic model neglecting the thickness of the plate (Huthwaite and
Simonetti, 2013). The plate is discretized by finite differences of fourth and second order in
space and time respectively on a grid with a spacing of 2.5 mm in both directions. The physical
domain is extended by a small layer to avoid reflections from the boundary.
In real applications these data are generated in a lab or field experiment.

Fig. 2.3 illustrates the computational time reversal simulation. The recorded signals at the
sensors are time-reversed and played back into the structure. The sensors are now acting as
sources. Snapshots of the backpropagating wave field are shown. At some, generally unknown
time t∗, the waves focus on its origin and then diverge again. In the method, the maximal
absolute displacement at the time of the wave field is used to infer the original position of the
source. The position where the maximal amplitude of the wave field occurs can be determined
by observing the pressure field during the simulation. The numerical experiment confirmed
that time reversal can be applied to NDT applications, at least in simulations.

Time-reversal, whether experimental or computational, suffers from the fact that it is solely
based on the refocusing property of wave propagation. This means that refocusing will occur
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in a region of the size of the wavelength close to the original source position. Dealing with
multiple flaws (and the separate focusing) or extended inclusions and flaws that are larger than
the wavelength poses serious problems. Furthermore, due to the limited number of sensors the
recreated waveform only approximates the original one and often the largest amplitude of this
wave field does not necessarily coincide with the origin of the waves. Therefore, some more
evolved measures have been developed to correctly identify the right peak (Amitt et al., 2014;
Givoli, 2014; Givoli and Turkel, 2012). These include a combination of the following measures:

• the distance of the numerical peak from the true source,

• the ratio of height to width (variance) of the peak,

• the location of the refocusing spike in the wave field,

• the sharpness of the refocusing spike in the wave field,

• the weakness of the wave field outside of source origin,

• the total variation of the wave field: a lower value indicates a flatter wave field outside of
source origin,

• the maximum total energy density.

Which of these measures to use and how to weight them correctly for a successful detection is
problem dependent and needs a lot of experience. A mathematically more concise approach to
solve the focusing problem is investigated next.

2.4 Sensitivity kernel method
The temporal and spatial refocusing problem of time reversal can be solved to some extent
if a simulation model for the healthy reference structure is available additionally to the
measurements from the flawed structure. In our case the simulation model is described by the
acoustic wave equation:

utt(x, t)− v2
p(x)∆u(x, t) = fs(x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ] (2.45a)

u(x, 0) = ut(x, 0) = 0, on Ω (2.45b)
u = 0on ∂Ω (2.45c)

Equation 2.45 describes the pressure field u induced by an applied ultrasonic impulse fs in a
two- or three-dimensional domain Ω for a time span of T (micro) seconds. All boundaries are
assumed to be rigid. Here, vp is the speed of the pressure waves in the material. Impulse fs is
commonly modeled as a point source, fs = A(t) · δ(x− xs), where xs is the source position and
A(t) is the time-varying amplitude of the source.
The forward wave field can be used as photographic developer (Dominguez and Gibiat, 2010) for
the time-reversed field and therefore solves the refocusing problem of time reversal in an elegant
way. In photography a developer is a chemical that converts the latent image to a visible image.
It only acts on those particles of silver halides that have been exposed to light. As will be
shown later, in a similar way the forward wave field highlights areas where a scattering of the
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Figure 2.4: Example of propagating wave in homogeneous medium with a point-like scatterer. The
US source is depicted by a circle and sensors as diamonds.

wavefield occurred and suppresses most of the noise introduced by the partial measurements of
the wavefield.
If an unknown medium of the same type as the reference which possibly contains defects is
inspected, the idea is to formulate a cost function which evaluates the difference between
measurements from the unknown and reference medium. For N sensors that record the wave
field, the cost function is formulated as the following scalar least-squares functional:

J(m) = 1
2

∫
Ω

T∫
0

Ns∑
i=1

[u(m;x, t)− u0(x, t)]2 · δ(x− xri ) dt dx,

where u(m;xri , t) is the simulated and u0(xri , t) the observed ultrasonic signal for sensor at
position xi, written using the Kronecker-Delta δ. If the measurements in the inspected medium
and the reference medium agree then the cost is zero; otherwise it measures the misfit between
the signals. As model parameters m(x) := v2

p(x), the squared propagation speed in the domain
of the reference medium is chosen. Very interestingly, the sensitivity of this cost function to
changes in these parameters can be used to visualize the interior of the unknown specimen.
It can be computed efficiently by a combination of the solution of the forward problem for
the reference medium and the computational time-reversal solution where the source is given
by the residual between simulated and experimentally measured signals. By considering the
residual, only the waves that are contributed to the scatterers acting as secondary source are
backpropagated as illustrated in Fig. 2.4
To illustrate this, Fig. 2.4 shows how a point-like scatter is acting as secondary source. The
scatterer is modeled as a small region where the wave propagation speed is smaller than the
speed for the background. When the wave field passes through the scatterers a new elementary
wave front is created according to Huygens principle. Starting from the reference model a
sensitivity analysis of this cost function is performed. A high sensitivity in a certain area
indicates that the misfit and therefore the difference in the signals is strongly affected by
changes in the wave speed at this position.
The gradient with respect to changes in the wave speed is given by

∂J

∂m
= −

T∫
0

∆u(m;x, t) · v(x, t) dt, (2.46)
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where u(m;x, t) is the solution of the forward problem in the reference medium and v(x, t) is
the solution to the following adjoint problem (Seidl and Rank, 2016).

vtt(x, t)− v2
p(x)∆v(x, t) = gs(x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ] (2.47a)

v(x, T ) = vt(x, T ) = 0, on Ω (2.47b)
v = 0on ∂Ω (2.47c)

where

gs(x, t) :=
Ns∑
i=1

[u(m;x, t)− u0(x, t)]δ(x− xri ).

The derivation will be shown in detail in Sec. 3.3. Spatial boundary conditions carry over
one-to-one, but temporal conditions change from initial to terminal conditions at time t = T .
These can be handled by solving the equation backward in time from T to 0.

uTR
tt (x, t)− v2

p(x)∆uTR(x, t) = gs(x, T − t) for x ∈ Ω, t ∈ [0, T ] (2.48a)
uTR(x, 0) = uTR

t (x, 0) = 0, on Ω (2.48b)
uTR = 0on ∂Ω (2.48c)

where

gs(x, T − t) =
Ns∑
i=1

[u(m;x, T − t)− u0(x, T − t)]δ(x− xri ).

This way, the adjoint problem can be solved with the same solver as the forward problem,
provided that the source term is time-reversed as shown in Eq. 2.48. Because of the somewhat
unusual terminal conditions, solving the adjoint problem can be interpreted as a propagation of
residuals backward in time from T to 0. This is similar to the time reversal problem 2.44, where
the adjoint source is built as a superposition of sources that act at single points, the sensor
positions, and its time function consists of the residual between experimental and simulated data.
The time reversal problem is identical to the forward problem, except that the time travels in
the opposite direction. The adjoint solution is then given by v(x, t) = uTR(x, T − t), ∀t ∈ [0, T ].
The approach of using the interaction between the simulated wave field in a reference medium
and the time-reversal solution as indicated in Eq. 2.46 is very general and is utilized in different
methods. In seismology, this concept is extensively used in reverse time migration (Baysal
et al., 1983; Yoon et al., 2004; Zhang and Sun, 2009) and in NDT in the topological gradient
and topological energy method (Dominguez and Gibiat, 2010; Dominguez et al., 2005). It
also forms the basis of full waveform inversion (Fichtner, 2011; Tarantola, 1984; Virieux and
Operto, 2009).
The general procedure is as follows

(i) Measurement. An US experiment on the inspected medium is performed, which leads to
measurements at some sensors: u0(xr, t), i = 1, . . . , Ns.
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(ii) Reference simulation. A simulation model of the unflawed reference structure is used to
generate comparable measurements at the position of the sensors and the wave field (or
some quantity of it, depending on the choice of model parameters) is available for the
complete domain: u(m;xr, t),∆u(m;x, t)

(iii) Time-reversal. A computational time reversal simulation is done in the reference medium
using the time-reversed residuals u(m;xr, T − t) − u0(xr, T − t) as source array. The
adjoint solution is v(x, t) = uTR(x, T − t).

(iv) Sensitivity kernel. The cumulative interaction
∫ T

0 ∆u(m;x, t) · v(x, t) dt offers an image
of the inspected medium.

Although the mathematical derivation of the sensitivity kernel will be shown in detail in
Sec. 3.3 a short explanation is in order. As shown in Eq. 2.46, the sensitivity kernel corresponds
to the gradient of the least-squares objective. It tells us how strongly the value of the objective
function changes when a parameter mi is varied. As the objective function measures the
misfit between experimental and simulated measurements at the sensors, a large negative value
for parameter mi indicates that decreasing this parameter (and therefore the wave speed at
this position) will lead to a smaller misfit and thus a simulated signal that is closer to the
experimental measurement.
The numerical verification example for time reversal is extended to demonstrate the computation
of the cumulative interaction of forward and adjoint field. It is often called sensitivity kernel
as it provides the sensitivity of the cost function to perturbations in the model parameters,
hence we call the method sensitivity kernel method. All boundaries are considered rigid.
Fig. 2.5 shows snapshots of forward and adjoint field. The unknown flaw is only shown for

reference in all the images. The time reversal solution is discovered inspecting the adjoint
wave field in the second column in reverse order. The sensitivity kernel is constructed by the
cumulative interaction of the forward and adjoint field. The interaction of both fields at a
certain time step is zero in most of the domain. Importantly, both fields overlap exactly at the
time when the forward wave field is scattered in the unknown physical experiment at the defect
location at time t3 (as indicated in the leftmost column). At this time, the adjoint field focuses
on the location of the defect (its secondary source) and the forward solution passes through it
leading to a strong interaction of both wave fields at the scatterer location as most energy is
focused on one spot in the adjoint field. The largest amplitude of the interaction wave field
will be smaller at all other times as one of both fields diverges. Therefore, the time integration
shown in the last column leads to large values at the defect location. Thus, the forward field
acts very similar to a photographic developer of the time reversal solution (Dominguez and
Gibiat, 2010). It highlights areas where a scattering of the wavefield occurred and suppresses
most of the noise introduced by the partial measurements of the wavefield.
In the end, the energy of the forward field is further distributed and the energy of the adjoint
field focuses back on the sensor locations to fulfill the termination condition. It is important to
note that the interaction of both wave fields will not be maximal at the scatterer location (the
secondary source location) but at the primary source location as the amplitude of the primary
source is considerably larger than the amplitude of the secondary source (the scattering at
the flaw) due to geometrical spreading. Following a similar argument, there is also a large
contribution at the sensor locations because of the formulated terminal conditions for the
adjoint problem. The computed sensitivity kernel is shown on the bottom right of Fig. 2.5. It
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Forward field ∆u(x, t) Adjoint field v(x, t) Interaction field
∆u(x, t) · v(x, t)

Sensitivity kernel∫ ti
t0

∆u(x, t) · v(x, t) dt

t1

t2

t3

t4

Figure 2.5: Interaction between forward wavefield of reference simulation and
adjoint wavefield. The columns show snapshots of the forward
wavefield, adjoint wavefield and the interaction of both fields
respectively. The forward wavefield acts as photographic
developer for the adjoint field. The cumulative summation of the
interaction wavefield is a migrated image of the structure. The
cumulative interaction yields the final sensitivity kernel shown on
the bottom right.
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(a) mask-radius 200 mm (b) mask-radius 250 mm (c) mask-radius 200 mm

Figure 2.6: Sensitivity kernels for point-like scatterer with different masks. The US source is depicted
by a circle and sensors as diamonds. As reference, the unknown flaw is shown as grey
box. All kernels are normalized.

has large values at the positions of the source and the sensors and the position and shape of
the unknown scatterer can not be easily spotted.
In the case of NDT it is reasonable to assume that the source and sensor positions and small
areas around them are flawless and can be excluded in the investigation. Therefore, all entries
in the sensitivity kernel in areas that are close to the sensors and source or outside the sensor
array can be masked by setting their contribution to zero. A circular region interesting for
the inspection which does not contain sensors and sources is highlighted with a circle in the
sensitivity kernel on the bottom right. This results in a clearer focus on the scatterer. This is
investigated next.
Fig. 2.6 displays the masked (and normalized) sensitivity kernel applying circular masks

with different radii. The position of the unknown flaw can be inferred if the mask excludes the
sensor and source positions.
It is important to note that the number and positioning of US sensors has a strong influence

on the flaw detection. The more sensors are used, the stronger is the refocusing on the scatterers
in the time-reversal solution and the larger the contribution in the sensitivity kernel.
To investigate this, Fig. 2.7 studies the masked normalized sensitivity kernel for an increasing
amount of sensors. Even though using eight sensors allows to spot the unknown defect close
to the center, it is not sufficient to conclude that there is only one scatterer as illustrated in
Fig. 2.7a.
Successively increasing the number of sensors (and therefore the amplitude of the refocusing at
the scatterers location) results in a clearer image of the scatterer as shown in Figs. 2.7b and
2.7c, where the number of sensors is increased from 7 to 15 and 31 sensors.
In practice, there is a limit for the maximal amount of sensors in most NDT application
because of the shape and the dimensions of a typical specimen and considerations such as
costs, additional mass and structural integrity. In this case, another possibility to increase the
resolution of the kernel is to combine the sensitivity kernels for multiple experiments.
Fig. 2.8 illustrates the combined sensitivity kernels of four experiments where each sensor

acted as source once and all other sensors recorded the waves. The flaw is shown only as
reference. Here, less sensors suffice to capture the boundaries of the flaw.
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(a) seven sensors (b) fiveteen sensors (c) thirty-one sensors

Figure 2.7: Sensitivity kernels for point-like scatterer with different number of sensors. The US source
is depicted by a circle and sensors as diamonds. All kernels are normalized

2.5 Summary
Time reversal, a model-based NDT technique, was shown to be able to identify small scatterers.
It is based on the invariance of the wave equation to time reversal, meaning that waves can
be played forward or backward using the same equation. In time reversal sensors become
sources and the measurement signals are backpropagated in a first-in last-out fashion. As only
recorded signals at the sensor positions are available, the wave field is only partially known
and the quality of the refocusing depends strongly on the number of sensors and their distance
to the original source location.
The problem to detect the time and location of refocusing can be solved by introducing
the forward wave field of the corresponding healthy structure. A time integration of the
interaction between forward and adjoint wave field yields a clearer image of the scatterers
location. Therefore, this approach can be interpreted as extension of time reversal. But, only
point-like scatterers can be inferred, and as it is summarized in (Givoli and Turkel, 2012):
“Other tools have to be combined with TR to identify larger scatterers which can not be regarded
as point-like and to identify other parameters of the scatterers such as its size or shape.” As
we will see, in full waveform inversion, time reversal and the sensitivity kernel method are
naturally derived as integral parts for the computation of the gradient of a misfit functional
with help of the adjoint method.
This puts both methods in perspective in a mathematically sound formulation of an inverse
acoustic parameter estimation problem that allows to detect multiple scatterers of different
dimensions and orientation (Fichtner et al., 2009; Tromp et al., 2008). Therefore, the principles
of full waveform inversion are described next.
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Figure 2.8: Sensitivity kernel for point-like scatterer combining multiple experiments. The source
positions are depicted by circles. The unknown flaw is only shown as reference. The
kernel is normalized.
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Chapter 3

Full Waveform Inversion

Full waveform inversion is introduced next. It is shown how it can be interpreted as adaptive
model-based NDT device, where a numerical comparison of signal characteristics between
simulated and measured signals allows an iterative correction of a velocity model. The
required theory in nonlinear optimization is presented and the adjoint method, which enables
the calculation of the high-dimensional gradient necessary for the iterative minimization, is
discussed in detail. In the end, the overall algorithm is formulated.

3.1 Description as model-based NDT system
As explained previously, based on experiments alone it is possible to infer the state of a
component but this usually provides only limited details about the interior damage such as its
position, dimensions, and orientation. Furthermore, the number of sensors that can be used
to record the signals is restricted to only a few because of the shape and the dimensions of a
typical specimen.
To overcome the constraint of separate consideration of potential flaw features, as well as the
approximation of full reflectivity of waves at internal flaws, full waveform inversion can be
employed to automatically approximate the structure estimate for high-resolution imaging in
US NDT. Starting with a rough velocity model, high resolution imaging of complex structures,
including the automatic detailed mapping of internal flaws, is realized by the following model-
based NDT system shown in Fig. 3.1.
Compared to the classical NDT system, the experimental measurement process is augmented by
a simulated measurement process that allows a numerical comparison of signal characteristics
at the sensors. Initially, the simulated measurements are performed utilizing a velocity model
of the flawless structure. Flaws and other discontinuities hidden in the experimental structure
produce reflective interfaces that are captured in the experimental signals and are not present
in the simulated ones. The idea is to employ this difference between observed and simulated
signals to adapt the initial velocity model step by step such that the simulated signals are
as close as possible to the experimental ones. Flaws are generally treated as deterioration of
material parameters. As the only difference in the model and the experiment is the presence
of flaws, it is expected that the adapted velocity model contains valuable information about
the flaws, like position, orientation, and dimensions. Analyzing the complete wave signal to
build a detailed updated velocity model has been approved for seismological and geophysical
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Figure 3.1: Adaptive model-based NDT device

high-resolution imaging Fichtner (2011); Tarantola (1984); Virieux and Operto (2009). As the
result of full waveform inversion is a velocity field of the flawed structure, a visual inspection
for NDT is easily possible.

