
Technische Universität München

Zentrum Mathematik

Lehrstuhl für Mathematische Statistik

Selection of Sparse Vine Copulas
in Ultra High Dimensions

Dominik Thomas Müller

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Uni-

versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Matthias Scherer

Prüfer der Dissertation: 1. Prof. Claudia Czado, Ph.D.

2. Prof. Harry Joe, Ph.D.

(University of British Columbia, Kanada)

3. Prof. Gal Elidan, Ph.D.

(Hebrew University of Jerusalem, Israel)

(nur schriftliches Gutachten)

Die Dissertation wurde am 17.10.2017 bei der Technischen Universität München

eingereicht und durch die Fakultät für Mathematik am 29.11.2017 angenommen.

Zusammenfassung

Das Ziel dieser Arbeit ist die Anwendbarkeit von sogenannten Vine Copula Modellen

in ultrahohe Dimensionen zu erweitern. Vine Copulas stellen eine neuartige flexible

Modellklasse dar, welche Verteilungen in endlichen Dimensionen durch die Kombination

von beliebigen Marginalverteilungen und bivariaten Copulas beschreibt. Die Konstruk-

tion eines solchen Models ist nicht eindeutig und beruht auf einem graphischem Modell,

der Vine Baumstruktur. In Dimensionen, welche ein Dutzend Variablen übersteigen,

wird diese Struktur unumgänglich komplex und vollständige Modelle leiden unter Über-

parametrisierung. Daher besteht der Bedarf in hohen Dimensionen gut beschreibende

Modelle zu finden, welche außerdem sparsam parametrisiert sind.

Das erste Ziel in dieser Arbeit ist es, alternative Methoden für aktuelle “gierige“ Such-

verfahren zu finden. Bei diesen ist nicht sichergestellt, dass sie in moderaten Dimensionen

in denen sie noch funktionieren, auch gute Lösungen finden. Das zweite Ziel besteht darin,

neue Ansätze für Daten in ultrahohen Dimensionen, d.h. einigen Tausend, zu entwickeln

und Modelle in guter Qualität und annehmbarer Zeit zu finden. Hierzu werden sowohl

gerichtete als auch ungerichtete Gaußsche graphische Modelle sowie Methoden der uni-

variaten Modellselektion benutzt.

Der Hauptbeitrag dieser Arbeit ist nun das Entwickeln mehrerer Methoden, um Gaußsche

(graphische) Modelle mit Gaußschen Vine Copulas zu verbinden. Dadurch wird erstens

die Strukturschätzung in Vine Copulas erleichtert. Zweitens, erlaubt es uns zudem, den

Gaußschen Modellen Parametersparsamkeit aufzulerlegen, um diese in den zugehörigen

Vine Copula Modellen zu erhalten. Die vorgestellten Ansätze werden theoretisch be-

gründet und durchgehend illustriert. Da theoretische Vergleiche in hohen Dimensionen

schwierig sind, führen wir sowohl Simulationsstudien als auch Anwendungen in hohen

bzw. ultrahohen Dimensionen durch, um unsere Ansätze mit dem Goldstandard zu ver-

gleichen. Wir sehen nicht nur, dass wir die aktuelle Standardmethode bzgl. Gütemaßen

als auch bzgl. Berechnungszeit schlagen, sondern auch dass wir Bereiche nicht-Gaußscher

ultrahoch-dimensionaler Datenmodellierung mit mehr als 2.000 Variablen erstmals er-

reichen können. Alle vorgestellten Ansätze werden abschließend im Kontext eines hoch-

dimensionalen Finanz-Datensatzes angewandt und verglichen.

iii

Abstract

This thesis extends the usability of vine copulas into ultra high dimensions. Vine copulas

are a quite novel flexible statistical model class, which allows to model distributions in fi-

nite dimensions by combining arbitrary marginal distributions and bivariate copulas. The

construction of such a model is not unique, but relies on a graphical model, the vine tree

structure. In dimensions exceeding a dozen variables, the structure becomes inevitably

complex, and full models suffer from over-parametrization. Hence, a need exists for find-

ing good fitting parsimonious models in high dimensions.

The first goal in this thesis is to find alternative methods for current greedy-search al-

gorithms. For these, it is not ensured that they obtain suitable solutions in moderate

dimensions, where they are still applicable. The second goal is to develop new approaches

for data in ultra high dimensions, i. e. several thousand dimensions, to find models of good

quality in reasonable time. To this end, both directed and undirected Gaussian graphical

models as well as univariate model selection techniques are used.

The main contribution of this thesis is now to develop several methods linking Gaussian

(graphical) models to Gaussian vine copulas. Thus, first we make structural estimation

in vine copulas more feasible. Secondly, we impose sparsity in the Gaussian models to

obtain model parsimony in the associated vine copulas. All developed approaches are

theoretically backed and illustrated throughout the thesis. Since theoretical comparisons

in high dimensions are hard, we perform simulation studies and both high and ultra high

dimensional data applications to compare our approaches to the current benchmark. We

see that we not only outperform the current benchmark in terms of goodness of fit and

computation time, but we are also able to first enter domains of non-Gaussian modelling

of ultra high dimensional data with more than 2,000 variables. All presented approaches

are finally applied and compared in the context of a high dimensional financial data set.

v

Acknowledgements

First and foremost, I want to express my sincere gratitude to my supervisor Prof. Clau-

dia Czado. I am particularly thankful for the opportunity she offered me to return to

university after several years outside of academia. She introduced me to vine copulas

and always had an open ear for discussions and questions regarding the directions of my

research. Furthermore, she steadily encouraged me through the entire time of my disser-

tation and gave me the freedom to explore different approaches and ideas I had. I am also

very grateful for the possibility to present my work at several conferences and to attend

a variety of meetings and workshops, which were very valuable experiences.

Secondly, I want to thank Prof. Harry Joe for accepting to act as a referee for my thesis.

I truly benefited from his huge experience in dependence modelling and the talks we had

during his times in Munich.

I also want to express my gratitude to Prof. Gal Elidan for taking his time and accepting

to act as referee for my thesis.

Additionally, I am very thankful for financial support offered by Allianz Deutschland AG

as well as TUM Graduate School and the International School of Applied Mathematics

(ISAM).

Furthermore, I am happy to remember such an enjoyable time at the Chair of Mathe-

matical Statistics, and thus, I also want to thank my colleagues Nicole, Matthias, Dani,

Thomas, Alex and Tobias for inspiring discussions in the office and good times at the

conferences we attended.

Finally, I am deeply indebted to my parents for encouraging and enabling me to follow the

path I want to pursue. Last, I thank my wonderful wife Christine for her loving support

through all the recent years.

vii

Contents

Zusammenfassung iii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Dependence Modelling with Vine Copulas 9

2.1 Copulas . 9

2.1.1 Sklar’s Theorem . 9

2.1.2 Copula Families . 11

2.1.3 Dependence Measures . 14

2.1.4 Estimation of Pair Copulas . 15

2.2 Vine Copulas . 16

2.2.1 Model Assessment . 19

2.2.2 Model Selection . 20

2.2.3 Model Simplification . 21

3 Mathematical Foundations and Sparse Modelling 23

3.1 Mathematical Foundations . 23

3.1.1 Time Series Models . 24

3.1.2 Conditional Independence . 26

3.1.3 Properties of the Multivariate Gaussian Distribution 27

3.2 The Lasso in Linear Regression . 28

3.3 Graphical Models . 30

3.3.1 Graph Theory . 31

3.3.2 Undirected Graphical Models . 33

3.3.3 Estimation of Undirected Graphical Models 34

3.3.4 Directed Graphical Models . 37

3.3.5 Estimation of Graphical Models on DAGs 40

3.4 Structural Equation Models (SEMs) . 42

4 Representing Sparse Gaussian DAGs as Sparse R-vines 45

4.1 Motivation: Combinatorial Example . 46

4.2 Representing Truncated R-vines as DAGs 46

ix

Contents

4.3 Representing DAGs as Truncated R-vines under Sufficient Conditions . . . 48

4.3.1 Representing 1 -DAGs as 1-Truncated R-vines 48

4.3.2 Representing k -DAGs under Sufficient Conditions 48

4.3.3 Special k -DAGs with R-vine Representations 52

4.3.4 A Necessary Condition for R-vine Representations 53

4.4 Representing Arbitrary k -DAGs . 56

4.4.1 Algorithmic Implementation . 56

4.4.2 Toy Example . 58

4.5 Application . 59

5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso 63

5.1 Motivation: SEM Representation of R-vines 63

5.2 Vine Copula Structure Selection with the Lasso 69

5.2.1 Calculation of the Ordering Function 70

5.2.2 Sparse R-vine Structure Selection 73

5.2.3 R-vine Regularization Paths . 76

5.2.4 Selection of the Tuning Parameter 79

5.3 Application . 81

6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso 83

6.1 A Divide-And-Conquer-Strategy . 83

6.1.1 Motivation: Considering Computational Complexity 83

6.1.2 Clustering High Dimensional Data 84

6.1.3 Improving Estimation Accuracy . 87

6.2 Algorithmic Implementation . 89

6.2.1 Computational Implementation . 89

6.2.2 Toy Example . 90

6.3 Application . 97

7 Comparison Studies Utilizing the Proposed Methods 105

7.1 Set up of the Comparison . 106

7.1.1 Data Preparation . 106

7.1.2 Numerical Implementation . 107

7.2 Simulation Study . 107

7.3 Runtime Comparison . 129

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions 137

7.4.1 Data Preparation and Modelling . 137

7.4.2 Value at Risk (VaR) One Day Ahead Forecasting 140

7.4.3 Value at Risk (VaR) Backtesting 145

8 Conclusion and Outlook 161

8.1 Contribution . 161

8.2 Future Research Directions . 162

x

Contents

A Supplementary Material to Chapter 4 173

A.1 DAGs Estimated on the Euro Stoxx 50 Data Set 174

A.2 Numerical Results of Fitted Models . 180

A.3 Algorithms to Chapter 4 . 182

B Algorithms to Chapter 5 185

C Algorithm RVineClusterSelect 189

xi

Chapter 1

Introduction

In recent years and decades, the amount of data which is available worldwide for analysis

increased exponentially, see e. g. the work of Han et al. (2011). The purpose of the

analysis is not self-evident, but to improve the understanding of phenomena in many

domains of science and applications. Furthermore, it should also enable us to predict

future developments. Thus, the complexity imposed by data sets becoming larger must

be offset by either more sharply increasing computational power, or more sophisticated

statistical methods. The goal of this thesis is to add the latter to the body of research,

more precisely, new and fast approaches to find non-Gaussian dependence models in ultra

high dimensions.

We start with an illustrating example in the context of financial risk management. It

should however be noted upfront, that our methods are also applicable to any other area

of research, for example engineering, biology or meteorology.

Let us consider a company which owns d = 100 stocks S1, . . . , S100 which are composed

in an equally weighted portfolio P , and whose value today is

µPt =
100∑

j=1

Sjt .

Let the distribution function of µPt be given by FP . Additionally, assume that modelling

the individual stocks behaviour is easy, for example using methods of Taylor (2008). Now,

our company wants to control the risk associated with this portfolio. Hence, it wants to

have an idea in what range the value of the portfolio will lie tomorrow, i. e. if we can find

upper and lower bounds such that tomorrows portfolio value can be bounded with high

probability. Of course, lower bounds for losses are far more important than upper bounds

for exceeding gains. This is the concept of the Value at Risk (VaR) at level α, defined by

VaR1−α (P) = inf {x|FP (x) ≥ 1− α} . (1.1)

This quantity defines how low tomorrows portfolio value can be at worst with probability

1−α. In most cases and also demanded for example by bank regulation in the European

Union under the Basel Accord (Basel Committee on Banking Supervision, 2006), α = 0.01

over a 10 day time horizon. Having models for the univariate marginal time series, it is

straightforward to calculate their individual VaR. However, the portfolio VaR can not be

1

Chapter 1 Introduction

easily calculated based on the marginal Value at Risk, see McNeil et al. (2015). This is

because the stocks in the portfolio are dependent and influence each other. On the one

hand side, this is beneficial because of the diversification, i. e. a decrease in one stock may

be associated to an increase in another stock and offset a loss. However, it has been ob-

served that in times of market turmoil, diversification is lost as a contagion effect occurs

(Kenourgios et al., 2011). This means, losses of one stock are no longer offset by other

gains but accompanied by other losses. If this is not covered in the portfolio VaR model,

the associated risk is dramatically underestimated and might endanger the financial sta-

bility of the entire company owning the stocks. Hence, a joint modelling approach must

be undertaken to account for such behaviour. In recent times, the multivariate Gaussian

distribution has been the method of choice. However, even though the model is able

to describe multivariate behaviour, it lacks other favourable features. Most importantly,

the Gaussian distribution is not able to model fat tails. This means, highly unlikely but

severe events modelled in the tail of the distribution function can not be described by the

Gaussian distribution as it has no probability mass in the tails. However, this is explicitly

the behaviour which is most challenging in terms of stock markets moves and also of

interest in other domains of science, where extremal events are most harmful, for exam-

ple, weather applications, see Yu et al. (2017). Furthermore, it also assumes symmetric

dependence, which might not be justified empirically all the time. Most prominently, the

financial crisis starting in 2007 was also directly linked to the use of Gaussian methods,

see Salmon (2012). From that point, it is clear that more flexible models are demanded,

especially in this domain.

A first method to overcome the strict assumptions using multivariate distributions is

achieved by using copulas, see e. g. Joe (2014) or Nelsen (2006). This very appealing

framework allows to separate univariate marginal distributions from the joint distribu-

tion, and thus, the dependence behaviour, according to the famous Theorem of Sklar

(1959). Thus, modelling a d-dimensional distribution decomposes into modeling of the d

marginal distributions and a d-dimensional copula. Considering the latter, there exists a

vast number of parametric copula functions in d = 2 dimensions, i. e. in the bivariate case,

see Joe (2014, Chapter 3), Furthermore, also non-parametric estimation of copulas is fea-

sible (Chen and Huang, 2007). Going to higher dimensions however, copula functions are

becoming more complex to describe in the parametric case. Furthermore, non-parametric

estimation suffers from the curse of dimensionality, i. e. data becoming sparse in higher

dimensions and slowing down the estimators. Based on earlier work by Joe (1996) and

Bedford and Cooke (2001, 2002), the pair copula construction (PCC) of Aas et al. (2009),

develops a d-dimensional copula using only bivariate copulas as building-blocks. In a nut-

shell, d (d− 1) /2 pair copulas are combined to obtain a joint distribution in d dimensions.

This transforms the problem of estimating a d-dimensional copula into d (d− 1) /2 pair

copulas. However, the pair copula construction is not unique but relies on a graphical

tool, the regular vine (R-vine). Starting with a tree on d nodes, d− 2 trees follow subse-

quently chosen according to a specific rule set called the proximity condition, determining

the structure how the d (d− 1) /2 pair copulas are composed. As shown by Kurowicka

2

and Joe (2011, Chapter 9), in d dimensions there exist

d!

2
× 2(d−2

2),

R-vine structures and we are challenged by a complex combinatorial model selection prob-

lem. This super exponentially growing number makes it infeasible to evaluate all models,

even in small dimensions. For intermediate dimensions, the algorithm of Dißmann et al.

(2013) has proven quite successfully using a greedy search strategy. Yet, this strategy

can not be proven to be optimal and might lead to sub-optimal models, given that its

applicable at all. As we will see later on, it will fail to work in several hundred dimen-

sions. Of course the question arises whether this is an important problem. We argue

by reconsidering our previous example of a company safeguarding its portfolio. To carry

on the argument, it is also quite realistic for such a company to not only own 100 but

dS = 1000 stocks and also dB bonds, i. e. fixed income financial instruments, which are

also interlinked to the stock markets. Furthermore, assume it also holds dFX foreign ex-

change financial instruments which should be considered as well, as the change in value of

a currency pair always affects the corresponding stock markets of the countries. Finally,

assume our portfolio also contains dC commodities as for example precious metals or agri-

cultural products. Their price moves could also affect the stocks our company is holding

because the companies associated to these stocks either produce or use the corresponding

commodities. Thus, the total dimension of such a portfolio risk model would scale to

d = dS + dB + dFX + dC � 1000.

For such a purpose, a very high dimensional dependence model is needed. However, this

model should also reflect some parsimony. For example there might be strong dependence

of stocks in some industry sectors with some of the associated commodities these indus-

tries produce or use. Additionally, companies having business activities in specific regions

can also be more exposed to specific foreign exchange pairs related to these regions, i. e.

having regional effects. It is realistic to assume that having modelled these intra-sectoral

dependencies, the remaining dependencies are quite negligible and can be omitted to ob-

tain parsimonious models in the end. The same considerations also apply to several other

financial applications described by Aas (2016), which one can easily imagine to extend to

several hundreds or thousands of dimensions.

All these considerations, measuring and modelling dependence, posed in the context of

financial services can also be extended to either thousands of weather measurements (Yu

et al., 2017), water discharge stations (Pereira et al., 2017) or metabolites measured in the

human system (Krumsiek et al., 2011). We see not only that there is a huge number of

problems demanding for flexible dependence models, but they are also high dimensional,

if not ultra high dimensional, i. e. with d > 1000. This thesis aims to contribute to the

research in this domain.

The first contribution of this thesis is as following. First, we introduce copulas, vine

copulas and models based on the multivariate Gaussian distribution, either in terms of

3

Chapter 1 Introduction

graphical models or so called structural equation models (SEM). These models serve as a

bridge which allows us to relate the tree structure of an R-vine to a specific multivariate

Gaussian distribution. Since the structural inference for the latter can be solved much

faster, we then use our theoretical results relating both models classes, to use the Gaus-

sian models as proxy for the tree structure in the R-vine. All of the mentioned Gaussian

models induce some kind of model parsimony or sparsity, which is related to (conditional)

independence in these models. Fortunately, this is the same kind of model parsimony

which can be expressed in a vine copula, since (conditional) independence assumptions

make our vine model more parsimonious. As we can regulate the sparsity in the Gaussian

proxy models, we also have a natural tool to handle sparsity in the vine copula models.

We want to stress that we believe that Gaussian modelling approaches are not sufficient

for a variety of real world phenomena. However, because of their unmatched simplicity,

allowing to describe high dimensional models in closed form expressions and the accom-

panying computational tractability, we consider them as very useful intermediate step

from the data to more complex dependence models. Furthermore, we want to exploit the

manifold of research results which have been obtained with respect to Gaussian models

in recent decades. The second main contribution is based on the practical usability of the

presented approaches. Since the ultimate goal of our work is not only to find methods to

develop high dimensional dependence models, but also make them usable in the scientific

community for practical applications, all our algorithms are implemented in the statistical

software R (R Core Team, 2017) using some C++ code for more computationally demand-

ing tasks. Thus, the thesis is also containing a large chapter which contains numerical

results, showcasing that our approaches do not only work well in practical applications.

Even more, they are also to the authors knowledge the only feasible approaches to esti-

mate high dimensional vine copulas with a high degree of model parsimony. Thus, we

extend the usability of vine copula models from about d = 50 to d > 2000, paving the

way for widespread application of very promising dependence models in many possible

areas of research.

Outline of the Thesis

In Chapter 2, we will first of all give a brief introduction into dependence modelling with

vine copulas. To this end, we will first consider copulas in general. We will present the

Theorem of Sklar (1959) and introduce properties of copulas and some of the most promi-

nent pair copula families, the so called elliptical and Archimedean copulas. We will briefly

discuss parameter estimation and then continue to measures of bivariate dependence such

as the Pearson correlation or Kendall’s τ . We then move on and introduce vine cop-

ulas. We show how the pair copula construction (PCC) works in an explicit example

in six dimensions and discuss how the corresponding models can be stored and treated

algorithmically. We will next discuss how to compare different vine copula models and

then recapitulate the benchmark model selection strategies which have been in place for

several years now, but also shed light on new developments. We discuss their properties

especially with respect to high dimensional problems. Finally, we also consider the topic

4

of model simplification for vine copulas and how parsimonious models can be obtained.

Chapter 3 introduces the methods we are going to use subsequently to first find structures

for high dimensional copula models and second, to impose sparsity in these. Starting

in Section 3.1, we will describe time series models since it is vital to understand the

marginal behaviour of the considered financial data sets before continuing to the multi-

variate modelling. We introduce properties of conditional independence since this will be

the mathematical equivalent of sparsity in terms of this thesis. We also shed light on

the multivariate Gaussian distribution and its properties we are going to exploit later.

Section 3.2 introduces the well-known Lasso invented by Tibshirani (1994), solving linear

regression equations in a parsimonious way by introducing a penalization parameter for

too complex models. It is basically a univariate method, but can also be applied to a

set of equations, jointly defining a multivariate distribution. Section 3.3 then introduces

graphical models, both on undirected and directed graphs. We provide the necessary graph

theory allowing us to describe these objects and their properties. Also, we discuss how

estimation of these models works given some underlying Gaussian distribution. The chap-

ter is finished by introducing structural equation models (SEMs). These are sets of linear

equations, describing a joint multivariate distribution, and will come into play together

with the Lasso later on.

The first approach is introduced in Chapter 4, where we connect graphical models on

directed acyclic graphs (DAGs) to R-vines. We motivate our approach by considering

how first of all an R-vine can be represented by a DAG. This then leads to inverting the

consideration and defining a R-vine representation of a DAG which is our mathematical

formalization of the proxy we referred to previously. Starting with a particular special

case of a so called 1-DAG, we will present sufficient conditions under which a general k-

DAG can be represented by a k-truncated R-vine, which is a specific parsimonious R-vine.

We will prove a main representation theorem and illustrate the representation thoroughly.

Next, we will derive explicit special cases of k-DAGs for which general representations

exist and introduce also a necessary condition for our results. We are then considering

a general algorithmic implementation, allowing us to represent arbitrary k-DAGs by R-

vines. We illustrate our algorithm and finish the chapter using a real world data example

in d = 52 dimensions. We denote this method the DAG approach.

In Chapter 5, we use a connection between R-vines and the previously introduced struc-

tural equation models (SEMs). Using the Lasso, these structural equations can be solved

parsimoniously to resemble an R-vine structure. We will first show the theoretical connec-

tion and illustrate how sparsity in these equations refers to sparsity in the R-vine. Then,

we present approaches to determine both the so called order of the equations as well as

the non-zero regression coefficients. Both these can be linked to the structure of R-vines

captured in so called R-vine matrices. By transferring concepts of the Lasso to R-vines,

we propose a method to obtain various parsimonious models based on a single R-vine

structure, called the R-vine regularization path. We close with an example in d = 222

dimensions. We refer to this method as the Lasso approach, based either on a single or

adaptive thresholding.

Finally, these methods are already much faster than the benchmark and allow more parsi-

5

Chapter 1 Introduction

mony and flexibility. Yet they are similar in how they work to the benchmark algorithm of

Dißmann et al. (2013), and hence also suffer from quickly increasing dimensions. The third

approach, referred to as cluster method and described in Chapter 6 rethinks the problem

entirely. Instead of solving a difficult d dimensional problem, we consider a set of problems

in dT � d dimensions, where T indicates a threshold dimension. Because of the quadratic

nature of the numbers of required parameters, solving these smaller problems and then

recombining at a latter stage is much more computationally favourable. Of course, this

demands a sound method for clustering the original problems into feasible sub-problems.

This is again attained using graphical models. Moreover, these methods not only allow to

cluster the original problem, but also estimate the sub-R-vines with increased accuracy

compared to the standard benchmark algorithm developed by Dißmann et al. (2013), by

exploiting conditional independence, inherent in the graphical model. This approach then

elevates R-vines into a completely novel range of ultra high dimensional data sets with

more than d > 2000 variables, which is demonstrated by a corresponding example in this

section.

After the theoretical part, we evaluate our methods in practical applications in Chapter

7. First, we use simulated financial data in d = 85 dimensions of differently sparse sce-

narios to make assertions about the quality of our approaches in domains where also the

benchmark is generally working well. We see comparable results, however already more

in our favour with respect to looking for sparsity by considering penalized goodness of fit

measures. Next, we carry out a runtime comparison, where we show that the benchmark

algorithm is quite limited in terms of models that can be selected because of complexity.

Furthermore, we demonstrate that our methods are numerically tractable even when we

consider thousands of dimensions, without sacrificing model accuracy, i. e. goodness of fit.

Finally, we return to the initially described example of safeguarding portfolio risk, i. e.

calculating Value at Risk (1.1) of a portfolio of 400 stocks and use real world data to

compare our proposed approaches to the benchmark and towards each other. We want to

stress again that even though the models are fitted on financial data, this is neither the

sole purpose nor the only possible application, but happens because of data availability

and easy interpretability of the models compared to other domains of science.

In Chapter 8, we summarize our contribution and recapitulate the advantages and caveats

of our proposed methods. We describe the current state of the research and give outlooks

for further research, to enable applicability of even higher dimensional and versatile mod-

els.

For a better overview, Figure 1.1 positions the content of the thesis in the current body

of research and shows connections between the corresponding chapters and references.

Hereby, directed acyclic graphs (DAGs) are the main tool we use in Chapter 4, structural

equation models (SEMs) are used in Chapter 5 and Gaussian graphical models (GGMs)

in Chapter 6.

6

R-Vine

SEM GGM

DAG

Ch
ap
ter

5

Br
ech

ma
nn
, J
oe

(20
16)

H
aff

et
al

(2
01
6)

Chapter 6

Mora
l G

rap
h (3.

3.4
)

C
h
ap

ter
4

Peters, Bühlmann (2014)

Figure 1.1: Connections between the current body of research and the results of the thesis.

The work in this thesis contains, summarizes and extends results described in previously

published manuscripts.

• Chapter 4 is derived in part from an article published in the Journal of Computa-

tional and Graphical Statistics on 04.08.2017, available online using the link http://

amstat.tandfonline.com/doi/full/10.1080/10618600.2017.1366911, and ref-

erenced as Müller and Czado (2017b).

• Chapter 5 is based on an article submitted for publication in Statistics & Computing

and publicly available online using the link https://arxiv.org/abs/1705.05877,

and referenced as Müller and Czado (2017c).

• Chapter 6 is based on an article submitted for publication the Journal of Machine

Learning Research and publicly available online using the link https://arxiv.org/

abs/1709.05119, and referenced as Müller and Czado (2017a).

7

http://amstat.tandfonline.com/doi/full/10.1080/10618600.2017.1366911
http://amstat.tandfonline.com/doi/full/10.1080/10618600.2017.1366911
https://arxiv.org/abs/1705.05877
https://arxiv.org/abs/1709.05119
https://arxiv.org/abs/1709.05119

Chapter 2

Dependence Modelling with Vine

Copulas

We will now introduce the methods we are using to model multivariate data. First, we are

going to introduce copulas in Section 2.1 which allow us to flexibly model random vectors

by separating marginal behaviour from dependence. We discuss different so called copula

families and their properties and estimation in the bivariate case. Second, we will scale

the use of copulas to arbitrary dimensions introducing vine copulas in Section 2.2. After

their introduction, we discuss several methods to compare different vine copula models

and describe previous model selection approaches, as for example the current benchmark

of Dißmann et al. (2013). This section is based on Müller and Czado (2017a).

2.1 Copulas

We will use the following conventions in the remainder of this thesis. Upper case letters X

denote random variables, and lower case letters x their realizations. We use bold letters

X for random vectors and x for the vector of realizations. Matrices M are identified by

upper case letters, but are clearly distinguished from random variables in the text. We

write xi for the i-th entry of the vector x. Denote sub vectors of x = (x1, . . . , xd)
T by

xD := (xj)j∈D. When considering matrices, we denote mi,j the j-th entry in the i-th row

of the matrix M = (mi,j)i=1,...,n,j=1,...,d ∈ Rn×d. For rows or columns of a d× d matrix M ,

we write M,j = (m1,j, . . . ,md,j) for the j-th column and Mi, = (mi,1, . . . ,mi,d) for the i-th

row of M , respectively.

2.1.1 Sklar’s Theorem

For a random vector X = (X1, . . . , Xd) we denote the joint distribution function and

density by F (x1, . . . , xd) and f (x1, . . . , xd) = ∂F
∂x1,...,∂xd

(x1, . . . , xd), respectively. Addi-

tionally, denote the corresponding marginal distribution functions by F1 (x1) , . . . , Fd (xd)

with marginal density functions f1 (x1) , . . . , fd (xd), for i = 1, . . . , d. The marginal distri-

butions can be modelled by a wide array of parametric probability distributions or also

estimated non-parametrically. This is however not necessarily easy for the joint distri-

bution in d dimensions. For example, multivariate extensions of the univariate Gaussian

9

Chapter 2 Dependence Modelling with Vine Copulas

distribution or the Student’s-t distribution can be used in arbitrary dimensions. However,

these also imply that each marginal distribution has a univariate Gaussian or Student’s-t

distribution, respectively. Since this is a very strong assumption, especially in high di-

mensions, more flexible models are needed, overcoming these restrictions. A promising

way is to use copulas. We define a copula C : [0, 1]d → [0, 1] as a multivariate distribu-

tion function with uniform marginal distributions. Since copulas are defined on the unit

interval, we introduce now three data scales which are important in the remainder of this

thesis.

• The x-scale, given as the original scale of Xi with density fi(xi), i = 1, . . . , d.

• The u-scale or copula-scale, given by Ui = Fi (Xi), where Fi is the cumulative

distribution function (cdf) of Xi and Ui ∼ U [0, 1], i = 1, . . . , d where U [0, 1] denotes

a standard uniform distribution on [0, 1].

• the z-scale or marginally normalized scale, given by Zi = Φ−1 (Ui), where Φ is

the cumulative distribution function of a standard Gaussian (normal) distribution

denoted by N (0, 1), thus Zi ∼ N (0, 1), i = 1, . . . , d.

The z-scale will also occur when considering models assuming that the data arises from

a multivariate Gaussian distribution.

The connection between the multivariate distribution F we want to model and the cop-

ula is now the famous Theorem of Sklar (1959). It separates the marginal distribution

functions from the joint distribution function. More precisely, for each multivariate dis-

tribution function F with univariate marginals Fi, i = 1, . . . , d, there exists a copula C

such that

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) . (2.1)

If all marginal distributions Fi, i = 1, . . . , d are continuous, C is unique. The corre-

sponding density f with respect to the copula is obtained by taking derivatives in (2.1)

to obtain

f (x1, . . . , xd) = c (F1 (x1) , . . . , Fd (xd))
d∏

i=1

fi (xi) , (2.2)

with c (u1, . . . , ud) = ∂C
∂u1···∂ud (u1, . . . , ud) the copula density and (u1, . . . , ud) ∈ [0, 1]d. The

important fact is now, that given multivariate data, we can model the univariate, i. e. id-

iosyncratic behaviour and the dependence part completely isolated from each other. This

is clearly a benefit over, e. g. the multivariate Gaussian distributions, which require also

Gaussian marginals.

A very favourable feature of copulas is their ability to model extremal behaviour, or in

other words tail dependence, which describes dependence in the tails of the correspond-

ing bivariate distribution. More formally, let (X1, X2) random variables with marginal

distributions F1, F2 and copula C, i. e.

F (x1, x2) = C (F1 (x1) , F2 (x2)) .

10

2.1 Copulas

We define the upper tail dependence between X1 and X2 by

λupper := lim
u↗1

P
(
X2 > F−1

2 (u) | X1 > F−1
1 (u)

)
= lim

u↗1

C (u, u)

u
,

and the lower tail dependence by

λlower := lim
u↘0

P
(
X2 ≤ F−1

2 (u) | X1 ≤ F−1
1 (u)

)
= lim

u↘0

1− 2u+ C (u, u)

1− u ,

given the existence of the limits in the unit interval, i. e. being a probability. Tail de-

pendence greater than zero then describes that X2 tends to an extremal value once X1

does. Of course, tail dependence equals to zero means no tail dependence. Clearly, tail

dependence is a property of the copula C. We will now present some of the most often

used parametric copula models, i. e. parametric forms for the copula function C.

2.1.2 Copula Families

Since a copula is a function C : [0, 1]d 7→ [0, 1], describing it explicitly can become complex

in the general case. Thus, we will only introduce the two most prominent, the Gaussian

and Student’s-t copula in arbitrary dimensions and then continue with the bivariate case

of d = 2 which will be required in the remainder of the thesis. First note, that from

inversion of (2.1) we have

C (u1, . . . , ud) = F
(
F−1

1 (u1) , . . . , F−1
d (ud)

)
,

for u1, . . . , ud ∈ [0, 1]d. Thus, for any choice of a joint distribution function F and uni-

variate marginal distributions Fi, i = 1, . . . , d, a copula is specified. Two representatives

of the elliptical distributions, the Gaussian and Student’s-t distribution give rise to the

Gaussian and Student’s-t copula. For the Gaussian distribution in d dimensions we obtain

CGauss
Σ (u1, . . . , ud) = ΦΣ

(
Φ−1 (u1) , . . . ,Φ−1 (ud)

)
,

where Φ denotes the cdf of N (0, 1) and ΦΣ denotes the distribution function of a d-

dimensional multivariate Gaussian distribution with zero mean, unit variances and corre-

lation matrix Σ. We examine the density in two dimensions more precisely.

Example 2.1 (Gaussian copula density in two dimensions). Let d = 2 and assume the

correlation matrix

Σ =

(
1 ρ

ρ 1

)
with ρ ∈ [−1, 1] .

Then, the Gaussian copula density in two dimensions is given by

c (u1, u2) =
1√

1− ρ2
exp

(
−ρ

2 (u2
1 + u2

2)− 2ρu1u2

2 (1− ρ2)

)
.

11

Chapter 2 Dependence Modelling with Vine Copulas

The same procedure can be applied to the Student’s-t distribution to obtain

CStudent′s−t
Σ,ν (u1, . . . , ud) = tΣ,ν

(
t−1
ν (u1) , . . . , t−1

ν (ud)
)
,

where Σ is a positive semi-definite d × d matrix and ν > 0. Additionally, let tν denote

the cdf of a random variable following a Student’s-t distribution with ν degrees of free-

dom and tΣ,ν be the distribution function of a d-dimensional random variable following

a multivariate Student’s-t distribution with correlation matrix Σ and degrees of freedom

ν. Contrary to the Gaussian copula, the Student’s-t copula can feature upper and lower

tail dependence. This makes it suitable for financial applications, where tail dependence

is often monitored in times of market turmoil.

Another class of copulas is described by the Archimedean copulas, see Nelsen (2006, Chap-

ter 4). Let φ : [0, 1] → [0,∞] a continuous, strictly monotonic decreasing and convex

function. Additionally, let φ (1) = 0 and define φ−1 as the generalized inverse of φ by

φ−1 (y) =

{
φ−1 (y) , 0 ≤ y ≤ φ (0) ,

0, φ (0) < y ≤ ∞.

With this generator φ, we can define a bivariate copula by

Cφ (u1, u2) = φ−1 (φ (u1) + φ (u2)) .

Note that we omit higher dimensional Archimedean copulas here since they will not be

used in the remainder of the thesis. Depending on the generator function φ, we obtain

different well known copula families. These are for example the Clayton, Gumbel, Frank

or Joe copula family, see Joe (2014, Chapter 3). We summarize these families briefly.

• The Clayton copula with lower tail dependence has the generator φ (t) = 1
θ

(
1
tθ
− 1
)

and

C (u1, u2) =
(
u−θ1 + u−θ2 − 1

) 1
θ for θ ≥ 1.

• The Gumbel copula with upper tail dependence has the generator φ (t) = (− log t)θ

and

C (u1, u2) = exp

(
−
(

(− log u1)θ + (− log u2)θ
) 1
θ

)
for θ > 0.

• The Frank copula with no tail dependence has the generator φ (t) = − log

(
exp(−θt)−1
exp(−θ)−1

)

and

C (u1, u2) = −1

θ
log

(
1 +

(exp (−θu1)− 1) (exp (−θu2)− 1)

exp (−θ)− 1

)
for θ ∈ R \ {0} .

• The Joe copula with upper tail dependence has the generator

12

2.1 Copulas

φ (t) = − log
(
1− (1− t)θ

)
and

C (u1, u2) = 1−
(

(1− u1)θ + (1− u2)θ − (1− u1)θ (1− u2)θ
) 1

θ

for θ > 1.

For a detailed discussion, see the books of Joe (2014, Chapter 4) or Nelsen (2006, Chapter

3). All of these families can also be rotated by 90◦, 180◦ and 270◦ by considering

• c90 (u1, u2) = c (1− u2, u1),

• c180 (u1, u2) = c (1− u1, 1− u2),

• c2700 (u1, u2) = c (u2, 1− u1).

For example, a 180◦ rotation of a copula with lower tail dependence yields a copula

with upper tail dependence and vice versa. Additionally, there also exist two parametric

copula families, the BB-copula families, see Joe (1997, Chapter 5), which will not be

covered here. It suffices to acknowledge that there exists a large number of parametric

pair copula families, including rotations, which can describe different features of bivariate

data, e. g. tail dependence or asymmetric dependence.

All these pair copula families have in common that the strength of the dependence they

describe is governed not only by their functional form, but also by a copula parameter θ.

Consider for example the Gaussian copula again.

Example 2.2 (Example 2.1 cont.). Consider the bivariate Gaussian copula generated by

a two-dimensional Gaussian distribution with correlation matrix

Σ =

(
1 ρ

ρ 1

)
with ρ ∈ [−1, 1] .

For ρ = 1, we have perfect positive dependence and for ρ = −1 we have perfect negative

dependence. Note also that ρ = 0 describes independence.

Similarly for the Archimedean copulas, the parameter θ determines the corresponding

strength of dependence. Estimation of this parameter is an additional aspect which we

consider in Section 2.1.4. Finally, if we want to model no dependence or independence,

we use the independence copula given by

C⊥ (u1, . . . , ud) =
d∏

i=1

ui with copula density c⊥ (u1, . . . , ud) = 1.

In addition to the parametric pair copula families, also non-parametric estimation of cop-

ulas is possible, see for example Nagler (2014). Hence, pair copulas are very flexible tools

for modelling bivariate dependence.

However, a multivariate extension of these dependence models is not straightforward.

While the elliptical copulas follow very strict parametric assumptions, Archimedean cop-

ulas are not as flexible as their behaviour in d dimensions is governed only by a single

13

Chapter 2 Dependence Modelling with Vine Copulas

parameter. This limits the applicability in practical considerations by not accounting for

more complex dependence patterns. Furthermore, also non-parametric estimation fails in

higher dimensions because of the curse of dimensionality (Bellman, 2015). This means

roughly, that multivariate data becomes sparse in high dimensions, which leads to very

slow convergence rates for non-parametric estimators, see also Nagler (2014). Hence, we

will only work with bivariate copula families in the remainder of the thesis.

2.1.3 Dependence Measures

An important topic and the main reason to perform dependence modelling, is describing

and modelling association between two or more random variables. First, we need to

quantify the strength of dependence by scalar dependence measures. The most well known

of these is the Pearson product-moment correlation, which is defined as follows. Consider

two random variables X, Y and define

ρX,Y := ρ (X, Y) =
Cov (X, Y)√

Var (X)
√

Var (Y)
,

with

Cov (X, Y) = E (XY − E (X)E (Y)) and Var (X) = Cov (X,X) .

By the Cauchy-Schwarz inequality, we have that ρX,Y ∈ [−1, 1]. In our considerations, we

will also need the dependence of two random variables given other random variables. An

extension of the product moment correlation is the partial correlation of X and Y given a

k-dimensional random vector Z, denoted ρXY ;Z which is the correlation of X and Y after

having removed the effect of Z (Kurowicka and Joe, 2011, p. 47). It is recursively defined

on basis of correlations and lower order partial correlations. More precisely, let Z ∈ Rd−1,

and W ∈ R, then the partial correlation of X and Y given Z can be recursively defined

by

ρX,Y ;Z∪W =
ρX,Y ;Z − ρX,W ;ZρW,Y ;Z√(
1− ρ2

X,W ;Z

) (
1− ρ2

W,Y ;Z

) . (2.3)

A drawback of the Pearson correlation is the fact that it is not invariant with respect to

monotone transformations. Instead, we will most often consider a dependence measure

which satisfies this important property, Kendall’s τ . It is defined as the probability of

concordance minus the probability of discordance of two random variables. For this, let

(X1, Y1) and (X2, Y2) be i.i.d. copies of (X, Y) and define

τX,Y = τ (X, Y) := P ((X1 −X2) (Y1 − Y2) > 0)− P ((X1 −X2) (Y1 − Y2) < 0) .

As for the Pearson correlation, τX,Y ∈ [−1, 1]. If the dependence of the pair (X, Y) is

governed by a copula, Kendall’s τ of (X, Y) can be directly calculated based on the copula

and is independent of the corresponding marginal distributions. More precisely, let (X, Y)

14

2.1 Copulas

be samples from a copula C, then

τX,Y =

∫

[0,1]2
C (u1, u2) dC (u1, u2)− 1. (2.4)

If C belongs to the class of elliptical or Archimedean copulas, C also depends on some

copula parameter θ. Thus, also τX,Y depends on θ in this case. Hence, assuming a specific

copula gives an association between the copula parameter and Kendall’s τ . We examine

this dependence for the Gaussian copula.

Example 2.3 (Example 2.2 cont.). Let (X, Y) ∼ C where C is a Gaussian copula with

correlation ρ ∈ [−1, 1]. Thus, we have for Kendall’s τ

τ (X, Y) =
2

π
arcsin (ρ) , (2.5)

see Joe (2014, p. 58).

We will use relationships like these in the next section when we continue with methods

for the estimation of bivariate copulas based on data.

2.1.4 Estimation of Pair Copulas

Assume that we have a sample of data on the x-scale, {(xi,1, xi,2) , i = 1, . . . , n} which

we want to describe using copulas. Thus, we first have to obtain u-scale data. Using the

corresponding marginal distribution functions F1 and F2, we obtain data

{(ui,1 = F1 (xi,1) , ui,2 = F2 (xi,2)) , i = 1, . . . , n} ,

on the copula scale. In a data-driven set up, the marginal distribution functions F1 and F2

are not necessarily known and hence subject to estimation. If the corresponding marginal

distribution functions are parametrically estimated, we call this the inference for margins

(IFM) approach, see Joe (2005) and if they are non-parametrically estimated, we speak

of a semi-parametric approach (Genest et al., 1995). To estimate a pair copula on the

u-scale data, we can now either fit any of the described parametric pair copula families

using a maximum likelihood estimation (MLE) to infer a parameter estimate θ̂. More

precisely, the estimator which maximizes the log-likelihood is

θ̂ = arg max
θ∈Θ

n∑

i=1

log (c (ui,1, ui,2, θ)) ,

where c is the corresponding copula density, parametrized by some copula parameter θ ∈
Θ, which is a parameter domain, depending on the corresponding pair copula family. This

optimization problem can be solved with standard numerical optimization algorithms.

Another method to estimate the corresponding copula parameter θ is by inversion of the

empirical Kendall’s τ̂ . With (2.4), we have τ = g (θ) for some function g which depends

15

Chapter 2 Dependence Modelling with Vine Copulas

on the concrete choice of parametric copula family. Hence, we can use an empirical

estimator for τ to calculate θ̂ = g−1 (τ̂). For most of the parametric copula families we

introduced, the corresponding functions g are well known. However, the inversion method

is only possible for copula families with one parameter, while the MLE approach works

for arbitrary families. We consider this in the example of the Gaussian copula.

Example 2.4 (Example 2.3 cont.). Let (X, Y) ∼ C where C is a Gaussian copula with

correlation ρ ∈ [−1, 1]. Thus, we have as copula parameter estimate in terms of empirical

Kendall’s τ̂

ρ̂ = sin
(π

2
τ̂
)
. (2.6)

Thus, we can fit bivariate copulas to data and estimate the corresponding parameters

θ̂ for each arbitrary copula density c. Assume we have M candidate families with pair

copula densities cm and corresponding parameter estimates θ̂m, m = 1, . . . ,M . A natural

selection of the best fitting copula is then to choose the model m? such that

m? = arg max
m=1,...,M

n∑

i=1

log
(
cm

(
ui,1, ui,2, θ̂m

))
.

However, this does not take into account that different families can have different number

of parameters. Since ultimately, we want to avoid over-parametrized models, the com-

plexity of a copula model should be taken into account as well as its goodness of fit,

expressed by the log-likelihood. To adjust for this, we consider for example the Akaike

information criterion (AIC) (Akaike, 1973) given by

m?
AIC = arg min

m=1,...,M
−2

(n∑

i=1

log
(
cm

(
ui,1, ui,2, θ̂m

)))
+ 2 log (n) .

In the remainder of the thesis, whenever we optimize over pair copulas for a given pair of

copula data, we choose the pair copula family and parameter which minimizes AIC.

This section contained every aspect of copulas, especially bivariate copulas, which we

need for the remainder of the thesis. Next, we will continue with vine copulas which allow

constructions of a multivariate copula only using (conditional) bivariate copulas. By also

taking into account marginal distributions, we obtain flexibility to model multivariate

distributions.

2.2 Vine Copulas

As we have seen, bivariate copulas are a very flexible model class. However, apart from the

elliptical copulas, these families can not be easily extended to arbitrary dimensions. To

overcome this, Joe (1996) constructed distributions in d dimensions modelled by d(d−1)/2

bivariate distributions. Extending his work, Aas et al. (2009) developed the pair-copula-

construction (PCC), which builds up a d-dimensional distribution using d marginals and

d(d − 1)/2 (conditional) bivariate copulas. These building blocks can be chosen entirely

16

2.2 Vine Copulas

independent from each other and thus provide a very flexible modelling approach. For

example, pair copulas with heavy tails or asymmetric dependence can be used. Yet, the

construction of a d-dimensional distribution with d(d − 1)/2 (conditional) pairs is not

unique. More precisely, there exists an exponentially growing number of valid construc-

tions, see Kurowicka and Joe (2011, p. 190). With the work of Bedford and Cooke (2001,

2002), introducing regular vines, a framework was developed which allowed to organize

the possible constructions by vine trees. In total, d−1 of these trees are required to define

a d-dimensional distribution and are given by V = (T1, . . . , Td−1) such that

(i) T1 is a tree with nodes V1 = {1, . . . , d} and edges E1,

(ii) for i ≥ 2, Ti is a tree with nodes Vi = Ei−1 and edges Ei,

(iii) if two nodes in Ti+1 are joined by an edge, the corresponding edges in Ti must share

a common node (proximity condition).

