
Technische Universität München
Lehrstuhl für Integrierte Systeme

Standalone Disaggregated Reconfigurable
Computing Platforms in Cloud Data Centers

Jagath Weerasinghe

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und
Informationstechnik der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Norbert Hanik
Prüfer der Dissertation:
1. Prof. Dr. sc. techn. Andreas Herkersdorf
2. Prof. Dr. Christian Plessl, Universität Paderborn

Die Dissertation wurde am 25.09.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
12.03.2018 angenommen.

Abstract

A wide range of applications are moving to data centers (DC) to benefit from
the flexible and scalable compute infrastructures. Among them, applications that
analyze big-data sets are becoming increasingly popular. However, the end of
transistor scaling makes it difficult for current and future processor generations
to provide sufficient performance and energy efficiency to perform such analyses.
This has put a tremendous pressure on the DC computing infrastructures, which
struggle to satisfy ever increasing processing demands.

To cope with this situation, and to realize steady performance increases, HW ac-
celerators are making their way into the DCs. In particular, reconfigurable archi-
tectures, such as field programmable gate arrays (FPGAs), have proved to provide
significant performance gains with high energy efficiency. However, as FPGAs
have traditionally been deployed in CPU-centric infrastructures being tightly con-
nected over a PCIe bus, the performance, the scalability, and the energy efficiency
gains are limited. FPGA-centric infrastructures have the potential to overcome
these limitations, where FPGAs are decoupled from the servers and deployed as
standalone disaggregated resources.

First, this thesis shows a dynamic approach to build multi-FPGA fabrics by adding
a fabric agent to standalone disaggregated FPGAs. It is also shown that these
standalone disaggregated FPGA-based multi-FPGA fabrics outperform multi-CPU
fabrics by 11x, 57x, and 39x in terms of network latency, latency variation and
throughput. In order to experimentally validate this concept, a distributed text
analytics application is ported onto this multi-FPGA fabric, showing that the ap-
plications can scale the number of FPGAs independently from the number severs,
while improving the latency, latency variation and throughput by 40x, 18x, and
5x, respectively. Finally, it is shown that the proposed standalone disaggregated
FPGAs have the potential to scale up to thousands of FPGAs in a standard DC
rack by implementing an FPGA board, which outperforms the FPGA density of
state-of-the-art CPU-centric approaches by a factor of two.

iii

To my parents and the family.

Acknowledgment

First of all, I would like to thank Prof. Andreas Herkersdorf for giving me the
opportunity to pursue a PhD at TU Munich. I greatly appreciate the discussions
we had and his advice and guidance in shaping up this thesis. Also, I thank Prof.
Christian Plessl for proofreading the thesis.

I am grateful that I had the chance to do this research work at IBM Zurich Research
Laboratory (ZRL). I would like to thank Dr. Christoph Hagleitner and Francois
Abel for their great support over the course of my PhD. The guidance I received
from both of them in the discussions, in turning ideas into actions, and in technical
writing was invaluable in making this thesis possible. Christoph introduced me
to both Prof. Herkersdorf and Prof. Plessl. Also, he proofread the thesis and gave
me feedback.

Raphael Polig is a wonderful colleague, always willing to help you. I would like
to thank him for his help during the final phase of my thesis, particularly in terms
of applications. I would also like to thank Mitch Gusat, Robert Birke, Francesco
Fusco, Animesh Trivedi, Heiner Giefers, Kubilay Atasu, Mitra Purandare, Silvio
Dragone, Jan Van, and Beat Weiss for sharing their expertise throughout the last
few years. Thank you also to Christopher Ayala and Adrian Schuepbach for being
nice office-mates in K042. I also want to thank Charlotte Bolliger and Anee-Marie
Cromack for proofreading my publications.

Finally, I want to thank my parents-in-law and brother-in-law for their support
from home, my parents and three brothers for their continuous touch, and my
wife and the two kids for the hard time they went through during my PhD work.

Jagath Weerasinghe May 2018
IBM Research, Saumerstrasse 4, 8803 Ruschlikon, Switzerland

v

Contents

Abstract iii

Acknowledgment v

Contents vii

List of Tables xi

List of Figures xii

List of Acronyms 1

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis Statement . 5
1.3 Background . 5
1.4 Thesis Contributions . 7
1.5 Thesis Outline . 11

2 Background and State of the Art 12
2.1 Emergence of Heterogeneous Computing 12

2.1.1 Technology Scaling . 12
2.1.2 HW Acceleration . 13
2.1.3 Specialized HW . 14

2.2 FPGA . 18
2.2.1 Architecture . 18
2.2.2 Advances in Technology . 20

2.3 FPGA Deployment Architecture . 22
2.3.1 On Chip . 23
2.3.2 On Package . 23
2.3.3 System Bus-Attached . 24

vii

Contents

2.3.4 PCIe-Attached . 25
2.3.5 PCIe- and Network-Attached 27
2.3.6 Network-Attached . 32

2.4 Summary . 36

3 System Architecture 42
3.1 Infrastructure Requirements . 42

3.1.1 Scalability . 42
3.1.2 Flexibility . 43
3.1.3 Reliability . 44
3.1.4 System Cost . 44
3.1.5 Power Efficiency . 45
3.1.6 Homogeneity . 46
3.1.7 Management . 47
3.1.8 Summary . 47

3.2 CPU-FPGA Attachment Interface . 47
3.2.1 System Bus-Attached . 47
3.2.2 PCIe-Attached . 48
3.2.3 Network-Attached . 48
3.2.4 Summary . 49

3.3 FPGA Provisioning Methods . 50
3.3.1 As a Physical FPGA . 50
3.3.2 As a Single Virtual FPGA . 51
3.3.3 As Multiple Virtual FPGAs . 52
3.3.4 Summary . 53

3.4 Infrastructure for Deployment . 53
3.4.1 Evolution of Cloud Data Centers 53
3.4.2 FPGA Cluster Built with Off-the-Shelf HW 55
3.4.3 Hyperscale FPGA Cluster . 56

3.5 Cloud Integration . 59
3.5.1 Cloud Computing . 61
3.5.2 Accelerator Service for OpenStack 65

3.6 Summary . 71

4 Standalone Disaggregated FPGA 73
4.1 Abstracting FPGA I/O with Shell-Role Architectures 73

4.1.1 Microsoft Catapult Shell . 74
4.1.2 IBM Power Service Layer Shell 75
4.1.3 Amazon EC2 F1 Shell . 75
4.1.4 Xilinx Donut Shell . 76
4.1.5 NetFPGA SDN Shell . 76
4.1.6 Summary . 76

4.2 Standalone Disaggregated FPGA Architecture 78
4.2.1 User Application (vFPGA) . 79

viii

Contents

4.2.2 Cloud Shell . 81
4.3 HW Prototype Implementation . 84

4.3.1 User Application (vFPGA) . 84
4.3.2 Cloud Shell . 86
4.3.3 Flow of Building Application 89

4.4 Simulation Environment . 89
4.4.1 Cloud Shell Simulation . 90
4.4.2 User Application Simulation 92

4.5 Evaluation . 93
4.5.1 Latency . 94
4.5.2 Throughput . 96
4.5.3 Latency Variation . 97
4.5.4 FPGA Resources . 99

4.6 Discussion . 100
4.6.1 Performance . 100
4.6.2 FPGA Resource Consumption 101
4.6.3 Impact on Applications . 102
4.6.4 Network Protocol . 103

4.7 Summary . 103

5 Software-Defined Multi-FPGA Fabrics 105
5.1 Multi-FPGA Systems . 105

5.1.1 Fixed Topologies . 105
5.1.2 Programmable Topologies . 107
5.1.3 Applications . 107
5.1.4 Summary . 108

5.2 Multi-FPGA Systems in Cloud Data Centers 109
5.2.1 Software-Defined Multi-FPGA Fabrics 109
5.2.2 Fabric Topology Definition . 113
5.2.3 FPGA Manager . 113
5.2.4 Multi-FPGA Fabric Agent . 113
5.2.5 SDMFF Protocol . 116
5.2.6 Flow of Building SDMFF . 117
5.2.7 Evaluation . 117
5.2.8 Simulation Environment . 119

5.3 Summary . 119

6 Experimental Validation by Applications 121
6.1 RESTful Web Services . 121

6.1.1 REST IP Block . 122
6.1.2 Web Service . 124
6.1.3 Evaluation . 125
6.1.4 Results . 126

6.2 Distributed Text Analytics . 129

ix

Contents

6.2.1 UIMA . 130
6.2.2 Enhanced UIMA . 132
6.2.3 Text Analytics on Standard UIMA 134
6.2.4 Text Analytics on Enhanced UIMA 134
6.2.5 Evaluation . 137
6.2.6 Results . 137
6.2.7 Discussion . 140

6.3 Summary . 142

7 Conclusion and Directions for Further Research 143
7.1 Conclusion . 143
7.2 Directions for Future Work . 144

Publications and Patents 147

Bibliography 149

x

List of Tables

2.1 FPGA Rack Performance Comparison . 38

3.1 FPGA Rack Performance: Hyperscale vs Off-the-Shelf HW and State-
of-the-art . 58

4.1 Resource Consumption of State-of-the-art Shell Architectures 78
4.2 Resource Consumption: UDP/IP with Centralized vs Distributed Con-

trol Plane . 88
4.3 Resource Consumption of UDP/IP Based Shell 100
4.4 Resource Consumption of TCP/IP Based Shell 100

5.1 SDMFF Protocol Header Details . 116
5.2 SDMFF Commands . 118
5.3 Resource Consumption of TCP/IP Based Shell with MFFA 118
5.4 Time for Multi-FPGA Fabric Formation with Two FPGAs 118

6.1 Results for the performance measurements running with 4 nginx pro-
cesses and 20 uWSGI processes. 128

6.2 Resource Consumption of TCP/IP-Based Shell with Application 141

xi

List of Figures

1.1 CPU-centric FPGA infrastructures with one or more PCIe-attached FP-
GAs: (a) FPGAs are not directly interconnected (b) FPGAs are directly
interconnected in a fixed topology . 5

1.2 Inter-FPGA communication in CPU-centric (a, b, c, d) and FPGA-centric
infrastructures (e): (a) Only NIC is connected to the DC network and
the inter-FPGA data path traverses the CPU, (b) Both FPGA and NIC
are directly connected to the DC network, (c) Only FPGA is directly
connected to the DC network [1], (d) Only NIC is directly connected to
the DC network and FPGA is connected to the NIC through PCIe, (e)
FPGAs are decoupled from the CPUs and directly connected to the DC
network as standalone disaggregated resources [2] 6

1.3 Using the shell-based fabric agent and the FPGA manager to build
multi-FPGA Fabrics on an FPGA-centric deployment: (a) Shell-role
architecture with Fabric agent (FA), (b) FPGA manager, (c) Example
multi-FPGA fabrics . 8

1.4 DC FPGA Deployment Architectures: (a) Traditional CPU-Centric ap-
proach by Microsoft Catapult V2 [1], (b) Traditional CPU-Centric ap-
proach on DOME µServer [3] infrastructure, (c) FPGA-Centric approach
on DOME µServer infrastructure based on Standalone Disaggregated
FPGAs . 10

2.1 Anti-Moore’s Law Behavior and System Stack Innovations [4] 13

2.2 Specialization for Performance Improvement [5] 14

2.3 High-Level Architecture of (a) CPU, (b) GPU, (c) FPGA [6] and (d) ASIC 16

2.4 CPU Computing vs FPGA-based Data Flow Computing [7] 17

2.5 Qualitative Characterization of GPU (Red), FPGA (Blue) and ASIC (Green) 18

2.6 FPGA vs ASIC: Production Cost [8] . 19

2.7 FPGA Internal Architecture [9] . 20

xii

List of Figures

2.8 Advances in FPGA Technology Over the Last Decade: (a) Evolution
of FPGA Manufacturing Process Technology, (b) Evolution of FPGA
Logic Density, (c) Evolution of DSP Capacity in FPGAs, (d) Evolution
of FPGA Block RAM Capacity, (e) Evolution of Ethernet Support in
FPGAs . 21

2.9 Accelerator Attachments Options . 23
2.10 Xilinx Zynq SoC: FPGA with Dual Core ARM [10] 24
2.11 Intel Broadwell and Arria 10 Multi-Chip-Package [11] 24
2.12 IBM SuperVessel Hardware Infrastructure 26
2.13 Convey Wolverine Accelerator Card [12] 26
2.14 Nallatech FPGA-Accelerated Compute Node [13] 27
2.15 Microsoft Catapult V1 . 28
2.16 Microsoft Catapult V2 . 29
2.17 Server and PCIe-Attached FPGA Independently Connected to a Com-

mon DC Network [14] . 30
2.18 Maxeller MPC-N Series [7] . 30
2.19 Maxeller MPC-C Series [15] . 31
2.20 Amazon EC2 F1 Instance . 32
2.21 Maxeller MPC-X-Series Appliance [16] 33
2.22 UC Berkeley BEE2 . 33
2.23 COPACOBANA 5000 System Architecture [17] 34
2.24 CUBE 512-FPGA Cluster . 34
2.25 TMD FPGA Cluster [18] . 35
2.26 NARC FPGA Card Architecture [19] . 37
2.27 Large-scale FPGA Deployment Summary: (a) RIVYERA, (b) HP, IBM

SuperVessel, (c) Nallatech, (d) Microsoft Catapult V1, (e) Microsoft Cat-
apult V2, (f) Amazon EC2 F1 Instance, and (g) Maxeller MPC-X 39

2.28 Emergence of Heterogeneous Computing: (a) Traditional Data-Processing
Platform, (b) HW-Accelerated Data-Processing Platform, (c) Custom-
HW-Dominated Future Data-Processing Platforms 40

2.29 Apple A8 SoC Die Photo [20] . 40
2.30 Apple SoC Constitution [20] . 41

3.1 Attaching FPGAs to a CPU over PCIe: (a) Direct PCIe-attachment and
(b) PCIe-expansion chassis based attachment 43

3.2 CPU, Memory, and I/O Power Consumption when a PCIe-attached
FPGA is in Idle, Reconfiguration, and Computation Steps [21] 46

3.3 Options for Attaching an FPGA to a CPU 48
3.4 Different Ways of Resource Provisioning in the DC Based on Standalone

Disaggregated FPGAs: (a) as a physical FPGA, (b) as a single virtual
FPGA, (c) as multiple virtual FPGAs . 50

3.5 FPGA Module Architecture for Physical FPGA Provisioning 51
3.6 FPGA Module Architecture for Single vFPGA Provisioning 52
3.7 FPGA Module Architecture for Multiple vFPGA Provisioning 52

xiii

List of Figures

3.8 Server and Cloud Data Center Trends . 54
3.9 Building an FPGA Rack Using off-the-shelf HW: (a) FPGA module with

16 GB DRAM. (b) 2U Rack chassis [22] with 18 FPGA modules. (c) 42U
Data Center Rack . 56

3.10 108 FPGAs in a Rack Using off-the-shelf HW 57
3.11 Hyperscale FPGA Packaging [23]: (a) FPGA Module (b) SLED that

hosts 32 FPGA Modules . 59
3.12 FPGA Chassis with two SLEDs [23]: (a) Physical View (b) Logical View

(c) Network Wiring . 60
3.13 1024 FPGAs in a Single Rack with 2:1 Over Subscription at Chassis

Level and 5:1 Over Subscription at Rack Level 61
3.14 192 FPGAs in a Single Rack with 1:1 Subscription at Chassis Level and

4:1 Over Subscription at Rack Level . 62
3.15 Cloud Service Delivery Models . 63
3.16 Cloud Deployment Models [24] . 64
3.17 Conceptual View of Virtualized Disaggregated FPGA Infrastructure . . 65
3.18 OpenStack Architecture with Standalone Disaggregated FPGAs 66
3.19 Two Examples of multi-FPGA Fabrics . 69
3.20 FPGA Fabric Deployment; SW: Network Switch 69
3.21 Multi-FPGA Fabric Programming Model 70
3.22 Standalone Disaggregated FPGA Deployment Architecture 71

4.1 Microsoft Shell Architecture: (a) Catapult V1 Shell [25], (b) Catapult V2
Shell [1] . 74

4.2 IBM Power Service Layer Shell [26] . 75
4.3 Amazon EC2 F1 Instance Shell [27] . 76
4.4 Xilinx Donut Shell . 77
4.5 NetFPGA SDN Shell [28] . 77
4.6 Standalone Disaggregated FPGA Architecture 78
4.7 The Abstraction Offered Over the Network 79
4.8 Two ways of using integrated PHYs in FPGA: (i) Base-R with External

Transceiver and (ii) Base-KR Connecting to Backplane without External
Transceiver . 82

4.9 FPGA Network Stack Virtualization . 84
4.10 Standalone Disaggregated FPGA Prototype 85
4.11 UDP Only with Centralized Control Plane Approach 85
4.12 UDP Only with Distributed Control Plane Approach 86
4.13 Flow of Building Applications: (a) cloud shell (b) black box (place-

holder for user application) (c) user application 90
4.14 Flow of Configuring a Standalone Disaggregated FPGA 91
4.15 Cloud Shell Simulation Platform . 92
4.16 Simulation Platform of Role (User Application) 94
4.17 Network Stack Configurations of The Experimental Cases 95
4.18 Experimental Setup . 95

xiv

List of Figures

4.19 Latency Comparison . 96
4.20 Throughput Performance . 97
4.21 Variation of Response Time (99th Percentile) 98
4.22 TCP Latency Comparison . 98
4.23 TCP Latency Variation . 99
4.24 TCP Throughput Comparison . 99
4.25 TCP/IP and RDMA on CPU vs TCP/IP on FPGA 102

5.1 Fixed-Topology Multi-FPGA Systems: (a) Linear Array (b) Ring (c) 4-
Way Mesh (d) 4-Way Torus (e) 8-Way Mesh (f) 8-Way Torus 106

5.2 Programmable-Topology Multi-FPGA Systems: (a) Crossbar (b) Hierar-
chical Crossbar [29] [30] (c)(d) Star . 108

5.3 Use Cases for Scalable Allocation of Reconfigurable Resources in Cloud
DCs . 110

5.4 Flexible Arrangement of Standalone Disaggregated FPGAs for Diverse
Use Cases . 110

5.5 Software-Defined multi-FPGA Fabric: On Demand Formation of multi-
FPGA Fabrics . 111

5.6 Dynamic Inter-FPGA Connections Over the DC Network 112
5.7 SDMFF Topology Definition: (a) user-defined configuration, (b) con-

figuration after resource allocation and (c) configuration after fabric is
formed . 112

5.8 Application Interface and Fabric Agent Architecture 114
5.9 SDMFF Framework: (a) An Example SDMFF Interconnect (b) FPGA

Manager (c) Programmable Application Interface (d) Multi-FPGA Fab-
ric Agent . 115

5.10 SDMFF Protocol Header Defined in C . 116
5.11 The flow of forming a multi-FPGA fabric 117
5.12 SDMFF Simulation Platform . 119

6.1 Design Flow for Designing with the REST IP Block. 123
6.2 Main Modules of the REST IP Block in the ROLE of the Cloud Shell . . 124
6.3 Experimental Setup. 126
6.4 Involved Processes, Modules and Communication Protocols on the POWER8

Server and the Standalone Disaggregated FPGA Scenarios. 127
6.5 Number of Requests Served Over Different Number of Concurrent Re-

quests on Log Scale (SDF: Standalone Disaggregated FPGA). 129
6.6 UIMA Pipeline . 130
6.7 Standard UIMA Pipeline with Multiple Hosts 131
6.8 Standard UIMA Pipeline with Multiple Hosts Enhanced with PCIe-

Attached FPGAs . 131
6.9 SDMFF-Enhanced UIMA Pipeline . 133
6.10 Regular Expression Text Analytic IP Core 134

xv

List of Figures

6.11 Implementation of vFPGA for the application: (a) Standalone Disaggre-
gated FPGA1 and (b) Standalone Disaggregated FPGA2 135

6.12 Experimental setup . 135
6.13 UIMA Pipeline-based Experimental Cases 136
6.14 Text Analytics on UIMA: Latency . 138
6.15 Text Analytics on UIMA: Latency Variation 139
6.16 Text Analytics on UIMA: Throughput . 139
6.17 Cost Comparison of Three Text Analytics Systems 140

xvi

List of Acronyms

CPU Central Processing Unit

CMOS Complementary Metal Oxide Semiconductor

FPGA Field Programmable Gate Array

LUT Look Up Table

FF Flip Flop

vFPGA Virtual FPGA

GPU Graphics Processing Unit

ASIC Application Specific Integrated Circuit

DSP Digital Signal Processor

HLS High Level Synthesis

HPC High Performance Computing

NSL Network Service Layer

SDN Software-Defined Networking

VM Virtual Machine

VMDIO Virtual Machine Direct I/O

CT Container

SDN Software-Defined Networking

SDF Standalone Disaggregated FPGA

SDMFF Software-Defined Multi-FPGA Fabric

MFFA Multi-FPGA Fabric Agent

FMU FPGA Management Utility

1

List of Figures

MFFC Multi-FPGA Fabric Controller

UIMA Unstructured Information Management Architecture

CAPI Coherent-Attached Processor Interface

RDMA Remote Direct Memory Address

CEE Converged Enhanced Ethernet

ROCE RDMA Over Converged Ethernet

IP Internet Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

ARP Address Resolution Protocol

DHCP Dynamic Host Configuration Protocol

PCIe Peripheral Component Interconnect Express

QPI Quick Path Interconnect

GFLOPS Giga Floating Point Operations per Second

GMACS Giga Multiplications and Accumulations per Second

HW Hardware

SW Software

RC Reconfigurable Computing

DC Data Center

HSDC Hyperscale Data Center

TDC Traditional Data Center

CDC Cloud Data Center

HBM High Bandwidth Memory

2

Chapter 1

Introduction

1.1 Motivation

In recent years, the way digital data is generated has been revolutionized by the
rapid spread of mobile devices and social media platforms as well as the digitiza-
tion of data records, such as scientific publications, medical reports and patents.
Analyzing such vast amount of data is becoming increasingly important, as it re-
veals valuable insights for decision makers, such as scientists, marketers, medical
practitioners and IT professionals.

Big data platforms analyze heterogeneous datasets by sorting, indexing, ranking
or clustering. While the amount of data to be analyzed increases continuously,
the acceptable time to produce the desired results is shrinking. Timely analy-
sis of big data has a significant impact on productivity and on improving the
user experience. To execute analytics tasks over large datasets, big data platforms
have started to scale out [31] using distributed frameworks, such as Hadoop [32],
Spark [33], Dryad [34], and UIMA [35], which are spread over a cluster of servers
in data centers (DC). However, many distributed applications do not scale well on
these infrastructures because of (i) the limited compute power of individual server
nodes, (ii) the performance of the network that interconnects them, and (iii) the
varying response times.

In scale-out applications, the compute capacity for running large-scale applica-
tions is increased by adding more servers to the DC. However, server expansion is
usually hindered by the DC’s power and cooling capacity [36] [37], as the energy
consumption of DCs is increasing at an alarming rate, and energy costs start to
exceed equipment costs [38]. This can only be resolved by drastically improving
the energy efficiency of scale-out applications [39].

Even if the available compute capacity and power-efficiency is sufficient, inefficient
networks hamper the scalability of IO-bound applications. When the number of
servers is increased beyond a certain threshold, the training of a distributed deep

3

1. Introduction

neural network becomes slow, as the network overhead starts to dominate [40].
Similarly, the scalability of TeraSort [41] [42] is hindered by the network’s through-
put performance, particularly in the data-shuffling phase. Distributed applica-
tions, such as search, online shopping, social networking, and high-frequency
trading are interactive in nature with stringent latency requirements. When these
applications run in DCs, a major cause of poor network latency is the SW-based
packet processing in the server nodes [43].

In synchronous cluster applications, the performance is often impacted by the vari-
ance in processing times across different servers, leading to many servers waiting
for the single slowest server to finish a given phase of computation [40]. As the
variance in processing times is caused by unpredictable scheduling of CPU and
IO resources, addition of virtualization layers makes the predictability even worse
as scheduling must be executed in multiple layers [44] [45] [46]. To alleviate these
issues, some distributed applications use straggler mitigation methods by cloning
the same task multiple times [13], which, however, does not solve the fundamental
issue.

To improve energy efficiency, performance, networking throughput, latency, and
latency variations, server systems are increasingly relying on heterogeneous com-
pute resources, such as graphics-processing units (GPUs), field programmable
gate arrays (FPGAs), and application-specific integrated circuits (ASICs).

While special-purpose hardware such as GPUs and ASICs can effectively acceler-
ate DC tasks, the rapidly changing nature of the DC application algorithms can
quickly render a dedicated accelerator obsolete. This is especially true in the case
of ASICs, where the design, verification and bring-up might take several years
while the applications change on monthly basis. Meanwhile, FPGAs deliver the
performance advantages of a fixed-purpose accelerator in a low-power, flexible
hardware platform that can enable faster time to innovation.

Traditionally, in server systems, these FPGAs have been used as slave devices con-
nected over a PCIe bus. This approach has two major drawbacks: (1) the boost in
performance and energy efficiency that an FPGA-based accelerator can provide is
weakened by the dominating static power of the server nodes [21]; (2) data center
workloads are heterogeneous and run at different scales. Therefore, the scalabil-
ity and the flexibility of the FPGA infrastructure are vital to meet the dynamic
processing demands, as both the under-provisioning and the over-provisioning
of FPGA resources affect the performance of the applications and the efficiency
of the infrastructure. With PCIe attachment, a large number of FPGAs cannot
be assigned to run a workload independently of the number of CPUs, and also
those FPGAs cannot be connected on flexible user-defined topologies satisfying
application demands.

In summary, the scaling requirements of modern DC applications in terms of
compute and communication capacity is exceeding the historical scaling rate of
the server performance. Scaling up the DC performance simply by increasing

4

1.2. Thesis Statement

Figure 1.1: CPU-centric FPGA infrastructures with one or more PCIe-attached
FPGAs: (a) FPGAs are not directly interconnected (b) FPGAs are directly intercon-
nected in a fixed topology

the number of processor cores is no longer feasible. This creates an increasing
mismatch between the application demands and the resources available, calling for
novel big data processing technologies. Even though accelerators, such as FPGAs,
have brought significant performance increases to the applications, the traditional
approaches of using them in server systems have not been able to exploit the full
potential of the FPGA resources.

1.2 Thesis Statement

FPGAs have been shown to provide significant performance and energy efficiency
gains. Consequently, FPGAs are increasingly being used in DCs to improve the
application performance and the overall DC energy efficiency. DCs are typically
based on CPU-centric infrastructures. Traditionally, FPGAs are deployed on these
CPU-centric infrastructures as slave devices in the form of accelerators. In FPGA-
centric applications, most of the application processing is done in FPGAs, and
CPUs are used minimally. Hence, the overhead of a CPU-centric FPGA deploy-
ment diminishes the performance, the scalability, and energy-efficiency gains for
FPGA-centric applications. One approach to solving this issue is to deploy FP-
GAs in FPGA-centric infrastructures, by bringing the FPGAs to the rank of a
standalone disaggregated compute resource. This thesis investigates standalone
disaggregated FPGAs with the long-term vision to enable large-scale deployment
of FPGAs in DCs for FPGA-centric applications.

1.3 Background

Server disaggregation refers to the separation of server components, such as CPU,
memory, and storage into individual resources. These individual resources are
allocated and interconnected to build server systems in a modular way. This mod-
ular approach allows to independently scale individual resources. When disaggre-

5

1. Introduction

Figure 1.2: Inter-FPGA communication in CPU-centric (a, b, c, d) and FPGA-
centric infrastructures (e): (a) Only NIC is connected to the DC network and the
inter-FPGA data path traverses the CPU, (b) Both FPGA and NIC are directly
connected to the DC network, (c) Only FPGA is directly connected to the DC
network [1], (d) Only NIC is directly connected to the DC network and FPGA is
connected to the NIC through PCIe, (e) FPGAs are decoupled from the CPUs and
directly connected to the DC network as standalone disaggregated resources [2]

6

1.4. Thesis Contributions

gation is applied to FPGA-based compute resources, we refer to it as a standalone
disaggregated FPGA. We believe standalone disaggregated FPGAs have the poten-
tial to broaden the range of applications for FPGAs in DCs and progress towards
the vision of large-scale deployment of FPGAs in cloud DCs.

In the existing solutions [47] [25] [1], FPGAs are deployed in CPU-centric infras-
tructures where they are tightly coupled to the host CPUs and to each other (Fig-
ure 1.1). When offering FPGAs as compute resources to cloud users, existing
solutions face the following issues: (i) The CPU-centric approach requires the data
path of the inter-FPGA communication to traverse a CPU for applications that use
more FPGAs than a single CPU-centric unit can provide (Figure 1.2-(a)). (ii) The
number of FPGAs that an application uses cannot be scaled independently from
the number of CPU resources at the infrastructure level. (iii) Packaging approach
associated with the tight coupling of FPGAs to CPUs limits the number of FPGAs
per DC rack.

Above issue (i) can be alleviated by connecting the FPGA to the DC network in
a way that does not require the inter-FPGA data path to traverse across the host
CPU. There are three options (Figure 1.2-(b), (c), and (d)) in achieving this: First,
both the FPGA and NIC are directly connected to the DC network (Figure 1.2-(b)),
but this approach doubles the number of physical network connections to a sin-
gle server. Second, only FPGA is directly connected to the DC network and the
NIC is connected to the FPGA through PCIe or directly [1] [48] (Figure 1.2-(c)), in
which the server is disconnected from the network when FPGA is undergoing a
full reconfiguration. Third, only the NIC is directly connected to the DC network
and the FPGA is connected to the NIC through PCIe (Figure 1.2-(d)). This form
of communication has already been implemented for FPGA-GPU communication
over PCIe [49] [50]. This is theoretically possible also for NICs by using for ex-
ample SR-IOV [51] based vNICs, but for the best of our knowledge there are no
complete system implementations available yet supporting this communication.
Even if there are alternative solutions for issue (i), issues (ii) and (iii) cannot be
solved with the CPU-centric approach.

FPGA-centric approach [2] (Figure 1.2-(d)) in DCs addresses above issues by de-
coupling the FPGA from the host CPU and deploying them as standalone disag-
gregated resources, which are directly connected to the DC network. The work
covered in this thesis contributes to the further advancement of the FPGA-centric
approach based on standalone disaggregated FPGAs. The main contributions of
this thesis are:

1.4 Thesis Contributions

1. Software-Defined Multi-FPGA Fabrics for Standalone Disaggregated FP-
GAs
In conventional approaches, interconnecting multiple-FPGAs for running

7

1. Introduction

Figure 1.3: Using the shell-based fabric agent and the FPGA manager to build
multi-FPGA Fabrics on an FPGA-centric deployment: (a) Shell-role architecture
with Fabric agent (FA), (b) FPGA manager, (c) Example multi-FPGA fabrics

distributed applications and changing the inter-FPGA data path on demand
requires a new bit stream (full or partial bit stream) to be generated and the
FPGA to be reconfigured. New bit stream generation and reconfiguration
disrupt the operation of the distributed applications and also introduce a
high latency in the control path of the distributed applications. This is not
suitable for inherently dynamic cloud environments. To address this issue,
a ”fabric agent” is introduced to the standalone disaggregated FPGA shell-
role architecture (Figure 1.3-(a)). In the shell-role architecture, the SHELL
abstracts the FPGA I/O, such as FPGA-CPU and FPGA-DRAM communica-
tion, whereas the ROLE hosts the user application. The fabric agent allows to
form inter-FPGA connections on demand at application-level, without requir-
ing FPGA reconfiguration. Application awareness in forming inter-FPGA
connections allows to dynamically optimize the amount of FPGAs needed
for a particular application, such as HTTP load-balancing. A centralized
”FPGA manager” (Figure 1.3-(b)) uses the fabric agent in the SHELL to dy-
namically build multi-FPGA fabrics by interconnecting multiple FPGAs over
the DC network in software-defined manner (Figure 1.3-(c)).

8

1.4. Thesis Contributions

The feasibility of this approach is validated through a HW prototype in a
10 GbE-based DC network [52] [53]. It is demonstrated that the fabric agent
in combination with the FPGA manager allows the data path of distributed
applications to be changed dynamically without generating a new bit stream
and reconfiguring it to the FPGA, which reduces the multi-FPGA fabric con-
trol path latency down to a sub-millisecond range from tens of minutes. To
form a multi-FPGA fabric with 2 FPGAs, the software-defined approach took
0.754 ms, whereas the conventional approach of bit-stream generation and
reconfiguration took 29 minutes in our development platform [54]. Out of
29 minutes reconfiguration over DC network took 9 seconds. Even when
compared only with reconfiguration time of conventional approaches, the
software-defined approach is 12x better in control path latency. We believe
that this flexible and scalable approach will allow to seamlessly scale FPGA
applications to the size of cloud DCs with thousands of compute nodes. Fur-
ther, standalone disaggregated FPGA based multi-FPGA fabrics improve the
data path performance in terms of latency, latency variation, and through-
put by 11x, 57x, and 39x, respectively, compared with multi-CPU compute
fabrics interconnected over the DC network [52].

2. Application Integration and Evaluation
Application1: RESTful (Representational State Transfer) web service, which
runs on top of HTTP, is an approach to provide interoperability between
computer platforms and programming languages on the Internet. In today’s
cloud environments, many applications can be accessed via RESTful APIs.
A RESTful web service (HTTP and REST layer) was ported on to a stan-
dalone disaggregated FPGA, and a natural language processing application
was demonstrated as the web service application. The performance was
compared with a pure SW implementation and a SW implementation accel-
erated with PCIe-attached FPGAs. Standalone disaggregated FPGA outper-
formed both of those implementations by 308x and 20x in terms of applica-
tion throughput, and by 175x and 4x in terms of latency [54].

Application2: UIMA (Unstructured Information Management Architecture)
is a popular distributed computing framework for applications, such as text
analytics. The UIMA framework was modified to integrate the standalone
disaggregated FPGAs with their software-defined multi-FPGA fabric. Next,
a real-world distributed text-analytics application was ported onto this multi-
FPGA-fabric-enhanced UIMA framework with 2 standalone disaggregated
FPGAs. The results are compared to a pure CPU-based implementation and
a CPU-based implementation accelerated with PCIe-attached FPGAs. Multi-
FPGA-fabric-enhanced UIMA outperforms both of those implementations
by 40x, 18x, and 5x in terms of application latency, latency variation and
throughput [53].

In the above applications, both the network and application processing are

9

1. Introduction

Figure 1.4: DC FPGA Deployment Architectures: (a) Traditional CPU-Centric
approach by Microsoft Catapult V2 [1], (b) Traditional CPU-Centric approach on
DOME µServer [3] infrastructure, (c) FPGA-Centric approach on DOME µServer
infrastructure based on Standalone Disaggregated FPGAs

entirely executed in FPGAs, which eliminates most of the CPU involvement
in the distributed application processing.

3. Densely-packaged Rack-scale Architecture for Standalone Disaggregated
FPGAs
The FPGA infrastructure density (number of FPGAs/Rack) of state-of-the-
art CPU-centric deployments [1] [25] is currently limited to approximately
100 FPGAs per rack. In the state-of-the-art Microsoft Catapult V2 imple-
mentation [1], one FPGA is attached to a CPU in a half-width two socket
server scaling up to 96 FPGAs per rack (Figure 1.4-(a)). Using the same CPU-
centric approach, the DOME µServer [3] based DC infrastructure increases
the FPGA density by 5x compared to the Microsoft Catapult V2 implementa-
tion. DOME µServer infrastructure achieves this by deploying SoCs and Net-
working (10 GbE Switch) on small-form-factor motherboards (140×62 mm)
in a water-cooled environment, where one FPGA is attached to each SoC
over PCIe. In this infrastructure (Figure 1.4-(b)), two sleds (1 SLED = half-
width chassis unit) each consisting of 32 boards, a 10 GbE switch, and an
SLED manager are deployed on a 2U (1U = 44.45 mm) rack chassis. We im-
plemented an FPGA board [23] based on the concept of standalone disaggre-
gated FPGAs and the shell-role-architecture that increases the infrastructure
density of the FPGA deployments by further 2x (Figure 1.4-(c)), achieving

10

1.5. Thesis Outline

overall 10x density compared to the state-of-the-art deployments in cloud
DCs. This approach allows to deploy up to 1024 FPGAs in a standard 42U
data center rack at any granularity [2] [23].