It should be stressed that this methodology is not limited to the acoustic case. It can
also be applied to US NDT problems that are based on the propagation of surface or body
waves. In this case the elastic wave equation has to be used instead. In case of strong inho-
mogeneous materials, an accurate model of the healthy structure might be obtained from an
initial CT scan. If the structure includes complex features like rivets or stringers the geometry
can be derived from a CAD model.

The question to be answered is a calibration problem: How do we need to change the wave
speed model in the simulation to generate signals at the sensors that are similar to the ones
observed in the experiment?
Formally, the problem is posed as a nonlinear optimization, and the wave speed model is
updated iteratively such that the discrepancy between the experimental measurements and the
model output is minimized. If an unknown medium of the same type as the reference medium
which possibly contains defects is inspected, the idea is to formulate a cost function which
quantifies the difference between measurements from the unknown and reference medium. For
N sensors that record the wave field, the cost function is formulated as the following scalar
least-squares functional:

J(m) = 1
2

∫
Ω

T∫
0

Ns∑
i=1

[u(m;x, t)− u0(x, t)]2 · δ(x− xri ) dt dx,

where u0(xri , t) is the observed ultrasonic signal for sensor at position xi over the time period
[0, T ], written using the Kronecker-Delta δ and u(m;x, t) is the solution of the acoustic wave
equation for a given material model m(x) := v2

p(x). If the measurements in the inspected
medium and the reference medium agree then the cost is zero; otherwise it measures the misfit
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between the signals. The goal is to try to minimize the misfit J(m) by adapting m(x) in the
simulation model. When formulating the problem this way, it does not rely on prior knowledge
of the dimension and the location of flaws. This is an important advantage over most NDT
methods that allows the simultaneous detection of multiple flaws of different dimensions.
This inverse problem can, in principle, be tackled using non-linear optimization methods.
For a comprehensive overview on theory and methods see e.g. Fletcher (2008); Nocedal and
Wright (1999); Polak (1997); Quarteroni et al. (2000). The nonlinear cost function is very
high-dimensional and global optimization methods are not applicable. The only viable option
is a local iterative optimization. As inverse problems are per definition ill-posed and because
of the typically very limited number of measurements, an exact reconstruction of the flawed
structure cannot be expected, but assuming that the initial model is accurate enough, a local
minimum might already provide valuable insight about position, dimensions, and orientation
of possible flaws.
Therefore, the fundamentals of nonlinear optimization are discussed next.

3.2 Nonlinear Optimization
This chapter deals with the analysis and general numerical treatment of nonlinear optimization
problems. Many important engineering problems can be treated as optimization problem where
a continuous objective function has to be either maximized or minimized with respect to some
design variables m. Additionally, a state variable u is also depending on m.

min
m∈RN

J(m,u(m))

s.t. h(u(m)) = 0
(3.1)

Both, the objective function J and state equation h are considered to be smooth and sufficiently
often differentiable to apply the optimization methods that are presented in this chapter. The
objective J is assumed to be nonlinear throughout this work. The content of the chapter
follows introductions to nonlinear optimization in (Nocedal and Wright, 1999), (Christensen
and Klarbring, 2009), (Fichtner, 2011) and (Ulbrich and Ulbrich, 2012), especially extending
the given definitions in (Christensen and Klarbring, 2009) to the problems studied in this
thesis. The following functions and variables are always present in the kind of optimization
problems that are considered in this thesis.

• Objective function (J): A function used to classify designs using a reasonable performance
measure. J returns a value which indicates the quality of the design. Usually J is chosen
such that a small value is better than a large value (a minimization problem). For
example in structural optimization J might measure weight, displacement in a given
direction, effective stress or even cost of production. In our US NDT problem it measures
the discrepancy between the generated signals of our simulation model (pressure or
displacement) at the sensors and the desired signals from the US experiment.

• Design variable (m): A function or vector which describes the design and can be changed
during optimization. It may represent geometry or choice of material. In our case it
represents the speed of pressure waves inside the object and is often referred to as speed
model or simply model instead of design.
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• State variable (u): For a given design m, u is a function or vector that represents the
response of the structure. For a mechanical structure, response means , e.g., displacement,
reaction force, strain or stress. In our case it represents the pressure field induced by an
ultrasonic impulse.

• State equation (h): A function that describes the state or equilibrium of a physical
system. It can also be seen as a dynamic constraint. For instance, for discrete structural
optimization this might be a linear equilibrium constraint like

K(m)u = F (m) (3.2)

with K(m) being the stiffness matrix of the structure, which is a function of the design
m, u is the displacement vector and F (m) is the force vector which may also depend on
the design m. In a continuum problem as it is considered in this thesis this will typically
be a partial differential equation like the acoustic wave equation

utt(m;x, t)− v2
p(x)∆u(m;x, t) = fs(x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ] (3.3a)

u(m;x, 0) = ut(m;x, 0) = 0, on Ω (3.3b)
u = 0on ∂Ω, (3.3c)

where its solution u(m;x, t) is the induced pressure field by the ultrasonic impulse fs and
m := v2

p(x). Optimization problems occur in almost all engineering disciplines as well as in
physics, chemistry, economics, astronomy, data mining and geophysics. Examples include the
computation of minimal surfaces or portfolio optimization. Broader areas are optimal control
problems where one might want to minimize the necessary fuel to put a space ship to a certain
orbit or different applications in robotics. Another larger area of optimization is in the form of
regression / fitting. Here, you try to fit the modeled system responses of a physical, technical or
economic system with measurements as good as possible. This is often done in a least-squares
sense. Examples in the area of mechanics are topology and structural optimization. Also full
waveform inversion as described in Chapter 3 can be viewed as nonlinear least-squares problem.
The value of the objective function J can be either scalar or vector valued. In the latter case

this leads to multi-criteria optimization. We restrict ourselves to the simpler case of scalar
objectives.

Design parameters m and state variable u can be either discrete, i.e. n tuples of real numbers
or continuous fields that can be thought of to have an infinite number of degrees-of-freedom. In
the latter case one speaks about distributed parameter systems. They need to be discretized
first before they can be tackled by a computer. An example of such a field is the continuous
wave speed inside a domain that needs to be discretized on a grid.
Given that the nonlinear objective function is sufficiently smooth, it is well known from basic
calculus that the gradient vanishes at a local minimum m∗:

∇J(m∗) = 0.

A nonlinear function can have multiple local and global minima but the value of the objective
is only minimal in a global minimum. This is illustrated in Fig. 3.2.
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Figure 3.2: Local and global minima of a nonlinear function

In most cases there exist no analytical solution to problem 3.1 and one is forced to apply
numerical methods to solve the problem. The solution algorithms can be divided into two
classes which follow different strategies. Global optimization algorithms find the global minimum
of the objective by a clever sampling of the design space. They are very user friendly as they
only need a routine to evaluate the objective. But they often need a large number of evaluations
for as few as ten design parameters. The exponential increase of the number of samples with
the dimension of the design space limits their applicability to problems where the product of
the number of design parameters and the computational cost for the evaluation of the objective
is not too large, as described in (van Laarhoven and Aarts, 1992). Examples are grid search,
simulated annealing or genetic algorithms. Local algorithms use additional information on the
shape of the graph of the objective by additional function evaluations (Conn et al., 2009) or by
incorporating derivative information. They converge only to a local stationary point but need
much less iterations. Using derivative information makes the methods applicable to large scale
problems with possibly thousands to millions of design parameters. But this comes at the cost
of being less user-friendly as the user needs to provide an additional routine for the evaluation
of the derivative of the objective function and this often requires delicate calculations and
coding.
Figure 3.3 illustrates the different approaches for a nonlinear objective function. The plotted

lines represent the contours of constant objective values. In Figure 3.3a a global optimization
method like grid search evaluates the objective on different positions marked by red circles and
chooses the position with the smallest value, marked by an square as minimum. In contrast,
Fig. 3.3b shows a local minimization method. It starts with an initial guess and then follows
the objective downhill to decrease its value. This way a lot less function evaluations are needed
to find a local minimum. In this example, starting with an initial guess far away from the
minimum on the top left, the sequence only converges to a local minimum. Only if the initial
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(a) Global optimization method (b) Local optimization method

Figure 3.3: Illustration of global and local optimization methods.

guess is good enough, the global minimum is found. The dashed line indicates the direction of
the negative gradient. The next section presents the basic iterative local optimization methods
that are used to tackle large scale problems.

3.2.1 Descent Methods
3.2.1.1 General formulation

The idea of descent methods is to solve the nonlinear optimization problem 3.4 iteratively.
min
m∈RN

J(m,u(m))

s.t. h(u(m)) = 0
(3.4)

For simplicity, the implicit dependence of the objective on the state u(m) and the state equation
h(u(m)) is dropped for the presentation of general numerical methods. But it is important to
keep in mind that evaluating J means to generate a solution to h(u(m)) first which may be
very costly.
Starting with an initial guess m0, descent methods generate a sequence of iterates {mk}∞k=1
using information about the objective at the actual iterate mk such that the value of the
objective function is decreasing step by step.

J(m0) > J(m1) > . . . > J(mN) (3.5)
Algorithm 1 summarizes the steps for a general local minimization method. After the ini-
tialization a descent direction has to be determined along which the objective function is
guaranteed to decrease. Different possibilities how to determine a suitable step size to decrease
the objective function are presented in Sec. 3.2.1.3. This process is repeated until the objective
function is not changing much anymore and the iterates are close to a local minimum. The next
sections present the details about strategies for step size selection and for choices of descent
directions.
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Algorithm 1 Descent Method
Initialize m0, k = 0
repeat
1. Define descent direction pk
2. Line search. Choose step size γ such that J(mk + γkpk) < J(mk)
3. Update design parameter. mk+1 = mk + γkpk

until stopping criterion is satisfied.

3.2.1.2 Descent directions

The central idea of local minimization methods is the usage of descent directions to explore
the design space. A direction p is a descent direction of the objective function J at the current
point m in design space, if the slope of J in direction p is negative:

∇J(m)Tp < 0. (3.6)

There are different possibilities to calculate a descent direction. The simplest one is steepest
descent which is introduced next.

Steepest Descent

As ∇J(mk), the gradient of the objective J at point mk, is pointing in the direction of greatest
ascent of J , the most intuitive choice for a descent direction is to use p = −∇J(mk) as it is
pointing in the direction of steepest descent at point mk. From all possible directions we are
choosing the one that decreases the objective J the most. Clearly, p is a descent direction, as
can be shown by

∇J(m)Tp = −∇J(m)T∇J(m) < 0.

Algorithm 2 shows the steepest descent method. The most delicate part in it is the computation
of the gradient ∇J(m), which can under suitable conditions be done efficiently using the adjoint
method. This is the topic of Sec. 3.3.
Even though the negative gradient guarantees the largest decrease of the objective locally in a
small area around the current solution, it generally is not the optimal choice globally. This
may lead to a large number of iterations being necessary to converge to a local minimum. For
example, steepest descent is largely affected by the scaling of the underlying problem. Consider
the following two quadratic problems:

J1(m1,m2) = m2
1 + 2m2

2, (m0
1,m

0
2) = (−4, 2)

J2(m1,m2) = m2
1 + 10m2

2, (m0
1,m

0
2) = (−4, 2)

The contours of constant objective values and the sequence of iterates for steepest descent are
shown for the scaled and stretched quadratic function in Figure 3.4a and 3.4b. In the problem
with elongated contours the typical overshooting ("zigzagging") of the iterates is observed and
a large number of iterations is needed to reach the minimum.
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(a) Nicely scaled problem f1 (b) Problem with elongated contours f2

Figure 3.4: Convergence of steepest descent

Algorithm 2 Steepest Descent Method
Initialize m0, k = 0
repeat
1. Compute gradient ∇J(mk)
2. Define descent direction pk = −∇J(mk)/ ‖∇J(mk)‖.
3. Line search. Choose step size γk as described in Sec. 3.2.1.3
4. Update design parameter. mk+1 = mk + γkpk

until stopping criterion is satisfied.

Newton’s Method

An improvement to gradient-based optimization is to use information about the curvature of
the objective at the current iterate. Given that the objective function is two times differentiable,
Newton’s method estimates it at the current iterate mk by a quadratic approximation qk(p)
that is derived by Taylor expansion. A detailed derivation can be found in (Nocedal and
Wright, 1999; Ulbrich and Ulbrich, 2012)

J(mk + p) ≈ J(mk) + pT∇J(mk) + 1
2p

T∇2J(mk)p =: qk(p) (3.7)

The quadratic model is reliable if the difference between it and the true function J(mk + p) is
not too large. Its minimizer is found by

∇qk(p) = 0. (3.8)

This leads to the Newton equations

∇2Jkpk = −∇Jk. (3.9)

The steepest descent direction is corrected according to curvature information available by
the Hessian. It can be used together with a line search as indicated in Algorithm 3. A sever
limitation is that in every iteration step the Hessian has to be computed and a linear equation
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system solved for the new search direction. It can be shown that this leads to a quadratic
convergence rate in the vicinity of the solution (under the condition that the Hessian is positive
definite). Additionally, it can be shown that the algorithm is scale-invariant. This means that
the initial step size γ = 1 is almost always accepted in the vicinity of the solution. This results
not only in fast convergence but also in a minimal number of needed function evaluations
for the line search. This is particularly important when one deals with large-scale problems
involving PDEs. But it comes at the cost of the need to calculate and store the Hessian
for each iteration. This is clearly infeasible considering the typically large number of design
parameters. Possible remedies are inexact Newton methods like Newton-CG or quasi-Newton
methods. Inexact Newton methods solve the Newton equation only approximately using an
iterative solver like CG with the advantage that only matrix-vector products with the Hessian
are needed and storing the Hessian can be avoided.

Algorithm 3 Newton’s Method
Initialize m0, k = 0
repeat
1. Compute gradient ∇J(mk) and Hessian ∇2

mJ(mk)
2. Solve Newton equation ∇2J(mk)pk = −∇J(mk)
2. Line search. Choose step size γk as described in Sec. 3.2.1.3.
3. Update design parameter. mk+1 = mk + γkpk

until stopping criterion is satisfied.

Quasi-Newton methods are another attractive alternative that avoid the explicit calculation
of the Hessian. They are considered next.

Quasi-Newton Method

Newton’s method and its variants suffer from the fact that the Hessian has to be computed
and possibly stored each iteration. For large-scale PDE-constraint optimization problems as
considered in this thesis the Hessian is not available. The adjoint method as described in Sec.
3.3 can be used to efficiently compute the gradient and Hessian-vector products. Furthermore,
the Newton equation, a possibly large linear equation system, has to be solved. All these
problems are serious drawbacks. Quasi-Newton methods and especially its variant, the BFGS
method, prove to be a very attractive alternative. As in Newton’s method, the computation
of a descent direction is based on a quadratic approximation of the objective at the current
iterate, but the Hessian matrix is replaced by a positive definite approximation Bk, that is:

J(mk + p) ≈ J(mk) + pT∇J(mk) + 1
2p

TBkp (3.10)

Calculating the gradient

∇J(mk + p) ≈ ∇J(mk) +Bkp, (3.11)

and setting it to zero provides the new descent direction

p = −B−1
k ∇J(mk). (3.12)
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The positive definite Hessian approximation Bk is updated each iteration to incorporate
the curvature information gained through ∇J(mk) and ∇J(mk+1) in the current iteration.
Precisely, it is chosen such that the secant equation is satisfied for the new approximation of
the Hessian Bk+1:

∇J(mk + p) = ∇J(mk) +Bk+1p, (3.13)

which is often written more compactly as

Bk+1sk = yk, (3.14)

where

sk = mk+1 −mk, yk = ∇J(mk+1)−∇J(mk). (3.15)

Furthermore, it has to satisfy the curvature condition sTk yk > 0 to ensure its positive definiteness.
The most widely used quasi-Newton method is the BFGS method, which was suggested
independently by Broyden, Fletcher, Goldfarb and Shanno in 1970 (Broyden, 1970). The
update of the Hessian approximation is corrected after each iteration to incorporate the new
information by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+ yky

T
k

yTk sk
, (3.16)

which clearly satisfies the secant equation 3.14. It can be shown that the method converges faster
to a local optimum than steepest descent in most applications (Fletcher, 2008). Furthermore, it
retains the scale-invariance of the Newton method and the Hessian approximation is guaranteed
to be positive definite. The main advantage of quasi-Newton methods is that they can also
be used to approximate the inverse of the Hessian instead of the Hessian itself. This way no
system of linear equations has to be solved at each iteration; only a matrix-vector product is
needed. Therefore, practical implementations update the inverse of Bk instead by applying an
equivalent formula for the inverse approximation Hk = B−1

k that has to satisfy Hk+1yk = sk
instead. This leads to the following update formula: (Nocedal and Wright, 1999)

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k , ρk = 1

yTk sk
(3.17)

Algorithm 4 shows an efficient implementation of the BFGS method. The descent direction
is computed by a cheap matrix-vector product with the approximation of the inverse Hessian.
For the line search the Wolfe conditions as described in Sec. 3.2.1.3 are used to ensure global
convergence and the design parameter is updated. After each step the current approximation of
the inverse Hessian incorporates the newly available curvature information. Only one problem
remains, the approximation to the inverse Hessian is typically dense and has to be stored. If
the number of design parameters is large then this is infeasible. Fortunately, it is possible to
modify the BFGS algorithm to work with an approximation of the inverse Hessian using only
curvature information from most recent iterations instead. The method, called limited memory
BFGS or L-BFGS is the topic of the next section.
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Algorithm 4 BFGS Method
Initialize m0, k = 0 and H0 initial positive definite approximation to inverse Hessian
repeat
1. Compute gradient ∇J(mk)
2. Compute search direction pk = −Hk∇J(mk)
3. Line search. Choose step size γk as described in Sec. 3.2.1.3
4. Update design parameter. mk+1 = mk + γkpk
5. Compute new approximation of inverse Hessian Hk+1

Hk+1 = V T
k HkVk + ρksks

T
k

where

ρk = 1
yTk sk

, Vk = I − ρkyksk, sk = mk+1 −mk, yk = ∇J(mk+1)−∇J(mk)

until stopping criterion is satisfied.