By (ii), edges become nodes and are connected with new edges recursively. For a node,

e. g. {1, 2} ∈ V2, we define the two nodes {1} , {2} ∈ V1 of which the node in V2

is combined, as m-children. For some node in Tk, define the m-family as the union

of all its m-children and their m-children in trees T1, . . . , Tk−1. Each edge in one of

the R-vine trees consists of a bivariate conditioned set and a conditioning set, rang-

ing from the empty set to a set containing d − 2 variables. To specify how an edge

represents a specific (conditional) pair, let the complete union of an edge e be Ae :=

{j ∈ V1|∃ e1 ∈ E1, . . . , ei−1 ∈ Ei−1 : j ∈ e1 ∈ . . . ∈ ei−1 ∈ e}. The conditioning set of an

edge e = {a, b} is then given by De := Aa ∩ Ab. The conditioned set is given by Ce :=

Ce,a∪Ce,b with Ce,a := Aa \De and Ce,b := Ab \De. For all edges e ∈ Ei, 1 ≤ i ≤ d−1, we

define the set of bivariate copula densities by B (V) =
{
cj(e),`(e);D(e)|e ∈ Ei, 1 ≤ i ≤ d− 1

}

with the conditioned set j (e) , ` (e) and the conditioning set D (e). Hence, with the PCC,

Equation (2.2) can be written as

f (x1, . . . , xd) =

(
d∏

i=1

fi (xi)

)
×

(
d−1∏

i=1

∏

e∈Ei
cj(e),`(e);D(e)

(
Fj|D

(
xj(e)|xD(e)

)
, F`|D

(
x`(e)|xD(e)

))
)
.

(2.7)

In (2.7), we implicitly took into account the simplifying assumption. It imposes that a

two-dimensional conditional copula density, e. g.

c13;2

(
F1|2 (x1|x2) , F3|2 (x3|x2) ;x2

)

is independent of the conditioning value X2 = x2. A detailed discussion can be found in

Stöber et al. (2013). We define the parameters of the bivariate copula densities B (V) by

Θ (B (V)). This determines the R-vine copula W = (V ,B (V) ,Θ (B (V))). An intuitive

representation of vine copulas is given by lower triangular d×dmatrices, see Dißmann et al.

(2013). Such an R-vine matrix M = (mi,j)i=1,...,d;j=1,...,d has to satisfy three properties.

17

Chapter 2 Dependence Modelling with Vine Copulas

(i) {md,i, . . . ,mi,i} ⊂ {md,j, . . . ,mj,j} for 1 ≥ i ≥ j ≥ d.

(ii) mi,i /∈ {mi+1,i+1, . . . ,md,i+1} for 1 ≥ i ≥ d− 1.

(iii) For all j = d− 2, . . . , 1, i = j+ 1, . . . , d, there exist (k, `) with k < j and ` < k such

that
{mi,j, {md,j, . . . ,mi+1,j}} = {mk,k, {m1,k, . . . ,m`,k}} or

{mi,j, {md,j, . . . ,mi+1,j}} = {m`,k, {m1,k, . . . ,m`−1,k,mk,k}} .
(2.8)

The last property reflects the proximity condition. We now give an example R-vine.

Example 2.5 (R-vine in six dimensions). The R-vine tree sequence in Figure 2.1 is de-

scribed by the R-vine matrix M as follows. Edges in T1 are pairs of the main diagonal and

the lowest row, e. g. (2,1), (6,2), (3,6). T2 is given by the main diagonal and the second

last row conditioned on the last row, e. g. 6,1|2; 3,2|6. Higher order trees are characterized

similarly. M-children of e. g. 6,1|2 are (2,1) and (6,2) and its m-family comprises addi-

tionally 1, 2, 6. For a column p in M , only entries of the main-diagonal right of p, i. e.

values in (mp+1,p+1, . . . ,md,d) are allowed and no entry occurs more than once in a column.

M =

4

1 5

3 1 3

6 3 1 6

2 6 2 1 2

5 2 6 2 1 1

1 2

5

6

4

3
2,1

5,
2

6,2 3,6

4,5

21 62

52 45

36
6,1|2 3,2|6

4,2|5

5,
6|2

3,2|6

4,2|6

1,6|2

5,6|2

5,3
|26

3,1|26

4,6|25 3,1|26

5,3|26

4,6|25

5,
1|2

36

4,3|256

5,1|236

4,3|256

4,1|2356

Figure 2.1: Example 2.5: R-vine trees T1, T2 (top), T3, T4, T5 (bottom), left to right.

We abbreviate cj,`;D := cj,`;D
(
Fj|D (xj|xD) , F`|D (x`|xD)

)
for the conditioning vector

xD. Additionally, let x = (x1, . . . , x6) and fi := fi(xi). The density in (2.7) becomes

f (x) =f1 × f2 × f3 × f4 × f5 × f6 × c2,1 × c6,2 × c3,6 × c5,2 × c4,5 × c6,1;2 × c3,2;6

× c5,6;2 × c4,2;5 × c3,1;26 × c5,3;26 × c4,6;25 × c5,1;236 × c4,3;256 × c4,1;2356.

18

2.2 Vine Copulas

The pair copula families and parameters are also described by lower triangular family

and parameter matrices Γ = (γi,j)i=1,...,d;j=1,...,d and P = (pi,j)i=1,...,d;j=1,...,d. Thus, the

family and parameters of the edge 6, 1|2 are given by γ5,4 and p5,4, respectively. When

two-parametric pair copulas are considered, we use an additional parameter matrix P2.

This concludes our description of R-vine models. We continue on how to assess the

goodness of fit of several different R-vine models given data.

2.2.1 Model Assessment

We consider an R-vine model in d dimensions with specificationW = (V ,B (V) ,Θ (B (V))).

Additionally, assume we have n replications of d-dimensional data X = (x1, . . . ,xn)T ∈
Rn×d with xk ∈ Rd for k = 1, . . . , n. Including the marginal distributions fi (xi) , i =

1, . . . , d, the log-likelihood for the model W on the x-scale is

L (W , X) =
n∑

k=1

(
d∑

i=1

log
(
fi (xk,i)

)
+

d−1∑

i=1

∑

e∈Ei
log

(
cj(e),`(e);D(e)

(
Fj|D

(
xk,j(e)|xk,D(e)

)
, F`|D

(
xk,`(e)|xk,D(e)

)))
)
.

The log-likelihood will always increase whenever more parameters are included in a model.

Thus, in high dimensional setups where the number of significant parameters grows slower

than the total number of possible parameters, it is not feasible to use log-likelihood for

model discrimination. Because of this, penalized goodness of fit measures as the (AIC) and

the Bayesian information criterion (BIC) (Schwarz, 1978) were developed. For n ≥ 8,

BIC will penalize more than AIC. If the number of possible parameters in an R-vine

q (d) = 2×d (d− 1) /2 is greater or equal than the sample size and the model is relatively

small, the penalization of BIC will be too weak. For these setups, we use the modified

BIC (mBIC) of Frommlet et al. (2011) or the generalized information criterion (GIC),

see Fan and Tang (2013). More precisely, we have

AIC (W , X) = −2L (W , X) + 2p

BIC (W , X) = −2L (W , X) + log (n) p,

mBIC (W , X) = −2L (W , X) + p log
(
nq2
)
− 2 log (p!)

−
p∑

j=1

log
(
log
(
nq2/j

))

GIC (W , X) = −2L (W , X) + log (log (n)) log (p) p,

(2.9)

where p equals the number of parameters in the model Θ. Finally note that the number

of parameters corresponds to the the number of one parametric copulas and two times

the number of two parametric copulas in the model.

19

Chapter 2 Dependence Modelling with Vine Copulas

2.2.2 Model Selection

Since the space of all R-vine structures is too large to explore explicitly each model,

the standard estimation method relies on using a search heuristic such as the Dißmann

algorithm (Dißmann et al., 2013). Initially, for each pair (j, `) ∈
(
d
2

)
, Kendall’s τ of

the pair (Uj, U`) is calculated. The intuition is that variable pairs with high depen-

dence should contribute significantly to the model fit and should be included in the first

trees. Since T1 must be a tree, the d − 1 edges with highest sum of absolute value of

Kendall’s τ are chosen based on a maximum spanning tree algorithm, e. g. the one de-

veloped by Prim (1957). Afterwards, on the selected edges either maximum likelihood

estimation for all desired pair copula types is performed or the corresponding copula

parameters are estimated by inversion of the empirical Kendall’s τ . From these estima-

tors, pseudo-observations are generated. More precisely, assume we want to estimate the

pair copula density cj(e),`(e);D(e). Then, we use the pseudo-observations generated from

F̂j|D
(
xj(e)|xD(e)

)
and F̂`|D

(
x`(e)|xD(e)

)
to estimate pair copula families and parameters

on this pair. The corresponding F̂j|D and F̂`|D are explicitly given by derivatives of the

pair copula distribution functions in lower trees evaluated at the estimated parameters.

After taking into account the proximity condition, Kendall’s τ is calculated on all ad-

missible pairs of pseudo-observations and again, a maximum spanning tree is determined.

After d−1 iterations, the R-vine structure is determined. This proceeding has some draw-

backs. First, it is not ensured that for each tree the maximum spanning tree in terms of

Kendall’s τ leads to a structure with e. g. optimal log-likelihood or any other penalized

goodness of fit measure as in (2.9). Second, as lower order trees influence higher order

trees, sub-optimal choices lead to error-propagation. Finally, in each step a tree is fitted

over all remaining (conditional) pairs, and clusters with strong within dependence are not

treated any different from structures with less dependence. Overall the effort is of order

d2 since d (d− 1) /2 pair copulas are estimated.

As mentioned, using Kendall’s τ as edge weights is only heuristically backed by the goal to

model the strongest dependency first. However, this approach is not ensured to optimize

e. g. log-likelihood or AIC in a given tree and thus, also not in the entire R-vine. We can

instead also estimate pair copula densities cj,` for each edge (j, `) on all d(d− 1)/2 edges

in the first tree and then calculate a maximum spanning tree with respect to an edge

weight µj,`, e. g. log-likelihood or any other penalized goodness of fit measure as in (2.9),

based on the actual fit. Thus, this choice would optimize the corresponding goodness of

fit measure in a given tree. For higher trees, this can be done similarly. This approach

has first been discussed by Czado et al. (2013). However, it was considered having unac-

ceptable computational complexity and hence, computation time. We will however come

back to it later for an improved version in Chapter 6.

Another promising proposal has been made by Kraus and Czado (2017), explicitly search-

ing for simplified R-vine structures. One can expect that the true structure of the R-vine

can be correctly identified if the data is originating from a simplified R-vine. However, it

works similar to Dißmann’s algorithm and hence, has the same computational complexity.

There have been attempts to relate undirected graphical models to R-vines for structure

20

2.2 Vine Copulas

selection. Hobæk Haff et al. (2016) showed that a k-truncated R-vine can be expressed

as chordal graph with maximum clique size k + 1 and vice versa. However, this chordal

graph needs to adhere to some other non-trivial properties. These are in practice not met

when a graphical model is fitted. Thus, finding a sparse undirected graph and translating

it into a sparse R-vine is hard and computationally infeasible. Kovács and Szántai (2016)

propose an algorithm to calculate a k-truncated R-vine from a chordal graph with max-

imum clique size k + 1 and show that taking into account the aforementioned property

only leads to a chordal graph with maximum clique size k+2. The later can then be used

to estimate a k+2 truncated R-vine. However, the problem is only deferred. Where there

exist several methods for finding sparse undirected graphical models in high dimensions,

these will not be chordal in most cases. Finding a so called chordal cover with clique

size at most k + 1 is known to be NP-complete, see Arnborg and Corneil (1987). Hence,

for dimensions d > 1000 where k can not be assumed too small, the problem is also in-

tractable.

Finally, there also exist Bayesian methods for R-vine estimation (Gruber and Czado,

2015b,a). However, these do require even more computational effort and are hence not

feasible in more than d > 20 dimensions.

2.2.3 Model Simplification

All of the proposed approaches may be modified by testing each pair copula for the

independence copula with density c⊥ (u1, u2) = 1. Thus, a type-1 error α ∈ (0, 1) is

specified and each pair-copula is tested for the null hypothesis to be the independence

copula. Only if this hypothesis can be rejected at the level 1 − α, an estimation of pair

copula family and parameter is performed. Similarly, entire R-vine trees can be tested for

only containing the independence copula. However, this also requires that an additional

tree is fitted before it can be tested. Contrary to this, a truncation level k ∈ {1, . . . , d− 2}
can be specified upfront. By doing so, only the first k R-vine trees are estimated and

independence is assumed for all higher trees. If a k-truncation is imposed, (2.7) becomes

f (x1, . . . , xd) =

(
d∏

i=1

fi (xi)

)
×

(
k∏

i=1

∏

e∈Ei
cj(e),`(e);D(e)

(
Fj|D

(
xj(e)|xD(e)

)
, F`|D

(
x`(e)|xD(e)

))
)
.

In Example 2.5, a k-truncated R-vine is given by

cj(e),`(e);D(e) = c⊥ = 1 if |D (e)| ≥ k.

More details are given in the work of Brechmann et al. (2012). Finally, testing for inde-

pendence does not explicitly decrease the computational effort. However, a k-truncation

leads to estimation of only about kd pair copulas. Yet, identifying a sensible truncation

level k prior to estimation is hard and not intuitively clear.

21

Chapter 3

Mathematical Foundations and Sparse

Modelling

We will now introduce the frameworks and concepts that we are going to use to estimate

high dimensional vine copula models in the next chapters of the thesis. First, we briefly

describe basic mathematical concepts as univariate time series models and conditional

independence of random vectors in Section 3.1. Additionally, we recall properties of the

multivariate Gaussian distribution as we will make use of well-established Gaussian meth-

ods. Another important aspect we exploit in our work is the the well-known Lasso, which

we will use for structure selection in Chapter 5. We continue with probabilistic graphical

models in Section 3.3, which will be extensively used in the Chapters 4 and 6. Finally, we

introduce a similar concept, structural equation models (SEMs) in Section 3.4, required

in Chapters 4 and 5.

Parts of this chapter are slightly adapted from previously submitted manuscripts. Con-

ditional independencies (Section 3.1.2) as well as the introduction to (directed) graphical

models, Section 3.3, are described in Müller and Czado (2017b). Section 3.2 covering

the Lasso and Section 3.4 introducing structural equation models are based on Müller

and Czado (2017c). Parts of the introduction to the multivariate Gaussian distribution

(3.1.3) and undirected graphical models in Sections 3.3.2 and 3.3.3 are based on Müller

and Czado (2017a).

3.1 Mathematical Foundations

As explained in Section 2.1, a necessary prerequisite for working with copulas is the

adequate modelling of the marginal distribution functions. Because of the availability of

this data, we will consider financial data sets, i. e. stock data in the remainder of the thesis.

For these, there exists a rich literature of models to describe the univariate behaviour. We

will briefly introduce the corresponding time series models and give references. Next, we

recapitulate properties of conditional independence in multivariate random vectors, and

finally, the multivariate Gaussian distribution which will be vital for later estimation of

graphical models.

23

Chapter 3 Mathematical Foundations and Sparse Modelling

3.1.1 Time Series Models

All of the data we will consider in this thesis are financial time series. Thus, before we

can model the corresponding dependence behaviour, we have to take into account the

marginal distributions, see Section 2.1.4. Since we want to model i.i.d. data, we need to

remove trends and serial dependence off the corresponding time series. This will be done

with the time series models we introduce now. A standard reference for these models is

Brockwell and Davis (2016). When we speak of time series, we understand a sequence of

random variables (Xt)t∈T , i. e. a stochastic process with some time domain T = Z in our

case. A describing feature of a time series is its auto-covariance function. Let (Xt)t∈T be

a time series such that E (X2) <∞ for all t ∈ T . The auto-covariance function γ is given

by

γ (s, t) = Cov (Xs, Xt) for s, t ∈ T.
Clearly, a desirable property of a time series is for γ to depend only on the distance

between the time points |t− s| rather than on a specific value of s and t. This is the

concept of stationarity, which is a regularity assumption for time series. More precisely,

we say (Xt)t∈T is a stationary time series if

(i) E (X2
t) <∞ for all t ∈ T ,

(ii) E (Xt) = const for all t ∈ T ,

(iii) γ (s, t) = γ (r + s, r + t) for all r, s, t ∈ T .

A very simple stationary process is a white-noise process, which is a time series equivalent

to a random error. More precisely, let (Xt)t∈T with E (Xt) = 0 for all t ∈ T and auto-

covariance function γ (s− t) = σ21{s−t=0} for some σ > 0. This means, the process does

not contain any auto-covariance and hence, observing today does not give information

about any future time points of the process. We denote it as X ∼ WN (0, σ2). Using

this simple process, we can define more elaborate classes of time series models. Those

are the autoregressive (AR), the moving average (MA) and a composition of both, the

autoregressive moving average (ARMA) process, see (Brockwell and Davis, 2016, Chapters

2,3).

Definition 3.1 (AR(p) process). A time series (Xt)t∈T is called AR(p) process if Xt is

stationary and if for every t

Xt =

p∑

i=1

φiXt−i + Zt

with p ∈ N ∪ {0} and φ1, . . . , φp ∈ R and a white noise process (Zt)t∈T .

As we see, the model assumes that Xt can be described as a weighted sum of its previous

values and a white noise error term.

Definition 3.2 (MA(q) process). A time series (Xt)t∈T is called MA(q) process if Xt is

stationary and if for every t

Xt =

q∑

i=1

θjZt−i + Zt,

24

3.1 Mathematical Foundations

q ∈ N ∪ {0}, θ1, . . . , θq ∈ R and a white noise process (Zt)t∈T .

Contrary to the autoregressive model, the moving average process does not take into

account previous values of the time series Xt but a weighted sum of white noise error

terms. These both can be combined into one joint model, the ARMA process.

Definition 3.3 (ARMA(p, q) process). A time series (Xt)t∈T is called ARMA(p, q) process

if Xt is stationary and if for every t

Xt =

p∑

i=1

φiXt−i +

q∑

i=1

θjZt−i + Zt

p, q ∈ N∪{0}, φ1, . . . , φp, θ1, . . . , θq ∈ R and a white noise process (Zt)t∈T . If (Xt−µ)t∈T
for µ ∈ R is an ARMA(p, q) process, (Xt)t∈T is an ARMA(p, q) process with mean µ.

These time series models have proven very important in modelling financial data. How-

ever, the assumption that the error term follows a simple white noise with constant vari-

ance σ2 may be too restrictive. Especially in times of market distress, increased volatility

is observed and it is vital to account for this. To overcome this, Bollerslev (1986) intro-

duced the GARCH model, allowing for more elaborate modelling of the volatility.

Definition 3.4 (GARCH(p, q) process). Let (εt)t∈T be a stochastic process and Ψt the

information set (sigma algebra) containing the information until time t. Then, (εt)t∈T is

called a GARCH (p, q) process if for every t

εt|Ψt ∼ N
(
0, σ2

t

)
,

σ2
t = ω +

q∑

i=1

αiε
2
t−i +

p∑

i=1

βiσ
2
t−i,

where
p ∈ N ∪ {0} q ∈ N,
ω > 0, αi ≥ 0, i = 1 . . . , q,

βi ≥ 0, i = 1, . . . , p.

Thus, in the GARCH model, the volatility is not constant but is a weighted sum of an

intercept, previously realized variances σ2
t and a stochastic process εt. The ARMA and

the GARCH process can now be combined to the very flexible ARMA-GARCH process.

From Definition 3.4 we see that the errors are assumed to have a Gaussian distribution.

Especially for financial applications, this assumption may be too strong, since e. g. a sharp

decrease in a stock price can not be explained by a Gaussian distribution which has no

fat tails. This leads to a generalization using the Student’s-t distribution, see Bollerslev

(1987) or a skewed Student’s-t distribution, see Hansen (1994). Fortunately, these models

are also easy to fit using computational methods.

25

Chapter 3 Mathematical Foundations and Sparse Modelling

3.1.2 Conditional Independence

Our task is to simplify high-dimensional vine copula models. Since an R-vine models con-

ditional distributions, a logical step is to exploit conditional independence to set many

pair copulas to the independence copula, making the expression for the joint distribution

much more parsimonious. On the other hand side, graphical models as we will introduce

later on are models which enable us to identify conditional independencies using graph

theoretic arguments and to exploit these. As we need to work with these models exten-

sively, we need some calculation rules for conditional independencies in random vectors.

We assume throughout the thesis that all occurring densities are strictly positive, which

eases considerations. As we work on conditional independencies induced by models with

underlying multivariate Gaussian distribution, this assumption can be made without any

restrictions. First, we define conditional independence, see Lauritzen (1996, p. 29).

Definition 3.5 (Conditional independence). Consider three random variables X, Y, Z

with corresponding probability density functions fX , fY , fZ and assume throughout that all

densities are strictly positive. We say that X is conditionally independent of Y given Z,

denoted

X ⊥⊥ Y | Z,
if and only if

fX,Y |Z (x, y|z) = fX|Z (x|z) fY |Z (y|z) .

This means that knowing Z renders X and Y independent. There exists a number

of results involving conditional independence. We will use the following from Whittaker

(1990, p. 33) in Chapter 4 repeatedly.

Proposition 3.6 (Calculation rules for conditional independencies). If (X,Y ,Z1,Z2) is

a partitioned random vector with joint density fX,Y,Z1,Z2 > 0, then the following expressions

are equivalent:

(i) Y ⊥⊥ (Z1,Z2) |X,

(ii) Y ⊥⊥ Z2 | (X,Z1) and Y ⊥⊥ Z1 |X.

Proof. To show (i)⇒ (ii), we refer to the block independence Lemma in Whittaker (1990,

p. 33) for the first assertion. To show the second part of (ii) with Z2 ∈ Rp we have

fY,Z1|X(y, z1;x) =

∫

Rp
fY,Z1,Z2|X(y, z1, z2;x) dz2

=

∫

Rp
fY |X(y;x)fZ1,Z2|X(z1, z2;x) dz2

= fY |X(y;x)

∫

Rp
fZ1,Z2|X(z1, z2;x) dz2 = fY |X(y;x)fZ1|X(z1;x),

using (i) in the second line. Direction (ii)⇒ (i) is given in Whittaker (1990, p. 35).

This result allows us to draw several conclusions from conditional independence state-

ments.

26

3.1 Mathematical Foundations

3.1.3 Properties of the Multivariate Gaussian Distribution

We will briefly review the most important properties of the multivariate Gaussian distri-

bution which we will use later on. Recall that a random vector X obeys a multivariate

Gaussian distribution in d dimensions with mean vector µ and covariance matrix Σ,

denote X ∼ Nd (µ,Σ) if and only if its density can be written as

f (x;µ,Σ) = (2π)−
d
2 det (Σ)−

1
2 exp

(
− 1

2
(x− µ)T Σ−1 (x− µ)

)
. (3.1)

Here, Σ is a d× d positive definite matrix. For our considerations we assume throughout

the thesis µ = 0. A very useful property of the multivariate Gaussian distribution is that

for a vector X ∼ Nd (0,Σ), we can draw inference about conditional independence in this

random vector from the inverse of the covariance matrix Ω = Σ−1. More precisely, let

j, ` ∈ {1, . . . , d} with j 6= `. Then,

Ωj` = 0⇔ Xj ⊥⊥ X` | {X1, . . . , Xd} \ {Xj, X`} , (3.2)

see Whittaker (1990, p. 164). Thus, conditional independence can be read directly off

the inverse covariance matrix. Note that also the corresponding partial correlations, see

(2.3) are related to the conditional correlations for the multivariate Gaussian distribution.

More precisely, let X ∼ Nd (0,Σ), j, ` ∈ {1, . . . , d} with j 6= ` and D ⊆ {1, . . . , d}\{j, `},
then

ρXj ,X`;XD
= Cov (Xj, X`|XD) , (3.3)

as shown by Baba et al. (2004). Thus, we also have that conditional independence is

equivalent to zero partial correlation for a multivariate Gaussian distribution.

If we consider two d-dimensional Gaussian distributions with densities f (x; 0,Σ1) and

f (x; 0,Σ2), a natural task is to compare these two distributions. A well known method

is the Kullback-Leibler information divergence, see Kullback and Leibler (1951). Let us

assume two probability distributions P and Q with corresponding real valued densities p

and q. Then, the Kullback-Leibler information divergence is defined by

D (P,Q) =

∫ ∞

−∞
p (x) log

(
p (x)

q (x)

)
dx.

Where this integral may be hard to evaluate in practical for arbitrary distributions, for

two multivariate Gaussian distributions it is a closed form expression. More precisely, we

have in terms of the corresponding covariance matrices Σ1 and Σ2 that

D (Σ1,Σ2) =
1

2
tr
(
Σ1Σ−1

2

)
− 1

2
log
(
det
(
Σ1Σ−1

2

))
− d

2
, (3.4)

see Whittaker (1990, p. 167). Finally, note that D (P,Q) ≥ 0 and D (P,Q) = 0 if and

only if P = Q.

27

Chapter 3 Mathematical Foundations and Sparse Modelling

3.2 The Lasso in Linear Regression

As sketched in Section 2.2, we have to solve a high dimensional model selection problem

for finding parsimonious vine copulas in high dimensions. Among conditional indepen-

dencies in multivariate Gaussian distributions, we also use model selection approaches for

univariate problems to approach this goal. A well known method for model selection in

the regression domain is the Lasso, as acronym for Least Absolute Shrinkage and Selection

Operator, which we will introduce now, and apply later on in Chapter 5.

In the most general case, consider a sample of n observations {xk, yk}, k = 1, . . . , n, where

xk = (xk,1, . . . , xk,p) ∈ Rp. We want to approximate yk given a set of linear predictors xk,j

yk = ϕ0 +

p∑

`=1

ϕ`xk,`,

with unknown regression coefficients ϕ0 and ϕ = (ϕ1, . . . , ϕp). This is most often solved

by minimizing the quadratic error with respect to ϕ0 and ϕ = (ϕ1, . . . , ϕp):

min
(ϕ0,ϕ)∈Rp+1

(
1

2n

n∑

k=1

(
yk − ϕ0 −

p∑

`=1

ϕ`xk,`

)2
)
. (3.5)

The solution to this optimization problem often contains many coefficients ϕ` 6= 0, ` =

1, . . . , p. Thus, for p large, the model becomes overly parametrized and hard to interpret.

Yet, solving (3.5) under the additional constraint

p∑

`=1

|ϕ`| ≤ t, t ≥ 0, (3.6)

yields a parsimonious model. This regularization technique is called the Lasso and since

its invention by Tibshirani (1994), proved very useful in many applications. By shrinking

coefficients exactly to zero, it combines both parameter estimation and model selection

in one step. It also works in cases where p > n, which are hard to solve otherwise. The

Lasso is hence the method of choice when dealing with many possible predictors, of which

only some contribute significantly to the model fit. For convenience, we will consider the

following Lagrangian form of the optimization problem (3.7), which is equivalent to (3.5)

under the constraint (3.6):

min
(ϕ0,ϕ)∈Rp+1

(
1

2n

n∑

k=1

(
yk − ϕ0 −

p∑

`=1

ϕ`xk,`

)2

+ λ

p∑

`=1

|ϕ`|
)
, (3.7)

for some λ ≥ 0. One can show that a solution
(
ϕ̂λ0 , ϕ̂λ

)
of (3.7) minimizes the problem in

(3.5) under the condition (3.6) with t = |ϕ̂λ| =
∑p

`=1

∣∣ϕ̂λ`
∣∣ (Hastie et al., 2015). We do

not include an intercept in our considerations and thus set ϕ0 ≡ 0 for the remainder of the

paper. If we consider the problem (3.7) and set λ =∞, all coefficients ϕ̂`, ` = 1, . . . , p will

be set to zero because of the penalization. Decreasing λ > 0, more and more coefficients

28

3.2 The Lasso in Linear Regression

become non-zero. This relationship between λ > 0 and ϕ̂λ` , ` = 1, . . . , p is called the

regularization path. We formalize it by a set Λ (λ) such that

Λ (λ) =
{
` : ϕ̂λ` 6= 0 in ϕ̂λ

}
.

Thus, for each λ > 0 we are given the non-zero regression coefficients. How to choose

λ > 0 is not obvious. Most often, k-fold cross-validation is employed. We divide the

total data set of n observations into m > 1 randomly chosen subsets M1, . . . ,Mm such

that
⋃m
j=1 Mj = n. We obtain m training data sets Sjtraining = {1, . . . , n} \ Mj and

corresponding test data sets Sjtest = Mj, j = 1, . . . ,m. Then, the coefficient vector

ϕ̂r =
(
ϕ̂r1, . . . , ϕ̂

r
p

)
∈ Rp is estimated for various λr, for r = 1, . . . , R on each of the m

training sets Straining. Now we use these R coefficient vectors to perform for each test

data set Stest an out of sample prediction of the values

ŷrk =

p∑

`=1

ϕ̂r`xk,`, k ∈Mj, j = 1, . . . ,m, r = 1, . . . , R.

For these values, we also know the true values yk, k ∈ Mj, j = 1, . . . ,m. Thus, we can

calculate the mean squared prediction error over all training and test data sets:

δrj =
1

|Mj|
∑

k∈Mj

(yk − ŷrk)2 , j = 1, . . . ,m.

Since we have m pairs of training and test data, we obtain an estimate for the prediction

error for each of the R values of λr for r = 1, . . . , R by averaging:

∆r =
1

m

m∑

j=1

δrj , r = 1, . . . , R.

Next, consider the dependence between λr, r = 1, . . . , R and the corresponding error ∆r.

A natural choice is to select

λCVmin = arg min
r=1,...,R

∆r.

Alternatively, we choose λ` such that it is at least in within one-standard error of the

minimum, denote λCV1se . For both types of cross validation methods, see Friedman et al.

(2010) or the work by Hastie et al. (2015, p. 13). We conclude with a brief example,

introducing the concept of regularization paths.

Example 3.7 (Lasso, regularization path, cross validation). We use the worldindices

data set, included in the CDVine package, see Brechmann and Schepsmeier (2013) com-

prising d = 6 variables with n = 396 observations on the u-scale. More precisely, these are

the stocks indices ^GSPC, ^N225, ^SSEC, ^GDAXI, ^FCHI, ^FTSE of the US, Japanese,

Chinese, German, French and British stock markets. We transform our observations to

the z-scale using the Gaussian quantile function and denote them by Zi, i = 1, . . . , 6 where

Z1 ≡ ^GSPC, Z2 ≡ ^N225, and so on. Let us assume that we want to model the in-

29

Chapter 3 Mathematical Foundations and Sparse Modelling

dex Z3 = ^SSEC by the regressors ^GSPC, ^GDAXI, ^FCHI, ^FTSE, Z1, Z4, Z5, Z6,

respectively. We write the regression equation

Zk,3 = ϕ0 +
∑

`=1,4,5,6

ϕ`Zk,`, k = 1, . . . , n,

with unknown regression coefficients ϕ0 and ϕ = (ϕ1, . . . , ϕp). We set ϕ0 ≡ 0 and want

to solve the regression problem with the Lasso. Thus we obtain the optimization problem

min
ϕ∈R4

(
1

2n

n∑

k=1

(
Zk,3 −

∑

`=1,4,5,6

ϕ`Zi,`

)2

+ λ
∑

`=1,4,5,6

|ϕ`|
)
. (3.8)

The solution to this optimization problem is a regularization path, either along λ > 0 or∑
i=1,4,5,6 |ϕ̂`|, i. e. the L1 norm of the regression vector. We use the R-package glmnet

of Friedman et al. (2010) to calculate the regularization paths with respect to the L1 norm,

see Figure 3.1, left panel, and log (λ), see Figure 3.1, right panel.

0.0 0.2 0.4 0.6

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

L1 Norm

C
oe

ffi
ci

en
ts

0 1 4 4

Degrees of Freedom

^FTSE

^GDAXI

^FCHI

^GSPC

−8 −7 −6 −5 −4 −3 −2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Log Lambda

C
oe

ffi
ci

en
ts

4 4 2 1

Degrees of Freedom

^FTSE

^GDAXI

^FCHI

^GSPC

Figure 3.1: Example 3.7: Regularization path of the coefficients with respect to the L1

norm of coefficients (left) and log (λ).

We see that Z6 ≡ ^FTSE is the first non-zero coefficient along the regularization

path. Additionally, we obtain that coefficients can of course also be negative and the

regularization paths of different regressors may intersect. We denote the path by Λ (0) =

{6, 1, 4, 5}. Note that log (λ) < 0 must not necessarily be the case as in this example.

Above the plot, the corresponding number of non-zero parameters is indicated.

3.3 Graphical Models

As mentioned previously, we want to exploit conditional independence to reduce complex-

ity in high dimensional vine copula models. This conditional independence, or sparsity

30

3.3 Graphical Models

is the key component of another prominent class of models, so called graphical models.

They are obtained by combining graph theory and statistical models and have proven as

very useful visual display of information obtained from data. Among the most popular

sources are the books by Whittaker (1990), Lauritzen (1996) and Koller and Friedman

(2009). We will first introduce the graph theory which is necessary to describe the differ-

ent concepts. Next, we introduce two major classes of different graphical models. The

first uses undirected graphs to describe (conditional) independencies in the data and the

second uses directed graphs, more precisely directed acyclic graphs. We will introduce both

the different models and standard algorithms developed to estimate these models. The

models itself will be extensively used in the Chapters 4 and 6.

3.3.1 Graph Theory

The necessary graph theory is taken from Lauritzen (1996, pp. 4–7). Let V 6= ∅ be

a finite set, the node set and let E ⊆ {(v, w) | (v, w) ∈ V × V with v 6= w} be the edge

set, to define a graph G = (V,E) as a pair of node set and edge set. An edge (v, w) is

undirected if (v, w) ∈ E ⇒ (w, v) ∈ E, and (v, w) is directed if (v, w) ∈ E ⇒ (w, v) /∈ E.

A directed edge (v, w) is called an arrow and denoted by v → w with v the tail and w

the head. An arrow between v and w without specifying the orientation is denoted by

v ↔ w and no arrow between v and w regardless of orientation is denoted by v = w.

An undirected graph contains only undirected edges and a directed graph only directed

edges. Replacing all arrows in a directed graph G by undirected edges, we obtain the

skeleton Gs of G. If a graph only contains undirected edges, it is an undirected graph and

if it contains only directed edges, it is a directed graph. We will not consider graphs with

both directed and undirected edges. A weighted graph is defined by a weight function

µ : E → R. Define a path of length k from nodes α to β by a sequence of distinct

nodes α = α0, . . . , αk = β such that (αi−1, αi) ∈ E for i = 1, . . . , k. This applies to

both undirected and directed graphs. A cycle is defined as a path with α = β and graph

without cycles is called acyclic. In a directed graph, a chain of length k from α to β

is a sequence of distinct nodes α = α0, . . . , αk = β with αi−1 → αi or αi → αi−1 for

i = 1, . . . , k. Thus, a directed graph may contain a chain from α to β but no path from

α to β, see Example 3.8.

Example 3.8 (Paths and chains in directed graphs). Consider the following two directed

graphs G1 and G2.

1 2 3 4

1 2 3 4

Figure 3.2: Example graphs G1 (upper panel) and G2 (lower panel).

For each of the two graphs, we consider the question whether a path or chain from 1

to 4 exists. In G1, clearly a path from 1 to 4 along 2 and 3 exists. Additionally, also a

31

Chapter 3 Mathematical Foundations and Sparse Modelling

chain from 1 to 4 exists, as well as a chain from 4 to 1 since for the existence of a chain,

the edge orientation is not relevant. With the same argument, there exists a chain in G2

between 1 and 4. However, no path between 1 and 4 exists as there is no edge 2→ 3.

A graph H = (W,F) is a subgraph of G = (V,E) if W ⊆ V and F ⊆ E. We speak of

an induced subgraph H = (W,F) if

W ⊆ V and F = {(v, w) | (v, w) ∈ W ×W with v 6= w} ∩ E,

i. e. H contains a subset of nodes of G and all the edges of G between these nodes, see

Example 3.9.

Example 3.9 (Subgraphs and induced subgraphs). Consider the following three graphs

where G2 and G3 are subgraphs of G1. G3 is an induced subgraph of G1, whereas G2 is not

since the edges (2, 3) and (1, 5) are present in G1 on the subset of nodes {1, 2, 3, 5} but are

missing in G2.

1 2

34

5

1 2

3

5

1 2

3

5

Figure 3.3: Example 3.9: Graphs G1,G2,G3, from left to right.

If G = (V,E) is undirected and a path from v to w exists for all v, w ∈ V , we say that G
is connected and if G = (V,E) is directed we say that G is weakly connected if a path from

v to w exists for all v, w ∈ V in the skeleton Gs of G. If an undirected graph is connected

and acyclic, i. e. has no cycles, it is a tree and has d− 1 edges on d nodes. Whenever for

a graph G = (V,E) we have that there exists a disjoint partition of V =
⋃p
i=1 Vi such

that the p subgraphs Hi induced by Vi for i = 1, . . . , p are connected subgraphs, we speak

of connected components of G. For G undirected and α, β ∈ V , a set S ⊆ V is said to

be an (α, β) separator in G if all paths from α to β intersect S. S is said to separate A

from B in G if it is an (α, β) separator in G for every α ∈ A, β ∈ B and we denote it by

α ⊥ β | S [G] and A ⊥ B | S [G], respectively, see Example 3.10

Example 3.10 (Graphical separation). Consider the graph G in Figure 3.4.

1 2

34

5

Figure 3.4: Example 3.10: Undirected graph G in five dimensions.

By virtue of the graphical separation, we have for example 1, 4 ⊥ 5 | 2, 3 [G].

32

3.3 Graphical Models

We will now combine graph theory and probability theory which together form proba-

bilistic graphical models. We start with undirected models and then continue to models

on directed acyclic graphs.

3.3.2 Undirected Graphical Models

We consider a random vector X = (X1, . . . , Xd) and assume X ∼ Nd (0,Σ) throughout

the rest of the section. Let G = (V,E) be an undirected graph on d nodes V = {1, . . . , d}.
We say that X is Markov with respect to G, if

Xj ⊥⊥ X` | {X1, . . . , Xd} \ {Xj, X`} ⇔ (j, `) /∈ E. (3.9)

This is the definition of an undirected graphical model G for the distribution of X. More

precisely, each missing edge in the graph G corresponds to random variables which are

conditionally independent given the rest. For the multivariate Gaussian distribution we

assumed, this is also directly expressed via the inverse of the correlation matrix, as we

have seen in (3.2). More precisely, recall that for Ω = Σ−1 we have

Ωj,` = 0⇔ Xj ⊥⊥ X` | {X1, . . . , Xd} \ {Xj, X`} .

Thus, estimating the sparsity pattern of Ω is equivalent to estimation of the graph G. From

the graph however, we can also extract more information. If the underlying distribution is

Gaussian, we have the global Markov property, see Lauritzen (1996, Chapter 6). It means

that for S ⊆ {1, . . . , d} \ {j, `} we have that

Xj ⊥⊥ X` | XS ⇔ j ⊥ ` | S [G] , (3.10)

which is a more favourable property than (3.9) and which we will exploit later. The

following example showcases how conditional independencies can be learned from a graph.

Example 3.11 (Graphical model). Consider the graph G in Figure 3.5.

1 2

34

5

Figure 3.5: Example 3.11: Graphical model in five dimensions.

By virtue of the graphical separation, we have 1, 4 ⊥ 5 | 2, 3 [G]⇒ 1, 4 ⊥⊥ 5 | 2, 3.

Of course, before a graphical model, i. e. a graph can be used to draw conditional

independencies from it, we have to determine how the graph looks for an underlying data

set. Thus, it has to be estimated using numerical methods. We give a quick review

and introduce one of the most well known methods to solve this estimation problem, the

graphical Lasso.

33

Chapter 3 Mathematical Foundations and Sparse Modelling

3.3.3 Estimation of Undirected Graphical Models

The first work in this direction was undertaken by Dempster (1972) where it was called

covariance selection and an algorithmic implementation was given. In recent years, atten-

tion went to algorithms which allow to estimate undirected graphical models in very high

dimensional setups, i. e. d > 100. Furthermore, these problems are often accompanied

by the fact that n < d, i. e. the sample size falls below the number of dimension, which

leads to additional challenges with respect to estimation of such a graphical model. As

we have seen, it is equivalent to estimate the sparsity pattern of the precision matrix

or the graph. A method to estimate the graph directly is the approach of Meinshausen

and Bühlmann (2006), which is called neighbourhood selection. The proposal is to solve

a linear regression for each node onto all other nodes, but subject to a ‖ · ‖1 penalty, i. e.

the Lasso, see Section 3.2. The authors show that neighbourhood selection consistently

estimates the graph G. Another approach is to maximize the log-likelihood with respect

to the precision matrix directly with a ‖ · ‖1 penalty, to enforce zero entries in the estima-

tor for the precision matrix. This is the motivation for the graphical Lasso, see Friedman

et al. (2008), which we will describe more precisely now.

Estimating Sparse Inverse Covariance Matrices with the Graphical Lasso

Denote the sample covariance matrix by S = XTX/n ∈ Rd×d where we have X =

(xi,j)i=1,...,n,j=1,...,d ∈ Rn×d is the observed and centered data matrix with X ∼ Nd (0,Σ).

Then, the graphical Lasso calculates a sparse undirected graphical model by finding a

solution for Ω. Considering the logarithm of (3.1) and taking derivatives with respect to

Σ, we obtain as optimization problem

max
Ω∈Rd×d

log (det (Ω)) + tr (SΩ) , (3.11)

with solution Ω̂ = S−1. However, this solution will in general have no zero entries and

hence, induce no sparse graph. Furthermore, in high dimensional data sets we often have

d > n, which leads to a singular matrix S and the inverse of S does not exist. The

graphical Lasso overcomes this by introducing a penalty in (3.11) and solving

max
Ω∈Rd×d

log (det (Ω)) + tr (SΩ) + λ
d∑

i=1

d∑

j=1

|Ωi,j| . (3.12)

depending on some regularization parameter λ ≥ 0. For this optimization problem, many

efficient numerical solvers also for thousands of dimensions exist. For λ = 0, there is no

penalization and the solutions of (3.11) and (3.12) coincide. For fixed λ > 0, denote the

solution of (3.12) by Ω̂λ and define Gλ =
(
V,Eλ

)
by

(i, j) ∈ Eλ ⇔ Ω̂λ
i,j 6= 0. (3.13)

34

3.3 Graphical Models

Varying λ > 0, we obtain a piecewise constant solution path of graphs with different

levels of sparsity. Letting λ → 0, the solutions Gλ will become more and more dense.

For λ→∞, the number of connected components will increase but their individual sizes

decreases. In practice, the solution path is calculated along a vector λ = (λ1, . . . , λJ)

with λj > 0 and J ∈ N. Several modifications and improvements for the graphical Lasso

have been proposed. For instance, Witten et al. (2011) demonstrates that the search for

(3.12) can be carried out in terms of block-diagonal matrices, breaking apart the large

problem into smaller ones.

Vital for us is another property, namely that the connected components with respect to

some λ > 0 can also be calculated directly from the sample covariance matrix S. More

precisely, consider a fixed λ > 0 and a solution Ω̂λ of (3.12) with Gλ =
(
V,Eλ

)
as defined

in (3.13). Thus, Ω̂λ and equivalently Eλ induce a vertex partition

V =

p⋃

i=1

V λ
i ,

where each V λ
i is a connected component for i = 1, . . . , p, based on the edge set Eλ.

Alternatively, define a graph H =
(
V,Fλ

)
based on the sample covariance matrix S with

edge set Fλ and adjacency matrix ΠH =
(
πHi,j
)
i=1,...,d,j=1,...,d

such that

πHi,j = 1⇔ (i, j) ∈ Fλ ⇔ |Si,j| ≥ λ, (3.14)

This way of assigning the edge set is called screening. The graph H has now, say q

connected components we denote by Wi for i = 1, . . . , q and consider the associated

partition V =
⋃q
i=1 Wi. It has now been shown by Mazumder and Hastie (2012), that

p = q and moreover, Vi = Wi for all i = 1, . . . , p. This makes a decomposition of the

entire graphical Lasso problem more tractable as we can split it into p parallel tasks

which can be performed entirely independent from each other. Furthermore, we have

a very easy screening rule for intractably high dimensional datasets to decompose their

dependence behaviour in multiple smaller parts which now are tractable. Inside the

connected components, we can then use the graphical Lasso to obtain non-dense graphs.

We give a brief example.

Example 3.12 (Screening). Assume we have a dataset on the z-scale in six dimensions

with the following empirical covariance matrix

S =

1.0000 0.2058 0.1794 0.7340 0.7298 0.7167

0.2058 1.0000 0.3212 0.2643 0.3158 0.2848

0.1794 0.3212 1.0000 0.1895 0.2105 0.2327

0.7340 0.2643 0.1895 1.0000 0.9606 0.9089

0.7298 0.3158 0.2105 0.9606 1.0000 0.9378

0.7167 0.2848 0.2327 0.9089 0.9378 1.0000

.

We use the huge R-package (Zhao et al., 2015) to calculate a sequence of J = 4 values

35

Chapter 3 Mathematical Foundations and Sparse Modelling

for λ given by

λ = (0.9607, 0.7438, 0.3452, 0.2070) .

Solving (3.12) for these values we obtain graphical models Gλ1 , . . . ,Gλ4 as shown in Figure

3.6. Initially, there are only isolated nodes and hence |V | = 6 connected components.

Gλ1 , λ1 = 0.9607 Gλ2 , λ2 = 0.7438

1 5 2

6 4 3

1 5 2

6 4 3

Gλ3 , λ3 = 0.3452 Gλ2 , λ4 = 0.2070

1 5 2

6 4 3

1 5 2

6 4 3

Figure 3.6: Example 3.12: Sequence of estimated graphical models Gλ1 , . . . ,Gλ4 .

In the second and third graph, we have one connected component of size 3 together with

isolated nodes and size 4 with isolated nodes. In the fourth graph, only one connected

component of size |V | = 6 exists. If we consider λ2 = 0.7438 and apply the screening rule

(3.14), we obtain the following adjacency matrix based on S

ΠGλ2 =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

.

This adjacency matrix constitutes the same connected components as in the corresponding

graph of the graphical Lasso solution path. It indicates that the nodes 4, 5, 6 are all con-

nected to each other. However, the result by Mazumder and Hastie (2012) only assures

that the connected components of the screening rule and the graphical Lasso are the same

for a specific λ > 0, but no knowledge about the edges in the connected components can

be drawn from the screening rule.

We continue this section with the consideration of directed graphical models, more

precisely, directed acyclic graphs (DAGs).

36

3.3 Graphical Models

3.3.4 Directed Graphical Models

Let G = (V,E) be a directed acyclic graph (DAG). We will now introduce some special

graph theoretic definitions, properties and notations for these graphs. If there exists a

path from w to v, we write w >G v. Denote a disjoint union by ∪̇, and define

• the parents pa (v) := {w ∈ V |w → v},

• the ancestors an (v) := {w ∈ V |w >G v},

• the descendants de (v) := {w ∈ V |v >G w},

• the non-descendants nd (v) := V \ (de (v) ∪̇ pa (v) ∪̇ v).