1.5 Thesis Outline

This thesis is organized as follows:

Chapter 2: State of the Art
First, this chapter discusses the emergence of heterogeneous computing. Next, it
elaborates on the role of FPGAs in heterogeneous computing. Finally, the state of
the art FPGA deployments are reviewed focusing on the architectural aspects and
applications.

Chapter 3: System Architecture
First, the system requirements for deploying FPGAs in DCs are analyzed. Then, an
FPGA-centric system architecture is proposed based on standalone disaggregated
FPGAs. Finally, the proposed system architecture is compared with the state-of-
the-art FPGA deployments in terms of FPGA infrastructure density (number of
FPGAs / DC rack).

Chapter 4: Standalone Disaggregated FPGA.
This chapter elaborates on the standalone disaggregated FPGA architecture and
shows its implementation in a commercial FPGA. Next, it shows the performance
comparison of the standalone disaggregated FPGA based multi-FPGA fabrics with
those based on state-of-the-art CPU-based approaches in terms of latency, latency
variation, and throughput.

Chapter 5: Software-Defined Multi-FPGA fabrics (SDMFF).
This chapter introduces the concept of software-defined multi-FPGA fabrics and
explains its SW and HW framework. Next, it explains how SDMFFs are built
using standalone disaggregated FPGAs over the data center network. Finally, the
control path latency in building SDMFF is compared with the traditional approach
of building multi-FPGA fabrics by FPGA reconfiguration.

Chapter 6: Experimental Validation by Applications.
As the first application, a RESTful web service application ported on to a stan-
dalone disaggregated FPGA is demonstrated. As the second application, a text
analytics application is demonstrated on SDMFF-enhanced UIMA distributed com-
puting framework. The results of both the applications are compared with a pure
CPU implementation and a CPU implementation accelerated with PCIe-attached
FPGAs.

Chapter 7: Conclusion.
Concludes this thesis and gives an outlook for future work.

11

Chapter 2

Background and State of the Art

This chapter is organized as follows: Section 2.1 provides an overview of emer-
gence of heterogeneous computing and Section 2.2 elaborates particularly on FP-
GAs. CPU-FPGA attachment options and state-of-the-art FPGA deployment archi-
tectures are reviewed in Section 2.3. The chapter is summarized in Section 2.4.

2.1 Emergence of Heterogeneous Computing

Every data processing platform mainly contains 3 subsystems: (i) logic circuitry,
(ii) compute architecture, and (iii) applications. Over the past few decades, the
logic circuitry is mainly built using CMOS-based semiconductor technology. When
main-stream computing is considered, the compute architecture in those platforms
are driven by the general-purpose CPUs. The applications which run on the com-
puter architecture are the general-purpose SW tightly coupled with the underlying
CPU technology. Rapid trends in the application subsystem have been demanding
ever more performance increments and have put a tremendous pressure on the un-
derlying two subsystems. This pressure has led to the technological innovations in
those two subsystems, which drove the success of the computing industry over the
past few decades. However, the new trends in the application sub-system, such
as big data, have increased the performance requirements to an unprecedented
level. Meanwhile, further improvements from the underlying two subsystems
(logic circuitry and compute architecture) are becoming hard to achieve due to the
technological scaling limits. In the next subsection, we review how the limitations
of technological scaling have affected the semiconductor technology.

2.1.1 Technology Scaling

The semiconductor industry has been driven by two scaling laws: (i) Moore’s Law
and (ii) Dennard scaling. It is these two scaling trends that have resulted in the pop-
ularity of CMOS technology and subsequent advances in computing technology
over the past few decades. Moore’s law states that the number of transistors that

12

2.1. Emergence of Heterogeneous Computing

Figure 2.1: Anti-Moore’s Law Behavior and System Stack Innovations [4]

can be placed onto an integrated circuit doubles every year. This law is a scaling
prediction, which is purely an observation of the progress of the technology rather
than a scientific finding. Although moore’s law states about the need for making
transistors smaller to increase the chip density, only dennard scaling explains how
the transistors can be made smaller. Both moore’s law and dennard scaling con-
tinued to work until the last decade, however now both have started to cease as:
(i) doubling transistors increases the power density and (ii) scaling transistor size
is no longer going to be possible because of the CMOS physical limitations, such
as leakage current. This leads to innovation in two directions: (i) alternatives to
CMOS technology and (ii) innovations in system stack (Figure 2.1). Although not
much credible success has yet been achieved in the first approach, the second
approach has resulted in improved extensions. These extensions evolved in mul-
tiple paths: (i) low-level architectural extensions such as multi-core, SMP, SIMD,
MIMD, SoC in the processor road map, (ii) advanced memories, (iii) improved
system software integration and cloud in the application space, and (iv) workload
acceleration. However, the stringent physical limitations of CMOS technology in-
hibit exploiting increasingly more performance out from the CPUs except for the
case of workload accelerators that are built using customized HW.

2.1.2 HW Acceleration

The customized architectures deliver order of magnitude higher performance and
energy efficiency benefits at a lower cost compared to general-purpose architec-
tures. Figure 2.2 shows the energy efficiency comparison of general-purpose
CPUs, DSPs and ASICs for DSP applications [5]. Compared to general-purpose
microprocessors, DSPs deliver up to 100x more energy efficiency, while dedicated

13

2. Background and State of the Art

application-specific HW are 1000x more energy efficient. The authors collect the
data from 20 different chips across heterogeneous architectures, which were pub-
lished at the International Solid-State Circuits Conference (ISSCC) between 1998
and 2002.

The mobile computing industry were the first to embrace the HW accelerators on
specialized architectures, mainly due to the stringent constraints in mobile envi-
ronments in terms of power and area [20]. In the recent past, we observe an in-
creasing number of mainstream computing domains start to use HW accelerators.
In the domain of mainstream computing, the HPC community were the first to
embrace HW accelerators and at the time being the cloud data center community
is also slowly progressing towards HW accelerators [55] [1] [56] [47] [57] [58] [59].
With the advent of HW accelerators, the traditional data processing platform has
changed its original shape and become heterogeneous in the computer architec-
ture sub system.

Figure 2.2: Specialization for Performance Improvement [5]

2.1.3 Specialized HW

2.1.3.1 GPU

GPUs have taken the multi-core trend of the CPUs to the extreme and the HW
is semi-specialized by adding thousands of smaller cores (Figure 2.3-(b)), which
perform arithmetic operations in parallel, onto a single device. At the time of this
writing, state-of-the-art Tesla P100 GPUs from NVIDIA contains 3584 cores [60].
These large number of cores collectively offer performance of 5.3 and 10.6 TFLOPS,
respectively for double precision and single precision. GPUs have been commonly
used in graphics add-in cards and have been specifically popular with the gam-
ing industry. However, over the recent years, GPUs were adopted for accelerating
computing because of large quantities of cores and the ability to massively paral-

14

2.1. Emergence of Heterogeneous Computing

lelize operations. The use of GPUs for accelerated computing has been explored
for many applications, such as deep learning [61] [62] [63], image processing [64]
and scientific computing [65] [66]. One of the major drawback of GPUs compared
to CPUs is their high power consumption. Tesla P100 GPU consumes around
300 W [60], whereas a state-of-the-art general purpose CPUs from Intel consumes
around 165 W [67].

2.1.3.2 FPGA

FPGA architecture is vastly different from GPUs and CPUs, which is based on
reconfigurable logic blocks (Figure 2.3-(c)). The flexibility offered by the FPGAs at
the HW level enables the designer to realize almost any computer configuration
that can be imagined and use any form of parallelism. As a result, the end users
who owns the applications have the opportunity to make efficient application-
specific machines by customizing the HW according to the application require-
ments [68]. Today, FPGAs are used heavily in communications, but are making
ways into the general-purpose computing market. The most significant advantage
that FPGAs have over CPUs and GPUs is computing efficiency. In many applica-
tions, higher efficiency means faster operations that consume less energy.

2.1.3.3 ASIC

An ASIC is extremely similar in function to an FPGA. However, ASICs do not have
the ability to be reprogrammed and the HW is fully-specialized. The program is
burnt (wired) directly onto a piece of silicon and is packaged into a chip (Fig-
ure 2.3-(d)). Because of the startup costs, ASICs make the most sense in appli-
cations where large volumes or large performance increases are needed. Most
importantly, FPGA designs can be ported to ASIC designs for increasing comput-
ing efficiency. Although ASICs are not suitable for frequently changing general-
purpose DCs, application specific DCs can afford to build ASIC clouds [69] to
optimize the overall efficiency.

2.1.3.4 FPGA vs CPU

The CPUs are based on temporal computing paradigm, where in a software ap-
plication, the program source code is transformed into a list of instructions for a
particular processor, which is then loaded into the memory attached to the proces-
sor. Data and instructions are read from memory into the processor core, where
operations are performed, and the results are written back to memory. Modern
processors contain many levels of caching, forwarding and prediction logic to im-
prove the efficiency of this paradigm; however, the model is inherently sequential
with performance limited by the latency of data movement in this loop (Figure
2.4-(a)).

15

2. Background and State of the Art

Figure 2.3: High-Level Architecture of (a) CPU, (b) GPU, (c) FPGA [6] and (d)
ASIC

In contrast, FPGAs are based on spatial computing, where the program source
code is transformed into a compute engine configuration file, which describes the
operations, layout and connections of a compute engine (Figure 2.4-(b)). Data can
be streamed from memory into the chip where operations are performed and data
is forwarded directly from one computational engine to another, as the results are
needed, without being written to the off-chip memory until the chain of processing
is complete [7]. These fundamental architectural characteristics inherent to FPGAs
have resulted in application performance improvement over CPUs in the order of
hundreds [9] [70].

2.1.3.5 FPGA vs GPU

As both FPGA and GPU can be programmed to run a particular application, the
performance in terms of application speed up and energy efficiency depends on
the nature of the target application [71] [72] [73] [74] [75] [76]. However, in terms
of qualitative characteristics, they differ in many aspects, as shown in Figure 2.5,
which shows an updated radar graph by adding ASIC characteristics to an FPGA
and GPU comparison from [77].

GPUs gain advantage when considering total floating-point processing power, de-
velopment effort, backward compatibility, device cost, and flexibility in terms of
modification of already developed applications. FPGAs also provides huge pro-
cessing capabilities but with a greater power efficiency. This allows the integration
of FPGAs in small housings, on-board equipments, or in extreme temperature en-
vironments. Interfacing and latency are two strong points of FPGAs compared to
GPUs. GPUs are limited to PCIe, but FPGAs are flexible, offering a wide class

16

2.1. Emergence of Heterogeneous Computing

Figure 2.4: CPU Computing vs FPGA-based Data Flow Computing [7]

of possible interfaces. In terms of latency, GPUs improve CPU performance but
FPGAs provides deterministic timing in the order of nanoseconds. [77]. When
comparing FPGAs and GPUs there is no clear winner as of now [78], but FPGAs
offers a wider scope in terms of interfaces and virtualization to be integrated in
different applications. Even though FPGAs are inherently built to be used as slave
HW devices over PCIe, network [79] and virtualization [80] support is being inves-
tigated by the research community.

2.1.3.6 FPGA vs ASIC

Since ASICs are devices built to run a specific function, they are inherently not
flexible and does not provide backward compatibility. However, they are highly
efficient in terms of energy consumption, logic density and speed compared to
FPGAs, as the architecture is extensively tailored to a specific application [81].
With respect to FPGAs, the key differentiation is around two factors: (i) the cost
and (ii) the time to market. The ASIC functionality determined by custom mask
tooling, for which customers paid with an up-front non-recurring engineering
(NRE) cost. Since FPGAs have no custom tooling, the up-front cost is reduced by
making one custom silicon that can be used by thousands of customers. The high
up-front NRE cost ensures that FPGAs are more cost effective than ASICs up to
a certain amount of volume. But, if the cost of each unit is compared, the ASICs
are much cheaper than FPGAs. Hence, beyond a certain volume, ASICs become
much cheaper than FPGAs (Figure 2.6 dashed line). As the process technology
improved, the unit cost of both ASICs and FPGAs reduced, but the up-front NRE

17

2. Background and State of the Art

cost for ASICs increased, which made ASICs less cost effective unless the volume
is extensively increased (Figure 2.6 dashed line) [8].

Even though ASICs provide much more performance at higher energy efficiency
compared to FPGAs and are more cost effective beyond a certain volume, they take
two or more years to develop and deploy in a production environment. Because of
this long production process, the applications can make them obsolete when they
are actually ready to be used. Therefore, deploying ASICs in dynamic compute
environments, such as DCs, is not practical in terms of cost, time to develop and
the rapid changes in applications.

Timing Latency

InterfacesProcessing/Watt

Processing/$

Flexibility

Compatibility

Development Size

FLOPs

Frequency

Figure 2.5: Qualitative Characterization of GPU (Red), FPGA (Blue) and ASIC
(Green)

2.2 FPGA

2.2.1 Architecture

Due to their fine granularity at boolean logic level, FPGAs provide very high
flexibility in what and how to implement a desired task. The basic idea of an
FPGA is a set of configurable logic cells referred to as configurable logic block
(CLB) (Xilinx) or adaptive logic module (ALM) (Altera) that can be arbitrarily
interconnected via a programmable mesh of wires. A configurable logic cell is

18

2.2. FPGA

Figure 2.6: FPGA vs ASIC: Production Cost [8]

made up of a set of look-up tables (LUT), which can be configured to implement
any desired logic function such as OR, AND or XOR. The LUTs are followed by
a full adder (FA) structure, which can be used to create larger arithmetic or logic
functions. The outputs of either LUTs or FAs can be routed to a flip-flop or register
to create synchronous designs. Figure 2.7 illustrates this generic architecture of a
logic cell in an FPGA.

To enhance the efficiency and performance of FPGAs, modern architectures in-
clude special hard macros implementing a wide range of functions. Common
block types are embedded memory, often referred to as BlockRAM, or digital
signal processing (DSP) blocks, which consists of a multi-bit wide multiplier fol-
lowed by an adder or accumulator stage. Furthermore, complex input/output
(I/O) blocks are added such as memory controllers for high throughput external
memory access or PCI-Express controllers to provide a high-speed interface to a
host processor. Especially for embedded systems, some FPGA products include a
full processor core such as an ARM A9 to perform less critical but more complex
operations.

The mean to describe a task that should be executed on an FPGA is to write code in
a hardware description language (HDL), such as VHDL or Verilog. Sophisticated
electronic design automation tools are provided by chip vendors to compile such
code and generate the contents of the configuration memory. The tools map the
code to vendor-specific logic elements and perform placement and routing of these
elements on the chip. This means that the design-flow for an FPGA application
is closely related to designing hardware on a logic level. A designer needs to be
aware e.g. of the limited amount and different types of available resources and the
depth of logic between register stages to achieve timing closure.

19

2. Background and State of the Art

Figure 2.7: FPGA Internal Architecture [9]

2.2.2 Advances in Technology

This section looks at how the technology in FPGA evolved to what it is today,
based on the statistics collected from data sheets from Xilinx and Altera. The first
ever FPGA built by Xilinx (XC2064) in 1984 was based on 2.5 µm process tech-
nology and it had only 64 logic blocks, each of which held two three-input LUTs
and one register [8]. Over the last decade, FPGA industry saw a rapid growth in
manufacturing process technology (Figure 2.8-(a)) and as a result today’s FPGAs
consist of millions of logic blocks (Figure 2.8-(b)) inside a single chip. Amount of
multiplications and accumulations are another important factor that measures the
capability of arithmetic performance. Early FPGAs did not have such a capability,
but gradually DSP blocks started to be integrated. Nowadays, state-of-the-art FP-
GAs contains close to 12000 DSP blocks (Figure 2.8-(c)). The block ram determines
the capacity of fast memory inside the FPGA chip. Over a decade ago the amount
of block ram available in FPGAs was only few mega-bits, but today state-of-the-art
FPGAs consists of few hundred mega-bits (Figure 2.8-(d)), facilitating applications
with low latency access to the memory. One of the key difference between FPGAs
compared to CPUs and GPUs is the DRAM throughput. Historically, FPGAs were
not performing well in this aspect. However, over the last few years this has been
changing (Figure 2.8-(e)) and with the introduction of HBM, which is DRAM inte-
grated inside the FPGA chip, now offers a bandwidth of around 256 GBs. This is
a major breakthrough in FPGA technology when catching up with the application
performance of GPUs and CPUs. Ethernet Speed is another factor that distin-
guishes FPGAs from other compute resources, as FPGAs are extensively used in
networking applications. Figure 2.8-(f) shows that Ethernet speed has improved
from 1 Gbs to 100 Gbs over the last decade. Another interesting move from the
FPGA vendors is to harden the MAC and PHY layers in the chip, leaving more re-
configurable resources for the applications. In summary, technology in FPGA has

20

2.2. FPGA

 0

 20

 40

 60

 80

 100

 120

 140

2001 02 03 04 05 06 08 09 10 11 13 14 2015

P
ro

c
e
s
s
 T

e
c
h
n
o
lo

g
y
 (

n
m

)

Year

Xilinx Altera

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

2001 02 03 04 05 06 08 09 10 13 14 2015

N
u
m

b
e
r

o
f

L
o
g

ic
 C

e
ll
s
/E

le
m

e
n
ts

 (
K

)

Year

Xilinx Altera

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

02 03 04 05 06 08 09 10 13 14 2015

N
u
m

b
e
r

o
f

D
S

P
 B

lo
c
k
s

Year

Xilinx Altera

(c)

 0

 50

 100

 150

 200

 250

2001 02 03 04 05 06 08 09 10 13 14 2015

B
lo

c
k
 R

A
M

 (
M

b
)

Year

Xilinx Altera

(d)

 0

 20

 40

 60

 80

 100

02 03 05 06 08 09 10 13 14 2015

E
th

e
rn

e
t

S
p

e
e
d

 (
G

b
)

Year

Xilinx Altera

(e)

Figure 2.8: Advances in FPGA Technology Over the Last Decade: (a) Evolution
of FPGA Manufacturing Process Technology, (b) Evolution of FPGA Logic Den-
sity, (c) Evolution of DSP Capacity in FPGAs, (d) Evolution of FPGA Block RAM
Capacity, (e) Evolution of Ethernet Support in FPGAs

21

2. Background and State of the Art

significantly advanced over the last decade, making them a promising compute
resources for cloud data centers.

2.2.2.1 Programmability

One of the disadvantages of FPGAs over CPUs and GPUs is its programmability,
which needs expertise in low-level RTL programming, such as Verilog and VHDL.
To close the gap with CPUs and GPUs in terms of programmability, research com-
munity and industry has turned to high-level synthesis (HLS) [82]. In HLS, the
design flow does not start from a hardware description but rather from an algo-
rithm description in a programming language such as C or C++. Although some
restrictions apply, this allows software programmers to experiment with FPGAs
in a way they are familiar with CPUs. A wide range of industry products [83]
adopted this flow and allowed different kind of inputs, such as C, C++, SystemC
or even Java and MatLab code. With the increasing heterogeneity of computer
systems, the urge was strong to find a common way to program and communicate
with different processing units. By the end of 2008, the first OpenCL technical spec-
ification was published by a consortium consisting of both hardware and software
companies to tackle this challenge. OpenCL standard defines a hierarchical mem-
ory layout with different access permissions for different parts of the code. While
the code itself is very C-like, the programmer has to put some thought into how to
partition the application into data-parallel and task-parallel pieces. This enabled
hardware vendors to produce compilers that are able to compile such kernels to
run on their devices. Initially CPU, GPU and DSP vendors provided such com-
pilers and the required API library implementation to run it. But in 2013, Altera
released the software development kit for OpenCL with their 13.0 tool suite [84].
Although all these design technologies raised the interest of application designers,
a last hurdle remains: long compilation times. Despite the use of incremental
compilation and hard IP blocks, the compile times of modern FPGAs can become
easily multiple hours long.

2.3 FPGA Deployment Architecture

There are many possible options for incorporating FPGAs into systems to build
heterogeneous computing infrastructures, including how it interfaces with the
CPUs, and how the FPGAs communicate with each other. This section reviews
those options for attaching an FPGA to the CPUs based on the placement. The
closer the integration with the CPU, the finer-grain the problem that can be of-
floaded to the FPGA and the lesser the independence FPGA has for running het-
erogeneous applications. As shown in the Figure 2.9, an FPGA can sit (i) on the
chip, (ii) on the package, (iii) being bus-attached, (iv) being pcie-attached, or (v)
network-attached in the system hierarchy.

22

2.3. FPGA Deployment Architecture

Figure 2.9: Accelerator Attachments Options

2.3.1 On Chip

In state-of-the-art SoCs that integrates CPUs and FPGAs, typically an FPGA is
attached to a weak CPU, such as ARM. In this arrangement, FPGA is much more
prominent than the CPU and the CPU is just there to implement the control path.
Both the two major FPGA vendors have adopted this SoC approach. Xilinx releases
their SoCs under the code name of Zynq [10], whereas Altera goes with the name
of their FPGAs codename, namely stratix, arria, and cyclone [85]. Figure 2.10
shows a Zynq SoC from Xilinx, which combines dual ARM Cortex-A9 processors
with FPGA programmable logic, operating in a small power envelope of 0.5-2 W.
Each A9 core has 32 KB of instruction and data caches, a shared 512 KB L2 cache
and a variety of peripherals, including FPGA fabric. The FPGA fabric is coherent
with the cores’ L1 and L2 caches through the Accelerator Coherency Port (ACP).
Both the cores and the FPGA have access to 1 GB of DRAM through the AMBA
AXI bus.

2.3.2 On Package

Processor industry led by Intel, IBM, and AMD and the FPGA industry led by
Xilinx and Altera were working on two independent paths. However, with the
acquisition of Altera in 2015, Intel started to integrate their CPUs and FPGAs in
the same package. One key difference with the SoC approach of FPGA vendors
explained in Section 2.3.1 and this approach is that Intel integrated their high-
end server-class CPUs with high-end FPGAs from Altera, targeting data center
workloads. Figure 2.11 shows this multi-chip package from Intel, which integrates
a Xeon CPU and an Arria 10 FPGA.

23

2. Background and State of the Art

Figure 2.10: Xilinx Zynq SoC: FPGA with Dual Core ARM [10]

Figure 2.11: Intel Broadwell and Arria 10 Multi-Chip-Package [11]

2.3.3 System Bus-Attached

For low-latency, tight and coherent coupling between CPUs and FPGAs, CPU
vendors opted to attach the FPGAs over the system bus: Intel attaches FPGAs
to their CPUs over QPI [86] [87], whereas IBM provides a cache-coherent proces-
sor interface over PCIe [88]. Nallatech developed a front side bus accelerator for
intel Xeon CPUs [89]. Although AMD has not officially announced about such
interfaces for their processors, there are several research attempts for attaching
FPGAs over hyper-transport [90] bus to AMD CPUs [91] [92]. On the other hand,

24

2.3. FPGA Deployment Architecture

when low-latency tight coupling is needed for inter-FPGA interaction, multi-FPGA
boards [93] [94] [95] [96] [97] [18] [98] used with several FPGAs connected over a
shared bus on the same PCB. The topology of FPGAs in such cases varies from
mesh, torus, and to crossbar [30].

2.3.4 PCIe-Attached

2.3.4.1 IBM SuperVessel Experimental FPGA Cloud

IBM SuperVessel [99] [100] is a heterogeneous computing infrastructure, which of-
fers FPGAs over the cloud for research. It offers both PCIe- and CAPI-attached [88]
FPGAs (Figure 2.12) for experimental purposes. CAPI is a feature specific to the
POWER8 processor. It leverages the use of system-level accelerators by providing
a high-bandwidth and low-latency interface built on top of the physical specifi-
cation of PCIe. CAPI allows accelerators to operate in the same virtual address
space as the processor cores allowing them to act as part of program execution.
This eliminates the need for device drivers and simplifies the software integration
of the accelerator. The enabling component for CAPI is the Coherent Accelerator
Processor Proxy (CAPP) unit of the POWER8 processor chip. It is connected to
the PCIe interface and acts as a representative core for the accelerator on the in-
ternal processor bus. It participates in the coherency protocols and maintains a
directory of all cache lines held by the accelerator [88]. Although initially CAPI
was proprietary and vendor specific solution from IBM, with the introduction of
OpenCAPI [101] [102], other vendors are also able to benefit from this technology.

2.3.4.2 Convey

The Convey Wolverine Application Accelerator (Figure 2.13) is a PCIe Express
form factor coprocessor that provides application specific hardware acceleration.
The coprocessor incorporates the latest high-density Xilinx FPGAs. It consists
of two FPGAs: low-end one for control logic of the card and high-end one for
application engines. Further, it logically shares the virtual address space of the
host through Convey’s unique Globally Shared Virtual Memory (GSVM). GSVM
reduces development efforts by removing the “abstractness” and programming
complexities of treating the PCIe card as an I/O device [12].

2.3.4.3 Nallatech FPGA-Accelerated Compute Node

Nallatech FPGA-accelrated compute node is 1U rack server, which has 4 PCIe-
attached Nallatech 510T FPGA cards each consisting of 2 Arria 10 FPGAs.

25

2. Background and State of the Art

Figure 2.12: IBM SuperVessel Hardware Infrastructure

Figure 2.13: Convey Wolverine Accelerator Card [12]

26

2.3. FPGA Deployment Architecture

Figure 2.14: Nallatech FPGA-Accelerated Compute Node [13]

2.3.5 PCIe- and Network-Attached

2.3.5.1 NetFPGA

NetFPGA is a project designed specifically for the research and education commu-
nities. It provides software, hardware and community as a basic infrastructure to
simplify design, simulation and testing, all around an open-source high-speed net-
working platform [103]. The first public NetFPGA platform, NetFPGA-1G [104],
was a low cost board designed around Xilinx Virtex-II Pro 50. The successor in-
troduced in 2010, NetFPGA-10G [105], expanded the original platform with a 40
Gb/s, PCIe Gen.1 interface card based on a Xilinx Virtex-5 FPGA. The latest NetF-
PGA provides a platform for rapid prototyping of 10 Gb/s and 40 Gb/s applica-
tions, and a technology enabler for 100 Gb/s applications, focusing on bandwidth
and throughput. It is based on a Virtex-7 FPGA, along with peripherals support-
ing high-end design, which includes PCI Express (PCIe) Gen.3, multiple memory
interfaces and high-speed expansion interfaces [103].

2.3.5.2 Microsoft Catapult V1

Catapult [25] (Figure 2.15) is a highly customized application specific FPGA-based
reconfigurable fabric designed to accelerate page ranking in the bing web search
engine. From the perspective of cloud computing, the acceleration provided is
integrated in the SaaS layer and is hidden from the users when the bing search
service is used over the Internet. In catapult, 1632 FPGAs are connected in a 2D
torus network where each FPGA with 8 GB of off-chip DRAM is node attached to
a server over the PCIe bus. The page ranking algorithms are executed in a pipeline
of 8 FPGAs, and the inter-FPGA communication occurs over 10 Gb SerialLite III
[106] protocol. Compared to a software-only approach, catapult has achieved 95%
improvement in ranking throughput for a fixed latency, and when the throughput

27

2. Background and State of the Art

Figure 2.15: Microsoft Catapult V1

is kept constant it has reduced latency by 29%.

Catapult is a promising example which shows the potential of heterogeneous com-
puting at large scale in cloud data centers. Even though catapult has shown good
results, as a system deployed in a data center it has few drawbacks. First, each
FPGA is node attached which makes 3 points of failures; server, FPGA and net-
work, and this decreases the fault tolerance of the whole system. This makes
the system inefficient because most of the resources in data centers are deployed
under fail-in-place strategy, where even a fault occurs in a resource they are not
repaired or replaced soon to reduce management overhead. Second, technology
tailoring and scaling up and down of resources are inherently difficult with the
node attached FPGAs. Third, dedicated inter-FPGA network breaks the homo-
geneity of the data center network and increases management overhead. Since the
whole IT stack is managed and customized solely for a single application, this can
be considered as an application specific platform or a data center. Even though,
it is a significant management overhead, it can be traded off for the performance
achieved. However, in the case of general purpose cloud data centers this is not
practical. The heterogeneous devices are used in a diverse kind of applications.
Therefore, the deployment must be flexible and scalable like traditional data cen-
ter resources such as server and storage.

28

2.3. FPGA Deployment Architecture

Figure 2.16: Microsoft Catapult V2

2.3.5.3 Microsoft Catapult V2

The shortcomings of the Catapult V1 [25] approach due to the tight coupling of
FPGAs to the server and the dedicated network for interconnecting FPGAs have
been solved to some extent in Catapult V2 [1] by connecting the PCIe-attached
FPGAs to the DC network as shown in Figure 2.16. Unlike in V1 approach, in
this approach as many FPGAs as needed can be used by a single server and those
FPGAs can be connected in a flexible, user-defined topology. However, in the V2
approach, to use the FPGAs for application acceleration as well as for network ac-
celeration, the server NIC is connected to the DC network through the FPGA. This
makes all the incoming and outgoing traffic to and from the server pass through
the FPGA. The FPGA is partitioned into two regions using partial reconfiguration.
The dynamic region executes the application acceleration whereas the static region
executes the network acceleration. This architectural aspect brings several disad-
vantages into V2 approach: (i) The full programming of the FPGA disrupts the
network connection to the server, making it difficult to offer reliable infrastructure
services in cloud DCs (ii) any change in the DC network affects the FPGA as well,
which increase the system HW cost for network upgrade. One way to get around
these two issues is to connect both the server and the FPGA independently to the
DC network, as depicted in Figure 2.17 from [14]. However, this approach still

29

2. Background and State of the Art

does not provide the scalability required from the FPGA infrastructure.

Figure 2.17: Server and PCIe-Attached FPGA Independently Connected to a Com-
mon DC Network [14]

2.3.5.4 Maxeler MPC-N Series

Figure 2.18: Maxeller MPC-N Series [7]

Maxeler dataflow engine [7] is a FPGA-based dataflow computer designed for
data-compute-intensive applications like financial data processing. Maxeler MPC-
N series is a heterogeneous compute appliance (Figure 2.18), which consists of an
Intel Xeon CPU and two FPGAss. Each FPGA is attached to the CPU over PCIe
and also to the DC network over SFP/SFP+. FPGAs are connected in a secondary
link for direct communication between each other. Except for the secondary link
between two FPGAs, the architecture is almost similar the one depicted in Fig-
ure 2.17.

30

2.3. FPGA Deployment Architecture

2.3.5.5 Maxeler MPC-C Series

Figure 2.19: Maxeller MPC-C Series [15]

Maxeler MPC-C series [15] is an enhanced version of MPC-N series, where the
number of FPGAs in the appliance is doubled to 4. Similar to MPC-N series, the
FPGAs are directly connected forming a ring called MAX Ring. In this series, the
direct 10 GbE connections out of the FPGAs are pruned. [107] has used MPC-C
series to implement finite difference time domain method for solving Maxwell’s
equations.

2.3.5.6 Amazon F1 Instance

Amazon EC2 F1 [47] instance is a server node with up to eight FPGAs. F1 instances
include the Xilinx UltraScale Plus FPGA with local 64 GB DDR4 ECC protected
memory. FPGAs are PCIe-attached, and each FPGA is connected together over a
dedicated 400 Gbps secondary network as shown Figure 2.20.

2.3.5.7 AXEL

Axel [108] is a heterogeneous cluster that targets compute-intensive applications
such as N-body simulations. It comprises a cluster of heterogeneous nodes each
consisting of a CPU, an FPGA, and a GPU connected via PCIe. The CPUs of
each node communicate over Gigabit Ethernet, and the FPGAs of each node com-
municate over an infiniband network. The communication between tasks across
different nodes is based on the OpenMPI framework through ethernet, while the
communication between the tasks across different processing elements in the same
node is based on the shared memory inter process communication. The experi-
ment results show that for a single node, N-body simulation run time is 22.7 times
faster in the Axel architecture compared to a CPU only implementation. When the
number of nodes is increased to 16, the performance does not scale linearly and

31

2. Background and State of the Art

Figure 2.20: Amazon EC2 F1 Instance

the improvement is only 4.4 times. This is because of the communication overhead
between nodes.

2.3.5.8 OpenPipe

OpenPipes [109] is an FPGA-based distributed application deployment framework
based on PCIe-attached FPGAs. The inter-FPGA and SW-FPGA communication
occurs via TCP over Ethernet network. In order to change the behavior of the
distributed dynamically, software-defined networking is used.

2.3.6 Network-Attached

2.3.6.1 Maxeller MPC-X Series

In contrast to the MPC-N and MPC-C series, Maxeler MPC-X series [16] offers an
FPGA only appliance with 8 FPGAs connected by MAXRing. The external connec-
tion from this appliance is over Infiniband and each FPGA is directly connected
to an Infiniband switch fabric within the appliance (Figure 2.21). In this approach,
even though FPGAs are decoupled from the CPUs, they are connected in a fixed
topology, restricting the infrastructure to a certain set of applications.

2.3.6.2 BEE2

Berkeley Emulation Engine (BEE2) [95] developed in 2004 has five Xilinx Virtex-II
Pro 70 FPGAs hosted on a single motherboard. Out of five, four computational
FPGAs are connected in a ring. The central control FPGA is connected to other

32

2.3. FPGA Deployment Architecture

Figure 2.21: Maxeller MPC-X-Series Appliance [16]

Figure 2.22: UC Berkeley BEE2

four FPGAs in a star topology. Compute-intensive tasks run on the outer ring
while the control FPGA runs Linux managing configuration and off-board I/Os.

2.3.6.3 Copocobana/Rivyera

COPACOBANA 5000 [94] [17] consists of an 18-slot backplane equipped with
16 FPGA-cards and 2 controller cards. The latter connect the massively parallel
FPGA-computer to an in-system off-the-shelf PC. Each of the FPGA-cards carry 8
high performance FPGAs interconnected in a one-dimensional array as shown in
Figure 2.23. The interconnection between the individual FPGA-cards and between
the FPGA-cards and the controller is organized as a systolic chain. There are fast
point-to-point connections between every two neighbors in this chain. The first
controller communicates with the first FPGA on the first card and the last FPGA

33

2. Background and State of the Art

on the last card is connected to the second controller.

Figure 2.23: COPACOBANA 5000 System Architecture [17]

2.3.6.4 CUBE 512-FPGA Cluster

Figure 2.24: CUBE 512-FPGA Cluster

Cube [93] is a 512-FPGA systolic array system. The system is made from 8 boards

34

2.3. FPGA Deployment Architecture

each containing 64 FPGA devices connected in a cube structure for a total of 512
FPGA devices. According to authors, RC4 key search engine implemented in cube
can perform a full search on the 40-bit key space in 3 minutes, improving 359
times compared to a multi-threaded software implementation on a 2.4 GHz Intel
Quad-Core Zeon processor. One drawback of this system is that the network topol-
ogy is an 8x8x8 3-D Mesh, not optimized for latency. Therefore, communications
latencies are very high for the applications that do not fit this paradigm.

2.3.6.5 RAMP

RAMP(Research Accelerator for Multiple Processors) [96] is a MicroBlaze proces-
sor based message-passing multi-core system capable of running scientific bench-
marks. This system is built by replicating multiple BEE2 [95] boards, and it con-
sists of 768-1008 MicroBlaze cores in 64-84 Virtex-II Pro 70 FPGAs on 16-21 BEE2
boards scaling to 1000 cores in a standard 42U rack. The board-to-board commu-
nication is over a 10 Gbs full-duplex link.

2.3.6.6 TMD

Figure 2.25: TMD FPGA Cluster [18]

TMD [18] is a system built by attaching multiple boards each with a cluster of
fully connected 9 FPGAs. Within a single board all 9 FPGAs are connected to each
other using 2.5 Gb/s serial transceivers and the boards are connected to the node
via 10 Gb/s links. The authors focused on accelerating applications with high
computation-to-communication ratios (e.g., molecular dynamics simulations), in-
stead of data-intensive applications. The machine enables designers to implement

35

2. Background and State of the Art

large-scale computing applications using a heterogeneous combination of hard-
ware accelerators and embedded microprocessors spread across many FPGAs.

2.3.6.7 Nanostream

NanoStream [110] is an application specific heterogeneous architecture for stream
analytics in data-intensive applications. The heterogeneous architecture is based
on the Xilinx Zynq©-7000 System-on-Chips (SoC). NanoStream software stack
runs on the ARM-based processing system (PS) and the accelerator cores runs
on the FPGA-based programmable logic (PL) in the SoC. Multiple SoCs are con-
nected over an Ethernet network for scalable system deployment.