L-BFGS

For large-scale optimization problems the explicit storage and update of the approximate
Hessian is infeasible. The BFGS method obtains Hk+1 by using the old approximation Hk

and the pair {sk, yk}. This matrix is typically dense but a compact approximation of it can
be assembled by storing {sk, yk} from most recent iterations. This adapted method is called
limited-memory BFGS or L-BFGS method. The main idea is that only curvature information
from recent iterations is likely to be relevant to the actual behavior of the Hessian at the
current iterate and curvature information from older iterations can therefore by discarded. The
BFGS update formula is given by (Nocedal and Wright, 1999)

Hk+1 = V T
k HkVk + ρksks

T
k , (3.18)

where

ρk = 1
yTk sk

, Vk = I − ρkyksk, sk = xk+1 − xk, yk = ∇J(mk+1)−∇J(mk).

The approximation can be recovered by repeated application of the BFGS formula from the
last r vector pairs {si, yi}, i = k − r, ..., k − 1, where typically r ≈ 3 − 15. Additionally, an
initial positive definite Hessian H0

k is chosen that might vary from iteration to iteration. The
current estimate of Hk can be reconstructed by repeated application of formula 3.18

Hk =
(
V T
k−1 . . . V

T
k−r
)
H0
k (Vk−r . . . Vk−1)

+ ρk−r
(
V T
k−1 . . . V

T
k−r+1

)
sk−rs

T
k−r (Vk−r+1 . . . Vk−1)

+ ρk−r+1
(
V T
k−1 . . . V

T
k−r+2

)
sk−r+1s

T
k−r+1 (Vk−r+2 . . . Vk−1)

+ . . .

+ ρk−1sk−1s
T
k−1.

(3.19)
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Algorithm 5 L-BFGS two-loop recursion
Set q := ∇J(mi)
for k = i− 1, i− 2, . . . , i− r do
αk := ρks

T
k q

q := q − αkγk
end for
Set t := H0

kq
for k = i− r, i− 2, . . . , i− r do
β := ρky

T
k t

t := t+ sk(αk − β)
end for
return Hi∇J(mi) = t.

This leads to a recursive procedure to calculate the matrix-vector product Hk∇J(mk) efficiently.
This two-loop recursion is shown in Algorithm 5. An important detail is the choice of the
initial approximation H0

k , an effective choice is Hk = σkI, where

σk =
sTk−1yk−1

yTk−1yk−1
. (3.20)

This choice helps to ensure that the search direction is well scaled, and as a result the step size
γk = 1 is accepted in most iterations. This minimizes the amount of function evaluations for
the step size selection which is very important when function evaluations are very costly. The
final algorithm agrees with algorithm 4 in most parts. It only differs in the computation of
the descent direction by employing the two-loop recursion shown in algorithm 5 to calculate
−Hk∇Jk and it has to store the last r vectors si and yi for the next iteration.
After finding a descent direction, the next step is to compute a step size along it. Different
approaches are considered next.

3.2.1.3 Step size selection

If pk is a descent direction, then the value of the objective J can be reduced along the direction
pk. There is a trade off, as this is a one-dimensional nonlinear optimization problem on its own
that can be very costly to solve and might need a lot additional evaluations of the cost function.
As a compromise, we want to choose a step size that leads to a substantial reduction in the
value of the objective using as few function and gradient evaluations as possible. Therefore,
most of the described methods accept a value of γ that leads to a large enough reduction in
the objective. In the following different methods that find the optimal step size or a reasonable
estimate are presented.

Exact solution

Ideally, we would want to choose the step size along the direction such that the value of
the objective is minimal. For this we would need to perform a minimization of a nonlinear
univariate function

φ(γ) := J(mk + γpk), γ > 0. (3.21)
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Finding the global or even only a local minimum will need a possibly large number of additional
function evaluations and it can be shown that it is neither necessary nor efficient to calculate
the global minimum at all. Therefore most methods content themselves with finding only an
approximate solution.

Curve fitting

A first possibility is to replace the objective function by a simple approximation that can easily
be optimized like a quadratic or cubic polynomial. By evaluating φ(γ) at three points γ1, γ2
and γ3 we can determine a quadratic approximation

q(γ) = aγ2 + bγ + c, (3.22)

which agrees with φ(γ) at γ1, γ2 and γ3. The new step size is then found analytically using
the global minimizer of the quadratic approximation. Usually, one wants to find a step size as
efficiently as possible using a minimal number of function evaluations. Therefore, it is reasonable
to use values of φ(γ) that are already available. As φ(0) = J(mk) and φ′(0) = ∇J(mk)Tpk
have already been computed in the previous step, they are already available without any new
evaluation of the objective, it is possible to interpolate a quadratic polynomial using these
points and an initial guess γ0. The quadratic approximation is then given by the following
formula:

g(γ) =
(
φ(γ0)− φ(0)− γ0φ

′(0)
γ2

0
+ φ′(0)γ + φ(0)

)
, (3.23)

and its explicit minimizer γ∗ is given by the expression

γ∗ = − φ′(0)γ2
0

2[φ(γ0)− φ′(0)γ0 − φ(0)]) . (3.24)

In Newton and quasi-Newton methods the step size γ0 = 1 should always be tried first, as it
is almost always accepted. In contrast, for methods that are not scale-invariant as steepest
descent and conjugate gradients, one popular strategy is to assume that the first-order change
in the objective at iterate mk will be similar to the one obtained at the previous step. Therefore,
the initial guess γ0 is chosen such that γ0∇J(mk)Tpk = γk−1∇J(mk−1)Tpk−1. Thus,

γ0 = αk−1
∇J(mk−1)Tpk−1

∇J(mk)Tpk
. (3.25)

A different approach fits a quadratic polynomial using the points J(mk−1), J(mk) and φ′(0) =
∇J(mk)Tpk and to define γ∗ to be the minimizer

γ∗ = 2(J(mk)− J(mk−1))
φ′(0) . (3.26)

Powell-Wolfe conditions

Another possibility is to test a sequence of candidate values and possibly accept one of them
when certain conditions are satisfied that ensure that enough progress is made following the
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search direction. At first glance, it seems reasonable to accept any step size γ that is decreasing
the value of the objective J(mk + γpk) < J(mk). But this condition is not sufficient as it
possibly provides no sufficient reduction in each iteration to converge to the local minimum.
Most line search methods therefore require that the chosen step leads to a sufficient decrease
of the objective

J(mk + γkpk) ≤ J(mk) + c1γk∇J(mk)Tpk. (3.27)
The inequality is called sufficient decrease condition. The decrease has to be directly propor-
tional to step size and directional derivative. But the sufficient decrease condition alone is not
adequate to ensure that the algorithm makes reasonable progress because it is accepting all
sufficiently small step sizes. A common way to ensure that these step sizes are not accepted is
to add another condition related to the slope of the objective called curvature condition.

∇J(mk + γkpk)Tpk ≥ c2∇J(mk)Tpk (3.28)
with

0 < c1 <
1
2 , c1 < c2 < 1.

It prevents that too small values of γ are accepted. The left hand side of formula 3.28 is
the derivative of φ at γk, and thus the condition ensures that the slope at γk is greater than
c2 times the slope at 0. Therefore, it excludes all step sizes that are very small. Together,
both conditions are known as Powell-Wolfe conditions. Typical values for the constants are
c1 = 10−4 and c2 = 0.9 for Newton and quasi-Newton methods, and c2 = 0.1 if steepest descent
or conjugate gradients are used (Nocedal and Wright, 1999). Algorithm 6 shows a possible
implementation of the Powell-Wolfe step size rule. A first test ensures that a step size γ = 1 is
tried. If γ = 1 is not accepted, we find a step size γ− satisfying and γ+ violating 3.27. Then,
we find a stepsize γ that also satisfies 3.28 using bisection of the interval [γ−, γ+].
The conditions are illustrated in 3.5. Sufficient decrease condition 3.27 states that the graph of
the function φ(γ) has to be below the linear decreasing function γc1∇J(mk)Tpk. To exclude
arbitrary small choices of γ, curvature condition 3.28 only accepts step sizes where the slope
is larger than c2∇J(mk). The areas where both conditions are satisfied are highlighted on
the axis. Furthermore, a typical bisection step is shown, where two step sizes γ− and γ+ that
violate 3.28 are averaged to find γ∗ that satisfies both conditions.
The Powell-Wolfe conditions can be used in most line search methods, but they are particularly
important for quasi-Newton methods because they are scale-invariant. This means that
multiplying the objective function by a constant or making an affine change of variables does
not alter them. Next, different possibilities to terminate the optimization are presented.

3.2.1.4 Termination criteria

The classical termination criterion for the iterative minimization is to stop the process once
the gradient of the objective is almost zero

‖∇J(mk)‖ < ε · ‖∇J(m0)‖ , where e.g. ε = 10−5,

or after a finite number of iterations. Of course, this has the additional benefit of saving
computational resources. As another possibility, another practice is to run the inversion for a
fixed number of iterations and to choose the model at some iteration after which the model is
not changing significantly any more to prevent overfitting.
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Figure 3.5: Powell-Wolfe step size rule, adapted and extended from (Ulbrich and Ulbrich, 2012)

3.2.2 Summary
To summarize, the main benefits of using L-BFGS are that due to its scale invariance the
number of necessary function evaluations for the step size selection is minimized at small costs,
especially if function evaluations are related to solutions of PDEs and therefore very costly.
The limited-memory variant circumvents the need to store an explicit approximation of the
inverse Hessian which leads to low storage requirements. Despite its simplicity L-BFGS often
outperforms other local optimization methods and proves to be very efficient especially for
large-scale optimization (Nocedal and Wright, 1999). The key ingredient of local optimization
methods is the gradient of the objective. It can be computed very efficiently in the case of full
waveform inversion using the adjoint sensitivity state method which is introduced next.

3.3 Efficient Computations - The Adjoint State Method
A key part for the transition from forward to the inverse problem described in Sec. 3.1 is
the availability of local information about the cost function that should be minimized. The
dimension of the parameter spaces considered in this thesis range from 104 to 106 and this
number may exceed 1010 for modern applications in seismic inversion (Hinze, 2009). Finite
differences and forward approaches are only suitable if the number of model parameters is
small. In inverse problems or optimal control the sensitivity of a functional with respect to a
large amount of design parameters is needed. For example, in the case of acoustic inversion we
are interested in the gradient of a certain functional, representing the error between expected
and observed signals at the sensors of some ultrasonic experiment, with respect to a large
number of parameters like the distributed compression wave speed on a fine grid. Classical
global exploration strategies like simulated annealing or genetic algorithms are not applicable
in this setting. The question is: Is it possible to compute the gradient with respect to this large
number of parameters efficiently? Adjoint approaches circumvent the problem of calculating
the sensitivity of the underlying model to each parameter introducing an adjoint or co-state.
This allows to apply local minimization methods like gradient descent to solve the inverse
problem. Unfortunately, a clear general and simple introduction into the topic of adjoint
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Algorithm 6 Powell-Wolfe Stepsize Rule
if J(mk + pk) ≤ J(mk) + c1∇J(mk)Tpk and ∇J(mk + pk)Tpk ≥ c2∇J(mk)Tpk then
return γ = 1

else
if J(mk + pk) > J(mk) + c1∇J(mk)Tpk then

Compute largest γ− ∈ {2−1, 2−2, . . . } such that J(mk+γ−pk) ≤ J(mk)+c1γ−∇J(mk)Tpk

Set γ+ = 2γ−.
else
Compute the smallest γ+ ∈ {2, 22, . . . }, such that J(mk + γ+pk) > J(mk) +
c1γ+∇J(mk)Tpk
Set γ− = γ+

2 .
end if
while ∇J(mk + γ−pk)Tpk < c2∇J(mk)Tpk do
Compute γ = γ− + γ+

2 .
if J(mk + γpk) ≤ J(mk) + c1γ∇J(mk)Tpk then
γ− = γ

else
γ+ = γ

end if
end while

end if

operators is missing in most of the literature. The adjoint approach is frequently employed for
sensitivity calculation using the concept of Lagrange multiplier. A good introduction from this
perspective can be found in (Hinze, 2009). Although the mathematical formulation being very
concise, following this approach often disguises the principle behind adjoint computation such
that it often comes as a great surprise that one is able to invert for thousands to millions of
parameters at the same time when other methodologies are already struggling with only a few.
Moreover, the approach for calculating sensitivities is often simply referred as adjoint method
in the literature which contributes to the confusion and a more concise description is adjoint
sensitivity state method. An introduction into the general methodology that is not limited to
the sensitivity approach is often missing.
For this reason, this chapter tries to give an introduction into adjoint equations from

perturbation theory following the particularly well-written book by Marchuk (Marchuk, 1995).
The principles are first introduced for a simple one-dimensional heat transfer problem and
then extended to linear operators. Only after the general concept is introduced in sufficient
depth, the focus is shifted to the original topic of providing sensitivity information that can be
used for the iterative solution of an inverse problem. For this purpose the direct and adjoint
approach for this calculation are presented and discussed. It is shown that the computational
complexity of the adjoint approach is independent of the number of model parameters which
makes it very well suited for inverse problems with distributed parameters. In the end, adjoint
formulations are derived for the nonlinear least-squares objective function that is central to
this thesis. The redundancy in the theory is not accidental but intended to make the point
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that adjoint computations can be simple in both, its understanding and computation.

3.3.1 Adjoint state method
3.3.1.1 Linear algebra

To start with, the adjoint approach is best described in the context of linear algebra. Following
Giles (Giles and Pierce, 2000), suppose that a vector u ∈ Rn is the solution to a linear equation
system

Lu = f ; J := gTu, (3.29)

for some given matrix L ∈ Rn×n and vector f ∈ Rn. It is often called main or primal
equation. Suppose that the main interest is not directly in u, but we wish to evaluate the
quantity J = gTu where g ∈ Rn. The direct approach consists in solving 3.29 for u first
and then calculating the scalar product gTu. Alternatively, there is another way to compute
the value of J , if we are not interested in u itself. The so-called adjoint or dual form is
to evaluate J = vTf instead, where the adjoint solution v ∈ Rn satisfies the linear equation
system

LTv = g; J := vTf. (3.30)

Note the use of the transposed matrix LT and the interchange of the roles of f and g. The
equivalence of the two forms is easily proven:

J = vTf = vTLu = (LTv)Tu = gTu. (3.31)

For single vectors f and g nothing would be gained by using the dual form. But if there are p
different vectors f1, . . . , fp and m different vectors g1, . . . , gm then the direct approach means to
solve p primal problems and then compute m vector products. The adjoint approach involves
m solutions to the adjoint problem and p vector products to calculate J . If the dimension of
equation system 3.29 is very large, the cost of the vector products to calculate J is negligible
compared to solving the linear equation system, and therefore the adjoint approach is much
cheaper when m� p. Especially, if m = 1, meaning that there is only one vector product, and
p is very large. In the next section this idea is extended to functionals depending on solutions
of partial differential equations.