Then, V = v ∪̇ pa (v) ∪̇ de (v) ∪̇ nd (v) for all v ∈ V . A ⊆ V is ancestral if pa (v) ⊆ A

for all v ∈ A, with An (A) the smallest ancestral set containing A. We consider in the

following DAGs with a limited number of parents.

Definition 3.13 (k-DAGs). Let G = (V,E) be a DAG. We define

kv := |pa (v)| ,

and speak of a k-DAG G if and only if

kv < k for all v ∈ V.

Each DAG has a topological ordering (Andersson and Perlman, 1998), specified by an

ordering function η. More precisely, let V = {v1, . . . , vd} and η : V → {1, . . . , d} such

that for each pair vi,vj ∈ V we have

η (vi) < η (vj)⇒ vj 6>G vi,

i. e. there is no path from vj to vi in G. An ordering η always exists, but it is not necessarily

unique. By {η−1 (1) , . . . , η−1 (d)}, we refer to V ordered increasingly according to η and

by {η−1 (d) , . . . , η−1 (1)} we refer to V ordered decreasingly according to η. We showcase

an example of a DAG illustrating the previous definitions

Example 3.14 (DAG in six dimensions). Consider the DAG G = (V,E) in Figure

3.7. Table 3.1 displays the topological ordering function, parents, descendants and non-

descendants for all v ∈ V .

v η (v) η−1 (v) pa (v) = {wv1 , wv2} de (v) nd (v)

1 1 1 - 2,3,4,5,6 -
2 2 2 1 3,4,5,6 -
3 4 6 6,2 - 1,4,5
4 6 3 5,2 - 1,3,6
5 5 5 6,2 4 1,3
6 3 4 2 3,4,5 1

Table 3.1: Example 3.14: Properties of the DAG G in Figure 3.7.

37

Chapter 3 Mathematical Foundations and Sparse Modelling

Figure 3.7: Example 3.14: DAG G.

We see that a high value of η (v) corresponds to more non-descendants. Note that η

is not unique since 3 = 5 in G1. Hence, a topological ordering for G1 is also given by

{η−1 (1) , . . . , η−1 (6)} = {1, 2, 6, 5, 3, 4}.

A v-structure in G is a triple of nodes (u, v, w) ∈ V where u→ v and w → v but u= w.

The moral graph Gm of a DAG G is the skeleton Gs of G with an additional undirected

edge (u,w) for each v-structure (u, v, w). As for undirected graphs, separation can also

be defined for DAGs, called d-separation.

Definition 3.15 (d-separation). Let G = (V,E) be a directed acyclic graph. A chain π

from a to b in G is said to be blocked by a set of nodes S, if it contains a node γ ∈ π such

that either

(i) γ ∈ S and arrows of π do not meet head-to-head at γ, or

(ii) γ /∈ S nor has γ any descendants in S, and arrows of π do meet head-to-head at γ.

A chain that is not blocked by S is said to be active. Two subsets A and B are now said

to be d-separated by S in G if all chains from A to B are blocked by S in G and we denote

it by A ⊥d B | S [G].

Example 3.16 (d-separation). We give an example of the d-separation based on a DAG

G in five dimensions, see Figure 3.8.

1

2 3

5

4

Figure 3.8: Example 3.16: DAG G in five dimensions.

First, we want to consider whether 3 ⊥d 4 | 5 [G] holds. By application of the d-

separation, we see that S = 5 can not block a chain from 3 to 4 as arrows do meet

head-to-head at 5, hence 3 ⊥d 4 | 5 [G] does not hold.

Second, we consider whether 1 ⊥d 5 | 23 [G]. The chain from 1 to 5 via 3 is blocked

38

3.3 Graphical Models

as arrows meet not head-to-head at 3. Secondly, also the chain from 1 to 5 via {2, 3} is

blocked as arrows meet not head-to-head. Hence, we conclude 1 ⊥d 5 | 23 [G]. For another

example, see the example by Lauritzen (1996, p. 50).

In the case of undirected graphs, we related graphical separation to conditional inde-

pendence. For graphical models on DAG we can also relate conditional independence to

the corresponding graph theoretic properties.

Markov Properties on DAGs

As for undirected graphs, we can also define Markov properties on directed acyclic graphs.

Sometimes, these graphical models on DAGs are also referred to as Bayesian Networks.

We consider again a random vector X = (X1, . . . , Xd) and assume X ∼ Nd (0,Σ). Let

G = (V,E) be a DAG. We say that X obeys the directed local Markov property according

to G if

v ⊥⊥ nd (v) | pa (v) for all v ∈ V. (3.15)

Example 3.17 (Example 3.14 cont.). Consider again the DAG G in six dimensions from

Example 3.14.

Figure 3.9: Example 3.17: DAG G in six dimensions.

The directed local Markov property (3.15) for the DAG G in Figure 3.9 gives the con-

ditional independencies
4 ⊥⊥ 1, 3, 6 | 2, 5,

5 ⊥⊥ 1, 3 | 2, 6,
3 ⊥⊥ 1, 4, 5 | 2, 6,

6 ⊥⊥ 1 | 2.
Furthermore, the joint density of X can be directly written in terms of the DAG by

f (x) =
d∏

i=1

fvi| pa(vi)

(
xvi |xpa(vi)

)
, (3.16)

see Lauritzen (1996, p. 46). Another important set when speaking about DAG models

are the so called Markov blankets. The Markov blanket of a node v ∈ V is the minimal

subset S ⊆ {V \ v} such that

v ⊥⊥ V \ {S ∪ v} | S.

39

Chapter 3 Mathematical Foundations and Sparse Modelling

In other words, the Markov blanket S of a node v are all the nodes which are necessary

to render any other node in V \ {S ∪ v} conditionally independent from v if conditioned

on S. Finally, we relate DAG models to the previously introduced undirected graphical

models, see Section 3.3.2.

Correspondence to Undirected Graphical Models

Given a graphical model on a DAG, we can easily find the corresponding undirected

graphical model by considering the moral graph. More precisely, Lauritzen (1996, p. 48)

showed that for a DAG G = (V,E) and disjoint sets A,B, S ⊆ V it holds

A ⊥d B | S [G]⇔ A ⊥ B | S
[(
GAn(A∪̇B∪̇S)

)m]
.

The latter property is known as the global directed Markov property, which can be shown

to be equivalent to the local directed Markov property, (3.15) (Lauritzen, 1996, p. 51).

This also shows that the d-separation can be conveniently used to check conditional in-

dependence in a DAG.

Where estimating undirected graphs was directly related to identifying zero entries in the

inverse covariance matrix, estimation of directed models is more complex. We will discuss

approaches to estimate these models next.

3.3.5 Estimation of Graphical Models on DAGs

The task of estimating a graphical model on a DAG can be separated in two steps. The

first step is concerned with the structure learning where the graph structure is identified.

Several approaches to this goal have been proposed and they can be split into score-

based and constraint-based methods. Another category which combines both are the

hybrid approaches. Because of the intuitive appearance of DAG models, also learning

from expert knowledge is possible. After the structure is obtained, a second step with

parameter learning follows. Because of the parsimonious structure in (3.16), this task can

be split into the corresponding factors fvi|pa(vi)

(
xvi |xpa(vi)

)
, i = 1, . . . , d. We will first

describe constraint based methods very briefly since they will not play an essential role in

the remainder of the thesis. Afterwards, more attention is given to score-based methods,

which will be used in Chapter 4.

Constraint-Based Methods

Given data, constraint-based methods perform several tests for conditional independence

to find Markov blankets for all the nodes and afterwards, identify v-structures. Since

the number of possible sets to test for conditional independence is growing exponentially

in dimensions, a straightforward application is not possible. The first practically usable

implementation was the PC-algorithm, see Spirtes et al. (2000, Section 5.4.2), where mul-

tiple conditional independence tests carried out in a specific order ensured identification

of the graphical structure. The next step in this direction was the Grow-Shrink (GS)

40

3.3 Graphical Models

algorithm by Margaritis (2003). It targets at identifying the Markov blanket for each

node directly and afterwards orienting the edges. Subsequent recent extensions of that

algorithm aimed at reducing the number of necessary conditional independence tests or

avoiding false positives, see Nagarajan et al. (2013, p. 18). Because of the particular

way these algorithms work, it is not directly possible to restrict the maximum number of

parents for a node in the structure selection process to obtain a k-DAG, see Definition

3.13. Since we will need this property later on, we introduce score-based methods and in

particular the Hill-Climbing algorithm, which allow for such a restriction.

Score-Based Methods

Recall that we assume multivariate Gaussianity of the random vector X generating the

data. To avoid double-subscripts, we identify the nodes in the node set vi ≡ i for i =

1, . . . , d. The idea behind score-based method is to find a DAG G = (V = {1, . . . , d} , E)

whose corresponding probability distribution has highest score for the given data. More

precisely, assume a factorization

f (x) =
d∏

i=1

fi| pa(i)

(
xi|xpa(i)

)
,

and a sample of n observations of d-dimensional data (x1, . . . ,xn)T ∈ Rn×d with xk ∈ Rd

for k = 1, . . . , n. Using the log-likelihood as score to be optimized for, we have

L (G, (x1, . . . ,xn)) =
n∑

k=1

d∑

i=1

log

(
fi| pa(i)

(
xk,i|xk,pa(i)

))
,

which depends on the DAG G via the sets pa (i) for i = 1, . . . , d. Since the log-likelihood

increases whenever new parameters enter the model, maximizing it leads often to overly

parametrized and complicated models and the corresponding graph would contain the

maximum number of edges such that it is still a DAG. Hence, a penalty is introduced to

consider a different score, in our case, the Bayesian Information Criterion (BIC)

BIC (G, (x1, . . . ,xn)) = −2

(n∑

k=1

d∑

i=1

log

(
fi| pa(i)

(
xk,i|xk,pa(i)

)))
+ log (n) p, (3.17)

where p is the number of parameters. For these, we have

p = 2 |V |+ |E|

as for each node i = 1, . . . , d, we have a mean and variance parameter for the marginal

models and |E| edges in the graph total. Neglecting the mean and assuming unit variance,

it reduces to p = |E| in (3.17).

41

Chapter 3 Mathematical Foundations and Sparse Modelling

Hill-Climbing Algorithm

The Hill-Climbing algorithm, see Nagarajan et al. (2013, p. 19) aims to optimize (3.17).

Initially, we start with some graph G0. Most often, this is the empty graph. Assume now

we are in step `− 1 for ` ≥ 1 with a graph

G`−1 = (V,E`−1) with score BIC (G`−1, (x1, . . . ,xn)) , for ` ≥ 1.

Then, we can perform one of the following operations:

• addition of an edge G ′ = G`−1 ∪ (j, `) for some (j, `) /∈ E`−1,

• removal of an edge: G ′ = G`−1 \ (j, `) for some (j, `) ∈ E`−1,

• reversion of an edge: G ′ = (G`−1 \ (j, `)) ∪ (`, j) for some (j, `) ∈ E`−1,

where we have to ensure that the resulting graph G ′ is still a DAG, i. e. does not contain

any directed cycles. Then, we have a new graph

G ′ with score BIC (G ′, (x1, . . . ,xn)) .

We consider now whether

BIC (G ′, (x1, . . . ,xn)) < BIC (G`−1, (x1, . . . ,xn))

and if this is the case, we set

G` := G ′.
and continue until no improvement can be attained by adding, removing or reversing any

edges. Imposing now to have a k-DAG is easy by additionally checking to add or reverse

only edges such that for no node in the graph, the number of maximum parents k is

exceeded. Most often, this algorithm attains only a local optimizer but not a local one.

To overcome this, one can run M random restarts and take the best score of all the M

random restarts. In our practical considerations, we rely on the Hill-Climbing algorithm

implementation in the bnlearn R-package, see Scutari (2010). This concludes the part

describing graphical models.

3.4 Structural Equation Models (SEMs)

Structural equation models (SEMs) are a widely used class of models in the social sciences

to model multivariate data. In their most general form, they allow to model actual obser-

vations and latent variables, see e. g. Kaplan (2009), Hoyle (1995) or Bollen (1989). This

property is necessary, for example in psychology, where specific properties of individuals

can not be measured directly. We want to stress that we are not considering latent vari-

ables in this thesis and are thus only dealing with actual observations. In the most general

42

3.4 Structural Equation Models (SEMs)

form that we use, a SEM in d dimensions is defined by a system of linear equations

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

Xj =

j−1∑

i=1

ϕj,κi(j)Xκi(j) + ψjεj, j ∈ {3, . . . , d} ,
(3.18)

with εj ∼ N (0, 1) i.i.d. and ψj is such that Var (Xj) = 1 for j = 1, . . . , d. Additionally,

εj is independent of X1, . . . , Xj−1 for j = 2, . . . , d and Xj ∼ N (0, 1), j = 1, . . . , d. The

function κi (j) ∈ {1, . . . , j − 1} is used to specify the non-zero right hand sides of Xj. In

the social sciences, a SEM is used to draw causal inference from data. In our work, this will

not be the case. However, we use it to properly define a specific multivariate Gaussian

distribution. More precisely, the SEM (3.18) leads to a parsimonious parametrization

of the correlation matrix of the d-dimensional random vector X, see Brechmann and

Joe (2014). For example, the corresponding correlations and partial correlations can be

expressed in terms of ϕ. Additionally, we can directly impose conditional independence

in the multivariate Gaussian distribution by setting specific ϕj,κi(j) = 0 in the SEM for

j = 1, . . . , d and i = {1, . . . , j − 1}. Consider the following example.

Example 3.18 (Conditional independence in SEMs). Assume we have the following SEM

in four dimensions.
X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

X3 = ϕ3,1X1 + ϕ3,2X2 + ψ3ε3,

X4 = ϕ4,1X1 + ϕ4,2X2 + ψ4ε4.

(3.19)

First, we monitor that X3 and X4 are jointly only governed by X1 and X2 and their cor-

responding random errors. This leads to the conclusion that the SEM induces X3 ⊥⊥ X4 |
X1, X2. This can be seen as in following. X3 and X4 can be rewritten in terms of X1, X2

and their corresponding error terms. Each covariance of either X1 or X2 conditioned on

X1, X2 is zero. The only remaining term is

Cov (ε3, ε4|X1, X2) = Cov (ε3, ε4) = 0,

which can be concluded because of the mutual independence of εj for j = 1, . . . , d and the

assumption that εj is independent of X1, . . . , Xj−1 for j = 2, . . . , d.

This can be seen also even more easily in terms of graphical models and works as

following. Based on a SEM in (3.18), define a graph G = (V = {1, . . . , d} , E = ∅) and

then add arrows Xκi(j) → Xj for each j ∈ 2, . . . , d and i = 1, . . . , j − 1. In other words,

each non-zero right hand side term Xκi(j) yields an arrow Xκi(j) → Xj. Thus, clearly,

G is a DAG since in a SEM we have that κi (j) ∈ {1, . . . , j − 1}. Now, by Peters and

Bühlmann (2014), the joint distribution of X = (X1, . . . , Xd) is uniquely determined by

G and it is Markov with respect to G. Additionally, if the SEM has at most k summands

43

Chapter 3 Mathematical Foundations and Sparse Modelling

on the right hand side of (3.18), we obtain a k-DAG. Furthermore, G has a topological

ordering 1, . . . , d.

Example 3.19 (Example 3.18 cont.). Consider the SEM of (3.19) again. Then we can

define a DAG G by drawing arrows from each right hand side term to its left hand side

term and obtain the DAG G in Figure 3.10.

1

2

3 4

Figure 3.10: Example 3.19: DAG G in four dimensions.

We can use the directed local Markov property (3.15) to directly conclude

3 ⊥ 4 | 1, 2 [G]⇒ 3 ⊥⊥ 4 | 1, 2.

Finally, recall that these considerations can be made since we assume multivariate

Gaussianity for our models at the moment. For more general cases including strictly

positive densities, see Lauritzen (1996, Chapter 2).

44

Chapter 4

Representing Sparse Gaussian DAGs as

Sparse R-vines

We will now introduce the first of three methods for estimation of high dimensional

vine copulas. The basic idea is to use a Gaussian graphical model, more precisely, a

Gaussian k-DAG as a proxy to exploit on the one hand side structural information about

the corresponding R-vine structure. On the other hand side, conditional independence

information can be drawn from the DAG which can be used to make the R-vine more

parsimonious and reduce estimation effort. There have been previous efforts to relate

Gaussian DAGs or Bayesian Networks to copulas and vines. The work by Elidan (2010)

exchanges Gaussian densities in (3.16) by copula densities. However, this leads to the

consideration of copula densities in arbitrary dimensions and which is cumbersome as

laid out in Section 2.1.4. The work by Bauer et al. (2012) and Bauer and Czado (2016)

develops a pair copula construction for a DAG. Yet, this construction does not have the

desirable property of an R-vine that all arguments of higher order copula functions are

explicitly given in terms of lower order trees. Hence, it involves numerical integration

with respect to arbitrary dimensions and is thus not feasible in high dimensional setups.

Finally, Pircalabelu et al. (2017) estimate the factors in (3.16) by a quotient of C- and

D-vine densities to obtain conditional densities. Yet, this approach does not lead to a

joint multivariate distribution in general.

The outline of the chapter is as follows. First, we motivate our approach by illustrating

the opposite transformation, i. e. how sparse R-vines can be represented by DAGs. Then,

we tackle the original problem in the case of a 1-DAG which is particularly simple. Next,

we consider the general case of a k-DAG and give sufficient conditions under which a k-

DAG can be represented as a k-truncated R-vine. We will rigorously prove the statement

and illustrate it throughout with examples. Afterwards, we give classes of k-DAGs for

which we can generally prove the existence of a k-DAG representation and derive some

necessary conditions along with some further information. As we see, the assumptions

we have to impose on a k-DAG to obtain a k-truncated R-vine representation are quite

strong. So, we motivate a more heuristic procedure which can be carried out in any case.

We sketch an algorithmic implementation and finally give a data example.

The material presented in this chapter is a slight extension of Müller and Czado (2017b).

45

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

4.1 Motivation: Combinatorial Example

A brief motivation can be given in terms of a combinatorial consideration. We show that,

given a k-DAG G on d vertices, see Definition 3.13, the number of arrows in G is less or

equal than the number of edges in the first k R-vine trees of an R-vine in d dimensions.

Thus, we get an idea to relate the edges in the DAG with the non-independence copulas

in a k-truncated R-vine.

Lemma 4.1 (Correspondence between the number of arrows in a DAG and edges in an

R-vine). Let G = (V,E) be a k-DAG with |V | = d and let T1, . . . , Tk be an arbitrary

R-vine tree sequence where T1 has d nodes. Then, the number of arrows in G is less or

equal the number of edges in the first k R-vine trees, T1, . . . , Tk.

Proof. We label the nodes of the DAG G according to its topological ordering and count

the maximum number of parents for each node. Node v1 has no parent, and node v2

can only have one parent, i. e. v1. Node v3 might have two parents, v4 might have three

parents and so on. This can be continued to maximumly k parents for node vk+1 and

then remains constant with k parents until vd. Thus, an upper bound for the number of

arrows in the DAG G is

(
k−1∑

i=1

i

)
+ k · (d− k) = kd− k2 +

k (k − 1)

2
= kd− k (k + 1)

2
. (4.1)

In a k-truncated R-vine, the R-vine tree sequence can be divided in the first k trees and

the last d − 1 − k trees. The number of edges in all R-vine trees is d (d− 1) /2 and tree

Ti has d− i edges for i = 1, . . . , d− 1. Thus, the number of edges in the first k trees is

k∑

i=1

(d− i) = kd− k (k + 1)

2
,

which is equal to the number of arrows in a DAG with at most k parents, see (4.1).

Thus, it is quite natural to try resembling k-DAGs as k-truncated R-vines by matching

the corresponding edges in the DAG to unique conditioned sets of non-independence

copulas in the R-vine. We will sketch this proceeding more in the next section, where we

show how k-truncated R-vines can be represented by DAGs.

4.2 Representing Truncated R-vines as DAGs

To establish a connection between k-truncated Gaussian R-vines and DAGs, we fol-

low Brechmann and Joe (2014) using structural equation models (SEMs). Let V =

(T1, . . . , Td−1) be an R-vine tree sequence and assume without loss of generality {1, 2} ∈ T1

and for j = 3, . . . , d denote the edges in T1 by {j, κ1 (j)} with κ1 (j) ∈ {1, . . . , j − 1}. The

higher order trees contain edges j, κi (j) |κ1 (j) , . . . , κi−1 (j) ∈ Ti for i = 2, . . . , d− 1 with

46

4.2 Representing Truncated R-vines as DAGs

κi (j) ∈ {1, . . . , j − 1}. Based on this R-vine, define the associated SEM S (V) by

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

Xj =

j−1∑

i=1

ϕj,κi(j)Xκi(j) + ψjεj,

(4.2)

with εj ∼ N (0, 1) i.i.d. and ψj such that Var (Xj) = 1 for j = 1, . . . , d. Additionally, recall

that εj is independent of X1, . . . , Xj−1 for j = 2, . . . , d and Xj ∼ N (0, 1), j = 1, . . . , d.

In other words, given the R-vine matrix M , the diagonal of M can be extracted to be

the inverse ordering on the left hand side of the SEM. The right hand side can then be

written down using the columns of the R-vine matrix M . Thus, equation j in the SEM is

given by XMd−j+1,d−j+1
on the left hand side and XMd,d−j+1

, . . . , XMd−j+2,d−j+1
as non-zero

coefficients on the right hand side for Xj with j = 1, . . . , d. By definition of the function

κ, we implicitly imposed that the main diagonal of the R-vine matrix is (d, . . . , 1). This

is an easy way to represent a Gaussian truncated R-vine by an SEM. Leading to DAGs,

we have that based on S (V), we define a graph G = (V = {1, . . . , d} , E = ∅) and then

add arrows Xκi(j) → Xj for each j ∈ 2, . . . , d and i = 1, . . . , j − 1. In other words, each

conditioned set of the R-vine yields an arrow. As seen previously in Section 3.4, G is a

DAG and the joint distribution of X = (X1, . . . , Xd) is uniquely determined by G and it

is Markov with respect to G. Additionally, if the R-vine is k-truncated, we have at most k

summands on the right hand side of (4.2) and thus, obtain a k-DAG. Furthermore, G has

a topological ordering 1, . . . , d which is the inverse of the R-vine matrix main diagonal.

We now show that if there is a truncation, then two different R-vines may have the same

DAG representation.

Example 4.2 (Different 2-truncated R-vines with same DAG representation in four di-

mensions). Consider the following two 2-truncated R-vines in Figure 4.1 and Figure 4.2

and their 2-DAG representation, Figure 4.3. Since the conditioned sets of V1 and V2 in

the non-truncated trees are the same, both R-vines have the same DAG representation G2.

The coefficients on associated edges of DAGs are however different, so correlation matri-

ces are different even if the DAG structure is the same. Yet, both correlation matrices

are belonging to distributions which are Markov with respect to G2. Thus, the conditional

independencies in the R-vine imposed by the truncation are reflected by the directed local

Markov properties in the DAG.

2

1

3 4

1,2

1,
3 1,4

1,3

1,2 1,4

2,3|1

2,4|1

Figure 4.1: Example 4.2: R-vine V1.

1

2

3 4

2,1

2,
3 2,4

2,3

2,1 2,4

1,3|2

1,4|2

Figure 4.2: Example 4.2: R-vine V2.

47

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

1

2

3 4

Figure 4.3: Example 4.2: DAG G2 associated to V1 and V2.

This demonstrates how conditional independencies in R-vines are represented by DAGs.

Our goal is to find R-vines representing the conditional independencies given by a DAG

which will be covered next.

4.3 Representing DAGs as Truncated R-vines under

Sufficient Conditions

First, we formalize our understanding of an R-vine representation of a DAG. The idea is

that the R-vine tree sequence is based on the k-DAG G which imposes a k-truncation.

Definition 4.3 (R-vine representation of a DAG). Let G = (V,E) be a k-DAG. A k-

truncated R-vine representation of G is an R-vine W (G) = (V ,B (V) ,Θ (B (V))) with

R-vine tree sequence V = (T1, . . . , Td−1) such that the R-vine trees Tk+1, . . . , Td−1 contain

edges [j (e) , ` (e) ;D (e)] where j (e) ⊥⊥ ` (e) | D (e) by G.

We will now find R-vine representations for 1-DAGs, continued by representations for

general k-DAGs afterwards.

4.3.1 Representing 1-DAGs as 1-Truncated R-vines

A representation of a 1-DAG, i. e. a Markov-tree, is particularly easy to find.

Proposition 4.4 (Representing Markov Trees). Let G = (V,E) be a 1-DAG. There exists

a 1-truncated R-vine representation W (G) of G. If |E| = d− 1, T1 = Gs = Gm.

The proof will be made using results from the general part and thus, deferred to a

later section. For the moment, it suffices to see that in the special case of a 1-DAG, the

skeleton is an undirected graph and is the first R-vine tree T1 of an R-vine representation.

We will now consider the general case.

4.3.2 Representing k-DAGs under Sufficient Conditions

Let G = (V,E) be an arbitrary k-DAG. We evaluate sufficient conditions such that an

incomplete R-vine tree sequence (T1 = (V,E1) , . . . , Tk = (Vk, Ek)) can be extended to a

k-truncated R-vine representation W (G) of G.

48

4.3 Representing DAGs as Truncated R-vines under Sufficient Conditions

A1. For all v, w ∈ V with w ∈ pa (v), there exists an i ∈ {1, . . . , k} and e ∈ Ei such that

j(e) = v, `(e) = w. Here, pa (v) is specified by the DAG G.

A2. The main diagonal of the R-vine matrix M of T1, . . . , Tk can be written as decreasing

topological ordering of the DAG G, {η−1 (d) , . . . , η−1 (1)} from the top left to bottom right.

Based on the 2-DAG G in Example 3.14, we consider an incomplete R-vine tree sequence

satisfying the assumptions A1 and A2 for an R-vine representation of G2.

Example 4.5 (Example 3.14 cont.). Denote pa (v) = {wv1 , wv2} for v ∈ {4, 5, 3}. The

corresponding R-vine can be seen in Figure 2.1 of Example 2.5, T1 and T2.

M =

4

5

3

6

w4
2 = 2 w5

2 = 6 w3
2 = 2 1 2

w4
1 = 5 w5

1 = 2 w3
1 = 6 w6

1 = 2 w2
1 = 1 1

The assumption A1 links each conditioned set in an edge in one of the first k R-vine

trees to an arrow in the DAG G. We already observed this in Example 4.2. Note that

in a R-vine, each pair j (e) , ` (e) ∈ 1, . . . , d occurs exactly once as conditioned set, see

Kurowicka and Cooke (2006, p. 96). A2 maps the topological ordering of G onto the

structure of the R-vine such that

j (e) 6>G ` (e) for each e ∈ E1, . . . , Ed−1. (4.3)

In other words, for each conditioned set j (e) , ` (e), the first entry j (e) comes after the

second ` (e) in the topological ordering of the DAG G. This can be seen as for a column

p, the elements Mp+1,p, . . . ,Md,p must occur as a diagonal element to the right of p, i. e.

as diagonal entries in a column p + 1, . . . , d. By definition of topological orderings, we

obtain (4.3). To interpret A2, recall that in a DAG we have v ⊥⊥ nd (v) | pa (v). For the

higher order trees Tk+1, . . . , Td−1 we want to truncate, A1 assures that all parents pa (v)

are in the conditioning set in edges of these trees. A2 gives us that only pairs of v, w for

w ∈ nd (v) are in the conditioned sets in Tk+1, . . . , Td−1. This is related to the topological

ordering since the later a node occurs in it, the more non-descendants it has.

We now state our main theorem, defining what can at best be attained in terms of an

R-vine representation for some k-DAG.

Theorem 4.6 (Representing DAGs as truncated R-vines). Let G = (V,E) be a k-DAG.

If there exists an incomplete R-vine tree sequence (T1 = (V,E1) , . . . , Tk = (Vk, Ek)) such

that A1 and A2 hold, then a k-truncated R-vine representation W (G) exists with R-vine

tree sequence V = (T1, . . . , Td−1), where T1, . . . , Tk can be completed non-uniquely with

R-vine trees Tk+1, . . . , Td−1 which only contain independence copulas. In particular, these

independence copulas encode conditional independencies derived from the k-DAG G by the

directed local Markov property.

49

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

For the proof, we first present two lemmas. The first makes assertions about the

conditioned sets in higher order R-vine trees with respect to DAG properties.

Lemma 4.7. Let G be a k-DAG and T1, . . . , Tk an R-vine tree sequence satisfying the

assumptions A1 and A2. For each [j (e) , ` (e) ;D (e)] with e ∈ Ek+1, . . . , Ed−1, we have

` (e) ∈ nd (j (e)).

Proof. Consider an arbitrary edge [j (e) , ` (e) ;D (e)] for e ∈ Ek+1, . . . , Ed−1. We have

` (e) /∈ pa (j (e)), since conditioned sets in an R-vine tree sequence are unique and all

conditioned sets of the form j (e) , ` (e) with ` (e) ∈ pa (j (e)) occurred already in the

first k trees by A1. Additionally, ` (e) /∈ de (j (e)), since otherwise would violate A2, as

` (e) >G j (e). Finally, ` (e) 6= j (e), since the two elements of a conditioned set must be

distinct. Thus, we have ` (e) /∈ (pa (j (e)) ∪̇ de (j (e)) ∪̇ j (e)) = V \ nd (j (e)) and hence

` (e) ∈ nd (j (e)).

We will use the previous example to showcase this property.

Example 4.8 (Example 4.5 cont.). Illustrating Lemma 4.7, consider the R-vine matrix M

of Example 4.5 and column 3. To complete M , we need to fill in e. g. M4,3. Valid entries

can come from the main diagonal of M right of 3, i. e. {M4,4,M5,5,M6,6} = {6, 2, 1}. Since

pa (3) = {2, 6} and by A1, the edges in the first two R-vine trees are {3, 6} and 3, 2|6, the

only remaining entry is M4,3 = 1. This can only be a non-descendant of 3 because of A2.

The next lemma is necessary to precisely define the contents of the conditioning set in

higher order trees.

Lemma 4.9. Let G be a k-DAG and T1, . . . , Tk an R-vine tree sequence satisfying the

assumptions A1 and A2. For each [j (e) , ` (e) ;D (e)] with e ∈ Ek+1, . . . , Ed−1, we have

D (e) ⊆ {pa (j (e)) ∪̇ nd (j (e))}.
Proof. Consider j (e′) , ` (e′) ;D (e′) for e′ ∈ Ek+1. We have the following two cases.

First case: |pa (j (e′))| = k. All parents of j (e′) occurred in the conditioned set of edges

together with j (e′) in the first k R-vine trees. Hence, pa (j (e′)) = D (e′) and |D (e′)| = k.

Second case: |pa (j (e′))| =: kj(e′) < k. Similarly to the first case, we conclude pa (j (e′)) ⊂
D (e′). Let D (e′) \ pa (j (e′)) = D1 with |D1 (e′)| = k− kj(e′) > 0. To obtain the elements

of D (e′), recall A2 and consider the column of the R-vine matrix M in which j (e′) is in

the diagonal, say column p. The entries {Md−k,p, . . . ,Md,p} describe the elements which

occurred in conditioned sets together with j (e′) in the first k trees. As these entries may

only be taken from the right of Mp,p = j (e′), these must be non-descendants of j (e′). To

conclude the statement for the R-vine trees Tk+2, . . . , Td−1, we use an inductive argument.

Let e′′ ∈ Ek+2 and j (e′′) is in the diagonal of the R-vine matrix M in column p. Then,

for the conditioning set of e′′ we have D (e′′) = Md−k−1,p ∪̇ {Md−k,p, . . . ,Md,p}. For the set

{Md−k,p, . . . ,Md,p} we have shown that it can only consist of parents and non-descendants

of j (e′′). As Md−k−1,p can only have a value occurring in the main diagonal of the R-vine

matrix to the right of column p, it must be a non-descendant of j (e′′). The same argument

holds inductively for the trees Tk+3, . . . , Td−1. Thus, we have shown that for each edge

[j (e) , ` (e) ;D (e)] with e ∈ Ek+1, . . . , Ed−1 we have D (e) ⊆ {pa (j (e)) ∪ nd (j (e))}.

50

4.3 Representing DAGs as Truncated R-vines under Sufficient Conditions

Again, we continue with our previous example and see how the aforementioned property

affects the R-vine structure.

Example 4.10 (Example 4.8 cont.). Consider the first column of M with M1,1 = 4. Since

pa (4) = {2, 5}, {4, 5} ∈ E1 and 4, 2|5 ∈ E2, independently of the values in M2,1, . . . ,M4,1,

pa (4) = {2, 5} is in the conditioning set for each of the edges associated to these entries

of M . There are more nodes in the conditioning set, which are non-descendants of 4 by

A2.

We now conclude with the proof of Theorem 4.6 using the Lemmas 4.7 and 4.9. The

main idea is to use the general expression for pair copulas in higher order trees and to

relate it to the directed local Markov property in the corresponding DAG.

Proof. Abbreviate je ≡ j (e) , `e ≡ ` (e) , De ≡ D (e) and set je, `e|De ≡ [j (e) , ` (e) ;D (e)]

with e ∈ Ek+1, . . . , Ed−1 arbitrary but fixed. For the node je in the DAG G we have by the

directed local Markov property (3.15) that je ⊥⊥ nd (je) | pa (je) and thus with Lemma

4.7,

je ⊥⊥ `e ∪̇ (nd (je) \ `e) | pa (je) . (4.4)

Set n̂d (je) := De \pa (je) with n̂d (je) ⊆ nd (je) by Lemma 4.9, plug it into (4.4) obtain-

ing

je ⊥⊥
(
`e ∪̇

((
nd (je) \ `e

)
\ n̂d (je)

)
∪̇ n̂d (je)

)
| pa (je) , (4.5)

exploiting `e ∩ n̂d (je) = ∅, i. e. a node can not be part of the conditioning and the

conditioned set of the same edge. Applying Proposition 3.6 on (4.5) yields je ⊥⊥ `e ∪̇
n̂d (je) | pa (je) by dropping

(
(nd (je) \ `e) \ n̂d (je)

)
in (4.5). `e ∪̇ n̂d (je) is a disjoint

union on which Proposition 3.6 can be applied to conclude je ⊥⊥ `e | pa (je) ∪̇ n̂d (je).

By definition of n̂d (je), we have De = pa (je) ∪̇ n̂d (je) and obtain the final result je ⊥⊥
`e | De for e ∈ Ek+1, . . . , Ed−1. Since each edge is assigned a pair copula density, we can

now choose the independence copula density c⊥ for these edges in Ek+1, . . . , Ed−1 backed

by the conditional independence properties of the DAG. The resulting R-vine is thus a

k-truncated R-vine.

Finally, we illustrate how the previous results all come together to draw conditional

independence statements for higher order R-vine trees.

Example 4.11 (Example 4.10 cont.). We illustrate Theorem 4.6 using the previous Exam-

ples 4.8 and 4.10. Consider column 1 of M and edge 4, 3|256 ∈ E4. From the conditional

independence 4 ⊥⊥ 1, 3, 6 | 2, 5 obtained from the DAG G, we select the non-descendants

of 4 to neglect, i. e. 1, to yield 4 ⊥⊥ 3, 6 | 2, 5 by application of Proposition 3.6 and finally

4 ⊥⊥ 3 | 2, 5, 6 by second application of Proposition 3.6.

With the main result in Theorem 4.6, we can now also easily provide the proof for

Proposition 4.4.

51

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

Proof. We assume |E| = d − 1. If not, the argument can be applied to each weakly

connected subgraph of G. Since k = 1, there are no v-structures, hence, the moral graph

Gm is the skeleton Gs of G and Gm is connected. Since there are d− 1 arrows in G, there

are d−1 undirected edges in Gm. Since each connected graph on d nodes with d−1 edges

is a tree, Gm is a tree. Additionally, each edge in Gm corresponds to an arrow w ↔ v in

the DAG G, satisfying Assumption A1. The main diagonal of the R-vine matrix can be

chosen to be a decreasing topological ordering of G by starting with a node which has no

descendants but one parent, say vd and let the corresponding R-vine matrix M be such

that M1,1 = vd. Thus, its parent and all other nodes must occur on the diagonal to the

right of it. Next, take a node which has either one descendant, i. e. vd or no descendant,

denote vd−1 and set M2,2 = vd−1. This can be repeated until v1 = Md,d and determines the

R-vine matrix main diagonal which is a decreasing topological ordering of G, satisfying

Assumption A2 onto which Theorem 4.6 applies.

This describes the main theoretical part of our work. Under quite strong assumptions,

we were able to relate Gaussian k-DAGs to Gaussian k-truncated R-vines. However, we

see that our assumptions imposed that we already had an incomplete R-vine tree sequence

which was then extended. Finding the R-vine representation W (G) of an arbitrary k-

DAG G is a complex combinatorial problem as the existence of an incomplete R-vine tree

sequence satisfying A1 and A2 is not clear. We now show special classes of k-DAGs where

we can prove the existence of their k-truncated R-vine representations.

4.3.3 Special k-DAGs with R-vine Representations

Corollary 4.12 (k-DAGs with R-vine representation). Let G = (V,E) be a k-DAG such

that V = {v1, . . . , vd} is an increasing topological ordering of G. If, for all vi ∈ V , (a)

pa (vi) ⊆ {vi−k, . . . , vi−1} for all i > k, then an R-vine representation W (G) of G exists;

(b) pa (vi) ⊆ {v1, . . . , vk} for all i > k, an R-vine representation W (G) of G exists.

For these special k-DAGs, we can prove their R-vine representations in terms of k-

truncated D-vines and k-truncated C-Vines.

Proof. Case (a): Let pa (vi) ⊆ {vi−k, . . . , vi−1}. The R-vine representationW (G) is given

by T1 being a path from v1 to vd according to the topological ordering of G, i. e. a D-vine.

Because of the proximity condition, T2, . . . , Td−1 are uniquely determined by T1. In tree

Tj, the edges have the form vi, vi−j|vi−j+1, . . . , vi−1 and each conditioned set in the first k

R-vine trees represents an arrow of G, satisfying A1. A2 also holds since in a D-vine, the

main diagonal of the R-vine matrix can be written as ordering vd, . . . , v1 of the path in

T1.

Case (b): If pa (vi) ⊆ {v1, . . . , vk}, T1 is given a star with central node v1. T2 is a star

with central node {v1,v2} and so on, giving rise to a C-vine. In tree Tk−j, the edges have

the form vi, vk−j|v1, . . . , vk−j−1 for i ≥ k, satisfying A1. The main diagonal of the R-vine

matrix of a C-vine is ordered according to the central nodes in the C-vine, satisfying A2.

To both, Theorem 4.6 applies. Examples of a 2-DAG with D-vine and a k-DAG with

C-vine representation are shown in Figure 4.4.

52

4.3 Representing DAGs as Truncated R-vines under Sufficient Conditions

We show graphical examples of the aforementioned special k-DAG classes in Corollary

4.12.

1

2

3

4

5

...

...

d

1 2 ... k

k + 1 k + 2 ... d

Figure 4.4: Examples of DAGs with D-Vine (left) and C-vine (right) representation.

In practical applications, given a k-DAG G, it is most important to find a suitable

first R-vine tree T1 of an R-vine representation W (G) since this tree puts significant

restrictions on the higher order R-vine trees by the proximity condition. Hence, given

some DAG, it makes sense to impose necessary conditions on the first R-vine tree which

have to hold for an R-vine representation to exist.

4.3.4 A Necessary Condition for R-vine Representations

Proposition 4.13. Assume a k-DAG G = (V,E), recall kv = |pa (v)| ≤ k and

V v := {v, pa (v)} =
{
v, wv1 , . . . , w

v
kv

}
, v ∈ V.

For v ∈ V , denote the induced subgraphs T v1 := (V v, Ev) ⊆ T1 of T1 = (V,E1) on

V v. Thus, Ev contains all edges in T1 between nodes of V v. If there exists an R-vine

representation W (G) with incomplete R-vine tree sequence V = (T1, . . . , Tk) such that A1

and A2 hold, then, T1 = (V,E1) must be such that

(i) for all v ∈ V with pa (v) = k, T v1 contains a path involving all nodes of V v,

(ii) the union of the induced subgraphs
⋃
i∈I T vi1 :=

(⋃
i∈I V vi ,

⋃
i∈I Evi

)
⊆ T1 is

acyclic for I := {i ∈ V : |pa (vi)| = kvi = k}.

We prove the result using the proximity condition and graphical arguments.

Proof. To show (i), assume (T1, . . . , Tk) of W (G) satisfies A1 and A2. Choose v ∈ V

with kv = k arbitrary but fixed. Order the set pa (v) = {wv1 , . . . , wvk} such that v, wvi
is the conditioned set of an edge e ∈ Ei, i = 1, . . . , k, ensured by A2. Then, by the

proof of Theorem 4.6, each edge e ∈ Ei, i = 1, . . . , k corresponding to v ∈ V must have

the form v,wvi |wv1 , . . . , wvi−1. By the set formalism, see Example 2.5, and the proximity

condition, see (iii) on page 17, we have {{v,wv1} , {wv1 ,wv2}} ∈ E2 requiring {v,wv1} ∈ E1 and

{wv1 ,wv2} ∈ E1. For {{{v, wv1} , {wv1 , wv2}} , {{wv1 , wv2} , {wv2 , wv3}}} ∈ E3 we can conclude in

a first step {{wv1 ,wv2} , {wv2 ,wv3}} ∈ E2 and in a second step {wv2 , wv3} ∈ E1. This can be

extended to Ek and yields
{
wvi , w

v
i+1

}
∈ E1 for i = 1, . . . , k − 1. Thus, v and its parents,

i. e. V v represent a path in T v1 . Showing (ii), for each i ∈ I the graph T vi1 is a subgraph

of T1 by (i). Thus, the union of T vi1 over all i ∈ I must be a subgraph of T1. Since T1 is

a tree, it is acyclic, hence, each of its subgraphs must be, and so the graph in (ii).

53

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

Whereas the proof of (i) is a direct consequence of the proximity condition, the proof

of (ii) is less intuitive. Hence, we show a graphical example illustrating it.

Example 4.14 (DAG in six dimensions). Consider the DAG G in Figure 4.5. By Proposi-

tion 4.13, we need to find an R-vine tree T1 = (V,E1) such that the induced subgraphs T v1 =

(V v, Ev) ⊆ T1 contain paths involving all nodes of V v for V v ∈ {{4, 1, 2} , {5, 1, 3} , {6, 2, 3}}.

1

23

45

6

T 5
1

T 6
1

T 4
1

Figure 4.5: Example 4.14: DAG G

Then, use the path T 4
1 from 1 to 2, T 6

1 from 2 to 3 and finally T 5
1 from 3 to 1. However,

this creates a cycle in T1, which is a contradiction. Removing any edge which closes the

cycle yields an induced subgraph which is not connected. Thus, the DAG G2 can not be

represented by a 2-truncated R-vine. 3-truncated R-vines are given in the Figures 4.6 and

4.7.

1

23

45

6

1

23

45

6

1

23

45

6

1

23

45

6

1

23

45

6

1

23

45

6

Figure 4.6: Example 4.14: Six admissible choices of first R-vine trees T1 leading to a
3-truncated R-vine.

54

4.3 Representing DAGs as Truncated R-vines under Sufficient Conditions

1

23

45

6

1,3

1,41,5

2,3

2,6

1,3

2,3

1,41,5

2,6

3,
6|2

3,5|1 3,4|1

1,
2|3

1,2|3

3,4|13,5|1

3,6|2

1,
6|2

3

2,4|132,
5|1

3

2,4|132,5|13

1,6|23

5,
6|1

23

4,6|123

Figure 4.7: Example 4.14: First four R-vine trees T1, T2, T3, T4 (from left to right), showing
the 3-truncation as given by the conditional independence properties in the
DAG G. Note that 24|13 can not be set to the independence copula since 2 is
a parent of 4.

Based on Proposition 4.13, we are given an intuition how to construct an admissible first

R-vine tree T1 of an R-vine representation W (G) of a DAG G. Moreover, it also yields a

best possible truncation level k′ > k for which a k′-truncated R-vine representation exists.

Corollary 4.15 (Best possible truncation level k′). Consider a k-DAG G = (V,E). Let

T1 = (V,E1) be a tree and for each v, w ∈ V let δwv be the length of the unique path from

v to w in T1. If T1 is extended by successive R-vine trees Ti, i ∈ {2, . . . , d− 1}, then the

truncation level k′ can be bounded from below by

k′ ≥ max
v∈V

max
w∈pa(v)

δwv .

Proof. Since T1 is a tree, all paths are unique. If not, there exist two distinct paths

between v and w and both paths together are a cycle from v to v. Consider an arbitrary

node v ∈ V with parents pa (v) =
{
wv1 , . . . , w

v
kv

}
in G such that wvkv := arg maxw∈pa(v) δ

w
v ,

then there exists a unique path from v to wvkv , v = α0, . . . , αδwv = wvkv . From Theorem 4.6,

our goal is to obtain edges with conditioned sets v, w with w ∈ pa (v) in an R-vine tree

Ti with lowest possible order i. Similar to the proof of Proposition 4.13, we try to obtain

an edge

v, wvkv |α1, . . . , αδwv −1 ∈ Tδwv , (4.6)

with δwv − 1 entries in the conditioning set. The conditioned set of 4.6 can not occur in a

tree Ti with i < δwv because of the proximity condition and since the path between v and

wvkv is unique. By the d-separation, page 38, two nodes in a DAG connected by an arrow,

i. e. v and its parent wvkv , can not be d-separated by any set S. Thus, the pair copula

density associated to the edge (4.6) in Tδwv is not the independence copula density c⊥.

This tree Tδwv is characterized by a path distance in T1 and the maximum path distance

over all parents of v ∈ V yields the highest lower bound. As it has to hold for all v ∈ V ,

we obtain a lower bound for the truncation level k′ by the maximum over all v ∈ V .

We present a brief example for the Corollary.

Example 4.16 (Example for Corollary 4.15). Consider the R-vine tree T1 in Figure 4.8.

55

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

1

2

3 4 5

6

7

Figure 4.8: Example 4.16: R-vine tree T1

Assume an underlying DAG G with 1 ∈ pa (7). We have a lower bound for the trunca-

tion level k′ ≥ 4 since the path in T1 from 7 to 1 is 7 − 5 − 4 − 3 − 1 with a path length

`1
7 = 4. Not earlier as in tree T4, i. e. not in the trees T1, T2, T3 an edge with conditioned

set 7, 1 can be obtained which can not be represented by the independence copula. The

corresponding edges in the trees T1, . . . , T4 are as follows.