2.3.6.8 NARC

NARC [19] is a standalone network-attached FPGA card designed for HPC and
network applications. The custom board consists of a Xilinx FPGA and an ARM
processor. The ARM processor and an external PHY are used as the network in-
terface to connect the FPGA to the 1 G Ethernet-based network. Even though,
the FPGA card is standalone and network-attached, the major drawback of this
approach is that all the network packets have to pass through a general purpose
ARM processor, which degrades overall application performance that can be de-
livered by the FPGA.

2.4 Summary

Custom HW accelerators have been used widely in stringently constrained com-
puting environments, such as mobile computing. However, diminishing physical
characteristics of CMOS (Moore’s law and Dennard scaling) and lack of viable
alternatives have attracted custom HW accelerators towards main-stream comput-
ing as well. This trend is becoming clear with the advent of FPGAs, GPUs and
ASICs in the DCs in recent years.

ASICs are specialized HW that runs specialized applications. The time to market,
the flexibility (in terms of the backward compatibility and modification of appli-
cations), and the up-front NRE cost make ASICs not suitable for dynamic DC
infrastructures, where the applications/algorithms change frequently. GPUs are
also specialized HW, but the range of applications that run on top of them are not
highly specialized. However, the performance depends on the nature of the appli-
cations, and GPUs typically perform well for parallel floating-point computation.
In contrast, FPGAs are general-purpose HW, which can be specialized in the field
to run specific applications. FPGAs perform well for parallel applications as well
as for streaming applications.

This thesis focuses on FPGAs for main-stream computing in cloud DCs. Fig-
ure 2.27 shows the summary of the state-of-the-art large-scale FPGA deployments

36

2.4. Summary

Figure 2.26: NARC FPGA Card Architecture [19]

reviewed in this chapter. Those deployments can be categorized into three types
based on the CPU-FPGA attachment architecture: (i) bus-attached, (ii) hybrid-
attached (bus- and network-attached) and (iii) network-attached. Tight coupling
of FPGAs to servers over a peripheral bus limits the scalability of the FPGA in-
frastructure in terms of the number of FPGAs that can be deployed independently
of the number of servers. Network-attached FPGAs are expected to solve this
issue, but state-of-the-art network-attached deployments are connected on fixed
topologies, limiting the scope of the applications that can run on them.

Table 2.1 shows the scalability of those deployments at rack scale. Some archi-
tectures are projected to rack-scale versions for the comparison. Among these
deployments, RIVYERA and BEE2 are architectures specialized for a specific ap-
plication, whereas HP and Nallatech are FPGA-accelerated commercial off-the-
shelf servers. Microsoft is the only state-of-the-art DC deployment. According to
the comparison, extensively customized dedicated FPGA racks (RIVYERA, Max-
eller, BEE2) can be built at high density, scaling up to around 1300 FPGAs per
rack, whereas state-of-the-art FPGA-accelerated heterogeneous compute racks (Mi-
crosoft, HP, Nallatech) scale up to only few hundreds of FPGAs per rack. However,
both approaches are not suitable for deployment of FPGAs at large-scale in cloud
DCs: (i) although specialized deployments offer high scalability, they do not have

37

2. Background and State of the Art

Table 2.1: FPGA Rack Performance Comparison

Per Rack RIVYERA Maxeller BEE2 Microsoft HP Nallatech
FPGA Virtex 4 Virtex 6 Virtex-2 Stratix 5 Stratix 4 Arria 10
No of FPGAs 1280 256 160 96 378 248
LUTs (106) 39 76 15 33 160 106
FFs (106) 39 152 15 66 160 424
FPGA:Host 1:0 1:0 1:0 1:1 1:1 8:1
FPGA:DRAM 1:0 1:96 - 1:8 1:64 1:16
FPGA:NetBW 8:1 - 1:10 1:40 1:1 -

the flexibility, and (ii) heterogeneous compute racks provide neither scalability nor
flexibility.

Along the evolution of heterogeneous computing (Figure 2.28), we envision that
future main-stream computing systems would comprise more custom HW accel-
erators than CPUs (Figure 2.28-(c)). We have already seen this trend in the mobile-
computing domain for exploiting power efficiency and space optimization, where
some state-of-the-art SoCs [20] dedicate more than half of the chip space for ac-
celerators (Figure 2.29 and 2.30). In DCs, the scale and the nature of applications
change frequently. Hence, fixed allocation of FPGAs to an application hinders the
exploitation of the maximum efficiency available from the compute infrastructure.
Therefore, two key requirements expected from the FPGA infrastructure in cloud
DC systems are (i) a flexible CPU:FPGA ratio and (ii) the ability to interconnect FP-
GAs in user-defined topologies. To satisfy these requirements, a novel architecture
is required for deploying FPGAs at large scale in DCs. In the next chapter, a sys-
tem architecture is proposed based on these requirements and on the knowledge
gathered in this chapter.

38

2.4. Summary

Figure 2.27: Large-scale FPGA Deployment Summary: (a) RIVYERA, (b) HP, IBM
SuperVessel, (c) Nallatech, (d) Microsoft Catapult V1, (e) Microsoft Catapult V2,
(f) Amazon EC2 F1 Instance, and (g) Maxeller MPC-X

39

2. Background and State of the Art

(a) (b)

(c)

Figure 2.28: Emergence of Heterogeneous Computing: (a) Traditional Data-
Processing Platform, (b) HW-Accelerated Data-Processing Platform, (c) Custom-
HW-Dominated Future Data-Processing Platforms

Figure 2.29: Apple A8 SoC Die Photo [20]

40

2.4. Summary

Figure 2.30: Apple SoC Constitution [20]

41

Chapter 3

System Architecture

This chapter proposes a system architecture for deploying FPGAs at large scale
in DCs. The chapter is organized as follows: Section 3.1 analyzes infrastructure
requirements for enabling FPGAs in DCs. Based on the identified infrastructure
requirements, next three sections define the system architecture. Section 3.2 pro-
poses to change the way FPGAs are deployed in DCs by introducing standalone
disaggregated FPGAs, followed by Section 3.4 elaborates on the proposed DC in-
frastructure for deploying standalone disaggregated FPGAs. Finally, Section 3.5
explains how those FPGAs are managed and provisioned to the users in cloud
DCs. The chapter is summarized in Section 3.6.

3.1 Infrastructure Requirements

FPGAs are widely used in storage and networking appliances in DCs. In the
computing space, FPGAs have been used for specific applications in specific com-
puting infrastructures, such as HPC [97] and mobile computing. However, at the
time of writing this, FPGAs just started to make their way in to the DCs as gen-
eral purpose compute resources [25] [1] [47]. Introducing FPGA as a compute
resource to DCs, which runs general purpose applications, needs an analysis to
figure out the requirements that should be satisfied in large-scale deployments.
The infrastructure requirements we have identified are: (i) scalability, (ii) flexibil-
ity, (iii) reliability, (iv) homogeneity, (v) resource management (vi) system cost and
(vii) power efficiency. These requirements are studied in the next sections. Along
with the knowledge gathered in Chapter 2, the outcome of this requirement anal-
ysis is used to define the system architecture.

3.1.1 Scalability

One of the most influential benefits of using DC infrastructures is scalability. Scal-
ability refers to being capable of seamlessly adding more DC resources, such as

42

3.1. Infrastructure Requirements

Figure 3.1: Attaching FPGAs to a CPU over PCIe: (a) Direct PCIe-attachment and
(b) PCIe-expansion chassis based attachment

servers, storage, and network devices. The capability to scale in this manner, al-
lows to provide as much resources as needed by the DC users. In other words,
DCs provide their customers the possibility to scale their applications from a sin-
gle VM to virtually any number of servers.

When new resources, such as FPGAs are introduced in DCs, the same illusion
must be given to the users. To provide a scalable solution to the customers, the
FPGA infrastructure must be designed in a way, such that it can pack a large
number of FPGAs in a unit DC rack space. With the traditional PCIe-attached ap-
proach, there would be one or two FPGAs per server node (Figure 3.1-(a)) scaling
only up to around 64 FPGAs per DC rack. In this approach, the total amount of
FPGAs in a DC can be increased by increasing the number of servers. However,
this type of scaling takes up a large amount of space and increases the overall
infrastructure cost. One way to increase the number of FPGAs per rack is to use
a dedicated chassis, such as a PCIe-expansion chassis (Figure 3.1-(b)). Using the
state of the art PCIe-expansion chassis [22], the number of FPGAs per rack can
be scaled up to around 108. In addition to the increased FPGA density, the other
advantage of this approach is the cost reduction due to the high FPGA/Server
ratio.

3.1.2 Flexibility

1. CPU Independence: DC workloads are heterogeneous and dynamic. Some
workloads may require one server and a part of an FPGA and some other
workloads may require one server and multiple FPGAs. Therefore, the FPGA
infrastructure must be able to provision as many FPGAs as needed indepen-
dent of the number of servers. Similar to renting virtual machines, users
should be able to rent as many FPGAs as required, use them in heteroge-
neous applications and release them when not needed. If the FPGAs are
PCIe-attached, as discussed in Section 3.1.1, only few devices can be hosted
by a server and this number is fixed. For heterogeneous and rapidly chang-
ing workloads, sometimes this deployment becomes over provisioning and
some other times it becomes under provisioning.

43

3. System Architecture

2. Programmable Topologies: As data center workloads are becoming increas-
ingly heterogeneous and dynamic, software-defined infrastructures are highly
desirable, so that resources can be dynamically assigned according to the
workload requirements. Therefore, being able to connect multiple FPGAs
in a software-defined manner according to the dynamic workloads require-
ments are highly desirable.

3. Workload Migrations: In DCs, workloads are migrated to different servers
from time to time to meet diverse user and management requirements such
as SLA, system optimization and disaster avoidance. The usage of FPGAs
should be smooth over such migrations.

3.1.3 Reliability

In large scale DCs, failed compute resources are kept for months and years without
repairing or replacing soon to reduce the management overhead. This is called
the ”fail-in-place” strategy. To follow this strategy, the DC infrastructure must
be designed in a way such that failed resources do not make much impact on
the overall system reliability. New resources in the DC, such as FPGAs, must
follow the same strategy to maintain a higher reliability. To follow the fail-in-place
strategy, FPGAs must be independent of other infrastructure resources such as
server/CPU nodes.

When FPGAs are PCIe-attached and hosted by a server [25] [111], they rely on the
server particularly for power and management. If the server fails, the FPGA fails
as well. In some approaches the server NIC is connected to the DC network via
the PCIe-attached FPGA [1]. In those approaches, the full reconfiguration of the
FPGA disrupts the network connection to the server, hindering the provisioning
of those servers to run applications, which require 100% service availability.

Malicious data can intercept the operation of infrastructure resources and even-
tually bring down the whole system. Therefore, it is required to monitor for
malicious data communicated into and out of FPGAs to detect such incidents and
react expeditiously. To protect the system from possible damages that can cause
by FPGAs, in most approaches a shell is used [25] [27] [112], which is designed in
way to monitor and protect the system from possible damages that may be caused
by the FPGA and the application. This shell is provided by the FPGA provider
and the user application runs inside the shell.

3.1.4 System Cost

Typically, an off-the-shelf FPGA card costs around $2000 to $3000 [113] [114],
whereas the cost of a DC-class sever is around $5000. Attachment of an off-the-
shelf FPGA to a server node increases the overall cost of the node by around 40%-
60%. Large-scale commercial FPGA deployments shows that the addition of an
FPGA card increases the cost of server node by 30% [25]. The price of FPGA chips

44

3.1. Infrastructure Requirements

are decreasing with the continuous improvement in process technology. How-
ever, FPGA card manufacturers add a cost of around $1000 to $1500 on top of the
FPGA chip to release an FPGA card to the market. The high cost involvement of
the FPGA card manufacture hinders the reach of real cost advantage to the end
users.

The cost optimization of a large-scale FPGA deployment can be achieved in two
ways: (i) the way FPGAs are deployed must be changed so that an expensive server
node is not compulsory to deploy FPGAs. (ii) instead of using off-the-shelf FPGA
cards, the FPGA cards must be designed from the scratch and manufactured by
pruning unwanted peripherals. Most of the large FPGA deployments follow the
second approach and develop their own FPGA cards to suit their infrastructure
[25] [111]. However, these large-scale FPGA deployments still rely on a server
node to host the FPGA cards. Even though the cost of the FPGA unit is reduced
by a large margin, having a server to host those optimized FPGA cards inhibits
the gain in overall system cost.

3.1.5 Power Efficiency

As discussed in Chapter 2, FPGAs are highly energy efficient computing resources
compared with CPUs and GPUs. However, FPGAs being tightly coupled to a
server node hinders the exploitation of its power efficiency due to the higher power
consumption of the server node. Large-scale commercial FPGA deployments [25]
and research on FPGA-accelerated applications [21] (Figure 3.2) show that the
addition of an FPGA card increases the power consumption of a server node by
10%. Even though FPGAs are highly energy efficient, [21] shows that the server
node plus FPGA combination becomes less energy efficient than multi-threaded
CPUs due to the high power consumptions of the overall server system. But,
when only the power consumption of the FPGA itself is considered, FPGAs are
more power efficient than CPUs and GPUs.

This observation guides us to two directions to increase the overall power effi-
ciency: (i) increase the utilization of the server node. By adding more jobs to the
server CPU, the overall resource utilization can be increased. But, adding more
jobs to the same CPU could affect the performance of the individual applications
in terms of the processing speed. Therefore, careful workload placement is needed
to exploit both the server and the FPGA resource in an optimal way. (ii) another
option is to add more than one FPGA to the server node and offload as much pro-
cessing as possible. But, as discussed in Section 3.1, adding more FPGAs to the
server node could result in resource over provisioning in dynamic environments
like cloud DCs. (iii) the third option is to decouple the FPGA from the server
node and deploy them as standalone disaggregated computing resources. The
disaggregation makes the FPGA completely independent in terms of the power
consumption.

45

3. System Architecture

Figure 3.2: CPU, Memory, and I/O Power Consumption when a PCIe-attached
FPGA is in Idle, Reconfiguration, and Computation Steps [21]

3.1.6 Homogeneity

Large-scale Internet companies host thousands or even millions of servers, storage,
and network units in their DCs. Even a one second outage of these infrastructures
cost them millions of dollars. Hence, maintaining those infrastructures in a high-
available manner is important. However, maintaining such huge infrastructures
are always costly, particularly in terms of the power and the labor. The infrastruc-
ture maintenance cost can be reduced by reducing the labor effort required and
allowing more efficient problem detection and repair processes. The infrastructure
being homogeneous helps to automate the maintenance work and also reduces
specialized labor skills needed. Therefore, addressing these issues, DC operators
design their infrastructure to be homogeneous, so that each main HW unit, server,
storage, or network, across the DC can be maintained in a way requiring less labor
effort.

When deploying FPGAs in the data centers, this homogeneity must not be bro-
ken. The obvious way to deploy FPGAs is by attaching them to servers via PCIe.
As long as these PCIe attached FPGAs are available in each and every server,
the server unit is homogeneous across the DC. However, at the DC level, having
one FPGA per server prescribes a fixed ratio between FPGA and server resources,
which is discussed in detail in Section 3.1.1. To allow a server to access more than
one FPGA, either multiple FPGAs must be attached to a server through a PCIe
switch using a PCIe-expansion chassis [22] or each PCIe-attached FPGA must be
connected in a dedicated network [25]. In both these cases, a dedicated network
is added to the DC, breaking the network homogeneity and in turn increasing the
labor effort required to maintain that particular network. Further, addition of a
new network increases the HW cost required for cabling and interfaces.

46

3.2. CPU-FPGA Attachment Interface

To maintain the network homogeneity, the FPGAs must be connected to the servers
though the same networking mechanisms used for inter-server communications.
TCP/IP/Ethernet is still the dominant networking protocols used in the DCs.
Therefore, it is highly desirable for FPGAs to be connected to the commodity
DC network.

3.1.7 Management

Once FPGAs are deployed in the DC, they must be managed similarly to other
compute resources, such as servers, storage and network. Typically, these re-
sources are virtualized and added to resource pools. According to the demand,
the pooled resources are used to provision user requests. Once the resources are
released by users, they go back to the respective pools until used again. In the
DCs, the FPGAs must also be virtualized and pooled into resource pools, so that
they can be used on demand by the user.

3.1.8 Summary

From the system requirements reviewed above, to satisfy flexibility, reliability, ho-
mogeneity and power efficiency, a new way for attaching FPGAs to CPUs is re-
quired. To satisfy scalability and system cost, we need a novel DC infrastructure
to deploy FPGAs. To manage FPGAs in DCs, a resource management framework
to manage and provision FPGAs to cloud users is needed. Based on this analysis,
the next sections define the system architecture.

3.2 CPU-FPGA Attachment Interface

As shown in Figure 3.3, there are mainly three options to connect FPGA compute
resources to the CPU-based server resources in the DC: (i) system bus-attached,
(ii) PCIe-attached, and (iii) network-attached.

3.2.1 System Bus-Attached

One option is to place the FPGA on the same board as the CPU when a tight or
coherent memory coupling between the two devices is desired (Figure 3.3-(a)). We
do not expect such a close coupling to be generalized outside the scope of very
specific applications. First, it breaks the homogeneity of the compute module in
an environment where server homogeneity is sought to reduce the management
overhead and provide flexibility across compatible hardware platforms. Second,
in large DCs, failed resources can be kept in place for months and years without
being repaired or replaced, in what is often referred to as a fail-in-place strategy.
Therefore, an FPGA will become unusable and its resources wasted if its host CPU
fails. Third, the footprint of the FPGA takes a significant real estate away from the
compute module –the layout of a large FPGA on a printed circuit board is similar

47

3. System Architecture

Figure 3.3: Options for Attaching an FPGA to a CPU

to the footprint of a DDR3 memory channel, i.e. 8-16GB–, which may require the
size of the module to be increased (e.g., by doubling the height of the standard
node board from 2U to 4U). Finally, the power consumption and power dissipation
of such a duo may exceed the design capacity of a standard node board. The third
and the final points explained above are particularly important when designing
high-density DC infrastructures, which is explained in Section 3.4.3.

3.2.2 PCIe-Attached

The second and the most popular option in use today is to implement the FPGA on
a daughter-card and communicate with the CPU over a high-speed point-to-point
interconnect such as the PCIe-bus (Figure 3.3-(b)). This path provides a better
balance of power and physical space and is already put to use by FPGAs [25]
as well as graphics processing units (GPU) in current DCs. However, this type
of interface comes with the following two drawbacks when used in a DC. First,
the use of the FPGA(s) is tightly bonded to the workload of the CPU, and the
fewer the PCIe-buses per CPU, the higher is the chance of under-provisioning
the FPGA(s), and vice-versa. Catapult [25] uses one PCIe-attached FPGA per CPU
and solves this inelastic issue by deploying a secondary inter-FPGA network at the
price of additional cost, increased cabling and management complexity. Second,
server applications are often migrated within DCs. The PCIe-attached FPGA(s)
affected must then be detached from the bus before being migrated to a destination
where an identical number and type of FPGAs must exist, thus hindering the
entire migration process. Finally, despite the wide use of this attachment model
in high-performance computing, we do not believe that is a way forward for the
deployment of FPGAs in the cloud because it confines this type of programmable
technology to the role of coarse accelerator in the service of a traditional CPU-
centric platform.

3.2.3 Network-Attached

The third method for deploying FPGAs in DCs is to directly connect the FPGA
to the DC network (Figure 3.3-(c)). The main implication of this scheme is that

48

3.2. CPU-FPGA Attachment Interface

the FPGA must be turned into a standalone DC resource, which can be connected
and managed like any other compute node in the DC. From a practical point
of view, this requires an FPGA module to be equipped with an FPGA, optional
local memory, a management interface and a network controller interface (NIC).
Adding a NIC to an FPGA enables that FPGA to communicate with other DC
resources, such as servers, disks, I/O and other FPGA modules. Multiple such
FPGA modules can then be deployed in DCs independently of the number of
CPUs, thus overcoming the limitations of the two previous options.

The networking layer of such an FPGA module can be implemented with either a
discrete or an integrated NIC. A discrete NIC (e.g., dual 10 GbE NIC) is a sizable
application-specific integrated circuit (ASIC) typically featuring 500+ pins, 400+
mm2 of packaging, and 5 to 15 W of power consumption. The footprint and
power consumption of such an ASIC does not favor a shared-board implemen-
tation with the FPGA (see above discussion on sharing board space between an
FPGA and a CPU). Inserting a discrete component also adds a point of failure in
the system. Integrating the NIC into the reconfigurable fabric of the FPGA alle-
viates these issues and is becoming practical with the latest FPGA devices which
can implement a 10 Gb/s network protocol stack in less than 5-10% of their total
resources [115]. Normally, the Ethernet media access controller (MAC) of such a
protocol stack connects to an external physical layer device (PHY) whose task is to
perform encoding/decoding and serialization/deserialization functions, as well
as a transceiver, such as the enhanced small form-factor pluggable transceiver
(SFP+) whose task is to physically move the data bits over the media according to
a specific physical layer standard.

Finally, the integrated version of the NIC provides the agility to implement a spe-
cific protocol stack on demand, such as Virtual Extensible LAN (VxLAN) [116],
Internet Protocol version 4 (IPV4), version 6 (IPv6), Transmission Control Protocol
(TCP), User Datagram Protocol (UDP) or Remote Direct Memory Access (RDMA)
over Converged Ethernet (RoCE) [117]. Alternatively, it can also adapt to emerg-
ing new protocols, such as Generic Network Virtualization Encapsulation (Gen-
eve) [118] and Network Virtualization Overlays (NVO3) [119].

3.2.4 Summary

In summary, we advocate a direct attachment of the FPGA to the DC network
by means of an integrated NIC, and refer to such an FPGA as a standalone dis-
aggregated FPGA. This paves the way towards using FPGAs in resource-centric
DCs [120] [121] [122]. The combination of such standalone disaggregated FPGAs
with emerging software-defined networking (SDN) technologies brings new tech-
nical perspectives and market value propositions, such as building large and pro-
grammable fabrics of FPGAs on the cloud.

49

3. System Architecture

Figure 3.4: Different Ways of Resource Provisioning in the DC Based on Stan-
dalone Disaggregated FPGAs: (a) as a physical FPGA, (b) as a single virtual FPGA,
(c) as multiple virtual FPGAs

3.3 FPGA Provisioning Methods

The reconfigurable logic and external memory resources of the standalone disag-
gregated FPGA can be partitioned and provisioned to the users in DCs in multiple
different ways. The architectural aspects of the standalone disaggregated FPGA
differs according to the way they are partitioned and provisioned. In this section,
we explore the possible ways of provisioning FPGA resources and their architec-
tural implications. As shown in Figure 3.4, the logic and memory resources of an
FPGA card can be provisioned in 3 different ways: (i) as a physical FPGA, (ii) as a
single virtual FPGA, and (iii) as multiple virtual FPGAs.

3.3.1 As a Physical FPGA

Provisioning as a physical FPGA (Figure 3.4-(a)) is the simplest approach. In
this approach, the whole FPGA chip and the external memory is provisioned
to the user. Once rented, the user has to implement his own communication
layers to communicate with the FPGA and external memory over the DC network.
While this approach offers the expert users the full flexibility to implement their
applications, it would not be easy for the non-expert users to bring up the FPGA
with the network and memory IO before placing his application. On the other
hand, the infrastructure providers have to ensure that the DC infrastructure is not
harmed by the possible malicious networks packets sent out by the FPGA.

This approach is good for low cost and low-density FPGAs, as FPGA would be
used most probably for a single application. Hence, resource over provisioning
would not occur. The choice to provision a physical FPGA also affects the man-
agement requirement. The user controls the complete FPGA and therefore, the

50

3.3. FPGA Provisioning Methods

Figure 3.5: FPGA Module Architecture for Physical FPGA Provisioning

FPGA module needs to have a management agent outside of the FPGA chip to en-
sure that the FPGA module is powered up and can be programmed over the DC
network. The path to this management agent (control path) must be fast enough
so that FPGAs can be programmed and reprogrammed in a short period of time.
Furthermore, the management agent must provide a rich set of features so that the
FPGA module can be managed as a standard data center resource. This requires
standard protocols such as TCP/IP to run on this management agent. Running
such a protocol at an acceptable speed requires a CPU to be implemented on the
FPGA module. Figure 3.5 shows a possible architecture for such an FPGA module.

3.3.2 As a Single Virtual FPGA

In this approach (Figure 3.4-(b)), the infrastructure vendor places a logic layer in
the FPGA chip, which is called the SHELL. The rest of the logic resources are
allocated for the ROLE or the user applications, which is also called the vFPGA.
The shell provides the access to the DC network and to the memory resources
for the vFPGA. The shell contains management agents as well, so that the FPGA
module can be managed in the DC infrastructure, similarly to the other standard
DC resources. The vFPGA is only offered to a single user at a moment.

This approach is also good for low-cost and low-density FPGA chips, as it would
only be used for one application. The shell gives the control of the FPGA to the
DC operator, which fulfills the reliability requirement by filtering and dropping
malicious packets emerging from the ROLE. Having the shell within the FPGA
eliminates the need for having a dedicated rich CPU in the FPGA module. Having
a secondary control path is necessary to support the minimal control functions,
such as to power up the FPGA and program the flash in case the default system
image is crashed. The secondary control path does not need a high-speed network
connection to the resource management software, as it is used only for control

51

3. System Architecture

Figure 3.6: FPGA Module Architecture for Single vFPGA Provisioning

Figure 3.7: FPGA Module Architecture for Multiple vFPGA Provisioning

messages and rarely to send a bit stream. Hence to implement the secondary
control path a low-power, low-cost micro controller can be used as shown in the
Figure 3.6.

3.3.3 As Multiple Virtual FPGAs

In this approach (3.4-(c)), similarly to the approach explained in Section 3.3.2,
the infrastructure vendor places a logic layer in the FPGA chip. The difference
compared to the single virtual FPGA is that the remaining reconfigurable logic

52

3.4. Infrastructure for Deployment

resources are divided into multiple independent vFPGAs. This multi-vFPGA ap-
proach has been used in [100] [123]. In a multi-tenant environment, these multiple
vFPGAs can be provisioned to multiple users. A vFPGA must always instantiate
an interface to the network layer and the interface to the memory is optional. This
approach is better for high cost and high-density FPGAs, as they have plenty of
logic resources available. But, to ensure vFPGAs can be independently offered
to multiple users, partial reconfiguration has to be used. The same external data
path must be internally virtualized to provide the DC network access for the mul-
tiple vFPGAs as shown in Figure 3.7 and also the external DRAM must also be
partitioned so that each vFPGA gets is own portion of the physical memory.

3.3.4 Summary

In summary, standalone disaggregated FPGAs can be partitioned and provisioned
in multiple different ways and each approach has its advantages and disadvan-
tages. For DC deployment, the single vFPGA provisioning is preferable as it (a)
gives the infrastructure operator a better control of the FPGA module and (b) it
better fits low-cost and low-density FPGAs, which are the desirable device op-
tion in the DCs. In the section 3.4, we define a system architecture for deploying
disaggregated standalone FPGAs based on the single vFPGA approach.

3.4 Infrastructure for Deployment

In this section, at first the evolution of server and cloud data centers are reviewed.
Next, different deployment options are compared with respect to the requirements
laid out in Section 3.1. We also compare a deployment based on off-the-shelf HW
to a density-optimized hyperscale DC infrastructure.

3.4.1 Evolution of Cloud Data Centers

The first-generation data centers were built using traditional, non-virtualized servers.
These servers were not shared among multiple applications or large enough groups
of users, which decreased the resource utilization. In addition to that, the DC
resources were server-centric and tightly coupled to the server. For example, the
storage could not be expanded beyond the physical limitations of the server, which
hosted the respective disks. Lack of management tools and immaturity of virtu-
alization techniques made on demand server provisioning impractical in the first
generation DCs. It could take an enterprise months to deploy new applications
requiring too much manual intervention. This forced IT organizations to over-
provision resources to ensure that adequate spare computing capacity existed to
satisfy demand spikes, provide disaster recovery and meet failover requirements
further decreasing the resource utilization. Even though backup servers consume
a fraction of the power, hundreds or thousands of idle servers collectively require
a large amount of power and significant amount of space [124]. In the data centers

53

3. System Architecture

Figure 3.8: Server and Cloud Data Center Trends

built using these type of servers, the server utilization is typically in the range of
7-10%.

Between 2003 and 2010, virtualized servers, virtualized storage and software-defined
networking (SDN) emerged. These virtualization technologies enabled the emer-
gence of software-defined data centers (SDDC). SDDCs can pool the resources of
the computing, network and storage to create a central, more flexible resource that
can be reallocated based on needs. However, the physical infrastructure behind the
SDDC did not change much. Also, the processors are not optimized for the diverse
scale-out workloads resulting in suboptimal performance [125] [39] [126]. In ad-
dition to that, the virtualization overhead due to hypervisors started to become a
performance issue [127]. Even though we did not see much change in the physical
architecture and the resources were still mainly server-centric, resource disaggre-
gation has slowly started [128] with storage and memory [129] being placed in the
network decoupled from the servers. In the data centers built using virtualized
servers, the server utilization is typically in the range of 7-18%.

Rapid development of management tools and overhead of server virtualization
made the IT organizations to consider non-virtualized servers again [130]. Even
though, at present, those servers can be better used for certain set of applica-
tions with rich management tools and programming models, the efficiency and
the scalability is far below compared to the processing demands from the future
applications. Meanwhile a new class of servers called ”hyperscale servers” are

54

3.4. Infrastructure for Deployment

being emerged. The hyper scale servers are built using low-cost, low-performance
embedded processors [131], replacing server-class processors. Hyperscale proces-
sors consume 5 to 30 times less power than server-class counterparts and are 5
to 15 times more energy-efficient. Further, their absolute performance lags that of
server-class processors by factors of 5 to 50 [110]. However, these hyperscale server
processors are also limited in floating point performance and SIMD acceleration
capabilities, making them ill-suited for real-time analytics with heavy computa-
tional components [110] [132]. Applications which ran on server-class processors
have already been started to port into hyperscale servers [133]. But due to the lack
of rich computational features in the processor, to run applications at server-class
performance or even more, heterogeneous computing resources such as FPGAs
can be used. When running such applications at scale, these heterogeneous re-
sources can be disaggregated in addition to storage and memory for large scale
deployment. The real advantage of hyperscale servers comes from the density.
They take very small space compared to rack and blade servers which allows to
densely pack thousands of servers in a single rack.

Coarse-grained resource disaggregation first started with storage. At present it
has evolved up to memory and I/O [122]. Moving a step further, at the time
of writing this, it is being discussed in the research community about the fourth
generation data centers which will be built using fine-grained disaggregated re-
sources [120]. The servers in these data centers are software-defined and they will
be built dynamically restructuring the disaggregated resources [121] [134]. Here,
fine-grained disaggregation means in addition to storage and memory, even the
processor, I/O and Network interface card are decoupled from their original ar-
rangements and organized into shared pools. These disaggregated resources are
connected to each other using a high-speed interconnect [121] [135]. Based on fine-
grained disaggregation, flexible run-time application deployment can be realized
with optimized resource utilization. Moreover, fine-grain resource disaggregation
gives in-detailed insights into the resources which helps further enhance data cen-
ter optimization mechanisms such as improving PUE [136].

3.4.2 FPGA Cluster Built with Off-the-Shelf HW

Figure 3.9 and 3.10 show a potential FPGA cluster that can be built using off-the-
shelf HW. The FPGA cluster consists of three main components: (i) FPGA chassis,
(ii) Server Chassis, and (iii) top of rack Ethernet switch. FPGA chassis is based on
a off-the-shelf PCIe-expansion chassis, such as from cyclone [22], which can host
up to 18 PCIe devices. Each FPGA chassis has an associated server chassis. The
FPGA chassis is built by deploying off-the-shelf PCIe FPGA cards on this chassis.
For this design we assume a alphadata ADM-PCIE-KU3 FPGA card, featuring a
Xilinx Kintex Ultrascale XCKU060 FPGA, two 10 GbE connections and 16 GB of
DRAM. In this configuration, each FPGA is connected to the top of rack switch
with 10 GbE connection (Figure 3.10). Each FPGA card has a USB connection to

55

3. System Architecture

Figure 3.9: Building an FPGA Rack Using off-the-shelf HW: (a) FPGA module
with 16 GB DRAM. (b) 2U Rack chassis [22] with 18 FPGA modules. (c) 42U Data
Center Rack

program the FPGA, which is connected to the associated server chassis. A server
chassis is used to manage the FPGAs in the FPGA chassis. The server chassis
and FPGA chassis are interconnected using a PCIe-expansion cable. In the server
chassis, all the FPGAs in the FPGA chassis are seen as directly connected to the
server.

3.4.3 Hyperscale FPGA Cluster

The servers, which make up a cloud DC, are continuously shrinking in terms of the
form factor. This leads to the emergence of a new class of hyperscale data centers
(HSDC) based on small and dense server packaging. Miniaturized servers aim
to leverage the advanced semiconductor manufacturing processes for the gates
by integrating a complete server system on chip (SoC) for increased density and
power efficiency. As a result, legacy memory controllers and high-speed I/Os are
embedded on chip, thus eliminating the need for an external PCIe bus to support
these I/Os. This miniaturization of the DC servers will transform the traditional
way of deploying and operating an FPGA in a DC infrastructure. The shrinking
DC form factor unit will enable the deployment of a large number of standalone
disaggregated FPGAs, exceeding by far the scaling capacity of traditional PCIe
bus attachments.

At the time of writing, there are several HSSs on the market [137] [138] [139] and at
the research stage [3] [140]. Among these, the HSS of DOME [3] has the objective

56

3.4. Infrastructure for Deployment

Figure 3.10: 108 FPGAs in a Rack Using off-the-shelf HW

of building the world’s highest density and most energy efficient rack unit, and in
this work we use that rack unit for deploying FPGAs.

3.4.3.1 FPGA Chassis

Figure 3.11 shows the packaging concept of the HSS rack chassis (19” by 2U1) pro-
posed in [3]. This HSS is disaggregated [120] into multiple FPGA modules (Fig-
ure 3.11-(a)), each the size of a double-height dual in-line memory module (DIMM -
133mm x 55mm), which are densely plugged into a carrier base board (Figure 3.11-
(b)).

Each FPGA module connects via a 10 GbE link to the south side of an Intel FM6000
Ethernet L2/L3/L4 switch, for a total of 320 Gb/s of aggregate bandwidth. The
north side of the FM6000 switch connects to eight 40 GbE up-links, which expose
the FPGA cluster to the DC network with another 320 Gb/s. This provides a
uniform and balanced (no over-subscription) distribution between the north and
south links of the Ethernet switch, which is desirable when building large and
scalable fat-tree topologies (a.k.a. Folded Clos topology). The Ethernet switch
provides the same aggregate throughput as a top-of rack switch (i.e. 640 Gb/s)
and was shrunk down to the size of a smart phone (140 × 62 mm) in order to
vertically fit in a 2U height chassis. A fully populated carrier board is referred to as
a sled. Its various I/O voltage rails are generated by two shared power controllers

11U = one rack unit = 1.75 inches (44.45 mm)

57

3. System Architecture

Table 3.1: FPGA Rack Performance: Hyperscale vs Off-the-Shelf HW and State-of-
the-art

Per Rack Hyperscale Off-the-Shelf HW MS Catapult [1]
FPGA XCKU060 XCKU060 Stratix V D5
FPGAs/Rack 1024 108 96
LUTs (106)/Rack 340 36 33
FFs (106)/Rack 680 72 66
FPGA:Host 1:0 18:1 1:1
FPGA:Memory(GB) 1:16 1:16 1:8
FPGA:Network BW(Gb/S) 1:10 1:10 1:10

(Figure 3.11-(b)), and the entire sled is managed by a 64-bit T4240 communication
processor from Freescale running Fedora 23.