3.3.1.2 Linear continuous functionals

The short excursion to linear algebra showed that there are two ways to calculate the value of
a scalar product of a solution of a linear equation system, the direct and adjoint approach.
This is also true for linear continuous functionals that depend on the solution of a PDE like
the acoustic wave equation. The problem of being interested in the value of a functional that
is depending on the solution of a PDE rather than the solution itself is quite common in many
engineering disciplines. To motivate the large application area of adjoint computations, some
examples of useful linear functionals are given next. Suppose that we are interested in the
value of a linear continuous functional J :

J = (u, g) :=
∫
Ω

u(x) · g(x) dx. (3.32)
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Here, u is the solution of a PDE and u, g are elements of L2(Ω) := {u |
∫

Ω |u(x)|2 dx < ∞},
and (·, ·) denotes a scalar product in L2(Ω). g can be chosen in a wide variety of ways. Some
examples are given next.

(i) Calculate mean value
If it is required to find a mean value of u over a subdomain ω ⊂ Ω, then select g(x) in
the form

g(x) = 1
mesω

{
1, x ∈ ω,
0, x ∈ Ω \ ω

(3.33)

In this case the functional will be written in the form

J [u] = 1
mesω

∫
ω

u(x)dx. (3.34)

(ii) Point values
If u is a continuous function, one can choose also the Dirac δ-function as g(x) :
g(x) = δ(x− x0); then

J [u] =
∫
Ω

u(x)δ(x− x0) dx = u(x0). (3.35)

(iii) Acoustics
As a more specific example, in acoustics, the functional J can represent a measurement
process that translates a pure physical entity u, such as a pressure wave, to a secondary
observable like the energy at a fixed sensor position x = xr. Here, the functional depends
on the choice of a parameter set m the pressure wave is depending on. For example, the
wave speed inside the domain. Then the functional J is given by the following expression:

J [m] =
∫
Ω

T∫
0

u̇2(m;x, t)δ(x− xr) dt dx. (3.36)

As another application, a functional can quantify the discrepancy between a recorded
ultrasonic signal and its theoretical prediction u(m;x, t). The functional then plays the
role of a misfit functional that quantifies the distance between both signals at x = xr:

J [m] =
∫
Ω

T∫
0

[u(m;x, t)− u0(x, t)]2δ(x− xr) dt dx. (3.37)

This functional will be revisited in section 3.3.2.4 when the adjoint approach for sensitivity
calculations is introduced. Instead of directly focusing on this topic the adjoint approach
for linear functionals is first presented in a simpler setting to make the principles clear.



3.3. Efficient Computations - The Adjoint State Method 49

Heat transfer in a bar

Even though this thesis is concerned with acoustic wave propagation, the principles behind
adjoint computations are most easily explained by presenting a stationary one-dimensional
example. A simple example where all important details are already present is as follows:
Consider a heat transfer problem on Ω = [0, 1] without convection effects along a bar. As
boundary conditions, the temperature is fixed to zero at the beginning and end of the bar.
Furthermore an external constant source is applied in some part. The state of the bar is
described by a one-dimensional Poisson equation:

−uxx(x) = f(x)
u(0) = u(1) = 0.

(3.38)

Here, u is the resulting displacement field when load f is applied to the bar. For convenience,
the PDE is often written in operator notation using the differential operator L := − ∂2

∂x2 . The
domain of L is defined as

D(L) := {u|u(0) = u(1) = 0}. (3.39)

One can write Lu = f , where u is assumed to be in D(L) as a shorthand for 3.38. We start by
assuming that u is in a Hilbert space, e.g u ∈ L2(Ω) with the following scalar product:

(u, v) =
1∫

0

u · v dx. (3.40)

Applying the differential operator L to u and assuming, for the sake of simplicity, that
u, v ∈ D(L), we can rearrange terms by formally applying integration by parts.

(Lu, v) =
1∫

0

Lu · v dx = −
1∫

0

uxx · v dx (3.41)

= − ux · v|10 +
1∫

0

ux · vx dx (3.42)

= − ux · v|10 + u · vx|10 −
1∫

0

u · vxx dx (3.43)

=: (u, L∗v) (3.44)

Both boundary terms vanish because of 3.39. By partially integrating twice, an equivalent
formula is found where an operator L∗ is acting solely on v. This operator is called adjoint
operator. Compare this to the operator we started with L, that is acting solely on u. If and
only if all boundary terms vanish, the following important formula holds:

(Lu, v) = (u, L∗v). (3.45)

This formula is called Lagrange identity. Despite its simplicity, it is the key to efficient
computations. The adjoint operator is constructed by integration by parts and by the definition



50 3. Full Waveform Inversion

Primal operator Adjoint operator

Laplace operator ∇ · (k∇u) ∇ · (k∇u∗)

Heat operator du

dt
− d2u

dx2 −du
∗

dt
− d2u∗

dx2

Convection operator du

dt
+ du

dx
−du

∗

dt
− du∗

dx

Acoustic wave operator d2u

dt2
− α2d

2u

dx2
d2u∗

dt2
− α2d

2u∗

dx2

Table 3.1: Primal and adjoint operators for common differential operators

of suitable conditions on its domain. Furthermore, if L∗ = L, then the operator is called
self-adjoint. Therefore, the Laplace operator is self-adjoint.
Table 3.1 shows primal and corresponding adjoint operators for the most common differential

operators. As seen before, the Laplace operator and also the wave operator are self-adjoint.
In general, when the primal operator contains derivatives of odd degree then the adjoint
operator will have the opposite sign in front of these term and will therefore not be self-adjoint.
Examples are the heat and convection equation.
Assuming u, v to satisfy the boundary conditions all boundary terms vanish. Suppose that
we are not interested in u itself, but in the value of a linear continuous functional J that is
depending on u.

J [u] =
∫
Ω

u(x) · g(x) dx, (3.46)

where g(x) is a prescribed function from L2 and u(x) is implicitly given as solution of the state
equation

−uxx(x) = f(x)
u(0) = u(1) = 0.

(3.47)

Furthermore, suppose that g(x) is an instrumental or measurement characteristic, e.g.

g(x) =
{

1, 0 ≤ α ≤ x ≤ β ≤ 1
0, otherwise.

(3.48)

The instrument associated with g only registers solution values within α ≤ x ≤ β and does not
respond to the solution in the other parts of the interval. If we want to evaluate J , we can
solve 3.47 for u(x) and then integrate the product u(x) · g(x). Consider the following slightly
different problem involving the adjoint operator and the measurement characteristic as its
source term:

−u∗xx(x) = g(x)
u∗(0) = u∗(1) = 0.

(3.49)
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This is called the adjoint equation, it is specifically designed for the primal problem and it is
tied to functional J under consideration through its source term.
The second key concept to adjoint computation is to use Lagrange identity 3.45 and the adjoint
equation to obtain an equivalent adjoint formula for the evaluation of J .
An equivalent formula for 3.46 can be obtained by multiplying the main equation 3.47 by the
adjoint solution, the adjoint equation 3.49 by the main solution, taking their difference and
integrating over the domain:

−
1∫

0

∂2u

∂2x
· u∗ dx+

1∫
0

∂2u∗

∂2x
· u dx =

1∫
0

f · u∗ dx−
1∫

0

u · g dx. (3.50)

First, the sought functional J is found on the right hand side. Second, using Lagrange identity
3.45 the left hand side vanishes. In this simple example we could also see this by integrating
one of both terms by part twice and using the boundary conditions that solutions u and u∗
satisfy. What remains is the following interesting relationship:

J [u] =
1∫

0

u · g dx =
1∫

0

f · u∗ dx. (3.51)

This means that, if we are interested in J , then we can compute it by evaluating either of both
formulas. The second formula contains u∗, the solution to the adjoint problem 3.49. This is the
analogy for 3.31. Both formulas can be used but one proves to be more efficient to the other
depending on the use case. Because of it’s fundamental importance, let’s look at a specific
example.
Consider the bar problem with a specific load f :

−uxx(x) = f(x)
u(0) = u(1) = 0,

(3.52)

with

f(x) =
{

1, x ∈ [0; 0.4]
0, x 6∈ [0; 0.4].

(3.53)

Now, suppose the interest lies not solely in u but especially in a scalar functional J [u]:

J [u] =
1∫

0

g(x) · u(x) dx (3.54)

with

g(x) =
{

1, x ∈ [0.7; 1]
0, x 6∈ [0.7; 1],

(3.55)
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Figure 3.6: Primal and adjoint solutions for bar problem

Formula 3.51 tells us, that we can get the value of the functional computing the solution of an
adjoint equation, where the boundary conditions carry over but the instrumental g is acting as
adjoint source:

−u∗xx(x) = g(x)
u∗(0) = u∗(1) = 0.

(3.56)

Fig. 3.6 shows solutions u and u∗ for the primal and adjoint problem respectively. The PDE
is solved using second order finite differences on a uniform grid with step size h = 0.01 and
the integration is performed by Simpson’s rule. The shaded areas under both curves represent
the value of J and are equal by construction. To see the benefits of the adjoint formulation,
suppose that the source in the main problem changed and now a solution for the new perturbed
problem is needed.

−u′xx(x) = f ′(x)
u′(0) = u′(1) = 0,

(3.57)

with

f ′(x) =
{

1, x ∈ [0; 0.5]
0, x 6∈ [0; 0.5].

(3.58)

The new value of functional J can be calculated using the direct or adjoint formulation:

Jg =
1∫

0.7

u′(x) · g(x) dx, (3.59)
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Figure 3.7: Primal and adjoint solutions

Jf =
0.5∫
0

u∗(x) · f ′(x) dx. (3.60)

Following a direct approach the solution to the new perturbed primal problem u′ is needed.
Figure 3.7 shows how the solution is affected by changing the source term. As the measurement
characteristic did not change, the integration boundaries do not change for Jg. More important,
the adjoint solution, which is related to the unchanged adjoint source term g, is not affected
by the change in the source. The change is only related to its integration boundary. A variation
in the source in the main problem is immediately linked with a variation of the functional
under study by equation 3.60. There is no need to solve perturbed problem 3.57 to calculate
J using the adjoint formulation.
Even though, in our case, the propagation of ultrasonic pressure waves is described by the

acoustic wave equation, the presented concepts are not limited to this specific type of equation.
As it is even simpler to show the concept for a general mathematical model, this is presented
first. We follow an introduction by Marchuk (Marchuk et al., 2005).
Consider a general mathematical model of some physical process governed by the following
equation, which is often called state or primal equation

Lu = f, (3.61)

where L is a linear operator acting on some Hilbert space H with its domain D(L) dense in H,
f ∈ H. Assume that we need to compute not u itself but a linear functional of u:

Jg[u] = (u, g), (3.62)

where g is an element of H, and (·, ·) denotes a scalar product in H. The design of 3.62 is quite
general for linear and continuous functionals due to Riesz representation theorem1. Examples

1If x ∈ H, every continuous linear functional J : H → R can be written uniquely as Jx[y] = (y, x) ∀y ∈ H.
See (Werner, 2007)
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for common functionals were given in section 3.3.1.2.
We introduce the new adjoint operator L∗ with the domain D(L∗) satisfying the Lagrange
identity:

(Lh, l) = (h, L∗l), h ∈ D(L), l ∈ D(L∗), (3.63)

where D(L∗) = {l ∈ H : |(Lh, l)| ≤ c||h||, c = const, h ∈ D(L)} and ||l|| = (l, l)1/2. Using the
adjoint operator, formulate a nonhomogeneous adjoint equation related to the functional:

L∗u∗g = g, (3.64)

where g is an element of H defining the functional Jg[u]. The equation is also called co-state
equation. An equivalent formula for 3.62 can be obtained by multiplying the main equation
by the adjoint solution, the adjoint equation by the main solution, taking their difference and
integrating over the domain

(Lu, u∗g)− (u, L∗u∗g) = (f, u∗g)− (u, g). (3.65)

Using Lagrange identity 3.63, we get

(f, u∗g)− (u, g) = 0. (3.66)

Then

Jg[u] = (f, u∗g). (3.67)

Thus, if we need to find the value of the functional 3.62, we can get it in two ways:

(i) The classical way uses state equation 3.61 to relate the physical process u to source f
and then to the functional Jg by equation 3.62.

(ii) Using the equivalent formula 3.67 changes in f are directly related to changes in the
functional Jg.

The direct approach is preferable, when the state u of the physical process is needed. However,
if only the value of the functional for a lot of different source terms is needed, then formula 3.67
allows to directly relate the changed source to the change in the sought for functional without
considering the physical process described by 3.61 by utilizing the specifically designed adjoint
problem in 3.64. This means that a second PDE has to be solved (and its solution stored) for
each needed functional. Usually one of these two approaches outperforms the other depending
on the use case. If there is only one functional and therefore only one related adjoint problem,
then the adjoint approach is clearly preferable. Another use case is the appearance of a very
complex source term in the main problem that makes it hard to solve. If g is simple then
the adjoint approach is preferable. The approach is also very useful for sensitivity analysis
and optimal control statements being discussed later. In structural engineering the concept of
influence functions and Betti’s theorem are important applications of adjoint computations
(Hartmann and Katz, 2002).
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It has to be mentioned that the adjoint approach relies on a unique solution of the adjoint
equation. If and only if a solution exists there is an adjoint formulation of the functional.
For the wave equation the self-adjointness of the operator and that boundary conditions are
inherited from the forward problem help to ensure the solvability of the adjoint problem. See
(Chavent, 2009) for some remarks on this.

Furthermore, it should be mentioned that in the case of changing source terms the commonly
used approach is to store an LU decomposition of the discretized main problem and perform a
forward and backward substitution to get the new solution. This is one possible reason why
adjoint formulations are not common for the use case of changing loads. In the next section
the adjoint approach is applied to the computation of sensitivities of functionals. This is
were the method really shows its strength.

3.3.2 Adjoint sensitivity state method

In problems that typically stem from stability analysis, parameter estimation and data as-
similation one is interested in sensitivity information of a certain model or functional of its
solution to a large amount of parameters. It is in these cases that an adjoint approach is the
only suitable way to get this information in acceptable time. Optimization problems become
computationally practical through adjoints. In fact, the efficient computation of gradient
information is a special case of the general adjoint approach. Here, the approach is applied
to a linear functional that is representing the sensitivity of the functional to the parameters
of the underlying model. It is used in engineering disciplines ranging from computational
fluid dynamics (Giles and Pierce, 1997; Pironneau, 1974) and shape optimization (Bletzinger
et al., 2010; Bletzinger and Maute, 1997; Bletzinger and Ramm, 2014; Bletzinger et al., 2005;
Gauger, 2002; Newman III et al., 1999; Othmer, 2014) to machine learning, training of neural
networks and especially full waveform inversion in seismology. For general tutorials on the
adjoint sensitivity state method see (Errico, 1997; Marchuk, 1995; Yedlin and Van Vorst, 2010)
and introductions from a mathematical perspective are given in (Cao et al., 2002, 2003; Giles
et al., 2003; Giles and Pierce, 2000; Haber et al., 2012). The section follows a recent publication
of Marchuk (Marchuk et al., 2005) from a standpoint of perturbation theory. For the interested
reader, a general introduction using the Lagrange multiplier approach that is more common
in the literature of sensitivity calculations can be found in (Hinze, 2009) and in appendix A.
For great reviews in the seismology community consider (Fichtner, 2011; Fichtner et al., 2013;
Plessix, 2006; Virieux and Operto, 2009).

3.3.2.1 Problem formulation

Consider again the general setting, where the value of a linear continuous functional J is
considered to be of the following form

J(m) =
∫
Ω

u(m;x) · g(x) dx, (3.68)
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where u(m;x) is given by a general mathematical model of some physical process governed by
the equation

L(m)[u(m;x)] = f(x), (3.69)

which is depending on some model parameters m over the operator L of the state equation.
Model parameters m might be material distribution, source parameter or related to initial
conditions. Then, the sensitivity of J with respect to these parameters is given by another
linear functional ∂J(m)

∂m
:

∂J(m)
∂m

=
∫
Ω

∂u(m;x)
∂m

· g(x) dx. (3.70)

This is again a linear continuous function in the form considered in the general adjoint
approach and it can be used to efficiently calculate the sensitivity of a functional where its
evaluation is implicitly depending on the solution of a PDE. This is the common setting for
inverse problems where a descent direction like the negative gradient is needed for a local opti-
mization method. Here, the number of design variables can be very large, because parameters
might be mesh dependent, for instance one variable per grid point in a large 3D FEM mesh
leading to O(N) design variables. This can easily result in 106 to 109 design variables that
have to be considered for the inversion.

An obvious possibility to calculate the sensitivity of the functional is to use finite differences as
described in Sec. 2.2. For example, using forward differences of first order, one can approximate
the gradient by:

∂J(m)
∂mi

≈ J(m1, . . . ,mi + h,mi+1, . . . ,mN)− J(m1, . . . ,mi, . . . ,mN)
h

, i = 1, . . . , N.

(3.71)

This would require N additional evaluations of J . As every evaluation of J corresponds to one
additional solution of the state equation and this is clearly impractical for large N . Therefore,
other approaches are needed. The direct and adjoint approach for sensitivity calculations are
considered next.