T1 : 1, 3 3, 4 4, 5 5, 7

T2 : 1, 4|3 3, 5|4 4, 7|5
T3 : 1, 5|3, 4 3, 7|4, 5
T4 : 1, 7|3, 4, 5

Summing up, A1 and A2 are strong assumptions and hence only rarely satisfied for

arbitrary DAGs. This motivates an heuristic approach for arbitrary k-DAGs to find a

sparse R-vine representation exploiting their conditional independencies, even if no exact

representation in the sense of Definition 4.3 exists.

4.4 Representing Arbitrary k-DAGs

From the more theoretical arguments in the previous section, we will now consider more

explicitly k-DAGs fitted on data. Our goal is to find an R-vine representation W (Gk) of

an arbitrary k-DAG Gk for k ≥ 2. This R-vine representation W can then equipped with

non-Gaussian pair copulas for each non-independence copula. For the first R-vine tree

T1, we have dd−2 candidates. Considering all these and checking Proposition 4.13 is not

feasible. Additionally, A2 is hard to check upfront since it is not fully understood how

a certain R-vine matrix diagonal relates to specific R-vines. Fixing the main diagonal

may also result in suboptimal models. Hence, Theorem 4.6 can not be applied directly.

With the motivation, that we have data on which we can fit k-DAGs using e. g. the Hill-

Climbing algorithm, see Section 3.3.5, we want to sketch an algorithm allowing first of

all to learn the R-vine structure from the structure of the DAGs. Second, as outlined,

the goal is to incorporate conditional independence from the DAG models to regulate for

sparsity.

4.4.1 Algorithmic Implementation

By A1, arrows in Gk shall be modelled as conditioned sets in R-vine trees Ti for i ∈
{1, . . . , k}. Yet, for k ≥ 2, there may be up to kd− (k (k + 1)) /2 candidate edges for T1

56

4.4 Representing Arbitrary k-DAGs

which is limited to d−1 edges. Hence, it is crucial to find the most important arrows of Gk
for T1. An heuristic measure for the importance of an arrow v → w in Gk, fitted to data,

is how often the arrow v → w exists in 1,. . . ,k− 1-DAGs G1, . . . ,Gk−1, also fitted to data.

However, also an arrow w → v is possible. Since R-vines are undirected graphical models,

we neglect the orientation of arrows in the DAGs by considering their skeletons. Thus, for

each edge (v, w) in the skeleton Gsk of the DAG Gk we estimate DAGs G1, . . . ,Gk−1 using

the data, obtain their skeletons Gs1, . . . ,Gsk−1 and count how often the edge (v, w) exists

in these graphs. An edge (v, w) ∈ Gsi might be more important than an edge (v, w) ∈ Gsj
with i < j, which we describe by a non-increasing function of the maximum number of

parents g(i). Formally, consider i-DAGs Gi for i = 1, . . . , k estimated using the data.

Denote Gsi = (V,Es
i) the skeleton of Gi for i = 1, . . . , k and define an undirected graph

H =
(
V,EH1

)
:=
⋃k
i=1 Gsi with edge weights µ1 for (v, w) ∈ EH1 given by

µ1 (v, w) :=
k∑

i=1

g (i)1{(v,w)∈Esi} (v, w) , (4.7)

with g (i) > 0 non-increasing for i = 1, . . . , k. Since we have for the weights g (i) > 0,

we obtain µ1 ≥ 0. In the remainder of this section, assume g (i) ≡ 1 for simplicity. This

is also chosen in our algorithmic implementation. Now, on H, find a maximum spanning

tree T1 by, e. g. Prim (1957), maximizing the sum of µ1. The higher order trees are built

iteratively. Define a full graph T2 = (V2, E2) on V2 = E1 and delete each edge in E2 not

allowed by the proximity condition. Additionally, let g (k) > µ0 > 0 . Denote the edges

by [j (e) , ` (e) ;D (e)] for e ∈ E2 and set

µ2 (e) = µ1 (j (e) , ` (e)) if µ1 (j (e) , ` (e)) > 0,

µ2 (e) = µ0 if j (e) ⊥d ` (e) | D (e) [Gk] ,
µ2 (e) = 0 if µ1 (j (e) , ` (e)) = 0 and j (e) 6⊥d ` (e) | D (e) [Gk] .

(4.8)

Thus, µ2 (e) > 0 if its conditioned set is an edge in at least one of the skeletons Gs1, . . . ,Gsk.
Since we can not ensure A2, and thus not use the directed local Markov property as in

Theorem 4.6. We overcome this using d-separation. For [j (e) , ` (e) ;D (e)], e ∈ Ei, 2 ≤
i ≤ d− 1, we check j (e) ⊥d ` (e) | D (e) [Gk]. To facilitate conditional independence, i. e.

sparsity, for e ∈ E2 we assign µ0 > 0. In the remainder, µ0 := g (k) /2 = 1/2 since g (·) is

constant, i. e. it will not exceed the weight of an edge [j (e) , ` (e) ;D (e)] with j (e)↔ ` (e)

in any of the DAGs G1, . . . ,Gk as we want to model relationships in the DAGs prioritized.

All other weights are zero and a maximum spanning tree algorithm is applied on E2. If

an edge with weight µ0 is chosen, we can directly set the independence copula by virtue

of the d-separation, and thus, conditional independence. We repeat this for T3, . . . , Td−1.

Since each pair of variables occurs exactly once as conditioned set in an R-vine, each

weight µ1 in H is used exactly once. The actual truncation level k′ is such that the R-vine

trees Tk′+1, . . . , Td−1 contain only the independence copula. The corresponding algorithm

is given in Appendix A.3 and we will describe it using a subsequent toy example. Note

that the d-separation can be easily checked for example by an implementation of the

57

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

Bayes-Ball algorithm, see e. g. Shachter (1998).

4.4.2 Toy Example

Example 4.17 (Heuristics for transformation). Consider the DAGs Gk, k = 1, 2, 3, with

at most k parents, see Figure 4.9, from left to right.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 4.9: Example 4.17: DAGs Gk for k = 1, 2, 3 with at most k parents (from left to
right).

Applying a maximum spanning tree algorithm on H to find the first R-vine tree T1, we

obtain the skeleton Gs1, see Figure 4.10, first figure. This is however not in general the

case. We sketch the intermediate step of building T2, where we already removed edges not

allowed by the proximity condition and assigned weights according to Equation (4.8), see

Figure 4.10, second to fourth figures.

(a)

1

2

3

4

5

6

3

3

3

3

3

2

1

2

2

2

(b)

1

2

3

4

5

6

13

23

14

15
16

(c)

15

23

13

14

16

0

0

2

2

2

0

1
2

(d)

1523

13

14

16

12|3 34|1

45|1
46
|1

Figure 4.10: Example 4.17: Weighted graph H with weight function g (i) ≡ 1 and µ0 =
g(1)

2
= 1

2
(a) and R-vine representation of the DAG G3 with R-vine trees T1

(b), intermediate step for building tree T2 (c) and final T2 (d). Note that
3 ⊥⊥ 5 | 1 by the d-separation in G3 and hence the weight of the corresponding
edge assigned is µ0 = 1

2
. However, this edge is not chosen by the maximum

spanning tree algorithm. The corresponding

We see that T3 has the form of a so called D-vine, i. e. the R-vine tree is a path. Thus,

the structure of higher order trees T4 and T5 is already determined, see Figure 4.11.

12|3 34|1 46|1 45|1
24|13 36|14⊥ 56|14⊥ 24|13 36|14 56|14

26|134⊥ 35|146
26|134 35|146

25|1346

Figure 4.11: Example 4.17: R-vine representation of the DAG G3. Trees T3, T4, T5 (from
left to right). Edges with superscript ⊥ are associated with the independence
copula by the d-separation in G3.

58

4.5 Application

Based on the first R-vine tree T1 and Corollary 4.15 we infer the lower bound for the

truncation level. We consider the sets V v = {v, pa (v)} for v ∈ V based on G3. For

example, the node 2 has the parents pa (2) = {3, 4, 5} in G3. Based on the first R-vine

tree T1 we check the lengths of shortest paths between 2 and its parents and obtain `3
2 = 1,

`4
2 = 3 and `5

2 = 3. By application of Corollary 4.15, this gives a lower bound for the

truncation level k′ ≥ 3. The lengths of the shortest paths in T1 for all nodes v ∈ V can be

found in Table 4.1.

v pa (v) = {wv1 , wv2 , wv3} `w1
v , `

w2
v , `

w3
v maxw∈pa(v) `

w
v

1 - - -
2 3,4,5 1,3,3 3
3 1 1 1
4 1,3,5 1,2,2 2
5 1 1 1
6 1,4 1,2 2

Table 4.1: Example 4.17: Shortest path distances in T1 between nodes v and their parents
pa (v) in DAG G3.

We obtain k′ = maxv∈V maxw∈pa(v) `
w
v = 3. Note that this lower bound is not attained

as we have the conditioned set {2, 5} in the R-vine Tree T5 which can not be represented

by the independence copula as this conditioned set is associated to an edge in the DAG

G3. However, several edges with superscript ⊥ can be associated with the independence

copula by the d-separation. The trees G1 and G2 are only used to obtain the weights for

the corresponding trees, but not with respect to check for d-separation.

4.5 Application

In Brechmann and Czado (2013), the authors analyzed the Euro Stoxx 50 and collected

time series of daily log returns of d = 52 major stocks and indices from May 22, 2006 to

April 29, 2010 with n = 985 observations. For the chosen marginal models, see Brechmann

and Czado (2013). To learn k-DAGs for k = 1, . . . , 10 from the z-scale data, we use the

Hill-Climbing algorithm of the R-package bnlearn, see Scutari (2010) since it allows to limit

the maximum number of parents as described in Section 3.3.5. These k-DAGs are shown

in Appendix A.1. All pair copula families of the R-package VineCopula of Schepsmeier

et al. (2017) were allowed. As laid out initially, the approach has two goals. The first was

to find truncated R-vines related to Gaussian DAGs which overcome the restriction of

Gaussian distributions. Thus, we compare the goodness of fit of the k-DAGs Gk to their

R-vine representationsW (Gk). If our approach represents the structure of the DAGs well

and there is non-Gaussian dependence, the variety of pair copula families of an R-vine

should improve the fit notably. Second, we want to check whether our approach can

compete with Dißmann’s algorithm. Using their algorithm, we calculate a sequence of

t-truncated R-vines for t = 1, . . . , 51, using an level α = 0.05 independence test. Hence,

we consider three models in terms of number of parameters vs. log-likelihood and GIC.

59

Chapter 4 Representing Sparse Gaussian DAGs as Sparse R-vines

Comparing the log-likelihood of DAGs and R-vines, we have to bear in mind that the

●

●

●

●

●

●
●●●●

−47000

−46000

−45000

−44000

−43000

−42000

200 400 600

Number of parameters

Lo
g−

Li
ke

lih
oo

d

Models ● DAG Dissmann R−VineRepresentation of DAG

●

●

●

●

●
● ●●●●92000

93000

94000

95000

200 400 600

Number of parameters

G
IC

Models ● DAG Dissmann R−VineRepresentation of DAG

Figure 4.12: Comparison of k-DAGs Gk, R-vine representations W (Gk), k = 1, . . . , 10
and t-truncated Dißmann’s algorithm, t = 1, . . . , 51 on z-scale, number of
parameters vs. log-likelihood (left), number of parameters vs. GIC (right).

marginals in the DAG are assumed to be standard Gaussian and we also have to assume

the same marginals for the R-vines, as done in e. g. Hobæk Haff et al. (2016). Yet, an

advantage of vine copulas are independently chosen marginals. Thus, there is additional

upside potential for the R-vine model. The results are given in Figure 4.12 and Tables

A.1, A.2 in Appendix A.2. The DAG models have the least parameters which makes them

sparse, but their goodness of fit falls behind the two competitors in case of non-Gaussian

dependence. Comparing Dißmann’s approach to our algorithm, we see a very similar

behaviour when it comes to log-likelihood. However, the 2-DAG outperforms all other

models in terms of GIC. The computation time for our algorithm ranges from 125 sec. for

a 1-DAG to 270 sec. for a 10-DAG. Dißmann’s algorithm needs more than 600 sec. for a

first R-vine tree and up to 760 sec. for a full estimation. Thus, our approach is about three

to five times faster. This is also what we inferred from the simulation study. Our approach

is significantly faster, since given a specific edge [j (e) , ` (e) ;D (e)], Dißmann’s algorithm

first carries out an independence test for the pair copula. If the hypothesis is rejected, a

maximum likelihood fit of the pair copula is carried out. Our approach however checks

j (e) ⊥⊥ ` (e) | D (e) based on the j (e) ⊥d ` (e) | D (e) [Gk], which is significantly faster

once we know the DAG. The actual truncation levels k′ of the R-vine representations

are given in Table A.1. They are relatively high given the number of parents of these

DAGs. However, this is because of very few non independence copulas in higher trees.

For example, in the R-vine representation of the 2-DAG, T19, . . . , T51 contain 56 non-

independence copulas of 561 edges, i. e. about 10%, see also Figure 4.13. To visualize the

actual truncation levels of the R-vine representations of a 2-DAG, consider the distribution

of independence copulas. Thus, we plot a 52 × 52 matrix indicating which pair copulas

60

4.5 Application

are the independence copula in the R-vine representation, see the lower triangular region

of Figure 4.13. The upper triangular region encodes which pair copulas are set to the

independence copula when we use an additional level α = 0.05 independence test. Thus,

each independence copula in the lower triangular is also in the upper triangular.

Figure 4.13: Distribution of independence copulas in the R-vine calculated by
RepresentDAGRVine for a 2-DAG and absolute values of Kendall’s τ of the
corresponding pair copulas. Bright white color indicates a non independence
copula whereas dark red color indicates an independence copula.

This sparsity pattern is not negatively influencing the computation times or GIC as

demonstrated. It is also not intuitively apparent that a specific truncation level is more

sensible to describe the data compared to a generally chosen sparse structure.

With this, the first approach to select sparse vine copulas in high dimensions is presented.

We remark that first, Gaussian DAG model help to fit parsimonious R-vine models with

a sound theoretical reasoning. Second, we see that our algorithm works quite similarly to

Dißmann’s, i. e. we use a maximum spanning tree approach. The next approach, discussed

in Chapter 5, will present a different view.

61

Chapter 5

Selection of Sparse Vine Copulas in

High Dimensions with the Lasso

As in Chapter 4, we use the correspondence between Gaussian R-vines and their SEM ex-

pression, see Sections 3.4 and 4.2. There however, we used the SEMs only as intermediate

step before final consideration of the corresponding DAGs which were also related to the

SEMs. Now, the SEMs act as starting point for the R-vines. More precisely, we identify a

set of linear equations with a parametrization for the correlation matrix in the same way

as a Gaussian R-vine parametrizes the correlation matrix Σ of a multivariate Gaussian

distribution. The intuition is now that each SEM equation contains both structural infor-

mation about the R-vine structure and also information about non-independence copulas,

identified by non-zero coefficients in the SEM. The idea is then to use a regularization

approach to solve the SEM and set specific parameters exactly to zero, thus simplifying

the structure of the corresponding R-vine and also imposing conditional independence.

The regularization approach used here is the Lasso, see Section 3.2.

We will first show the correspondence between general SEMs and Gaussian R-vines, sketch

how zero coefficients in the SEM can relate to independence copulas in the R-vine and

then propose a method allowing us to shrink SEMs for regularization of R-vines. How-

ever, as in the previous chapter, the proximity condition as main ingredient for R-vine

structures comes into play and must be taken into consideration for our approach. After

having proposed a method to use the Lasso for structure estimation, we show how it can

also be used to regulate for sparsity in the corresponding R-vine model. A data applica-

tion in d = 222 dimensions concludes the chapter.

This chapter is a slightly altered and extended version of the submitted manuscript by

Müller and Czado (2017c).

5.1 Motivation: SEM Representation of R-vines

Our approach connects the R-vine structure to structural equation models (SEMs), see

Section 3.4. For this, we utilize again the approach of Brechmann and Joe (2014), who give

a representation of k-truncated Gaussian R-vines in terms of SEMs. Given a Gaussian

R-vine with structure V , we define a SEM corresponding to V denoted by S (V). Let

V = (T1, . . . , Td−1) be an R-vine tree sequence and assume without loss of generality

63

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

{1, 2} ∈ T1. For j = 3, . . . , d denote the edges in T1 by {j, κ1 (j)} using an assignment

function κ1 (j), j = 2, . . . , d. For higher trees, we generalize κi for i = 2, . . . , i− 1. Thus,

the trees Ti contain edges j, κi (j) |κ1 (j) , . . . , κi−1 (j) ∈ Ti for i = 2, . . . , d− 1. Based on

the R-vine structure V , define S (V) by

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

Xj =

j−1∑

i=1

ϕj,κi(j)Xκi(j) + ψjεj, j = 3, . . . , d,

(5.1)

with εj ∼ N (0, 1) i.i.d. and ψj such that Var (Xj) = 1 for j = 1, . . . , d. Additionally,

εj is independent of X1, . . . , Xj−1, for j = 2, . . . , d. Brechmann and Joe (2014) assume a

k-truncated R-vine and restate the SEM in (5.1) with

Xj =

max(j−1,k)∑

i=1

ϕj,κi(j)Xκi(j) + ψjεj, j = 3, . . . , d.

Thus, we have for each edge e ∈ Ei, i = k + 1, . . . , d− 1 that for j = 3, . . . , d:

cj(e),κi(j(e));κ1(j(e)),...,κi−1(j(e)) ≡ 1⇒ ϕj(e),κi(j(e)) = 0. (5.2)

The first step to generalize this implication is that we not only allow for a specific trun-

cation level k = 1, . . . , d− 1. Furthermore, we want to set specific regression coefficients

ϕj,κi(j) to zero, also for i < k. Additionally, we generalize the ordering of the equations

from first to last using an ordering function η : {1, . . . , d} → {1, . . . , d}. Thus, Xη(j) is on

the left hand side of the j-th equation and has at most j right hand summands, including

the error term, i. e. we obtain a triangular structure. We rewrite (5.1) as

Xη(1) = ψη(1)εη(1),

Xη(2) = ϕη(2),κ1(η(2))Xκ1(η(2)) + ψη(2)εη(2),

Xη(j) =

j−1∑

i=1

ϕη(j),κi(η(j))Xκi(η(j)) + ψη(j)εη(j), j = 3, . . . , d.

(5.3)

We define some additional terminology to deal with zero regression coefficients.

Definition 5.1 (SEM regressor sets). Consider a SEM as in (5.3) with ordering function

η. Then, Xη(j) has at most j − 1 potential regressors κi (η (j)) for i = 1, . . . , j − 1.

We define the set of potential regressors of Xη(j) by R (η (j)) = {η (1) , . . . , η (j − 1)},
i. e. the left hand side indices of the previous j − 1 structural equations. Define the set

R1 (η (j)) =
{
κi (η (j)) , i = 1, . . . , j − 1 : ϕη(j),κi(η(j)) 6= 0

}
, the set of actual regressors of

Xη(j). R0 (η (j)) = R (η (j)) \ R1 (η (j)) is the set of unused regressors.

We visualize the concepts in the following example. Recall that j refers to the j-th row

in the SEM and η (j) to the corresponding left hand side index of the j-th row.

64

5.1 Motivation: SEM Representation of R-vines

Example 5.2 (Example 2.5 cont.). Following our previous example, the R-vine matrix M

gives rise to the following values of the ordering function η and the assignment function κ.

Considering η, we have the main diagonal diag (M) = (4, 5, 3, 6, 2, 1) = (η (d) , . . . , η (1)),

see also Table 5.1, left two columns. Since R-vine matrices are most often denoted as

lower-diagonal matrices in the literature, we have m1,1 = η (d) , . . . ,md,d = η (1). The

values of the assignment function κ can be read column-wise from M . For example,

consider M,j, the j-th column of M with mj,j = η (d− j + 1). Then, κ1 (η (d− j + 1)) =

md,j and κ2 (η (d− j + 1)) = md−1,j. Generally, we obtain for i = 1, . . . , d− j:

κi (η (d− j + 1)) = md−i+1,j, j = 1, . . . , d− 2.

The values of κ can also be written in tabular form, see Table 5.1. The i-th row of this

table corresponds to column d− i+ 1 of the R-vine matrix M . For example, consider the

first column of M , i. e. j = 1 with mj,j = η (6− 1 + 1) = η (6) = 4, according to Table

5.1. Correspondingly κ1 (η (6− 1 + 1)) = κ1 (η (6)) = κ1 (4) = 5 = m6,1, see also Table

5.1.

j η (j) κ1 (η (j)) κ2 (η (j)) κ3 (η (j)) κ4 (η (j)) κ5 (η (j))

1 1 - - - - -
2 2 1 = m6,5 - - - -
3 6 2 = m6,4 1 = m5,4 - - -
4 3 6 = m6,3 2 = m5,3 1 = m4,3 - -
5 5 2 = m6,2 6 = m5,2 3 = m4,2 1 = m3,2 -
6 4 5 = m6,1 2 = m5,1 6 = m4,1 3 = m3,1 1 = m2,1

Table 5.1: Example 2.5: Inverse of ordering function η and assignment function κ.

The R-vine Matrix M is given by

m1,1

m2,1 m2,2

m3,1 m3,2 m3,3

m4,1 m4,2 m4,3 m4,4

m5,1 m5,2 m5,3 m5,4 m5,5

m6,1 m6,2 m6,3 m6,4 m6,5 m6,6

=

4

1 5

3 1 3

6 3 1 6

2 6 2 1 2

5 2 6 2 1 1

We now want to evaluate the correspondence between independence copulas in the R-vine

and zero coefficients in the SEM. Assume the following lower triangular family matrix

Γ = (γi,j)i=1,...,d;j=1,...,d with 0 representing independence and 1 indicating a Gaussian cop-

ula.

65

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

Γ =

−
γ2,1 −
γ3,1 γ3,2 −
γ4,1 γ4,2 γ4,3 −
γ5,1 γ5,2 γ5,3 γ5,4 −
γ6,1 γ6,2 γ6,3 γ6,4 γ6,5 −

=

−
0 −
1 1 −
0 0 1 −
1 0 0 1 −
1 1 1 1 1 −

The zeros in the family matrix Γ, i. e. independence copulas, are reflected by zero coef-

ficients in the SEM. For j = 1, . . . , d− 2 and i = 1, . . . , d− j we have

γd−i+1,j = 0⇒ ϕη(d−j+1),κi(η(d−j+1)) = 0.

We emphasize that only the parameter value ϕ is set to zero. The assignment function

κ is unchanged since it is necessary to determine a valid R-vine structure. This way, we

impose independence, i. e. sparsity in the R-vine which is reflected by the corresponding

SEM. We now illustrate how this choice affects R, R0 and R1.

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

X6 = ϕ6,2X2 + ϕ6,1X1 + ψ6ε6,

X3 = ϕ3,6X6 + ϕ3,1X1 + ψ3ε3,

X5 = ϕ5,2X2 + ϕ5,1X1 + ψ5ε5,

X4 = ϕ4,5X5 + ϕ4,2X2 + ϕ4,3X3 + ψ3ε3.

(5.4)

η (j) R(η (j)) R1(η (j)) R0(η (j))

1 ∅ ∅ ∅
2 {1} {1} ∅
6 {2, 1} {2, 1} ∅
3 {6, 2, 1} {6, 1} {2}
5 {2, 6, 3, 1} {2, 1} {6, 3}
4 {5, 2, 6, 3, 1} {5, 2, 3} {6, 1}

Table 5.2: Example 2.5: Sets R, R1, R0.

In other words, the non-zero coefficients in the SEM (5.4) are drawn from the corre-

sponding columns of the R-vine structure matrix M where the family matrix Γ is non-

zero. Consider an arbitrary column j = 1, . . . , 5 in the matrix M . The non-zero entries

(γd,j, . . . , γj+1,j) correspond to R1 (η (d− j + 1)). For example, if we consider again the

first column of M , M,j for j = 1 and (γ6,1, . . . , γ2,1) = (1, 1, 0, 1, 0). Using this vector to

obtain the non-zero entries from the R-vine structure matrix M , we have the first column

Md:2,1 = (5, 2, 6, 3, 1) and thus the non-zero entries (5, 2, 3) as in (5.4) and Table 5.2 for

R1 (η (d− 1 + 1)) = R1 (η (6)) = R1 (4).

66

5.1 Motivation: SEM Representation of R-vines

Having characterized the connection between R-vines and SEMs, our goal is now to

find an inverse transformation. More precisely, given high dimensional data, we want

estimate a SEM where many of the coefficients are zero. For simplicity, assume η (j) = j

for j = 1, . . . , d. For each structural equation, we obtain a set R0 (j) with |R0 (j)| > 0.

This leaves us with a sparse SEM as in (5.1),

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

Xj =
∑

i∈R1(j)

ϕj,κi(j)Xκi(j) + ψjεj, j = 3, . . . , d.

Under additional assumptions to be specified later on, this SEM can also be written as

an R-vine with structure matrix M̂ and family matrix Γ̂. Because of the zero coefficients

R0 (j), entries in the family matrix Γ̂ can be set to zero, i. e. representing the independence

copula. This means, we want to generalize the implication (5.2) in such a way that we

have for each edge e ∈ Ei, i = 1, . . . , d− 1 and j = 3, . . . , d:

ϕj,κi(j) = 0⇒ cj(e),κi(j(e));κ1(j(e)),...,κi−1(j(e)) = 1. (5.5)

Thus, we obtain a sparse R-vine model. This model is not restricted to a joint Gaussian

probability distribution as our SEM is. We can estimate the marginal distributions en-

tirely independent of the dependence behaviour and use vast numbers of parametric and

non-parametric pair copulas to describe the joint distribution. To describe more precisely

what is motivated by (5.5), we now introduce an R-vine representation of SEM.

Definition 5.3 (R-vine representation of a SEM). Consider a SEM S in d dimensions,

where we assume without loss of generality η (j) ≡ j for j = 1, . . . , d.

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

Xj =

j−1∑

i=1

ϕj,κi(j)Xκi(j) + ψjεj.

(5.6)

The SEM (5.6) has an R-vine representationW (S) with R-vine tree sequence (T1, . . . , Td−1)

if for j = 2, . . . , d and i = 1, . . . , j − 1 we have

j,κi (j) |κ1 (j) , . . . , κj−1 (i) ∈ Tj.

To put it in a nutshell, the j-th row of the SEM corresponds to column d − j + 1 of

the R-vine matrix for j = 1, . . . , d. This definition connects SEMs and R-vines. Based

on this, we can consider setting specific regressors in the SEM to zero to obtain a sparse

R-vine model. We note two caveats of this approach. First, of all, not every SEM with

specific coefficients set to zero reflects a R-vine structure, since the proximity condition

has to hold for the R-vine structure. Second, a SEM does not necessarily determine the

67

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

R-vine structure uniquely. We give examples for these assertions and move on to sketch

the general approach.

Example 5.4 (SEM without R-vine representation). Consider the following SEM in five

dimensions.
X1 = ψ1ε1

X2 = ϕ2,1X1 + ψ2ε2

X3 = ϕ3,1X1 + ϕ3,2X2 + ψ3ε3

X4 = ϕ4,1X1 + ϕ4,2X2 + ψ4ε4

X5 = ϕ5,3X3 + ϕ5,4X4 + ψ5ε5

If we now want to find a representing R-vine structure, the R-vine trees T1 and T2 must

have edges in terms of the assignment function κ as we saw from Definition 5.3. Since we

have at most two right hand side summands, we need to find values for κi (j) for j = 3, 4, 5

and i = 1, 2 such that the following holds:

i,κ1 (i) ∈ T1,

i,κ2 (i) |κ1 (i) ∈ T2.

Assume that the following edges are chosen in the first tree T1:

{{2,κ1 (2)} , {3,κ1 (3)} , {4,κ1 (4)} , {5,κ1 (5)}} = {{2,1} , {3,1} , {4,1} , {5,3}} ∈ E1.

Now, we can not set κ2 (5) = 4 to obtain 5,4|3 ∈ T2 as required. This is since 5,4|3 =

{{5, 3} , {4, 3}}, but {3,4} /∈ T1. Note additionally that we can not have more than four

edges in T1, since otherwise, it would not be a tree. If κ1 (5) = 4, it can similarly be shown

that the same argument holds.

Next, we show an example of that two R-vines with identical SEM representations.

Example 5.5 (Different 2-truncated R-vines with identical SEM representation in four

dimensions). Consider the following two 2-truncated R-vines and their SEM representa-

tions.

2

1

3 4

1,2

1,
3 1,4

1,3

1,2 1,4

2,3|1

2,4|1

Figure 5.1: Example 5.5: R-vine structure V1, corresponding to SEM S (V1) in (5.7).

68

5.2 Vine Copula Structure Selection with the Lasso

1

2

3 4

2,1

2,
3 2,4

2,3

2,1 2,4

1,3|2

1,4|2

Figure 5.2: Example 5.5: R-vine structure V2, corresponding to SEM S (V2) in (5.8).

Both have identical SEM representations, i. e. only looking at the corresponding equa-

tions without knowing exactly the assignment function κ and thus, which regressor belongs

to which R-vine tree, we are not able to distinguish between those two SEMs.

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

X3 = ϕ3,1X1 + ϕ3,2X2 + ψ3ε3,

X4 = ϕ4,1X1 + ϕ4,2X2 + ψ4ε4.

(5.7)

X1 = ψ1ε1,

X2 = ϕ2,1X1 + ψ2ε2,

X3 = ϕ3,1X2 + ϕ3,2X1 + ψ3ε3,

X4 = ϕ4,1X2 + ϕ4,2X1 + ψ4ε4.

(5.8)

We recognize the same identification issues here as in Example 4.2.

We will develop an approach which overcomes the restrictions sketched in the Examples

5.4 and 5.5. First, we will need to determine the R-vine structure based on the assignment

function κ before we consider the sets of zero coefficients. The method we are going to

use for this is the Lasso, introduced in Section 3.2.

5.2 Vine Copula Structure Selection with the Lasso

This part now focusses on the first part of our agenda, the identification of a suitable

R-vine structure. We will do this using the Lasso and the SEM representation of R-vines.

Subsequently, we will also use the Lasso for the second main part, setting numerous pair

copulas to the independence copula.

Finding a suitable R-vine from a SEM decomposes in two parts. First, we have to find the

ordering function η introduced in the previous section. This resembles the main diagonal

of the corresponding R-vine matrix. Next, we have to find the actual entries for the R-vine

matrix or, in the SEM view, the regressors.

69

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

5.2.1 Calculation of the Ordering Function

The first two of the three methods we propose for calculating the ordering function η are

based on empirical dependence measures. The third takes directly into account the Lasso.

Maximum linear and rank correlation

Definition 5.6 (Maximum linear correlation ordering). Let Σ̂ = (ρ̂i,j)i=1,...,d;j=1,...,d be the

empirical correlation matrix of the data on the z-scale. Calculate the row sums of the

absolute value of Σ̂ and order the results decreasingly to obtain η. In other words, ηΣ (i)

is a permutation of i = 1, . . . , d such that

d∑

j=1

∣∣∣ρ̂η−1
Σ (1),j

∣∣∣ ≤ · · · ≤
d∑

j=1

∣∣∣ρ̂η−1
Σ (d),j

∣∣∣ .

The intuition behind this approach is to put the variables which have most linear

dependence with the remaining variables in the first equations such that they can act as

regressors for variables in later equations of the SEM. Since we ultimately want to work

with non-linear and non-Gaussian dependence, we can also use a rank based measure like

Kendall’s τ in the same manner.

Definition 5.7 (Maximum Kendall’s τ ordering). Let Υ̂ = (τ̂i,j)i=1,...,d;j=1,...,d be the em-

pirical Kendall’s τ matrix of the data on the x-scale. Calculate the row sums of the

absolute value of Υ̂ and order the results decreasingly to obtain η. In other words, ητ (i)

is a permutation of i = 1, . . . , d such that

d∑

j=1

∣∣∣τ̂η−1
τ (1),j

∣∣∣ ≤ · · · ≤
d∑

j=1

∣∣∣τ̂η−1
τ (d),j

∣∣∣ .

The motivation is equivalent to in definition 5.6. Considering Kendall’s τ as dependence

measure on rank data is sensible as finally, copulas often are estimated on the empirical

ranks of the data. We now present a third approach which directly involves the application

of the Lasso and the later development of the SEMs.

Maximum Lasso regressor approach

Assume for the moment we already have found an ordering η and that it coincides with

the ordering of the variables, i. e. η (j) = j for j = 1, . . . , d. A SEM in the form of (5.1),

Xj can have regressors Xi for i < j, based on our model assumption. Thus, if we compute

solutions for the d equations

Xj =
d∑

i=1,i 6=j
βi,jXi + ψjεj, j = 1, . . . , d,

70

5.2 Vine Copula Structure Selection with the Lasso

we end up with a list of regression coefficients for each Xj, j = 1, . . . , d. Moreover, if we

solve these equations with the Lasso and some suitably chosen λ ≥ 0, specific regression

coefficients are set to zero. Considering all equations, some Xi will occur more often with

non-zero coefficients than others. Based on the SEM structure we have, it is beneficial to

assign the regressors which occur often a low value of the ordering function η. In a SEM

with such a structure, these Xi which occurred often as regressors can then be chosen as

regressors by the assignment function κ for many SEM rows.

Definition 5.8 (Lasso Ordering). Consider n samples from X = (X1, . . . , Xd) ∈ Rd

and let B ∈ R(d−1)×d with the columns βj, j = 1, . . . , d, such that we have βj =

(βj,1, . . . , βj,j−1, βj,j+1, . . . , βj,d) are the Lasso solutions to the d minimization problems

min
βj∈Rd−1

(
1

2n

n∑

k=1

(
xk,j −

d∑

`=1,` 6=j
βj,`x`

)2

+ λ`

d∑

`=1,`6=j
|βj,`|

)
.

For each possible regressor j = 1, . . . , d, calculate the number of βj,` = 0 over all ` and

assign the ones with highest occurrence the lowest number in the ordering function ηL.

More precisely,
d∑

`=1

1{βηL(1),` 6=0} ≤ · · · ≤
d∑

`=1

1{βηL(d),` 6=0}

The corresponding λ` are calculated via k-fold cross-validation. In case of ties, i. e. two

or more variables are occurring equally often as regressors for the remaining variables, we

choose the ordering of these variables randomly.

The intuition is similar to a method proposed by Meinshausen and Bühlmann (2006)

to find undirected graphical models. They use the Lasso to find neighbourhoods of nodes

which are exactly the non-zero coefficient regressors calculated by the Lasso. We give a

brief numerical example.

Example 5.9 (Calculation of ordering function η). We consider the worldindices data

set, included in the CDVine package of Brechmann and Schepsmeier (2013) comprising

d = 6 variables with n = 396 observations on the u-scale. We transform our observations

to the z-scale using the Gaussian quantile function. For the maximum linear correlation

approach we have Table 5.3.

^GSPC ^N225 ^SSEC ^GDAXI ^FCHI ^FTSE row sum ηΣ (i)

^GSPC 1.00 0.20 0.18 0.75 0.74 0.73 3.60 4
^N225 0.20 1.00 0.33 0.26 0.31 0.28 2.39 5
^SSEC 0.18 0.33 1.00 0.19 0.21 0.23 2.14 6

^GDAXI 0.75 0.26 0.19 1.00 0.96 0.91 4.07 3
^FCHI 0.74 0.31 0.21 0.96 1.00 0.94 4.18 1
^FTSE 0.73 0.28 0.23 0.91 0.94 1.00 4.09 2

Table 5.3: Example 5.9: Empirical correlation matrix Σ̂ on z-scale, row sums and ordering
function ηΣ based on Σ̂.

71

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

For the maximum rank correlation approach we obtain the ordering as given in Table

5.4.

^GSPC ^N225 ^SSEC ^GDAXI ^FCHI ^FTSE row sum ητ (i)

^GSPC 1.00 0.10 0.10 0.50 0.50 0.49 2.70 4
^N225 0.10 1.00 0.20 0.16 0.18 0.16 1.81 5
^SSEC 0.10 0.20 1.00 0.12 0.14 0.15 1.71 6

^GDAXI 0.50 0.16 0.12 1.00 0.82 0.73 3.34 2
^FCHI 0.50 0.18 0.14 0.82 1.00 0.77 3.42 1
^FTSE 0.49 0.16 0.15 0.73 0.77 1.00 3.30 3

Table 5.4: Example 5.9: Empirical Kendall’s tau matrix Υ̂ on z-scale, row sums and
ordering function ητ based on Υ̂.

For the maximum Lasso regressor approach, we calculate Lasso regression coefficients

of Zj on Z−j for j = 1, . . . , 6, see Table 5.5. Of course, the number of non-zero regression

coefficients depends on the choice of the penalization coefficient λj for each regression on

Zj. Experiments showed that it is feasible to choose λj according to k-fold cross-validation.

variable id j # occurrence ηL (j) λj

^GSPC 1 2 4 0.170
^N225 2 2 5 0.129
^SSEC 3 1 6 0.171
^GDAXI 4 3 3 0.065
^FCHI 5 4 1 0.049
^FTSE 6 4 2 0.053

Table 5.5: Example 5.9: Variable name, id j, number of occurrence as regressors, ordering
function ηL based on maximum Lasso Ordering and 5-fold cross-validated λj.

If two or more variables have the same number of occurrences as regressors for other

variables, we choose randomly to determine a unique ordering. If one or more variables

do not occur as regressors at all, we assign them the last ranks and break ties by choosing

randomly.

It is to be noted that the first two heuristics can be failed using simple counterexamples.

Hence, we will always use the maximum Lasso regressor approach in the remainder. To

provide an intuition for the ordering, recall the correspondence between SEMs and DAGs

illustrated in the Examples 3.18 and 3.19. Hence, specifying the ordering of an SEM is

equivalent to specifying the topological ordering of a DAG. Since cycles must be omitted in

a DAG, it is sensible to give nodes which are directly influencing other nodes a low order,

such that they can act as parents of these nodes. This concludes the part considering the

SEM ordering function η.

72

5.2 Vine Copula Structure Selection with the Lasso

5.2.2 Sparse R-vine Structure Selection

Knowing the ordering function η, we can write a SEM as in (5.1). Assume for notational

convenience that the ordering 1, . . . , d already reflects the ordering η as chosen in Section

5.2.1, i. e. η (j) ≡ j. The first two equations of the SEM are trivially described. However,

we can not directly use the Lasso to solve the d − 2 later SEM equations stepwise or

simultaneously. If we do, we might end up with non zero coefficients, which cannot be

translated into a valid R-vine matrix as in Example 5.2. It is much more likely that we

obtain a sparse SEM as in Example 5.4, which does not have a representation as R-vine in

the sense of Definition 5.3 because of the restrictions imposed by the proximity condition.

Additionally, we have to keep in mind that the solution to our SEM is also dependent on

the choice of the penalization parameter λ. Thus, for different values of λ, different R-vine

representations with different levels of sparsity result. We will now present an approach

which computes an R-vine structure matrix M . We consider the first R-vine tree and all

higher order trees separately.

Selection of the First R-vine Tree

LetM be a d×dmatrix with diag (M) = (m1,1, . . . ,md,d). To obtain a valid R-vine matrix,

we trivially set the entry md,d−1 = md,d and we are left to determine Lasso regularization

paths for the remaining d− 2 columns of M . Thus, we have the regression problems for

j = 3, . . . , d:

min
ϕ∈Rj−1

(
1

2n

n∑

k=1

(
xi,j −

j−1∑

`=1

ϕj,`xk,`

)2

+ λj

j−1∑

`=1

|ϕj,`|
)
, (5.9)

and denote the solutions as ϕ̂λj =
(
ϕ̂λj,1, . . . , ϕ̂

λ
j,j−1

)
∈ Rj−1. To formalize how we process

these solutions, recall the definition of the regularization path by the set Λ, returning the

non-zero coefficients in the regression of Xj for each value of λ > 0:

Λ (λ, j) =
{
` : ϕ̂λj,` 6= 0 in ϕ̂λj

}
, with k (λ, j) = |Λ (λ, j)| .

Clearly, k (λ1, j) ≥ k (λ2, j) for λ1 ≤ λ2. If ϕ1 ∈ Λ (λ1, j) and ϕ2 ∈ Λ (λ1, j) but ϕ1 ∈
Λ (λ2, j) and ϕ2 /∈ Λ (λ2, j) for λ1 < λ2, we say ϕ1 � ϕ2. This terminology is necessary to

obtain an ordering on the set Λ (λ, j). It is motivated by the fact that we want to obtain

the coefficients which are non-zero for the largest penalization values of λ. Thus, assume

we have two coefficients for the problem (5.9), ϕ̂1 = ϕ̂2 = 0 for some λ > 0. Now, letting

λ → 0, both coefficients will become non-zero in the end, as the penalization shrinks to

zero. However, if there exists a λ′ > 0 such that (5.9) is solved with λj = λ′ and we

obtain ϕ̂1 6= 0 but ϕ̂2 = 0, we consider ϕ1 the more important coefficient and denote

ϕ1 � ϕ2. The set Λ (λ, j) contains all non-zero regressors for the penalization value λ of

the regression problem (5.9), ordered according to their first non-zero occurrence, i. e. the

regularization path. In the case of two or more ϕ̂j which are simultaneously non-zero on

the regularization path, we take the one with the highest absolute value of the coefficient

73

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

once they occur. This means, Λ (λ, j)k is the k-th non-zero regressor on the regularization

path of the regression problem (5.9). For the first R-vine tree T1, let Λ (λ, j)k be the k-th

entry in Λ (λ, j) according to the ordering �. Then, T1 is chosen such that

(κ1 (3) , . . . , κ1 (d)) = (Λ (0, 3)1 , . . . ,Λ (0, d)1) .

Setting λ = 0 means we obtain the entire regularization path for each j = 3, . . . , d

stored in Λ (0, j). Together with the trivially set pair κ1 (2) = 1, each pair (j, κ1 (j)),

j = 2, . . . , d corresponds to an edge in T1. These are d − 1 pairs and no pair can occur

more than once since each left hand side of the equations is different. Thus, we set

T1 =
(
V = {1, . . . , d, } , E1 = {j, κ1 (j)}j=2,...,d

)
. The R-vine matrix M has the following

form.

M =

d

d− 1
. . .

3

2

κ1 (d) κ1 (d− 1) . . . κ1 (3) 1 1

Thus, also the sets R1 (η (j)) = {κ1 (j)} for j = 2, . . . , d are updated. As mentioned,

in this step we calculate the entire regularization path for each Xj, j = 3, . . . , d with

respect to (5.9). However, we can not be sure if in one path subsequent values adhere

to the proximity condition, see Example 5.4. We keep the paths stored as they may

be compatible with the proximity condition which we will check to save computation

time. Recall that the regularization paths also include the corresponding λ for which the

coefficients on the regularization path become non zero. This finishes the selection of T1.

Selection of the Higher Order Trees

In the first tree, it was not necessary to take into account the proximity condition to

compute a valid R-vine matrix M . However, for the sequential steps, this will be the

case. We consider again the six-dimensional data from Example 5.9.

Example 5.10 (Example 5.9 cont.). We use the ordering function η to obtain the ordering

(η (1) , . . . , η (6)) = (6, 5, 4, 1, 2, 3). We set the value m6,5 = m6,6 as it is the only allowed

entry. Computing the regularization paths for the variables (η (3) , . . . , η (6)) = (4, 1, 2, 3),

i. e. solutions to (5.9), we obtain:

Λ (0, 4) = {5, 6} ⇒ κ1 (4) = 5,

Λ (0, 1) = {4, 5, 6} ⇒ κ1 (1) = 4,

Λ (0, 2) = {5, 4, 1, 6} ⇒ κ1 (2) = 5,

Λ (0, 3) = {2, 6, 1, 4, 5} ⇒ κ1 (3) = 2.

Note here that we consider λj = 0, j = 4, 1, 2, 3 as we want to obtain the entire path with-

out any shrinkage. We take the first coefficients according to the ordering � to determine

74

5.2 Vine Copula Structure Selection with the Lasso

the first R-vine tree T1, encoded by the d-th row of the partial R-vine matrix M ′.

M ′ =

3

2

1

4

2 6 6

2 5 4 5 5 5

M =

3

6 2

1 6 1

4 1 6 4

5 4 5 6 6

2 5 4 5 5 5

We need to determine the second tree, i. e. M ′
d−1,. First, we note that m5,4 = 6 is the only

valid choice. For the general case, consider the missing entry m5,1, marked by 2. First,

we check whether the second entry in the regularization path, Λ (0, 3)2 = 6 is valid. By

checking the proximity condition (2.8), this is not the case as 2 and 6 are not connected

in T1. Thus, we recompute the regularization path such that Λ (0, 3)1 = m6,1 = 2 and

Λ (0, 3)2 adheres to the proximity condition. The set of possible regressors are the entries

on the main diagonal to the right of the first column 2, 1, 4, 6, 5, where 2 is already oc-

curring. This leaves us with 1, 4, 6, 5. From these, only 5 is a possible entry according

to the proximity condition. Thus, the remaining 1, 4, 6 are set on a blacklist set for the

entry m5,1 by B (5, 1) = {1, 4, 6}. Next, we re-run the penalized regression to find a new

regularization path reflecting the blacklist. However, we also have to include that there

are regressors we want to include on the regularization path before the second regressor,

i. e. m6,1 = 2. We will call it the whitelist set W (5, 1) = {m6,1} = {2}. Since we can set

individual penalties for each variable, we set λ3,2 = 0. The optimization problem for the

entry m5,1 is given by:

min
ϕ∈R1

(
1

2n

n∑

k=1

(
Xk,3 −

∑

`∈{1,2,4,5,6}\{1,4,6}
ϕ3,`Xk,`

)2

+
∑

`∈{{1,2,4,5,6}\{1,4,6}}\2
λ3,` |ϕ3,`|

)
.

Thus, we obtain a new sequence Λ (0, 3) such that Λ (0, 3)1 = m6,1 and Λ (0, 3)2 = 5

adheres to the proximity condition. Whenever we have to start a new regression since

the next regressor on the regularization path does not adhere to the proximity condition

as described previously, we denote this as a proximity condition failure (pcf). In the end,

we obtain the complete R-vine matrix M . Additionally, we yield the corresponding λ

entries for each entry, based either on an already computed regularization path or a new

computation. We store it together with the R-vine matrix.

Using this approach, we complete a partial R-vine matrix column-wise from right to left

in d− 1 steps. However, since each lower order tree put restrictions on higher order trees

by the proximity condition, we have j iterations in the d−j-th column for j = 1, . . . , d−1.

From a computational point of view, it is more favourable to complete the matrix row-by-

row, i. e. tree by tree. Thus, the structure estimation, i. e. computation of regularization

paths, can be done in parallel. Because of the particular importance, we restate the

optimization leading to the higher order tree estimates in the general form.