As shown in Figure 3.12-(a) and (b), two sleds fit a 19” × 2U chassis, for a total of 64
FPGA modules. Figure 3.12-(c) shows the 10 GbE and 40 GbE interconnection net-
work between the various connectors of such an assembly. The chassis implements
two identical sleds, each consisting of the following interconnects: the red wiring
within a sled corresponds to 10 GbE links connecting the 32 FPGA modules to the
south side of the FM6000 Ethernet. The blue wiring within a sled corresponds to
40 GbE up-links connecting the north side of the same Ethernet switch to 8 Quad
Small Form-factor Pluggable (QSFP) transceivers. The yellow wirings are 10 GbE
links which provide a low-latency ring topology between every four neighboring
FPGA modules of a given sled. The green wiring also consists of 10 GbE links that
interconnect two sleds together for providing a redundant path to failover from
the Ethernet switch of one sled to the switch of the neighbor sled. Finally, the black
wiring between pairs of neighboring slots provides a PCIe x8 Gen3 interface.

The FPGA platform achieves its high packaging density by implementing a mod-
ule every 7.6 mm. This very small stride does not allow for air-cooled heatsinks
and fans. Instead, we deployed a combination of a passive cooling solution [141]
at the FPGA module level that is coupled to an actively cooled element at the chas-
sis level. Our implementation is done by replacing the FPGA cap with a custom
made heat spreader that allows the transport of the thermal energy laterally from
the chip away to the borders of the module board where the heat spreader is then
coupled to an active hot-water cooled [142] heat sink. This passive heat sink is
built using standard PCB lamination processes and materials.

Since the hyperscale FPGA chassis presented in section 3.4.3 is directly connected
to the DC network as an FPGA appliance, it can be deployed in DCs in two dif-
ferent scenarios. First, Figure 3.13 shows an example configuration, where 1024
FPGAs are deployed in a 42U data center rack with 16 2U chassis. Out of total
sixteen 40 GbE connections, eight are connected to the top of rack switch with 2:1
over-subscription at the chassis level. We assume Mellanox SN2700 as the top of

58

3.5. Cloud Integration

Figure 3.11: Hyperscale FPGA Packaging [23]: (a) FPGA Module (b) SLED that
hosts 32 FPGA Modules

rack switch and there are 5 of them as shown in the Figure. With this configura-
tion, all 1024 FPGAs are connected to out of the rack with 5:1 over-subscription.
Second, Figure 3.14 shows another deployment scenario, where few FPGA ap-
pliances are deployed with multiple 2U server chassis in the same rack. Based
on the application and the infrastructure, these two deployment scenarios can be
used appropriately. However, the second deployment scenario is the ideal config-
uration for a general-purpose cloud deployment, as the first method needs some
redesigning effort for the existing DC infrastructures.

Table 3.1 compares the performance of an FPGA rack built by hyperscale FPGA,
off-the-shelf HW and state-of-the-art Microsoft Catapult V2 [1] deployment. For
the first two cases, Xilinx Kintex Ultrascale (XCKU060) FPGA is used, where as
Catapult V2 uses Altera Stratix V D5 FPGA. In terms of rack FPGA density (FP-
GAs/Rack), hyperscale FPGA outperforms both off-the-shelf and Microsoft Cata-
pult deployment by around 10 times.

3.5 Cloud Integration

Cloud integration is the process of making DC resource like the standalone disag-
gregated FPGAs available in the cloud so that users can rent them. In this section,
cloud computing is reviewed first. Then we present a framework for integrating
FPGAs in the cloud (the cloud layer in Figure 3.17). We propose a new accelerator
service for OpenStack [143], a way to integrate FPGAs into OpenStack, a way to

59

3. System Architecture

(a)

(b) (c)

Figure 3.12: FPGA Chassis with two SLEDs [23]: (a) Physical View (b) Logical
View (c) Network Wiring

60

3.5. Cloud Integration

Figure 3.13: 1024 FPGAs in a Single Rack with 2:1 Over Subscription at Chassis
Level and 5:1 Over Subscription at Rack Level

provision FPGAs on the cloud, and a way for the user to rent an FPGA on the
cloud.

3.5.1 Cloud Computing

In traditional computing (3.15-(a)), applications are deployed on user owned com-
puting infrastructures hosted on-premise. Users have to maintain the whole IT
stack and pay for HW, power, cooling, space and SW licensing. Architecturally,
the traditional IT stack is single-tenant limiting it to a single application and a
single user group.

In contrast to traditional computing, computing is delivered over the network as
a service in cloud computing. From the resource point of view, mainly three as-
pects are new in cloud computing [144]. First, the illusion of infinite computing
resources available on demand eliminating the need for cloud users to plan ahead
for future resource requirements. Second, the elimination of an up-front commit-
ment by cloud users allowing the companies to start small and increase compute
resources only when it is needed. Third, the ability to pay for use of comput-
ing resources on a short-term basis as needed and release them when not needed

61

3. System Architecture

Figure 3.14: 192 FPGAs in a Single Rack with 1:1 Subscription at Chassis Level
and 4:1 Over Subscription at Rack Level

allowing the computing resources to go when they are no longer useful.

Based on how the computing infrastructure is deployed and the service is de-
livered to the users, cloud computing can be classified into several service and
deployment models.

3.5.1.1 Service Models

Service delivery models are defined according to the way computing is serviced
to the users and the ownership of the different parts of the IT stack as shown in
Figure 3.15.

1. Infrastructure as a Service (IaaS)

In IaaS model (Figure 3.15-(b)), IT infrastructure including HW compute re-
sources and operating system are provided as a service by the cloud vendors.
Users deploy their application software on the rented infrastructure. Cloud
providers typically bill IaaS services on a utility computing basis. The cost
reflects the amount of resources allocated and consumed. In addition to
general-purpose compute resources such as servers, storage and network,

62

3.5. Cloud Integration

Figure 3.15: Cloud Service Delivery Models

heterogeneous compute devices such as GPUs and FPGAs can also be pro-
visioned in this model [145] [111]. Amazon Web Services, Microsoft Azure,
Google Compute Engine, RackSpace and IBM SoftLayer are few of the lead-
ing IaaS vendors.

2. Platform as a Service (PaaS)

In PaaS model (Figure 3.15-(c)), IT infrastructure including HW compute
resources, operating system and application runtime environment typically
including programming language execution environment, databases, web
servers and vendor specific tools are provided as a service by the cloud
vendors. Application developers can develop and run their software ap-
plications on a cloud platform without the cost and complexity of buying
and managing the underlying hardware and software resources. Microsoft
Azure, Google App Engine and IBM BlueMix are some popular PaaS solu-
tions in the industry.

3. Software as a Service (SaaS)

In SaaS model (Figure 3.15-(d)), users are provided the access to use ap-
plication software over the network. Cloud providers manage the infras-
tructure HW, operating system and platforms and the application software.
Search engines and email services from Google, Microsoft and Yahoo, social
networking services such as Facebook, Twitter and Linkedin and customer
service management (CRM) solutions from salesforce.com are some widely
used SaaS solutions.

63

3. System Architecture

3.5.1.2 Deployment Models

Deployment models are defined, as shown in Figure 3.16, according to the ex-
isting place and the ownership of the computing infrastructure from the user’s
viewpoint.

Figure 3.16: Cloud Deployment Models [24]

1. Private Cloud

Private cloud is a cloud infrastructure operated solely for a single organiza-
tion, whether managed and hosted internally or externally. From the per-
spective of security, private cloud is regarded as the best deployment model.
In the private cloud, organizations can provide computing services inter-
nally, for example, to the users of their own institutes. This model is better
for use cases where higher level of security can be traded off for expensive
infrastructure budget.

2. Public Cloud

In contrast to private cloud, public cloud infrastructure is open for public
use. Technically, there may be little difference between public and private
cloud architecture. However, security considerations are tight in public cloud
because of the access by public over a non-trusted network such as Internet.

3. Hybrid Cloud

Hybrid cloud is a composition of two or more clouds (private, public) that
remain distinct entities but are virtually bound together, offering the benefits
of multiple deployment models. Private cloud infrastructure can be used for
data and applications which has higher security requirements while public
cloud can be used for other applications.

64

3.5. Cloud Integration

Figure 3.17: Conceptual View of Virtualized Disaggregated FPGA Infrastructure

3.5.2 Accelerator Service for OpenStack

We propose a new service for OpenStack to enable standalone disaggregated FP-
GAs in IaaS service delivery model in both public and private cloud. Figure 3.17
shows a conceptual view of the standalone disaggregated FPGAs in hyperscale
DCs in a cloud setup. In previous research, FPGAs [123] [100] and GPUs [146]
have been integrated into the cloud by using the Nova compute service in Open-
Stack. In those cases, heterogeneous devices are PCIe-attached and are usually
requested as an option with virtual machines or as a single appliance, which re-
quires a few simple operations to make the device ready for use.

In our deployment, in contrast, standalone FPGAs are requested independent of
a host because we want to consider them as a new class of compute resource.
Therefore, like Nova, Cinder and Neutron in OpenStack, which translate high-level
service API calls into device-specific commands for compute, storage and network
resources, we propose the accelerator service shown in Figure 3.18, to integrate
and provision FPGAs in the cloud. In the figure, the parts in red show the new
extensions we propose for OpenStack. To setup network connections with the
standalone FPGAs we need to carry out management tasks. For that, we use an
SDN stack connected to the Neutron network service, and we call it the network

65

3. System Architecture

Figure 3.18: OpenStack Architecture with Standalone Disaggregated FPGAs

manager. Here we explain the high-level functionality of the accelerator-service
and the network-manager components.

3.5.2.1 Accelerator Service

The accelerator service comprises an API front end, a scheduler, a queue, a data
base of FPGA resources (DB), and a worker. The API front end receives the accel-
erator service calls from the users through the OpenStack dashboard or through
a command line interface, and dispatches them to the relevant components in the
accelerator service. The DB contains the information on pFPGA resources. The
scheduler matches the user-requested vFPGA to the user logic of a pFPGA by
searching the information in the DB and forwards the result to the worker. The
worker executes four main tasks: i) registration of FPGA nodes in the DB; ii) re-
trieving vFPGA bit streams from the Swift object store; iii) forwarding service calls
to FPGA plug-ins, and iv) forwarding network management tasks to the network
manager through the Neutron service. The queue is just there to pass service calls

66

3.5. Cloud Integration

between the API front end, the scheduler and the worker. The FPGA plug-in
translates the generic service calls received from the worker into device-specific
commands and forwards them to the relevant FPGA devices. We foresee the need
for one specific plug-in per FPGA vendor to be hooked to the worker. Other het-
erogeneous devices like GPUs and DSPs will be hooked to the worker in a similar
manner.

3.5.2.2 Network Manager

The network manager is connected to the OpenStack Neutron service through a
plug-in. The network manager has an API front end, a set of applications, a net-
work topology discovery service, a virtualization layer, and an SDN controller. The
API front end receives network service calls from the accelerator-worker through
the Neutron and exposes applications running in the network manager. These ap-
plications include connection management, security and service level agreements
(shown in red in the network manager in Figure 3.18). The virtualization layer
provides a simplified view of the overall DC network, including FPGA devices, to
the above applications. The SDN controller configures both the FPGAs and net-
work switches according to the commands received by the applications through
the virtualization layer.

3.5.2.3 Integrating FPGAs into OpenStack

In this sub section, the process of integrating FPGAs into OpenStack is outlined.
The IaaS vendor executes this process as explained below.

When the IaaS vendor powers up an FPGA module, the ML of the FPGA starts
up with a pre-configured IP address. This IP address is called the management IP.
The accelerator service and the network manager use this management IP to com-
municate with the ML for executing management tasks. Second, the standalone
disaggregated FPGA module is registered in the accelerator-DB in the OpenStack
accelerator service. This is achieved by triggering the registration process after
entering the management IP into the accelerator service. Then the accelerator ser-
vice acquires the FPGA module information automatically from the ML over the
network and stores them in the FPGA resource pool in the accelerator-DB. Third,
a few special files, as explained in Section 4.3.3, is needed for vFPGA bitstream
generation are uploaded to the OpenStack Swift object store.

3.5.2.4 Provisioning an FPGA on the Cloud

From the IaaS vendors’ perspective, let’s now look at the process of provisioning
a single vFPGA. When a request for renting a vFPGA arrives, the accelerator-
scheduler searches the FPGA pool to find a user logic resource that matches the
vFPGA request. Once matched, the tenant ID and an IP address are configured for

67

3. System Architecture

the vFPGA in the associated pFPGA. After that, the vFPGA is offered to the user
with a few special files which are used to generate a bitstream for user application.

3.5.2.5 Renting an FPGA on the Cloud

From the user’s perspective, the process of renting a single vFPGA on the cloud
and configuring a bitstream to it is as follows. First, the user specifies the resources
that it wants to rent by using a GUI provided by the IaaS vendor. This includes
FPGA-internal resources, such as logic cells, DSP slices and Block RAM as well
as module resources, such as DC network bandwidth and memory capacity. The
IaaS vendor uses this specification to provision a vFPGA as explained above.

Upon success, a reference to the provisioned vFPGA is returned to the user with
a vFPGAID, an IP address and the files needed to compile a design for that vF-
PGA. Second, the user compiles his design to a bitstream and uploads it to the
OpenStack Swift object store through the Glance image service. Finally, the user
associates the uploaded bitstream with the returned vFPGAID and requests the
accelerator service to boot that vFPGA. At the successful conclusion of the rent-
ing process, the vFPGA and its associated memory are accessible over the DC
network.

3.5.2.6 Multi-FPGA Fabrics on the Cloud

Motivated by the success of large-scale SW-based distributed applications, such as
those based on MapReduce and deep learning [40], we want to give the users a
possibility to distribute their applications on a large number of FPGAs. This sub
section describes a framework for interconnecting such a large number of FPGAs
in the cloud that offers the potential for FPGAs to be used in large-scale distributed
applications.

We refer to a multiple number of FPGAs connected in a particular topology as
a multi-FPGA fabric. When the interconnects of this fabric are reconfigurable,
we refer to it as a programmable fabric. Users can define their programmable
fabrics of vFPGAs on the cloud and rent them using the proposed framework. Fig-
ure 3.19 shows such two fabrics in which vFPGAs with different sizes are shown
in different patterns. These two fabrics are used to build two different types of
applications. As an example, a fabric of FPGAs arranged in a pipeline, shown in
Figure 3.19-(a), is used in Catapult [25] for accelerating page-ranking algorithms,
which we discussed in prior art. Figure 3.19-(b)) shows a high-level view of a
fabric that can be used for map-reduce type of operations.

3.5.2.7 Renting a multi-FPGA Fabric on the Cloud

The renting and provisioning steps of such a fabric in the cloud are as follows.
First, user decides on the required number of vFPGAs and customizes them as
mentioned above in the case of a single vFPGA. Second, the user defines its fabric

68

3.5. Cloud Integration

Figure 3.19: Two Examples of multi-FPGA Fabrics

Figure 3.20: FPGA Fabric Deployment; SW: Network Switch

69

3. System Architecture

Figure 3.21: Multi-FPGA Fabric Programming Model

topology by connecting those customized vFPGAs on a GUI or with a script. We
call this fabric a vFPGA Fabric (vFF). In vFF, the number of network connections
between two vFPGAs can be selected. If a network connection is required between
a vFPGA and the SW applications that uses the vFF (explained in the next sub sec-
tion), it is also configured in this step. Third, the user rents the defined vFF from
the IaaS vendor. At this step, the user-defined fabric description is passed to the
OpenStack accelerator service. Then, similar to a single vFPGA explained earlier,
the accelerator service matches the vFF to the hardware infrastructure as shown
in Figure 3.20. In addition to the steps followed when matching a single vFPGA,
the scheduler considers the proximity of vFPGAs and optimal resource utilization
when matching a vFF to the hardware infrastructure. After that, the accelerator
service requests the network manager to configure the NSL of assoicated pFP-
GAs and intermediate network switches to form the fabric in HW infrastructure.
Fourth, the user associates a bitstream with each vFPGA of the vFF and requests
to boot the fabric. Finally, on successful provisioning, an ID representing the fabric
(vFFID) is returned to the users that is used in the programming phase to access
the vFF.

3.5.2.8 Using a multi-FPGA Fabric from SW Applications

The way a vFF is used from a SW application is explained here. We consider the
pipeline-based vFF shown in Figure 3.19-(a) as an example and show how it can
be used from a SW application. We assume this fabric runs an application based
on data-flow computing. The text-analytics acceleration engine explained in [147]
is an example of such an application. Also, we assume that the L4 protocol used
is a connection-oriented protocol such as TCP.

To make the applications agnostic to the network protocols and to facilitate the
programming, we propose a library and an API to use both the vFPGAs and vFFs.

70

3.6. Summary

Figure 3.22: Standalone Disaggregated FPGA Deployment Architecture

The vFFID returned at the end of the fabric-deployment phase is used to access
the vFF from the SW applications by means of the vFFID. Below are the steps for
accessing a vFF. First, the vFF is initialized from the SW application. This initiates
a connection for sending data to the vFF as shown by (1)-a-conn in Figure 3.21.
The immediate SDN-enabled switch triggers this connection-request packet and
forwards it to the network manager. On behalf of the first vFPGA in the pipeline,
the network manager establishes the connection and updates the relevant FDB en-
tries in the associated pFPGA. For receiving data, the library starts a local listener
and tells the network manager to initiate a connection on behalf of the last vF-
PGA in the pipeline ((1)-b-conn). Then, the SW application can start sending data
and receiving the result by calling send() and receive() on the vFFH, respectively.
If configured by the user at the vFF definition stage, connections are created for
sending back intermediate results from the vFPGA to the SW application. When
close() is called on the vFFH, the connections established are closed detaching the
fabric from the SW application. The connections for accessing memory associated
with each vFPGA are also established in a similar manner through the network
manager in the fabric initialization phase. The SW applications can write to and
read from the memory using the vFPGAID.

3.6 Summary

To enable large-scale deployment of FPGAs in DCs, we advocate for a change of
paradigm in the CPU-FPGA and FPGA-FPGA interfaces. We propose an archi-
tecture that sets the FPGA free from the CPU and its PCIe-bus by connecting the
FPGA directly to the DC network as a standalone disaggregated resource (Fig-
ure 3.22). Cloud vendors can then provision these FPGA resources in a similar
manner as the CPU, memory and storage resources.

Meanwhile, the servers, which make up a cloud DC, are continuously shrinking in
terms of the form factor. This leads to the emergence of a new class of hyperscale
data centers (HSDC) based on small and dense server packaging. This miniatur-
ization of the DC servers is a game-changing requirement that will transform the

71

3. System Architecture

traditional way of instantiating and operating an FPGA in a DC infrastructure.
Shrinking of the DC form-factor unit enables the deployment of a large number
of disaggregated FPGAs, exceeding the scaling capacity of traditional PCIe bus
attachments. Compared with state-of-the-art FPGA deployments, the hyperscale
approach proposed in this thesis increases the FPGA rack density by 10 times to
1024 FPGAs per rack.

Once such disaggregated FPGAs become available on a large scale in DCs, vendors
can rent them out on the cloud. However, as existing server-provisioning mecha-
nisms are not suitable for this purpose, we propose a new resource-provisioning
service in OpenStack for integrating such standalone disaggregated FPGAs into
the cloud. Also, as cloud users will be able to request multiple FPGAs from the
cloud, we provide them with the possibility to implement a programmable in-
terconnection network of FPGAs in a cost-effective, scalable and flexible manner
on the cloud. Therefore, we also propose a framework to interconnect multiple
FPGAs in a user-defined topology, and for the cloud vendor to deploy such a
topology in its infrastructure. We expect this software-defined approach of FPGA
networking to offer new technical perspectives and solutions for processing large
and heterogeneous data sets in the cloud.

72

Chapter 4

Standalone Disaggregated FPGA

In this chapter, an architecture and its prototype implementation is presented for
the standalone disaggregated FPGA. This chapter is organized as follows: The sec-
tion 4.1 reviews state-of-the-art shell-role architectures, which abstracts FPGA I/O.
The section 4.2 elaborates on the architecture of the proposed standalone disaggre-
gated FPGA and section 4.3 explains the implementation of the prototype. The
implementation of the simulation environment for the standalone disaggregated
FPGAs is described in section 4.4, followed by the experimental results in section
4.5. Section 4.6 discusses the experiment results and the chapter is summarized in
section 4.7.

4.1 Abstracting FPGA I/O with Shell-Role Architectures

In typical FPGA programming environments, for example, an off-the-shelf FPGA
card deployed in a private compute cluster, the user is often responsible for de-
veloping not only the application itself but also building and integrating system
functions required for memory access, host-to-FPGA as well as inter-FPGA com-
munication. When offering FPGAs as a service this approach is not feasible as:
(i) infrastructure vendor must keep the control of the device for better manage-
ment and security, (ii) bringing up of system functions is an additional burden
for the users, and (iii) system functions are not portable from device to device,
particularly when I/Os and FPGA architecture changes.

FPGA shells allow for faster coding of applications by removing the need to de-
velop system-related (I/O) FPGA hardware by the application developers. FPGA
I/O is abstracted and provided using pre-configured I/O components, allowing
FPGA developers to focus on their applications. Furthermore, the shell allows to
keep the control of the FPGA HW in the hands of infrastructure vendor. This
approach is common for all the FPGA-based solution vendors. Microsoft cata-
pult [25], IBM CAPI [26], Xilinx streaming interface, and Amazon F1 instance [27]
provide these shells. Shell characteristics are tightly coupled with how the FPGA

73

4. Standalone Disaggregated FPGA

(a) (b)

Figure 4.1: Microsoft Shell Architecture: (a) Catapult V1 Shell [25], (b) Catapult
V2 Shell [1]

is attached to the CPU. The common feature in all these implementations is that
the shell has a PCIe interface to the host CPU and shell provides the access to
one or more multiple resource types of PCIe, DRAM, and network. In all these
implementations, FPGA is managed via PCIe or JTAG interface.

4.1.1 Microsoft Catapult Shell

Microsoft Catapult V1 shell (Figure 4.1-(a)) contains 6 main components, consum-
ing 23% (Table 4.1) of ALM resources of an Altera Stratix V FPGA [25]: (i) two
DRAM controllers, which can be operated independently or as a unified interface.
Dual-rank DIMMs operate at 667 MHz, whereas single-rank DIMMs (or only us-
ing one of the two ranks of a dual-rank DIMM) operates at 800 MHz, (ii) four
high-speed serial links running SerialLite III (SL3), a lightweight protocol for com-
municating with neighboring FPGAs. It supports FIFO semantics, Xon/Xoff flow
control, and ECC, (iii) router logic to manage traffic arriving from PCIe, the role,
or the SL3 cores, (iv) reconfiguration logic, based on a modified remote Status
Update (RSU) unit, to read/write the configuration Flash, (v) the PCIe core, with
the extensions to support DMA, (vi) Single-event upset (SEU) logic, which period-
ically scrubs the FPGA configuration state to reduce system or application errors
caused by soft errors.

The Catapult V2 shell (Figure 4.1-(b)) contains 6 components, consuming 44%
of ALM resources of an Altera Stratix V D5 FPGA [1]: (i) two 40 G network
controllers, one facing top-of-rack switch and the other facing the sever NIC, (ii) a

74

4.1. Abstracting FPGA I/O with Shell-Role Architectures

Figure 4.2: IBM Power Service Layer Shell [26]

40 G network bridge, (iii) a DDR3 memory controller, (iv) an intra-FPGA message
router (elastic router) with virtual channel support for allowing multiple roles
to access to the network, (v) LTL (Lightweight Transport Layer) protocol engine
based on UDP for reliable inter-FPGA communication and (vi) PCIe controller
with DMA engine.

4.1.2 IBM Power Service Layer Shell

IBM power service layer (PSL) shell (Figure 4.2), which runs at 250 MHz, con-
tains four components, consuming around 25% (Table 4.1) of Altera Stratix V
FPGA [112]: (i) PCIe controller for host-FPGA interaction, (ii) 256 B cache for
accelerator function units (AFU), (iii) an interrupt source layer (ISL) for sending
interrupts from the AFUs to the host applications, and (iv) memory management
unit for virtual-to-physical memory translations, offering user the same virtual
address space as in the host application.

4.1.3 Amazon EC2 F1 Shell

Amazon EC2 F1 shell (Figure 4.3) contains two components [27]. The resource
consumption of the shell was not available publicly at the time of this writing. The
two components are: (i) PCIe controller for host-FPGA interaction, (ii) a memory
controller for DDR4-based DRAM access.

75

4. Standalone Disaggregated FPGA

Figure 4.3: Amazon EC2 F1 Instance Shell [27]

4.1.4 Xilinx Donut Shell

Xilinx donut shell (Figure 4.4) contains two main components. The resource con-
sumption of the shell was not available publicly at the time of this writing. The two
components are: (i) PCIe controller for host-FPGA interaction, (ii) a performance
counter.

4.1.5 NetFPGA SDN Shell

NetFPGA is a platform for research and education in the networking domain.
There are many research projects around it and hence there is no dedicated shell
architecture for it. But, SDN is the main area of research around NetFPGA. Fig-
ure 4.5 shows an example shell for such a SDN implementation [28]. In this par-
ticular example, the shell contains four 1 GbE controllers and a PCIe controller to
interact with the host.

4.1.6 Summary

The common feature of all the shell-role architectures reviewed above is the PCIe-
block, which is used to attach the FPGA to the CPU. The other components except
for the PCIe block mostly depends on the scope of the target applications of each
shell-role implementation. Typically, all these shells consume more than 20% of
the resources of an FPGA (Table 4.1). The next section elaborates on the design of
a shell-role architecture for standalone disaggregated FPGAs.

76

4.1. Abstracting FPGA I/O with Shell-Role Architectures

Figure 4.4: Xilinx Donut Shell

Figure 4.5: NetFPGA SDN Shell [28]

77

4. Standalone Disaggregated FPGA

Table 4.1: Resource Consumption of State-of-the-art Shell Architectures

Shell FPGA ALM1 LUT FF BRAM
Microsoft Catapult V1 Altera Stratix V D5 39698 - - -
Microsoft Catapult V2 Altera Stratix V D5 76010 - - -
IBM PSL Xilinx Kintex Ultrascale 60 - 54945 75661 281
Amazon F1 Xilinx Virtex Ultrascale+ - - - -
Xilinx Donut Xilinx Virtex 7 - 48147 323049 880
NetFPGA SDN Xilinx Virtex-II Pro 50 - - - -
1 Adaptive Logic Module.

Figure 4.6: Standalone Disaggregated FPGA Architecture

4.2 Standalone Disaggregated FPGA Architecture

Figure 4.6 illustrates the high-level system architecture of the proposed standalone
disaggregated FPGA. We define a shell-role architecture in the floorplan of the
FPGA. The shell, which is called the cloud shell from here on, is persistent as long
as the FPGA is powered up. It implements the minimum functions required for
the FPGA to boot and to connect to the DC network. The role region is shown
in yellow in Figure 4.6. It represents the larger part of the reconfigurable logic

78

4.2. Standalone Disaggregated FPGA Architecture

Figure 4.7: The Abstraction Offered Over the Network

and is dynamically allocated to the user’s applications by a resource-provisioning
service, which control the programming and erasing of this region. Figure 4.6
also illustrates the multiplexing and de-multiplexing performed by the network IF
of the cloud shell between the user data traffic and the management traffic. The
Figure 4.7 shows the abstraction offered to the DC user based on this architecture,
where once the FPGA is rented and the user application is deployed, the user logic
is accessible over a particular IP/port pair.

4.2.1 User Application (vFPGA)

The user application gets the most of the reconfigurable logic resources from the
FPGA chip. The cloud shell provides the necessary infrastructure to run an appli-
cation in the user region. This include multiple I/O channels to the DC network
and to the external memory along with the clock.

4.2.1.1 I/O Channels

I/O channels to the user application are FIFO-based and they are mainly divided
into two: (i) network I/O and (ii) memory I/O.

4.2.1.1.1 Network I/O There are one or more I/O channels to the user applica-
tion. Each I/O channel to the network is distinguished by a 4-tuple, which consists
of a source IP address, destination IP address, source port and destination port.
The number of I/O channels to the user application depends on the application

79

4. Standalone Disaggregated FPGA

requirement, and it can be specified when user requests/rents the FPGA. For ex-
ample, the I/O channels to the DC network can be in the form of UDP/IP, TCP/IP,
RoCE or any other protocol which is supported by the surrounding cloud shell.

Initialization of the network ports can be done in two ways: (i) the user applica-
tion initialize before starts communication and (ii) the cloud shell initializes the
ports and only provides data I/O to the user application. If the user application
initializes the ports, similarly to a typical SW application running in Linux, at run
time it has the option to decide and connect or listen to a desired server or client
by specifying the 4-tuples. If the surrounding cloud shell initializes the network
ports for the user application, the user has to specify the desired network con-
nections when renting the FPGA and then the cloud shell along with the FPGA
management software has to bring up the requested connections for the user ap-
plication. Both options have its advantages and disadvantages. The first option
is the simplest to implement for the cloud shell, but it adds some extra work for
the user, while the second option gives much more control for the cloud shell in
terms of underlying network infrastructure. For example, knowing the details of
network connections in advance, gives the cloud shell and the FPGA management
SW to implement advance networking features, such as QoS.

Network I/O channels can be used to communicate application data as well as the
application status for monitoring purposes and to send back intermediate results
to the original application. The data width can be the same as of cloud shell or
data width converter blocks can be used from FPGA vendor tools.

4.2.1.1.2 Memory I/O The number of I/O channels to the memory depends
on the total available memory channels in the FPGA module and the number
available channels out of the total channels to the user application. If the cloud
shell does not use some memory channels to implement its own logic, all the
available total memory channels are offered to the user application.

4.2.1.2 Logic Resources

After the cloud shell has been implemented, the user application gets rest of the
FPGA’s reconfigurable logic resources. The bigger the FPGA chip, the higher the
logic resources available for the user application, as the cloud shell usually re-
quires a constant amount of logic resources independent of the FPGA chip. From
the evolution of the FPGA technology, we observe that as the functions get ma-
tured they are increasingly implemented as hard IP cores in the FPGAs. If the
soft IP cores used in the cloud shell, such as the network controller and memory
controller are available in the FPGAs as hard IP cores, that will make more re-
configurable logic resources available to the user application. For example, Xilinx
Ultrascale devices have integrated 100 GbE MAC and PHY subsystems [148].

80

4.2. Standalone Disaggregated FPGA Architecture

4.2.1.3 Frequency

The user application can use the same clock frequency as the cloud shell or can use
a different frequency. When using a different frequency either cloud shell should
provide this clock or the application has to convert the cloud shell provided clock
to its desired clock.

4.2.2 Cloud Shell

The cloud shell implements 3 functions, which include a memory management
layer (MEM) for interfacing with external memories, a network layer (NET) for
interfacing with the DC network, and a management unit (MGMT) for monitor-
ing and controlling the standalone disaggregated FPGA resource. These three
functions are represented with white boxes in Figure 4.6.

4.2.2.1 MEM IF

MEM IF provides the access to the memory for the user application. MEM IF
may consists one or more memory controllers according to the available memory
channels in the FPGA module.

4.2.2.2 NET IF

NET IF provides the access to the DC network for the user applications. The
predominant L2 network in the DCs is Ethernet, hence to be compatible with
existing DC network infrastructures the L2 network of the NET IF is based on
Ethernet. At the time of writing this thesis, the typical DC Ethernet speed is 10G,
but moving rapidly towards 40 G and 100 G. The FPGAs today are also rapidly
moving beyond 10 G towards 40 G [149] and 100 G [148]. Therefore, at first, the
NET IF must at least support 10 G and then move towards higher bandwidths.
When moving towards 40 G and 100 G usually much more reconfigurable logic
resources are needed, but the FPGAs now being shipped by major vendors have
moved the PHY and MAC to hard IP cores, leaving more logic resources for the
actual application logic.

4.2.2.2.1 FPGA Integrated MAC and PHY The networking layer of such an
FPGA module can be implemented with either a discrete or an integrated NIC.
A discrete NIC (e.g., dual 10 GbE NIC) is a sizable application-specific integrated
circuit (ASIC) typically featuring 500+ pins, 400+ mm2 of packaging, and 5 to
15 W of power consumption. The footprint and power consumption of such an
ASIC do not favour a shared-board implementation with the FPGA (see above
discussion on sharing board space between an FPGA and a CPU). Inserting a
discrete component also adds a point of failure in the system. Integrating the NIC
into the reconfigurable fabric of the FPGA alleviates these issues and is becoming

81

4. Standalone Disaggregated FPGA

Figure 4.8: Two ways of using integrated PHYs in FPGA: (i) Base-R with Ex-
ternal Transceiver and (ii) Base-KR Connecting to Backplane without External
Transceiver

practical with the latest FPGA devices which can implement a 10 Gb/s network
protocol stack in less than 5-10% of their total resources [115].

Normally, the Ethernet media access controller (MAC) of such a protocol stack con-
nects to an external physical layer device (PHY) whose task is to perform encod-
ing/decoding and serialization/deserialization functions, as well as a transceiver,
such as, the enhanced small form-factor pluggable transceiver (SFP+) whose task
is to physically move the data bits over the media according to a specific physical
layer standard. However, the need for an external PHY and an external transceiver
can be skipped by selecting the appropriate FPGA device from a family. Second,
all mid- and high-end networking-oriented FPGAs offer integrated high-speed
transceivers that already support most of the popular PHYs (Figure 4.8). These
integrated transceivers operate at line rates up to 32 Gb/s, and they commonly
support the 10 GBASE-KR (10 Gb/s) and 40 GBASE-KR4 (40 Gb/s) Ethernet stan-
dards, which we seek for interconnecting our modules over a distance up to 1
meter of copper printed circuit board and two connectors. This removal of an ex-
ternal PHY and transceiver is a key contributor in the overall power, latency, cost
and area savings.

4.2.2.2.2 FPGA MAC Address Each FPGA module must have a unique MAC
address. Basically, there are two options to assign a mac address to the FPGA
module. First, the MAC address can be hard coded in the cloud shell logic. How-
ever, in a DC environment, there might be thousands of FPGA modules deployed.
Having a unique MAC address in each FPGA means a separate bit stream has to
be generated for each of the FPGA module in the DC. This is not practical in a
hyperscale, dynamic DC environment.

Second, the MAC address can be statically bonded to the FPGA module, indepen-
dently of the FPGA chip. In this approach, the MAC address of the device may be

82

4.2. Standalone Disaggregated FPGA Architecture

stored in a small read only memory of the FPGA module and it is written into the
memory during manufacture of the module. When the FPGA module is booted
for the first time, it reads the MAC address from the read-only memory and store
in the cloud shell as long as the FPGA is powered. We use this method in our
implementation.

4.2.2.2.3 MAC Address Resolution When FPGA communicates with other network-
attached DC resources over Ethernet, it needs to resolve the MAC addresses of
those devices. The MAC address can be resolved in two ways. First, MAC ad-
dress is configured in the cloud shell as well as in the network switches in the
DC by a centralized FPGA manager. This approach saves reconfigurable logic re-
sources required to implement a protocol in resolving MAC addresses, but the
system complexity is increased because of the MAC address management by the
centralized FPGA manager. Further, centralized FPGA manager must keep track
of all the network switches in the DC that would possibly be crossed by the pack-
ets originated by the FPGA or packets destined to the FPGA.

Second and the practical approach is to use a standard address resolution proto-
col, such as ARP over Ethernet. In this approach, the ARP protocol must be im-
plemented in the cloud shell and the resolved MAC addresses must be stored for
communication with the other network-attached resources. Section 4.3 explains
the evaluation of both these approaches.

4.2.2.2.4 FPGA IP Address Similarly to having a MAC address, the FPGA
module must also have an IP address to communicate with other resources. The
FPGA module IP address can be assigned in two ways. First, by hard coding the
IP address in the cloud shell. As discussed in Section 4.2.2.2.2, hard coding a
unique value in the FPGA requires to generate a unique bit stream for each FPGA
available in the DC. At the DC scale, this is not practical. Second, by using a stan-
dard protocol to retrieve the IP address dynamically. In this approach, a protocol,
such as DHCP (dynamic host configuration protocol) must be implemented in the
cloud shell, so that the FPGA module’s IP address can be retrieved dynamically
based on its MAC address.

4.2.2.2.5 Health Monitoring In a large-scale DC environment, keeping track of
all the resources by status monitoring is required to ensure the overall system reli-
ability. The minimum system-level monitoring method used by network-attached
DC resources is the ICMP-based request and reply messaging or ping. Therefore,
the standalone disaggregated FPGA must support such a standard protocol, so
that basic device status monitoring can be done.