3.3.2.2 Forward Sensitivity State Method

The sensitivity or direct method explicitly calculates the sensitivity of the model to parameter
changes. Instead of the unperturbed problem

Lu = f, (3.72)

consider a new perturbed problem:

Lu′ = f ′, (3.73)

where f ′ = f + δf, δf ∈ H. Due to the linearity of the unperturbed problem, its solution may
be represented in the form:

u′ = u+ δu, δu ∈ D(L). (3.74)
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Then, using both representations for variations of a functional in the formula J ′g = Jg + δJg,
we obtain two equivalent relationships:

δJg = (δu, g), (3.75)
δJg = (δf, u∗g). (3.76)

where u∗g is a solution of the unperturbed adjoint problem often referred to as importance
function (value function), or as influence function. It is the function that is responsible for
the sensitivity of the functional Jg to the source function f . If the right-hand side depends on
some parameter mi, from the last equation we get the formula for variations:

δJg = ∂Jg
∂mi

δmi = ( ∂f
∂mi

, u∗g)δmi. (3.77)

Then the sensitivity to changes in the source is given by

∂Jg
∂mi

= ( ∂f
∂mi

, u∗g). (3.78)

The value of ∂Jg/∂mi therefore shows how sensitive the functional Jg is to variations of the
parameter mi. Now, assume that the operator itself depends on some set of parameters m:

L(m)u = f, u ∈ D(L), f ∈ H, (3.79)

and it is required to study the sensitivity of the functional

Jg[u] = (u, g), g ∈ H (3.80)

to variations of the parameters m. Along with the unperturbed problem, consider the perturbed
one:

L(m′)u′ = f, (3.81)

where m′ = m+ δm, u′ = u+ δu, δu ∈ D(L). Let L(m) be sufficiently smooth in m, such that

L(m+ δm) = L(m) + ∂L

∂m
δm+O((δm)2), (3.82)

where ∂L/∂m is the derivative of L defined by the equality (on condition that the limit exists)

lim
t→0

L(m+ tδm)− L(m)
t

= ∂L

∂m
δm. (3.83)

Substituting equations 3.81 and 3.82 yields:(
L(m) + ∂L

∂m
δm

)
(u+ δu) = f (3.84)

L(m)u+ L(m)δu+ ∂L

∂m
uδm+ ∂L

∂m
δuδm = f (3.85)
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Using equation 3.79 and restricting ourselves to first-order terms, we get

L(m)δu = − ∂L
∂m

uδm. (3.86)

This is the principle equation for determining small variations of its solution from the unper-
turbed state. It is often called sensitivity equation. Again, there exist two approaches to
evaluate the variation of a linear functional that is depending on its solution δu

δJg = (δu, g). (3.87)

The direct approach is to first evaluate 3.86 and then use this solution in 3.87 to calculate
∂J
∂mi

. It is also called sensitivity approach as one can use model 3.86 directly to determine
the impact of perturbations and therefore estimate the sensitivity of the model. For a large
number of parameters mi, i = 1, . . . , N this would require N solutions to 3.86, which is clearly
impractical for very large N . A more efficient and direct way is to use adjoints instead, which
is the topic of the next section.

3.3.2.3 Adjoint Sensitivity State Method

Instead of using the sensitivity equation directly one can consider the adjoint problem tied to
functional δJg as shown in equation 3.76:

L∗(m)u∗g = g. (3.88)

We can use the adjoint solution to calculate the value of the variation

δJg = −( ∂L
∂m

uδm, u∗g).

The value
∂Jg
∂m

= −( ∂L
∂m

u, u∗g) (3.89)

provides information about the sensitivity of the functional Jg. How much do changes of m
affect Jg? This value is determined by the adjoint function u∗g. As the adjoint formulation of
the functional directly relates changes in the parameter to changes in the functional without the
necessary knowledge of changes in the state, it is not necessary to solve for the sensitivity for
each parameter. The adjoint variant is numerically very attractive as only one extra solution
of the adjoint problem is necessary. The costs are almost independent of the number of model
parameters.

3.3.2.4 Acoustic misfit formulation

For many applications it is typical to look at the misfit between synthetics and measured data.
For instance, in seismology the misfit between synthetics and measured data at seismometers
is considered. The acoustic wave equation L(m)u = f is given by

utt(x, t)−m(x)∆u(x, t) = fs(x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ], (3.90a)
u(x, 0) = ut(x, 0) = 0 on Ω, (3.90b)

u = 0 on ∂Ω. (3.90c)
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As model parameters m(x) := v2
p(x), the squared propagation speed of compression waves

is chosen. For N sensors that record the seismic wave field, the misfit is formulated as the
following scalar least-squares functional:

J(m) = 1
2

∫
Ω

T∫
0

N∑
i=1

[u(m,x, t)− u0(x, t)]2 · δ(x− xri ) dt dx,

where u(m;xri , t) is the predicted and u0(xri , t) the observed ultrasonic signal for sensor r. The
sensitivity functional to variations δm in the model parameter is given by the following formula:

∂J(m)
∂m

=
∫
Ω

T∫
0

N∑
i=1

[u(m,x, t)− u0(x, t)] · δ(x− xri ) ·
∂u

∂m
dt dx.

If we are interested in the sensitivity of the least-squares misfit functional to variations δm
in the model parameter, then we can compute this value either using the direct approach
or using the adjoint approach as described before with measurement characteristic g =∑N

i=1[u(m,x, t)− u0(x, t)] · δ(x− xri ) and the self-adjointness of the wave equation. Then the
related adjoint problem is given by the following PDE:

u∗tt(x, t)−m(x)∆u∗(x, t) = g(x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ], (3.91a)
u∗(x, T ) = u∗t (x, T ) = 0, on Ω, (3.91b)

u∗ = 0on ∂Ω. (3.91c)

The time-reversed adjoint has an interesting interpretation in the context of the wave equation
(Virieux and Operto, 2009). Its source term is the residual: the difference between synthetics
and recorded data in reverse time. The equation propagates the residual into the structure
starting from final time T . Its solution u∗(x, T − t) is called backpropagated field of residuals.
Using the solution to the adjoint problem, the computation of ∂u

∂mj
for every parameter mj can

be circumvented using the adjoint representation of the functional

∂J

∂m
= −(∆u, u∗). (3.92)

Solving the adjoint equation once, it is possible to compute the sensitivity of functional J for
all model parameters. This is especially true for a distributed parameter that is varying in
space like the compression wave propagation speed vp(x). This clearly shows the tremendous
benefits of the adjoint formulation in this particular setting.

3.3.3 Summary
This chapter gave an introduction into the adjoint state method following perturbation theory.
If the interest lies in the value of a functional that depends on a physical state that is described
by a PDE then there are two ways to evaluate the functional: the forward way consists of
solving the state equation (the PDE) first and then calculating the value of the functional.
If the primal nonlinear solution is smooth, the adjoint approach means that a second PDE
describing an adjoint state can be formulated (Giles and Ulbrich, 2010a,b). It is tailored to
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the functional by its source term. If a solution to the adjoint state equation exists, it can be
used to evaluate the functional without the knowledge of the solution to the state equation. It
was shown that the later approach allows to calculate the sensitivities of a misfit functional
that depends on the acoustic wave equation to changes in the distributed wave propagation
speed very efficiently. Only two PDEs need to be solved to calculate the gradient of the
misfit functional. This provides the local information needed for gradient-based minimization
algorithms considered in this thesis. The next chapter discusses how the adjoint sensitivity
state method and local optimization schemes are used for full waveform inversion.

3.4 Summary of the algorithm
After the the necessary fundamentals have been presented in the last chapters, the algorithm
is summarized in Fig. 3.8.

Starting with an initial model vp(x) for the wavespeed of the unflawed structure, a forward
modeling generates simulated sensor measurements. With L-BFGS an advanced gradient-based
minimization procedure is used to minimize the misfit between the experimental measurements
of the flawed specimen and the simulated measurements

Figure 3.8: Full waveform inversion process
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J(m) = 1
2

∫
Ω

T∫
0

Ns∑
i=1

[u(m;x, t)− u0(x, t)]2 · δ(x− xri ) dt dx.

The idea is to iteratively improve the initial velocity model of the unflawed structure to
generate measurements that are similar to the experimental measurements. The optimization
parameters are chosen as m(x) := v2

p(x). Here, the simulated measurements are generated
solving the acoustic wave equation.

utt(x, t)− v2
p(x)∆u(x, t) = fs(x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ]

u(x, 0) = ut(x, 0) = 0, on Ω
u = 0on ∂Ω

Inversion. The residual of simulated and observed experimental data is computed and the
value of the least-squares objective evaluated. The necessary gradient of the high-dimensional
objective is calculated with the help of the solution to the adjoint equation u†(x, t).

∇mJ(m) = −
∫
Ω

T∫
0

∆u(x, t) · u†(x, t) dt dx. (3.94)

The source term of the adjoint problem consists of the difference between synthetics and
recorded data in reverse time. The equation propagates the residual into the structure starting
from final time T .

u†tt(x, t)− v2
p(x)∆u†(x, t) = f †s (x, t) for x ∈ Ω ⊂ R2 or R3, t ∈ [0, T ]

u†(x, T ) = u†t(x, T ) = 0, on Ω
u† = 0on ∂Ω

where

f †s (x, t) :=
N∑
i=1

[u(m;x, t)− u0(x, t)]δ(x− xri ).

Following the calculation of the gradient, the L-BFGS method as described in Alg. 6 is
employed to find a suitable step size γk. The design parameters are updated by

mk+1 = mk − γkHk∇J(mk),
where Hk is an approximation of the inverse Hessian. The gradient and function information
of the last m iterations are stored to update the approximation following algorithm 5. This
procedure is repeated until a local minimum is reached:

‖∇J(mk)‖ < ε · ‖∇J(m0)‖ , where e.g. ε = 10−5,

The final velocity model visualizes flaws and inclusions as changes in the wave speed and shows
details like position, orientation and shape of the flaws.
Both, time reversal and the sensitivity kernel method can be identified as essential building
blocks of full waveform inversion for the calculation of the gradient of the high-dimensional
cost function.
Having formulated full waveform inversion, its application to US NDT is verified and validated
next.
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Chapter 4

Applications

The proposed method is applied for the inspection of flawed structures on a variety of examples.
Firstly, a flawed (synthetic) aluminum plate is investigated. Because there is only a small
number of sources and receivers available in typical US NDT applications, the number of
sensors and sources needed for a successful identification of different flaws is investigated.
Secondly, the identification of reinforcement in concrete is explored as an application where a
look inside a solid is possible employing full waveform inversion. Thirdly, a validation of the
suitability of the method is performed using experimental data. Here, the inversion recovers
the thickness of an aluminum plate with a manufactured defect using guided ultrasonic waves.

4.1 Aluminumplate: Studies
In this section, the proposed inversion method is applied to detect a flaw in a simulated
aluminum plate. Part of the results have been published by the author in (Seidl and Rank,
2016). Both, the plate and the flaw are idealized in the following way: The plate is assumed to
be a two-dimensional rectangular domain of dimensions 100 mm x 200 mm. All boundaries are
considered rigid. An ultrasonic point source is applied on the plate to scan the specimen. It is
modeled as a Ricker wavelet pulse with a dominant frequency of f0 = 200 kHz:

fs(x, t) = f 2
0 · (t− t0) · exp(−f 2

0 · (t− t0)2) · δ(x− x0), (4.1)

where t0 is the delay and x0 the position where the point source is applied. The propagation
of pressure waves is modeled by the acoustic wave equation. Experimental sensor data is
emulated using a second simulation model. In it, a flaw is modeled as a small region where
the wave speed model deviates from the background wave speed of aluminum of vp = 6420m

s
.

Due to the lack of experimental data, a smaller wavespeed is assumed for the flaw, modeled by
vf = 0.7vp. Moreover, 2 % Gaussian noise is added to the sensor data to emulate measurement
errors and to avoid an inverse crime to some extent. The wave propagation of the pulse is
modeled for a time span ∆T = 48 µs.
Finite differences in space and time, with accuracy orders of O(∆x4) and O(∆t2) respectively
and an explicit time stepping scheme as described in Sec. 2.2, are used for the numerical solution
of the underlying forward and adjoint wave propagation problems. The spatial discretization
of the plate is one gridpoint per mm2. It is chosen fine enough to be able to resolve different
flaws. The simulation time is discretized by 1000 timesteps which are chosen to satisfy the CFL
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condition. The fine temporal sampling is used to generate a good resolution of the smooth
source signal with approximately 30 gridpoints per dominant wavelength. The simulation time
span is chosen in such a way that the wavefront moves at least once through the complete
domain. The discretization results in 20 000 parameters for the adaptable wave speed. Full
waveform inversion is performed for 20 iterations employing L-BFGS using the gradients of the
last five iterations to approximate the Hessian. The stepsize selection is based on the Wolfe
conditions.
By a perfect inversion, material characterization and material identification could be achieved.
One important question to answer is: Given the typically very limited amount of sensors and
sources in US NDT experiments, is it possible to enhance the resolution of the imaging by
putting more effort on the simulation side?
Additionally, it is very important to investigate the effect of different choices of environmental
parameters on the solution of the inverse problem. Therefore the next paragraphs investigate
this for the following cases:

(i) number of sensors

(ii) number of sources

(iii) source frequency

(iv) source signal

(v) actuator sensor mode

(vi) noise study.

4.1.1 Number of sensors
In many practical cases – in particular in NDT for solid structures – it is not possible to
place sensors in the interior of a body. Therefore, the following investigations restrict sensor
positions to the boundary of the structure. In these experiments, only partial information of
the wavefield is captured by the misfit where one sensor is placed at every grid point on the
boundary of the domain, leading to 600 sensors in total. The first column in Fig. 4.1 shows
four test cases that only differ in the flaw orientation. The position of the source is indicated by
a black circle. Black boxes on boundary layers indicate that the complete boundary is equipped
with sensors. The red area corresponds to a wave speed of 4800 m s−1 and the background
to a wave speed of aluminum of 6420 m s−1. Full waveform inversion is run for at most 20
iterations and stopped when a (local) minimum is reached in all cases. In the initial model
a homogeneous aluminum plate is assumed. The right column of Fig. 4.1 shows the results
obtained by the optimization. The flaw, its position, dimension and orientation is clearly
visible. Due to the simultaneous update of all wave speed parameters in every iteration, some
artificial noise is introduced in regions where the wave speed of the true model did not change.
Fig. 4.2a shows a typical evolution of the misfit with a steep slope in the first iterations and

a vanishing slope in later ones. Fig. 4.2b shows the initial, the adapted and the target signal
at one sensor1. By changing the wave speed in the model the signal of the initial homogeneous

1sensor 4 (top,right position for ten sensor setup) after the jointed inversion for sources at position A,B and
C
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(a) Horizontal flaw (b) Inversion result for horizontal flaw

(c) Vertical flaw (d) Inversion result for vertical flaw

(e) flaw turned away from source (f) Inversion result for flaw turned away
from source

(g) flaw facing source (h) Inversion result for horizontal flaw
facing source

Figure 4.1: The different test cases for the flaw detection algorithm. The US source is depicted by a
black circle. The flaw is shown in red. Left: Unknown flaw, Right: Inversion result

model is adapted such that it agrees with the signal of the unknown target model. The misfit
is reduced by two orders of magnitude which is typically a good sign for a successful inversion.
Up to now, it was assumed that there is complete information available on the boundary.
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(a) Misfit evolution (b) Signal at sensor

Figure 4.2: General inversion results

This assumption of placing one sensor at every boundary grid point resulted in an unrealistically
large number of sensors. Further investigations are restricted to the horizontal flaw in test case
4.1a.
The next study investigates how the quality of the inversion changes when the number of
sensors is reduced to a more realistic amount. In a first computation, 16 sensors are placed on
the boundary as shown on the right in Figure 4.3a. In a second computation, only ten sensors
are used – indicated by green diamonds and the two red sensors on the top and bottom. A
third experiment uses only the four red sensors. Figure 4.3a shows the resulting wave speed
field cutting through the horizontal flaw, as indicated by the scissors symbol. This allows the
comparison of the quality of the inversions. The flaw is clearly visible in all test cases, even
though the inversion did not lead to a perfect inference of the unknown wave speed parameters.
Furthermore, the results indicate that the accuracy of the inversion depends not only on the
number and positioning of the sensors but also on the source location, as the inversion is more
suitable in identifying the closest edge of the flaw. To verify this, the same ultrasonic pulse
is applied in the next computation, but its position is varied from position A over B to C as
shown in Figure 4.3b.

Comparing the results from varying the source position with the true wave speed model, the
following details are observed. First, the quality of the inversion results clearly depends on
the positioning of the source relative to the unknown flaw location. In position A, the US
pulse is more accurate in identifying the left part of the flaw. When the source is positioned in
such a way that there are strong reflections of the waves from the complete flaw, as is the case
when placing the source at position B, the inversion is more able to grasp the homogeneity
and dimension of the flaw. If the source is positioned further to the right, only the right tip of
the flaw is found to give an almost correct wave speed model. Therefore, the source position is
crucial for the inversion success. This observation is a major drawback that will be addressed
later. Additionally, decreasing the number of sensors clearly decreases the inversion quality.
At a first glance, these are rather unpromising results for realistic cases. Here, the key is
recognizing that the more information available concerning the misfit, the better the inversion
results will turn out. This is the topic of the next section.
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(a) One source

(b) Varying source position

Figure 4.3: Cut through crack for various sensor setups.