Definition 5.11 (Higher order tree selection). Let M be a partial R-vine matrix and

75

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

assume without loss of generality the main diagonal (m1,1, . . . ,md,d) = (d, . . . , 1). For

each matrix entry mi,j with i > j, define the set of potential regressors

H (i, j) = {mj+1,j+1, . . . ,md,d} ,

the whitelist

W (i, j) = {md,j, . . . ,mi+1,j} ,
and the blacklist

B (i, j) = {` ∈ H (i, j) \W (i, j) : ` does not satisfy the proximity condition} .

For ϕ ∈ Rj−1−|B(i,j)|, we solve the optimization problem:

min
ϕ

(
1

2n

n∑

k=1

(
Xk,j −

∑

`∈H(i,j)\B(i,j)

ϕj,`Xk,`

)2

+
∑

`∈(H(i,j)\B(i,j))\W(i,j)

λj,` |ϕj,`|
)
, (5.10)

to obtain a regularization path Λ (λ, j) such that

• Λ (0, j)` = md−`+1,j for ` ∈ 1, . . . , |W (mi,j)|,

• Λ (0, j)d−i+1 adheres to the proximity condition.

To check whether a specific regressor mi,j is in the blacklist or not, we can use the

partial R-vine matrix to see if (2.8) holds for this value. Recall that we know the entire

regularization path for each column already for the calculation of the first tree, T1. A

simpler approach compared to solving the equation (5.10) is the following. Given the

regularization path Λ (0, j) assume that (md,j, . . . ,md−i,j) = (Λ (0, j)1 , . . . ,Λ (0, j)i), i. e.

the first i values of the regularization path have been used for the first i trees. If now

Λ (0, j)i+1 is not a valid entry for md−i−1,j according to the proximity condition, we could

also just use the next possible value Λ (0, j)i+` for ` > 1 which is allowed according to

the proximity condition. However, this value might not coincide with the solution of the

optimization problem in Definition 5.11, but save computation time.

This concludes the part where we deal with the structure selection of the R-vine. We

continue with considering the sparsity, i. e. how to use the Lasso to not only calculate a

feasible structure but also perform model selection. Thus, we aim to make our R-vine

model sparse by setting independence copulas.

5.2.3 R-vine Regularization Paths

From the previous calculations, we obtain an R-vine structure together with a regu-

larization path, i. e. a functional relationship between λ > 0 and the non-zero regres-

sion coefficients as in Section 3.2, more specifically in Figure 3.1. Now, we use this

information to define the entire regularization path of the regression of Xmj,j onto X`,

` = mj+1,j, . . . ,md,j where M denotes the R-vine structure matrix. This path will be

called column regularization path. For notational convenience, we reverse the order of the

76

5.2 Vine Copula Structure Selection with the Lasso

rows of the matrix to obtain a new matrix M∗. By this convention, the corresponding

i-th entry in column j corresponds to the i-th R-vine tree and we have m∗i,j = md−i+1,j

for j = 1, . . . , d− 1, i = 1, . . . , d− j. This is also the notation introduced as vine-array in

Joe (2014). For example, the first column of the R-vine Matrix M from Example 5.10 is

M,1 = (3, 6, 1, 4, 5, 2). Thus, M∗
,1 = (2, 5, 4, 1, 6, 3). Finally, note that the j-th column in

M and M∗ have exactly d− j non-zero entries.

Definition 5.12 (Column regularization path). Let M be an R-vine structure matrix

in d dimensions. We define a column regularization path of the reversed j-th column

M∗
,j =

(
m∗1,j, . . . ,m

∗
d−j,j

)
by a vector λj = (λ1,j, . . . , λd−j,j) ≥ 0 for j = 1, . . . , d − 2 such

that

{i : λi,j < λ′} =
{
i : cj,κi(j)|κ1(j),...,κi−1(j) = 0 in R-vine tree Ti

}

for some λ′ > 0.

Thus, each column j = 1, . . . , d− 1 of the R-vine matrix is assigned a vector λj ∈ Rd−j

which contains threshold values. These values are a by-product of the penalized regressions

we ran and specify for which threshold of penalization, the corresponding SEM coefficients

are set to zero, and hence, pair copulas are set to independence copulas. Thus, only by

comparing component-wise λj > λ′ for some λ′ > 0, the column regularization path helps

to set pair copulas to the independence copula to reflect a specific degree of sparsity

associated to λ′. For the column d− 1 where we only have one value, we perform a single

regression, so called soft thresholding to calculate the corresponding value of λd−1 > 0.

The advantage of this path is now that we are able to regularize each column of the R-vine

matrix independently based on a solid theoretical reasoning, i. e. the Lasso. In practice,

we consider the R-vine family matrix Γ and fix a specific threshold of λ′ > 0. We consider

the column regularization path λj and calculate component-wise the j-th column of the

R-vine family matrix Γ as

(Γd,j, . . . ,Γd−j,j) =
(
1{λ1,j≥λ′}, . . . ,1{λd−j,j≥λ′}

)

Note that we reverse the ordering to work solely with lower triangular matrices, i. e.

Γd−i+1,j corresponds to λi,j for i = 1, . . . , d − j. Thus, all coefficients which are on

the regularization path associated to a value of λ < λ′, are set to zero, and hence,

the corresponding pair copula is set to the independence copula. The remaining pair

copulas are then subject to further estimation. We can not only calculate single column

regularization paths, but the entire regularization path of the R-vine.

Definition 5.13 (Regularization path of an R-vine). Let M be an R-vine structure matrix

in d dimensions. The regularization path of the R-vine is a matrix Λ ∈ Rd×d such that its

columns Λ,j are column regularization paths of the corresponding R-vine matrix columns

M,j, j = 1, . . . , d− 1.

Summarizing, we obtain an R-vine structure V which is not only entirely independent

of pseudo-observations of lower level trees as compared to Dißmann’s algorithm. It is

77

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

also independent of a specific penalization level λ since it is built stepwise by consid-

ering the non-zero regressors along the entire regularization paths for the R-vine tree

sequence. This allows us to calculate one specific R-vine structure and then consider it

under arbitrary many penalization levels λ, obtaining different levels of sparsity for one

generally valid R-vine structures. Based on this structure and regularization path matrix,

we can then perform maximum likelihood estimation on the non-independence copulas to

obtain a general R-vine W = (V ,B (V) ,Θ (B (V))). Next, we consider the regularization

path matrix of the six-dimensional example R-vine from Example 5.14 before proposing

methods for choosing λ.

Example 5.14 (Example 5.10 cont.). Consider the R-vine matrix M from Example 5.10.

For comparison, we also display the R-vine matrix generated from Dißmann’s algorithm,

calculated with VineCopula R-package (Schepsmeier et al., 2017).

MLasso =

3

6 2

1 6 1

4 1 6 4

5 4 5 6 6

2 5 4 5 5 5

MDißmann =

3

6 2

1 6 1

4 1 6 4

5 4 5 6 5

2 5 4 5 6 6

Note that these two R-vine matrices give rise to the exactly same R-vine tree structure.

We compute the following regularization path matrix Λ for the R-vine structure M .

Λ =

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0072 0.0000 0.0000 0.0000 0.0000 0.0000

0.0082 0.0039 0.0000 0.0000 0.0000 0.0000

0.0005 0.0091 0.4993 0.0000 0.0000 0.0000

0.0538 0.0210 0.6601 0.1344 0.0000 0.0000

0.3171 0.3117 0.7244 0.9481 0.9378 0.0000

We observe that the values are column-wise monotonically decreasing if there is no prox-

imity condition failure (pcf). For example, in the first column, the original regularization

path Λ (0, 3) = (2, 6, 1, 4, 5) did not meet the proximity condition and was recalculated.

Thus, the values of λ are not necessarily decreasing. We visualize the column regulariza-

tion path of column 2 with a step function, see Figure 5.3, indicating the corresponding

entries in the R-vine matrix. As λ → 0, more and more pair copulas are set to the in-

dependence copula, starting from higher order trees to lower order trees. The matrix Λ

can now be used to regulate the sparsity, i. e. the number of independence copulas in our

R-vine model. We will outline different approaches in Section 5.2.4 and examine the cor-

responding effects on the matrix in a subsequent example. Imposing now, say, a threshold

78

5.2 Vine Copula Structure Selection with the Lasso

●

●

●

●

●

6

1

4

5

0

1

2

3

4

0.0 0.1 0.2 0.3

λ

N
um

be
r

of
 in

de
pe

nd
en

ce
 c

op
ul

as

Figure 5.3: Column regularization path of column 2.

λ′ = 0.3, we have the following R-vine family matrix:

Γ =

−
0 −
0 0 −
0 0 1 −
0 0 1 0 −
1 1 1 1 1

.

The non-zero entries reflect Gaussian pair copulas which are then subject to maximum like-

lihood estimation and to be exchanged for any other pair copula family. Another possible

way to choose the degree of sparsity is to use the cross-validated values λCV we obtained

while calculating the full regularization paths for each Xj with j = m1,1, . . . ,md−2,d−2.

These values are in our example as follows:

λCV = (0.1342, 0.1441, 0.1110, 0.1370) .

Using this penalization, we obtain an almost full family matrix with less sparsity, as all

values in Λ except one are greater or equal these values if considered column-wise. This

is however a behaviour we would expect for such low dimensional data sets. We expect

higher dimensional data sets to be much more sparse.

5.2.4 Selection of the Tuning Parameter

We propose two approaches how we can utilize the regularization path matrices to obtain

sparse R-vine models. A high value in these matrices means a significant contribution

79

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

to the model fit, where a low values means the opposite. Introducing now a threshold

value λT and checking whether or not entries in Λ are below or above this value, the

corresponding entries in Γ are set to the independence copula or left for estimation of

the pair copula type and parameter. Denote the regularization path of the R-vine by

Λ = (λi,j)i=1,...,d;j=1,...,d with family matrix Γ = (γi,j)i=1,...,d;j=1,...,d.

Single Threshold Approach

The first approach is to specify some threshold λT > 0 and calculate the family matrix

entries according to

γi,j = 1{λi,j≥λT }, j = 1, . . . , d− 1, i = 1, . . . , d− j.

Pair copulas corresponding to unit entries in the family matrix are then subject to, e. g.

maximum likelihood estimation. Such an approach can easily be evaluated using a grid of

λT ∈ (0, 1). Recall that we only need to compute the structure and regularization matrix

once upfront and then evaluate the corresponding threshold. In the data example, we

consider a grid of threshold parameters.

Adaptive Threshold Approach

A second approach is to specify not a threshold value itself, but to calculate the threshold

such that a specified share of the entries in Λ fall below the threshold. Recall that Λ has(
d
2

)
entries as lower diagonal matrix. Our intention is to grab the highest 100µ% of the

values in Λ for µ ∈ (0, 1). Thus, we solve the following equation for a threshold λµ:

bµ ·
(
d

2

)
c =

d∑

j=1,...,d−1,i=1,...,d−j
1{λi,j≥λµ}

This threshold can easily be found by sorting all entries of Λ decreasingly and stop once

bµ ·
(
d
2

)
c entries have been found.

Example 5.15 (Example 5.14 cont.). We consider the regularization path matrix Λ as

in Example 5.14. For the single threshold approach, we choose λT = 0.1 to obtain ΓλT
and for the adaptive threshold approach, we use µ = 0.5. With

(
d
2

)
=
(

6
2

)
= 15, we have

bµ ·
(

6
2

)
c = 7, i. e. we select the entries with the highest seven values in Λ, obtaining Γλµ.

ΓλT =

−
0 −
0 0 −
0 0 1 −
0 0 1 1 −
1 1 1 1 1 −

Γλµ =

−
0 −
0 0 −
0 0 1 −
0 0 1 0 −
1 1 1 1 1 −

80

5.3 Application

5.3 Application

We scale our approach to higher dimensions compared to Section 4.5. Because of the

availability of data, we again consider a financial data set. Thus, we obtain data from the

S&P500 constituents from January 1, 2013 to December 31, 2016. We isolate d = 222

stocks which fall into the sectors Financial Services (70), Health Care (40), Industrials

(54), Information Technology (52) and Telecommunication Services (6). We apply suitable

ARMA-GARCH models to remove trends and seasonality from the time series, see Section

7.1.1. The residuals are then transformed using the empirical cumulative distribution

function to the u-scale. To obtain models, we use Dißmann’s algorithm with a level

α = 0.05 independence test and 1, . . . , 221-truncation, i. e. we fit a full model and the

split it into the first k trees for k = 1, . . . , 221 to obtain sub-models. We consider only

one-parametric pair copula families and the t-copula. The same pair copula selection

also applies for our approach where we calculated models along a grid of single threshold

values λT ∈ {0.054, 0.14, . . . , 0.454, 0.54}. We additionally also test for independence using

a significance level α = 0.05. As a comparison, we also include the merely Gaussian SEM.

We plot the corresponding BIC and mBIC values of both models, see Figure 5.4. For

the Lasso approach, the BIC and mBIC of the models is decreasing with decreasing λT
as less pair copulas get penalized and we obtain more and more parameters. We see

that BIC and mBIC attain a minimum for both Lasso and Dißmann approach different

from the full models, where λoptT = (1/4)4 and topt = 16 for Dißmann. Both our Lasso

approach and Dißmann’s algorithm outperform the Gaussian SEM significantly which

indicates non-Gaussian dependence. Additionally, we see that the Lasso outperforms the

Dißmann method in both criteria as it attains smaller values. For computation times,

we report that one fit of the Lasso approach took approximately 30 minutes. The entire

Dißmann fit for the full model took over 5.5 hours, all times on a Linux Cluster with 32

cores. Thus, all of the Lasso models on the grid were fitted before the full Dißmann fit was

complete. The Gaussian SEM is much faster compared to both non-Gaussian approaches.

We see that in terms of mBIC, the optimal models have around 2, 000 parameters out of

total 222 × (221) /2 ≈ 25, 000 parameters. We observe most often Student’s-t (386) and

Frank copulas (810). Our expectation is that for higher dimensional models, the ratio

of significant parameters to total number of parameters becomes even smaller, making

sparse model selection key for high dimensional setups.

To briefly recapitulate, we have presented a novel approach which uses a representation

of an R-vine in terms of a system of linear equations. The solution to these equations,

depending on some regularization parameter λ was then translated into a sparse R-vine,

without using maximum spanning trees, as the previous algorithms. As we have seen,

this tool works very fast and attains good results to obtain parsimonious models. We will

now proceed to the third approach, which allows us to tap into even higher dimensions.

81

Chapter 5 Selection of Sparse Vine Copulas in High Dimensions with the Lasso

−180000

−170000

−160000

−150000

1000 2000 3000 4000

Number of parameters

B
IC

Models Dissmann Gaussian SEM Lasso

−170000

−160000

−150000

−140000

1000 2000 3000 4000

Number of parameters

m
B

IC

Models Dissmann Gaussian SEM Lasso

Figure 5.4: Comparison of Lasso approach with single threshold λT ∈
{0.054, 0.14, . . . , 0.454, 0.54} vs. Gaussian SEM model with same threshold
vs. t-truncated Dißmann’s algorithm, t = 1, . . . , 221 on u-scale by number of
parameters vs. BIC (top) and number of parameters vs. mBIC (bottom).

82

Chapter 6

Dependence Modeling in Ultra High

Dimensions with Vine Copulas and the

Graphical Lasso

We will now continue our third approach, using a divide-and-conquer strategy for estima-

tion of R-vines in ultra high dimensions. Since the entire pair copula construction builds

on constructing a distribution in d dimensions by d(d − 1)/2 components, the problem

has an inherently quadratic complexity. We will now sketch how we will firstly use undi-

rected Gaussian graphical models, see Section 3.3.2 to cluster high dimensional data sets

in smaller subsets. Next, we will use properties of the Gaussian distribution associated to

this graphical model, to make model estimation in R-vines more efficient. The approach

resembles partly our method in Chapter 4, where we first draw structural inference from a

graphical model, and then use the inherent sparsity to make our R-vine model more parsi-

monious. After describing these two parts, we will discuss the numerical implementation

in more detail. The material in this chapter is taken from Müller and Czado (2017a).

6.1 A Divide-And-Conquer-Strategy

We will briefly motivate our approach in Section 6.1.1. Next, we describe more pre-

cisely the divide part, i. e. how to cluster ultra-high dimensional problems in smaller sub-

problems in Section 6.1.2. After that, the conquer part where we show how to estimate

R-vines with increased precision in Section 6.1.3 follows.

6.1.1 Motivation: Considering Computational Complexity

First of all, we note that the driving factor in the complexity of a vine copula model is the

number of pair copulas to be estimated. Even though the estimation itself can be carried

out quickly, the effort grows very fast since in d dimensions, we have in total d(d− 1)/2

pair copulas. If we recall the approaches in the Chapters 4 and 5, we notice the following.

First, using DAGs, the original problem remained unchanged in a sense, that we were

still calculating maximum spanning trees as in the algorithm of Dißmann et al. (2013).

Even though the edge weights are calculated differently and many pair copulas are set

83

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

to the independence copula upfront, we have to calculate d − 1 spanning trees. Hence,

it is reasonable to assume that the algorithm we developed in Chapter 4 has a similar

computational complexity as Dißmann’s.

Using the Lasso method in Chapter 5, we can expect to benefit from the fact that we only

solve linear regressions, which is a problem that can be carried out with high efficiency and

thus, very fast. Alas, even though the number of equations grows linear in d, we need to

solve significantly more of these problems as the proximity condition requires us to re-run

the calculations. A nice feature is that given a structure estimate with regularization path

matrix, we can conveniently vary λ and obtain the number of non-independence copulas

in the resulting model for a specific λ. This allows to control the effort for the estimation

of pair copula families and parameters. A disadvantage of this approach is however that

it works global and allows not for clusters of variables which are more dependent.

Now, for dimensions d > 1000, it is however sensible to assume that there exist clusters

of variables which have stronger dependence within the cluster and weaker dependence

outside. Hence, a global approach which considers all pairwise dependencies equally has

two drawbacks. First, we model dependencies which are not significantly contributing to

the model fit and thus, over parametrize our model. Second, in clusters where stronger

dependence exists, we may be too imprecise because we oversee these clusters in the

magnitude of variables, and hence, have a model with inferior fit. Thus, a divide-and-

conquer strategy which

• clusters the data in clusters of stronger dependence,

• models the within-cluster dependence with increased precision,

is expected to outperform other models which work globally on the data set.

6.1.2 Clustering High Dimensional Data

Recall that our goal is ultimately to estimate R-vines in ultra high dimensions. Thus,

instead of estimating an R-vine as described in the Chapters 2, 4 or 5 on data in d

dimensions, we first cluster the data set into a partition and then perform estimation

on the elements of the partition. The partition is provided by the methods presented in

Section 3.3.2, i. e. the graphical Lasso. Inside these clusters, we can then estimate R-vines

in smaller dimensions with improved accuracy as a consequence of exploiting the global

Markov property, (3.10). Assume that we are given data X ∈ Rn×d, where d ≈ 1000

or more. We will consider a sequence of J disjoint partitions of V = {1, . . . , d} into pj
connected components V j :=

⋃pj
i=1 V j

i , j = 1, . . . , J . This is expressed by a sequence of

graphical models

G1 =

(
V 1 =

p1⋃

i=1

V 1
i ,

p1⋃

i=1

E1
i

)
, . . . ,GJ =

(
V J =

pJ⋃

i=1

V J
i ,

pJ⋃

i=1

EJ
i

)
. (6.1)

In most practical applications, J = 15 or J = 30, see Zhao et al. (2015). If partition V j

is only a single connected component, we have pj = 1. The sequence Gj for j = 1, . . . , J

84

6.1 A Divide-And-Conquer-Strategy

can be identified as solution path corresponding to the graphical Lasso for J different

penalization values of λ > 0. To identify the size of connected components in these

graphs, define for each partition V j, j = 1, . . . , J ,

δj = max
i=1,...,pj

∣∣V j
i

∣∣ . (6.2)

Instead of considering the entire data set in d dimensions, we consider subsets of lower

dimensions on the connected component with maximum dimension δj < d dimensions. In

practical applications, we will have some threshold dimension 0 < dT < d and calculate

the solution path of the graphical Lasso for a sequence {λ1, . . . , λJ} based on the screening

property (3.14). This works very fast and we can select the corresponding graphical model

and associated partition V T by

T = arg max
j=1,...,J

δj such that δj ≤ dT .

Finally, we denote the chosen partition T by V T and the corresponding graph by GT =(
V T =

⋃pT
i=1 V T

i ,
⋃pT
i=1 ET

i

)
.

Example 6.1 (Example 3.12 cont.). Consider the sequence of graphs in Example 3.12.

Using the notation of (6.1) and defining Gj = Gλj , we have J = 4 and pj, δj for j =

1, . . . , 4 as follows:

j 1 2 3 4

pj 6 4 3 1
δj 1 3 4 6

Table 6.1: Example 6.1: Number of connected components pj and maximum component
sizes δj for graphs in Figure 3.6.

Assume dT = 4, then T = arg maxj=1,...,4 δj such that δj ≤ 4, thus T = 3. Hence, the

graph G3 is selected with partition V 3 = {1, 4, 5, 6} ∪ {2} ∪ {3} with pT = 3 and δT = 4.

Now, we consider the problem of estimating sub-R-vines on these connected components

induced by a partition V T . Thus, with respect to this partition we estimate R-vines on

the connected components of GT , i. e. the elements of the partition V T
i , i = 1, . . . , pT

with at most dimension δT . Each of these sub-R-vines is then stored in an R-vine matrix

and the corresponding matrices can be combined non-uniquely to an R-vine matrix of

dimension d × d. This is however an incomplete R-vine matrix as it does not contain

information how the connected components are connected to each other. Additionally,

connected components of size 1, i. e. isolated nodes are not yet included. Both the missing

connections and the isolated nodes can however be easily connected afterwards as we will

show in a subsequent example. For this, we also introduce the fill-level kF ≥ 0 which

determines how many R-vine trees outside the connected components should be estimated.

85

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

Example 6.2 (Clustering example). Assume we have the graphical model GT as in Figure

6.1.

1 5 2

6 4 3

Figure 6.1: Example 6.2: Graphical model GT in six dimensions.

Given this graphical model, we estimate sub-R-vines on the components {1, 4, 6} and

{2, 5}, respectively. These two components give rise to the following R-vine matrices,

where we assume that the estimate in M1 is optimal with respect to some edge weight.

M1 =

1

6 4

4 6 6

 M2 =

(
2

5 5

)
.

Together with the isolated node 3, these two R-vines can be arranged into a joint R-vine

on six dimensions described by the matrix M123.

M123 =

3

2

5

1

6 4

21 5 22 4 6 6

,M ′

123 =

3

2

5

1

41 42 43 6 4

2 5 1 4 6 6

.

This would correspond to the graphical model in GT . Now, we can connect the connected

components with each other in the first kF trees, i. e. to the fill-level. This works as

following for the example of kF = 2. The entries in M123 marked by 2 describe the pair

copulas between the connected components and are chosen from 21 ∈ {2, 5, 1, 4, 6} and

22 ∈ {1, 4, 6}. For example, 22 /∈ {3, 2} since only diagonal entries from the right of the

corresponding column may be used. To select the entries in the last row, we consider all

admissible pairs (3,21) with 21 ∈ {2, 5, 1, 4, 6} and (5,21) with 22 ∈ {1, 4, 6}. Recall that

a pair copula in the first tree is fitted on the pair of diagonal entry and the entry in the last

row of the R-vine matrix. We fit pair copulas for each of these pairs and then select the

best according to some edge weight µ. After having completed the last row in M123 using

21 = 2 and 22 = 1, we obtain M ′
123 and are to fill the second tree, i. e. the fifth row of M ′

123

consisting of the entries 41,42,43. However, we have to take into account the proximity

condition. By checking (2.8), this leaves admissible entries 41 ∈ {5}, 42 ∈ {1} and

43 ∈ {4}. Finally, these pair copulas are fitted and the matrix is finalized, see M ′′
123 with

associated family matrix Γ with ? denoting pair copulas which are not the independence

86

6.1 A Divide-And-Conquer-Strategy

copula by virtue of the graphical model.

M ′′
123 =

3

6 2

4 6 5

1 4 6 1

5 1 4 6 4

2 5 1 4 6 6

,Γ =

 ? ? ? ?

? ? ? ? ?

.

We note that this particular R-vine is a D-vine, i. e. the first R-vine tree is given by a

path through the nodes 3− 2− 5− 1− 4− 6 and determines all subsequent trees. This is

however not necessarily the case in general.

Motivated by the previous example, we define the R-vine representation of an undi-

rected graphical model G with fill level kF ≥ 0 by W (G, kF). This R-vine representation

can then again be equipped with non-Gaussian pair copulas. Thus, we are left to estimate

R-vines in the connected components of GT which can be combined into one R-vine. We

will not use the standard algorithm for estimation but exploit also the graphical struc-

ture within the connected component. Hence, consider an arbitrary connected component

within GT of size ν and denote it by H = (W,F). This is again a graphical model with

respect to the vertices in W . We will describe an approach for estimating R-vines on W

with improved accuracy.

6.1.3 Improving Estimation Accuracy

We are now considering a connected component of GT =
(
V T =

⋃pT
i=1 V T

i ,
⋃pT
i=1 ET

i

)
and

denote it by H = (W,F). We are to estimate an R-vine on the variables in W and denote

ν = |W |. We consider the computational complexity in terms of pair copulas to estimate.

In total, these are ν (ν − 1) /2 pair copulas to be estimated for a R-vine on W with ν

variables. Denote the corresponding R-vine tree sequence V = (T1, . . . , Tν−1). To find

the first R-vine tree T1, start with a full graph on W . Dißmann’s algorithm would now

Kendall’s τ on all pairs (j, `) ∈ W ×W and use the weights µj,` = |τj,`| to find a maximum

spanning tree. As discussed in Section 2.2.2, we can also estimate pair copula densities cj,`
for each edge (j, `) on all ν (ν − 1) /2 edges and calculate a maximum spanning tree with

respect to an edge weight µj,`, e. g. log-likelihood or a penalized goodness of fit measure as

in (2.9), based on the actual fit. However, this increases the required effort for an R-vine

tree sequence significantly. As we have ν − 1 trees on ν − i+ 1 nodes for i = 2, . . . , ν − 2

and consider in the worst case all possible pairs in each tree, this sums up to

ν−2∑

i=1

(ν − i+ 1) (ν − i)
2

=
ν3 − ν

6
− 1, (6.3)

pair copulas, where the leading term can only be bounded from above by ν3. Note that

this is a worst case complexity since in higher trees, the proximity condition can exclude

87

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

some edges, and hence, no pair copula needs to be estimated for these. In the particular

case of a D-vine, where the first tree is a path, i. e. each node except for the two end

nodes has degree 2, the remaining R-vine tree sequence is completely determined and the

effort collapses to order ν (ν − 1) /2. Whereas in the case of a C-vine, where each tree is

a star, the upper bound in (6.3) is attained. Recall that the method of Dißmann et al.

(2013), only ν (ν − 1) /2 pair copulas have to be estimated. Hence, for general R-vines,

estimation of ν3 pair copulas is not admissible even if ν � d. However, we can take

into account the (conditional) independence information by the graph H to set a huge

number of pair copulas to independence copulas upfront, leading to a significant decrease

of computational effort.

• Recall that F is the edge set of H and define H0 = (W,W ×W), i. e. a full graph

on W and assign pair copulas and weights

cj,` = 1⇔ µj,` = 0⇔ (j, `) /∈ F .

For all remaining edges (j, `) ∈ W ×W , we perform maximum likelihood estimation

on the pair copulas and obtain weights µj,` = |µ (cj,`)| based on the actual fit. Thus,

we have weights for all edges and can now calculate a maximum spanning tree

T1 = (W,E1).

• We define Tk = (Ek−1, Ek−1 × Ek−1) for k = 2, . . . , ν − 1, i. e. a full graph on Ek−1.

We remove all edges not allowed by the proximity condition. For the remaining

edges, we assign pair copulas and weights

cj,`;D = 1⇔ µj,`;D = 0⇔ j ⊥ ` | D [H] .

For all remaining edges (j, `;D) ∈ Ek−1 × Ek−1 we perform maximum likelihood

estimation on the pair copulas and obtain weights µj,`;D = |µ (cj,`;D)| based on the

actual fit. Thus, we have weights for all edges and can now calculate a maximum

spanning tree Tk for k = 2, . . . , ν − 1.

If the connected component H is not too dense, i. e. |F| ∼ ν instead of |F| ∼ ν2, overall

about ν2 pair copulas are estimated for the entire R-vine in ν dimensions. From this point

of view, it is more beneficial to neglect the edges which are not chosen anyway because

of (conditional) independence and perform a more thorough analysis on the remaining

edges. The algorithm of Dißmann might miss important edges, especially if all estimated

Kendall’s τ values are similar. Furthermore, our approach fosters sparsity by setting

pair copulas to independence straight away. This is not possible in Dißmann’s algorithm,

except for truncation, which however has to be specified upfront in a very inflexible

manner. We will show that our approach is able to capture significantly more dependence

compared to Dißmann’s. An example illustrating this approach finalizes the section.

Example 6.3 (Example 6.1 cont.). Assume the graphical model H as in Figure 6.2 (left).

88

6.2 Algorithmic Implementation

1 2

4 3

1 2

4 3
c34

c
2
3

c
13

Figure 6.2: Example 6.3: Graphical model H (left) and first R-vine tree T1 (right).

Using our approach, we fit pair copulas c1,3, c1,4, c2,3, c3,4 and consider the corresponding

goodness of fit values µ1,3, µ1,4, µ2,3, µ3,4, given for example by the AIC. The other missing

edges are neglected, i. e. no pair copula is estimated. Assume additionally that the optimal

choice with respect to AIC is given by the tree given in the right panel of Figure 6.2. Then,

the second R-vine tree T2 may contain for example the possible edge c2,4|3. However, we

can see from the left panel of Figure 6.2 that 2 ⊥ 4 | 3 [H] and thus, the pair copula c2,4|3
is set to the independence copula upfront in T2.

6.2 Algorithmic Implementation

We will now consider more deeply the algorithmic implementation of the approach, first

going into the computational details in Section 6.2.1 and then giving an exhaustive toy

example in Section 6.2.2.

6.2.1 Computational Implementation

We combine the two previous steps in one algorithm, allowing to estimate high dimen-

sional vine copulas based on a clustering by the graphical Lasso. For this, we need to

specify a threshold dimension dT < d and a fill-level kF ≥ 0 describing until which tree

we will estimate pair-copulas outside the connected components. The later is beneficial

since we only use the connected components to break our original problem into tractable

sub-problems. However, if there is dependence outside the connected components, from

a computational point of view, estimating within the connected components of dimen-

sion at most dT < d first and then connect these components afterwards is much more

beneficial than estimating an R-vine on d dimensions. We use the huge R-package, see

Zhao et al. (2015) to generate high dimensional undirected graphical models and use

the default settings there. Since we normally operate on copula-data (U1, . . . , Un), i. e.

data with uniform marginals, we transform our observations to the z-scale, i. e. consider

(Z1 = Φ−1 (U1) , . . . , Zd = Φ−1 (Ud)) ∼ Nd (0,Σ) in a Gaussian set up. The only change

we perform in the default setting of huge is that we always want to obtain a sequence

of 30 graphs, this is regulated by the number of λj ≥ 0 to be evaluated. In terms of the

previous notation, we set J = 30. Our algorithm then selects a partition such that the

maximum component size is less or equal dT as shown in Section 6.1.2 and then performs

on each of the components an improved R-vine selection based on Section 6.1.3. The

edge metric µ we use is the absolute value of the AIC of the associated pair copula term

89

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

in our considerations. Afterwards, we combine these sub-R-vines into one joint R-vine

matrix on which we operate further. Finally, we estimate the pair copulas in the first

kF ≥ 0 trees of the joint R-vine. From this point on, we only operate on the R-vine

matrix M . Thus, we have to take into account that in a certain column j of M , only

values of the main diagonal right of j, i. e. in Mj+1,j+1, . . . ,Md,d can occur. Thus, for a

given entry in Mi,j, we check which entries in Mj+1,j+1, . . . ,Md,d are valid according to the

proximity condition. For those, we fit pair copulas and select the best choice according

to the same metric, i. e. absolute value of AIC. The entire algorithm, which we will refer

to as RVineClusterSelect, is given Appendix, Chapter C.

6.2.2 Toy Example

For a better understanding, we provide an exhaustive end-to-end toy example which covers

all aspects of our algorithm using an example in eight dimensions.

Example 6.4 (End-to-End Toy Example). We will now sketch an end-to-end toy example

to illustrate precisely how our algorithm works. Therefore, we use an example in d = 8

dimensions for illustration and refer to the code lines in Algorithm 8.

Line Input: X ∈ Rn×8, dT = 4, kF = 2.

Line 1 Assume we have a sequence of graphs as given in Figure 6.3.

G1 G2

1 2 5 6

4 3 8 7

1 2 5 6

4 3 8 7

G3 G4

1 2 5 6

4 3 8 7

1 2 5 6

4 3 8 7

Figure 6.3: Example 6.4: Sequence of estimated graphical models G1, . . . ,G4 on X.

Line 2 We calculate the corresponding number of connected components pj and maximum

component sizes δj, j = 1, . . . , 4 as in Table 6.2.

j 1 2 3 4

pj 8 4 3 1
δj 1 4 5 8

Table 6.2: Example 6.4: Number of connected components pj and maximum component
sizes δj for graphs G1, . . . ,G4 in Figure 6.3.

90

6.2 Algorithmic Implementation

Given the threshold dimension dT = 4, see Line Input, we find

T = arg max
j=1,...,4

δj ≤ 4⇒ T = 2.

More precisely, only for this clustering, i. e. graph G2, we still obtain a number of dimen-

sions less or equal to the threshold dimension dT = 4. This is the main ingredient to

control the estimation effort in the sub R-vines. Hence, we have four connected compo-

nents in G2, i. e. pT = 4. With the ordering we assume in Algorithm 8, Line 1 we have

the node and edge sets

V 2
1 = {1, 2, 3, 4} , E2

1 = {(1, 3) , (1, 4) , (2, 3) , (3, 4)} ,
V 2

2 = {5, 6} , E2
2 = {(5, 6)} ,

V 2
3 = {7} , E2

3 = ∅,
V 2

4 = {8} E2
4 = ∅.

Line 3 We start into the for loop over all pT = 4 connected components with i = 1 and

consider the first connected component with four nodes, V 2
1 .

Line 4 Set ν1 = |V 2
1 | = 4, H = (W = V 2

1 ,F = E2
1) and H0 = (W ,W ×W).

Line 5 We check νi ≥ 3. This is necessary to determine if there are less than three nodes

in this connected component. If this is the case, i. e. for example only one node, then

there is no pair copula to estimate. If the connected component contains two nodes, there

is only one pair copula to estimate, and this case will be covered later on. Now, since

ν1 = |V 2
1 | = |{1, 2, 3, 4}| = 4, this if condition is fulfilled. We continue by calculating the

first R-vine tree on this connected component.

Line 6 We consider first all possible edges in the full graph H0, i. e.

(1, 2) , (1, 3) , (1, 4) ,

(2, 3) , (2, 4) ,

(3, 4) .

Lines 7-14 We check for each of the edges in the full graph H0, if it is contained in

the edge set F of H. If this is not the case, we assign the independence copula to these

directly. Otherwise, we perform pair copula estimation. More precisely, we have

c1,2 (u1, u2) = 1

c2,4 (u2, u4) = 1,

since these edges are not contained in H. For the remaining edges, we carry out maximum

likelihood estimation or inversion of Kendall’s τ . Assume we have estimated pair copulas

and calculated their positive AIC values

µj,` = |µ (cj,`)| ,

91

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

and

µ3,4 > µ1,3 > µ2,3 > µ1,4 > 0.

We determine a maximum spanning tree, and hence the first R-vine tree on this partition

T 1234
1 , see Figure 6.4 (right panel).

1 2

4 3

1 2

4 3
µ
1
,4

µ3,4

µ
2
,3

0

µ1,3

0

1 2

4 3
34

23

13

Figure 6.4: Example 6.4: Graphical model H (left), weighted graph H0 (middle) and first
R-vine tree T 1234

1 (right).

Lines 15-26 We start into the loop with k = 2. Thus, we build the second R-vine tree

T 1234
2 . Since T 1234

1 is a star, the proximity condition does not put any restrictions on edges

in T 1234
2 . Recall the first R-vine tree is depicted in Figure 6.4, right panel. We find the

second R-vine tree by considering the full graph on the nodes E1, see Figure 6.5. Now,

13 23

34
24
|3

12|3

14
|3

Figure 6.5: Example 6.4: Intermediate step towards the second R-vine tree T 1234
2 .

for each of the edges in Figure 6.5 we check, according to code line Line 18

1 ⊥ 2 | 3 [H]⇒ c12;3

(
u1|3, u2|3

)
= 1

1 6⊥ 4 | 3 [H]

2 ⊥ 4 | 3 [H]⇒ c24;3

(
u2|3, u4|3

)
= 1.

Thus, the two pair copulas c12;3 and c24;3 are set the independence copula directly and

assigned weights µ12;3 = µ24;3 = 0. Since c14;3 can not be set to the independence copula by

virtue of the graphical separation, we perform maximum likelihood estimation or estima-

tion by inversion of Kendall’s τ . Hence, a maximum spanning tree and thus, the second

R-vine tree T 1234
2 is given by Figure 6.6. Edges with the independence copula by virtue of

the graphical separation are indicated with ⊥. Note however, that it is also possible that

the maximum likelihood estimate for c14,3 is the independence copula.

Lines 15-26 We rerun the loop for k = 3. The third and last R-vine tree T 1234
3 is already

92

6.2 Algorithmic Implementation

13 23

34

12|3⊥

14
|3

Figure 6.6: Example 6.4: Second R-vine tree T 1234
2 .

12|3

14|3

24
|13
⊥

Figure 6.7: Example 6.4: Third R-vine tree T 1234
3 .

fully determined and given in Figure 6.7. For the pair copula c24;13, we see with the graph

H in Figure 6.4 (left panel), we have

2 ⊥ 4 | 13 [H]⇒ c24;13

(
u2|13, u4,13

)
= 1.

Hence, it is also assigned the independence copula. This determines the sub-R-vine on the

nodes

V 2
1 = {1, 2, 3, 4}

with R-vine matrix

M1234 =

2

4 4

1 1 1

3 3 3 3

 ,Γ1234 =

−
0 −
0 ∗ −
∗ ∗ ∗ −

 ,

and associated parameter and family matrix Γ1234, P1234. Note that a 0 in the family

matrix Γ1234 denotes the independence copula and ∗ represents a pair copula family chosen

according to maximum likelihood estimation.

Line 3 We have hence the second iteration in the outer loop with i = 2 and the second

partition

V 2
2 = {5, 6} E2

2 = {(5, 6)} .
Line 4 Set ν2 = |V 2

2 | = 2, H = (W = V 2
2 ,F = E2

2) and H0 = (W ,W ×W).

Line 5 We see that there are only two nodes and hence, we go to the else case in Line

29 and estimate the pair copula c5,6. We find the R-vine matrix easily to be

M56 =

(
6 0

5 5

)
.

93

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

The remaining loops are empty since the condition in Line 5 or Line 28 are not satisfied.

Hence, we continue and combine the sub R-vines.

Line 33 We link the two sub-R-vines and the two isolated nodes in one joint R-vine

matrix. For this, we start with the largest sub-R-vine in the lower right corner of the joint

R-vine matrix.

M0 =

8

0 7

0 0 6

0 0 0 5

0 0 0 0 2

0 0 0 0 4 4

0 0 0 0 1 1 1

0 0 5 0 3 3 3 3

.

Additionally, keep in mind that also the corresponding family and parameter matrices are

combined this way. We note that the 0 entries in the lowest row indicate the connections

outside the connected components. Since we have fill-level kF = 2, we need to find optimal

connections for the 0 entries in the lowest two rows. Hence, we consider all possible

combinations. Denote

M1 =

8

0 7

0 0 6

0 0 0 5

0 0 0 0 2

0 0 0 0 4 4

0 0 0 0 1 1 1

41 42 5 43 3 3 3 3

.

In an R-vine matrix M , for an entry Mi,j, only values out of Mj+1,j+1, . . . ,Md,d can occur.

Thus, we have
41 ∈ {1, 2, 3, 4, 5, 6, 7} ,
42 ∈ {1, 2, 3, 4, 5, 6} ,
43 ∈ {1, 2, 3, 4} .

(6.4)

Next, we carry out maximum likelihood estimation or pair copula estimation via inversion

of Kendall’s τ for each possible pair. Hence, we estimate pairs between the corresponding

diagonal entry and the admissible entries in (6.4),

(1, 8) , (2, 8) , (3, 8) , (4, 8) , (5, 8) , (6, 8) , (7, 8) ,

(1, 7) , (2, 7) , (3, 7) , (4, 7) , (5, 7) , (6, 7) ,

(1, 5) , (2, 5) , (3, 5) , (4, 5) ,

(6.5)

calculate the AIC of each pair in (6.5) and choose the optimal pair copulas for each open

94

6.2 Algorithmic Implementation

entry 41,42,43. Let us assume
41 = 2,

42 = 5,

43 = 2,

and hence

M1 =

8

0 7

0 0 6

0 0 0 5

0 0 0 0 2

0 0 0 0 4 4

0 0 0 0 1 1 1

2 5 5 2 3 3 3 3

.

Now, we need to fill the 0 entries for the second lowest row of M , i. e. the second R-vine

tree of the joint model. To infer which possibilities exist for the second tree, we draw the

first joint R-vine tree T1. Since we have fill-level kF = 2, we need to identify the following

1 2 5 6

4 3 8 7

13

34

23

25 56

28 57

Figure 6.8: Example 6.4: First joint R-vine tree T1.

entries indicated with �1, �2, �3, �4 in M2.

M2 =

8

0 7

0 0 6

0 0 0 5

0 0 0 0 2

0 0 0 0 4 4

�1 �2 �3 �4 1 1 1

2 5 5 2 3 3 3 3

.

By the proximity condition and Figure 6.8, we check the admissible edges. For example,

in the first column of M2, we are to find the admissible entries to which the edge 28 can

be connected. For this, we need to find the edges j, ` which share a common node with 28.

More precisely, we need to find

j, ` such that j = 2 or ` = 8.

95

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

We can easily see that these are 23 and 25. Since the common node is 2, we find the

symmetric difference of 28 and 23 to be {3, 8} and of 28 and 25 to be {5, 8}, respectively.

The node in the main diagonal of M2, in this case 8, is however no admissible choice

since it can not occur more than once per column. Thus, we have

�1 ∈ {3, 5} .

For the other columns, we have to be more careful since we only can take values occurring

in the main diagonal to the right of the corresponding column.

�2 ∈ {2, 6} .
�3 = 2,

�4 = 3.

Thus, for �3 and �4 we only have single values as admissible choices, even though there

are more nodes sharing a common edge. This is due to the fact that have a fixed main

diagonal. Next, we calculate the weights to select the optimal edges in T2 for �1,

µ3,8;2 = |µ (c3,8;2)| ,
µ5,8;2 = |µ (c5,8;2)| ,

and for �2,
µ2,7;5 = |µ (c2,7;5)| ,
µ6,7;5 = |µ (c6,7;5)| .

Since we do not have any choices remaining for �3 and �4, we do not need to calculate

weights. Assume now we have
µ3,8;2 > µ5,8;2 > 0

µ2,7;5 > µ6,7;5 > 0

The final R-vine matrix looks as following.

M2 =

8

0 7

0 0 6

0 0 0 5

0 0 0 0 2

0 0 0 0 4 4

3 2 2 3 1 1 1

2 5 5 2 3 3 3 3

.

The information with respect to pair copula families and parameters are stored in the

corresponding matrices Γ and P . Note that this is not a complete R-vine matrix since

information about the trees T3, . . . , T7 is only partially available. However, completing this

R-vine matrix to make it a lower triangular matrix is easy if no optimization with respect

96

6.3 Application

to optimal values of µ is carried out. An admissible choice for M with final family matrix

Γ is for example

M =

8

7 7

6 6 6

5 4 4 5

4 1 1 4 2

1 3 3 1 4 4

3 2 2 3 1 1 1

2 5 5 2 3 3 3 3

,Γ =

−
0 −
0 0 −
0 0 0 −
0 0 0 0 −
0 0 0 0 0 −
∗ ∗ ∗ ∗ 0 ∗ −
∗ ∗ ∗ ∗ ∗ ∗ ∗ −

.

This finishes our example.

6.3 Application

If we want to compare the Gaussian modelling approach with the non-Gaussian R-vine

approach, we need to set the fill-level kF = 0, i. e. only model the edges present in the

Gaussian model by pair copulas and not include additional edges between the connected

components. However, for illustration of the effect, we will also include a fit using fill-level

kF = 1 in our considerations later on. Secondly, we have to assume the same marginal

distributions. This time, we obtained data on d = 2131 stocks with n = 999 observations.

The stocks are based in the US (1866), Sweden (154) and Australia (111). The following

industry sectors are covered, see Table 6.3.

ID Sector Description Total USA Sweden Australia

1 Materials and Energy 218 209 3 6
2 Industry Conglomerates 4 4 0 0
3 Consumer Staples 205 189 12 4
4 Financial Services and Real Estate 524 449 49 26
5 Healthcare and Chemicals 232 182 26 24
6 Manufacturing, Industrials and Defense 195 173 12 10
7 Business Management and Services 325 295 21 9
8 IT, Telecommunication and Software 360 301 28 31
9 Utilities 68 64 3 1

Total 2131 1866 154 111

Table 6.3: Distribution of stocks over industry sectors and geographies in the data appli-
cation.

Define Si the i-th stock for i = 1, . . . , 2131, denote the industry sector assignment by

I` : {i : Stock Si belongs to industry `} for ` = 1, . . . , 9,

and the node set V = {1, . . . , 2131} for all graphical models G1, . . . ,G30. We estimate a

97

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

path of 30 graphical Lasso solutions G1, . . . ,G30 calculated by the huge R-package with-

out setting a threshold dimension. To obtain also the log-likelihoods, we evaluate the

corresponding covariance matrices of the solutions. We report the first ten corresponding

maximum connected component sizes of G1, . . . ,G10 in Table 6.4.

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

1 2 42 84 128 215 453 804 1027 1231

Table 6.4: Maximum connected component sizes for G1, . . . ,G10.

The remaining 20 cluster sizes for G11, . . . ,G30 are significantly higher than 1200 and

thus not considered for our method, as these subs-dimensions are too large to fit an R-

vine model onto them. In fact, we only fit R-vines on the graphs G2, . . . ,G9 since the first

partition with δ1 = 1 is an empty graph bearing no information and the largest G10 with

δ10 = 1231 is also too large. Hence, we consider eight graphical models G2, . . . ,G9 in the

following. An interesting property we can observe is the industry sector concentration

within each connected component of the graphical models G2, . . . ,G9. In the notation of

Section 6.1.2, consider graphical models Gj =
(
V j =

⋃pj
i=1 V j

i ,
⋃pj
i=1 Ej

i

)
with j = 2, . . . , 9.