4.2.2.2.6 Network Stack Virtualization The network protocol stack, which con-
sists of a typical TCP/IP stack, can be implemented in two ways. First, dedicated
protocol stacks are implemented for user region and vendor region, as shown in

83

4. Standalone Disaggregated FPGA

Figure 4.9: FPGA Network Stack Virtualization

Figure 4.9. We do not expect the user region to have dedicated network protocol
stack unless there are multiple vFPGAs owned by different tenants. Further, this
approach consumes a large amount of compute resources that can otherwise be
used for the vFPGA. Second and preferred method is to have a single protocol
stack shared by the cloud shell and vFPGA.

4.2.2.3 MGMT

MGMT includes one or more agents that listen on a pre-defined TCP port for
commands and management data from an external SW service, which we call
FPGA management utility (FMU). The communication link to the MGL is called
the control path of the standalone disaggregated FPGA. The agents may include
functions, such as configuring a new vFPGA using partial reconfiguration, vFPGA
monitoring, and executing other utility functions. In this implementation, the
management layer runs an agent that can execute TCP listen, connect, and close
commands on the underlying FPGA network protocol stack to connect multiple
FPGAs together in a software-defined manner.

4.3 HW Prototype Implementation

To realize the standalone disaggregated FPGA architecture presented in Section IV,
we implemented a prototype on a Xilinx Virtex7 XC7VX690T FPGA. This section
covers the implementation of the prototype, which is shown in Figure 4.10.

4.3.1 User Application (vFPGA)

The vFPGA (or ROLE in the shell-role architecture shown in Figure 4.10) hosts the
application. The vFPGA has one or more communication links through the NSL

84

4.3. HW Prototype Implementation

Figure 4.10: Standalone Disaggregated FPGA Prototype

Figure 4.11: UDP Only with Centralized Control Plane Approach

85

4. Standalone Disaggregated FPGA

Figure 4.12: UDP Only with Distributed Control Plane Approach

to the servers and to other vFPGAs over the DC network. As shown in Figure 4.10,
we call these communication links the data path of the standalone disaggregated
FPGA. The links can be reliable connection-oriented, such as TCP, or unreliable
connection-less, such as UDP. These communication links offered to the vFPGAs
are FIFOs, relieving the user (application writer) from complex network program-
ming tasks. The data fed to the TX FIFOs is wrapped in network packets and
forwarded to the relevant destination by the underlying NSL. Similarly, the net-
work packets received by the NSL are first unwrapped, and then the payload is
fed to the RX FIFO to be used by the application. The user distinguishes the var-
ious communication links to the vFPGA from each other using the FIFO index.
When application-specific protocols are needed, they can be built within the vF-
PGA atop the FIFO-based TCP or UDP links. The use of the vFPGA in a real
application is discussed in the Chapter 6.

4.3.2 Cloud Shell

4.3.2.1 Network Service Layer

4.3.2.2 Network Controller (NET CTRL)

The network controller implements the data link layer (L2) of the Ethernet stan-
dard, for which we used a Xilinx 10GbE MAC IP core. A Xilinx 10GbE PHY IP
core connects the MAC to the external PHY over the integrated GTX transceivers
of the FPGA.

4.3.2.3 Network and Transport Stack (NTS)

The NTS consists of a L3 (IP) and L4(TCP and UDP) protocol stack. For imple-
menting the NTS, we first investigated two approaches: (i) Centralized Control

86

4.3. HW Prototype Implementation

Plane and (ii) Distributed Control Plane. These two approaches were evaluated by
implementing the NTS only with IP and UDP protocols.

We implemented IP and UDP layers with a 64b bus at 156.25 MHz. The minimum
size of the Ethernet frame that travels in the physical layer is 84 bytes, and the UDP
payloads of up to 18B make this smallest Ethernet frame on the wire (Preamble(7B)
+ Start of Frame(1B) + MAC Header(14B) + IP Header(20B) + UDP Header(8B)
+ Payload(18B) + FCS(4B) + Inter-Frame Gap(12B) = 84B). This requires that to
achieve the line rate, each module in the data path must process the packets of
up to 18B of UDP payload in lesser than 10.5 clock cycles. We designed each
module of the data path to satisfy this criterion. We implemented the architecture
explained above in C++ using Xilinx Vivado HLS.

4.3.2.3.1 UDP/IP with Centralized Control Plane In the centralized control
plane approach (Figure 4.11), we do not implement control path protocols such
as ARP (Address Resolution Protocol) and DHCP. In this approach, instead of
implementing a distributed control plane by having the ARP functionality in each
FPGA, a centralized control plane can be used, from where the ARP tables are
programed using SDN. In this implementation, we use static ARP and UDP/IP
tables. The UDP/IP table consist of five tuples: (a) source port, (2) destination
port, (3) source IP, (4) destination IP, and (5) buffer ID. The same approach based
on SDN can be used to program the five tuples belong to open ports of each
vFPGA. The IP/UDP table along with vFPGA-MAC-IP table are updated when
new vFPGAs are started on the physical FPGA.

4.3.2.3.2 UDP/IP with Distributed Control Plane In this approach, ARP and
DHCP functionality is implemented in the NTS and it can operate without any
centralized intelligence (Figure 4.12). The tables are updated dynamically, based
on the ARP, DHCP, and UDP functionality. The comparison of the two approaches
(Table 4.2) shows that the difference in resource consumption are in the range of
0.8% to 1.3% for FFs and LUTs, whereas the value is around 10% for BRAMS.
These observations show that the centralized control plane approach does not
bring much benefit in terms of resource consumption, particularly when the over-
head of centralized controller is concerned.

4.3.2.3.3 TCP/IP There are multiple implementations of TCP/IP stacks in FP-
GAs [150]. When choosing a stack for the standalone disaggregated FPGA three
requirements were considered: (i) being open source, so that it can be adapted to
our infrastructure, (ii) 10 GbE support, as we run on 10 GbE DC network, and (iii)
high-level synthesis, for faster development. Satisfying these requirements, the
most suitable stack for us was the TCP/IP stack developed by Xilinx [151] [152].
Although this TCP/IP stack is designed specifically for a mem-cached application,
the open source nature allows us to modify it according to our cloud DC approach.

87

4. Standalone Disaggregated FPGA

Table 4.2: Resource Consumption: UDP/IP with Centralized vs Distributed Con-
trol Plane

Approach Module LUT FF BRAM

Centralized

IP 1118 1123 4
UDP 2990 3122 7
IP/UDP Table 129 145 0
ARP Table 139 129 0
Total 4376 4519 11
% of XC7VX690T 1.01 0.52 0.75

Distributed

IP 1789 2063 28
UDP 3548 3957 22
ARP 3304 4270 46
DHCP 1354 1315 66
Total 9995 11605 162
% of XC7VX690T 2.31 1.34 11.02

4.3.2.4 Application Interface (AI)

The AI has two main functions: (1) It consists of four memory access modules cor-
responding to each vFPGA to enable access to the memory that belongs to each
vFPGA over the network by external hosts. (2) It consists of a switch that multi-
plexes and de-multiplexes incoming and outgoing packets to and from vFPGAs
and memory access modules. In the receive path, the incoming payload received
by the AI is forwarded to the relevant vFPGAs or memory access modules accord-
ing to the accompanying buffer ID. In the transmit path, the buffers belong to
vFPGAs and memory access modules are scanned in a round-robin fashion, and
the payload that belongs to the first non-empty buffer is forwarded to the NTS
along with the buffer ID.

4.3.2.5 Management Layer (MGMT)

The MGL includes one or more agents that listen on a pre-defined TCP port for
commands and management data from an external SW service, which we call
FPGA management utility (FMU). The communication link to the MGL is called
the control path of the standalone disaggregated FPGA. The agents may include
functions, such as configuring a new vFPGA using partial reconfiguration, vFPGA
monitoring, and executing other utility functions. In this implementation, the
management layer runs an agent that can execute TCP listen, connect, and close
commands on the underlying FPGA network protocol stack to connect multiple
FPGAs together in a software-defined manner.

88

4.4. Simulation Environment

4.3.2.6 Memory Controller (MEM CTRL)

For the memory controller, we used a Xilinx MIG (Memory Interface Generator)
dual-channel memory controller with an AXI (AMBA eXtensible Interface) inter-
face.

4.3.3 Flow of Building Application

To enable users to build their applications for the standalone disaggregated FPGA,
a set of files are provided by the vendor (Figure 4.13). These files include: (i) top
level file that wraps the whole design including the user application and the shell,
(ii) the shell as a design checkpoint (.dcp), and (iii) a constraint file which maps
the design to the FPGA pins. The user application can be built in two ways: (i) us-
ing HLS design flow, which starts with a high-level C/C++-based design and (ii)
using HDL (Hardware Description Language, such as Verilog or VHDL) design
flow. HDL-based user application is then integrated with the vendor-provided
placeholder for the user application. Finally, the usual FPGA design flow is ex-
ecuted, starting from synthesis until bit-stream generation. In this step, partial
reconfiguration can also be used, so that the cloud shell and the user application
can be configured into the FPGA separately. In the work covered in this thesis,
partial reconfiguration is not considered.

Once the user-generated bit-streams is configured to the standalone disaggregated
FPGA, first, the cloud shell is initialized. In this initialization process, an IP ad-
dress for the FPGA is assigned by DHCP. Once initialized, an application running
on a sever can connect to the user application in the FPGA over the DC network.
For this connection standard TCP/IP is used. In the case of partial reconfiguration,
the cloud shell and the role of the FPGA are configured in two steps as shown in
the flow diagram of Figure 4.14. First, the FPGA is booted from a default ini-
tial system setup image provided by the DC infrastructure provider. This image
includes the cloud shell, which is required for the board to boot and signal its pres-
ence on the DC network by requesting the assignment of a dynamic IP address.
Second, a partial reconfigurable bitstream containing only the customized logic of
the user’s application (role) is sent over the DC network to the management layer
of the FPGA, which stores a copy of that bitstream at a specific offset into the flash
device. Next, the management layer triggers the partial reconfiguration controller
of the FPGA to reconfigure the new user-logic part into the FPGA.

4.4 Simulation Environment

This section explains the development of the simulation environments for both the
cloud shell (Figure 4.15) and the role (Figure 4.16). The cloud shell simulation is
required for the infrastructure vendor who develops and enhances the functional-
ity the shell to offer increasingly rich services to the role. The simulation of role

89

4. Standalone Disaggregated FPGA

Figure 4.13: Flow of Building Applications: (a) cloud shell (b) black box (place-
holder for user application) (c) user application

is used by the application developers, before placing their HW application in the
real FPGA HW.

4.4.1 Cloud Shell Simulation

Xilinx Vivado HLS C simulator allows to run standard Linux C library functions
in the test bench. This allows us to integrate standard TCP/IP software socket
code in the simulator test bench code. Using the TCP/IP user space library func-
tions, incoming packets can be read at different levels in the packet structure. For
example, only the payload of the packet, payload with the IP header, or payload
with both IP header and Ethernet header can be received by the application. This
flexibility allows the simulation platform to split the cloud shell at different stages
for simulating a particular piece of logic.

To feed the HLS-based TCP/IP stack, the incoming data must be received with the
packet header, including the MAC header, IP header and the TCP or UDP header.
To receive the packet header with the incoming data, the applications uses raw
sockets. In this implementation, a simple loopback application is running in the
HLS TCP/IP stack to ensure that the stack is working properly in the simulation

90

4.4. Simulation Environment

Figure 4.14: Flow of Configuring a Standalone Disaggregated FPGA

91

4. Standalone Disaggregated FPGA

Figure 4.15: Cloud Shell Simulation Platform

environment.

4.4.1.1 RX Path

When using connection-oriented protocols, such as TCP/IP, the incoming connec-
tion requests must not be forwarded to the host network stack, for example the
Linux kernel network stack. Instead, the raw packet must be forwarded to the sim-
ulation platform. For filtering the packets, standard Linux firewall tool, iptables,
is used. The raw socket interface in the simulation platform reads the packet and
forwards it to the HLS TCP/IP stack. Before feeding the data to the HLS TCP/IP
stack, incoming data has to be deserialized and adjusted according to the width
of the data path of the stack.

4.4.1.2 TX Path

In the TX path, the data going out from the HLS TCP/IP stack has to be serialized
and organized in a buffer before sending through the standard TCP/IP stack. Be-
fore sending the data over the raw socket, the complete Ethernet frame including
the data and the protocol headers must be constructed appropriately.

4.4.2 User Application Simulation

For the simulation of the user application, we modeled the Standalone Disaggre-
gated FPGA in C. The user applications run on top of this model. In this work, the
user application considered is written in C. For C-to-Verilog communication, there
are several interfaces are available, such as PLI (Programming Language Interface),
DPI (Direct Programming Interface) and VPI (Verilog Procedural Interface) [153].

92

4.5. Evaluation

Among them, the DPI is the state of the art, and it has replaced the PLI and VPI
by directly allowing the verilog code to call standard C library functions, instead
of using a user-defined wrapper. In the simulation, we used DPIC [154], which is
widely used to interface C code with verilog [155]. For VHDL, FLI [156] can be
used.

This section explains the simulation environment for application development for
the standalone disaggregated FPGA. As shown in the Figure 4.16, the application
development set up consists of two servers, one to run the SW application, which
is called the application server, and one to run the simulation platform, which
is called the simulation server. The motivation behind building this application
development environment is to completely simulate the application before placing
it in a real standalone disaggregated FPGA.

In the setup, the SW application can be in any language that can use TCP/IP
sockets to communicate with a remote server. In the simulation server, the SW
driver, which is written in C language, performs the task of the cloud shell in the
real disaggregated FPGA. TCP/IP is used for the communication between the SW
application in the application server and the SW driver in the simulation server.
For the communication between SW driver and the RTL application, which is the
device under test in this case, System Verilog Direct Programming Interface (DPI-
C) is used. By using DPI-C, the verilog-based RTL application can call functions
written in C from the SW driver. By placing the input and output variable appro-
priately in the SW driver, the two-way communication can be ensured between
the RTL application and the SW driver. On top of DPI-C, AXI-streaming seman-
tics are used for the communication between SW driver and the RTL application,
resembling the same infrastructure in the real disaggregated FPGA.

4.5 Evaluation

We evaluated our architecture in terms of network latency, throughput, application
predictability, and resource consumption. The standalone disaggregated FPGA
architecture presented was implemented and validated on a Alpha Data PCIe card
featuring a Xilinx Virtex7 XC7VX690T FPGA. The design uses one 10 GbE network
interface and two 1333 MHz DDR3 SODIMMs with 8 GB each. In the experimental
setup, the Alpha Data FPGA cards are plugged into a PCIe expansion chassis [22],
from which only power is taken for the cards. The FPGA cards are connected via
a top of rack switch [157] to two servers. Each server consists of a 4-core (with 2
CPU threads per each core) Intel i7-3820 clocked at 3.6 GHz and has 32 GB of main
memory. The servers run Linux (Fedora 22, Kernel 4.0) and are equipped with a
DC-class Mellanox ConnectX-3Pro 10 GbE Controller on PCIe Gen3. The max
payload size and the max read request size of the PCIe configuration are 256 B
and 4096 B respectively. The VMs run the same Linux configuration explained
above on two KVM (Kernel-based Virtual Machine) hosts. Each VM has a single

93

4. Standalone Disaggregated FPGA

Figure 4.16: Simulation Platform of Role (User Application)

core running at 3.6 GHz and 4 GB of memory. For the CTs, we used standard
Linux application containers.

Although bare-metal server, VM, and container network performance has been re-
ported in [127], comparison of those compute resources has not been done against
FPGAs. In this work, we compared the network latency, throughput, and variance
of response time of multiple SW and FPGA configurations using six experimental
cases: (a) VM-VM, (b) VMDIO-VMDIO, (c) CT-CT, (d) Native-Native, (e) Native-
FPGA, and (f) FPGA-FPGA. In each configuration, the first member acts as the
client and the second as the server. The network stack configurations of the exper-
imental cases are shown in Figure 4.17. In the VM configuration, the VM network
stack is connected to the host NIC through virtio and vhost drivers over a Linux
bridge, whereas in the VMDIO case, the VM network stack is directly connected
to the host NIC. The CT network stack is connected to the host NIC through two
virtual ethernet interfaces (VETH PAIR) over a Linux bridge.

4.5.1 Latency

To measure the latency, we used a client-server application where the client sends
a message to the server, and the server sends back the same message to the client.
FPGA does not send the messages to the external memory, whereas the NICs in
servers DMA copy the messages to the DRAM. For each message size ranging
from 1 B to 1472 B, the average time of one million such round trips is taken as
the final RTT.

As shown in Figure 4.19, moving from VM-VM to FPGA-FPGA, the RTT becomes
incrementally better. We observe that FPGA-FPGA achieves an impressive RTT

94

4.5. Evaluation

Figure 4.17: Network Stack Configurations of The Experimental Cases

Figure 4.18: Experimental Setup

of 2.8 µs and 12.1 µs for 1 B and 1472 B messages, respectively. The FPGAs de-
crease the node-to-node RTT by a factor of 10x to 35x compared with the VMs
and by a factor of 5x to 16x compared with VMDIO. FPGA-FPGA node latency
is 3x to 12x better than Native and CTs and 2x to 7x better than native-FPGA.
Also, we observe that the FPGA-FPGA RTT of 3.1 µs for 64 B messages is better
than RDMA and other kernel bypass networking solutions on native servers. Mel-
lanox VMA (Mellanox Messaging Accelerator) achieves an RTT of 2.86 µs for 64 B
messages in a back-to-back configuration without crossing a network switch [158],
and iWARP (internet Wide Area RDMA Protocol) achieves an RTT of 9.6 µs for
8B messages crossing a network switch [159]. The network switch we used adds
0.8 µs of latency to the RTT of a message. The native-FPGA RTT performance
shows that even if an FPGA is used on one side of the communication channel,
the performance cannot be significantly improved because SW is involved on the
other side.

We also observed that when the message size is gradually increased from 1 B to
1472 B, the latency gap between FPGA-FPGA and other SW cases becomes smaller.

95

4. Standalone Disaggregated FPGA

The overall packet transmit latency consists of two components: (i) the control path
latency and (ii) the data path latency. The control path latency is independent of
the data size for the packets under MTU size. From the results, it is clear that
for SW cases there is almost no change in the latency when the message size is
increased from 1 B to 1472 B. This is because the control path latency dominates
the overall latency. But when the message size is increased, the data path latency
gradually becomes the dominant contributor to the overall latency. In the case of
FPGA, there is no control path and the push from the application to the data path
drives the packet out of the FPGA. From these observations, it is clear that for large
message sizes, such as 1 MB, there would not be a clear gap in the latency between
FPGA-FPGA and other SW cases. But, low latency is particularly important for
control messages. Usually, the control messages are very small and fit in a MTU
size message. Hence, even if it is for small message sizes, the low latency results
produced by the FPGA is beneficial for the distributed applications in DCs.

 1

 10

 100

 1000

1 2 4 8 16 32 64 128 256 512 1024 1472

R
o
u
n
d

 T
ri

p
 T

im
e
 (
µ
S

)

Message Size (Bytes)

VM-VM
VMDIO-VMDIO

CT-CT
Native-Native

Native-FPGA
FPGA-FPGA

Figure 4.19: Latency Comparison

4.5.2 Throughput

To measure the throughput, we used another client-server application where the
server sends a stream of packets and the measurement is taken at the client. In a
single iteration, one million packets are received from the server, and the average
of ten such measurements are taken as the final result. In this experiment, we
defined the maximum theoretical throughput as follows, considering the overhead
added in each layer from L1-L4: Maximum theoretical throughput = Line Rate *

96

4.5. Evaluation

(UDP Payload/(UDP Payload + UDP Header (8 B) + IP Header (20 B) + MAC
Header (14 B) + FCS (4 B) + Preamble (7 B) + Start of Frame (1 B) + Inter-Frame
Gap (12 B))).

As shown in Figure 4.20, FPGAs can achieve the maximum theoretical throughput
at all message sizes ranging from 1 B to 1472 B. Irrespective of the experimental
case, the throughput performance of SW is poor, particularly for the smaller mes-
sage sizes. For 1B messages, the native servers, CTs and VMs can achieve only
0.32, 0.28 and 0.2 million messages per second respectively, whereas the FPGA
can achieve 14.88 million messages per second, with an impressive improvement
of up to 73x. Even though VMDIO’s RTT is better than that of VMs, the through-
put is extremely poor for small message sizes, and thus we excluded VMDIO
from the comparison. The literature shows that the native servers can achieve 3.64
million messages per second for 1 B messages using kernel-bypass networking
solutions [158], which is still far below than what FPGAs can achieve.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512 1024 1472

P
a
y
lo

a
d

 T
h
ro

u
g

h
p

u
t

(G
b

/S
)

Message Size (Bytes)

VM-VM
VMDIO-VMDIO

CT-CT
Native-Native

Theoretical-Max
FPGA-FPGA

Figure 4.20: Throughput Performance

4.5.3 Latency Variation

We evaluated the latency variation by considering the RTT (Round Trip Time)
of one million iterations for each payload size. The standard deviation of the
99th percentile of the RTT distribution is shown in Figure 4.21. The standard
deviation of the FPGA-FPGA latency ranges between very low vales of 0.027 and
0.043, whereas the standard deviation for the VM-VM ranges between 16.731 and
22.154. For CT-CT, native-native, and native-FPGA, we observe a value ranging

97

4. Standalone Disaggregated FPGA

between 1.1 and 2.3, whereas the standard deviation of VMDIO-VMDIO gradually
increases up to 7.8 with the message size.

 0.01

 0.1

 1

 10

 100

1 2 4 8 16 32 64 128 256 512 1024 1472

S
ta

n
d

a
rd

 D
e
v
ia

ti
o
n

Message Size (Bytes)

VM-VM
VMDIO-VMDIO

CT-CT
Native-Native

Native-FPGA
FPGA-FPGA

Figure 4.21: Variation of Response Time (99th Percentile)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16 32 64 128 256 512 1024 1460

R
o
u
n
d

 T
ri

p
 T

im
e
 (
µ
S

)

Message Size (Bytes)

Native-Native(TCP)
Native-Native(RDMA)

FPGA-FPGA(TCP)
FPGA-FPGA(UDP)

Figure 4.22: TCP Latency Comparison

98

4.5. Evaluation

 0.01

 0.1

 1

 10

1 2 4 8 16 32 64 128 256 512 1024 1460

S
ta

n
d

a
rd

 D
e
v
ia

ti
o
n

Message Size (Bytes)

Native-Native(TCP)
Native-Native(RDMA)

FPGA-FPGA(TCP)
FPGA-FPGA(UDP)

Figure 4.23: TCP Latency Variation

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512 1024 1460

P
a
y
lo

a
d

 T
h
ro

u
g

h
p

u
t

(G
b

/S
)

Message Size (Bytes)

Native-Native(TCP)
Native-Native(RDMA)

FPGA-FPGA(TCP)
FPGA-FPGA(UDP)

TCP-Theoretical-Max

Figure 4.24: TCP Throughput Comparison

4.5.4 FPGA Resources

Table 4.3 and 4.4 show the resource consumption of the shell based on UDP/IP
and TCP/IP, respectively. The NET CTRL (MAC/PHY) and the MEM CTRL are
Xilinx IP cores. In the case of UDP/IP, the design use around 62 K LUTs and

99

4. Standalone Disaggregated FPGA

59 K Flip-Flops, which is equal to 14% and 7% of the overall available resources.
Out of the total resources, the network-related modules (NET CTRL, IP/UDP, AI)
consume less than 4% of the LUT, FF and BRAM resources. In the case of TCP/P,
the design use around 88 K LUTs and 100 K FFs, which is equal to 20% and 12%
of the overall resources.

Table 4.3: Resource Consumption of UDP/IP Based Shell

Module LUT FF BRAM
IP 1118 1123 4
UDP 2990 3122 7
NET CTRL 4581 5101 11
MEM CTRL 39373 34172 38
MV 5382 4991 66
Application Interface 4142 4316 24
Top Level 4541 5705 34
Total 62289 59160 193
% of XC7VX690T 14 7 13

Table 4.4: Resource Consumption of TCP/IP Based Shell

Module LUT FF BRAM
IP 1789 2063 28
TCP 15159 16460 270
NET CTRL 4581 5101 11
MEM CTRL 39373 34172 38
Application Interface 1913 1768 15
Other (ARP/DHCP/Top Level) 25721 40576 28
Total 88536 100140 390
% of XC7VX690T 20 12 27

4.6 Discussion

4.6.1 Performance

Overall, the experimental results show that FPGAs outperform general-purpose
servers in network performance by a large margin. We found that the server
network throughput is significantly degraded for smaller message sizes, whereas
FPGAs achieve the line rate irrespective of the message size. Even though mod-
ern discrete NICs support advanced features, such as segmentation offload, small
messages do not benefit from them. The impressive FPGA-FPGA latency and

100

4.6. Discussion

throughput open the path for the deployment of standalone disaggregated FP-
GAs in DCs. Also, this eliminates the need to implement RDMA and other kernel-
bypass networking mechanisms [158], which are known to provide better latency
and throughput than traditional networks, when deploying distributed applica-
tions in DCs.

When running multiple applications, time-sharing is used in the CPUs, where the
processor is divided in its computing time among multiple tasks. This increases
the contention for the resources when adding more applications on the same CPU.
On the other hand, space-sharing is used in the FPGAs, where a dedicated phys-
ical space of the silicon chip is reserved for each application. This fundamental
architectural difference in the FPGA solves the scheduling issues when running
multiple applications on the same compute resource, significantly improving the
application response time variation.

In the implementation of TCP/UDP/IP on CPU, the CPU involves in both the
control and the data path of the network packets (Figure 4.25-(a)), whereas in the
case of RDMA on CPU, the CPU only involves in the control path (Figure 4.25-
(b)). In the FPGA implementation of TCP/UDP/IP, there is no control path and
only the data path exists (Figure 4.25-(c)), as FPGA applications are typically im-
plemented in a data-flow architecture instead of using a control-flow architecture,
like in CPUs.

Furthermore, in the case of FPGA, as all the components including the network
controller, the network stack, and the application are tightly integrated within
the FPGA HW, the communication link between two applications that run on
two standalone disaggregated FPGAs resembles a physical wire connection. On
the other hand, in the case of CPU, a large number of SW functions executes
multiple processing steps, particularly in the control path, when moving data
from application to application over the network, which significantly degrades
the latency and throughput performance. Even if RDMA improves the network
performance compared to TCP/UDP/IP on CPU by bypassing the kernel on the
data path (Figure 4.25-(b)), it fails to match the performance of TCP/UDP/IP
implemented on FPGA, as the RDMA control path still runs on SW.

4.6.2 FPGA Resource Consumption

We find that it takes less than 4% of the resources of a Xilinx Virtex7 (XC7VX690T)
FPGA to hook it up to UDP/IP over an Ethernet network, and that the overall
architecture consumes only 14% of the total resources. Even if management in-
terfaces are used to connect the device to a centralized management software, we
expect the overall resource utilization to be around 20%, which is a comparable
amount considering the 23% resource utilization in the Catapult FPGA fabric [25].

101

4. Standalone Disaggregated FPGA

Figure 4.25: TCP/IP and RDMA on CPU vs TCP/IP on FPGA

4.6.3 Impact on Applications

Even if the available compute power is sufficient, inefficient networks hamper the
scalability of CPU-based applications. For example, when the number of servers is
increased beyond a certain threshold, the training of a distributed deep neural net-
work becomes slow, as the network overhead starts to dominate [40]. Similarly, the
scalability of Hadoop TeraSort [42] is hampered by the network throughput per-
formance, particularly in the data-shuffling phase, in which an increased amount
of DC network traffic is generated.

Moreover, on-line data-intensive applications, such as high-frequency trading (HFT)
and web searches, need to obey tight latency constraints. In synchronous cluster
applications, a typical cause of degraded performance is variance in processing
times across different servers, leading to many servers waiting for the single slow-
est server to finish a given computation phase [40]. This variance in processing
times is caused by unpredictable scheduling of CPU and IO resources.

According to our results, as FPGAs perform far better than SW in throughput, la-
tency, and variation in response time, they largely resolve the network bottlenecks
in CPU-based distributed compute fabrics.

102

4.7. Summary

4.6.4 Network Protocol

We also found that FPGA UDP throughput reaches the theoretical maximum
throughput and its latency stays at very low values, whereas the TCP throughput
and latencies are better than those of RDMA for small massage sizes. In contrast
to UDP, the TCP throughput stays well below the theoretical maximum through-
put for all message sizes. Our UDP implementation used only one fifth of the
resources of the TCP stack we evaluated, and moreover the TCP stack required
a few hundred connections to achieve the maximum throughput, whereas UDP
needed only one.

The insights gained from the results call for a custom protocol that performs like
UDP and has the minimum features for reliable inter-FPGA communication, using
fewer resources than TCP. Preferably, this protocol must be able to saturate the line
rate using a few connections, because large number of connections entails the issue
of how to distribute the traffic between connections to achieve the maximum rate.

Even though we have implemented unreliable UDP protocol in the prototype,
we want to implement a reliable protocol for inter-FPGA communication. Tra-
ditional Ethernet does not guarantee lossless frame reception. Instead, packets
are dropped whenever a receive buffer reaches its maximum capacity. The mod-
ern CEE (Converged Enhanced Ethernet) networks are designed to prevent these
frame losses by using a link-level flow-control mechanism called PFC (Priority
Flow Control). As our FPGA network stack has been designed to be lossless, we
can build an end-to-end lossless DC network for inter-FPGA communication by
deploying FPGAs on modern CEE networks. In those infrastructures, we envi-
sion that the level of reliability that must be provided by the L4 protocols, such
as TCP, can be further simplified, leading to a wide use of simpler L4 protocols,
such as UDP. This reliable protocol can be implemented on top of UDP, like UDT
(UDP-based Data Transfer Protocol) [160] and QUIC (Quick UDP Internet Connec-
tions) [161] does.

4.7 Summary

In this chapter, an architecture for a standalone disaggregated FPGA is proposed.
The standalone disaggregated FPGA module consists of an FPGA to serve as
generic and programmable hardware accelerator, a nonvolatile memory device,
such as a serial or parallel flash memory, to store the FPGA’s configuration infor-
mation, and the external memory in the form of DRAM. Because a standalone
disaggregated FPGA resource is decoupled from any host, it must operate in a
self-contained manner by executing tasks that were previously under the control
of a host server. To achieve this, a shell-role architecture is used: the shell ab-
stracts FPGA I/O, while the role hosts the user applications. The state-of-the-art
FPGA shells interact with CPUs over a PCIe bus, but in the approach proposed
here TCP/IP over 10 GbE used for CPU-FPGA as well as for inter-FPGA commu-

103

4. Standalone Disaggregated FPGA

nication. The shell provides the access to the network, memory, and management
functions.

To verify the proposed architecture, a prototype was built in a commercial FPGA.
The prototype built was evaluated in terms of network latency, latency variation,
throughput, and resource consumption. As these FPGAs are deployed in DCs,
we compare these metrics with other DC compute resources, such as bare-metal
severs, VMs, and CTs. The results show that standalone disaggregated FPGAs
outperform them in terms of network latency and throughput by a factor of up
to 35x and 73x, respectively. We also observed that the proposed architecture
consumes 23% of the total FPGA resources (Xilinx Virtex7 (XC7VX690T)). Finally,
we also evaluated a shell based on only UDP/IP, which consumes only 14% of the
FPGA resources.

104

Chapter 5

Software-Defined Multi-FPGA Fabrics

In this chapter, software-defined multi-FPGA fabrics are introduced, which are
built using standalone disaggregated FPGAs (explained in chapter 4) in a software-
defined manner. This chapter is organized as follows: Section 5.1 reviews state-
of-the-art multi-FPGA systems and their applications. Section 5.2 reviews require-
ments of multi-FPGA systems in cloud DCs and proposes software-defined multi-
FPGA fabrics. Section 5.3 summarizes the chapter.

5.1 Multi-FPGA Systems

When a single server is not sufficient to run an application producing desired re-
sults, usually the application is split and distributed on to multiple servers on a
compute cluster. Similarly, when the capacity of a single FPGA is not enough
to handle a desired functionality in a particular application, multiple FPGAs are
used in the application, splitting and distributing the functionality among those
FPGA chips. One of the main features that distinguishes different kinds of such
multi-FPGA architectures is the topology, meant as the way the different FPGAs
are connected to each other [29]. There are mainly two types of topologies based
on the way multiple FPGAs are interconnected: (i) fixed topologies and (ii) pro-
grammable topologies.

5.1.1 Fixed Topologies

In fixed topologies, multiple FPGAs are interconnected over hard-wired connec-
tions linking specific I/O pins of FPGAs over a multi-FPGA board [95] [94] [93]
[96] [18] or over a dedicated point-to-point network [7] [15] [16] [25] [47]. The sim-
plest fixed topology is the linear array (Figure 5.1-(a)), where multiple FPGAs are
chained together and the application data usually flows in one direction [94] [93].
By closing the loop in a linear array arrangement, FPGA rings (Figure 5.1-(b)) are
made [15] [16] [47] [162]. The most widely adopted fixed topology is the mesh
and it is the popular choice for multi-FPGA board deployment. In a mesh, FPGAs

105

5. Software-Defined Multi-FPGA Fabrics

Figure 5.1: Fixed-Topology Multi-FPGA Systems: (a) Linear Array (b) Ring (c)
4-Way Mesh (d) 4-Way Torus (e) 8-Way Mesh (f) 8-Way Torus

are arranged on a grid and are connected in a nearest-neighbor pattern. In 4-way
meshes [95](Figure 5.1-(c)), the wires connect only horizontal and vertical neigh-
bors, whereas in 8-way meshes [18](Figure 5.1-(e)), each FPGA is connected also
to its diagonal neighbors. When the FPGAs on two opposite boundaries of the
grid are connected in a circular fashion, that topology is called torus [25] [97](Fig-
ure 5.1-(d)(f)).

The advantage of the mesh topology is the inherent expandability of the archi-
tecture due to the use of local connections. Adding an FPGA to an existing ar-
chitecture means creating some local connections without any other constraint.
The disadvantages are due to the fact that there is no fixed-length path between
every pair of FPGAs, which causes different delays in signal transmission and
the need to use some area to implement communication logic in intermediate
chips. Several topologies adopt hard-wired connections. In a complete-graph
topology, each FPGA is connected to each other. Despite this topology offers a
direct connection between any pair of FPGAs, as the number of chips increases,
the width of each connection decreases due to the fixed number of available pins
in each FPGA. Moreover, as the number of FPGAs increase, it is difficult to prac-
tically realize at the circuit level due to the large number of connections between
chips [30] [29] [163].

106

5.1. Multi-FPGA Systems

5.1.2 Programmable Topologies

Programmable topologies consist of wires connected to components, which are
also reconfigurable logic or network devices that can switch traffic based on net-
work packet information [2] [1]. Re-programmable components can be programmed
to implement a particular connection between the wires. The most used topology
using programmable connections is the crossbar. In this topology, chips are di-
vided in to two classes based on their functionality. Logic bearing FPGAs contain
the logic functions and perform computations (the lower ones in Figure 5.2-(a)(b)),
while routing chips provide the connections between logic chips (the upper ones
in Figure 5.2-(a)(b)). The idea is that communication between any pair of logic FP-
GAs requires exactly one extra routing hop, such that communication delays are
all equal. When only one chip is used to provide the interconnections, the cross-
bar is said to be total. When several chips are used, the topology is named partial
crossbar. Due to the cost of producing a big routing chip, partial crossbar is usu-
ally preferred. The routing chips can also be standard FPGAs. The literature [30]
shows about cheaper re-programmable interconnect devices with large number of
pins called FPIDs (Field Programmable Interconnection Devices), or FPICs (Field
Programmable Interconnections Chips). However, those chips cannot be found
on today’s market. Crossbar architectures have the drawback that they are not
expandable, since the connections are implemented over a global communication
infrastructure [30] [29] [163].

Virtual Wires [164] is a technology for sharing physical wires among multiple
logical ports within the FPGA. The programmability comes from the matching of
logical ports to the physical wires. When two virtual wire technology-enabled
FPGAs are connected, end-to-end virtual wires between FPGAs can be created.
This is somewhat similar to running VLANs atop Ethernet.