4.1.2 Number of sources
Previously, it was shown that the quality of the inversion strongly depends on the position of
the source with respect to the flaw location. Because the flaw position is not known a priori, a
possible approach to reduce this dependence is to perform multiple experiments with varying
source positions. If a sequence of experiments is performed with K different source positions,
this will lead to a generalized misfit functional.

χ(m) = 1
2

K∑
k=1

Ns∑
i=1

∫
Ω

T∫
0

[u(m, sk;x, t)− u0(sk;x, t)]2δ(x− xri ) dt dx (4.2)

In many practical applications piezoelectric transducers are used to excite and sense the
waves. In this case, performing multiple experiments, i.e. using multiple source positions,
can be easily done as each transducer can be run in “actuator and sensor mode” due to the
reversibility of the piezoelectric effect.
In the next computation, the setup is the same as before, except that three experiments are
combined in a larger minimization where the source position is varied from position A over
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(a) Inversion results for combining three experiments

(b) Inversion results for combining nine experiments

Figure 4.4: Cut through crack combining multiple experiments.

position B to position C. To inspect the quality of the inversion, the cut through the flaw is
again used. Figure 4.4a shows the results in this scenario. The wave speeds are clearly closer
to the true values, and all choices of sensors provide sufficient information on flaw position,
dimension and orientation, even in the case of only four sensors. Especially the dimension of
the flaw is recovered well in all computations. In the case of complete boundary measurements,
even the wave speed in the flaw is captured correctly. This shows that the inversion results can
be improved by adding new experiments even if only few sensors are available. Nevertheless, if
less sensors are used there is a decrease in accuracy, and the noise around the flaw increases.

To inspect the influence of additional sources, the next experiment is set up like the previous
one, but with six additional sources. Again, all four boundary cases are considered. The
setup and inversion results are shown in Figure 4.4b. In all cases, the flaw is reconstructed
almost perfectly. The results reveal all important details about flaw location, dimension and
orientation. Clearly, the combination of additional experiments leads to a steady increase in
the accuracy of the inversion.
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(a) simulation setup (b) experimental setup

Figure 4.5: Inversion for multiple flaws with different wavespeed

4.1.2.1 Actuator Sensor Mode

This very promising result can be easily adapted in every day NDT practice. Here, sensors
can be used either as actuator (source) or sensor. So it is reasonable to use each sensor as
source once and let each other sensor record the impulse in a round-robin fashion. This way
it should be possible to increase the imaging of flaws using the same setup in the lab. This
comes at the price of additional simulation costs per added experiment. Figure 4.5 shows an
example using the actuator-sensor mode of ten boundary sensors to invert for an unknown
complex speed model with flaws of different wave speed. Figure 4.5a shows the unknown initial
model. It consists of four flaws of different shape, dimension and wavespeed. The inversion
results running BFGS for 20 iterations are shown in Fig. 4.5b. Here, a Ricker wavelet source
with dominant frequency of 150 kHz was used. All flaws with their different wavespeeds and
dimensions are clearly reconstructed. This example shows some of the benefits of full waveform
inversion compared to simpler methods like time-reversal and topological energy method. Flaws
of different sizes that might be small (and around wavelength) or larger than the wavelength
can be detected simultaneously using only ten sensors.

4.1.3 Source frequency
For the rest of this study, we focus on this complex inversion example. A classical result
from refraction theory is that only objects in the order of the wavelength of the source can be
inferred. This is especially true for time-reversal methods. In the next study, the influence
of the source frequency is studied in detail. All parameters are chosen as before, only the
dominant frequency of the Ricker wavelet is varied from 50 kHz to 100 kHz and 200 kHz. With
a background wavespeed of vp = 6020 m s−1 this leads to associated wave lengths of 12 cm,
6 cm and 3 cm. Fig. 4.6 shows the results of the inversion. Fig. 4.6b shows the results for
50 kHz. For illustration, the wavelength of the source impulse in the medium is plotted in
each plot. Using the source with lowest frequency the flaws are still recognizable but smeared
out (in the order of the wavelength). Increasing the wavelength to 100 kHz leads to a clear
and better reconstruction of the sharp features and a better contrast of the background. The
results are shown in Fig. 4.6c. Increasing the frequency further to 200 kHz, the connection of
the structures is not as clear as in the reconstructions before, as shown in Fig. 4.6d. It is hard
to decide if there are connected structures or noise. Nevertheless, the area of all four flaws is
still clearly detectable. In summary, this shows that the resolution of the inversion is limited
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(a) simulation setup (b) f0 = 50 kHz

(c) f0 = 100 kHz (d) f0 = 200 kHz

Figure 4.6: Inversion for sources with different frequencies

by the wavelength of the source signal and its frequency has to be chosen carefully to allow a
good reconstruction quality.

4.1.4 Source signal

Clearly, not only the source frequency but also the source signal itself has an influence on the
inversion quality. In most of the studies so far a Ricker wavelet was used for simplicity. Even
though an ultrasound transducer might be able to produce a Ricker-wavelet-like excitation in
most US NDE applications concerning investigation of plates, Hann-windowed tone bursts with
a certain number of cycles are used as input as they are easier to generate in real experiments.
For example, the validation experiments in section 4.3 use a 5-cycle tone burst as excitation.
Therefore, an investigation of the inversion quality for different source terms is very important.
Figure 4.7 shows inversion results when varying the source signal for the complex actuator-
sensor mode example. For illustration, the source signal is shown in the top right corner of
each plot. The same colormap as before is used. Figs. 4.7b to 4.7f show results using Ricker
wavelets and tone bursts of different frequencies for the excitation. The frequencies are chosen
in a way such that the excitation time for each source signal is approximately the same. It can
be seen that the number of cycles and the inversion quality are indirectly related. The more
cycles there are the harder it is to recognize the large homogeneous areas as what they are and
the more focus is placed on the boundary, where the reflections are occurring.
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(a) Experiment (b) Ricker wavelet, 100 kHz

(c) Ricker wavelet, 150 kHz (d) 3-cycle tone burst, 300 kHz

(e) 4-cycle tone burst, 350 kHz (f) 5-cycle tone burst, 400 kHz

Figure 4.7: Inversion results for different source signals

4.1.5 Noisy flaw inference

For all numerical experiments used so far, the assumption that the pressure wave speed is
reduced by a certain magnitude in some area of the model corresponding to perturbed regions of
the structure under investigation was used (e.g. vf = 0.7vp). In this section, a sensitivity study
of the algorithm with respect to this assumption is conducted to identify limits for detecting
flawed areas. This is very interesting from a health monitoring point of view answering the
question whether the algorithm is able to detect perturbations when the material is only
slightly damaged. The setup of sensors and sources is shown in Figure 4.8a and a series of small
flaws with different wave propagation speeds is introduced in the homogeneous domain to be
reconstructed. From left to right, the interior of the flaws correspond to 0.7vp, 0.8vp, 0.9vp, 0.95vp
and 0.99vp. A Ricker wavelet pulse with dominant frequency of 200 kHz is applied at eight
positions for eight different experiments. The inversion is run for 30 iterations until a local
minimum is reached. In a first inversion, the experimental signals are used without adding
noise. The wave propagation speed is shown in Figure 4.8b. Clearly, the location, orientation
and dimension of all flaws with a wave propagation speed up to 0.95vp (or a difference of
300 m s−1 or larger) can be inferred from the inversion results. The smallest flaw cannot be
distinguished from the background noise. In a second study, the inversion is repeated, but
10% and 20% Gaussian noise is added to the experimental signals. Figures 4.8c and 4.8d show
the corresponding inversion results. Compared to the previous inversion, there is more noise
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(a) (b)

(c) (d)

Figure 4.8: Inversion for multiple flaws with different wave propagation speeds.

introduced in the complete domain and the flaw with a wave propagation speed of 0.95vf or
6100 m s−1 is hardly detectable anymore. This shows that the inversion method is robust for
a moderate amount of Gaussian noise. This corresponds to results obtained by a classical
time-reversal model as demonstrated in (Givoli and Turkel, 2012).

4.1.6 Summary
To study its potential, the proposed inversion method was applied to detect flaws in a simulated
aluminum plate. It was shown that the method is capable of exploiting the actuator-sensor mode
of common piezoelectric sensors to increase the quality of reconstruction considerably by an
extended misfit formulation. This allows a possible application in NDT where only a handful of
sensors are available in general. Furthermore, it was investigated whether the inversion quality
is affected by changing the source parameters and the amount of sensors. One remarkable
property of full waveform inversion compared to currently employed methods like time-reversal
and topological energy method is the ability to detect multiple flaws of different properties
and strongly varying dimension simultaneously without any prior knowledge. Additionally,
it was studied how (artificial) noise affects the solution. These are all promising results for
the two-dimensional case. The next paragraph deals with the application of the method to
three-dimensional objects and a possible look inside a structure through US tomography.

4.2 Full Waveform Inversion for Solids
There is a need of high resolution 3D NDE imaging systems to ensure quality during the
production process as well as service and maintenance of structures. Therefore, the goal of
ultrasound tomography often is to identify the current state or internal structure of solids. The
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(a) Reinforcements in concrete (b) Cracked reinforced column

Figure 4.9: Reinforcements of concrete

last section showed promising results for the two-dimensional case and the logical next step is to
apply the method to solids. A possible application of US tomography is to image reinforcement
in concrete. Reinforced concrete is a composite material in which the relatively low tensile
strength and ductility of concrete are counteracted by the inclusion of reinforcement having
higher tensile strength or ductility. For reinforcement steel bars are embedded passively in the
concrete before it sets. After the production process the exact positions of the reinforcement
in the concrete is not known. Figs. 4.9a2 and 4.9b3 show examples of such reinforcements. To
avoid damages resulting from drilling into it, the knowledge of its position, dimension and
depth is important. Typically, an electromagnetic device such as an Elcometer P1204 is used
to inspect concrete in real time. Nevertheless, to provide a proof of concept it is investigated
whether full waveform inversion can be applied to inspect a block of concrete for the position
of its unknown reinforcements. A major drawback of the limited number of US sensors that
one can attach to a structure is the decreasing resolution when the same number of sensors as
in 2D is used.

4.2.1 Numerical example
For the desired proof of concept, the proposed method is applied to detect possible steel
reinforcement in a simulated block of concrete. Its position and dimension is assumed to be
unknown. The concrete and the reinforcement are idealized in the following way: The block of
concrete is assumed to be of dimensions 100× 100× 100 cm3. All boundaries are considered
rigid and ultrasonic point sources are applied on the boundary to scan the solid. Sources are
modeled as Ricker wavelet pulse with dominant frequency 10 kHz. As background material
ultra high performance concrete (UHPC) with a wavespeed of vUHPC = 4750 m s−1 is assumed.

2Thomas Max Müller / pixelio.de
3https://commons.wikimedia.org/wiki/Concrete
4http://www.elcometer.com/en/concrete-inspection/rebar-stud-locators/elcometer-p120-rebar-

locator.html
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(a) Block of concrete (b) Eight sensors and one source (c) Actuator-sensor mode

Figure 4.10: Concrete block in lab and sensor setup

Figure 4.11: Experimental model for reinforced concrete

Concrete is a composite material composed of coarse aggregate bonded together with a fluid
cement that hardens over time. UHPC is a fine-grain concrete and the size of its sand and
pores is very small (� 1 mm). As the wavelength of the source is large, the block is assumed
to be homogeneous for this study. Fig. 4.10a shows an example of a typical block in the lab.
As in the two-dimensional case, the propagation of pressure waves is modeled by the acoustic
wave equation. The steel reinforcement is approximated as a region where the wave speed
model deviates from the background wave speed of concrete by vsteel = 5900 m s−1. The wave
propagation of the pulse is modeled for a time span ∆T = 0.6 ms. The same finite-difference
approximations as in the two-dimensional case are used for the numerical solution of the forward
and adjoint problems. The spatial discretization is chosen as one gridpoint each 2 cm, leading
to a 50× 50× 50 spatial grid. The simulation time is discretized by steps of length ∆t = 1 µs.
The modeled time span is chosen such that an US impulse moves at least once through the
complete domain. The discretization results in 125 000 parameters for the adaptable wave
speed at each grid point.
The question to be answered is: Is it possible to recover the position, dimension and orientation
of the unknown steel reinforcement using full waveform inversion?

4.2.2 Reconstruction results
In a first experiment, eight sensors are distributed over each of the five available faces of
the cube excluding the bottom. To illuminate the reinforcement from different angles an US
source is placed to the center of each face. The initial simulation model assumes a completely
homogeneous block of concrete. Fig. 4.10b shows the placement of the sensors (blue rectangles)
and sources (red circle) for the back face of the block. True experimental data is substituted
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by data generated by a second simulation model with similar setup but including modeled
steel reinforcement. Fig. 4.11 shows the (unknown) model with a diagonal steel reinforcement
from different angles. For the inversion L-BFGS is run for 30 iterations and the deviation from
the initial model for different angles is shown in Fig. 4.12. Full waveform inversion is able to
reconstruct the dimension, orientation and position of the unknown reinforcement. This is
remarkable especially because other model-based methods like time reversal and topological
energy method are not able to identify such elongated small regions. It is valuable to inspect
the deviation of the wave speeds to visualize the inside of an object particularly if the inversion
is not perfect due to the small amount of sources and sensors. This way, regions where the
algorithm adapts the wave speed are easily identifiable.

Figure 4.12: Inversion results: deviation from initial model

As before, it is possible to use all sensors in actuator sensor mode. Thus, a second sensor
configuration is investigated where only five sensor measurements per face are used and each
sensor is utilized first as a transmitter and afterwards as a receiver. Fig. 4.10c shows the
placement of the sensors (blue rectangles) for the back face of the block. All other parameters
of the simulation remain as before. Fig. 4.13 shows the deviation of the inverted model from
the initial model for different angles. Again, full waveform inversion is able to visualize the
unknown reinforcement.
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One important aspect to note though, is that – despite its usefulness as an imaging method
for the internal structure – full waveform inversion in its common formulation is not particularly
close in capturing the wavespeed in the true model quantitatively. This can be seen in Fig.
4.14 investigating the speed profile through the reinforcement from bottom left to top right.
There are multiple reasons for this. First, the poor coverage by sources and receivers does not
allow for a perfect inversion in terms of correct wavespeed. Second, from a mathematical point
of view a large difference between background material and unknown true material poses a
problem. Because the model, or more precisely the optimization parameters are chosen as the
squared p-wave speeds inside the specimen, the misfit and therefore the error in the signals
is heavily reduced by the inversion method by adapting the material at the correct locations.
A possible remedy is to extend the misfit formulation to include prior information about the
expected solution as will be discussed in the outlook.
As the most important goal of NDT is imaging and not material identification and especially
because the true model responsible for the data is not known in reality, studying the deviation
from the initial model is satisfactory.

4.2.3 Summary
Full waveform inversion was applied to detect reinforcement in concrete for a simplified model
to demonstrate its application to visualizing the inside of solids. The deviation of the inverted
to the initial model showed a clear image of the unknown reinforcement when a small number
of sensors and sources was used. The quality of the inversion was increased by employing
sensors in actuator-sensor mode. The method is able to image the location, dimensions, and
orientation of steel reinforcement. Furthermore, no prior information of the amount and
dimension of the expected reinforcement and its material description was necessary to give a
clear image. When, instead of imaging, the goal is material identification the algorithm can
be enhanced by including prior information. This is discussed as part of the outlook. Until
now, the experimental data was synthesized by a second simulation model. Therefore, the
next important question to answer is if the method can also be employed successfully when
confronted with real data from a lab. This is the problem of validating full waveform inversion
and it is the content of the next chapter.
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Figure 4.13: Deviation from initial model using actuator sensor mode

Figure 4.14: Inverted wavespeed in steel reinforcement

4.3 Validation experiments

The previous sections showed promising results applying full waveform inversion for US NDT
in 2D and 3D cases. In each case quasi experimental data were provided by a synthetic
target model. Yet, it is not self-evident at all that the inversion method yields similar results
when confronted with real observations. Therefore, the validation of the method for US NDT
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applications is of utmost importance. The tasks of verification and validation are defined as in
(Moczo et al., 2014).

(i) Verification
In general, the verification of a numerical method may be defined as the demonstration
of the consistency of the numerical method with the original mathematical-physical
problem defined by the controlling equation, constitutive law, and initial and boundary
conditions. Quantitative analysis of accuracy should be part of the verification.

(ii) Validation
Once the method has been verified and analyzed for accuracy it should be confronted with
observations - it should be validated. In general, the validation may be defined as the
demonstration of the capability of the theoretical model (i.e., the mathematical-physical
model and its numerical approximation) to reproduce observations.