Let us fix j and consider the k-th component V j
k of V j. Then, denote

∣∣V j
k

∣∣ = νjk, i. e. νjk
stocks are contained in this connected component. Recall that each node represents a

stock associated to one industry sector. We define the industry sector occurring most

often in the component V j
k by

bjk = arg max
`∈1,...,9

∑

i∈V jk

1{i∈I`} (i) .

A natural measure for the sector concentration in V j
k is given by

%jk =
bjk
νjk
.

In other words, we count the occurrence of all different sectors within each connected

component and divide the number of the most often occurring sector per connected com-

ponent by the total number of nodes in this connected component. We do this for all

connected components within each of the graphs in the sequence G2, . . . ,G9. The results,

see Table 6.5, demonstrate a very high sector concentration in the connected components

over the entire sequence of considered graphs. We see first of all, that a large portion

of connected components have sector concentration %j = 1, second and third column of

Table 6.5. Thus, at least 80% of the connected components are dominated by a single

sector. Additionally, we see from the last column that also the connected components

where more than one sector are present, have quite a high sector concentration. This

backs our assumption that the graphical Lasso works very well to isolate highly depen-

dent subsets from each other. The motivation for this is the assumption that especially

in high dimensions, there exist clusters of dependence. As we have e. g. geographical or

98

6.3 Application

Gj pj |
{
k ∈ 1, . . . , pj : %jk = 1

}
| |

{
k ∈ 1, . . . , pj : %jk = 1

}
|

/pj

mean of{
%jk : %jk 6= 1

}

G2 3 3 1 -
G3 20 19 0.95 0.83
G4 42 39 0.93 0.64
G5 67 62 0.93 0.74
G6 69 60 0.87 0.66
G7 61 46 0.75 0.69
G8 47 41 0.87 0.55
G9 31 26 0.84 0.58

Table 6.5: Number of connected components pj in Gj for j = 2, . . . , 9, number of con-
nected components k = 1, . . . , pj with sector concentration %jk = 1, percentage
of connected components with sector concentration %jk = 1 compared to all
connected components and mean of the sector concentrations %jk over the re-
maining connected components where sector concentration %jk 6= 1.

industry-sectoral dependency in a high dimensional stocks data set, we can expect the

model to make use of conditional independencies or, in other words, sparsity. The idea is

that after all intra-geographical or sectoral dependencies are described, cross geographical

or sectoral dependencies are weak and can be neglected outside the connected components.

The same is often monitored in biology, where only a small set of genes affects each other.

Finally, we compare the Gaussian model and the R-vine model in terms of log-likelihood

and GIC on the z-scale for corresponding numbers of parameters, see Figure 6.10. In

the Gaussian model, the number of parameters is equal to the number of edges in the

graph whereas for the R-vine, the number of parameters is equal to the number of pair

copula parameters. In both cases, we add d parameters for the estimated variance of

the marginal distributions. This is because we need to add Gaussian marginals with the

same variance as estimated by the graphical Lasso to our R-vine model, to make the two

models comparable.

We clearly see that the flexibility of the R-vine compared to the Gaussian model leads to

significant out-performance with respect to log-likelihood and even more with respect to

GIC. This stems from the fact that the R-vine gains much more exploratory power with

adding additional parameters. This also true for the corresponding model with kF = 1.

The most parsimonious model in terms of GIC is the R-vine given by G7. This is also

similar for the Gaussian model. We analyse this model more precisely.

First of all, we check both the intraclass and interclass correlations based on G7. To this

end, we compute the sums of the absolute values of the corresponding correlations. As a

proxy for the interclass correlations, we calculate the mean of all off-diagonal entries in

the correlation matrix.

ρinter =
1(

2131
2

)
2131∑

i=1

2131∑

j=1,j 6=i
|ρi,j| ≈ 0.187

99

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

Next, we iterate over all connected components of G7 which contain more than one node

and denote them by

K7 =
{
i ∈ {1, . . . , p7} : |V 7

i | > 1
}
.

For each k ∈ K7, we calculate the mean of the intraclass correlations by

ρintrak =
1

(|V 7
k |
2

)
∑

i∈V 7
k

∑

j∈V 7
k ,j 6=i

|ρi,j| for all k ∈ K7.

In total, we have |K7| = 61 connected components. We average over these mean values

to obtain

ρintra =
1

61

61∑

k=1

ρintrak ≈ 0.406,

which is significantly higher than the proxy of the interclass correlation ρinter.

Next, we analyse more precisely the pair copula families in the final model based on the

graph G7. We split our considerations between the first R-vine tree T1 and all the higher

order trees T2, . . . , T2130. The five most occurring pair copula families in T1 are given in

Table 6.6. We see that more than half of the pair copulas are Student’s-t copulas as we

Copula family absolute number relative number

Student’s-t 1078 0.51
Frank 382 0.18
Survival Gumbel 186 0.09
Survival BB1 143 0.07
Gaussian 126 0.06

Table 6.6: Most occurring pair copula families in R-vine tree T1.

expect for financial datasets because of their feature to accommodate tail dependence.

We also can evaluate the mean of the degrees of freedom df for these Student’s-t copulas,

measuring their tail dependence, and find it to be about seven. Hence, we have strong

non-Gaussian dependence. Furthermore, also Gumbel and BB1 families are present for

asymmetric dependence. We also see a high number of Frank copulas which are symmetric

and have no tail dependence. Considering this more precisely, evaluate the pairs in the

first R-vine tree which are described by Frank copulas. Of these pairs, only 47% contain

stocks which share the same economic sector. In contrary, if we consider the pairs which

are not linked by Frank copulas, we obtain more than 67% sharing the same economic

sector. Hence, more than half of the Frank copulas describe inter-class dependences which

are expected to be weaker, where more than two third of the other pair copulas describe

intra-class dependence which is found to be stronger, see the above considerations.

When considering the higher order trees, we find the following distribution of most oc-

curring pair copula families, see Table 6.7. We do not give any relative proportions in

this case since the widely dominating copula is the independence copula because of the

sparsity induced by the graphical model. Finally, we also find the R-vine to be empirically

truncated at k = 405, i. e. only the first 405 trees do contain pair copulas different from

100

6.3 Application

Copula family absolute number

Frank 2439
Student’s-t 846
Gaussian 699
Survival BB8 427
Survival Gumbel 215

Table 6.7: Most occurring pair copula families in R-vine trees T2, . . . , T2131.

the independence copula, and the higher 1726 trees do not, thus, less than 20% of the

trees contain non-independence copulas. When considering the Student’s-t copulas in the

R-vine and their parameters, i. e. the degrees of freedom df , we have that for lower df , we

have more tail dependence and for higher df > 30, the distribution becomes quite similar

to the Gaussian distribution. We consider box plots of the degrees of freedom over the

R-vines computed with the graphs G3, . . . ,G9, see Figure 6.9. Note that in the R-vine

computed based on G2, we do not have any Student’s-t copulas.

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

10

20

30

Graph 3 Graph 4 Graph 5 Graph 6 Graph 7 Graph 8 Graph 9

Graph

D
eg

re
es

 o
f F

re
ed

om

Figure 6.9: Distribution of the degrees of freedom as parameter for the Student’s-t copula.

101

Chapter 6 Dependence Modeling in Ultra High Dimensions with Vine Copulas and the

Graphical Lasso

●

●

●

●

●

●

●

●

●

42

84

128

215

453

804

1027

42

84

128

215

453

804

1027

42
84

128

215

453

804

1027

−3200000

−3000000

−2800000

−2600000

10000 20000 30000

Number of parameters

Lo
g−

lik
el

ih
oo

d

Models ●Clustered R−Vine KF0 Clustered R−Vine KF1 Gaussian Graphical Model

●

●

●

●

●

●

●
●

●

42

84

128

215

453
804

1027

42

84

128
215 453

804

1027

42
84

128
215

453 804 1027

5500000

5750000

6000000

6250000

6500000

10000 20000 30000

Number of parameters

G
IC

Models ●Clustered R−Vine KF0 Clustered R−Vine KF1 Gaussian Graphical Model

Figure 6.10: Comparison of clustered R-vines with fill-levels kF = 0, 1 and Gaussian
graphical model fitted with the graphical Lasso G1, . . . ,G9: log-likelihood
(top), GIC (bottom).

102

6.3 Application

Since most of the degrees of freedom vary around 10 to 15, we clearly monitor and

model heavy tailed data, which is quite important considering financial returns. If this

property is not adequately taken into account, risk models are deemed to fail in times

of heavy market turmoil when assets become highly correlated, leading to a significant

reduction of diversification when it is most needed.

Finally, our models based on the graphs G2, . . . ,G9 took between 12 hours and 2 days

for estimation on a Linux Cluster with 32 cores. The Gaussian graphical model needs only

several minutes for estimation in these dimensions. It is worth noting that other methods

for estimating R-vines as the one of Dißmann et al. (2013) failed in these dimensions

because of exceeding time or memory consumption.

This finishes the third chapter presenting the last of the three novel approaches. We have

seen that this method decomposes the d-dimensional problem entirely different as the two

previous approaches in the Chapters 4 and 5. We are now interested in comparing all

the three presented approaches towards each other and also with the current benchmark

algorithm of Dißmann et al. (2013).

103

Chapter 7

Comparison Studies Utilizing the

Proposed Methods

We will now perform comparison studies of the proposed methods, applied to both simu-

lated and real world data. The goal is to show the following assertions.

(i) Our approaches are competitive with, or outperform the benchmark selection al-

gorithm by Dißmann et al. (2013) as implemented in the VineCopula R-package

of Schepsmeier et al. (2017). We show this for scenarios with moderate number of

dimensions, i. e. d ∼ 100 with respect to

• goodness of fit measures as log-likelihood, AIC, BIC, mBIC and GIC, see (2.9),

• computation time,

• model parsimony in terms of number of parameters and non-independence

copulas.

(ii) Our approaches are the only numerically tractable option once the dimension ex-

ceeds d ∼ 500, since the standard algorithm is becoming infeasible due to the

required computation time, memory consumption, overly parametrized models or

some or all of these issues.

In Section 7.1.1, we will discuss data preparation and numerical considerations regarding

the used algorithms. Next, we will show a simulation study in d = 85 dimensions in

Section 7.2, where we compare our three proposed approaches to the current benchmark

algorithm. We will consider three differently sparse scenarios. Since we work on simulated

data, we also know the true model parameters which we can compare ourselves to. In

Section 7.3 we will compare the computational complexity of our proposed algorithms

and the benchmark over data sets with up to d = 1750 dimensions to study the effect of

increasing dimensions on the time complexity. Finally, in Section 7.4, we perform Value

at Risk forecasting and backtesting for portfolios of d = 400 stocks using our proposed

methods and the standard approach, to assess the effect on real world data.

The results in Section 7.2 and Section 7.3 have already been reported in Müller and Czado

(2017b,c,a). The description of the data preparation follows Müller and Czado (2017a).

105

Chapter 7 Comparison Studies Utilizing the Proposed Methods

7.1 Set up of the Comparison

7.1.1 Data Preparation

For the subsequent data applications, we consider financial daily data. First of all, this is

motivated by the fact that this kind of data is widely available, also in high dimensions.

Furthermore, we need to carry out marginal modelling upfront, which is well understood

for financial time series. More precisely, we consider closing prices of shares adjusted for

dividends and splits Sjt for i = 1, . . . , n observations for j = 1, . . . , d shares. In the next

step, we calculate daily log returns by

Rj
i = log

(
Sji
Sji−1

)
for i = 2, . . . , n.

These log returns are then filtered for trend and seasonality, i. e. idiosyncratic behaviour.

We use ARMA-GARCH(p, q) models, see Section 3.1.1, with (p, q) ∈ {0, 1} × {0, 1}, i. e.

four different specifications and allow for residuals distributed according to three different

distributions, normal, Student’s-t or skewed Student’s-t, denoting the distribution by Gξ.

Here, the vector ξ denotes the corresponding parameters of the distribution G. Thus, in

total we consider 4× 3 = 12 models which we fit for each marginal time series and choose

the best in terms of log-likelihood. Next, we compute standardized residuals by

xi,j =
Rj
i − R̂j

i

σ̂j
for j = 1, . . . , d and i = 1, . . . , n− 1.

based on the estimated time series models, where σ̂2
j , j = 1, . . . , d is the estimated variance

of the error distribution. From these standardized residuals, we have two possible ways to

proceed to ultimately obtain copula data. Either, we calculate the empirical cumulative

distribution function F̂j of X1,j, . . . , Xn−1,j for j = 1, . . . , d to obtain copula data

unpi,j = F̂j (xi,j) (7.1)

for i = 1, . . . , n − 1 and j = 1, . . . , d. Note that np stands for nonparametric. On the

other hand side, we can also use the parametric distribution function of the residuals Gξ
and calculate

upi,j = Gξ̂j ,j (xi,j)

for i = 1, . . . , n − 1 and j = 1, . . . , d, where the p stands for parametric and both the

function G and also its parameter estimate depend on the corresponding time series

j = 1, . . . , d. In the Sections 7.2 and 7.3 we will use non-parametrically estimated residuals

and for the application in the Section 7.4 we will use parametrically estimated. The

later is necessary since only parametrically estimated marginals allow us to re-transform

simulated copula data back to the original marginal distribution. We will describe this

proceeding more precisely in Section 7.4.

106

7.2 Simulation Study

7.1.2 Numerical Implementation

We will briefly describe details of the numerical implementation concerning our analy-

sis. This is to discuss settings we have made in the correspondingly used R-packages

and give references. For obtaining the data, we used the R-package quantmod of Ryan

and Ulrich (2017) to obtain financial time series in high dimensions accessing https:

//www.yahoo.com. Based on these, time series models were fitted using the rugarch

R-package of Ghalanos (2015). Whenever R-vines are estimated using the algorithm of

Dißmann et al. (2013), the R-package VineCopula of Schepsmeier et al. (2017) and more

precisely, the function RVineStructureSelect was used. To estimate Gaussian DAGs as

introduced in Chapter 4, we refer to the bnlearn R-package of Scutari (2010), and more

precisely, the hc function for calculating DAGs using the Hill-Climbing algorithm. The

default optimization criterion is Gaussian BIC. To calculate Lasso regularization paths

as introduced in Chapter 5, we use the R-package glmnet of Friedman et al. (2010) and

for undirected graphical models as used in Chapter 6, we refer to the huge R-package of

Zhao et al. (2015). We note that all these packages are designed to work with Gaussian

data, hence we transform the copula data to the z-scale before we apply the corresponding

functions.

The plots are generated by the ggplot2 R-package of Wickham (2009) and the igraph

R-package of Csardi and Nepusz (2006), which was also used for analysis of graphs.

All numerical computations were performed on a Linux Cluster with 32 cores.

The algorithms we developed are contained in our R-package VineCopulaHD for high di-

mensional selection of copula models. Since our functions are based on and make use of

the VineCopula package, all pair copula families implemented in the VineCopula pack-

age can be used in our package. Additionally, also a test for pairwise independence as

described in the VineCopula package is possible to combine with our approaches and is

used by default, both for Dißmann’s method as well as for our approaches.

7.2 Simulation Study

First of all, we are interested in evaluating our approaches for data with moderate di-

mensions, i. e. d ∼ 100. In this case, the benchmark algorithm for vine copula selection

of Dißmann et al. (2013) can also still be carried out and is reasonably fast. Since our

approaches are however designed to work well in set-ups with sparse data, we want to

account for this. Hence, we define three scenarios with different levels of sparsity. In ac-

cordance to the data preparation described in Section 7.1.1, we accumulated stock quotes

of the S&P100 constituents from 01.01.2013 to 31.12.2016 and process them as previously

described. This leads to observation size n = 1007 and d = 85 dimensions since 15 stocks

dropped out of the index by the end of the observation period. After preprocessing the

data and calculating copula data using the non-parametric transformation (7.1), we ob-

tain U ∈ [0, 1]n×d.

We will use the following notational conventions to easy comparison of the different model

selection algorithms we presented in this thesis. Since a vine copula model consists of a

107

https://www.yahoo.com
https://www.yahoo.com

Chapter 7 Comparison Studies Utilizing the Proposed Methods

structure, pair copulas and the corresponding pair copula parameters, we abbreviate

Wm
p :=

(
Vmp ,Bmp

(
Vmp
)
,Θm

p

(
Bmp
(
Vmp
)))

,

where m denotes a specific model selection algorithm. More precisely, we have

• for m = Diss, the benchmark of Dißmann et al. (2013),

• for m = DAG, the model selection described in Chapter 4,

• for m = Lasso, the model selection described in Chapter 5, and more precisely,

– for m =Lasso-ST, using single thresholding,

– for m =Lasso-AT, using adaptive thresholding,

• for m = Cluster, the model selection described in Chapter 6.

By p, we denote additional parameters which the corresponding model selection algorithm

may have. If we want to make clear that this model is estimated using data U , we write

Wm
p (U) .

Considering again the data set U ∈ [0, 1]1007×85, we use Dißmann’s algorithm to fit three

different vine copula models

WD
2 ,WD

5 ,WD
10,

to the data, imposing a 2, 5 and 10-truncation. We allow for all parametric pair copula

families implemented in the VineCopula R-package of Schepsmeier et al. (2017) and find

the pair copulas in the first tree as given in Table 7.1. Additionally, we perform an

independence test for each pair copula at the significance level α = 0.05. Clearly, the

2-truncation is the most parsimonious model, however, also the 5 and 10-truncation are

quite sparse models compared to a full model with 84 trees. From these fitted models, we

simulate M = 50 replications
U2

1 , . . . , U
2
M ,

U5
1 , . . . , U

5
M ,

U10
1 , . . . , U10

M ,

with n = 1000 observations each. Onto these data sets, we fit vine copula models using

the different approaches presented in this thesis. We use m = D and p = 2, 5, 10 to denote

the true models with the corresponding truncation levels in the corresponding scenarios.

This proceeding has the advantage that we can now consider the modelsWD
2 ,WD

5 ,WD
10 as

true models from which the simulated data arise. We briefly summarize the pair copula

families on the first tree of the true models. These pair copulas indicate non-Gaussian, i. e.

heavy tailed and asymmetric dependence. For the degrees of freedom of the Student’s-t

copula, we see a mean of 6.4, which indicates heavy tails.

These data sets serve now as basis to compare our approaches. More precisely, for each

scenario s = 2, 5, 10 and each replication i = 1, . . . ,M we compare the following models.

108

7.2 Simulation Study

Copula family absolute number

Student’s-t 58
Survival BB1 15
Survival BB8 6
Survival Gumbel 3
BB1 1
Frank 1
Total 84

Table 7.1: Most occurring pair copula families in R-vine tree T1 of WD
2 ,WD

5 ,WD
10.

Model name Notation Parameters Description

True WD
s (U s

i) - true R-vine model we simulate from

Dißmann WDiss (U s
i) -

R-vines fitted using Dißmann’s
method, see Section 2.2

k-DAG WDAG
k (U s

i) k = 2, 3, 4
R-vine representations of k-DAGs,

see Chapter 4

Lasso-ST-
λ

WLasso−ST
λ (U s

i)
λ =

0.24, 0.254

R-vine representations of SEMs
calculated with the Lasso, see

Chapter 5 using the single threshold
approach

Lasso-AT-
µ

WLasso−AT
µ (U s

i) µ = 0.1, 0.2

R-vine representations of SEMs
calculated with the Lasso, see
Chapter 5 using the adaptive

threshold approach

Cluster-
dT -kF

WCluster
dT−kF (U s

i)
dT =

25, 50, 75

R-vines based on clusterings, see
Chapter 6 using J = 15 undirected

graphical models generated with the
graphical Lasso and considering

threshold dimensions dT and fill-level
kF = dlog (d)e = dlog (85)e = 5

Table 7.2: Overview of compared models in simulation study.

Since we compare M = 50 values for each model, for example log-likelihood, we use box

plots to visualize the results. We will consider the goodness of fit measures log-likelihood,

AIC, BIC, mBIC and GIC see (2.9), as well as the computation time in minutes and the

number of parameters and non-independence copulas in the corresponding models.

The simulation scheme is visualized in Figure 7.1.

109

C
h
ap

ter
7

C
om

p
arison

S
tu

d
ies

U
tilizin

g
th

e
P

rop
osed

M
eth

o
d
s

Data U ∈ R1007×85

Scenario 1
2-truncated R-vine WD

2

Scenario 2
5-truncated R-vine WD

5

Scenario 3
10-truncated R-vine WD

10

Simulated data
from WD

2 : U2
1 , . . . , U

2
50

from WD
5 : U5

1 , . . . , U
5
50

from WD
10: U

10
1 , . . . , U10

50

True model WD
s (Us

i)

Dißmann model
WDiss(Us

i)

k-DAG models
WDAG

k ((Us
i))

k = 2, 3, 4

Lasso models

WLasso−ST
λ (Us

i)
λ = 0.24, 0.254

WLasso−AT
µ (Us

i)
µ = 0.1, 0.2

Cluster models
WCluster

dT ,kF
(Us

i)
dT = 25, 50, 75
kF = 0

F
it
m
o
d
el
s

(D
iß
m
an

n
)

S
im

u
la
te

d
at
a

fr
om

m
o
d
el
s

F
it
an

d
co
m
-

p
ar
e
m
o
d
el
s

Figure 7.1: Scheme of simulation study.

110

7.2 Simulation Study

Scenario WD
2 : 2-truncation

We start with the most parsimonious scenario WD
2 based on a 2-truncated R-vine. First

we consider the log-likelihood.

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

27
00

0
28

00
0

29
00

0
30

00
0

31
00

0
32

00
0

Log−Likelihood

Figure 7.2: Log-likelihood for Scenario WD
2 : Comparison of True model, Dißmann,

k-DAG for k = 2, 3, 4, Lasso-ST-λ for λ = 0.24, 0.254, Lasso-AT-µ for
µ = 0.1, 0.2 and Cluster-dT -5 for Threshold Dimension (Thr. Dim.)
dT = 25, 50, 75.

First of all, we see that Dißmann’s algorithm outperforms all other competitors with

respect to log-likelihood, see Figure 7.2. It is worth noting that the attained log-likelihood

is also higher than the likelihood of the true model from which we simulate. This indicates

over-fitting. The closest competitors are the DAG and the Lasso-ST models, where the

other algorithms attain significantly lower values in log-likelihood. However, it is interest-

ing that the Lasso-ST and the Cluster method are either shrinking the number of used

parameters quite inflexibly or perform a not very sensible clustering. For such a small

dimension, breaking up the dependence structure in sub-R-vines is not yet necessary. We

next consider penalized goodness of fit values as AIC and BIC in Figure 7.4 and mBIC

and GIC in Figure 7.5. We see that in terms of AIC, Dißmann’s algorithm is still ahead,

but the distances are decreasing. This is even more the case in terms of BIC where only

the Lasso-AT and the Cluster method fall behind. Considering mBIC, the picture is

quite similar to BIC. However, once we look at GIC, the picture changes and Dißmann’s

method is outperformed by the DAG models, the Lasso-ST and Lasso-AT-0.1 and the

111

Chapter 7 Comparison Studies Utilizing the Proposed Methods

Cluster-75-5 method. This becomes even more intriguing considering the number of

parameters and the number of non independence copulas as reported in Figure 7.6. We

see that Dißmann’s model has a significantly higher number of parameters than all other

competitor methods, which leads to the decline in goodness of fit with respect to strongly

penalizing measures as GIC. Apart from the Cluster-50-5 and Cluster-75-5 method,

all other approaches have a higher number of parameters compared to the true model.

This approach and parametrization leads to quite parsimonious models, which can also

be seen in terms of computation time, Figure 7.3. Dißmann’s method uses by far the

most time. Especially the Lasso-ST is very fast. The computation time of the Cluster

method is not as low, however, the strength of this approach will come into place in much

higher dimensions. We also clearly see that for the k-DAGs, with increasing number of

k, we have increasing computation time.

We will now compare more in depth the associated correlation matrices of the correspond-

ing k-DAG models.

●

●

●
●

●

●

●

●●

●

●

Dissmann DAG Lasso−ST Lasso−AT Cluster

Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

5
10

15
20

Time (minutes)

Figure 7.3: Computation time in minutes for ScenarioWD
2 with 2-truncation: Comparison

of True model, Dißmann, k-DAG for k = 2, 3, 4, Lasso-ST-λ for λ =
0.24, 0.254, Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-dT -5 for Threshold
Dimension (Thr. Dim.) dT = 25, 50, 75.

112

7.2 Simulation Study

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
62

50
0

−
60

00
0

−
57

50
0

−
55

00
0

AIC

●

●

●

●

● ●

● ●

●

●

●
●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
60

00
0

−
58

00
0

−
56

00
0

−
54

00
0

−
52

00
0

BIC

Figure 7.4: AIC (upper panel) and BIC (lower panel) for ScenarioWD
2 with 2-truncation:

Comparison of True model, Dißmann, k-DAG for k = 2, 3, 4, Lasso-ST-
λ for λ = 0.24, 0.254, Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-dT -5 for
Threshold Dimension (Thr. Dim.) dT = 25, 50, 75.

113

Chapter 7 Comparison Studies Utilizing the Proposed Methods

●

●

●
●

●

●

●

●

●

●

●●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
57

50
0

−
55

00
0

−
52

50
0

mBIC

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
57

50
0

−
55

00
0

−
52

50
0

GIC

Figure 7.5: mBIC (upper panel) and GIC (lower panel) for Scenario WD
2 with 2-

truncation: Comparison of True model, Dißmann, k-DAG for k = 2, 3, 4,
Lasso-ST-λ for λ = 0.24, 0.254, Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-
dT -5 for Threshold Dimension (Thr. Dim.) dT = 25, 50, 75.

114

7.2 Simulation Study

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

30
0

40
0

50
0

Number of Parameters

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

20
0

30
0

40
0

Number of non−Independence Copulas

Figure 7.6: Number of parameters (upper panel) and number of non-independence cop-
ulas (lower panel) for Scenario WD

2 with 2-truncation: Comparison of True
model, Dißmann, k-DAG for k = 2, 3, 4, Lasso-ST-λ for λ = 0.24, 0.254,
Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-dT -5 for Threshold Dimension
(Thr. Dim.) dT = 25, 50, 75.

115

Chapter 7 Comparison Studies Utilizing the Proposed Methods

Comparison of Associated Correlation Matrices

Another interesting fact about the DAG models can be seen comparing the correlation

matrices. First, we have the simulated data on the z-scale, denote Zi = φ−1 (U s
i) and

calculate its corresponding correlation matrix Σ̂. Recalling the approach from Chapter 4,

we first estimate a Gaussian DAG with at most k parents on this data, denote it by

Gk for k = 2, 3, 4.

Each of these DAGs induces a structured correlation matrix, denote by ΣGk , related to

the graphical structure of the DAG. An algorithm how to construct a covariance matrix

induced by a DAG is given in Appendix A.3, Algorithm 4 and based on Rütimann et al.

(2009). The covariance matrix can then easily be standardized to obtain a correlation

matrix. Next, based on this Gaussian DAG, we find an R-vine representationW (Gk) and

equip this R-vine with arbitrary pair copulas based on maximum likelihood estimation,

but also taking into account the conditional independencies as in the DAG. This R-vine is

then transformed into the nearest Gaussian R-vine. For this, the Kendall’s τ of each edge

in the R-vine is transformed into a (partial) correlation, using the formula in Example

2.4, and the corresponding pair copula families are exchanged to Gaussian. Denote this

Gaussian R-vine byWG (Gk). Based on the correlations and partial correlations, we obtain

the correlation matrix described by this Gaussian R-vines and denote it by ΣWG(Gk). Thus,

we have three different correlation matrices and can compare these using the Kullback-

Leibler divergence D given by (3.4) between the associated correlation matrices under

normality, see Section 3.1.3. These divergence values describe the following.

(a) D
(

Σ̂,ΣGk

)
describes how well the correlation matrix Σ̂ is modelled by the Gaussian

DAG Gk for k = 2, 3, 4. This divergence is expected to decrease for increasing k as

more edges are allowed.

(b) D
(
ΣGk ,ΣWG(Gk)

)
describes how well our algorithm finds an approximating R-vine

W (Gk) for the Gaussian DAG Gk for k = 2, 3, 4. This divergence is expected be

small and vary only slightly with increasing k since our algorithm should find feasible

representations for any k. For k = 1, a perfect representation is possible and hence,

there the divergence should be zero. However, for k ≥ 2, the divergence should

decrease as more edges in the DAG give also more flexibility for the R-vine.

(c) D
(

Σ̂,ΣWG(Gk)

)
describes how well the sample correlation matrix Σ̂ is modelled

by the Gaussian R-vine representation. As for (a), we expect this divergence to

decrease since for more available edges, the model fit should increase. Of course,

this is based on the assumption that our algorithm for representing Gaussian DAGs

as R-vines works sufficiently well. Additionally, we also consider the resulting R-

vine estimated by Dißmann’s algorithm, calculate the nearest Gaussian R-vine and

the corresponding correlation matrix, denote ΣD.

The connection between these divergence measures is also depicted in Figure 7.7.

116

7.2
S
im

u
lation

S
tu

d
y

Data Zs
i = φ−1 (Us

i)

Gaussian k-DAG
Gk (Z

s
i)

Gaussian R-vine
Representation
WG (Gk (Z

s
i))

of k-DAG Gk (Z
s
i)

Σ̂ (Zs
i) ΣGk

(Zs
i) ΣWG(Gk) (Z

s
i)

(a) D
(
Σ̂ (Zs

i) ,ΣGk
(Zs

i)
)

(b) D
(
ΣGk

(Zs
i) ,ΣWG(Gk) (Z

s
i)
)

(c) D
(
Σ̂ (Zs

i) ,ΣWG(Gk) (Z
s
i)
)

D (Σ1,Σ2): Kullback-Leibler divergence between Σ1 and Σ2

M
o
d
el
s

C
or
re
la
ti
on

m
at
ri
ce
s

Figure 7.7: Scheme of the comparison of associated correlation matrices.

117

Chapter 7 Comparison Studies Utilizing the Proposed Methods

●

●

1
2

3
4

2−DAG 3−DAG 4−DAG

Sample correlation matrix (z−scale) vs.
 DAG Model

●

●

1.
0

1.
5

2.
0

2−DAG 3−DAG 4−DAG

DAG model vs.
 truncated R−vine (Gauss. Approximation)

●

●

●

●

●

●

●

1
2

3
4

2−DAG 3−DAG 4−DAG Dissmann

Sample correlation matrix (z−scale) vs.
 truncated R−vine (Gauss. Approximation)

Figure 7.8: Kullback-Leibler divergence for ScenarioWD
2 with 2-truncation between (a) Σ̂

and ΣGk (upper left), (b) ΣGk and ΣWG(Gk) (upper right), (c) Σ̂ and ΣWG(Gk),
ΣD (lower center) for k = 2, 3, 4.

We draw the conclusion that a 2-DAG is not a good approximation of the sample

correlation matrix, but we obtain better fit with 3 and 4-DAG. The low values in the

center plot indicate that our approach maps the structure between DAG and R-vine

representation well. In the right plot, Dißmann’s algorithm obtains a smaller divergence

to the sample correlation matrix on the z-scale, however, for higher k, the divergence

decreases also for k-DAGs.

Next, we will move on and compare for a specific simulated data set the first R-vine trees

estimated by the models in our comparison.

118

7.2 Simulation Study

Comparison of Associated First R-vine Trees

We will also consider more explicitly the graphical models chosen by our algorithms,

i. e. the R-vine trees. To this end, we consider the first data set U2
1 sampled from the

2−truncated R-vineWD
2 and the following selection algorithms with their correspond-

ing first R-vine trees.

• Dißmann: TDiss1

• 4-DAG: TDAG1

• Lasso-ST-0.254: TLasso1

• Cluster-75-5: TCluster1

The choice of these models is based on the fact that they attained best fit in their corre-

sponding model classes with respect to GIC.

First note that we have ten industry sectors in the S&P100 data set on d = 85 dimensions.

These are listed in Table 7.3. Secondly, we consider how each first R-vine tree selected by

Sector name Sector color Sector size

Consumer Discretionary 11
Consumer Staples 8
Energy 6
Financials 15
Health Care 13
Industrials 15
Information Technology 8
Materials 3
Telecommunications Services 2
Utilities 4
Total 85

Table 7.3: Simulation study: Overview of industry sectors in the S&P100 subset with
d = 85 dimensions.

the aforementioned four models differs from the first R-vine tree in the true model. For

this, we plot the corresponding first tree and indicate for each edge with a different color,

whether it is chosen in the true model, by the corresponding selection algorithm or in

both. More precisely,

� the edge is selected in the true model but not in the selection algorithm,

� the edge is selected in both true model and in the selection algorithm,

� the edge is not selected in the true model but in the selection algorithm.

119

Chapter 7 Comparison Studies Utilizing the Proposed Methods

The corresponding results are shown in Figure 7.9 and Figure 7.10. Additionally, in

Table 7.4, we illustrate the corresponding numbers of red, blue and green edges for the

four graphs. The table is read as following. For example, the 4-DAG shares 64 edges

out of 84 edges, i. e. about 76 % of the edges in the true model. Thus, the remaining 20

edges which are contained in the true model are replaced by different edges selected by the

4-DAG to obtain a tree with in total 84 edges. We see that in all the first R-vine trees,

Comparison between
true model and

selection algorithm
but not true model

both true model and
selection algorithm

Dißmann 15 (18 %) 69 (82 %)
4-DAG 20 (24 %) 64 (76 %)
Lasso-ST-0.254 18 (21 %) 66 (79 %)
Cluster−75− 5 11 (13 %) 73 (87 %)

Table 7.4: Comparison of edge occurrence in scenarioW2
D with 2-truncation between true

model T1 of WD
2 and Dißmann TDiss1 , 4-DAG: TDAG1 , Lasso-ST-0.254:

TLasso1 and Cluster-75: TCluster1 .

the intra-sectoral dependence is strong, depicted by the blue edges. The largest overlap

between a selection algorithm and the true model exists for the Cluster-75 TCluster1

model, where we have only 11 edges which are not present in both models. The smallest

overlap exists for the 4-DAG TDAG1 with 20 edges which are not present in both models.

We see this for example in the Financials sector located in the bottom left of the plots.

There, the corresponding plot for the 4-DAG: TDAG1 , see Figure 7.9, right panel, does

not exhibit many blue edges, i. e. not many common edges. On the contrary, considering

the Cluster-75 TCluster1 model, we see that most non-blue edges are connecting different

sectors, see Figure 7.10, right panel.

Finally, we also examine the properties of the graphical models estimated by the graphical

Lasso and used by the Cluster method.

120

7.2
S
im

u
lation

S
tu

d
y

MCD

JNJ

OXY

COP
XOM

CVX

HAL

SLB

EMR

GILD

CELG

MON

DD DOW

BLK
BA

UTX

RTN

LMT

BIIB

BMY

AMGN

LLY

ABT

AGN

PFE

UNH

MDT

PCLN

AMZN

SBUX

NKE

HD
LOW

MSFT

ORCL

IBM

CSCO

ALL

MET

AXP

COF

C

AIG
BK

BAC

MMM

TWX DIS

CMCSA

CVS

HON

USB
WFC

JPM

GS
MS

MRK

CAT

UNP

EXC

SO

DUK

NEE

SPG

KO PEP

PG

CL

VZ

T

MO

INTC

TXN

TGT

WMT
COST

F

GE

GD

FDX
UPS

DHR

AAPL

QCOM

MCD

JNJ

OXY

COP
XOM

CVX

HAL

SLB

EMR

GILD

CELG

MON

DD DOW

BLK
BA

UTX

RTN

LMT

BIIB

BMY

AMGN

LLY

ABT

AGN

PFE

UNH

MDT

PCLN

AMZN

SBUX

NKE

HD
LOW

MSFT

ORCL

IBM

CSCO

ALL

MET

AXP

COF

C

AIG
BK

BAC

MMM

TWX DIS

CMCSA

CVS

HON

USB
WFC

JPM

GS
MS

MRK

CAT

UNP

EXC

SO

DUK

NEE

SPG

KO PEP

PG

CL

VZ

T

MO

INTC

TXN

TGT

WMT
COST

F

GE

GD

FDX
UPS

DHR

AAPL

QCOM

Figure 7.9: Comparison of edge occurrence in scenario WD
2 with 2-truncation between true model T1 of WD

2 and Dißmann TDiss1

(left panel) and between true model T1 of WD
2 and 4-DAG: TDAG1 (right panel).

Color coding:

� the edge is selected in the true model but not in the selection algorithm

� the edge is selected in both true model and in the selection algorithm

� the edge is not selected in the true model but in the selection algorithm

121

C
h
ap

ter
7

C
om

p
arison

S
tu

d
ies

U
tilizin

g
th

e
P

rop
osed

M
eth

o
d
s

MCD

JNJ

OXY

COP
XOM

CVX

HAL

SLB

EMR

GILD

CELG

MON

DD DOW

BLK
BA

UTX

RTN

LMT

BIIB

BMY

AMGN

LLY

ABT

AGN

PFE

UNH

MDT

PCLN

AMZN

SBUX

NKE

HD
LOW

MSFT

ORCL

IBM

CSCO

ALL

MET

AXP

COF

C

AIG
BK

BAC

MMM

TWX DIS

CMCSA

CVS

HON

USB
WFC

JPM

GS
MS

MRK

CAT

UNP

EXC

SO

DUK

NEE

SPG

KO PEP

PG

CL

VZ

T

MO

INTC

TXN

TGT

WMT
COST

F

GE

GD

FDX
UPS

DHR

AAPL

QCOM

MCD

JNJ

OXY

COP
XOM

CVX

HAL

SLB

EMR

GILD

CELG

MON

DD DOW

BLK
BA

UTX

RTN

LMT

BIIB

BMY

AMGN

LLY

ABT

AGN

PFE

UNH

MDT

PCLN

AMZN

SBUX

NKE

HD
LOW

MSFT

ORCL

IBM

CSCO

ALL

MET

AXP

COF

C

AIG
BK

BAC

MMM

TWX DIS

CMCSA

CVS

HON

USB
WFC

JPM

GS
MS

MRK

CAT

UNP

EXC

SO

DUK

NEE

SPG

KO PEP

PG

CL

VZ

T

MO

INTC

TXN

TGT

WMT
COST

F

GE

GD

FDX
UPS

DHR

AAPL

QCOM

Figure 7.10: Comparison of edge occurrence in scenario WD
2 with 2-truncation between true model T1 of WD

2 and Lasso-ST-0.254:
TLasso1 (left panel) and between true model T1 of WD

2 and Cluster-75− 5: TCluster1 (right panel).

Color coding:

� the edge is selected in the true model but not in the selection algorithm

� the edge is selected in both true model and in the selection algorithm

� the edge is not selected in the true model but in the selection algorithm

122

7.2 Simulation Study

Comparison of Associated Graphical Models

We can also more thoroughly inspect the underlying graphical models which are used by

the

• Cluster-25-5,

• Cluster-50-5,

• Cluster-75-5,

models. More precisely, we evaluate the maximum component sizes δiT and the number of

connected components piT of the chosen partitions Ti for all 50 replications i = 1, . . . , 50.

There, we observe that for higher threshold dimension, the number of the connected

components decrease while the maximum component sizes naturally increases, see Figure

7.11. We will now continue considering the other two scenarios, WD
5 and WD

10, however

●
●●

●

20

40

60

Threshold
 Dimension=25

Threshold
 Dimension=50

Threshold
 Dimension=75

Size of Components

●

●●

●

●

●●

●

● ●●

●

10

20

30

40

50

Threshold
 Dimension=25

Threshold
 Dimension=50

Threshold
 Dimension=75

Number of Components

Figure 7.11: Distribution of maximum component sizes δiT (left) and distribution of the
number of connected components piT (right) for each of the 50 replications,
i = 1, . . . , 50 for different threshold dimensions dT = 25, 50, 75 in scenario
W2

D with 2-truncation.

only comparing the corresponding goodness of fit values, number of parameters and non-

independence copulas and the computation time.

Scenario WD
5 : 5-truncation

We see very similar results as in the scenario WD
2 . More precisely, the Lasso-ST models

as well as the 3 and 4-DAG models can compete with Dißmann’s algorithm to attain

the true model. The most significant difference is that now all competitors fit models

with more parameters, as also the true model has more parameters, compared to Scenario

2, see Figure 7.12. However, Dißmann’s method is still prone to over-fitting as we see

123

Chapter 7 Comparison Studies Utilizing the Proposed Methods

in terms of mBIC and GIC, Figure 7.13. It is however also to be noted, that in scenarios

with such moderate dimension, this effect is not so problematic as Dißmann’s approach

also yields high log-likelihood to set this large number of parameters off. Yet, we see

from the computation time that the large difference between Dißmann’s method and for

example, the Lasso approaches, will become tremendous in several hundreds or thousands

of dimensions. We will now finally consider the scenario WD
10 before we continue with the

next section.

Scenario WD
10: 10-truncation

The same statements as made for the previous scenarios can also be made for this scenario,

however, we see the differences between the algorithms diminishing. This can be explained

since this scenario is not really sparse any more, and hence, there is no sparsity to exploit.

Additionally, in terms of GIC, we would choose the Lasso-ST-0.24 model. This is also

the most accurate model in terms of number of parameters and also quite beneficial with

respect to computation time.

124

7.2
S
im

u
lation

S
tu

d
y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

28
00

0
30

00
0

32
00

0
34

00
0

Log−Likelihood

●

●

●

●●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

40
0

50
0

60
0

70
0

80
0

Number of Parameters

●

●

●

●

●

●

●
●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

20
0

30
0

40
0

50
0

Number of non−Independence Copulas

●
●

●
●

●

●

●●
●
●

●

●
●●

●

Dissmann DAG Lasso−ST Lasso−AT Cluster

Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

5
10

15
20

Time (minutes)

Figure 7.12: Log-likelihood (upper left), number of parameters (upper right), number of non-independence copulas (lower left) and
computation time in minutes (lower right) for scenario WD

5 : Comparison of True model, Dißmann, k-DAG for
k = 2, 3, 4, Lasso-ST-λ for λ = 0.24, 0.254, Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-dT -5 for Threshold Dimension
(Thr. Dim.) dT = 25, 50, 75.

125

C
h
ap

ter
7

C
om

p
arison

S
tu

d
ies

U
tilizin

g
th

e
P

rop
osed

M
eth

o
d
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
65

00
0

−
60

00
0

−
55

00
0

AIC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
65

00
0

−
62

50
0

−
60

00
0

−
57

50
0

−
55

00
0

BIC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
63

00
0

−
60

00
0

−
57

00
0

−
54

00
0

−
51

00
0

mBIC

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
60

00
0

−
57

00
0

−
54

00
0

−
51

00
0

GIC

Figure 7.13: AIC (upper left), BIC (upper right), mBIC (lower left) and GIC (lower right) for scenario WD
5 : Comparison of True

model, Dißmann, k-DAG for k = 2, 3, 4, Lasso-ST-λ for λ = 0.24, 0.254, Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-
dT -5 for Threshold Dimension (Thr. Dim.) dT = 25, 50, 75.

126

7.2
S
im

u
lation

S
tu

d
y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

30
00

0
32

50
0

35
00

0

Log−Likelihood

●

●●●

●

●
●

●

●

●●
●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

40
0

60
0

80
0

Number of Parameters

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

20
0

30
0

40
0

50
0

60
0

70
0

Number of non−Independence Copulas

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Dissmann DAG Lasso−ST Lasso−AT Cluster

Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

5
10

15
20

Time (minutes)

Figure 7.14: Log-likelihood (upper left), number of parameters (upper right), number of non-independence copulas (lower left) and
computation time in minutes (lower right) for scenario WD

10: Comparison of True model, Dißmann, k-DAG for
k = 2, 3, 4, Lasso-ST-λ for λ = 0.24, 0.254, Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-dT -5 for Threshold Dimension
(Thr. Dim.) dT = 25, 50, 75.

127

C
h
ap

ter
7

C
om

p
arison

S
tu

d
ies

U
tilizin

g
th

e
P

rop
osed

M
eth

o
d
s

●

●

●

●

●

●

●
●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
72

00
0

−
68

00
0

−
64

00
0

−
60

00
0

−
56

00
0

AIC

●

●
●

●

●

● ●
●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
64

00
0

−
60

00
0

−
56

00
0

BIC

●

●

●

●

● ● ● ●

●

●

●

●
●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
65

00
0

−
62

50
0

−
60

00
0

−
57

50
0

−
55

00
0

−
52

50
0

mBIC

●

●

●

●

●

●

●

●

●

●

●

●

●

True Dissmann DAG Lasso−ST Lasso−AT Cluster

True Dissmann 2−DAG 3−DAG 4−DAG Lambda
0.20^4

Lambda
0.25^4

Mu
0.1

Mu
0.2

Thr.Dim.
25

Thr.Dim.
50

Thr.Dim.
75

−
60

00
0

−
56

00
0

−
52

00
0

GIC

Figure 7.15: AIC (upper left), BIC (upper right), mBIC (lower left) and GIC (lower right) for scenario WD
10: Comparison of True

model, Dißmann, k-DAG for k = 2, 3, 4, Lasso-ST-λ for λ = 0.24, 0.254, Lasso-AT-µ for µ = 0.1, 0.2 and Cluster-
dT -5 for Threshold Dimension (Thr. Dim.) dT = 25, 50, 75.

128

7.3 Runtime Comparison

7.3 Runtime Comparison

A crucially important aspect when comparing models is not only their goodness of fit, but

also their complexity. This is not only related to the number of parameters describing

the model, but also how complex it is to fit the model in terms of time and memory

consumption. As we have seen, models generated with Dißmann’s algorithm in d =

85 dimensions have quite a large number of parameters compared to our competitors

proposed in this thesis. Additionally, also the computation time is multiple times longer.

We want to study the latter effect in a more dynamical environment, i. e. considering

various dimensions. For this, we obtained data from d = 1757 stock listed companies

from the entire globe in the financial services industry and preprocessed them according

to Section 7.1.1. The data contains n = 470 trading days, i. e. about two years of data.

Thus, we have a data matrix U ∈ [0, 1]n×d and split it into 18 nested subsets

U` ∈ [0, 1]n×d` with d` ∈ {50, 150, 250, . . . , 1750} ,

by only considering the first d` columns. Our goal is to compare all the approaches

proposed in the Chapters 4, 5 and 6 as well as Dißmann’s method considering the com-

putation times with respect to the dimension. Based on what we have seen in Section

7.2, we expect most of our approaches to be much faster than the benchmark since they

use significantly less parameters, especially in high dimensions. Hence, we compare the

models given in Table 7.5.