Re-programmable components can also be network switches (Figure 5.2-(c)(d)), as
in traditional computer networks. In this case, FPGAs are directly attached to the
network. Based on the network protocols used, Ethernet or Infiniband, topologies
can be made programmable. The disadvantage of this approach compared to
multi-FPGA board approach is the high latency, as the network packets for inter-
FPGA communication have to cross through a network switch.

5.1.3 Applications

One of the most successful uses for FPGA-based computation is in ASIC logic
emulation. The designers of a custom ASIC need to make sure that the circuit
they designed correctly implements the desired functionality. Software simulation
can perform these checks but does so quite slowly. In logic emulation, the circuit
to be tested is instead mapped onto a multi-FPGA system, yielding a solution
several orders of magnitude faster than software simulation [29] [165] [166].

The execution of identified compute-intensive kernels that has a high tendency to

107

5. Software-Defined Multi-FPGA Fabrics

Figure 5.2: Programmable-Topology Multi-FPGA Systems: (a) Crossbar (b) Hier-
archical Crossbar [29] [30] (c)(d) Star

occur can be accelerated using FPGAs, as custom HW circuits can be built tailored
to the application. HPC systems [97] [93] [167] take advantage of this and get the
application processing improved by order of magnitudes by fully and partially
offloading compute-intensive processioning to multi-FPGA platforms.

Cryptanalysis of modern cryptographic algorithms require massive computational
effort, often between 2ˆ56 to 2ˆ80 operations. A characteristic of many cryptana-
lytical algorithms is that they can run in a highly parallel fashion with very lit-
tle interprocess communication. Such applications map naturally to a hardware
based design, requiring repetitive mapping of the basic block, and can be easily
extended by adding more chips as required [94].

Multi-FPGA systems are also better in parallel computing where multiple ker-
nels can run independently because of the nature of spatial computing, which
makes them suitable for deep learning [168] [169] [170] and big-data applica-
tions [171] [172]. Sequence alignment is one of the most popular application areas
in bioinformatics. Nowadays, the exponential growth of biological sequence data
becomes a severe problem if processed on standard general-purpose PCs, because
space and energy requirements introduce significant costs [173] [17].

5.1.4 Summary

In summary, multi-FPGA systems are mainly characterized by the FPGA intercon-
nect topology. Fixed topologies are the widely used choice, as almost all of the

108

5.2. Multi-FPGA Systems in Cloud Data Centers

multi-FPGA deployments address specific problems. The system infrastructures
are highly customized to suit those specific applications. Programmable topolo-
gies have been introduced to increase the application flexibility. Programmable
topologies vary from infrastructures with dedicated FPGAs for inter-FPGA rout-
ing to FPGAs directly attached to data center networks. Although the flexibility is
improved by programmable topologies, interconnecting applications which runs
on FPGAs still need the FPGAs to be reprogrammed. From the perspective of
applications, a wide scope of applications including logic simulation, HPC, cryp-
tography, deep learning, bio-informatics, big data and application-specific cloud
infrastructures are successfully using multi-FPGA systems.

5.2 Multi-FPGA Systems in Cloud Data Centers

All the multi-FPGA deployments and applications reviewed in Section 5.1 are
based on application-specific HW deployed on private infrastructures. Although [25]
and [1] are based on public cloud, they operate at SaaS layer, where the HW in-
frastructure is designed to be application specific. Motivated by the success of
large-scale SW-based distributed applications such as those based on MapReduce
and deep learning [40], and the promising results of off-cloud multi-FPGA sys-
tems, we want to give the users a possibility to distribute their applications on
a large number of FPGAs in the cloud. However, as the applications running
on general-purpose cloud data centers are inherently dynamic and diverse, the
traditional deployment of FPGAs explained above are not flexible enough to be
deployed in general-purpose DCs.

5.2.1 Software-Defined Multi-FPGA Fabrics

In general-purpose DCs, the infrastructure must be able to provide as many FP-
GAs as needed independent of the number of servers based on the application
requirements. It might be one server and a part of an FPGA or one server and
thousands of FPGAs as shown in Figure 5.3. Those multiple FPGAs must be able
to be connected in flexible topologies (Figure 5.4) on demand and to be released
when no longer needed. For example, some applications need to implement load
balancing to offer continuous delivery of services at certain SLAs (service level
agreement). To implement load balancing, dynamic scaling of compute resources
is needed. In such a situation, FPGA-centric application must be able to add/re-
move FPGAs and connect/disconnect them dynamically. However, traditionally,
interconnecting multiple FPGAs require a new bit stream to be generated and
the FPGA to be reprogrammed. As this is a long process, the operation of the
distributed applications are disrupted.

Addressing above issue, this thesis introduces software-defined multi-FPGA fabric
framework. Using this framework, multiple FPGAs can be interconnected on de-
mand in user-defined topologies over the DC network as shown in Figure 5.5. The

109

5. Software-Defined Multi-FPGA Fabrics

Figure 5.3: Use Cases for Scalable Allocation of Reconfigurable Resources in
Cloud DCs

Figure 5.4: Flexible Arrangement of Standalone Disaggregated FPGAs for Diverse
Use Cases

110

5.2. Multi-FPGA Systems in Cloud Data Centers

Figure 5.5: Software-Defined multi-FPGA Fabric: On Demand Formation of multi-
FPGA Fabrics

basic idea of SDMFF is to connect the vFPGAs in multiple FPGAs dynamically in
arbitrary topologies (Figure 5.6).

For making the vFPGA topology programmable, meta data provided by the under-
lying TCP/IP stack is used. The meta data is in the form of 16-bit integer, which
collectively represents the network packet’s source IP, destination IP, source port
and destination port. The SDMFFs are formed by dynamically making network
connections between two FPGAs and associating the meta-data of those connec-
tions with the vFPGA’s FIFO ID in the corresponding FPGAs.

In a SDN-enabled switch, OpenFlow [174] forwards network packets from a par-
ticular port to another port based on the protocol header information of the corre-
sponding packet. Based on the defined rules, while forwarding packet’s protocol
header information may also get changed. Compared to SDN, SDMFF works at
the application layer with the network packet’s layer 4 payload. Virtual Wires [164]
was a technology to increase the inter-chip communication BW in FPGA-based
logic emulators. Limited inter-chip communication bandwidth results in low gate
utilization (10 to 20 percent of usable gates). This resource imbalance increases
the number of chips needed to emulate a particular logic design and thereby de-
creases emulation speed, since signals must cross more chip boundaries. Typically,
emulators only use a fraction of potential communication bandwidth because they
dedicate each FPGA pin (physical wire) to a single emulated signal (logical wire).
These logical wires are not active simultaneously and are only switched at emula-
tion clocking speeds. Virtual Wires overcome pin limitations by intelligently mul-
tiplexing each physical wire among multiple logical wires and pipelining these
connections at the maximum clocking frequency of the FPGA. A virtual wire con-
nects a logical output of one FPGA to a logical input on another FPGA.

111

5. Software-Defined Multi-FPGA Fabrics

Figure 5.6: Dynamic Inter-FPGA Connections Over the DC Network

Figure 5.7: SDMFF Topology Definition: (a) user-defined configuration, (b) con-
figuration after resource allocation and (c) configuration after fabric is formed

112

5.2. Multi-FPGA Systems in Cloud Data Centers

5.2.2 Fabric Topology Definition

SDMFF topology is defined in a configuration file in plain text. The structure
of such a file is shown in Figure 5.7. Each inter-FPGA link (IFL) represents a
network connection (such as TCP) between two FPGAs. Two FPGAs in an IFL,
which consists of the source FPGA (SFPGA) and the destination FPGA (DFPGA),
has 4 attributes: (i) FPGA IP address, (ii) port number, (iii) application (vFPGA or
ROLE in shell-role notation) fifo ID, and (iv) connection ID. The fabric topology
configuration is updated in 3 steps: (i) at user definition of the topology, (ii) at
resource allocation, (iii) and at fabric formation.

At first step, user defines the multi-FPGA fabric topology by adding IFLs in the
configuration file and by updating only the application FIFO ID. Application FIFO
IDs in the same IFL on two FPGAs represent the two endpoints of an IFL with
respect to application data. By configuring those application fifo IDs in the con-
figuration file, user expects whatever the data written at one end of the IFL to
be ended up in the other end in the destination FPGA. Once the user defined
topology is handed over to the resource allocation service, the configuration file
is further updated with the FPGA ID, FPGA IP address and the ports (Figure 5.7-
(b)). The information up to this step is used by the FPGA manager at the fabric
formation step to build the multi-FPGA fabric. At the fabric formation step, IFLs
are formed over the DC network based on the configuration information. In the
FPGA, each connection is uniquely identified by an identifier, which is updated in
the configuration as the connection ID (Figure 5.7-(c)). This connection ID is the
16 b integer based meta-data explained in section 5.2.1.

5.2.3 FPGA Manager

Each FPGA chassis runs an agent, which reports the information of the FPGA to
the FM. FM (Figure 5.9) keeps record of all the FPGAs in the data center in its
DB and allocates resources according to the user’s multi-FPGA fabric creation re-
quest. MFFC (Multi-FPGA Fabric Controller) is a service in FM, which exposes the
functionality to create multi-FPGA fabrics to the users. MFFC contains three main
components: (i) task decoder, (ii) fabric topology decoder and (iii) fabric builder.
The task decoder identifies whether the request is to create a new fabric, to delete
an existing fabric or to modify an existing fabric. Based on the identified task,
the topology decoder decodes the received topology and allocate or deallocate re-
sources using the FM resource allocator. Then the fabric builder sends appropriate
commands to each FPGA associated with the multi-FPGA fabric, which is defined
by the topology configuration.

5.2.4 Multi-FPGA Fabric Agent

Standalone Disaggregated FPGA presented in Chapter 4 is enhanced to build
SDMFFs. The two enhancements done are (i) the modification of the application

113

5. Software-Defined Multi-FPGA Fabrics

Figure 5.8: Application Interface and Fabric Agent Architecture

switch and (ii) the addition of a new agent, which is called multi-FPGA fabric
agent (FA), to the management layer as shown in Figure 5.8. A key feature of
these enhancements is the minimal dependency on the underlying network proto-
col stack. The meta-data provided by the underlying TCP stack is used together
with the meta-data of application FIFOs from the application interface to switch
data at payload-level.

Fabric agent listens on a predetermined TCP port when the FPGA is configured
with the SHELL. The FPGA manager connects to this port over TCP and the MFFC
sends fabric commands (Table 5.2) to the FA based on the SDMFF protocol (Sec-
tion 5.2.5). After decoding the received commands by the fabric command de-
coder, the fabric command dispatcher sends the relevant TCP-based commands to
the TCP connection manager. The connection manager executes the commands
on the underlying TCP stack. The returned value from the TCP stack is the con-
nection ID, which is a unique value differentiating each TCP connection. The link
ID along with the vFPGA’s FIFO ID are sent to the application switch, which in
turn programs the two-column table, consisting of link IDs and vFPGA’s FIFO IDs.
This information is later used by the application switch to perform switching of
the network packet payload to the relevant FIFO in the application layer.

114

5.2. Multi-FPGA Systems in Cloud Data Centers

Figure 5.9: SDMFF Framework: (a) An Example SDMFF Interconnect (b) FPGA
Manager (c) Programmable Application Interface (d) Multi-FPGA Fabric Agent

115

5. Software-Defined Multi-FPGA Fabrics

Figure 5.10: SDMFF Protocol Header Defined in C

5.2.5 SDMFF Protocol

SDMFF protocol specifies how the FPGA manager and the fabric agent commu-
nicates over TCP/IP. The protocol header is encapsulated in TCP payload and it
contains 9 fields to facilitate the commands required to perform fabric creation,
fabric modification and fabric delete operations. The protocol header defined in C
language is shown in Figure 5.10 and the details of the header fields are given in
Table 5.1.

Table 5.1: SDMFF Protocol Header Details

Field Width Details
agent 16 Agent ID. ID of the fabric agent is 1.
cmd 16 Command sent to the agent specified in the ’agent’ field. 1:

link add, 2: link update, 3:link remove, 4:link status
sub cmd 16 Sub command associated with the command

specified in ’cmd’ field. 1:connect, 2: listen
src ip 32 Source IP address of the IFL.
dst ip 32 Destination IP address of the IFL.
src ip port 16 Source port of the IFL.
dst ip port 16 Destination port of the IFL.
src bid 16 Source buffer ID of the IFL.
dst bid 16 Destination buffer ID of the IFL.
cid 16 Connection ID of the IFL.116

5.2. Multi-FPGA Systems in Cloud Data Centers

Figure 5.11: The flow of forming a multi-FPGA fabric

5.2.6 Flow of Building SDMFF

Figure 5.5 shows the flow of forming a SDMFF in a pipelined manner. The server
running the SW part of the distributed application first starts listening on a par-
ticular port. Then it sends a fabric creation request to the FM with its listening
port (S P1) and IP address (S IP). Upon receiving the request from the server, the
FM decode the fabric topology as explained in Section 5.2.3, and sends appropri-
ate connect (SC) and listen (LC) commands (CMD), shown in Table 5.2, to each
FPGA as shown in Figure 5.11. Accordingly, fabric agent of each FPGA executes
(EXE) the commands received by the FM to connect with the server application
and the other FPGAs. Once all the FPGAs are connected, the FM sends a reply
to the server with the listening port (F1 P1) and the IP address (F1 IP) of the first
FPGA in the pipeline. Once this information has been received, the server starts
a connection to that listening port (F1 P1). With that step completed, the SDMFF
has been formed and the distributed application is ready to start execution.

5.2.7 Evaluation

Table 5.3 shows the reconfigurable resources consumed by the SDMFF extensions
in the FPGA. Fabric agent consumed 621 LUTs, 458 FFs and 9 BRAMs, whereas the
enhanced application switch consumed extra 551 LUTs, 760 FFs and 23 BRAMs.
In the case of SDMFFs, as FPGA reconfiguration is not needed to build multi-
FPGA fabrics, the fabric formation time (control path latency) is significantly re-
duced. We compared the SDMFF control path latency with the traditional ap-

117

5. Software-Defined Multi-FPGA Fabrics

Table 5.2: SDMFF Commands

CMD Arg1 Arg2 Arg3 Arg4 Return Val
SC1 Destination IP Destination Port FIFO ID − Connection ID
LC2 Destination IP Destination Port Source Port FIFO ID Connection ID
CC3 FIFO ID Connection ID − − −
1 Start Connection.
2 Listen for Connection.
3 Close Connection.

Table 5.3: Resource Consumption of TCP/IP Based Shell with MFFA

Module LUT FF BRAM
IP 1789 2063 28
TCP 15159 16460 270
NET CTRL 4581 5101 11
MEM CTRL 39373 34172 38
Application Interface 2464 2528 38
Fabric Agent 621 458 9
Other (ARP/DHCP/Top Level) 26200 41526 42
Total 90187 102308 436
% of XC7VX690T 21 12 30

proach of new bit-stream generation and FPGA reconfiguration. Table 5.4 shows
the time required to form a multi-FPGA fabric, which consists of two FPGAs, by
the two methods considered: (i) by new bit-stream, and (ii) by SDMFF. The first
approach took 29 minutes in our development platform to from the multi-FPGA
fabric, whereas SDMFF took only 0.754 ms. Our development platform runs Xilinx
Vivado 2016.4 version on RedHat Linux-based (RHEL 7.0) Intel machine (Single
socket i7-3820 CPU @ 3.60GHz, 4 Cores, 8 Threads, 32 KB L1 Cache, 256 KB L2
Cache, 10 MB L3 Cache, 32 GB DRAM). Vivado is configured to use all the HW
threads to fully optimize the compile time.

Table 5.4: Time for Multi-FPGA Fabric Formation with Two FPGAs

Fabric Formation Method Control Path Latency
New bit stream generation + FPGA reconfiguration1 29 minutes
SDMFF 0.754 ms
1 FPGA reconfiguration is performed remotely over the DC network, and it

took 9 s out of 29 minutes.

118

5.3. Summary

Figure 5.12: SDMFF Simulation Platform

5.2.8 Simulation Environment

The simulation environment for SDMFF is built by extending the simulation envi-
ronment shown in chapter 4 for standalone disaggregated FPGAs. As shown in
Figure 5.12, the SDMFF simulation environment is built in a single virtual machine,
which consists of multiple Linux containers. All the containers are connected over
an instance of a software-based openvswitch. One container runs the SW appli-
cation while the rest of the containers runs the standalone disaggregated FPGA
simulator.

5.3 Summary

Multi-FPGA systems are usually built targeting a specific application in mind.
Hence, they are organized in a certain topology, tailored to exploit the maximum
efficiency for the application considered. However, the applications that run on
general-purpose cloud DCs change frequently. Moreover, heterogeneous comput-
ing has evolved to a level where more custom HW accelerators are preferred over
more CPUs for maximum performance and energy efficiency. The amount of
CPUs and custom HW required depends on the nature of the application. Further,
interconnecting multiple FPGAs over the DC network requires the reprogramming
of each FPGA, which in turn requires a considerable effort from building the bit-
streams to reconfiguration. Even with that approach, changing the FPGA topology
while the application is running disrupts the application.

Hence, a framework to interconnect multiple standalone disaggregated FPGAs on
demand is proposed in this chapter. The architecture consists of an extension to
the standalone disaggregated FPGA presented in Chapter 4 and a software frame-
work to expose the HW extensions to the DC resource management. The HW
extension includes a multi-FPGA fabric agent in the management layer and a pro-

119

5. Software-Defined Multi-FPGA Fabrics

grammable table, which consists of application FIFO IDs and network connection
IDs, in the application switch. By interacting with the fabric agent, an external
FPGA manager builds multi-FPGA fabrics in a software-defined manner on de-
mand. This approach (i) allows the data path of distributed applications to be
changed dynamically without FPGA reconfiguration and (ii) reduces the control
path latency (time taken to form a fabric) for building multi-FPGA fabrics from 29
minutes to 0.754 ms, compared with the traditional approach of new bit-stream
generation and FPGA reconfiguration.

120

Chapter 6

Experimental Validation by Applications

This chapter shows two applications deployed on top of standalone disaggregated
FPGAs and SDMFF. The chapter is organized as follows:

In the first part (Section 6.1), a RESTful web service application on a standalone
disaggregated FPGA is demonstrated. The RESTful IP block is elaborated in Sec-
tion 6.1.1 and the web service application on top of the RESTful IP block is ex-
plained in Section 6.1.2. The experiments and results are discussed in Section 6.1.3.

In the second part (Section 6.2), a distributed text analytics application that runs
atop SDMFF-accelerated UIMA distributed computing framework is demonstrated.
First, text analytics is explained in general, followed by the explanation of UIMA
distributed computing framework in Section 6.2.1. The enhancements done to the
UIMA framework with PCIe-attached FPGAs and SDMFF is explained in Section
6.2.2. Next, porting of the text analytic application to standard UIMA is explained
in Section 6.2.3 and the same application in enhanced UIMA is elaborated in Sec-
tion 6.2.4. Experiments and results are shown in Section 6.2.5 and 6.2.6 respectively.
The results observed, and the perspectives gained are discussed in Section 6.2.7.
Section 6.3 summarizes the chapter.

6.1 RESTful Web Services

In today’s cloud environments, many services can be accessed via RESTful APIs [175].
The REST (representational state transfer) provides interoperability between com-
puter platforms and programming languages. A RESTful API uses the HTTP verbs
(GET, POST, etc.) together with the uniform resource identifier (URI) to trigger an
operation which will return a response in a pre-defined format, most commonly
XML or JSON. Some services for example are natural language processing (NLP)
tasks such as speech-to-text, text-to-speech (sentiment analysis) or image analysis.

Traditionally, these web services are provided via application servers that imple-
ment the HTTP protocol and then communicate via the common gateway inter-

121

6. Experimental Validation by Applications

face (CGI) or similar protocols with the application that implements the service
function. Such an application can in turn access an FPGA to utilize accelerated
functions and serve requests faster.

We present a configurable intellectual property (IP) block that is implemented on
the standalone disaggregated FPGA prototype to allow these accelerated functions
to be exposed to the HTTP client. The IP block implements the basic functional-
ity of the HTTP protocol and decodes the requests according to the developers
specification in OpenAPI format [176]. The block manages the connections for
timeouts and inspects the HTTP header for all required fields and their respective
values. The accelerated function remains in charge of processing the payload and
generating a response payload.

6.1.1 REST IP Block

Any FPGA application that wants to expose its functionality as a RESTful web
service must implement the HTTP protocol. Because it is a standard protocol
many aspects of the communication can be implemented in an IP block that can
be shared by all applications. A common FPGA design technique is to configure
IP blocks which are then used by the application. Our REST IP block can be
configured using an OpenAPI specification where a subset of features is currently
supported.

6.1.1.1 OpenAPI Configuration

In order to configure the REST IP block, we leverage the use of an OpenAPI speci-
fication (OAS). It defines machine-readable interface files for describing and docu-
menting RESTful web services. It defines the various URI paths and HTTP verbs
that are available for the API. Furthermore, it defines required parameters for each
API method and specifies what MIME type each method consumes and produces.

An FPGA developer can write this specification according to the services that the
application supports. The specification is then consumed by our generator tool
which creates a set of customized Verilog files which implement the specification.
The customized IP block can then be instantiated in the FPGA design and con-
nected with the actual application. The generator tool will in turn create a map-
ping between URIs and binary command words that are used to communicate
with the application. Figure 6.1 outlines the design flow for creating the REST IP
block for a specific application

6.1.1.2 Architecture

The architecture of the REST IP block (Figure 6.2) is designed for use with the
shell-role architecture of the standalone disaggregated FPGA. The REST IP block
resides in the ROLE and interfaces with the cloud shell over two FIFO-based AXI4
stream interfaces, which is an on-chip interconnect standard by ARM. One input

122

6.1. RESTful Web Services

Figure 6.1: Design Flow for Designing with the REST IP Block.

stream and one output stream, which only carry the application layer data. The
AXI4 stream standard defines an ID field which is used to indicate a connection
ID and differentiate between different clients.

The first stage of the REST IP block decodes the HTTP header of an incoming
request. Because the TCP protocol transmits at a segment level, the REST IP block
needs to re-assemble these segments to a complete HTTP request message. While
decoding the HTTP header, the IP block collects and stores the segments in DDR
memory on the standalone disaggregated FPGA. It uses the Content-Length field
to determine the overall length of the message. If this field is missing in the HTTP
header, the request is flushed, and an error response is sent to the client (411 -
Length required). Also, a limit can be set on the payload length. If that limit is
exceeded, the request is flushed and the error response 413 payload to large is sent
to the client.

The decoding stage uses a set of finite-state machines that can consume the input
stream at wire speed (10 Gbps). Each state machine is responsible for a specific
header field and translates the decoded element into a binary integer identifier,
which is later used by the top-level state machine. If only a segment of the mes-
sage is received the current state of the state machines are saved to a connection
buffer on the FPGA. When the next segment of a connection arrives, the states are
restored and the decoding continues. This context swap requires two clock cycles
on the FPGA which is roughly 15 ns for this implementation.

The request’s type and URI are decoded using the OpenAPI specification provided
by the developer. The specification was used by our generator tool to create a
custom state machine which maps the various API methods to a binary instruction
word and is supplied to the actual application block. These commands are sent
via an AXI4 stream interface once the complete payload has been received. The
payload data is supplied via a second AXI4 stream interface to the application

123

6. Experimental Validation by Applications

Figure 6.2: Main Modules of the REST IP Block in the ROLE of the Cloud Shell

module. Any mismatching URIs or MIME types are immediately flushed and an
error response is sent to the client without the application being involved.

Responses are generated by the response encoder of the REST IP block. It consists
of two finite-state machines. One responsible for the overall response and one for
generating the header information. A response can be triggered from two sources:
the application or the internal request decoding logic. All internal responses are
error codes or the informational Continue response and do not have a payload.
Applications in turn may trigger the responses OK or Internal Server Error which
both can have a payload. A third alternative for applications is the No Content,
which indicates successful execution of the API call but the response requires no
payload.

If the application provides a payload it has two options: either it knows the length
of the payload at the time it submits the response command. Or the payload
length is unknown which is encoded as a zero-length payload with a generic OK
response command. In this scenario, the response encoder logic will send an
HTTP response header with the transfer encoding set to chunked. In this mode,
the payload is sent via HTTP in chunks which are generated by the response
encoder. Although this introduces some overhead to the processing performance
of the FPGA, it is a nice feature of the HTTP protocol because it avoids storing
data on the local DDR memory. The AXI4 conformant TLAST signal indicates the
last piece of data to be sent in this mode from the application and concludes the
response payload.

6.1.2 Web Service

As an example service, we choose a natural language processing (NLP) application
which scans scientific documents for relevant entities. The service accepts plain

124

6.1. RESTful Web Services

text documents and returns a set of annotations which is returned as a JSON
object. The application logic is implemented using the annotation query language
(AQL) FPGA compiler framework from [177]. The logic is capable of processing
the document in a single pass by evaluating it one byte per clock cycle, which is
an eighth of the line rate. Using multiple instances of the processing logic, this
performance could be increased, but for the initial evaluation this has not been
implemented.

The RESTful API specification defines which annotations should be returned to
the client. Examples are /annotate/ where are types of annotations are returned
or /annotate/ValueUnit returning only annotations of the ValueUnit type. The text
analytics application core generates all of these annotations in parallel, and we
filter the results at the output of the core. The filtered results are then forwarded
to the REST IP block where they are sent in chunked mode to the client.

6.1.3 Evaluation

To evaluate our example web service application presented in Section 6.1.1, we
compare its performance against a server-based implementation. The server ver-
sion has been evaluated as a pure software implementation and as an accelerated
service using an FPGA.

6.1.3.1 Setup

All components are connected via a 10 Gigabit Ethernet network. The application
client runs on an x86-based server at 2.6 GHz and 32 GB of memory. The server
machine is an IBM POWER8-based server at 2.92 GHz and 512 GB of memory. The
POWER8 processor has 20 physical cores and can run up to 160 hardware threads
simultaneously. The server hosts a commercial-off-the-shelf (COTS) FPGA accel-
erator board based on a Xilinx Kintex UltraScale FPGA, which is connected via
the CAPI interface to the processor. The standalone disaggregated FPGA is also
implemented on the same FPGA card, which is powered by a PCIe extension chas-
sis. The card is connected via SFP+ connectors to the 10 GbE network. Figure 6.3
illustrates the experimental setup.

We use Apache JMeter [178] as the client application to generate the API requests
from the client. We use HTTP 1.1 as the communication protocol which defines
all connections to be persistent. This means that the TCP connection is kept alive
and multiple request/response pairs can be sent. This reduces the overhead of
re-establishing a TCP connection for each call. JMeter uses multiple threads to
create the requests and collects information about the processing performance.

On the server machine we run a nginx HTTP server [179] with four worker pro-
cesses. The actual web service is a Python application hosts by the uWSGI [180]
application server running 20 processes. The two servers communicate via the
Python standard web server gateway interface (WSGI). The web service applica-

125

6. Experimental Validation by Applications

Figure 6.3: Experimental Setup.

tion can access the accelerated functions on the CAPI-attached FPGA via a Python
extension and can run in accelerated or in standard mode.

To evaluate the impact of the individual components we ran the tests in five sce-
narios:

• nginx: nginx only serving a static file

• nginx+uwsgi: nginx making a call to an WSGI app that immediately returns
an empty result

• nginx+uwsgi+app: An actual API call to the application with all processing
performed in software

• nginx+uwsgi+app+fpga: An actual API call where the application utilizes
the accelerated function on the FPGA

• standalone disaggregated FPGA: An actual API call where all processing is
done on the standalone disaggregated FPGA

6.1.4 Results

Apache JMeter reports the overall processing throughput in requests per second
as well as the minimum, maximum and mean processing time of the individual
API calls. Table 6.1 summarizes the results of all five test case scenarios when
there are 100 simultaneous requests in flight.

The pure nginx baseline performance is at 37,389 requests/s which is in line with
numbers that can be found on the web. As there is no application processing in-
volved at all, this is the highest rate at which the service could be operated on the
POWER8 server. When adding a WSGI call to the picture the throughput perfor-
mance drops by nearly a factor of four but the jitter for the individual processing
time is relatively small.

When running the full application API call, the performance significantly drops.
The maximum throughput observed was 540 requests per second which results in

126

6.1. RESTful Web Services

Figure 6.4: Involved Processes, Modules and Communication Protocols on the
POWER8 Server and the Standalone Disaggregated FPGA Scenarios.

a mean processing time of 175 ms for the client. Also, the variation of the process-
ing time becomes much wider. While the fastest call required 31 ms the slowest
took six times longer, 197 ms. When the application uses the CAPI-attached FPGA
the performance numbers are getting better again. The throughput increases to
7,917 requests/s and the processing times do not exceed 9 ms for the client.

With the proposed architecture the entire service is running on the standalone dis-
aggregated FPGA. The client makes a direct RESTful API call to the FPGA, thus
the entire communication and application processing occurs on a single chip. Our
architecture was able to provide a processing throughput of 166,093 requests/s
which is more than 20 times higher than the accelerated version of the service
on a high-end server node. All processing calls required a maximum of 1 ms to
complete. In a real-life environment, this number would depend on the actual
distance in the network from the client to the server. The results show that ap-
plication throughput is increased by 15x with the acceleration of only application
logic, whereas the throughput is increased by 308x with the acceleration of whole
stack, including TCP, HTTP, REST, and the application. Therefore, compared to
the traditional approach of acceleration using PCIe-attached FPGAs, standalone
disaggregated FPGA performs 20x better.

127

6. Experimental Validation by Applications

Table 6.1: Results for the performance measurements running with 4 nginx pro-
cesses and 20 uWSGI processes.

Case Requests/S Minimum Mean Maximum

(ms) (ms) (ms)

nginx 37,389 1 1 2

nginx+uwsgi 15,930 2 6 8

nginx+uwsgi+app 540 31 175 197

nginx+uwsgi+app+fpga 7,917 1 3 9

standalone disaggregated FPGA 166,093 0 0 1

Another interesting effect was observed with the number of concurrent requests.
The standalone disaggregated FPGA performs significantly better than the server
implementation in situations where there is little or very high load. Figure 6.5
shows the number of requests per second over the number of concurrent requests
that are in flight. If there is only one request in flight the performance is mainly
latency driven, therefore the pure hardware implementation on the standalone
disaggregated FPGA is much faster. With an increasing number of simultaneous
requests the performance depends more on the overall processing power of the
server. The actual web service gains more from processing more connections at
the same time as the baseline nginx measurement or the standalone disaggregated
FPGA. But while these measurements remain stable with their performance for
1,000 requests, they uWSGI-based measurements drop again.

6.1.4.1 Power Consumption

Power efficiency always has been a stronghold for FPGAs. With the standalone
disaggregated FPGA, this efficiency can be fully exploited in a cloud environment.
While the standalone disaggregated FPGA requires at maximum 25 W to operate
the web service, the fully equipped POWER8 server requires 340 W in idle mode
and more than 360 W when running the web service. The POWER-based servers
can be measured using the on-system sensors of the server [181]. This is more
than 13 times compared to the standalone disaggregated FPGA.

6.1.4.2 System Cost

Adding an FPGA to each server in a DC environment significantly increases the
cost of a server unit. Microsoft catapult implementation has increased this cost
by 30% [25] . For FPGA-centric applications the server that hosts the FPGA might
not be efficiently used. Hence, by deploying standalone disaggregated FPGAs, the
cost of the server can be omitted from the total cost of the FPGA infrastructure. As
an example, considering the application used in this paper, the system cost can be

128

6.2. Distributed Text Analytics

 0.1

 1

 10

 100

 1000

1 10 100 1000

K
 R

e
q

s
/S

Number of Concurrent Requests

SDF
nginx

nginx+uwsgi

nginx+uwsgi+app
nginx+uwsgi+app+fpga

Figure 6.5: Number of Requests Served Over Different Number of Concurrent
Requests on Log Scale (SDF: Standalone Disaggregated FPGA).

cut down by around $5000 (according to price on web), by completely eliminating
a server to host the web application.

6.1.4.3 Resource Consumption

When developing on FPGAs the individual functional modules require resources
like configurable logic blocks (CLBs) or internal memory elements (BlockRAM).
Therefore, it is important to keep the resource consumption low for the interface
logic to allow the actual application to utilize the remainder. Together with the
cloudFPGA’s network service layer, the REST IP Block requires about 20 % of
the overall logic resources of the FPGA and 30 % of the internal memory blocks.
This is comparable with the resources required by the POWER service layer to
implement the CAPI protocol. With newer generations of FPGAs, more resources
will be available for the application module.

6.2 Distributed Text Analytics

Text analytics refers to the task of information extraction from documents con-
taining natural-language text. The main aim is to transform the unstructured
information contained in these documents into a structured form, i.e. tables. This
is an important processing step in many of today’s big data analytics applica-
tions ranging from social media analysis to compliance check and data-center log
surveillance. The document-level analysis needs to be run before any higher-level
algorithms can perform further analyses.

129

6. Experimental Validation by Applications

Figure 6.6: UIMA Pipeline

Text analytics involves several steps from the natural-language processing (NLP)
domain, such as tokenization or named-entity recognition (NER). Each step may
be performed by either a rule-based or a machine-learning-based implementa-
tion. While machine-learning-based approaches are well established, rule-based
approaches are often maintained in the enterprise domain to achieve fast and de-
terministic results [182].

Tokenization is usually the first step when analyzing a document, which breaks up
the input text into individual words and characters. For many Western languages,
whitespace tokenization is often sufficient to produce a useful set of tokens by split-
ting the text on whitespace and punctuation characters. The tokens are then used
by subsequent processing steps, such as, dictionary pattern matching or distance
checks (how many tokens are two entities apart).

Named-entity recognition (NER) identifies words or patterns in the document text
and assigns them to categories. Words or word sequences can be determined to
be a person’s name or a geographic location, whereas character sequences may be
identified as telephone numbers or date/time stamps. Thus, NER involves pattern
matching in the form of dictionary matching, which requires a pattern to match on
token boundaries, and regular expressions, which operate on the document text
without token definitions. Both operations are essential for text analytics and have
shown significant performance benefits when run on FPGAs [183] [184] [185].

6.2.1 UIMA

Several libraries exist to perform natural-language processing tasks. Every library
uses its own type system to create and exchange information between different
processing steps. This makes the integration of several libraries into a single
application difficult. The Unstructured Information Management Applications
(UIMA) [35] specification is an OASIS (Organization for the Advancement of Struc-
tured Information) standard that defines how various components can define a
common type system and how data is exchanged between them. The UIMA frame-
work also manages the execution of multiple components and can be configured

130

6.2. Distributed Text Analytics

Figure 6.7: Standard UIMA Pipeline with Multiple Hosts

Figure 6.8: Standard UIMA Pipeline with Multiple Hosts Enhanced with PCIe-
Attached FPGAs

131

6. Experimental Validation by Applications

to create a processing pipeline [31].

UIMA defines multiple component types and the Common Analysis Structure
(CAS) data structure. The CAS object is the central data structure that is created
for every document. Every analysis step can retrieve information from the CAS or
create results on it. As shown in Figure 6.6, the three main components to create
a UIMA processing pipeline are (i) Collection Reader (CR), (ii) Analysis Engine
(AE), and (iii) CAS Consumer (CC).

The CR is the input component and retrieves the documents from an input source,
i.e., filesystem or database. It creates the initial CAS object and passes it to the
actual processing pipeline. The processing pipeline is a so-called aggregated anal-
ysis engine (AE) consisting of multiple primitive AEs. The UIMA framework will
call specific routines from each of the primitive AEs to process every document.
When processing completes, the CS will receive the CAS object and store the rele-
vant results to an output destination.

To create large-scale high-throughput and low-latency applications, UIMA offers
an asynchronous scale out (UIMA-AS) [186] version. Instead of calling the process-
ing routines of the AEs synchronously, the individual AEs receive their input CAS
from a queue that is assigned to each AE. This allows every AE to work on its own
input queue whenever data becomes available. It also simplifies multi-threading
as multiple individual threads that run the same AE share the same input queue.

To scale out the analysis application to multiple machines in a server cluster (Fig-
ure 6.7), UIMA-AS uses the Java Message Service (JMS) and a messaging broker
to manage the queues. The CAS object is communicated via the individual nodes
as a serialized XML object, and connections are made through TCP or HTTP. If the
CAS object remains on a node, it is kept as a binary object. On each node, one or
multiple AEs can be deployed together with their corresponding queues. The de-
ployment descriptor of UIMA-AS specifies how many threads should be used to
run a specific AE and additional parameters. The CAS object is then sent around
between the individual nodes for processing before returning to the master server
node, where the application resides.