Therefore, verification proves the correctness of the computation by comparing computed
results with results on (validated) benchmark problems, possibly obtained by other software
which has been verified previously, and is answering the question "Is my computation correct?".
In contrast, the act of validation can be described as confronting the method/model with real
observations. In the case of US NDT this means to confront the method with measurements
from the lab. Moreover, in the case of US NDT not only the mathematical model but the
whole inversion scheme has to be validated. This means that it is not enough to show that the
acoustic approximation is valid but also that the formulation of the misfit, the adjoint problem,
the optimization scheme and their interplay is correct.

As the current work is limited to the acoustic case, it is apparent to validate the method on
a NDT problem where this assumption is true. In most US NDT inspections of plates, lamb
waves in the US range are used for detection (Belanger et al., 2008; Huthwaite, 2014; Leonard
et al., 2002). Unfortunately, an acoustic model is not able to provide them. Nevertheless,
the propagation of dispersive lamb waves in aluminum plates can be approximated by a
two-dimensional acoustic model for a fixed frequency (Huthwaite and Simonetti, 2011).
The goal is a validation of full waveform inversion (and its implementation) through a

monochromatic reconstruction of the thickness of a known drilled hole in an aluminum plate.
Therefore, only waves of one frequency are investigated for the inversion. The experimental
measurements in the lab and a first validation of full waveform inversion in frequency domain
using guided waves was achieved most recently by the group of Prof. Fan Zheng5 from Nanyang
Technological University, in Singapore. Their results for the experiment are published in (Rao
et al., 2016a). They provided the data for our validation.
The objectives for this part are the following:

(i) show applicability of time domain FWI to a problem in US NDT

(ii) validate the developed time domain FWI approach

5Prof. Zheng Fan, Jing Rao, School of Mechanical and Aerospace Engineering, Nanyang Technological
University, Singapore
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(iii) study the influence of sources and sensors on the quality of the inversion method by
answering the question How many sensors and experiments are necessary for a successful
inversion?

The answer to this question is of particular importance from a NDT perspective because
the amount of sensors and sources is often the limiting factor regarding resolution in most
applications. The validation is divided into the following steps:

(i) Detailed description of the experiment

(ii) Definition of the acoustic simulation model for the plate problem

(iii) Determination of a suitable cost function

(iv) Calibration of simulated and experimental data

(v) Validation of the inversion with experimental data

(vi) Study of the influence of number of sensors and experiments on the quality

First, the validation experiment is described in detail.

Figure 4.15: Setup of validation experiment, after Rao et al. (2016a)
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Figure 4.16: Validationsetup of FWI, after Rao et al. (2016a)

4.3.1 Description of experiment
The dimensions of the inspected aluminum plate are 1000× 1000× 10 mm3. An illustration
of the setup is shown in Fig. 4.16a. A flat-bottomed circular hole with a diameter of 60 mm
and a depth of 5 mm was drilled into the center of the plate. Its out-of-plane displacement is
monitored at 64 equally spaced positions on a 700 mm diameter circle around the defect using
a Polytec OFV-505 laser vibrometer. To avoid reflections from the edge, only transmitted
signals are used, reducing the measurement to 33 positions. As a source a 5-cycle Hann-
windowed toneburst signal at 50 kHz, applied in out-of-plane direction, is generated by a Tiepie
Handyscope HS3. Applying the force at this frequency ensures that nearly pure flexural waves
are excited (Belanger et al., 2008). The experimental setup in the lab is shown in Fig. 4.15(a).
The generated flexural wave mode, also called A0-mode, has its average displacement in the
transverse direction and can be recorded by out-of-plane motion using the laser vibrometer. A
typical recorded signal is shown in 4.15c. To obtain the first arrival package (the A0-mode)
and to remove unwanted components a time gate is applied. The measurement is repeated
for all 33 sensor positions and the monitor positions are modified to the opposite side of the
transducer for each experiment as indicated in Fig. 4.17 for four of the 64 experiments.
The next paragraphs describe the physics, the simulation model, the inversion scheme and
necessary calibration.

Physics

Even though the A0-mode is an elastic waveform, it has been shown that the propagation of
dispersive modes of a certain frequency in plates can be approximated by a two-dimensional
acoustic model neglecting the thickness of the plate. This is true, even though no mode
conversions at the hole are considered in the model (Huthwaite and Simonetti, 2013). The
dispersion relation for fundamental lamb wave modes in an aluminum plate is shown in Fig.
4.16b. It provides the phase velocity of selected guided modes as a function of the frequency-
thickness product. For the chosen frequency of 50 kHz and plate thickness of 10 mm, there is
a large difference between group and phase velocity of the A0-mode. Therefore, the mode is
strongly dispersive, in particular to thickness variations.
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Figure 4.17: Setup of validation experiment for different source positions.

Acoustic model

The propagation of the flexural mode through the plate is described in the space-frequency
domain by the Helmholtz equation at one frequency f0,

∆u(x, ω) + ω2

v2
A0

u(x, ω) = f̃(x, ω), (4.3)

where u(x, ω) is the displacement wavefield, ω = 2πf0 the angular frequency, vA0 the phase
velocity of A0-mode and f̃(x, ω) the ultrasonic source. It is derived by a Fourier transform of
the acoustic wave equation or equivalently by assuming u(x, t) = U(x)eiωt + Ū(x)e−iωt (Givoli,
2014). It has been employed directly in (Rao et al., 2016a). Every method developed for the
time domain can also be used in the frequency domain by applying the Fourier transform to
all variables and equations (Givoli, 2014).
The frequency domain approach is the method of choice if the solution for dominant or well-
chosen frequencies is needed or the underlying problem is two-dimensional. In these cases
4.3 can be solved efficiently using direct linear system solvers like LU decomposition. This
allows an easy computation of wavefields for multiple source locations. However, the frequency
domain approach is usually limited to 2D problems due to large memory requirements related
to the storage of the LU decomposition in 3D. Therefore, in realistic 3D applications the time
domain approach is implemented. (Fichtner, 2011).
For this reason and because all results so far are based on a solution of the acoustic wave
equation in the space-time domain the equation is formulated equivalently in the space-time
domain using a monochromatic source function.

∂ttu(x, t;ω) + v2
A0∆u(x, t;ω) = f(x, t;ω) (4.4a)

u(x, 0;ω) = ut(x, t;ω) = 0, on Ω (4.4b)
u(x, t;ω) = 0 on ∂Ω (4.4c)

The source term is f(x, t;ω) = A · sin(ωt+ φ) · δ(x− xs), with A being its amplitude and φ
its phase. The additional argument ω in u(x, t;ω) emphasizes that this is the solution of the
acoustic wave equation for one certain angular source frequency ω.
The measured time-dependent signals at the sensors are then mapped into frequency domain
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selecting amplitude and phase information at f0 = 35 kHz. The 1 m2 plate is discretized by
the same finite differences as before with a spacing of 2.5 mm in both directions leading to
a 400 × 400 grid. Using this spacing there is sufficient sampling per dominant wavelength.
The simulation is run for 0.8 ms divided in 1000 time steps such that the CFL condition is
satisfied. The simulation domain is extended such that there are no non-physical reflections at
the boundary.

Inversion scheme

Experimental data are the time domain signals recorded by the laser vibrometer. These data
cannot be used directly in the inversion as the acoustic model is only valid for modeling the
propagation of the wave mode at one frequency. The source function has a 15 dB bandwidth
from 35 kHz to 65 kHz. Therefore, performing a Fourier transform, the experimental data are
reduced to amplitude and phase information at a frequency f0 = 35 kHz that is fixed for the
inversion. The recorded data at the sensors are represented by a vector of dobs of complex
numbers, representing the amplitude and phase information at the sensors.
The diameter of the defect is 60 mm, which corresponds to ≈ 1.3λ at 35 kHz. Thus it should

be detectable at this frequency. As the frequency of a guided wave remains the same as it
travels through a region of reduced thickness, the dispersion curve provides a direct mapping
between the corresponding velocity of the wave mode for a certain frequency and the local
thickness of the plate. When passing through the flaw, the reduced thickness leads to increased
speed of the waves. This effect can be used to formulate a misfit functional for full waveform
inversion.
The simulated signals at the sensors at iteration k, dkcalc, are amplitude and phase information

stored as complex numbers. Then, a least-squares misfit can be formulated similarly as in the
time domain.

J (k)(m) = 1
2

N∑
i=1

∆d†i∆di, (4.5)

with ∆di := dkcalc,i − dobs,i being the misfit between the data computed at all sensors with
the current model and the observed data for experiment i. The superscript † represents the
transposed conjugate and the residuals are combined for all N experiments. Furthermore, the
corresponding adjoint problem for experiment p is

u†tt(x, t;ω)− v2
A0(x)∆u†(x, t;ω) = f †s (x, t;ω) for x ∈ Ω, t ∈ [0, T ] (4.6a)

u†(x, T ;ω) = u†t(x, T ;ω) = 0, on Ω (4.6b)
u† = 0on ∂Ω (4.6c)

where

f †s (x, t;ω) :=
M∑
j=1

[z · eiωt + z̄e−iωt]δ(x− xrj).

where z := dkcalc,p − dobs,p ∈ C at sensor position xj . As in the time domain case the residual is
injected at the sensor positions but here a sinusoidal load of a certain frequency is applied. Its
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amplitude and phase is determined by the differences between simulated and recorded signals.
Solving this problem backward in time then means conjugating the source term f †s (x, t;ω).
The overall procedure is illustrated in Fig. 4.18. It shows how the full waveform inversion

process is extended in case of lamb wave tomography. An initial frequency f0 has to be chosen
that defines the wave speed in the initial acoustic simulation model through the dispersion
relation. Observed data and model response are in the time domain and thus have to be
mapped to its frequency content at f0 to be used in the residual and least-squares objective
4.5. After the inversion, the final velocity model is mapped to a thickness model using the
dispersion relationship.

Figure 4.18: Validation process of FWI
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Data calibration

A very important step when using data from an experiment is the calibration of simulated
and measured data. This needs to be done to account for deviations between experiment
and simulation model. These include, but are not limited to, incorrect sensor placements,
attenuation and ambient conditions. One way, also followed by Rao in (Rao et al., 2016a),
is to match the wave propagation results of experimental data of the undamaged plate and
simulation data without scatterer. This can be done by introducing a calibration factor

Q = fft∗(dSim)
fft∗(dExp)

. (4.7)

For each experiment, the recorded experimental data (amplitude and phase information at
35 kHz) are mapped to the simulated data by introducing a complex calibration factor Q. One
problem arises due to the presence of the defect in the experiment: undistorted signals are
only available at certain positions. The position of the calibration sensor is shown in 4.15(c).
In order to emulate the necessary measurements of the unflawed plate the calibration signal is
mapped to all other receivers according to their position relative to the transducer.

4.3.2 Reconstruction results

Figure 4.19: Inversion results for 16 experiments and varying number of sensors

In the lab experiments, data were generated by moving a transducer on a circular path around
the defect at 64 equally spaced positions and the laser vibrometer recorded the out-of-plane
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movement at 33 positions behind the flaw. Rao et al. were able to reconstruct the flaw using
full waveform inversion for the complete data set (Rao et al., 2016a). They solved the forward
problem 4.3 in the frequency domain by a finite difference method using a mixed-grid approach
and smoothed the gradient to reduce unreasonable artifacts. Most importantly, they used all
data and a multi-scale approach to reconstruct complex corrosion-like defects. In this work, we
solve the acoustic wave equation instead of the Helmholtz equation using our time-domain finite
difference solver and apply the BFGS method. Instead of smoothing the gradient, we assume
that the flaw is located inside the sensor array and thus limit the optimization parameters
to a smaller circular region as discussed in Sec. 2.4. We only perform a monochromatic
reconstruction for f0 = 35 kHz. Furthermore, we investigate the important question, how many
experiments and sensors are truly needed for a successful inversion. Considering that the
positions of most sources are very close to each other compared to the wavelength of the source
and that this is also true for most sensor measurements, it is reasonable to expect that some of
the recorded data is redundant and that a successful inversion can be possible using less data.
This is very important for common US NDT where the typically small number of available
sensors and sources is a limiting factor for the achievable resolution of all reconstruction
methods. To study the minimal amount of sensors and receiver, the inversion is performed
using only a subset of the experiments and sensor data available.
To start with, the quality of the inversion was investigated using 4 and 8 experiments with
a varying number of sensors. In all inversions it was not possible to reconstruct the flaw
and its depth. Therefore, the results are not shown and the focus is on an inversion using
16 experiments, i.e. 16 positions of the transducer. L-BFGS is run for 10 iterations as this
proved to be sufficient following (Huthwaite and Simonetti, 2013; Rao et al., 2016a) and the
number of sensors used is varied. Fig. 4.19 shows the results of the inversion using only data
of every fourth experiment on the circle. The reconstruction of the wavespeed is mapped to
an estimate of the thickness of the plate. Fig. 4.19a shows the results using all 33 available
sensor measurements. Clearly, the position and dimension of the drilled hole is successfully
reconstructed in the middle of the plate. Furthermore, the results give a good estimate of the
depth of the hole. Fig. 4.19b shows the result when only every second sensor is used. Still, the
flaw, its dimension and depth, is correctly reconstructed, but there is a lot of noise that makes
a clear detection of only the flaw impossible. Very interestingly, when only nine sensors are
used, the position, dimension and depth of the flaw is clearly reconstructed again, as shown in
Fig. 4.19c. One possible reason for the problems with 17 sensors and not with nine is that
the sensor positions in the experiment are not perfectly aligned with the finite difference grid
and therefore some of the slightly shifted sensor measurements due to wrong positioning might
introduce some error that makes it tougher for FWI to find a suitable minimum. Fig. 4.19d
shows the results when only using five sensors. This number of sensors does not seem to be
enough for a successful inversion.
To investigate the results further and compare them to the ones obtained by Rao et al., the
thickness profile along the flaw is shown in Fig 4.20. Fig. 4.20a shows the results by Rao et al.
and 4.20b the results obtained with our inversion. In the case of 17 sensors there are strong
oscillations and an overestimation of the minimal thickness. In all other cases the depth of the
flaw is reconstructed correctly.
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(a) thickness profile from Rao et al.
(2016a)

(b) thickness profile, this work

Figure 4.20: Inversion results: Comparison to results from Rao et al. (2016a)

4.4 Summary
The applicability of full waveform inversion was investigated in the context of US NDT. Firstly,
the suitability of the method in the case of acoustic plate problems was studied. The non-
uniqueness of the inverse solution of a full waveform inversion motivated an investigation of the
effect of changing various parameters like varying sources on the solution and special emphasis
was put on studying the question how many sensors are needed for a successful inversion.
For the case of a realistic number of sensors, it was shown that the actuator-sensor mode of
common piezoelectric sensors can be used to significantly improve the resolution. Secondly,
full waveform inversion was applied to image the location of reinforcement in concrete for
a simplified model. This demonstrated the possibility to look inside solid specimen using
acoustic tomography. The deviation of the inverted from the initial model gives a clear image
of the location of unknown reinforcement when using actuator-sensor mode. Thirdly, the
cornerstone was the validation of the applicability of full waveform inversion for US NDT.
Positive validation results in frequency domain by Rao et al. have been approved using our own
time-domain full waveform inversion code. Moreover, these results have been enhanced by a
study on the minimal amount of sensors and sources needed for the inspection of a drilled hole
which showed that only 25% of the recorded data are actually needed. This gives a first proof
of concept for the applicability of full waveform inversion for US NDT. Possible enhancements
and applications of the methods are discussed in the outlook.
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

In the field of ultrasonic nondestructive testing (US NDT), ultrasonic impulses are used to
detect flaws in components without causing damage. Based on performing experiments alone,
it is possible to infer the state of the component - but this usually provides only limited details
about the interior damage such as its position, dimensions, or orientation. Furthermore, the
number of sensors that can be used to record the signals is restricted to only a few, because of
the shape and the dimensions of a typical specimen.
As US waves are reflected at crack surfaces, the reflections are contained in the complete
measured waveforms. Simple reconstruction methods rely only on a single attribute of the
recorded US data - such as travel time or amplitude - and it is assumed that this attribute can
be related to a physical quantity like the wave speed inside the specimen.
Clearly, using all information that is encoded in the measured signals instead of only one
attribute should increase the resolution of the imaging and possibly allow to determine the
position, orientation, and dimensions of the flaws more precisely. For this purpose, a full
numerical simulation of the wave propagation is necessary.
The work transferred full waveform inversion from exploration geophysics to US NDT. In
this context, the method can be interpreted as a simulation model-based NDT system, where
experimental data is compared to simulated data. The key to full waveform inversion is a clear
mathematical formulation of the question How do I have to change the distributed wave speed
inside the specimen to get my simulation model to produce signals at the sensors that are as
close as possible to the experimentally measured once? Here, flaws such as inclusions or holes
are modeled as a deterioration of the wave speed in the specimen.
If the signals are similar, one can expect that the position, orientation, and dimensions of the
flaws are captured in the adapted wave speed model and, thus, that the flaws and its details
can be inspected visually.
Formally, the problem is posed as a nonlinear optimization problem, and an initial wave speed
model is adapted in such a way that the discrepancy between the experimental measurements
and the model output is minimized using a gradient-based iterative optimization. Here, full
wave equation modeling is performed at each iteration, and the adjoint sensitivity state method
is used to efficiently calculate the gradient of the high-dimensional objective. As an initial
guess, a model of the undamaged specimen is assumed.
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The work focused on a prototypical implementation in the case of acoustic wave propagation.
Although an acoustic model only describes the propagation in fluids and gases accurately, it is
also appropriate to model the first arrival of pressure waves in elastic media.
While other model-based NDT approaches like ray-based inversion, time reversal, and the
sensitivity kernel method are not suitable to invert for multiple scatterers of different dimensions
simultaneously (and since it does not provide information on size, orientation, or the shape of
flaws in the interior) the proposed method

• evaluates the full ultrasonic wave signal and, thus, the maximal information available

• delivers a tomographic image and - as flaws are generally treated as deterioration of
material parameters - allows for nondestructive testing

– by identification of position, orientation, and shape of flaws
– by simultaneous detection of multiple flaws of different size
– without prior knowledge of flaw occurrence or its specific characteristics

• is model-based, enabling easy incorporation of data from multiple NDT experiments, e.g.