Model name Notation Parameters Description

Dißmann WDiss (U`) -
R-vines fitted using Dißmann’s

method, see Section 2.2

k-DAG WDAG
k (U`) k = 1, 2, 3, 4

R-vine representations of k-DAGs, see
Chapter 4

Lasso-ST-
λ

WLasso−ST
λ (U`)

λ =
0.24, 0.254

R-vine representations of SEMs
calculated with the Lasso, see

Chapter 5 using the single threshold
approach

Lasso-AT-
µ

WLasso−AT
µ (U`) µ = 0.1, 0.2

R-vine representations of SEMs
calculated with the Lasso, see
Chapter 5 using the adaptive

threshold approach

Cluster-j-
kF

WCluster
j−kF (U`)

j = 1, 2, 3, 4
kF = 0, 1

R-vines based on clusterings, see
Chapter 6 using J = 30 undirected

graphical models generated with the
graphical Lasso and considering

component sizes δ`1, . . . , δ
`
4 according

to Table 7.7 and fill-levels kF = 0, 1

Table 7.5: Overview of the compared models in runtime comparison.

For the Cluster models, this means that for each dimension d`, we obtain four Cluster

129

Chapter 7 Comparison Studies Utilizing the Proposed Methods

models with fill level kF = 0 and four Cluster models with fill level kF = 1. We denote

them as stated in Table 7.6. The corresponding maximum component sizes δ`1, . . . , δ
`
4 in

j kF = 0 kF = 1

1 Cluster-1-kF0 Cluster-1-kF1
2 Cluster-2-kF0 Cluster-2-kF1
3 Cluster-3-kF0 Cluster-3-kF1
4 Cluster-4-kF0 Cluster-4-kF1

Table 7.6: Runtime comparison: Overview of Cluster models.

the underlying undirected graphical models are given in Table 7.7.

Data matrix Dimension d` δ`1 δ`2 δ`3 δ`4
U1 50 3 4 10 18
U2 150 9 20 46 57
U3 250 18 36 61 84
U4 350 26 52 90 121
U5 450 24 64 107 152
U6 550 17 67 127 175
U7 650 20 84 154 210
U8 750 20 105 187 248
U9 850 21 75 197 278
U10 950 22 82 220 307
U11 1050 12 88 224 435
U12 1150 12 93 238 458
U13 1250 12 93 238 470
U14 1350 12 92 239 483
U15 1450 3 81 224 465
U16 1550 3 81 228 477
U17 1650 3 81 228 490
U18 1750 3 81 228 439

Table 7.7: Maximum component sizes δ`1, . . . , δ
`
4 as defined in (6.2) of undirected graphs

G`1, . . . ,G`4 for data matrices U` with dimension d`, ` = 1, . . . , 18.

To prevent that we only compare computation times and possibly prefer models with

respect to time which are however significantly worse in terms of goodness of fit, we also

consider log-likelihood, BIC, mBIC and GIC as well. The results are summarized in the

Figures 7.16 - 7.20.

First of all, note that missing nodes in the Figures 7.16 - 7.20 are caused by time outs

on the computer cluster or caused by memory problems. We note that Dißmann’s algo-

rithm was not able to fit models with d = 450, . . . , 1750 dimensions because we received a

time out. For computation time, see Figure 7.16, the slope of Dißmann’s curve relating

dimension and computation time is the steepest.

We see a similar slope for the k-DAGs for k = 1, 2, 3, 4, since overall, these algorithms

130

7.3 Runtime Comparison

work in a similar way using maximum spanning trees. However, there have to be fewer cal-

culations of edge weights for the corresponding trees. Additionally, many pair copulas are

set to the independence copula upfront because of the d-separation in the corresponding

DAG models. However, going to thousands of dimensions, this algorithm is not feasible

as well. The Lasso approach has a much less step slope, however different between using

a Lasso-ST and the Lasso-AT. Recalling the methods, the Lasso-ST method sets all

pair copulas which are associated with λ values lower than a specified threshold λT to

the independence copula. The Lasso-AT method sets the pair copulas associated to the

(1−µ)100% lowest percent of λ values to the independence copula. Hence, µ×d (d− 1) /2

non-independence copulas will be kept for further estimation, which is dependent on the

dimension, and hence, grows linearly with d. As we see in the mBIC and GIC, Figures

7.19 and 7.20, this is not a feasible strategy for very high dimensions d > 900. However,

the Lasso-ST approach performs particularly well.

For the Cluster method, we see that we attain very slowly increasing computation time,

slightly more for kF = 1 than kF = 0. Yet, we also see that in terms of GIC, it is still

beneficial to set fill level kF = 1. Also, the models are parsimonious because only non-

independence copulas are estimated where actual dependence by the graphical Lasso is

detected. For models in dimensions exceeding d > 1500 and kF = 1, i. e. fitting pair cop-

ulas outside connected components, we perform a different pair copula estimation. While

we use maximum likelihood estimation for dimensions d ≤ 1500, we only use estimation

of pair copulas using inversion of Kendall’s τ , see Section 2.1.4 because of computational

reasons. However, this is not negatively influencing the goodness of fit, and one can expect

to go to even higher dimensions using the Cluster method.

131

C
h
ap

ter
7

C
om

p
arison

S
tu

d
ies

U
tilizin

g
th

e
P

rop
osed

M
eth

o
d
s

● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ●

●
●

●
● ●

●
● ●

0

20

40

60

0 500 1000 1500

Dimension

C
om

pu
ta

tio
n

tim
e

in
 h

ou
rs

Algorithms

●

●

●

●

Cluster−1−kF0

Cluster−2−kF0

Cluster−3−kF0

Cluster−4−kF0

Cluster−1−kF1

Cluster−2−kF1

Cluster−3−kF1

Cluster−4−kF1

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Lasso−AT−0.2

Lasso−AT−0.1

Dissmann

Figure 7.16: Runtime analysis: Comparison of computation time along dimensions 50, . . . , 1750 for Dißmann (solid black line), k-
DAG for k = 1, 2, 3, 4 (point-dashed blue lines), Lasso-ST-λ for λ = 0.24, 0.254 (dark dashed green lines), Lasso-AT-µ
for µ = 0.1, 0.2 (bright dashed green lines) and Cluster-j-kF for j = 1, . . . , 4 and kF = 0 (dashed red line with circles)
and kF = 1 (dashed red line with triangles).

132

7.3
R

u
n
tim

e
C

om
p
arison

●
●

●
●

● ●
● ●

●
●

● ● ● ●

● ● ● ●
●

●

●

●

●
●

●

●

●

● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00

1e+05

2e+05

3e+05

0 500 1000 1500

Dimension

Lo
g−

lik
el

ih
oo

d

Algorithms

●

●

●

●

Cluster−1−kF0

Cluster−2−kF0

Cluster−3−kF0

Cluster−4−kF0

Cluster−1−kF1

Cluster−2−kF1

Cluster−3−kF1

Cluster−4−kF1

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Lasso−AT−0.2

Lasso−AT−0.1

Dissmann

Figure 7.17: Runtime analysis: Comparison of log-likelihood along dimensions 50, . . . , 1750 for Dißmann (solid black line), k-DAG
for k = 1, 2, 3, 4 (point-dashed blue lines), Lasso-ST-λ for λ = 0.24, 0.254 (dark dashed green lines), Lasso-AT-µ for
µ = 0.1, 0.2 (bright dashed green lines) and Cluster-j-kF for j = 1, . . . , 4 and kF = 0 (dashed red line with circles) and
kF = 1 (dashed red line with triangles).

133

C
h
ap

ter
7

C
om

p
arison

S
tu

d
ies

U
tilizin

g
th

e
P

rop
osed

M
eth

o
d
s

●
●

●
●

●
●

●
●

●

●

● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4e+05

−3e+05

−2e+05

−1e+05

0e+00

0 500 1000 1500

Dimension

B
IC

Algorithms

●

●

●

●

Cluster−1−kF0

Cluster−2−kF0

Cluster−3−kF0

Cluster−4−kF0

Cluster−1−kF1

Cluster−2−kF1

Cluster−3−kF1

Cluster−4−kF1

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Lasso−AT−0.2

Lasso−AT−0.1

Dissmann

Figure 7.18: Runtime analysis: Comparison of BIC along dimensions 50, . . . , 1750 for Dißmann (solid black line), k-DAG for k =
1, 2, 3, 4 (point-dashed blue lines), Lasso-ST-λ for λ = 0.24, 0.254 (dark dashed green lines), Lasso-AT-µ for µ = 0.1, 0.2
(bright dashed green lines) and Cluster-j-kF for j = 1, . . . , 4 and kF = 0 (dashed red line with circles) and kF = 1
(dashed red line with triangles).

134

7.3
R

u
n
tim

e
C

om
p
arison

●
●

●
●

●
●

●
●

●

●

● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3e+05

−2e+05

−1e+05

0e+00

0 500 1000 1500

Dimension

m
B

IC

Algorithms

●

●

●

●

Cluster−1−kF0

Cluster−2−kF0

Cluster−3−kF0

Cluster−4−kF0

Cluster−1−kF1

Cluster−2−kF1

Cluster−3−kF1

Cluster−4−kF1

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Lasso−AT−0.2

Lasso−AT−0.1

Dissmann

Figure 7.19: Runtime analysis: Comparison of mBIC along dimensions 50, . . . , 1750 for Dißmann (solid black line), k-DAG for
k = 1, 2, 3, 4 (point-dashed blue lines), Lasso-ST-λ for λ = 0.24, 0.254 (dark dashed green lines), Lasso-AT-µ for
µ = 0.1, 0.2 (bright dashed green lines) and Cluster-j-kF for j = 1, . . . , 4 and kF = 0 (dashed red line with circles) and
kF = 1 (dashed red line with triangles).

135

C
h
ap

ter
7

C
om

p
arison

S
tu

d
ies

U
tilizin

g
th

e
P

rop
osed

M
eth

o
d
s

● ●
● ● ● ●

● ● ●
●

● ● ● ●

● ● ● ●
●

●
●

●

●
●

●

●
●

●
●

● ●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

−2e+05

0e+00

2e+05

4e+05

0 500 1000 1500

Dimension

G
IC

Algorithms

●

●

●

●

Cluster−1−kF0

Cluster−2−kF0

Cluster−3−kF0

Cluster−4−kF0

Cluster−1−kF1

Cluster−2−kF1

Cluster−3−kF1

Cluster−4−kF1

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Lasso−AT−0.2

Lasso−AT−0.1

Dissmann

Figure 7.20: Runtime analysis: Comparison of GIC along dimensions 50, . . . , 1750 for Dißmann (solid black line), k-DAG for k =
1, 2, 3, 4 (point-dashed blue lines), Lasso-ST-λ for λ = 0.24, 0.254 (dark dashed green lines), Lasso-AT-µ for µ = 0.1, 0.2
(bright dashed green lines) and Cluster-j-kF for j = 1, . . . , 4 and kF = 0 (dashed red line with circles) and kF = 1
(dashed red line with triangles).

136

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

7.4 Value at Risk (VaR) Forecasting and Backtesting in

400 Dimensions

We conclude the thesis with an application in the financial context, returning to the

motivating example in the Introduction, Chapter 1. Again, this is mostly because of the

wide availability of financial data and because of the particular knowledge to estimate

marginal models in this case. We consider three different scenarios, based on the data

previously presented and analyzed in Section 6.3. More precisely, we take three subsets,

each of dimension 400 from the original data set in dimension d = 2131. The dimension

of the subsets is chosen such that the method of Dißmann et al. (2013) is still able to

estimate models, as we want to compare the outcomes. These subsets are given by

• a random draw of 400 stocks out of all d = 2131 stocks,

• the sectors Consumer Staples (ID 3) and Manufacturing, Industrials and Defense

(ID 6) combined, see Table 6.3, yielding exactly 400 stocks,

• a random draw of 400 stocks out of the 524 stocks in the Financial Services and

Real Estate (ID 4) sector.

The motivation is that we have three different portfolio compositions. The first is just

a random sample out of all industry sectors. The second is the union of two sectors

where we would expect strong intra-sectoral dependency for both the two sectors but

not much inter-sectoral dependence. The latter is due to the fact that consumer goods

and industrial goods are suspected to follow rather different economy cycles and market

dynamics. Finally, the third portfolio only considers Financial Services companies since

these are expected to be strongly dependent, as seen for example in the contagion effects

in the aftermath of the 2007 financial crisis. Note that since most of the stocks are based

in the US, we consider this market as the leader and do not adapt for maybe different

time zones between geographies.

We will now firstly describe how we set up the different models and then consider the

subsequent VaR Forecasting and VaR Backtesting, where we compare the models.

7.4.1 Data Preparation and Modelling

First, we will not directly model stock prices Sj for j = 1, . . . , d, but instead model

log-returns. Denote these by

Rj
t = log

(
Sjt

Sjt−1

)
, for j = 1, . . . , d and t = 2, . . . , T.

These time series of log returns need then to be filtered for trend and serial dependence

using ARMA(p,q) models with (p, q) ∈ {0, 1}×{0, 1}, i. e. four different specifications and

allow for residuals distributed according to three different distributions, normal, Student’s-

t or skewed Student’s-t, denoting the distribution by Gξ, see Section 3.1.1. We estimate

137

Chapter 7 Comparison Studies Utilizing the Proposed Methods

all these 3 × 4 = 12 different models and proceed for each j = 1, . . . , d by choosing the

one with the highest log-likelihood. More precisely, we find coefficients µj, ϕj, θj for the

corresponding ARMA(1,1) model equations

Rj
t = µj + ϕj

(
Rj
t−1 − µj

)
+ θjε

j
t−1 + εjt , for j = 1, . . . , d and t = 2, . . . , T.

For an ARMA(1,0) process, i. e. an auto-regressive AR(1) process, we have θj = 0. For an

ARMA(0,1) process, i. e. a moving average MA(1) process, we have φj = 0. For the error

term, we assume a GARCH(1,1) model. Based on Definition 3.4, we can decompose the

error in a so called innovations distribution and a scaling factor. More precisely, we have

εjt = σjtZ
j
t for j = 1, . . . , d and t = 2, . . . , T,

Zj
t ∼ Gξj for j = 1, . . . , d and t = 2, . . . , T,

(
σjt
)2

= ωj + αj
(
εjt−1

)2
+ βj

(
σjt−1

)2
for j = 1, . . . , d and t = 2, . . . , T,

with Gξj the distribution function of the normal, Student’s-t or skewed Student’s-t dis-

tribution with corresponding parameter vector ξj for j = 1, . . . , d. We denote the corre-

sponding maximum likelihood estimators we proceed with by

µ̂j, ϕ̂j, θ̂j, ω̂j, α̂j, β̂j, ξ̂j for j = 1, . . . , d and t = 2, . . . , T.

With the estimated parameters, we can calculate raw residuals by

ε̂jt = Rj
t − R̂j

t = Rj
t −

(
µ̂j + ϕ̂j

(
Rj
t−1 − µ̂j

)
+ θ̂jε

j
t−1

)
for j = 1, . . . , d and t = 2, . . . , T.

Since we have

Var
(
εjt
)

=
(
σjt
)2
,

we need to standardize the errors to obtain standardized residuals

ẑjt =
ε̂jt

σ̂jt
,

where σ̂jt is the estimated standard deviation. These standardized residuals now follow

the error distribution Gξ̂j and can be transformed to the copula scale using the probability

integral transform (PIT) and the estimated parameters ξ̂j. More precisely, we have

utj = Gξ̂j
(
ẑjt
)

for j = 1, . . . , d and t = 2, . . . , T. (7.2)

Based on this data, we obtain a sample U ∈ [0, 1](T−1)×d. We apply the algorithm of

Dißmann et al. (2013) as well as our approaches described in the Chapters 4, 5 and 6, to

obtain vine copula models. To recall, these will be the same as in Section 7.3, see Table

7.8.

138

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

Model name Notation Parameters Description

Dißmann WDiss (U) -
R-vines fitted using Dißmann’s

method, see Section 2.2

k-DAG WDAG
k (U) k = 1, 2, 3, 4

R-vine representations of k-DAGs,
see Chapter 4

Lasso-ST-
λ

WLasso−ST
λ (U)

λ =
0.24, 0.254

R-vine representations of SEMs
calculated with the Lasso, see

Chapter 5 using the single threshold
approach

Lasso-AT-
µ

WLasso−AT
µ (U) µ = 0.1, 0.2

R-vine representations of SEMs
calculated with the Lasso, see
Chapter 5 using the adaptive

threshold approach

Cluster-
dT -kF

WCluster
dT−kF (U)

dT =
50,100,150,200

R-vines based on clusterings, see
Chapter 6 using threshold dimensions
dT = 50, 100, 150, 200 and fill-level

kF = dlog (400)e = 6.

Table 7.8: Overview of compared models in VaR application.

In total, we have 13 models we fit to the data set U . Thus, we can now simulate

from these models to obtain 13 samples of copula data, see Table 7.9. The samples of

Model name Notation Sample name

Dißmann WDiss UDiss

1-DAG WDAG
1 U1−DAG

2-DAG WDAG
2 U2−DAG

3-DAG WDAG
3 U3−DAG

4-DAG WDAG
4 U4−DAG

Lasso-ST-0.24 WLasso−ST
0.254 ULasso−ST−0.24

Lasso-ST-0.254 WLasso−ST
0.254 ULasso−ST−0.254

Lasso-AT-0.1 WLasso−AT
0.1 ULasso−AT−0.1

Lasso-AT-0.2 WLasso−AT
0.2 ULasso−AT−0.2

Cluster-50-6 WCluster
50−6 UCluster−50−6

Cluster-100-6 WCluster
100−6 UCluster−100−6

Cluster-150-6 WCluster
150−6 UCluster−150−6

Cluster-200-6 WCluster
200−6 UCluster−200−6

Table 7.9: Overview of models and samples in Value at Risk (VaR) applications.

139

Chapter 7 Comparison Studies Utilizing the Proposed Methods

copula data can then be transformed back to the original scale. How we deal with this is

described in the next section.

7.4.2 Value at Risk (VaR) One Day Ahead Forecasting

For illustration, denote a sample by uT+1 ∈ [0, 1]d. For notational convenience, and since

the further processing is the same for all models, we do not annotate the model to the

sample. Given a simulated observation ujT+1 for j = 1, . . . , d, we perform the following

operations to transform the copula sample to a one day ahead portfolio value forecast.

First, we invert (7.2) by calculating

zjT+1 = G−1

ξ̂j

(
ujT+1

)
for j = 1, . . . , d. (7.3)

Next, we update the (conditional) variance using the GARCH(1,1) model equation by

(
σjT+1

)2
= ω̂j + α̂j

(
εjT
)2

+ β̂j
(
σjT
)2
. (7.4)

Using the updated variance from (7.4) and the simulated data zjT+1 from (7.3), we calculate

the return forecast using the ARMA(1,1) equation

Rj
T+1 = µ̂j + ϕ̂j

(
Rj
T − µ̂j

)
+ θ̂jε

j
T + zjT+1σ

j
T+1. (7.5)

The portfolio return is now calculated by transforming the log-returns to

rT+1 =
1

d

d∑

j=1

(
exp

(
Rj
T+1

)
− 1
)
,

when assuming an equally split portfolio. We repeat this calculation for m iterations to

obtain m one-day ahead portfolio returns r1
T+1, . . . , r

m
T+1. If we are now interested in the

Value at Risk (VaR) at confidence level α, we order the simulated returns increasingly

r
[1]
T+1 ≤ r

[2]
T+1 ≤ · · · ≤ r

[m−1]
T+1 ≤ r

[m]
T+1,

and choose the empirical (1− α)-quantile i? = 1, . . . ,m such that

r
[i?]
T+1 with i? ≤ (1− α)m ≤ i? + 1.

We apply this framework now in the three scenarios described previously. We have the

following parameter settings.

T = 500, m = 100, 000, qα = (0.005, 0.01)

Thus, we use the first 500 data points to predict the T+1 = 501-st observation, i. e. obtain

a one-day ahead forecast. We do this using m = 100, 000 simulations and we evaluate the

corresponding qα = (0.005, 0.01) quantiles, i. e. the 99% and the 99.5% VaR.

140

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

Scenario 1: Random Sample

First, we consider Scenario 1, which is composed by drawing a random sample of 400

stocks. More precisely, we examine how the models behave in terms of goodness of fit as

described by log-likelihood, based on the first T = 500 observations. Note that we only

compare the log-likelihood of the dependence models, since the marginal models are the

always identical. Thus, we have an idea which VaR forecasts are associated to models

obtaining superior goodness of fit. Next, we check which models predict the same VaR

values but have less parameters.

●Dissmann

1−DAG

2−DAG

3−DAG 4−DAG

Lasso−AT−0.2

Lasso−AT−0.1
Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.018

−0.015

−0.012

−0.009

40000 50000 60000 70000

Log−likelihood

99
%

 V
aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●Dissmann

1−DAG

2−DAG

3−DAG 4−DAG

Lasso−AT−0.2

Lasso−AT−0.1
Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.018

−0.015

−0.012

−0.009

2500 5000 7500

Number of parameters

99
%

 V
aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●Dissmann

1−DAG

2−DAG

3−DAG 4−DAG

Lasso−AT−0.2
Lasso−AT−0.1

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.020

−0.016

−0.012

−0.008

40000 50000 60000 70000

Log−likelihood

99
.5

%
 V

aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●Dissmann

1−DAG

2−DAG

3−DAG 4−DAG
Lasso−AT−0.2

Lasso−AT−0.1Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.020

−0.016

−0.012

−0.008

2500 5000 7500

Number of parameters

99
.5

%
 V

aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

Figure 7.21: One day ahead forecasting results for T = 501: 99% VaR (top) and 99.5%
VaR (bottom) in Scenario 1 (Random Sample) in terms of log-likelihood vs.
Value at Risk (left) as well as number of parameters vs. Value at Risk (right):
Comparison of Dißmann (◦), k-DAG for k = 1, 2, 3, 4 (M), Lasso-ST-λ
for λ = 0.24, 0.254 (+), Lasso-AT-µ for µ = 0.1, 0.2 (×) and Cluster-dT -6
for dT = 50, 100, 150, 200 (3).

141

Chapter 7 Comparison Studies Utilizing the Proposed Methods

Thus, we first compare the models while considering log-likelihood with VaR and start

of with 99% VaR, see Figure 7.21, upper left panel. Note that we do not explicitly

consider penalized goodness of fit measures as BIC or GIC since we consider the number

of parameters isolated in a second step. We see that Dißmann’s model as well as the

3-DAG, 4-DAG and Lasso-AT-µ models have highest log-likelihood. Additionally,

we see that models with high explanatory power, i. e. high log-likelihood prefer VaR

values around −0.018. Next, we compare the models which predict this VaR in terms of

number of parameters, see Figure 7.21, upper right panel. There, we see that even though

the log-likelihood is not as high, the Lasso-ST-λ models achieve equally suitable quite

conservative Value at Risk values. We monitor the same behaviour for the higher VaR at

level 99.5%, see Figure 7.21, lower panel. Thus, we can reduce the number of parameters

by more than 60% using the Lasso-ST-λ models while obtaining a similar and hence,

suitable VaR forecast.

We move to Scenario 2, where we consider stocks of the union of two industry sectors.

Scenario 2: Sectors 3 & 6

Next, we consider the sectors Consumer Staples (ID 3) and Manufacturing, Industrials

and Defense (ID 6), together 400 stocks. We see a quite similar behaviour compared

to the previous scenario, see Figure 7.22. However, we see that the 99% VaR is higher

with about −0.017 compared to −0.018 for the models with highest log-likelihood, which

might indicate higher diversification effects. This is reasonable as losses in e. g. consumer

staples are offset by gains in manufacturing or vice versa. Furthermore, we also monitor

again that the Lasso-ST-λ models are sufficient in terms of significantly less parameters

than the larger models, but having the same VaR bounds. We also see this behaviour for

the 99.5% VaR. The Cluster-dT -6 models for dT = 50, 100, 150, 200 are too risk affine,

but have also the least absolute number of parameters. Where a 2-DAG model was

still acceptable in Scenario 1, this is not the case in Scenario 2 as the risk is severely

underestimated, which also applies to the 1-DAG model. Note that the heavy spike in

the middle of the time around June 2016 can be related to Great Britain deciding to leave

the European Union, as the referendum took place at that time.

142

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

●
Dissmann

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−AT−0.2

Lasso−AT−0.1

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6 Cluster−100−6

Cluster−150−6 Cluster−200−6

−0.016

−0.014

−0.012

−0.010

40000 50000 60000 70000

Log−likelihood

99
%

 V
aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●Dissmann

1−DAG

2−DAG

3−DAG 4−DAG

Lasso−AT−0.2
Lasso−AT−0.1

Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6 Cluster−100−6

Cluster−150−6 Cluster−200−6

−0.016

−0.014

−0.012

−0.010

2000 4000 6000 8000

Number of parameters

99
%

 V
aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●Dissmann

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−AT−0.2

Lasso−AT−0.1
Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6 Cluster−100−6

Cluster−150−6 Cluster−200−6

−0.0200

−0.0175

−0.0150

−0.0125

40000 50000 60000 70000

Log−likelihood

99
.5

%
 V

aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●Dissmann

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−AT−0.2

Lasso−AT−0.1
Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6 Cluster−100−6

Cluster−150−6 Cluster−200−6

−0.0200

−0.0175

−0.0150

−0.0125

2000 4000 6000 8000

Number of parameters

99
.5

%
 V

aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

Figure 7.22: One day ahead forecasting results for T = 501: 99% VaR (top) and 99.5%
VaR (bottom) in Scenario 2 (Sectors 3 & 6) in terms of log-likelihood vs.
Value at Risk (left) as well as number of parameters vs. Value at Risk (right):
Comparison of Dißmann (◦), k-DAG for k = 1, 2, 3, 4 (M), Lasso-ST-λ
for λ = 0.24, 0.254 (+), Lasso-AT-µ for µ = 0.1, 0.2 (×) and Cluster-dT -6
for dT = 50, 100, 150, 200 (3).

Scenario 3: Financial Services Sector

Finally, we consider 400 stocks from the Financial Services sector and expect strong

interactions among these stocks. With respect to the properties of the models, we draw

the same conclusions with respect to parsimony as in the previous two scenarios, i. e.

the same algorithms provide the most parsimonious models as for the second scenario.

However, we also see that 99% VaR attained by the best fitting models is higher compared

to the previous two other portfolios with −0.016. This can be explained by the general

143

Chapter 7 Comparison Studies Utilizing the Proposed Methods

upward movement of the Financial Services sectors fostered by very low interest rates set

by the central banks. Additionally, we also see that 1-DAG model is not sufficient.

This approach gave us an intuition about the properties of the different scenarios and the

associated models. Yet, we can also perform a more quantitatively driven analysis using

VaR backtesting, which follows now.

●
Dissmann

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−AT−0.2

Lasso−AT−0.1
Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.015

−0.013

−0.011

60000 70000 80000 90000

Log−likelihood

99
%

 V
aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●
Dissmann

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−AT−0.2

Lasso−AT−0.1
Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.015

−0.013

−0.011

2500 5000 7500

Number of parameters

99
%

 V
aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●
Dissmann

1−DAG

2−DAG

3−DAG

4−DAG

Lasso−AT−0.2

Lasso−AT−0.1Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.0175

−0.0150

−0.0125

60000 70000 80000 90000

Log−likelihood

99
.5

%
 V

aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

●
Dissmann

1−DAG

2−DAG

3−DAG
4−DAG

Lasso−AT−0.2

Lasso−AT−0.1Lasso−ST−0.2^4

Lasso−ST−0.25^4

Cluster−50−6

Cluster−100−6

Cluster−150−6

Cluster−200−6

−0.0175

−0.0150

−0.0125

2500 5000 7500

Number of parameters

99
.5

%
 V

aR

Algorithms ●Cluster DAG Dissmann Lasso−AT Lasso−ST

Figure 7.23: One day ahead forecasting results for T = 501: 99% VaR (top) and 99.5%
VaR (bottom) in Scenario 3 (Financial Services) in terms of log-likelihood vs.
Value at Risk (left) as well as number of parameters vs. Value at Risk (right):
Comparison of Dißmann (◦), k-DAG for k = 1, 2, 3, 4 (M), Lasso-ST-λ
for λ = 0.24, 0.254 (+), Lasso-AT-µ for µ = 0.1, 0.2 (×) and Cluster-dT -6
for dT = 50, 100, 150, 200 (3).

144

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

7.4.3 Value at Risk (VaR) Backtesting

The basic idea of backtesting is the following. Assume we have historical data from

t = 1, . . . , T . Then we can develop a model based on the data, but only using the first

T ′ time points with T ′ < T , denote the corresponding model by MT ′
1 . Next, we can

compute out-of-sample predictions using the model for the time point T ′ + 1, i. e. a one

day ahead VaR forecast as in Section 7.4.2. However, for this time point, we also have

historical data and can now compare how our model performed against reality i. e. if

the VaR forecast was exceeded or not. This procedure is called backtesting and is also

required by regulators, see Basel Committee on Banking Supervision (2006, 2011, 2013).

Normally, we would then re-estimate the model on time point T ′ + 1 using data on the

time points 2, . . . , T ′+ 1, denote MT ′+1
2 and compute a one day ahead forecast to predict

time point T ′ + 2, compare it to the real value and so on, see Figure 7.24. However, this

1 2 T̃ T̃ + 1 T̃ + 2 T

M T̃
1

M T̃+1
2

Figure 7.24: Schematic view of out of sample prediction with rolling window model esti-
mation.

requires for each new time point to fit a new model. This is not feasible if models are as

complex as in our case and take a huge effort to estimate and simulate from. Thus, we

proceed as follows to obtain a dynamic forecast.

• We fit ARMA-GARCH models as described in Section 7.4.1 on the time points

t = 1, . . . , 500.

• Based on these, we obtain copula data as described in Section 7.4.1 and fit 13

different dependence models, see Table 7.8 on the time points t = 1, . . . , 500, denote

M500
1 .

• We use M500
1 to obtain VaR forecasts, using the one day ahead methodology as

described in Section 7.4.2 for the 250 time points t = 501, . . . , 750. More precisely,

we carry out the following steps.

– Simulate m = 1,000 replications from the dependence model W and denote

the sample by u501 ∈ [0, 1]d.

– Transform this sample from the copula-scale to the standardized residuals’ x-

scale as in 7.3 by calculating

zj501 = G−1

ξ̂j

(
uj501

)
for j = 1, . . . , d.

145

Chapter 7 Comparison Studies Utilizing the Proposed Methods

– Next, we update the conditional variance in the GARCH(1,1) model, i. e. the

variance forecast

(
σ̂j501

)2
= ω̂j + α̂j

(
εj500

)2
+ β̂j

(
σj500

)2
. (7.6)

– This conditional variance forecast is then used in the ARMA(1,1) model equa-

tion together with the simulated and transformed residual zj501 to obtain a

return forecast

R̂j
501 = µ̂j + ϕ̂j

(
Rj

500 − µ̂j
)

+ θ̂jε
j
500 + zj501σ

j
501. (7.7)

– Since we assume an equally split portfolio, the portfolio return forecast is then

calculated by

r̂501 =
1

d

d∑

j=1

(
exp

(
R̂j

501

)
− 1
)
.

– Now, having m = 1,000 replications, we obtain a sequence of m one day

ahead portfolio return forecasts for day t = 501:

r̂1
501, . . . , r̂

m
501.

– Based on these m replications, we calculate

(i) the empirical α = 0.1-quantile, i. e. 90% VaR,

(ii) the empirical α = 0.05-quantile: i. e. 95% VaR,

(iii) the return forecast

r̂501 =
1

1000

1000∑

i=1

r̂i501.

– These three values can then be compared to the real portfolio return r501.

– Now, we want to calculate the portfolio return forecast r̂502 for t = 502. For

this, we calculate the standardized residuals of the individual stocks

εj501 =
R̂j

501 −Rj
501

σj501

, j = 1, . . . , d.

Recall that in the backtesting set up, the true values Rj
501, j = 1, . . . , d are

available at time point t = 501.

– We update the conditional variance as in 7.6,

(
σ̂j502

)2
= ω̂j + α̂j

(
εj501

)2
+ β̂j

(
σj501

)2
.

– Next, we simulate again m = 1,000 replications of u502 ∈ [0, 1]d from the

146

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

dependence model W and carry out the prediction as in 7.7,

R̂j
502 = µ̂j + ϕ̂j

(
Rj

501 − µ̂j
)

+ θ̂jε
j
501 + zj502σ

j
502.

– As in the prediction for day t = 501, we calculate the return forecast and the

corresponding quantiles and continue with the subsequent days, t = 503, . . . , 750.

– Thus, we obtain a sequence of predictions for the time points t = 501, . . . , 750.

• We fit ARMA-GARCH models as described in Section 7.4.1 on the time points

t = 251, . . . , 750.

• Based on these, we obtain copula data as described in Section 7.4.1 and fit 13

different dependence models, see Table 7.8 on the data points t = 251, . . . , 750,

denote M750
251 .

• We use M750
251 to obtain VaR forecasts, using the one day ahead methodology as

described in Section 7.4.2 for the 249 time points t = 751, . . . , 999, as described

more precisely above for the time interval t = 501, . . . , 750.

By this, we only refit our model once, see Figure 7.25. In total, we obtain 250+249 = 499

1 250 500 501 750 751 999502

M500
1

M750
251

Figure 7.25: Schematic view of out of sample prediction with one refitting.

one day ahead forecasts for the next days return and corresponding Value at Risk values.

As we use m = 1, 000 replications for each day, we only calculate the corresponding

90% and 95% VaR and omit the higher 99% and 99.5% VaR which were feasible with

m = 100, 000 simulated values in the forecasting example. To assess the quality of our

predictions, we can then perform a backtest and compare the 499 VaR forecasts with the

actually attained values of the portfolio. The methodology to assess the quality of our

predictions is presented next.

VaR Backtesting Methodology

We can now either compare for example graphically how often the actual returns were

less than predicted by the 90% or 95% VaR. However, there is a more sound statistical

procedure for this, described by Christoffersen (2012, Chapter 13). More precisely, let

147

Chapter 7 Comparison Studies Utilizing the Proposed Methods

α ∈ (0, 1) and assume that we have for each day t = 1, . . . , T = 499 a portfolio VaR

forecast at level α, denote V aRα
t . Assume additionally that we have the information,

whether or not the actual portfolio return rt on each day fell below the VaR forecast.

This leads to the hit statistics, defined by

It =

{
1, if rt < V aRα

t

0, if rt ≥ V aRα
t .

Hence, we obtain a hit sequence (It)t=1,...,T . If our VaR model works correctly, this

sequence should have two properties. First, it should be unpredictable, because if there

were a pattern, we could use it to improve our VaR model. Second, the exceedance, i. e.

the event It = 1 should happen with probability α because of the construction of our

VaR model. This means, we want to have

(It)t=1,...,T ∼ Bernoulli (α) i.i.d.

First, we consider whether the hit sequence has mean α. To this end, let

ni =
T∑

t=1

1{It=i} for i = 0, 1.

If we assume (It)t=1,...,T ∼ Bernoulli (p), then the so called unconditional coverage (UC)

test checks the hypothesis

H0 : p = α vs. H1 : p 6= α.

To derive a test for this hypothesis, we calculate the likelihood of an i.i.d. Bernoulli (p)

sequence

L (p) =
T∏

t=1

(1− p)1−It pIt = (1− p)T0 pT1 ,

with T0 the number of zeros and T1 the number of ones in the hit sequence. With the

maximum likelihood estimator

p̂ = T1/T,

we have

L (p̂) =

(
1− T1

T

)T0
(
T1

T

)T1

.

Under the null hypothesis, we have p = α, and thus

L (α) = (1− α)T0 αT1 .

148

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

and use a likelihood ratio test, considering the test statistics

LRUC = −2 log

(
L (α)

L (p̂)

)

= −2 log
(

(1− α)T0 αT1/
(

(1− T1/T)T0 (T1/T)T1

))
∼ χ2

1,

(7.8)

with χ2
k denoting a Chi-squared-distribution with k degrees of freedom. The p-value can

be calculated to be

η = 1− Fχ2
1

(LRUC) .

A p-value of η says that for any significance level η′ ≥ η, the null-hypothesis H0 would

be rejected.

Next, we consider the question whether the hit sequence (It)t=1,...,T is independent. More

precisely, we test

H0 : (It)t=1,...,T are independent vs. H1 : (It)t=1,...,T are not independent .

For this, we need another test statistic, measuring whether a hit is succeeded by other

hits, i. e. whether they occur in clusters or at random. We define

nij =
T−1∑

t=1

1{It=i,It+1=j} for i, j = 0, 1,

and
π̂01 =

n01

n00 + n01

,

π̂11 =
n11

n10 + n11

,

π̂ =
n01 + n11

T
.

The test statistics for the independence test can be written as

LRInd = −2 log

(
(1− π̂)n00+n10 π̂n01+n11

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11

)
∼ χ2

1, (7.9)

see Schamberger (2015). Finally, we can also perform a joint test for both exceedance

and independence, called the conditional coverage (CC) test. The hypotheses are

H0 : (It)t=1,...,T ∼ Bernoulli(α) i.i.d. vs. H1 : not H0,

and can be tested using (7.8) and (7.9) with

LRCC = LRUC + LRInd ∼ χ2
2.

Since these test statistics all follow asymptotically a closed form distribution, we can

use the theoretical quantile to reject the null-hypothesis or not. However, if we do not

149

Chapter 7 Comparison Studies Utilizing the Proposed Methods

have a large number of observations and especially not a large number of hits, using the

asymptotic results can be misleading. Hence, we can also use Monte Carlo simulations

for the p-values. More precisely, since we know that under the null hypothesis H0 our

hit sequence is Bernoulli (α) i.i.d. with length T , we can simulate a large number, for

example 999 of such Bernoulli (α) i.i.d. sequences of length T . Then, we calculate the

corresponding likelihood ratio test statistics on these sequences, denote
(
L̃Ri

)
i=1,...,999

.

Finally, the Monte-Carlo p-value ηMC of a test statistic LR can be calculated by

ηMC =
1

1000

(
1 +

999∑

i=1

1{L̃Ri≥LR}

)
.

We will consider both the p-values with respect to the asymptotic distribution of the

test statistics and the p-values drawn with Monte Carlo simulation. More precisely, the

following p-values as shown in Table 7.10 are considered.

Abbreviation Test for Null hypothesis p-value type

UC
Unconditional

coverage
(It)t=1,...,T ∼
Bernoulli (α)

asymptotic χ2 test

UC-MC
Unconditional

coverage
(It)t=1,...,T ∼
Bernoulli (α)

Monte Carlo
approximation

Ind Independence
(It)t=1,...,T

independent
asymptotic χ2 test

Ind-MC Independence
(It)t=1,...,T

independent
Monte Carlo

approximation

CC
Conditional

coverage
(It)t=1,...,T ∼

Bernoulli (α) i.i.d.
asymptotic χ2 test

CC-MC
Conditional

coverage
(It)t=1,...,T ∼

Bernoulli (α) i.i.d.
Monte Carlo

approximation

Table 7.10: Summary of hypothesis tests, test purpose, null hypotheses and test type in
the Value at Risk backtesting.

We consider again the three scenarios separated. We will use a β = 0.05 significance

level for the hypothesis test whether we can reject the null hypotheses stated in Table

7.10. Note that this is not to be confused with the Value at Risk level α. Since we want to

not rejected the null-hypothesis, a p-value larger than 0.05 is good for the corresponding

model.

Scenario 1: Random Sample

First, we consider the random sample scenario and VaR level α = 0.90. The p-values for

the hypothesis tests as described in Table 7.10 are given in Table 7.11.

150

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

Model UC UC-MC Ind Ind-MC CC CC-MC

Dißmann 0.108 0.109 0.004 0.002 0.004 0.004
1-DAG 0.000 0.001 0.224 0.223 0.000 0.001
2-DAG 0.021 0.020 0.001 0.001 0.000 0.001
3-DAG 0.186 0.187 0.045 0.043 0.056 0.048
4-DAG 0.299 0.304 0.003 0.002 0.007 0.007
Lasso-ST-0.24 0.186 0.187 0.006 0.004 0.010 0.012
Lasso-ST-0.254 0.371 0.376 0.019 0.016 0.042 0.040
Lasso-AT-0.1 0.453 0.415 0.014 0.009 0.036 0.033
Lasso-AT-0.2 0.299 0.304 0.003 0.002 0.007 0.007
Cluster-50-6 0.000 0.001 0.009 0.006 0.000 0.001
Cluster-100-6 0.000 0.001 0.000 0.001 0.000 0.001
Cluster-150-6 0.000 0.001 0.001 0.001 0.000 0.001
Cluster-200-6 0.000 0.001 0.001 0.001 0.000 0.001

Table 7.11: Backtesting results for VaR Scenario 1 (Random Sample) and α = 0.90: p-
values based on the χ2 distribution (UC, Ind, CC) and Monte Carlo approach
(UC-MC, Ind-MC, CC-MC) for the unconditional coverage, independence and
conditional coverage test. Values exceeding 0.05 are marked in bold.

Additionally, we present the raw number of VaR hits since a model can be rejected if it

is either too conservative or too risk affine, see Table 7.12. For example, for a 90% VaR,

the hit rate p̂ ∼ 0.1 in the ideal case.

Model Hit rate p̂ for 90% VaR

Dißmann 0.124
1-DAG 0.275
2-DAG 0.134
3-DAG 0.120
4-DAG 0.116
Lasso-ST-0.24 0.120
Lasso-ST-0.254 0.114
Lasso-AT-0.1 0.112
Lasso-AT-0.2 0.116
Cluster-50-6 0.176
Cluster-100-6 0.156
Cluster-150-6 0.154
Cluster-200-6 0.160

Table 7.12: Hit rates p̂ = T1/T for 90% VaR in Scenario 1 (Random Sample).

Next, we give the corresponding p-values for VaR level α = 0.95 in Table 7.13.

151

Chapter 7 Comparison Studies Utilizing the Proposed Methods

Model UC UC-MC Ind Ind-MC CC CC-MC

Dißmann 0.004 0.005 0.123 0.186 0.005 0.005
1-DAG 0.000 0.001 0.027 0.017 0.000 0.001
2-DAG 0.012 0.010 0.078 0.081 0.009 0.006
3-DAG 0.020 0.022 0.060 0.058 0.012 0.011
4-DAG 0.020 0.022 0.060 0.058 0.012 0.011
Lasso-ST-0.24 0.033 0.037 0.046 0.035 0.014 0.013
Lasso-ST-0.254 0.051 0.058 0.035 0.022 0.016 0.014
Lasso-AT-0.1 0.077 0.074 0.026 0.017 0.018 0.016
Lasso-AT-0.2 0.051 0.058 0.035 0.022 0.016 0.014
Cluster-50-6 0.000 0.001 0.001 0.001 0.000 0.001
Cluster-100-6 0.000 0.001 0.069 0.076 0.000 0.001
Cluster-150-6 0.000 0.001 0.135 0.202 0.000 0.001
Cluster-200-6 0.000 0.001 0.108 0.162 0.000 0.001

Table 7.13: Backtesting results for VaR Scenario 1 (Random Sample) and α = 0.95: p-
values based on the χ2 distribution (UC, Ind, CC) and Monte Carlo approach
(UC-MC, Ind-MC, CC-MC) for the unconditional coverage, independence and
conditional coverage test. Values exceeding 0.05 are marked in bold.

The corresponding hit rates are given in Table 7.14.

Model Hit rate p̂ for 95% VaR

Dißmann 0.082
1-DAG 0.226
2-DAG 0.078
3-DAG 0.074
4-DAG 0.074
Lasso-ST-0.24 0.072
Lasso-ST-0.254 0.070
Lasso-AT-0.1 0.068
Lasso-AT-0.2 0.070
Cluster-50-6 0.118
Cluster-100-6 0.102
Cluster-150-6 0.100
Cluster-200-6 0.098

Table 7.14: Hit rates p̂ = T1/T for 95% VaR in Scenario 1 (Random Sample).

Finally, we give the number of parameters, log-likelihood and GIC values for all the mod-

els, split in the first fit interval t = 1, . . . , 500 and the second fit interval, t = 251, . . . , 750.

152

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

t = 1, . . . , 500 t = 251, . . . , 750

Model No. par. Log-lik. GIC No. par. Log-lik. GIC

Dißmann 8752 73429 -1725 9199 86634 -19885
1-DAG 649 38769 -69861 667 48918 -89913
2-DAG 4981 60257 -43044 5195 72130 -63062
3-DAG 8077 70371 -7986 8634 83532 -24102
4-DAG 8799 72638 722 9337 85588 -15238
Lasso-ST-0.24 3990 58444 -56449 4068 70805 -79844
Lasso-ST-0.254 3172 55617 -64514 3164 67568 -88548
Lasso-AT-0.1 8848 73749 -596 9014 86409 -22855
Lasso-AT-0.2 8739 73453 -2012 8977 86211 -23141
Cluster-50-6 2025 49533 -70900 2047 60715 -92918
Cluster-100-6 2070 50330 -71785 1986 60533 -93514
Cluster-150-6 2238 50971 -70406 1986 60533 -93514
Cluster-200-6 2470 52011 -68772 2231 62147 -92868

Table 7.15: Summary of dependence models in Scenario 1 (Random Sample): number of
parameters, log-likelihood and GIC for both fitting time periods t = 1, . . . , 500
and t = 251, . . . , 750.

−0.04

−0.02

0.00

0.02

2015−07 2016−01 2016−07 2017−01 2017−07

Time

R
et

ur
n

Actual return Forecast return VaR 90% VaR 95%

Figure 7.26: Backtest results for VaR Scenario 1 (Random sample): 3-DAG model with
return forecasts, 90% and 95% VaR and actual returns.

153

Chapter 7 Comparison Studies Utilizing the Proposed Methods

We can clearly see that almost all of our models are not conservative enough since

most values in Table 7.12 exceed 0.1 and in Table 7.14 exceed 0.05. However, we have

to take into account that only 500 observations were used for training of both marginal

and dependence models. If we analyse more precisely, only the 3-DAG model was not

rejected for VaR level α = 0.9 in the joint conditional coverage test considering a signifi-

cance level of β = 0.05, since the p-value exceeds this value. Additionally, we see that for

models which capture the exceedance rate rather good, we have to reject the hypothesis

of independent hits. This can also be accounted in part to the short test period of 499 ob-

servations. However, we also see that for example a 1-DAG is a too strong simplification

and thus, not a good model. The most promising results are obtained for the Lasso-AT

and Lasso-ST models, which were also very conservative in the forecasting. Especially

the Lasso-ST models are also quite sparse as we can see in Table 7.15. Cluster models

are presumably too sparse and thus, have too many hits to be considered feasible. Yet,

this can be corrected with different threshold dimensions and fill-levels. The 3-DAG

model can be seen in Figure 7.26. We continue with the second scenario.

Scenario 2: Sectors 3 & 6

We consider again the VaR level α = 0.90 first. The p-values of the hypothesis tests are

given in Table 7.16.