6.2.2 Enhanced UIMA

To use FPGAs to accelerate the applications on UIMA framework, we enhanced
the UIMA framework by incorporating FPGAs. To compare the benefits of us-
ing disaggregated standalone FPGAs versus PCIe-attached FPGAs, we enhanced
the UIMA framework by using both the PCIe-attached FPGAs and the SDMFF
platform. The next two subsections explain the enhancement done to the UIMA
framework.

132

6.2. Distributed Text Analytics

Figure 6.9: SDMFF-Enhanced UIMA Pipeline

6.2.2.1 PCIe-Attached-FPGA-Enhanced

In the standard UIMA framework, each of the slave server node that runs the
Analytic Engines is enhanced by attaching an FPGA over the PCIe bus (Figure
6.8). The slave servers we used are based on IBM power 8 servers, hence it enables
to use CAPI for CPU-FPGA communication. When the FPGA is attached via PCIe
to each slave server node, there is no change in the UIMA communication scheme,
but the AE’s code that uses the FPGA is adapted, so that the incoming embedded
document in CAS object is retrieved and fed to the FPGA. After processing is
completed, the results returned by the FPGA is in turn attached to the CAS object
and forwarded to the next slave server node in the UIMA pipeline.

6.2.2.2 SDMFF-Enhanced

For using SDMFFs, we alter the communication structure by adding a sending (TX
AE) and a receiving (RX AE) primitive AE to the processing pipeline that remain
on the master server node (Figure 6.9). The descriptor of the TX AE contains all
information necessary to set up the multi-FPGA fabric pipeline before starting the
processing step. In this setup, the FMU is also running in the master node. Once
the fabric is formed, every FPGA knows where it receives data from and where it
has to send its results. When processing, the TX AE will send only the text doc-
ument embedded in the CAS object to the first FPGA in the processing pipeline
and forward the CAS to the RX AE. As this is a local operation, no network com-
munication is involved. The RX AE will wait for the FPGA processing pipeline

133

6. Experimental Validation by Applications

Figure 6.10: Regular Expression Text Analytic IP Core

to complete processing the text document, which was embedded in the CAS, and
then add the results to the actual CAS object.

This setup allows a flexible and efficient communication without implementing a
complex JMS stack on the individual FPGAs. The UIMA-AS framework enables
the TX and RX AEs to continuously send and receive data while maintaining
UIMA compliance.

6.2.3 Text Analytics on Standard UIMA

Regular expressions can be implemented in Java using the built-in java.util.regex
package. This enables a straight forward software reference implementation for a
UIMA processing pipeline.

6.2.4 Text Analytics on Enhanced UIMA

To run a text-analytics task on the FPGA, we use IP cores generated by the compi-
lation framework presented by Polig et al. [187]. In this work, we use a regular ex-
pression IP core as the application (Figure 6.10). The framework compiles queries
written in the Annotation Query Language (AQL) to a hardware description (ver-
ilog) that can be synthesized to FPGA logic. The top-level module generated uses
AXI-Streaming-like interfaces to accept an input document and produce output
results.

The input document stream is synchronized with an optional token stream, which
defines the token boundaries. If no token definitions are available, this stream
must indicate the document size for the input logic to consume the document
stream. The results are annotations in the form of four integers: two defining the
begin and end the position of the annotation, and one identifier value to deter-
mine the type of annotation. To employ generally available libraries, we use the
compilation framework only to compile regular expressions.

134

6.2. Distributed Text Analytics

Figure 6.11: Implementation of vFPGA for the application: (a) Standalone Disag-
gregated FPGA1 and (b) Standalone Disaggregated FPGA2

Figure 6.12: Experimental setup

Throughput = ClockFrequency × DataWidth

The regular expression core process one byte in each clock cycle. If the clock
frequency considered is 156.25 MHz, the maximum throughput of the core is 1.25
Gbps.

In this work, we use a regular expression IP core as the application, and an SDMFF
that consists of two standalone disaggregated FPGAs. This application is hosted
by the vFPGA as shown in Figure 6.11. The vFPGA has three main components:
(a) a data pre-processor, (b) a data post-processor, and (c) the regex core. The data
pre-processor and the post-processor are collectively called the vFPGA application
wrapper. The data pre-processor executes two functions: First, the regex core
must be fed with each document and its size. When documents are sent over

135

6. Experimental Validation by Applications

Figure 6.13: UIMA Pipeline-based Experimental Cases

TCP, the document boundaries are lost. Hence, the document boundaries must be
recovered before feeding data to the application. Therefore, a messaging layer atop
TCP is implemented in the data pre-processor. The server sends each document
with its size prepended in 8 bytes. According to the document size, the messaging
layer stacks TCP data belongs to each document into a single AXI stream message
and forwards it to the application. Second, as the data bus width of the regex
core is 128 bit, but the bus width of the vFPGA is 64 b, we convert the bus width
from 64 b to 128 b. For the conversion, we used Xilinx AXI stream data-width
converters.

The data post-processor first converts the data width of the results generated by
the application from 128 bit to 64 bit, and then combines the converted result with
the data coming directly from the data pre-processor before forwarding everything
to the vFGPA interface.

As shown in Figure 6.11, the data pre-processor of vFPGA in standalone disaggre-
gated FPGA1 forwards the document as it is to the data post-processor, whereas
in the vFPGA of standalone disaggregated FPGA2, the data pre-processor dis-
cards the document after feeding the application with the document data and its
size. After that, the data pre-processor forwards the result received from the vF-
PGA of standalone disaggregated vFPGA1 to the data post-processor. The data
post-processor of the vFPGA in standalone disaggregated FPGA2 combines the
results of standalone disaggregated FPGA 1 and 2, and forwards it to the vFPGA
IF, which eventually ends up in the RX AE in the UIMA framework.

136

6.2. Distributed Text Analytics

6.2.5 Evaluation

We evaluated our architecture in terms of network latency, throughput, and lantecy
variation. The standalone disaggregated FPGA architecture presented was im-
plemented and validated on a Alpha Data PCIe card featuring a Xilinx Virtex7
XC7VX690T FPGA. The design uses one 10 GbE network interface.

As shown in Figure 6.12, the experimental setup consists of up to three server
nodes, each equipped with two IBM POWER8 processors running at 3.5 GHz. Two
servers contain commercial off-the-shelf FPGA accelerator cards using an Altera
Stratix V A7 FPGA and are connected to the processor via CAPI. All servers run
Linux Kernel 3.10 and use IBM Java version 8 and UIMA 2.8.1. The standalone
disaggregated FPGA cards are plugged into a PCIe expansion chassis [22], from
which only power is taken for the cards. The FPGA cards and the three servers
are connected to a 10 GbE top-of-rack switch.

We considered three experimental cases: (i) a SW-only implementation (Figure
6.13-(a)), (ii) an implementation accelerated with PCIe-attached FPGAs (Figure
6.13-(b)), and an implementation accelerated with standalone disaggregated FP-
GAs (Figure 6.13-(c)). One server is considered the master server and is respon-
sible for the running the collection reader (CR) and the CAS consumer (CC). It
also runs the aggregate analysis engine, which coordinates the order in which the
primitive analysis engines (AEs) are executed. The primitive AEs are run by the
other two server nodes. These server nodes run either the software-only variants
of the AEs implemented in pure Java or the FPGA-accelerated version.

For the standalone disaggregated scenario, the two servers running the primitive
AEs are replaced by the standalone disaggregated FPGAs. The master server re-
mains in charge of reading the documents and collecting the results, but now also
sets up the multi-FPGA fabric using the FPGA management utility described in
Section 5.2.3 and sends and receives data to and from the FPGAs. Internally the
CAS object moves from the sending AE (TX AE) to the receiving AE (RX AE),
which involves no data movement or processing.

As explained earlier, both of our AEs perform regular expression matching. AE1
identifies several date formats, while AE2 reports credit card numbers in the doc-
ument. The SW case uses the standard Java regular expression class, whereas the
FPGA version is compiled using [187].

6.2.6 Results

The latency and the throughput measurements are done by using standard UIMA
tooling. By running runRemoteAsyncAE, the number of processed documents
and characters are reported together with the required run time. These numbers
represent an end-to-end measurement for processing a document collection. The
scaleout deployment has been tuned by using available knobs from the UIMA-AS

137

6. Experimental Validation by Applications

framework, such as the number of threads running an AE or taking care of the
(de-)serialization of the CAS, CAS pool size and memory requirements.

6.2.6.1 Latency

Figure 6.15 shows the latency results in milliseconds for different document sizes.
The SW-only implementation took 6, 8, and 20 ms for the document sizes of 512,
1024, and 2055 B, respectively, whereas the implementation accelerated with PCIe-
attached FPGAs took 6, 7, and 18 ms. Regardless of the document size, the stan-
dalone disaggregated FPGA implementation took 0.5 ms. When moving from
SW-only version to PCIe-FPGA version, we observed a minor improvement in la-
tency. In contrast, for standalone disaggregated FPGAs, the latency improved by
a factor of 40 compared with SW-only version.

 0

 5

 10

 15

 20

512 1024 2055

L
a
te

n
c
y
 (

m
s
)

Document Size (B)

SW PCIe-FPGA SDMFF

Figure 6.14: Text Analytics on UIMA: Latency

6.2.6.2 Throughput

Figure 6.16 shows the throughput results in number of characters per second for
different document sizes. Similarly to the latency results, when comparing the
throughput between the SW case and the PCIe-FPGA version, we observe a minor
improvement of 30%. In contrast, for network-attached FPGAs, the throughput
increases by a factor of 14 for the two smaller document sizes and by a factor of
18 for the 2 kB case.

138

6.2. Distributed Text Analytics

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

512 1024 2055

S
ta

n
d

a
rd

 D
e
v
ia

ti
o
n
 o

f
L
a
te

n
c
y

Document Size (B)

SW PCIe-FPGA SDMFF

Figure 6.15: Text Analytics on UIMA: Latency Variation

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 9x106

512 1024 2055

T
h
ro

u
g

h
p

u
t

(C
h
a
ra

c
te

rs
/s

)

Document Size (B)

SW PCIe-FPGA SDMFF

Figure 6.16: Text Analytics on UIMA: Throughput

6.2.6.3 Latency Variation

We evaluated the latency variation by considering the latency of one million iter-
ations for each document size. The standard deviation of the latency distribution
is shown in Figure 6.15. The standard deviation of the latency ranges between 2.9

139

6. Experimental Validation by Applications

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

System

C
o
s
t

($
)

SW PCIe-FPGA SDMFF

Figure 6.17: Cost Comparison of Three Text Analytics Systems

and 4.1 in the case of SW-only and PCIe-attached FPGA implementations, where
as for the standalone disaggregated FPGAs it ranges between 0.5 and 0.8. Our pre-
liminary experiments for inter-FPGA communication with raw TCP data showed
that the standard deviation varies between 0.2 to 0.4, but in these experiments the
master server, which generates and receive data contributes to the increment of
the variation.

6.2.6.4 System Cost

The system cost of three experimental scenarios are considered assuming that the
cost of a server is 2000$, the cost of an off-the-shelf FPGA card is 1500$ and the
cost of a custom-built FPGA is around 500$. As shown in Figure 6.17, the cost of
PCIe-attached version is 1.5 times higher than that of the pure SW system and the
cost of the system accelerated by standalone disaggregated FPGAs is 2 times less
than the pure SW system.

6.2.7 Discussion

6.2.7.1 Performance

The minor performance improvement observed when moving from SW only to
PCIe-FPGA reflects the overhead of the scaleout framework. Because the actual
processing time for running the regular expression in the FPGA is much shorter
than in SW. The regular expression used for AEs requires 700µs on average in
SW, while only taking 18µs in the FPGA. This is a 38-fold improvement, but the

140

6.2. Distributed Text Analytics

communication overhead of the framework still dominates the end result of la-
tency, throughput, and latency variation. Compared with the SW-only version
and the acceleration of the application with PCIe-attached FPGAs, the tight cou-
pling of network packet processing and computation within the FPGA, and the
elimination of the overhead of the framework when sending and receiving CAS
objects (CAS-object creation, the serialization and de-serialization) lead to superior
latency, throughput, and latency variation results for standalone disaggregated FP-
GAs. For standalone disaggregated FPGAs, the application throughput is limited
by the throughput of a single TCP connection in the FPGA TCP/IP stack. Cur-
rently, we are working on improving this per-connection throughput.

An alternative way to setup the PCIe-attached FPGA experimental case is to add
a sending AE and a receiving AE to the master server, similarly in the case of
standalone disaggregated FPGAs. Even if we do this, the servers that host the
PCIe-attached FPGAs have to execute the network packet processing, which sig-
nificantly degrades the overall application performance, particularly when the pro-
cessing pipeline gets longer. Furthermore, a DC-class server consumes around 200
W of power, where as an FPGA device consumes around 25 W. Hence, moving
from PCIe-attached FPGA implementation to standalone disaggregated FPGAs,
we achieve an order of magnitude improvement in power consumption.

Table 6.2: Resource Consumption of TCP/IP-Based Shell with Application

Module LUT FF BRAM
IP 1789 2063 28
TCP 15159 16460 270
NET CTRL 4581 5101 11
MEM CTRL 39373 34172 38
Application Interface 2464 2528 38
MFFA 621 458 9
vFPGA APP Wrapper 2761 1650 14
APP(RegEx) 5548 6807 2
Other (ARP/DHCP/Top Level) 26760 42566 59
Total 99056 111805 469
% of XC7VX690T 23 13 32

6.2.7.2 Resource Consumption

Table 6.2 shows the resource usage of the standalone disaggregated FPGA proto-
type with the application. The design uses around 99K LUTs, 111K Flip-Flops,
and 469 BRAMS, which is equal to 23%, 13%, and 32% of the overall available
resources, respectively. Out of the total resources, the NSL consumes around 20%
of the LUT, 11% of the FF and 29% of BRAM resources, contributing the most for

141

6. Experimental Validation by Applications

the resource consumption. In this work, the application we use consumes only a
very low amount of resources, but in our future work we want to experiment with
applications that fully use the FPGA resources.

6.3 Summary

In this chapter, the standalone disaggregated FPGA and SDMFF prototypes pre-
sented in the Chapters 4 and 5 were demonstrated with real-world use cases.

In the first use case, an HTTP-based RESTful layer was implemented in the stan-
dalone disaggregated. A natural language processing application was ported on
to this RESTful web service layer. This implementation was compared with a pure
SW implementation and an accelerated version of it using PCIe-attached FPGAs.
The results show that the standalone disaggregated FPGA increases the applica-
tion throughput by 300x and 20x compared to the pure SW implementation and
the accelerated version, respectively.

The second use case was built by porting a distributed text-analytic application
onto an UIMA distributed computing framework. Text analytics refers to the ex-
traction and transformation of information from unstructured data in text docu-
ments to a structured from. This is an important step of big-data analytics applica-
tions to gain insights from the data. When a single node is not sufficient to execute
these tasks efficiently, multiple nodes are used. To distribute tasks onto multiple
nodes, distributed computing frameworks, such as UIMA, are used. In this work,
UIMA is used to make a processing pipeline for the multi-node execution of text-
analytics applications.

The UIMA-based distributed text-analytics application is built in three flavors: (i)
pure SW-based, (ii) accelerated with PCIe-attached FPGAs and (iii) accelerated
with SDMFF. In the first case, text analytics is executed on SW, where as in latter
two cases text analytics processing is accelerated by FPGAs. In case II, UIMA-
based processing nodes are enhanced with PCIe-attached FPGAs, and in case III,
server-based processing nodes are replaced by a SDMFF. The comparison shows
that text analytics on the SDMFF-accelerated UIMA framework outperforms both
other implementations by large margins, and improves the latency, the throughput,
and the latency variation by a factor of 40, 18, and 5, respectively. The insights
gained from these results open the way for running large-scale applications on
standalone disaggregated FPGAs in DCs.

142

Chapter 7

Conclusion and Directions for Further
Research

7.1 Conclusion

The performance requirements of modern big-data applications are exceeding the
performance offered by general-purpose servers in current cloud data centers. Fur-
ther performance improvements from CPUs are limited because of the physical
constraints of CMOS and the lack of viable alternatives to the CMOS technol-
ogy. These trends have increasingly attracted interest for HW accelerators in main-
stream computing over the recent years. HW accelerators can have many forms:
FPGAs, GPUs, ASICs, DSPs etc. This thesis focused on FPGAs by investigating
a system architecture to efficiently deploy and use FPGAs at large scale in cloud
data centers.

The provisioning of FPGAs as standalone resources with direct connections to the
data-center network is one of the key enablers for a large-scale deployment of FP-
GAs in data centers. This is a profound change of paradigm in the CPU-FPGA
and inter-FPGA communication. The standalone disaggregated FPGA promotes
the FPGA to the rank of a peer processor in the data center. Data centers must
take this paradigm shift into account to host FPGAs and other similar heteroge-
neous computing resources on a large scale in the future. This thesis proposes
an architecture to deploy standalone disaggregated FPGAs in a density-optimized
manner. Compared to FPGA clusters built by off-the-shelf HW and state-of-the
art large-scale FPGA deployments, the proposed system increases the rack FPGA
density by 2x.

The applications that run on data centers change frequently. Hence, two key re-
quirements that must be satisfied by the FPGA infrastructure are (i) flexible allo-
cation of CPUs and FPGAs to an application on demand and (ii) the ability to
connect those FPGAs in user-defined topologies. To achieve this, this thesis pro-
poses software-defined multi-FPGA fabrics (SDMFF) by extending the functional-

143

7. Conclusion and Directions for Further Research

ity of standalone disaggregated FPGAs. SDMFFs are multi-FPGA fabrics built by
interconnecting multiple standalone disaggregated FPGAs in arbitrary topologies
over the DC network in a software-defined manner. The feasibility of SDMFFs is
shown by building a prototype using commercial FPGAs in a real data-center en-
vironment. This thesis also compares the latency, throughput and predictability of
multi-FPGA fabrics compared with those of other data-center compute resources,
such as bare-metal servers, virtual machines and containers.

Finally, a SDMFF prototype is evaluated in a real-world data-center application.
The application executes text analytics on an UIMA distributed-computing frame-
work. We compared three versions of the distributed text-analytics application:
(i) based on pure SW, (ii) UIMA enhanced with PCIe-attached FPGAs, and (iii)
UIMA enhanced with SDMFF. In the latter two cases, text analytics processing is
accelerated by the FPGAs. The comparison shows that standalone disaggregated
FPGAs outperform both other implementations by large margins, and improves
the latency, the throughput, and the latency variation by a factor of 40, 18, and 5,
respectively.

The insights gained from the work presented in this thesis open the way for (i)
cloud vendors to deploy standalone disaggregated FPGAs at large scale in data
centers, and (ii) cloud users to improve the performance of their applications by
using the scalable and flexible FPGA infrastructure provided by the cloud vendors.

7.2 Directions for Future Work

Deploying FPGAs as standalone disaggregated resources in cloud data centers
brings many opportunities, but also raises many challenges. This thesis built the
foundation for the deployment and use of standalone disaggregated FPGAs at
large scale in cloud data centers by making a proof of concept. The next para-
graphs explain the potential future work to make the concept much stronger.

Network Protocols for SDF: The standalone disaggregated FPGA protoype built
in this thesis used TCP/IP as the network protocol atop Ethernet. TCP is a com-
plex protocol that uses a significant amount of reconfigurable logic resources in
the FPGA. Instead of using TCP, light-weight network protocols, such as those
based on UDP, can be implemented for reliable data transmission over IP. Light-
weight protocols gain significant importance, particularly when moving towards
40/100 GbE, because implementing complex protocols while maintaining line-rate
becomes increasingly difficult at higher frequencies.

End-to-End Lossless Networking: The traditional network stacks implemented
on servers are lossy, and packets are dropped when buffers overflow. The L3
and L4 stacks of the FPGA have been designed to be lossless. By configuring
the vendor-provided L2 layer (MAC IP core) as lossless, the entire FPGA network

144

7.2. Directions for Future Work

stack can be made lossless. By attaching such lossless FPGAs to a lossless DC
network (for example, Converged Enhanced Ethernet (CEE)) for inter-FPGA com-
munication, an end-to-end lossless compute fabric can be built.

Resource Efficiency: Our results show that the cloud shell of standalone disag-
gregated FPGA consumes around 20% of the reconfigurable resources of a state-
of-the-art FPGA. But once the functions of the cloud shell get matured, those parts
can be hardened so that more reconfigurable resources are available for applica-
tions. When hardening the matured functionality, interfaces can be exposed to the
infrastructure vendor so that parts of the harden logic (for example management
functions) can still be programmable over the network.

End-to-End Predictable Compute Fabrics: The observations in this thesis show
that far more deterministic results can be obtained from FPGAs even with dis-
tributed computing compared to CPUs. However, when the networks get con-
gested, the degree of predictability may change. Therefore, making the network
predictable by using emerging technologies such as SDN, end-to-end predictable
compute fabrics can be built.

Application Partitioning for SDMFF: Mapping a distributed application to an
SDMFF requires partitioning the application such that resources are used effi-
ciently, which helps use only a minimal number of FPGAs for the application.
Therefore, having an application-partitioning framework for SDMFFs is a must.
For partitioning the application, the number of LUTs, FFs, the network BW, the
amount of external memory and the memory BW can be considered.

Self-Organizing SDMFFs: This thesis presented multi-FPGA fabrics built using a
centralized controller. The intelligence of each SDF is contained in this centralized
controller, instead of having it in each FPGA. Another way to build multi-FPGA
fabrics is to have the intelligence of each FPGA in a master FPGA in the fabric. In
this way, multi-FPGA fabric can be built within the FPGA cluster, without each
FPGA having to connect with the centralized controller.

Multiple Virtual FPGAs: FPGAs are becoming increasingly rich in terms of logic
density, I/O functions, internal memory capacity, external memory BW, etc. There-
fore, offering a high-end FPGA to a single user/application might not be efficient
in terms of resource utilization. Hence, dividing the FPGA into multiple user
partitions and offering them to multiple tenants is needed.

Cloud Enablement: IBM SuperVessel [99] and Fabric [188] are two non-commercial
solutions that offer FPGAs in the cloud for research and education. Meanwhile,
over the past year, commercial solutions started to emerge [47] [189]. Integrating
standalone disaggregated FPGAs and their value additions, such as multi-FPGA

145

7. Conclusion and Directions for Further Research

fabrics, into the cloud and offering them as a service is another area for potential
future work.

Multi-Tenancy Support: When offering a single FPGA to multiple tenants, the
FPGA must be securely partitioned. Partitioning must take into account both the
physical space partitioning and the network partitioning. For network partition-
ing, state-of-the-art network virtualization methods, such as VXLAN [116] and
GENEVE [118], must be implemented in the FPGA.

Security: Multi-tenancy requires secure isolation of FPGA resources. Moreover,
widely used isolation techniques, such as VLANs and overlay virtual networks
(OVN) must be used in order to co-exist with other infrastructure resources. Fur-
ther, isolation even within the tenants is required for applications that require a
higher level of security.

Application-Aware Networking with Multi-FPGA Fabrics: Understanding the ap-
plication behavior helps use the network infrastructure efficiently for improved
performance. As standalone disaggregated FPGAs improve the end-node network
performance significantly compared to CPUs, the information on the applications
running in multi-FPGA fabrics can be exploited for taking dynamic decisions in
network traffic management in the DC more efficiently for overall improvement
of the system performance [190] [191] [192].

146

Publications and Patents

Publications

1. R. Polig, J. Weerasinghe, C. Hagleitner ”RESTful Web Services on Standalone
Disaggregated FPGAs,” in 9th International Conference on Cloud Comput-
ing Technology and Science (CloudCom 2017), Hongkong, Dec 2017, pp. 114-
121.

2. F. Abel, J. Weerasinghe, C. Hagleitner, B. Weiss, S. Paredes, ”An FPGA Plat-
form for Hyperscalers,” in 25th International Symposium on High Perfor-
mance Interconnects (HotI 2017), Santa Clara, California, Aug 2017, pp. 29-
32.

3. J. Weerasinghe, R. Polig, F. Abel and C. Hagleitner, “Network-Attached FP-
GAs for Data Center Applications,” in 15th IEEE International Conference
on Field-Programmable Technology (FPT 2016), Xian China, Dec 2016, pp.
36-43.

4. J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf, “Disaggregated
FPGAs: Network Performance Comparison against Bare-Metal Servers, Vir-
tual Machines and Linux Containers (Best Student Paper),” in 8th IEEE Inter-
national Conference on Cloud Computing Technology and Science (Cloud-
Com 2016), Luxembourg, Dec 2016, pp. 9-17.

5. J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf, “Enabling FPGAs
in Hyperscale Data Centers,” in 2015 IEEE International Conference on Big
Data and Cloud Computing (CBDCom 2015), Beijing China, Aug 2015, pp.
1078-1086.

6. J. Weerasinghe and F. Abel, “On the Cost of Tunnel Endpoint Processing in
Overlay Virtual Networks,” 2014 IEEE/ACM 7th International Conference
on Utility and Cloud Computing (UCC 2014), London UK, Dec 2014, pp.
756–761.

147

7. Conclusion and Directions for Further Research

Patents (Pending)

1. J. Weerasinghe, F. Abel, C. Hagleitner , “Communication Channel for Recon-
figurable Computing Device, Filed: April, 2017

2. J. Weerasinghe, F. Abel, C. Hagleitner , “Network Attached Reconfigurable
Computing Device, Filed: August, 2016

148

Bibliography

[1] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.

[2] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling FPGAs
in hyperscale data centers,” in 2015 IEEE International Conference on Big Data
and Cloud Computing (CBDCom), August 2015, pp. 1078–1086.

[3] R. Luijten and A. Doering, “The DOME embedded 64 bit microserver
demonstrator,” in 2013 International Conference on IC Design Technology (ICI-
CDT), May 2013, pp. 203–206.

[4] G. Andrews, “What is openpower?” March 2015. [Online]. Available:
https://www.ibm.com/developerworks/community/

[5] N. Zhang and R. Brodersen, “The cost of flexibility in systems on a
chip design for signal processing applications,” 2002. [Online]. Available:
http://bwrc.eecs.berkeley.edu/Classes/EE225C/Papers/arch design.doc

[6] J. Deaton, “Accelerating computing of the future.” [On-
line]. Available: https://channels.theinnovationenterprise.com/articles/
9781-accelerating-computing-of-the-future

[7] Maxeler, “Maxeler dataflow computing.” [Online]. Available: www.maxeler.
com

[8] S. M. Trimberger, “Three ages of fpgas: A retrospective on the first thirty
years of fpga technology,” Proceedings of the IEEE, vol. 103, no. 3, pp. 318–
331, March 2015.

[9] P. Sundararajan, “High performance computing using fpgas,” sept 2010.

[10] Xilinx, “Zynq-7000 all programmable soc.” [Online]. Available: https:
//www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

149

https://www.ibm.com/developerworks/community/
http://bwrc.eecs.berkeley.edu/Classes/EE225C/Papers/arch_design.doc
https://channels.theinnovationenterprise.com/articles/9781-accelerating-computing-of-the-future
https://channels.theinnovationenterprise.com/articles/9781-accelerating-computing-of-the-future
www.maxeler.com
www.maxeler.com
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

Bibliography

[11] N. Hemsoth, “Intel marrying fpga, beefy broadwell for open compute
future,” 2016. [Online]. Available: https://www.nextplatform.com/2016/
03/14/intel-marrying-fpga-beefy-broadwell-open-compute-future/

[12] Convey Computer, “Hybrid-core: The “Big Data” computing architecture,”
xxx 20xx. [Online]. Available: www.conveycomputer.com

[13] W. Paper, “Fpga accelerated compute node.” [On-
line]. Available: http://www.nallatech.com/wp-content/uploads/
Nallatech-FPGA-Accelerated-Compute-Node.pdf

[14] H. T. Dang, P. Bressana, H. Wang, K. Lee, H. Weatherspoon,
M. Canini, F. Pedone, and R. Soulé, “Network hardware-accelerated
consensus,” CoRR, vol. abs/1605.05619, 2016. [Online]. Available: http:
//arxiv.org/abs/1605.05619

[15] Maxeler, “Maxeler MPC-C series.” [Online]. Available: https://www.
maxeler.com/products/mpc-cseries/

[16] ——, “Maxeler MPC-X series.” [Online]. Available: https://www.maxeler.
com/products/mpc-xseries/

[17] G. Pfeiffer, S. Baumgart, J. Schröder, and M. Schimmler, A Massively Parallel
Architecture for Bioinformatics. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 994–1003.

[18] A. Patel et al., “A scalable FPGA-based multiprocessor,” in Field-
Programmable Custom Computing Machines, 2006. FCCM ’06. 14th Annual IEEE
Symposium on, April 2006, pp. 111–120.

[19] C. Conger et al., “Narc: Network network–attached reconfigurable comput-
ing for attached reconfigurable computing for high high–performance, net-
work performance, network–based applications based applications,” Sept
2005.

[20] H. University, “Die photo analysis.” [Online]. Available: http://vlsiarch.
eecs.harvard.edu/accelerators/die-photo-analysis

[21] H. Giefers et al., “Analyzing the energy-efficiency of dense linear algebra
kernels by power-profiling a hybrid cpu/fpga system,” in 2014 IEEE 25th
International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP), June 2014, pp. 92–99.

[22] Cyclone, “Pcie2-2711 - PCIe Gen2 eight slot expansion system.” [Online].
Available: http://cyclone.com/pdf/600 2711%20datasheet.pdf

150

https://www.nextplatform.com/2016/03/14/intel-marrying-fpga-beefy-broadwell-open-compute-future/
https://www.nextplatform.com/2016/03/14/intel-marrying-fpga-beefy-broadwell-open-compute-future/
www.conveycomputer.com
http://www.nallatech.com/wp-content/uploads/Nallatech-FPGA-Accelerated-Compute-Node.pdf
http://www.nallatech.com/wp-content/uploads/Nallatech-FPGA-Accelerated-Compute-Node.pdf
http://arxiv.org/abs/1605.05619
http://arxiv.org/abs/1605.05619
https://www.maxeler.com/products/mpc-cseries/
https://www.maxeler.com/products/mpc-cseries/
https://www.maxeler.com/products/mpc-xseries/
https://www.maxeler.com/products/mpc-xseries/
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://cyclone.com/pdf/600_2711%20datasheet.pdf

Bibliography

[23] F. Abel, J. Weerasinghe, C. Hagleitner, B. Weiss, and S. Paredes, “An fpga
platform for hyperscalers,” in 2017 IEEE 25th Annual Symposium on High-
Performance Interconnects (HOTI), Aug 2017, pp. 29–32.

[24] “Cloud deployment models.” [Online]. Available: https://en.wikipedia.
org/wiki/Cloud computing

[25] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale data-
center services,” in Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014,
pp. 13–24.

[26] IBM, “Coherent accelerator processor interface user’s manual,” January
2015.

[27] D. Pellerin, “Announcing amazon ec2 f1 instances with custom
fpgas hardware-accelerated computing on aws,” December 2016.
[Online]. Available: https://www.slideshare.net/AmazonWebServices/
announcing-amazon-ec2-f1-instances-with-custom-fpgas

[28] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown,
“Implementing an openflow switch on the netfpga platform,” in Proceedings
of the 4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ser. ANCS ’08. New York, NY, USA: ACM, 2008,
pp. 1–9. [Online]. Available: http://doi.acm.org/10.1145/1477942.1477944

[29] A. Panella, Design Methodologies for Dynamic Reconfigurable Multi-FPGA Sys-
tems, 2008.

[30] S. Hauck, “Multi-fpga systems, phd thesis,” 1995. [Online]. Available:
https://usastore.alpha-data.com/store/

[31] E. A. Epstein et al., “Making watson fast,” IBM Journal of Research and Devel-
opment, vol. 56, no. 3.4, pp. 15–1, 2012.

[32] , “Apache hadoop.” [Online]. Available: http://hadoop.apache.org/

[33] M. Zaharia et al., “Spark: Cluster computing with working sets,” in Pro-
ceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 10–10.

[34] M. Isard et al., “Dryad: Distributed data-parallel programs from sequential
building blocks,” in Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, ser. EuroSys ’07, 2007, pp. 59–72.

151

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://www.slideshare.net/AmazonWebServices/announcing-amazon-ec2-f1-instances-with-custom-fpgas
https://www.slideshare.net/AmazonWebServices/announcing-amazon-ec2-f1-instances-with-custom-fpgas
http://doi.acm.org/10.1145/1477942.1477944
https://usastore.alpha-data.com/store/
http://hadoop.apache.org/

Bibliography

[35] D. Ferrucci and A. Lally, “UIMA: an architectural approach to unstructured
information processing in the corporate research environment,” Natural Lan-
guage Engineering, vol. 10, no. 3-4, pp. 327–348, 2004.

[36] J. Hamilton, “Cloud computing is driving infrastructure innovation,”
May 2011. [Online]. Available: http://mvdirona.com/jrh/TalksAndPapers/
JamesHamilton WesternDigitalBoardMeeting.pdf

[37] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The google
cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28, March 2003.

[38] C. L. Belady, “In the data center, power and cooling costs more
than the it equipment it supports,” February 2007. [Online]. Available:
https://www.electronics-cooling.com/category/volume-13/page/5/

[39] B. Grot et al., “Optimizing data-center TCO with scale-out processors,” Micro,
IEEE, vol. 32, no. 5, pp. 52–63, Sept 2012.

[40] J. Dean et al., “Large scale distributed deep networks,” in Neural Information
Processing Systems, NIPS 2012.

[41] M. Ebbers et al., “Implementing IBM InfoSphere BigInsights on IBM System
X,” pp. 105–107. [Online]. Available: http://www.redbooks.ibm.com/

[42] Y. Guo et al., “iShuffle: Improving Hadoop performance with shuffle-on-
write,” in Proceedings of the 10th International Conference on Autonomic Comput-
ing (ICAC 13), San Jose, CA, 2013, pp. 107–117.

[43] J. Weerasinghe and F. Abel, “On the cost of tunnel endpoint processing
in overlay virtual networks,” in Utility and Cloud Computing (UCC), 2014
IEEE/ACM 7th International Conference on, Dec 2014, pp. 756–761.

[44] J. Sacha, J. Napper, S. Mullender, and J. McKie, “Osprey: Operating system
for predictable clouds,” in IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN 2012), June 2012, pp. 1–6.

[45] K. Jang et al., “Silo: Predictable message latency in the cloud,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 435–448.

[46] R. Kapoor et al., “Chronos: Predictable low latency for data center applica-
tions,” in Proceedings of the Third ACM Symposium on Cloud Computing, ser.
SoCC ’12. New York, NY, USA: ACM, 2012, pp. 9:1–9:14.

[47] Amazon, “Amazon f1 instance,” 2017. [Online]. Available: https:
//aws.amazon.com/ec2/instance-types/f1/

152

http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_WesternDigitalBoardMeeting.pdf
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_WesternDigitalBoardMeeting.pdf
https://www.electronics-cooling.com/category/volume-13/page/5/
http://www.redbooks.ibm.com/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

Bibliography

[48] D. Firestone, “Smartnic:accelerating azure’s network with fpgas on
ocs servers,” Aug 2017. [Online]. Available: http://files.opencompute.
org/oc/public.php?service=files&t=5803e581b55e90e51669410559b91169&
download&path=/SmartNIC%20OCP%202016.pdf

[49] R. Bittner and E. Ruf, “Direct gpu/fpga communication via pci
express,” in Proceedings of the 2012 41st International Conference on
Parallel Processing Workshops, ser. ICPPW ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 135–139. [Online]. Available: http:
//dx.doi.org/10.1109/ICPPW.2012.20

[50] Y. Thoma, A. Dassatti, and D. Molla, “Fpga2: An open source framework
for fpga-gpu pcie communication,” in 2013 International Conference on Recon-
figurable Computing and FPGAs (ReConFig), Dec 2013, pp. 1–6.

[51] PCI-SIG, “Single root i/o virtualization and sharing specification revision
1.0,” Sept 2007. [Online]. Available: https://members.pcisig.com/wg/
PCI-SIG/document/download/8272

[52] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Disaggregated
fpgas: Network performance comparison against bare-metal servers, vir-
tual machines and linux containers,” in 2016 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Dec 2016, pp. 9–17.