– improving image quality by additional experiments
– allowing measurements at different points in time without enforcing positioning of

sensors at identical spatial coordinates.

Furthermore, it was shown how time reversal and the sensitivity kernel method can be
identified as integral parts of full waveform inversion. The general complexity of the proposed
approach is justified by the potential to fully automate the imaging of complex structures using
US NDT, which would be a major milestone for the quality assurance in civil and mechanical
engineering.
As the result of full waveform inversion is a wave speed field of the flawed structure, image-based
NDT is easily possible.
An attempt is made to answer the research questions posed in the introduction of the thesis.
(1) Can full waveform inversion be employed to provide more information on the position,
dimensions, and orientation of flaws than common model-based US NDT methods by putting
more emphasis on the simulation side, as full wave equation modeling is performed at each
iteration? (2) Can the resolution of the imaging be enhanced by adapting the method to a
typical NDT setup? (3) Can the method be validated for US NDT using experimental data?

(1) Given enough sensor measurements and experiments, the inverted model is able to provide
information on the size, orientation and shape of flaws in the interior of the specimen.
The applicability of the method to US NDT was verified by simulations on a flawed
emulated aluminum plate. Furthermore, it was studied how differences in setup influence
the solution quality. As a means of verification in the case of solids, the visualization of
reinforcement in concrete was explored, implying that full waveform inversion can be
used to take a look inside a solid. Overall, the method showed very promising results
regarding the detection of multiple flaws of different dimensions, orientation, or position.
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(2) Especially in the typical case of NDT, where only a limited number of sensors is available,
putting more emphasis on simulation using the complete signal information allows a
better resolution with less sensors. In this case, it is possible to set up one large inversion
based on the measurements from multiple experiments employing the actuator-sensor
mode of piezo-electric sensors, where one sensor acts as source in a round-robin fashion.
As multiple experiments have to be simulated, this leads to increased simulation costs –
but it showed to significantly improve the resolution of the imaging.

(3) A first successful validation of the suitability of the method for a specific problem in US
NDT was performed using experimental data. In the special case of a thin aluminum plate,
the propagation of flexural waves (lamb waves) can be approximated by a two-dimensional
acoustic model for a fixed frequency, neglecting the thickness of the plate. Therefore, it
was possible to recover the thickness of an aluminum plate with a manufactured defect
using guided ultrasonic waves. It is expected that it can be applied to detect corrosion
in tubes.

The overall goal of both exploration seismology and US NDT is to get the most information
out of the available data. As seismologists learned that ray-based models only provide a
limited resolution this is also true for US NDT. One obvious way to increase the resolution is
to use as much of the recorded data as possible – but US NDT is of considerable advantage
for various reasons. The source signal and its frequency can be adapted to the expected flaw
size, the positioning of sensors can be optimized, experiments can be repeated, and validation
experiments can be performed on specimen with known fabricated defects. All of this is not
possible for seismologists, and it clearly affects the possible resolution. This thesis showed
that by putting more weight on the simulation side by computing an accurate numerical wave
propagation an increased resolution is possible. This is still a very expensive task at the
moment, especially when considering elastic wave propagation. In many disciplines in science
and engineering the areas where computation or a combination of computation and simulation
play a major role are easily identified: They are called computational biology, computational
chemistry, computational physics, computational mechanics or computational seismology. In
this spirit the study of NDT with a focus on simulation models may be called computational
NDT. More attention will be drawn to this area with increasing computational power.

5.2 Outlook
This thesis was able to prove the applicability of full waveform inversion for US NDT. For the
prototypical implementation, the underlying problem was kept as simple as possible. This led
to promising first results but further research is necessary. Various improvements are possible
that are discussed next.

Multi-scale full waveform inversion. An important improvement of full waveform in-
version in terms of resolution quality concerning small-scale features can be achieved by not
only considering a monochromatic inversion but by carrying out successive inversions over data
with decreasing wavelength. Cost functions related to small-period (or high-frequency) data
are known to be highly nonlinear with many local minima. Therefore, if the initial model is
not a good estimate, an iterative optimization method might get stuck in a bad local minimum
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that is far away from the global one. It is known that cost functions for long-period data tend
to be smooth with fewer local minima (Fichtner, 2011). Clearly, by using solely long-period
data, the inverted model can only roughly resemble the true material distribution. However,
and this is the important concept, the rough estimate that explains the long-period data well is
very useful as initial model for a subsequent inversion employing shorter wavelength data. By
reconstructing long-period features in the model first, it is possible to incorporate short-period
features in later stages. Multi-scale full waveform inversion is more demanding in terms of
runtime, but it yields an increased resolution for complex models in seismology (Bunks et al.,
1995; Fichtner et al., 2013; Mao et al., 2012; Ravaut et al., 2004) and it is applied for the
reconstruction of complex corrosion patches in an NDT environment (Rao et al., 2016a).

Incorporation of prior information. In the current prototypical implementation of full
waveform inversion no information on the desired or expected solution of the problem has been
assumed. In many NDT applications, however, there is prior information about flaws available.
For example, if we expect jumps in the wave speed because of a cracking of the material, it is
desirable to incorporate this information in a suitable regularization term in our cost function.
In this particular case, including total variation regularization helps to recover sharp material
interfaces (Fichtner, 2011).
Furthermore, if we know in advance what we are looking for, incorporating this into the
misfit may significantly improve the method by either increasing its resolution quality or by
decreasing the necessary number of iterations to find a suitable solution. If we want to inspect
concrete with regard to steel reinforcement as described in Sec. 4.2, we already know the wave
speed of the expected flaw. If there is a large difference in wave speed between the background
material and the reinforcement, then we can drive the optimization to binary solutions where
the material is either identified as background or reinforcement by adding suitable penalty and
regularization terms to the data misfit.
Another interesting scenario in US NDT is when holes or delaminations are considered. In
these cases, when the unknown wave speed is zero or close to it, the continuous correction of
the material is not able to capture this unless a suitable reformulation of the misfit is performed
to push the solution in the right direction. Hence, there is great potential to incorporate prior
information into the optimization.

Governing equation. For this first prototypical implementation of full waveform inver-
sion for US NDT, we assumed that an acoustic model of the wave propagation is valid. This
model has severe limitations since shear and lamb waves as well as mode conversions occurring
at the boundary cannot be described, as partly discussed in Sec 1. Clearly, the most general
and suitable formulation for the propagation of US waves is given by the elastic wave equation,
which can be derived directly from Newton’s second law.
In (Bleistein et al., 2001) it was already mentioned, that going from acoustic to elastic ap-
proximation comes with a significant cost: ”The price for this increase in information is high
[considering S-waves, elasticity], as there are difficult mathematical obstacles that must be
surmounted in the pursuit of useful elastic formulations.”
An inversion formula that makes use of data for all wave types provides more information
about the material. But considering the elastic model brings additional challenges. One is
that the solution is not a scalar field but a vector field. This leads to both – a significantly
increased memory consumption and a runtime of the solver, which are approximately multiplied
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by a factor of 10. Another challenge is that additional phenomena like birefringence, the
apparent splitting of shear waves, are encountered working with shear waves. Importantly,
the inversion becomes a multi-parameter optimization problem, because parameters cannot
only be the pressure wave velocity, but also the shear wave velocity, or even the density
of the medium. In the most general setting, one could theoretically invert for 21 elastic
parameters simultaneously. Clearly, this leads to an increased complexity compared to acoustic
inversion which makes this problem even harder to solve. Inverting for multiple parameter
simultaneously may lead to ambiguity because a change in one parameter might explain the
data equally well as a change in the other parameter. One approach is to first consider only
an inversion of the pressure wave velocities and then consider the inversion of shear wave
velocity, given the fixed pressure wave velocities. Inverting for multiple parameters makes the in-
herent problem of data quality and poor sensor coverage even more substantial, especially in 3D.

Numerical method. The numerical solution of the wave equation was based on a sim-
ple finite-difference scheme with explicit time stepping. Even though finite-differences are
widely used in seismology (Moczo et al., 1997, 2014, 2007), other numerical methods seem
to be better suited for US NDT. A great overview of numerical methods for seismic wave
propagation is presented in (Igel, 2016). Especially the modeling of free surface conditions and
the application to complex geometries are tough problems for finite-differences.
An alternative is the spectral element method (SEM). Here, the computational domain is
subdivided into non-overlapping elements that can be adapted to irregular geometries. This is
very important for US NDT where such geometries appear frequently. As an example, consider
a wing of an airplane for which the geometry is derived from a CAD model. In other cases a
geometry description might be based on computer tomography. Spectral elements are designed
in such a way that they lead to a diagonal mass matrix that can be easily inverted. This
fact renders a fast explicit time stepping possible. Inside an element, a high-order spectral
approximation is employed for the dynamic field. For more information, see (Duczek et al.,
2013; Joulaian et al., 2014; Komatitsch and Tromp, 2002; Komatitsch and Vilotte, 1998).

Parallel Computing. The overall cost of full waveform inversion depends on the neces-
sary number of function and gradient evaluations to reach a local minimum. The cost of an
evaluation is dominated by the solution of the wave equation. To reduce the runtime, the
solution process of the wave equation should be parallelized as much as possible. Many of the
open-source frameworks that have been developed in seismology are fully parallelized and can
be run on supercomputers, on both CPUs and GPUs, and can be applied to ultrasonic wave
propagation. Examples are SpecFEM3D1, SES3D2, Salvus3, SeisSol4 and ExaHyPE5.
In US NDT, data from multiple experiments employing the actuator-sensor mode is often
available. In this case, an alternative is to parallelize the function and gradient evaluation by
distributing simulations of different experiments to different threads.
If the number of experiments is large (� 10), then it is beneficial to use encoded sources.
Here, the linearity of the wave equation with respect to sources is exploited by a simultaneous

1https://geodynamics.org/cig/software/specfem3d
2http://www.cos.ethz.ch/software/ProductionSoftware/ses3d.html
3http://salvus.io
4http://seissol.org
5http://exahype.eu/

https://geodynamics.org/cig/software/specfem3d
http://www.cos.ethz.ch/software/Production Software/ses3d.html
http://salvus.io
http://seissol.org
http://exahype.eu/
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excitation of sources from different experiments. Thus, it is possible to reduce the number of
necessary simulations per evaluation to only a few. It has been shown that this procedure
can speed up full waveform inversion considerably (Krebs et al., 2009; Schiemenz and Igel, 2013).

Optimal experimental design. As we have seen, the number of sensors is often lim-
ited to only a few and the question naturally arises where to place them to ensure that the
inspection will exhibit the best possible resolution. The topic of optimal experimental design
has recently been addressed in the seismic community. Often, a uniform placement does not
lead to the best possible resolution, and optimization methods can be used to determine the
best setup and minimal number of sensors. A great introduction can be found in (Curtis, 2004;
Long et al., 2015; Martiartu et al., 2017). In its simplest form, optimal experimental design
uses a ray-theoretical model to determine the setup of sensors and sources, which maximizes
the overall ray-density between sensors and sources. Revisiting the sensor setup in Sec. 4.2, we
placed five sensors on each of the five available sides of a cube. In terms of ray-density, this
cannot be an optimal design. This is due to the fact that the ray-density close to the top face is
higher than close to the bottom face as there are no sensors at the bottom face. Consequently,
it would have been beneficial to put more sensors close to the bottom to increase ray-density
where sensors are further away. Likewise, following the same argument, the measurement
positions on the half-circle in the validation experiment in Sec. 4.3 should be placed in such
a way that more measurements are taken close to both ends of the half-circle. In general,
optimal experimental design is expensive but it has to be performed only once to determine
the necessary number of sensors and their optimal positioning.
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Appendix A

Lagrangian Formulation

Sec. 3.3.2 introduced the adjoint formulation of a sensitivity function from the standpoint of
perturbation theory. In this case a more convenient way to derive the adjoint formulation
is to use Lagrange multipliers. Following (Plessix, 2006), let J(m) = h(u(m),m) be the cost
function we want to minimize. Here, m is the model parameter and belongs to the model
parameter space M. The state variable, u, belongs to the state variable space U, which is
either real or complex, and satisfies the state equation defined by the mapping, F ,

F (u(m),m) = 0. (A.1)

In order to distinguish between such a physical realization u and any element of U, its elements
are denoted by ũ.
It is well known from optimization theory that if we want to find the minimum u of h(ũ,m)
under the constraint F (u,m) = 0, we can formulate this problem using the Lagrangian
associated to this minimization problem.

L(ũ, λ̃,m) = h(ũ,m)− 〈λ̃, F (ũ,m)〉, (A.2)

where λ is an element of the dual space of U which does not depend on m. Importantly, u is a
physical realization, thus F (u,m) = 0 for any λ̃ and therefore

L(u, λ̃,m) = h(u,m) = J(m). (A.3)

Deriving for m

∂L(u, λ̃,m)
∂ũ

∂u

∂m
+ ∂L(u, λ̃,m)

∂m
= ∂J

∂m
. (A.4)

It is possible to choose λ ∈ U∗ such that

∂L(u, λ̃,m)
∂ũ

= ∂h(u,m)
∂ũ

−
(
∂F (u.m)

∂ũ

)∗
λ = 0 (A.5)

Therefore, the gradient can be computed using the following formula.
∂J

∂m
= ∂L(u, λ,m)

∂m
(A.6)

= ∂h(u,m)
∂m

− 〈λ, ∂F (u,m)
∂m

〉 (A.7)
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u is a minimum of this problem if (u, λ) is a saddle point of L. λ are called the Lagrange
multipliers. At a saddle point the derivative of L is zero. The derivatives with respect to ũ
and λ̃ are

∂L(ũ, λ̃,m)
∂λ̃

= −F (ũ,m), (A.8)

∂L(ũ, λ̃,m)
∂ũ

= ∂h(ũ,m)
∂ũ

− ∂F (ũ,m)
∂ũ

∗

λ̃. (A.9)

Therefore, ∂L(u,λ,m)
∂λ̃

= 0 gives the state equation and ∂L(u,λ,m)
∂ũ the adjoint-state equation.

Additionally, ∂L(u,λ̃,m)
∂m

= ∂J
∂m

. The optimization theory with equality constraints tells us that
one Lagrange multiplier is associated with each scalar equation defining constraint. Here, one
scalar adjoint state is associated with each scalar equation defining the mapping F . The three
steps to compute the gradient are:

1. Build the Lagrangian L.

L(ũ, λ̃,m) = h(ũ,m)− 〈λ̃, F (ũ,m)〉.

2. Definition of adjoint state equation.
The adjoint state equation is defined by ∂L(u,λ,m)

∂ũ
= 0 where the derivative is evaluated

at (u, λ).(
∂F (u,m)

∂ũ

)∗
λ = ∂h(u,m)

∂ũ
(A.10)

3. Computation of gradient of J(m).
For this, compute the derivative of L with respect to m

∂J

∂m
= ∂L(u, λ,m)

∂m
= ∂h(u,m)

∂m
− 〈λ, ∂F (u,m)

∂m
〉. (A.11)

Following the Lagrangian approach, we arrive at the same adjoint formulation of the gradient
as in Eq. 3.89.
In the considered case, where the cost is the classical least-squares objective, which is only
indirectly depending on m, the state is described by the acoustic wave equation and model
parameters are chosen to be m(x) := v2

p(x), the gradient is given by

∂J

∂m
= −〈λ, ∂F (u,m)

∂m
〉 = −

∫
Ω

T∫
0

∆u · λ dt dx. (A.12)

This agrees with the adjoint formulation for the acoustic wave equation derived by perturbation
theory, as shown in Eq. 3.94.
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