[53] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached fp-
gas for data center applications,” in 2016 International Conference on Field-
Programmable Technology (FPT), Dec 2016, pp. 36–43.

[54] R. Polig, J. Weerasinghe, and C. Hagleitner, “Restful web services on
standalone disaggregated fpgas,” in 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), vol. 00, Dec. 2017,
pp. 114–121. [Online]. Available: doi.ieeecomputersociety.org/10.1109/
CloudCom.2017.24

[55] S. Higginbotham, “Google takes unconventional route
with homegrown machine learning chips.” [On-
line]. Available: https://www.nextplatform.com/2016/05/19/
google-takes-unconventional-route-homegrown-machine-learning-chips/

[56] J. O. nd others, “Sda: Software-defined accelerator for large-scale dnn sys-
tems,” in Hot Chips(Vol. 26), Aug 2014.

[57] M. Blott et al., “Achieving 10Gbps line-rate key-value stores with FPGAs,”
in the 5th USENIX Workshop on Hot Topics in Cloud Computing, 2013.

153

http://files.opencompute.org/oc/public.php?service=files&t=5803e581b55e90e51669410559b91169&download&path=/SmartNIC%20OCP%202016.pdf
http://files.opencompute.org/oc/public.php?service=files&t=5803e581b55e90e51669410559b91169&download&path=/SmartNIC%20OCP%202016.pdf
http://files.opencompute.org/oc/public.php?service=files&t=5803e581b55e90e51669410559b91169&download&path=/SmartNIC%20OCP%202016.pdf
http://dx.doi.org/10.1109/ICPPW.2012.20
http://dx.doi.org/10.1109/ICPPW.2012.20
https://members.pcisig.com/wg/PCI-SIG/document/download/8272
https://members.pcisig.com/wg/PCI-SIG/document/download/8272
doi.ieeecomputersociety.org/10.1109/CloudCom.2017.24
doi.ieeecomputersociety.org/10.1109/CloudCom.2017.24
https://www.nextplatform.com/2016/05/19/google-takes-unconventional-route-homegrown-machine-learning-chips/
https://www.nextplatform.com/2016/05/19/google-takes-unconventional-route-homegrown-machine-learning-chips/

Bibliography

[58] J. Lockwood et al., “A low-latency library in FPGA hardware for high-
frequency trading (HFT),” in 2012 IEEE 20th Annual Symposium on High-
Performance Interconnects (HOTI), Aug 2012, pp. 9–16.

[59] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An FPGA memcached appliance,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
ser. FPGA ’13. New York, NY, USA: ACM, 2013, pp. 245–254. [Online].
Available: http://doi.acm.org/10.1145/2435264.2435306

[60] Nvidia, “Nvidia tesla p100 gpu accelerator,” Oct 2016.
[Online]. Available: http://images.nvidia.com/content/tesla/pdf/
nvidia-tesla-p100-datasheet.pdf

[61] P. H. Jin, Q. Yuan, F. N. Iandola, and K. Keutzer, “How to scale distributed
deep learning?” CoRR, vol. abs/1611.04581, 2016. [Online]. Available:
http://arxiv.org/abs/1611.04581

[62] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proceedings of the 26th Annual
International Conference on Machine Learning, ser. ICML ’09. New
York, NY, USA: ACM, 2009, pp. 873–880. [Online]. Available: http:
//doi.acm.org/10.1145/1553374.1553486

[63] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G.
Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: Dnn as a service and
its implications for future warehouse scale computers,” in 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), June
2015, pp. 27–40.

[64] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical image
processing on the GPU – past, present and future,” Medical Image Analysis,
vol. 17, no. 8, pp. 1073 – 1094, 2013.

[65] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for high per-
formance computing,” in Supercomputing, 2004. Proceedings of the ACM/IEEE
SC2004 Conference, Nov 2004, pp. 47–47.

[66] S. Huang, S. Xiao, and W. Feng, “On the energy efficiency of graphics pro-
cessing units for scientific computing,” in 2009 IEEE International Symposium
on Parallel Distributed Processing, May 2009, pp. 1–8.

[67] Intel, “Intel xeon processor e7-8800/4800 v4 prod-
uct families,” 2017. [Online]. Available: http://www.intel.
com/content/dam/www/public/us/en/documents/product-briefs/
xeon-e7-8800-4800-v4-product-families-brief.pdf

154

http://doi.acm.org/10.1145/2435264.2435306
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
http://arxiv.org/abs/1611.04581
http://doi.acm.org/10.1145/1553374.1553486
http://doi.acm.org/10.1145/1553374.1553486
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e7-8800-4800-v4-product-families-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e7-8800-4800-v4-product-families-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e7-8800-4800-v4-product-families-brief.pdf

Bibliography

[68] M. J. Flynn, “High-performance computing using fpgas,” in High-
Performance Computing Using FPGAs. Springer New York, 2013.

[69] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor, “Asic
clouds: Specializing the datacenter,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. Piscataway, NJ,
USA: IEEE Press, 2016, pp. 178–190. [Online]. Available: https:
//doi.org/10.1109/ISCA.2016.25

[70] J. Gonzalez and R. C. Núñez, “Lapackrc: Fast linear algebra
kernels/solvers for fpga accelerators,” Journal of Physics: Conference
Series, vol. 180, no. 1, p. 012042, 2009. [Online]. Available: http:
//stacks.iop.org/1742-6596/180/i=1/a=012042

[71] D. Yang, G. D. Peterson, and H. Li, “Compressed sensing and cholesky
decomposition on fpgas and gpus,” Parallel Comput., vol. 38, no. 8, pp.
421–437, Aug. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.parco.
2012.03.001

[72] Altera, “Radar processing: Fpgas or gpus?” May 2013. [On-
line]. Available: https://www.altera.com/en US/pdfs/literature/wp/
wp-01197-radar-fpga-or-gpu.pdf

[73] C. Brugger, L. Dal’Aqua, J. A. Varela, C. D. Schryver, M. Sadri, N. Wehn,
M. Klein, and M. Siegrist, “A quantitative cross-architecture study of mor-
phological image processing on cpus, gpus, and fpgas,” in 2015 IEEE Sympo-
sium on Computer Applications Industrial Electronics (ISCAIE), April 2015, pp.
201–206.

[74] V. Venugopalan, “Evaluating latency and throughput bound acceleration of
fpgas and gpus for adaptive optics algorithms,” in 2014 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), Sept 2014, pp. 1–6.

[75] A. Rafique, G. A. Constantinides, and N. Kapre, “Communication optimiza-
tion of iterative sparse matrix-vector multiply on gpus and fpgas,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 1, pp. 24–34, Jan
2015.

[76] D. Chen and D. Singh, “Fractal video compression in opencl: An evaluation
of cpus, gpus, and fpgas as acceleration platforms,” in 2013 18th Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2013, pp. 297–304.

[77] Berten, “Gpu vs fpga performance comparison,” 2016. [Online].
Available: http://www.bertendsp.com/pdf/whitepaper/BWP001 GPU vs
FPGA Performance Comparison v1.0.pdf

155

https://doi.org/10.1109/ISCA.2016.25
https://doi.org/10.1109/ISCA.2016.25
http://stacks.iop.org/1742-6596/180/i=1/a=012042
http://stacks.iop.org/1742-6596/180/i=1/a=012042
http://dx.doi.org/10.1016/j.parco.2012.03.001
http://dx.doi.org/10.1016/j.parco.2012.03.001
https://www.altera.com/en_US/pdfs/literature/wp/wp-01197-radar-fpga-or-gpu.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01197-radar-fpga-or-gpu.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf

Bibliography

[78] B. Falsafi, B. Dally, D. Singh, D. Chiou, J. J. Yi, and R. Sendag, “Fpgas versus
gpus in data centers,” IEEE Micro, vol. 37, no. 1, pp. 60–72, Jan 2017.

[79] S. Kim et al., “GPUnet: Networking abstractions for gpu programs,” in 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
14). Broomfield, CO: USENIX Association, 2014, pp. 201–216.

[80] A. Younge et al., “Evaluating GPU passthrough in xen for high performance
cloud computing,” in Parallel Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, May 2014, pp. 852–859.

[81] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 26, no. 2, pp. 203–215, Feb 2007.

[82] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “Legup: High-level synthesis for fpga-based
processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser. FPGA
’11. New York, NY, USA: ACM, 2011, pp. 33–36. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950423

[83] Xilinx, “Vivado design suite user guide high-level synthesis,” June 2016.
[Online]. Available: https://www.xilinx.com/support/.../xilinx2016 2/
ug902-vivado-high-level-synthesis.pdf

[84] Altera, “Implementing fpga design with the opencl standard,” November
2013. [Online]. Available: https://www.altera.com/en US/pdfs/literature/
wp/wp-01173-opencl.pdf

[85] “Intel socs: When architecture matters.” [Online]. Available: https:
//www.altera.com/products/soc/overview.html

[86] N. Oliver, R. R. Sharma, S. Chang, B. Chitlur, E. Garcia, J. Grecco, A. Grier,
N. Ijih, Y. Liu, P. Marolia, H. Mitchel, S. Subhaschandra, A. Sheiman,
T. Whisonant, and P. Gupta, “A reconfigurable computing system based on
a cache-coherent fabric,” in Proceedings of the 2011 International Conference
on Reconfigurable Computing and FPGAs, ser. RECONFIG ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 80–85. [Online]. Available:
http://dx.doi.org/10.1109/ReConFig.2011.4

[87] P. Gupta, “Xeon+fpga platform for the data center,” sept 2015.
[Online]. Available: https://www.ece.cmu.edu/∼calcm/carl/lib/exe/fetch.
php?media=carl15-gupta.pdf

156

http://doi.acm.org/10.1145/1950413.1950423
https://www.xilinx.com/support/.../xilinx2016_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/.../xilinx2016_2/ug902-vivado-high-level-synthesis.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/products/soc/overview.html
https://www.altera.com/products/soc/overview.html
http://dx.doi.org/10.1109/ReConFig.2011.4
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf

Bibliography

[88] IBM, “IBM coherent accelerator processor interface (CAPI) for POWER8
systems,” Sept 2014. [Online]. Available: www.ibm.com

[89] C. Steffen and G. Genest, “Nallatech in-socket fpga front-side bus accelera-
tor,” Computing in Science Engineering, vol. 12, no. 2, pp. 78–83, March 2010.

[90] “Hypertransport consortium.” [Online]. Available: http://www.
hypertransport.org

[91] F. Chen, H. Cheng, X. Yang, and R. Liu, “Design and implementation of an
effective hypertransport core in fpga,” in 2008 IEEE International Conference
on Cluster Computing, Sept 2008, pp. 437–443.

[92] H. Litz, H. Froening, and U. Bruening, A HyperTransport 3 Physical Layer
Interface for FPGAs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 4–14. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-00641-8
4

[93] O. Mencer et al., “Cube: A 512-FPGA cluster,” in Programmable Logic, 2009.
SPL. 5th Southern Conference on, April 2009, pp. 51–57.

[94] T. Güneysu et al., “Cryptanalysis with copacobana,” IEEE TRANSACTIONS
ON COMPUTERS, vol. 57, no. 11, pp. 1498–1513, 2008.

[95] C. Chang et al., “BEE2: a high-end reconfigurable computing system,” De-
sign Test of Computers, IEEE, vol. 22, no. 2, pp. 114–125, March 2005.

[96] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz, “RAMP
Blue: A message-passing manycore system in FPGAs,” in Field Programmable
Logic and Applications, 2007. FPL 2007. International Conference on, Aug 2007,
pp. 54–61.

[97] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero,
M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor,
A. Muñoz-Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, M. Rossi, J. J.
Ruiz-Lorenzo, S. F. Schifano, D. Sciretti, A. Tarancon, R. Tripiccione, J. L.
Velasco, D. Yllanes, and G. Zanier, “Janus: An fpga-based system for high-
performance scientific computing,” Computing in Science Engineering, vol. 11,
no. 1, pp. 48–58, Jan 2009.

[98] R. Baxter et al., “Maxwell - a 64 FPGA supercomputer,” in Adaptive Hardware
and Systems, 2007. AHS 2007. Second NASA/ESA Conference on, Aug 2007, pp.
287–294.

[99] IBM, “Supervessel cloud for power/openpower.” [Online]. Available:
www.ptopenlab.com

157

www.ibm.com
http://www.hypertransport.org
http://www.hypertransport.org
http://dx.doi.org/10.1007/978-3-642-00641-8_4
http://dx.doi.org/10.1007/978-3-642-00641-8_4
www.ptopenlab.com

Bibliography

[100] F. Chen et al., “Enabling FPGAs in the cloud,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, ser. CF ’14. New York, NY, USA: ACM,
2014, pp. 3:1–3:10.

[101] , “Opencapi.” [Online]. Available: http://www.opencapi.org/

[102] T. P. Morgan, “OpenCAPI,” Oct 2016. [Online]. Available: http://www.
nextplatform.com/2016/10/17/opening-server-bus-coherent-acceleration/

[103] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “Netfpga
sume: Toward 100 gbps as research commodity,” IEEE Micro, vol. 34, no. 5,
pp. 32–41, Sept 2014.

[104] J. W. Lockwood et al., “Netfpga–an open platform for gigabit-rate network
switching and routing,” in 2007 IEEE International Conference on Microelec-
tronic Systems Education (MSE’07), June 2007, pp. 160–161.

[105] M. Blott et al., ““fpga research design platform fuels network advances,” in
Xilinx Xcell Journal, Sept 2010.

[106] Altera, “SerialLite iii streaming megacore function user guide,” Dec 2014.
[Online]. Available: www.altera.com

[107] H. Giefers et al., “Accelerating finite difference time domain simulations
with reconfigurable dataflow computers,” SIGARCH Comput. Archit. News,
vol. 41, no. 5, pp. 65–70, Jun. 2014.

[108] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with
FPGAs and GPUs,” pp. 115–124, 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1723112.1723134

[109] G. Gibb and N. McKeown, “OpenPipes: Making distributed hardware sys-
tems easier,” in Field-Programmable Technology (FPT), 2010 International Con-
ference on, Dec 2010, pp. 381–384.

[110] nanostreams, “A hardware and software stack for real-time analytics on fast
data streams,” sept 2013. [Online]. Available: http://www.nanostreams.eu/

[111] Amazon, “Amazon elastic compute cloud,” xxx 20xx. [Online]. Available:
www.amazon.com

[112] B. Wile, “Coherent accelerator processor interface (capi) for power8 systems
decision guide and development process,” October 2014.

[113] A. Data, “Alpha data fpga card price.” [Online]. Available: https:
//usastore.alpha-data.com/store/

158

http://www.opencapi.org/
http://www.nextplatform.com/2016/10/17/opening-server-bus-coherent-acceleration/
http://www.nextplatform.com/2016/10/17/opening-server-bus-coherent-acceleration/
www.altera.com
http://doi.acm.org/10.1145/1723112.1723134
http://doi.acm.org/10.1145/1723112.1723134
http://www.nanostreams.eu/
www.amazon.com
https://usastore.alpha-data.com/store/
https://usastore.alpha-data.com/store/

Bibliography

[114] Nallatech, “Nallatech fpga card price.” [Online]. Available: http:
//www.nallatech.com/store/

[115] Mle, “TCP/UDP/IP Network Protocol Accelerator.” [Online]. Available:
http://www.missinglinkelectronics.com

[116] M. Mahalingam et al., “Virtual extensible local area network (vxlan):
A framework for overlaying virtualized layer 2 networks over layer 3
networks,” August 2014. [Online]. Available: https://tools.ietf.org/html/
rfc7348

[117] I. T. Association, “RoCE – RDMA over converged ethernet,” Apr 2010.
[Online]. Available: http://www.infinibandta.org/

[118] I. G. J. Gross and J. Sridhar, “Geneve: Generic network virtualization
encapsulation,” March 2017. [Online]. Available: https://tools.ietf.org/
html/draft-ietf-nvo3-geneve-04

[119] D. Black et al., “An architecture for data center network virtualization
overlays (nvo3),” September 2016. [Online]. Available: https://tools.ietf.
org/html/draft-ietf-nvo3-arch-08

[120] S. Han et al., “Network support for resource disaggregation in next-
generation datacenters,” in Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks, ser. HotNets-XII. New York, NY, USA: ACM, 2013, pp.
10:1–10:7.

[121] Huawei, “High throughput computing data center architecture,” Jun. 2014.
[Online]. Available: www.huawei.com

[122] J. Waxman, “Architecting cloud infrastructure for the future,” Jun. 2014.
[Online]. Available: www.intel.com

[123] S. Byma et al., “FPGAs in the cloud: Booting virtualized hardware accel-
erators with openstack,” in Proceedings of the 2014 IEEE 22Nd International
Symposium on Field-Programmable Custom Computing Machines, ser. FCCM ’14,
2014, pp. 109–116.

[124] EMA, “Data center management: The key ingredient for reducing server
power while increasing data center capacity,” June 2010. [Online]. Available:
https://www.cisco.com

[125] M. Ferdman et al., “A case for specialized processors for scale-out work-
loads,” Micro, IEEE, vol. 34, no. 3, pp. 31–42, May 2014.

159

http://www.nallatech.com/store/
http://www.nallatech.com/store/
http://www.missinglinkelectronics.com
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
http://www.infinibandta.org/
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-04
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-04
https://tools.ietf.org/html/draft-ietf-nvo3-arch-08
https://tools.ietf.org/html/draft-ietf-nvo3-arch-08
www.huawei.com
www.intel.com
https://www.cisco.com

Bibliography

[126] K. Sudan et al., “A novel system architecture for web scale applications
using lightweight cpus and virtualized I/O,” in Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), ser. HPCA ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 167–178. [Online]. Available: http://dx.doi.org/10.1109/HPCA.
2013.6522316

[127] W. Felter et al., “An updated performance comparison of virtual machines
and linux containers,” July 2014. [Online]. Available: domino.research.ibm.
com

[128] M. I. . Stratergy, “Intel’s disaggregated server rack,” Aug 2013. [Online].
Available: www.moorinsightsstrategy.com

[129] K. Lim et al., “Disaggregated memory for expansion and sharing in blade
servers,” SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 267–278, Jun.
2009. [Online]. Available: http://doi.acm.org/10.1145/1555815.1555789

[130] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An introduction
to the design of warehouse-scale machines,” 2009.

[131] Freescale, “QorlQ T4240, T4160 and T4080 advanced multicore processors.”
[Online]. Available: http://www.freescale.com

[132] V. Salapura et al., “Accelerating business analytics applications,” in High
Performance Computer Architecture (HPCA), 2012 IEEE 18th International Sym-
posium on, Feb 2012, pp. 1–10.

[133] A. Ali et al., “On the use of microservers in supporting hadoop applications,”
in Proceedings of the IEEE International Conference on Cluster Computing (Clus-
ter), Madrid, Spain, Sept 2014.

[134] OpenCompute, “Open compute project.” [Online]. Available: www.
opencompute.org

[135] J. Weiss et al., “Optical interconnects for disaggregated resources in future
datacenters,” in Optical Communication (ECOC), 2014 European Conference on,
Sept 2014, pp. 1–3.

[136] J. Gao, “Machine learning applications for data center optimisation,” 2014.

[137] Hewlett-Packard, “HP Moonshot: An accelerator for hyperscale workloads,”
2013. [Online]. Available: www.hp.com

[138] SeaMicro, “Seamicro SM15000 fabric compute systems.” [Online]. Available:
http://www.seamicro.com/

160

http://dx.doi.org/10.1109/HPCA.2013.6522316
http://dx.doi.org/10.1109/HPCA.2013.6522316
domino.research.ibm.com
domino.research.ibm.com
www.moorinsightsstrategy.com
http://doi.acm.org/10.1145/1555815.1555789
http://www.freescale.com
www.opencompute.org
www.opencompute.org
www.hp.com
http://www.seamicro.com/

Bibliography

[139] Dell, “Dell poweredge C5220 microserver.” [Online]. Available: http:
//www.dell.com/

[140] Hewlett Packard, “The machine: A new kind of computer.” [Online].
Available: http://www.hpl.hp.com/

[141] R. Luijten et al., “Dual function heat-spreading and performance of the IB-
M/ASTRON DOME 64-bit µserver demonstrator,” in 2014 IEEE International
Conference on IC Design Technology (ICICDT),, May 2014, pp. 1–4.

[142] M. K. Tiwari, S. Zimmermann, C. S. Sharma, F. Alfieri, A. Renfer, T. Brun-
schwiler, I. Meijer, B. Michel, and D. Poulikakos, “Waste heat recovery in
supercomputers and 3d integrated liquid cooled electronics,” in 13th Inter-
Society Conference on Thermal and Thermomechanical Phenomena in Electronic
Systems, May 2012, pp. 545–551.

[143] OpenStack, “OpenStack cloud management software,” xxx 20xx. [Online].
Available: www.openstack.org

[144] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud Comput-
ing,” 2009.

[145] A. Stanik et al., “Hardware as a service (HaaS): The completion of the cloud
stack,” in Computing Technology and Information Management (ICCM), 2012 8th
International Conference on, vol. 2, April 2012, pp. 830–835.

[146] S. Crago et al., “Heterogeneous cloud computing,” in 2011 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2011, pp. 378–385.

[147] R. Polig et al., “Giving text analytics a boost,” IEEE Micro, vol. 34, no. 4, pp.
6–14, July 2014.

[148] Xilinx, “Ultrascale integrated 100g ethernet subsystem.” [Online]. Avail-
able: https://www.xilinx.com/products/intellectual-property/cmac.html#
overview

[149] ——, “40g/100g ethernet core.” [Online]. Available: https://www.xilinx.
com/products/intellectual-property/40 100g ethernet.html

[150] A. Dollas et al., “An open TCP/IP core for reconfigurable logic.” in FCCM.
IEEE Computer Society, 2005, pp. 297–298.

[151] Xilinx, “TCP/IP Stack.” [Online]. Available: https://github.com/Xilinx/
HLx Examples/tree/master/Acceleration/tcp ip

161

http://www.dell.com/
http://www.dell.com/
http://www.hpl.hp.com/
www.openstack.org
https://www.xilinx.com/products/intellectual-property/cmac.html#overview
https://www.xilinx.com/products/intellectual-property/cmac.html#overview
https://www.xilinx.com/products/intellectual-property/40_100g_ethernet.html
https://www.xilinx.com/products/intellectual-property/40_100g_ethernet.html
https://github.com/Xilinx/HLx_Examples/tree/master/Acceleration/tcp_ip
https://github.com/Xilinx/HLx_Examples/tree/master/Acceleration/tcp_ip

Bibliography

[152] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley, “Scal-
able 10Gbps TCP/IP stack architecture for reconfigurable hardware,” in 2015
IEEE 23rd Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), May 2015, pp. 36–43.

[153] S. Meyer, “Verilog plus c language modeling with pli 2.0: The next genera-
tion simulation language,” in Proceedings International Verilog HDL Conference
and VHDL International Users Forum, Mar 1998, pp. 98–105.

[154] S. Sutherland, “Integrating systemc models with verilog and system verilog
models using the system verilog direct programming interface,” 2004.
[Online]. Available: https://github.com/ibm-capi/pslse

[155] IBM, “Power service layer simulation engine,” 2008. [Online]. Available:
https://github.com/ibm-capi/pslse

[156] A. Pool, “Using modelsim foreign language interface for c – vhdl
co-simulation and for simulator control on linux x86 platform,” 2008.
[Online]. Available: https://github.com/andrepool/fli

[157] ADI Engineering, “Seacliff trail: Intel FM6000.” [Online]. Available:
www.adiengineering.com

[158] HP and Mellanox, “HP Mellanox low latency benchmark report 2012,” July
2012. [Online]. Available: www.mellanox.com

[159] A. Trivedi et al., “Rstore: A direct-access dram-based data store,” in 2015
IEEE 35th International Conference on Distributed Computing Systems (ICDCS),
June 2015, pp. 674–685.

[160] Y. Gu and R. L. Grossman, “UDT: UDP-based data transfer for high-speed
wide area networks,” Comput. Netw., vol. 51, no. 7, pp. 1777–1799, May 2007.

[161] R. Hamilton et al., “QUIC: A UDP-based secure and reliable trans-
port for HTTP/2.” [Online]. Available: https://tools.ietf.org/html/
draft-tsvwg-quic-protocol-01

[162] O. Knodel, A. Georgi, P. Lehmann, W. E. Nagel, and R. G. Spallek, “Integra-
tion of a highly scalable, multi-fpga-based hardware accelerator in common
cluster infrastructures,” in 2013 42nd International Conference on Parallel Pro-
cessing, Oct 2013, pp. 893–900.

[163] M. A. S. Khalid, “Routing architecture and layout synthesis for multi-fpga
systems,” Ph.D. dissertation, Dept. of ECE, Univ. Toronto, 1999.

[164] J. Babb, “Virtual wires: Overcoming pin limitations in fpga-based logic em-
ulation,” Cambridge, MA, USA, Tech. Rep., 1993.

162

https://github.com/ibm-capi/pslse
https://github.com/ibm-capi/pslse
https://github.com/andrepool/fli
www.adiengineering.com
www.mellanox.com
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-01
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-01

Bibliography

[165] Synopsys, “Zebu server-3: Industry’s fastest emulation system,” 2016.
[Online]. Available: https://www.synopsys.com/verification/emulation/
zebu-server.html

[166] P. Electronic, “Chipit platinum edition: Asic emulation and rapid prototyp-
ing system handbook,” 2008.

[167] M. Nüssle, B. Geib, H. Fröning, and U. Brüning, “An fpga-based custom
high performance interconnection network,” in 2009 International Conference
on Reconfigurable Computing and FPGAs, Dec 2009, pp. 113–118.

[168] J. Wang, S. Yang, B. Deng, X. Wei, and H. Yu, “Multi-fpga implementation
of feedforward network and its performance analysis,” in 2015 34th Chinese
Control Conference (CCC), July 2015, pp. 3457–3461.

[169] D. L. Ly and P. Chow, “A multi-fpga architecture for stochastic restricted
boltzmann machines,” in 2009 International Conference on Field Programmable
Logic and Applications, Aug 2009, pp. 168–173.

[170] J. J. Martı́nez-Alvarez, J. Toledo-Moreo, J. Garrigós-Guerrero, and J. M.
Ferrandez-Vicente, “A multi-fpga distributed embedded system for the emu-
lation of multi-layer cnns in real time video applications,” in 2010 12th Inter-
national Workshop on Cellular Nanoscale Networks and their Applications (CNNA
2010), Feb 2010, pp. 1–5.

[171] S.-W. Jun et al., “BlueDBM: An Appliance for Big Data Analytics,” in Proceed-
ings of the 42Nd Annual International Symposium on Computer Architecture, ser.
ISCA ’15. New York, NY, USA: ACM, 2015, pp. 1–13.

[172] E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on little clients,”
in Proceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 261–272.
[Online]. Available: http://doi.acm.org/10.1145/2485922.2485945

[173] L. Wienbrandt, The FPGA-Based High-Performance Computer RIVYERA for Ap-
plications in Bioinformatics. Springer International Publishing, 2014, pp. 383–
392.

[174] N. McKeown et al., “OpenFlow: Enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1355734.1355746

[175] L. Richardson and S. Ruby, RESTful web services. ” O’Reilly Media, Inc.”,
2008.

[176] “OpenAPI Initiative,” https://www.openapis.org/, accessed: 2017-06-29.

163

https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.synopsys.com/verification/emulation/zebu-server.html
http://doi.acm.org/10.1145/2485922.2485945
http://doi.acm.org/10.1145/1355734.1355746
https://www.openapis.org/

Bibliography

[177] R. Polig, K. Atasu, H. Giefers, C. Hagleitner, L. Chiticariu, F. Reiss, H. Zhu,
and P. Hofstee, “A hardware compilation framework for text analytics
queries,” Journal of Parallel and Distributed Computing, 2017.

[178] E. H. Halili, Apache JMeter: A practical beginner’s guide to automated testing and
performance measurement for your websites. Packt Publishing Ltd, 2008.

[179] W. Reese, “Nginx: the high-performance web server and reverse proxy,”
Linux Journal, vol. 2008, no. 173, p. 2, 2008.

[180] “The uWSGI project,” https://uwsgi-docs.readthedocs.io/, accessed: 2017-
06-14.

[181] H. Y. McCreary, M. A. Broyles, M. Floyd, A. Geissler, S. P. Hartman, F. Raw-
son, T. Rosedahl, J. Rubio, and M. Ware, “EnergyScale for IBM POWER6
microprocessor-based systems,” IBM Journal of Research and Development,
vol. 51, no. 6, pp. 775–786, Nov 2007.

[182] L. Chiticariu, Y. Li, and F. R. Reiss, “Rule-based information extraction is
dead! long live rule-based information extraction systems!” in EMNLP,
2013, pp. 827–832.

[183] R. Polig, K. Atasu, and C. Hagleitner, “Token-based dictionary pattern
matching for text analytics,” in Field Programmable Logic and Applications
(FPL), 2013 23rd International Conference on. IEEE, 2013, pp. 1–6.

[184] K. Atasu, R. Polig, C. Hagleitner, and F. R. Reiss, “Hardware-accelerated
regular expression matching for high-throughput text analytics,” in Field
Programmable Logic and Applications (FPL), 2013 23rd International Conference
on. IEEE, 2013, pp. 1–7.

[185] R. Polig, “Text analytics on reconfigurable platforms,” Ph.D. dissertation,
München, Technische Universität München, Diss., 2015.

[186] E. A. Epstein, M. I. Schor, B. Iyer, A. Lally, E. W. Brown, and J. Cwiklik,
“Making watson fast,” IBM Journal of Research and Development, vol. 56, no.
3.4, pp. 15–1, 2012.

[187] R. Polig et al., “Compiling text analytics queries to FPGAs,” in 24th IEEE In-
ternational Conference on Field Programmable Logic and Applications (FPL), 2014,
pp. 1–6.

[188] University of Texas, “Fabric (fpga research infrastructure cloud).” [Online].
Available: https://www.tacc.utexas.edu/systems/fabric

[189] Accelize, “Enabling fpga-acceleration-as-a-service.” [Online]. Available:
https://www.accelize.com/

164

https://uwsgi-docs.readthedocs.io/
https://www.tacc.utexas.edu/systems/fabric
https://www.accelize.com/

Bibliography

[190] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia,
“Sdn-based application-aware networking on the example of youtube
video streaming,” in Proceedings of the 2013 Second European Workshop
on Software Defined Networks, ser. EWSDN ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 87–92. [Online]. Available:
http://dx.doi.org/10.1109/EWSDN.2013.21

[191] G. Wang, T. E. Ng, and A. Shaikh, “Programming your network
at run-time for big data applications,” in Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, ser. HotSDN ’12.
New York, NY, USA: ACM, 2012, pp. 103–108. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342462

[192] W. Paper, “Application-aware networking at a glance,” 2013.
[Online]. Available: http://mrv.com/wp-content/uploads/2016/06/
MRV-Application-Aware-Networking-WP.pdf

165

http://dx.doi.org/10.1109/EWSDN.2013.21
http://doi.acm.org/10.1145/2342441.2342462
http://mrv.com/wp-content/uploads/2016/06/MRV-Application-Aware-Networking-WP.pdf
http://mrv.com/wp-content/uploads/2016/06/MRV-Application-Aware-Networking-WP.pdf

Curriculum Vitae

Education

2014–2018 PhD in Electrical and Computer Engineering, Technical Univer-
sity of Munich, Germany.

2008–2010 MSc in Artificial Intelligence, Kyushu Institute of Technology,
Japan.

2003–2007 BSc in Electrical and Electronics Engineering, University of Per-
adeniya, Sri Lanka.

Work Experience

2014–2018 PreDoctoral Researcher, IBM Research, Switzerland.

2013–2014 Visiting Scientist, IBM Research, Switzerland.

2010–2013 Software Engineer, Fujitsu Ltd, Japan.

166

	Abstract
	Acknowledgment
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Thesis Statement
	Background
	Thesis Contributions
	Thesis Outline

	Background and State of the Art
	Emergence of Heterogeneous Computing
	Technology Scaling
	HW Acceleration
	Specialized HW

	FPGA
	Architecture
	Advances in Technology

	FPGA Deployment Architecture
	On Chip
	On Package
	System Bus-Attached
	PCIe-Attached
	PCIe- and Network-Attached
	Network-Attached

	Summary

	System Architecture
	Infrastructure Requirements
	CPU-FPGA Attachment Interface
	System Bus-Attached
	PCIe-Attached
	Network-Attached
	Summary

	FPGA Provisioning Methods
	As a Physical FPGA
	As a Single Virtual FPGA
	As Multiple Virtual FPGAs
	Summary

	Infrastructure for Deployment
	Evolution of Cloud Data Centers
	FPGA Cluster Built with Off-the-Shelf HW
	Hyperscale FPGA Cluster
	FPGA Chassis

	Cloud Integration
	Cloud Computing
	Service Models
	Deployment Models

	Accelerator Service for OpenStack
	Accelerator Service
	Network Manager
	Integrating FPGAs into OpenStack
	Provisioning an FPGA on the Cloud
	Renting an FPGA on the Cloud
	Multi-FPGA Fabrics on the Cloud
	Renting a multi-FPGA Fabric on the Cloud
	Using a multi-FPGA Fabric from SW Applications

	Summary

	Standalone Disaggregated FPGA
	Abstracting FPGA I/O with Shell-Role Architectures
	Microsoft Catapult Shell
	IBM Power Service Layer Shell
	Amazon EC2 F1 Shell
	Xilinx Donut Shell
	NetFPGA SDN Shell
	Summary

	Standalone Disaggregated FPGA Architecture
	User Application (vFPGA)
	I/O Channels
	Network I/O
	Memory I/O

	Logic Resources
	Frequency

	Cloud Shell
	MEM IF
	NET IF
	FPGA Integrated MAC and PHY
	FPGA MAC Address
	MAC Address Resolution
	FPGA IP Address
	Health Monitoring
	Network Stack Virtualization

	MGMT

	HW Prototype Implementation
	User Application (vFPGA)
	Cloud Shell
	Network Service Layer
	Network Controller (NET CTRL)
	Network and Transport Stack (NTS)
	UDP/IP with Centralized Control Plane
	UDP/IP with Distributed Control Plane
	TCP/IP

	Application Interface (AI)
	Management Layer (MGMT)
	Memory Controller (MEM CTRL)

	Flow of Building Application

	Simulation Environment
	Cloud Shell Simulation
	RX Path
	TX Path

	User Application Simulation

	Evaluation
	Latency
	Throughput
	Latency Variation
	FPGA Resources

	Discussion
	Performance
	FPGA Resource Consumption
	Impact on Applications
	Network Protocol

	Summary

	Software-Defined Multi-FPGA Fabrics
	Multi-FPGA Systems
	Fixed Topologies
	Programmable Topologies
	Applications
	Summary

	Multi-FPGA Systems in Cloud Data Centers
	Software-Defined Multi-FPGA Fabrics
	Fabric Topology Definition
	FPGA Manager
	Multi-FPGA Fabric Agent
	SDMFF Protocol
	Flow of Building SDMFF
	Evaluation
	Simulation Environment

	Summary

	Experimental Validation by Applications
	RESTful Web Services
	REST IP Block
	OpenAPI Configuration
	Architecture

	Web Service
	Evaluation
	Setup

	Results
	Power Consumption
	System Cost
	Resource Consumption

	Distributed Text Analytics
	UIMA
	Enhanced UIMA
	PCIe-Attached-FPGA-Enhanced
	SDMFF-Enhanced

	Text Analytics on Standard UIMA
	Text Analytics on Enhanced UIMA
	Evaluation
	Results
	Latency
	Throughput
	Latency Variation
	System Cost

	Discussion
	Performance
	Resource Consumption

	Summary

	Conclusion and Directions for Further Research
	Conclusion
	Directions for Future Work
	Network Protocols for SDF:
	End-to-End Lossless Networking:
	Resource Efficiency:
	End-to-End Predictable Compute Fabrics:
	Application Partitioning for SDMFF:
	Self-Organizing SDMFFs:
	Multiple Virtual FPGAs:
	Cloud Enablement:
	Multi-Tenancy Support:
	Security:
	Application-Aware Networking with Multi-FPGA Fabrics:

	Publications and Patents
	Bibliography