Model UC UC-MC Ind Ind-MC CC CC-MC

Dißmann 0.545 0.501 0.029 0.026 0.076 0.070
1-DAG 0.000 0.001 0.243 0.240 0.000 0.001
2-DAG 0.000 0.001 0.243 0.240 0.000 0.001
3-DAG 0.870 0.811 0.033 0.033 0.103 0.106
4-DAG 0.545 0.501 0.029 0.026 0.076 0.070
Lasso-ST-0.24 0.453 0.415 0.038 0.036 0.088 0.085
Lasso-ST-0.254 0.545 0.501 0.029 0.026 0.076 0.070
Lasso-AT-0.1 0.647 0.603 0.007 0.006 0.024 0.023
Lasso-AT-0.2 0.453 0.415 0.014 0.009 0.036 0.033
Cluster-50-6 0.043 0.039 0.031 0.029 0.012 0.015
Cluster-100-6 0.043 0.039 0.031 0.029 0.012 0.015
Cluster-150-6 0.015 0.012 0.030 0.029 0.005 0.006
Cluster-200-6 0.015 0.012 0.030 0.029 0.005 0.006

Table 7.16: Backtesting results for VaR Scenario 2 (Sectors 3 & 6) and α = 0.90: p-
values based on the χ2 distribution (UC, Ind, CC) and Monte Carlo approach
(UC-MC, Ind-MC, CC-MC) for the unconditional coverage, independence and
conditional coverage test. Values exceeding 0.05 are marked in bold.

The raw number of VaR hits is given by Table 7.17.

154

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

Model Hit rate p̂ for 90% VaR

Dißmann 0.110
1-DAG 0.214
2-DAG 0.214
3-DAG 0.104
4-DAG 0.110
Lasso-ST-0.24 0.112
Lasso-ST-0.254 0.110
Lasso-AT-0.1 0.108
Lasso-AT-0.2 0.112
Cluster-50-6 0.130
Cluster-100-6 0.130
Cluster-150-6 0.136
Cluster-200-6 0.136

Table 7.17: Hit rates p̂ = T1/T for 90% VaR in Scenario 2 (Sectors 3 & 6).

For the p-values for VaR level α = 0.95, see Table 7.18 and for the corresponding hit

rates, see Table 7.19.

Model UC UC-MC Ind Ind-MC CC CC-MC

Dißmann 0.114 0.105 0.019 0.011 0.018 0.018
1-DAG 0.000 0.001 0.078 0.081 0.000 0.001
2-DAG 0.000 0.001 0.078 0.081 0.000 0.001
3-DAG 0.165 0.152 0.014 0.007 0.018 0.017
4-DAG 0.165 0.152 0.014 0.007 0.018 0.017
Lasso-ST-0.24 0.077 0.074 0.026 0.017 0.018 0.016
Lasso-ST-0.254 0.077 0.074 0.026 0.017 0.018 0.016
Lasso-AT-0.1 0.165 0.152 0.014 0.007 0.018 0.017
Lasso-AT-0.2 0.077 0.074 0.026 0.017 0.018 0.016
Cluster-50-6 0.002 0.004 0.016 0.008 0.001 0.001
Cluster-100-6 0.002 0.004 0.016 0.008 0.001 0.001
Cluster-150-6 0.007 0.007 0.031 0.020 0.003 0.003
Cluster-200-6 0.007 0.007 0.031 0.020 0.003 0.003

Table 7.18: Backtesting results for VaR Scenario 2 (Sectors 3 & 6) and α = 0.95: p-
values based on the χ2 distribution (UC, Ind, CC) and Monte Carlo approach
(UC-MC, Ind-MC, CC-MC) for the unconditional coverage, independence and
conditional coverage test. Values exceeding 0.05 are marked in bold.

155

Chapter 7 Comparison Studies Utilizing the Proposed Methods

Model Hit rate p̂ for 95% VaR

Dißmann 0.066
1-DAG 0.160
2-DAG 0.160
3-DAG 0.064
4-DAG 0.064
Lasso-ST-0.24 0.068
Lasso-ST-0.254 0.068
Lasso-AT-0.1 0.064
Lasso-AT-0.2 0.068
Cluster-50-6 0.084
Cluster-100-6 0.084
Cluster-150-6 0.080
Cluster-200-6 0.080

Table 7.19: Hit rates p̂ = T1/T for 95% VaR in Scenario 2 (Sectors 3 & 6).

Finally, the model overview is given in Table 7.20. The most promising models in this

scenario are the method of Dissmann, as well as 3-DAG and 4-DAG and Lasso-ST

models. In practical applications, we would choose the later because of their particular

sparsity with only about 40% of the parameters of the more complex models. They also

have the highest p-values considering 90% VaR and are among the best for the 95% VaR.

The predicted returns for the Lasso-ST-0.254 are shown in Figure 7.27. We finish the

backtesting section with consideration of the last scenario.

t = 1, . . . , 500 t = 251, . . . , 750

Model No. par. Log-lik. GIC No. par. Log-lik. GIC
Dißmann 8254 70787 -5583 8326 76636 -15963
1-DAG 630 38421 -69423 619 42497 -77724
2-DAG 4433 57853 -.47703 619 42497 -77724
3-DAG 7125 66582 -17689 7498 72341 -22462
4-DAG 7935 69235 -8305 8316 75112 -13096
Lasso-ST-0.24 3599 56205 -58572 3656 61331 -67865
Lasso-ST-0.254 2828 53473 -65887 2838 58342 -75461
Lasso-AT-0.1 8162 70444 -6579 8285 75810 -15062
Lasso-AT-0.2 7994 69969 -8698 8169 75514 -16590
Cluster-50-6 1763 47693 -71311 1900 53148 -80090
Cluster-100-6 1786 48232 -72033 1900 53148 -80090
Cluster-150-6 1900 48893 -71580 1944 53806 -80718
Cluster-200-6 2245 50734 -69820 1944 53806 -80718

Table 7.20: Summary of dependence models in Scenario 2 (Sectors 3 & 6): number of
parameters, log-likelihood and GIC for both fitting time periods t = 1, . . . , 500
and t = 251, . . . , 750.

156

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

−0.04

−0.02

0.00

0.02

2015−07 2016−01 2016−07 2017−01 2017−07

Time

R
et

ur
n

Actual return Forecast return VaR 90% VaR 95%

Figure 7.27: Backtest results for VaR Scenario 2 (Sectors 3 & 6): Lasso-ST-0.254 model
with return forecasts, 90% and 95% VaR and actual returns.

Scenario 3: Financial Services Sector

We start with considering the VaR level α = 0.9, for which the p-values are given in

Table 7.21 and the hit rates in Table 7.22. The corresponding p-values for VaR level

α = 0.95 are given in Table 7.23, the hit rates can be found in Table 7.24. The number

of parameters as well as goodness of fit measures log-likelihood and GIC are displayed

in Table 7.25. Summarizing, we see that no model is not rejected for either 90% or 95%

VaR at a β = 0.05 significance level, i. e. all the corresponding p-values in the conditional

coverage test are lower for both the asymptotic and the Monte-Carlo thresholds. However,

the hypothesis of independent hits is not rejected quite often for a variety of models. Yet,

the Lasso-AT-0.1 model has the most promising results and the least number of VaR

exceedances, i. e. hits. To give a reason why the models perform rather poorly, see the

log-likelihood values attained by the models in Scenario 3 in Table 7.25 in the first fit

period t = 1, . . . , 500, and compare it to the other two scenarios in Tables 7.15 and 7.20.

There, we see that we obtain much higher log-likelihood values in Scenario 3 compared to

the previous two scenarios with about 95, 000 compared to about 70, 000. Thus, we expect

much more dependence between the Financial Services companies which is modelled here.

157

Chapter 7 Comparison Studies Utilizing the Proposed Methods

However, with the rather short time periods of 500 time points for model fitting, we can

expect that this low number of observations is not sufficient to grasp the variety of effects

present in the Financial Services sector. Another possible explanation is that the Financial

Services sector behaves more dynamically and hence, the models would be required to be

updated more often and not only after 250 days, which is approximately one trading year.

However, especially this gives rise to the need for fast algorithms which are provided in this

thesis, as for example the Lasso methods, which proved very feasible in this application.

Finally, we show the forecast returns and VaR for the Lasso-AT-0.1 algorithm in Figure

7.28

Model UC UC-MC Ind Ind-MC CC CC-MC

Dißmann 0.003 0.004 0.088 0.083 0.003 0.003
1-DAG 0.000 0.001 0.014 0.009 0.000 0.001
2-DAG 0.000 0.001 0.050 0.046 0.000 0.001
3-DAG 0.001 0.003 0.033 0.033 0.000 0.001
4-DAG 0.001 0.002 0.090 0.090 0.001 0.001
Lasso-ST-0.24 0.001 0.002 0.090 0.090 0.001 0.001
Lasso-ST-0.254 0.004 0.004 0.139 0.137 0.006 0.007
Lasso-AT-0.1 0.007 0.006 0.111 0.106 0.007 0.007
Lasso-AT-0.2 0.007 0.006 0.111 0.106 0.007 0.007
Cluster-50-6 0.000 0.001 0.092 0.091 0.000 0.001
Cluster-100-6 0.000 0.001 0.055 0.054 0.000 0.001
Cluster-150-6 0.000 0.001 0.049 0.044 0.000 0.001
Cluster-200-6 0.000 0.001 0.064 0.057 0.000 0.001

Table 7.21: Backtesting results for VaR Scenario 3 (Financial Services) and α = 0.90: p-
values based on the χ2 distribution (UC, Ind, CC) and Monte Carlo approach
(UC-MC, Ind-MC, CC-MC) for the unconditional coverage, independence and
conditional coverage test. Values exceeding 0.05 are marked in bold.

Model Hit rate p̂ for 90% VaR

Dißmann 0.144
1-DAG 0.218
2-DAG 0.162
3-DAG 0.148
4-DAG 0.150
Lasso-ST-0.24 0.150
Lasso-ST-0.254 0.142
Lasso-AT-0.1 0.140
Lasso-AT-0.2 0.140
Cluster-50-6 0.182
Cluster-100-6 0.178
Cluster-150-6 0.182
Cluster-200-6 0.184

Table 7.22: Hit rates p̂ = T1/T for 90% VaR in Scenario 3 (Financial Services).

158

7.4 Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions

Model UC UC-MC Ind Ind-MC CC CC-MC

Dißmann 0.004 0.005 0.123 0.186 0.005 0.005
1-DAG 0.000 0.001 0.044 0.032 0.000 0.001
2-DAG 0.000 0.001 0.067 0.062 0.000 0.001
3-DAG 0.001 0.004 0.022 0.014 0.000 0.001
4-DAG 0.001 0.004 0.070 0.076 0.001 0.001
Lasso-ST-0.24 0.002 0.004 0.054 0.043 0.002 0.001
Lasso-ST-0.254 0.004 0.005 0.041 0.026 0.002 0.003
Lasso-AT-0.1 0.020 0.022 0.060 0.058 0.012 0.011
Lasso-AT-0.2 0.012 0.010 0.023 0.014 0.003 0.004
Cluster-50-6 0.000 0.001 0.131 0.202 0.000 0.001
Cluster-100-6 0.000 0.001 0.074 0.077 0.000 0.001
Cluster-150-6 0.000 0.001 0.217 0.333 0.000 0.001
Cluster-200-6 0.000 0.001 0.110 0.163 0.000 0.001

Table 7.23: Backtesting results for VaR Scenario 3 (Financial Services) and α = 0.95: p-
values based on the χ2 distribution (UC, Ind, CC) and Monte Carlo approach
(UC-MC, Ind-MC, CC-MC) for the unconditional coverage, independence and
conditional coverage test. Values exceeding 0.05 are marked in bold.

Model Hit rate p̂ for 95% VaR

Dißmann 0.082
1-DAG 0.186
2-DAG 0.094
3-DAG 0.086
4-DAG 0.086
Lasso-ST-0.24 0.084
Lasso-ST-0.254 0.082
Lasso-AT-0.1 0.074
Lasso-AT-0.2 0.078
Cluster-50-6 0.122
Cluster-100-6 0.110
Cluster-150-6 0.120
Cluster-200-6 0.106

Table 7.24: Hit rates p̂ = T1/T for 95% VaR in Scenario 3 (Financial Services).

159

Chapter 7 Comparison Studies Utilizing the Proposed Methods

t = 1, . . . , 500 t = 251, . . . , 750
Model No. par. Log-lik. GIC No. par. Log-lik. GIC

Dißmann 8547 97221 -53078 8868 113586 -79901
1-DAG 693 60875 -113468 708 75302 -142116
2-DAG 4267 82195 -99232 4719 98696 -124462
3-DAG 7795 93782 -59950 7875 109558 -90046
4-DAG 8407 95927 -53059 8501 111727 -82934
Lasso-ST-0.24 2878 78652 -115427 2822 93437 -145913
Lasso-ST-0.254 3686 81752 -108204 3593 96551 -139363
Lasso-AT-0.1 8676 97490 -51245 8996 113794 -77957
Lasso-AT-0.2 8549 97213 -53025 8795 113393 -80862
Cluster-50-6 2140 73629 -117277 2073 87542 -146162
Cluster-100-6 2025 74054 -119944 2012 88252 -148543
Cluster-150-6 2025 74054 -119944 1856 87049 -148579
Cluster-200-6 2248 75331 -118966 2761 92731 -145497

Table 7.25: Summary of dependence models in Scenario 3 (Financial Services): number of
parameters, log-likelihood and GIC for both fitting time periods t = 1, . . . , 500
and t = 251, . . . , 750.

−0.04

−0.02

0.00

0.02

2015−07 2016−01 2016−07 2017−01 2017−07

Time

R
et

ur
n

Actual return Forecast return VaR 90% VaR 95%

Figure 7.28: Backtest results for VaR Scenario 3 (Financial Services): Lasso-AT-0.1
model with return forecasts, 90% and 95% VaR and actual returns.

160

Chapter 8

Conclusion and Outlook

We will now summarize the contribution of this thesis and afterwards point out additional

research directions which might be possible based on the work presented here.

8.1 Contribution

First of all, we recapitulated both copulas and vine copulas as basis for our work in Chap-

ter 2, also shedding light on the current benchmark algorithm. Afterwards, we introduced

statistical prerequisites with respect to graphical models, the Lasso and structural equa-

tion models in Chapter 3.

In Chapter 4, we first laid out the connection between k-truncated R-vines and k-DAGs

for k ≥ 1, based on structural equation modes. This was the basis and motivation for

finding an inverse transformation, allowing us to use algorithms for the fast estimation

of k-DAGs, also in high dimensions, to fit R-vine structures. We proved under sufficient

conditions when such a transformation can be applied based on strong assumptions. For

specific k-DAGs, we were able to prove that corresponding k-truncated R-vine represen-

tations exist and we also succeeded to give necessary conditions for such a representation.

Yet, based on the very strong assumptions, we motivated a more heuristic approach to

find R-vine representations of arbitrary k-DAGs. These are however not k-truncated any

more. We showed how conditional independences in a DAG can be exploited by an R-

vine and gave a data application showing that our approach is able to outperform the

benchmark method on the one hand side and Gaussian models on the other hand side.

Chapter 5 used the correspondence between R-vines and structural equation models. Ex-

ploiting the well-known Lasso, we showed how the concept of regularization paths can lead

over to R-vines. Thus, we first have a proxy for the R-vine structure based on the sparse

solution of a system of linear equations. Secondly, the regularization path concept allowed

us to flexibly account for sparsity in the SEM by varying the degree of penalization and

thus, induce sparsity in the R-vine. We showed that our approach is multiple times faster

than current benchmark spanning-tree algorithms and provided different ways for finding

specific thresholds.

The concept introduced in Chapter 6 takes another different approach by implementing

a divide-and-conquer strategy. By using the graphical Lasso, we showed how clustering

of ultra high dimensional data sets can be attained flexibly to obtain tractable data sub-

161

Chapter 8 Conclusion and Outlook

sets. Similar to using the d-separation for DAGs in Chapter 4, we used the graphical

separation in undirected graphical models to estimate sparse models. However, this time

it was not only a method to obtain parsimony, but also to actually improve the goodness

of fit by lowering computational complexity for a more precise optimization which was

not feasible before. These two approaches together founded a powerful strategy to make

R-vines firstly applicable for data sets with several thousands of dimensions. We intro-

duced a data set with more than 2, 000 variables on which we accomplished to estimate

joint non-Gaussian dependence models with different degrees of sparsity and outperform

pure Gaussian methods drastically, all this in feasible time.

Chapter 7 then provides the numerical experiments to justify our assertions with respect

to quality and efficiency of our proposed methods. In Section 7.2, we considered differ-

ently sparse scenarios in 85 dimensions to simulate from and compare our methods with

the benchmark algorithm and demonstrate the advantages of our novel procedures. Con-

sidering higher dimensions, we modelled up to 1750 dimensions for a joint runtime and

goodness of fit analysis based on real world data in Section 7.3. These results confirmed

our findings in previous data applications and simulations, showing that our methods

are very well designed to be used for high dimensional problems. Finally, in Section 7.4,

we tackled a real world problem and estimated Value at Risk bounds for three different

portfolios of 400 stocks each, using our recently developed algorithms and the benchmark.

We saw that for each portfolio composition with different characteristics, i. e. more or less

dependence or cross-sectoral relationships, our algorithms provided good Value at Risk

bounds. Furthermore, they did so using much less parameters compared to the benchmark

algorithm.

8.2 Future Research Directions

We now want to mention some aspects which can be seen as starting points for future

research, improving both quality but also efficiency of next generation model selection

algorithms for R-vines.

With respect to Chapter 4, the natural question arises for which k ≥ 1, k-DAGs shall

be represented by R-vines. A natural choice is to estimate DAGs for increasing number

of k until no new edges are introduced. This works if the corresponding function to

optimize is using a penalization, as for example BIC, which we use. Another option

is to calculate the Kullback-Leibler divergences (3.4) between k-DAGs for an increasing

sequence of k ≥ 1. If the divergence between two subsequently estimated k-DAGs falls

below a certain threshold, no sufficient improvement is attained by higher k, and the

corresponding k-DAG shall be represented. Another question is whether DAGs estimated

with any algorithm and not only Hill-Climbing style search algorithms can be used. For

example, also constraint based methods can be employed. However, they do not directly

adhere to the concept of k-DAGs because of their design. Yet, an option would be to

exchange conditional independence tests relying on Gaussian data, with tests which do

not assume this property. Those might possibly be more specifically designed to copula-

162

8.2 Future Research Directions

data.

The Lasso method proposed in Chapter 5 relied on an association between zero coefficients

in the SEM and independence copulas in the R-vine. However, in the Gaussian case, a

zero coefficient in the SEM is not equivalent to a zero partial correlation and hence, an

independence copula. This could however be included with additional constraints on the

corresponding blacklist and whitelist sets. Yet, this would increase computation time

significantly in large systems. Additionally, the approach is based on the selection of a

threshold value λ for the corresponding penalization. Normally, in linear models this is

achieved via cross-validation, which is however not feasible in high dimensional R-vines

because repeated model estimation on different test data sets requires too much time.

Also, the proceeding of thresholding every equation in the SEM with the same λ is only a

rule of thumb and can be improved upon. A promising idea is to use not the ‖ ·‖1 penalty

as in the Lasso, but the elastic net of Zou and Hastie (2005). More precisely, the penalty

λ

p∑

`=1

‖ϕ`‖1

is exchanged by

α

(
λ

p∑

`=1

‖ϕ`‖1

)
+ (1− α)

(
λ

p∑

`=1

‖ϕ`‖2

)
,

which is alleged to work better when regressors show dependency, which is what we expect

from our data sets most often.

The method proposed in Chapter 6 also relies heavily on the choice of a penalization

parameter λ as in Chapter 5. However, in both cases there is currently only the option

to evaluate models for a grid of threshold values. We would consider using special tech-

niques for choosing λ in the context of the graphical Lasso, see for example the approach

of Liu et al. (2010). Additionally, huge gains could be attained given that the graphs

in a solution path only change slightly such that previously estimated pair copulas for a

specific partition generated by GT might also be occurring in the partition generated by

GT+1. However, this would in some sense imply to impose the proximity condition on the

solution path for the graphical models, which is a combinatorial restriction and hence,

might lead to non-optimal results in terms of the achieved log-likelihoods of the models.

Furthermore, going to even higher dimensional models, more elaborate search strategies

for the fill level kF need to be employed, as currently only values which proved as working

well in our experiments are considered. However, this value must be handled with care as

it can also lead again to unnecessarily over-parametrized models. Alternatively, one could

consider using sub-clusterings for extremely ultra high dimensional datasets. Hence, we

would initially cluster a large dataset in dimension d using a clustering algorithm, as for

example the graphical Lasso to obtain a specific intermediate threshold dimension d1
T � d.

If the resulting sub-sets are still too large to be handled, the connected components of

maximum size d1
T could be clustered again using a suitable threshold dimension d2

T � d1
T .

These clusters could then be reassembled into a joint model using two step procedure.

163

Chapter 8 Conclusion and Outlook

However, one has to be very careful with specifying the corresponding threshold dimen-

sions. Another option is to use different clustering algorithms, and not only the graphical

Lasso.

Considering high dimensions, also the possibility of introducing latent factors should be

taken into account, see Krupskii and Joe (2013). This can make models much more par-

simonious by removing the effect of a latent factor, influencing the dependence structure

of the observed variable. All the proposed methods can also be considered together with

the effects of latent factors. Note furthermore, that even when a common latent factor

is not sensible to be included in a model, there are several ways of model diagnostics as

principal component analysis which can be ran as a starting point for the analysis.

Additionally, even though all of the applications in this thesis cover financial data, this

is not a restriction but happens because of the wide availability of this data and well

known estimation of the marginals. Especially the domain of computational biology ex-

hibits large data sets which require different handling of the marginal distributions and

the dependence part. Yet, these data sets offer highly interesting insights and large pos-

sibilities for high dimensional dependence modelling with sparse vine copulas, and should

be elaborated more in the future.

164

Bibliography

Aas, K. (2016). Pair-copula constructions for financial applications: A review. Econo-

metrics 4 (4), 43.

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of

multiple dependence. Insurance, Mathematics and Economics 44, 182–198.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood

principle. In B. N. Petrov and F. Csaki (Eds.), Proceedings of the Second International

Symposium on Information Theory Budapest, Akademiai Kiado, pp. 267–281.

Andersson, S. A. and M. D. Perlman (1998). Normal linear regression models with recur-

sive graphical markov structure. Journal of Multivariate Analysis 66, 133–187.

Arnborg, S. and P. A. Corneil, Derek G. (1987). Complexity of finding embeddings in a

k-tree. SIAM Journal on Algebraic and Discrete Methods 8 (2), 277–284.

Baba, K., R. Shibata, and M. Sibuya (2004). Partial correlation and conditional corre-

lation as measures of conditional independence. Australian & New Zealand Journal of

Statistics 46 (4), 657–664.

Basel Committee on Banking Supervision (2006). International Convergence of Capi-

tal Measurement and Capital Standards. http://www.bis.org/publ/bcbs128.pdf.

Accessed: 08.09.2017.

Basel Committee on Banking Supervision (2011). Basel III: A global regulatory framework

for more resilient banks and banking systems. http://www.bis.org/publ/bcbs189.

pdf. Accessed: 08.09.2017.

Basel Committee on Banking Supervision (2013). Fundamental review of the trading

book: A revised market risk framework. http://www.bis.org/publ/bcbs265.pdf.

Accessed: 08.09.2017.

Bauer, A. and C. Czado (2016). Pair-Copula Bayesian networks. Journal of Computational

and Graphical Statistics 25 (4), 1248–1271.

Bauer, A., C. Czado, and T. Klein (2012). Pair-copula constructions for non-Gaussian

DAG models. Canadian Journal of Statistics 40, 86–109.

Bedford, T. and R. Cooke (2001). Probability density decomposition for conditionally

dependent random variables modeled by vines. Annals of Mathematics and Artificial

Intelligence 32, 245–268.

165

http://www.bis.org/publ/bcbs128.pdf
http://www.bis.org/publ/bcbs189.pdf
http://www.bis.org/publ/bcbs189.pdf
http://www.bis.org/publ/bcbs265.pdf

Bibliography

Bedford, T. and R. Cooke (2002). Vines - a new graphical model for dependent random

variables. The Annals of Statistics 30(4), 1031–1068.

Bellman, R. E. (2015). Adaptive control processes: a guided tour. Princeton University

Press.

Bollen, K. A. (1989). Structural Equations with Latent Variables (1st ed.). Chicester,

United Kingdom: John Wiley & Sons,.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal

of Econometrics 31, 307–327.

Bollerslev, T. (1987). A conditionally heteroscedastic time series model for speculative

prices and rates of return. Review of Economics and Statistics 69, 542–547.

Brechmann, E. and C. Czado (2013). Risk management with high-dimensional vine cop-

ulas: An analysis of the Euro Stoxx 50. Statistics & Risk Modeling 30, 307–342.

Brechmann, E., C. Czado, and K. Aas (2012). Truncated regular vines in high dimensions

with application to financial data. Canadian Journal of Statistics 40, 68–85.

Brechmann, E. C. and H. Joe (2014). Parsimonious parameterization of correlation ma-

trices using truncated vines and factor analysis. Computational Statistics & Data Anal-

ysis 77, 233–251.

Brechmann, E. C. and U. Schepsmeier (2013). Modeling Dependence with C- and D-Vine

Copulas: The R package CDVine. Journal of Statistical Software 52 (3), 1–27.

Brockwell, P. J. and R. A. Davis (2016). Introduction to Time Series and Forecasting.

New York: Springer.

Chen, S. X. and T.-M. Huang (2007). Nonparametric estimation of copula functions for

dependence modelling. Canadian Journal of Statistics 35 (2), 265–282.

Christoffersen, P. F. (2012). Elements of financial risk management. London, United

Kingdom: Academic Press.

Csardi, G. and T. Nepusz (2006). The igraph software package for complex network

research. InterJournal Complex Systems, 1695.

Czado, C., S. Jeske, and M. Hofmann (2013). Selection strategies for regular vine copulae.

Journal de la Société Francaise de Statistique 154, 174–191.

Dempster, A. P. (1972). Covariance selection. Biometrics 28 (1), 157–175.

Dißmann, J., E. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating

regular vine copulae and application to financial returns. Computational Statistics &

Data Analysis 52 (1), 52–59.

166

Bibliography

Elidan, G. (2010). Copula Bayesian Networks. In J. Lafferty, C. Williams, J. Shawe-

Taylor, R. Zemel, and A. Culotta (Eds.), Advances in Neural Information Processing

Systems 23, pp. 559–567. Curran Associates, Inc.

Fan, Y. and C. Y. Tang (2013). Tuning parameter selection in high dimensional penal-

ized likelihood. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 75 (3), 531–552.

Friedman, J., T. Hastie, and R. Tibshirani (2008). Sparse inverse covariance estimation

with the graphical Lasso. Biostatistics 9 (3), 432.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization Paths for Generalized

Linear Models via Coordinate Descent. Journal of Statistical Software 33 (1), 1–22.

Frommlet, F., A. Chakrabarti, M. Murawska, and M. Bogdan (2011). Asymptotic Bayes

optimality under sparsity for generally distributed effect sizes under the alternative.

Technical report.

Genest, C., K. Ghoudi, and L. Rivest (1995). A semi-parametric estimation procedure of

dependence parameters in multivariate families of distributions. Biometrika 82, 543–

552.

Ghalanos, A. (2015). rugarch: Univariate GARCH models. R package version 1.3-6.

Gruber, L. and C. Czado (2015a). Bayesian model selection of regular vine copulas.

Preprint .

Gruber, L. and C. Czado (2015b). Sequential bayesian model selection of regular vine

copulas. Bayesian Analysis 10, 937–963.

Han, J., J. Pei, and M. Kamber (2011). Data mining: concepts and techniques. Elsevier.

Hansen, B. E. (1994). Autoregressive conditional density estimation. International Eco-

nomic Review 35 (3), 705–730.

Hastie, T., R. Tibshirani, and M. Wainwright (2015). Statistical Learning with Sparsity

The Lasso and Generalizations. Boca Raton, Florida: CRC Press.

Hobæk Haff, I., K. Aas, A. Frigessi, and V. L. Graziani (2016). Structure learning in

Bayesian Networks using regular vines. Computational Statistics & Data Analysis 101,

186–208.

Hoyle, R. H. (1995). Structural Equation Modeling (1st ed.). Thousand Oaks, California:

SAGE Publications.

Joe, H. (1996). Families of m-variate distributions with given margins and m(m − 1)/2

bivariate dependence parameters. In L. Rüschendorf, B. Schweizer, and M. D. Taylor

(Eds.), Distributions with fixed marginals and related topics, pp. 120–141. Hayward:

Institute of Mathematical Statistics.

167

Bibliography

Joe, H. (1997). Multivariate Models and Dependence Concepts. London, United Kingdom:

Chapman & Hall.

Joe, H. (2005). Asymptotic effiency of the two stage estimation method for copula-based

models. Journal of Multivariate Analysis 94, 401–419.

Joe, H. (2014). Dependence Modeling with Copulas. Boca Raton, Florida: CRC Press.

Kaplan, D. (2009). Structural Equation Modeling: Foundations and Extensions (2nd ed.).

Thousand Oaks, California: SAGE Publications.

Kenourgios, D., A. Samitas, and N. Paltalidis (2011). Financial crises and stock market

contagion in a multivariate time-varying asymmetric framework. Journal of Interna-

tional Financial Markets, Institutions and Money 21 (1), 92–106.

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and Tech-

niques (1st ed.). Cambridge, Massachusetts: MIT Press.

Kovács, E. and T. Szántai (2016). On the connection between cherry-tree copulas and

truncated R-vine copulas. arXiv preprint arXiv:1604.03269 .

Kraus, D. and C. Czado (2017). Growing simplified vine copula trees: improving Diß-

mann’s algorithm. arXiv preprint arXiv:1703.05203 .

Krumsiek, J., K. Suhre, T. Illig, J. Adamski, and F. J. Theis (2011). Gaussian graphi-

cal modeling reconstructs pathway reactions from high-throughput metabolomics data.

BMC systems biology 5 (1), 21.

Krupskii, P. and H. Joe (2013). Factor copula models for multivariate data. Journal of

Multivariate Analysis 120, 85–101.

Kullback, S. and R. Leibler (1951). On information and sufficiency. Annals of Mathemat-

ical Statistics 22, 79–86.

Kurowicka, D. and R. Cooke (2006). Uncertainty Analysis and High Dimensional Depen-

dence Modelling (1st ed.). Chicester, United Kingdom: John Wiley & Sons,.

Kurowicka, D. and H. Joe (2011). Dependence Modeling - Vine Copula Handbook. Singa-

pore: World Scientific Publishing Co.

Lauritzen, S. L. (1996). Graphical Models (1st ed.). Oxford, United Kingdom: University

Press.

Liu, H., K. Roeder, and L. Wasserman (2010). Stability approach to regularization se-

lection (stars) for high dimensional graphical models. In Proceedings of the 23rd In-

ternational Conference on Neural Information Processing Systems, NIPS’10, USA, pp.

1432–1440. Curran Associates Inc.

168

Bibliography

Margaritis, D. (2003). Learning Bayesian network model structure from data. Technical

report, Carnegie-Mellon University Pittsburgh, PA School of Computer Science.

Mazumder, R. and T. Hastie (2012). Exact Covariance Thresholding into Connected Com-

ponents for Large Scale Graphical Lasso. Journal of Machine Learning Research 13,

723–736.

McNeil, A. J., R. Frey, and P. Embrechts (2015). Quantitative risk management: Con-

cepts, techniques and tools. Princeton university press.

Meinshausen, N. and P. Bühlmann (2006, 06). High-dimensional graphs and variable

selection with the Lasso. The Annals of Statistics 34 (3), 1436–1462.

Müller, D. and C. Czado (2017a). Dependence Modeling in Ultra High Dimensions with

Vine Copulas and the Graphical Lasso. arXiv preprint arXiv:1709.05119 .

Müller, D. and C. Czado (2017b). Representing Sparse Gaussian DAGs as Sparse R-vines

Allowing for Non-Gaussian Dependence. To appear in the Journal of Computational

and Graphical Statistics .

Müller, D. and C. Czado (2017c). Selection of Sparse Vine Copulas in High Dimensions

with the Lasso. arXiv preprint arXiv:1705.05877 .

Nagarajan, R., M. Scutari, and S. Lebre (2013). Bayesian Networks in R with Applications

in Systems Biology. New York: Springer. ISBN 978-1461464457.

Nagler, T. (2014). Kernel Methods for Vine Copula Estimation. Master’s thesis, Tech-

nische Universität München.

Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer.

Pereira, G. A., A. Veiga, T. Erhardt, and C. Czado (2017). A periodic spatial vine copula

model for multi-site streamflow simulation. Electric Power Systems Research 152, 9 –

17.

Peters, J. and P. Bühlmann (2014). Identifiability of gaussian structural equation models

with equal error variances. Biometrika 101, 219–228.

Pircalabelu, E., G. Claeskens, and I. Gijbels (2017). Copula directed acyclic graphs.

Statistics and Computing 27 (1), 55–78.

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System

Technical Journal 36, 1389–1401.

R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing.

Rütimann, P., P. Bühlmann, et al. (2009). High dimensional sparse covariance estimation

via directed acyclic graphs. Electronic Journal of Statistics 3, 1133–1160.

169

Bibliography

Ryan, J. A. and J. M. Ulrich (2017). quantmod: Quantitative Financial Modelling Frame-

work. R package version 0.4-10.

Salmon, F. (2012). The formula that killed wall street. Significance 9 (1), 16–20.

Schamberger, B. (2015). Bayesian Analysis of the One-Factor Copula Model with Appli-

cations to Finance. Master’s thesis, Technische Universität München.

Schepsmeier, U., J. Stöber, E. C. Brechmann, B. Graeler, T. Nagler, and T. Erhardt

(2017). VineCopula: Statistical Inference of Vine Copulas. R package version 2.1.2.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 (2),

461–464.

Scutari, M. (2010). Learning Bayesian Networks with the bnlearn R package. Journal of

Statistical Software 35 (3), 1–22.

Shachter, R. D. (1998). Bayes-ball: Rational pastime (for determining irrelevance and

requisite information in belief networks and influence diagrams). In Proceedings of the

Fourteenth conference on Uncertainty in artificial intelligence, pp. 480–487. Morgan

Kaufmann Publishers Inc.

Sklar, A. (1959). Fonctions dé repartition á n dimensions et leurs marges. Publ. Inst.

Stat. Univ. Paris 8, 229–231.

Spirtes, P., C. N. Glymour, and R. Scheines (2000). Causation, prediction, and search.

Cambridge, Massachusetts: MIT Press.

Stöber, J., H. Joe, and C. Czado (2013). Simplified pair copula constructions-limitations

and extensions. Journal of Multivariate Analysis 119 (0), 101 – 118.

Taylor, S. J. (2008). Modelling financial time series. Singapore: World Scientific.

Tibshirani, R. (1994). Regression Shrinkage and Selection Via the Lasso. Journal of the

Royal Statistical Society, Series B 58, 267–288.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics (1st ed.). Chices-

ter, United Kingdom: John Wiley & Sons,.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York.

Witten, D. M., J. H. Friedman, and S. Noah (2011). New Insights and Faster Computa-

tions for the Graphical Lasso. Journal of Computational and Graphical Statistics 20 (4),

892–900.

Yu, H., W. I. T. Uy, and J. Dauwels (2017, Feb). Modeling spatial extremes via ensemble-

of-trees of pairwise copulas. IEEE Transactions on Signal Processing 65 (3), 571–586.

170

Bibliography

Zhao, T., X. Li, H. Liu, K. Roeder, J. Lafferty, and L. Wasserman (2015). huge: High-

Dimensional Undirected Graph Estimation. R package version 1.2.7.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (2), 301–

320.

171

173

Appendix A Supplementary Material to Chapter 4

Appendix A

Supplementary Material to Chapter 4

A.1 DAGs Estimated on the Euro Stoxx 50 Data Set

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

Figure A.1: DAGs estimated on the Euro Stoxx 50 data set with at most k = 1, 2 parents
(upper, lower).

174

A.1 DAGs Estimated on the Euro Stoxx 50 Data Set

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

Figure A.2: DAGs estimated on the Euro Stoxx 50 data set with at most k = 3, 4 parents
(upper, lower).

175

Appendix A Supplementary Material to Chapter 4

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

Figure A.3: DAGs estimated on the Euro Stoxx 50 data set with at most k = 5, 6 parents
(upper, lower).

176

A.1 DAGs Estimated on the Euro Stoxx 50 Data Set

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

Figure A.4: DAGs estimated on the Euro Stoxx 50 data set with at most k = 7, 8 parents
(upper, lower).

177

Appendix A Supplementary Material to Chapter 4

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

^STOXX50E

^GDAXIP ^AEX

^FCHI

FTSEMIB.MI

^IBEX
ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MCBN.PA

BNP.PA
CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DEENEL.MI

ENI.MI

EOAN.DE

FP.PAFTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MI

UL.PA

UNA.AS

VIV.PA

SAP.DE

Figure A.5: DAGs estimated on the Euro Stoxx 50 data set with at most k = 9, 10 parents
(upper, lower).

178

A.1 DAGs Estimated on the Euro Stoxx 50 Data Set

^STOXX50E

^GDAXIP^AEX

^FCHI FTSEMIB.MI

^IBEX

ACA.PA

AGN.AS

AI.PA

ALO.PA

ALV.DE

BAS.DE

BAYN.DE

BBVA.MC

BN.PA

BNP.PA

CA.PA

CS.PA

DAI.DE

DB1.DE

DBK.DE

DG.PA

DTE.DE

ENEL.MI

ENI.MI

EOAN.DE

FP.PA

FTE.PA

G.MI

GLE.PA

GSZ.PA

IBE.MC

INGA.AS

ISP.MI

MC.PA

MUV2.DE

OR.PA

PHIA.AS

REP.MC

RWE.DE

SAN.MC

SAN.PA

SGO.PA

SIE.DE

SU.PA

TEF.MC

TIT.MI

UCG.MIUL.PA

UNA.AS

VIV.PA

SAP.DE

Figure A.6: Undirected weighted graph H defined by the union of Gs1, . . . ,Gs4 with weights
calculated by (4.7), see Section 4.4. The weight of the edges is represented by
the line width and illustrates how often these edges occurred in the skeletons
Gs1, . . . ,Gs4. We observe strong dependence especially among and between the
national stocks indices and the Euro Stoxx 50 index itself. This confirms our
expectation that our approach captures the most important relationships in
the data.

179

Appendix A Supplementary Material to Chapter 4

A.2 Numerical Results of Fitted Models

DAG R-vine representation of DAG

Max.
par-
ents

No.
par.

Log-
lik.

GIC No.
par

No.
ni-pc

No.
G-pc

No.
non-
G-pc

Log-
lik.

GIC k′ time
(sec.)

1 155 -47138 95784 206 51 0 51 -45880 93879 1 118
2 204 -45365 92824 498 249 17 232 -42818 91608 47 190
3 250 -44732 92128 696 401 49 352 -41673 92140 48 210
4 280 -44448 91942 723 428 59 369 -41497 92183 49 233
5 309 -44224 91868 742 435 54 381 -41451 92369 51 249
6 330 -44104 91903 743 439 54 385 -41435 92352 48 260
7 341 -44045 91930 747 437 53 384 -41401 92342 48 259
8 345 -44026 91944 741 434 58 376 -41415 92283 51 263
9 349 -44007 91958 736 432 59 373 -41411 92201 49 265

10 353 -43990 91978 733 427 61 366 -41423 92180 49 263

Table A.1: Numerical results for DAG and DAG representations. Calculations based on z-
scale, abbreviations ni-pc for non independence pair copula, G-pc for Gaussian
pair copula.

180

A.2 Numerical Results of Fitted Models

trunc.

level

No.

par

No.

ni-pc

No.

G-pc

No.

non-

G-pc

Log-

lik.

GIC time

(sec.)

1 206 51 0 51 -45808 93734 600

2 283 99 2 97 -44445 91973 613

3 327 126 5 121 -44121 91896 653

4 364 152 8 144 -43899 91942 698

5 389 170 13 157 -43750 91978 723

6 403 182 14 168 -43628 91923 716

7 427 197 14 183 -43423 91839 715

8 456 217 17 200 -43194 91778 705

9 476 231 18 213 -43102 91869 708

10 495 245 19 226 -43037 92002 704

11 512 259 20 239 -42950 92067 705

12 525 269 23 246 -42884 92115 708

13 537 279 25 254 -42782 92081 702

14 551 290 25 265 -42655 92024 704

15 563 299 27 272 -42568 92020 713

16 583 313 28 285 -42421 92010 706

17 597 321 30 291 -42305 91977 704

18 616 335 31 304 -42172 91981 708

19 629 344 32 312 -42127 92078 708

20 641 353 34 319 -42023 92043 704

21 650 361 34 327 -41970 92068 710

22 656 365 35 330 -41933 92080 705

23 662 370 37 333 -41910 92121 715

24 667 375 39 336 -41889 92151 710

25 675 381 42 339 -41843 92175 709

26 682 386 44 342 -41812 92215 706

27 688 391 46 345 -41734 92146 711

28 691 393 46 347 -41727 92176 712

29 693 395 46 349 -41714 92179 709

30 697 397 46 351 -41699 92206 719

31 702 400 47 353 -41682 92246 718

32 705 403 47 356 -41671 92267 715

33 708 405 47 358 -41660 92289 716

34 713 408 47 361 -41649 92339 715

35 714 409 48 361 -41645 92348 725

36 716 411 49 362 -41636 92359 730

37 719 413 50 363 -41556 92242 731

38 727 418 50 368 -41503 92252 723

39 732 422 50 372 -41459 92239 732

181

Appendix A Supplementary Material to Chapter 4

40 734 423 50 373 -41427 92205 724

41 738 425 50 375 -41409 92227 724

42 742 428 50 378 -41383 92232 721

43 746 432 52 380 -41368 92262 723

44 748 434 52 382 -41359 92273 730

45 748 434 52 382 -41359 92273 731

46 748 434 52 382 -41359 92273 744

47 749 435 52 383 -41356 92283 738

48 749 435 52 383 -41356 92283 732

49 749 435 52 383 -41356 92283 730

50 752 437 52 385 -41336 92286 731

51 752 437 52 385 -41336 92286 739

Table A.2: Numerical results for Dißmann algorithm. Calculations based on z-scale, ab-
breviations ni-pc for non independence pair copula, G-pc for Gaussian pair
copula.

A.3 Algorithms to Chapter 4

input : DAG G = (V = (v1, . . . , vd) , E) with topological ordering vi >G vj,
truncation level k = maxv∈V |pa (v)| = 1.

output: R-vine tree sequence T1, . . . , Td−1 given by a R-vine matrix M and an
independence matrix F ∈ {0, 1}d×d, indicating which pair copula families
can be set to the independence copula.

1 set M = diag (d, . . . , 1);

2 set F = (0)d×d;
3 for i = d− 1 to 1 do
4 set Md,i = pa (Mi,i);
5 set Fd,i = 1;

6 end
7 complete M according to the proximity condition;
8 return M,F ;

Algorithm 1: RepresentMarkovTreeRVine: Construction of a R-vine tree matrix
M and independence matrix F obtained from a DAG G = (V,E) with at most one
parent.

182

A.3 Algorithms to Chapter 4

input : DAGs Gi, i = 1, . . . , k with at most i parents, weighting function g (i).

output: R-vine matrix M and independence matrix F indicating which pair

copulas are the independence copula, truncation level k′.

1 calculate skeletons Gsi of DAGs Gi for i = 1, . . . , k;

2 create H =
(
V,EH1

)
:=
⋃k
i=1 Gsi ;

3 set weights µ1 (v, w) =
∑k

i=1 g (i)1(v,w)∈Esi (v, w) for each edge (v, w) ∈ EH1 ;

4 calculate maximum spanning tree T1 =
(
V,ET

1

)
on H;

5 for i = 2 to d− 1 do

6 create full undirected graph Hi =
(
Vi = Ei−1, E

H
i

)
;

7 delete edges not allowed by the proximity condition;

8 for e ∈ EHi do

9 if µ1 (j (e) , ` (e)) 6= 0 then

10 assign DAG weights µi (e) = µ1 (j (e) , ` (e));

11 else

12 if j (e) ⊥⊥ ` (e) | D (e) according to d-separation in Gk then

13 assign independence weight µi (e) = µ0;

14 else

15 end

16 end

17 end

18 calculate maximum spanning tree Ti =
(
Vi, E

T
i

)
on Hi;

19 end

20 create R-vine matrix M from R-vine trees T1, . . . , Td−1;

Algorithm 2: RepresentDAGRVine: Calculation of an R-vine tree matrix M ob-

tained from DAGs G1, . . . ,Gk.

183

Appendix A Supplementary Material to Chapter 4

input : R-vine matrix M and DAG Gk.
output: Independence matrix F indicating which pair copulas are the

independence copula and truncation level k′.

1 set F = (0)d×d;

2 for i = d to 2 do

3 for j = i− 1 to 1 do

4 if Mi,j ⊥⊥Mj,j |Mi+1,j, . . . ,Md,j according to d-separation in Gk then

5 set Fi,j = 0;

6 else

7 set Fi,j = 1;

8 end

9 end

10 end

11 set k′ such that in the R-vine trees Tk′+1, . . . , Td−1 only the independence copula

occurs;

Algorithm 3: RepresentDAGRVine: Calculation of an independence matrix F and

truncation level k′ for an R-vine matrix obtained from Algorithm 3.

input : DAG G = (V = (v1, . . . , vd) , E), empirical covariance matrix Σ̂.
output: Model induced covariance matrix Σ̂G.

1 set A = {0}d×d;
2 for i = 1 to d do
3 for j = 1 to d do
4 if j ∈ pa (i) then

5 Âij = −
(

Σ̂i,pa(i)

(
Σ̂pa(i),pa(i)

)−1
)

j

6 else
7 if i = j then

8 Âij = 1
9 else

10 Âij = 0
11 end

12 end

13 end

14 end

15 define Ĉov (ε) = diag
(

Σ̂1| pa(1), . . . , Σ̂d| pa(d)

)
;

16 solve Σ̂G = Â−1Ĉov (ε) Â;

17 return Σ̂G;

Algorithm 4: DAGtoCovMatrix: Covariance matrix estimation based on a DAG
model.

184

Appendix B

Algorithms to Chapter 5

185

Appendix B Algorithms to Chapter 5

input : Data X ∈ Rn×d, ordering function ηL.
output: R-vine structure M and regularization path matrix Λ.

1 order Columns of data X ∈ Rn×d according to ordering function ηL, i. e.

X̃,j = X,ηL(j) for j = 1, . . . , d;
2 create M with diag (M) = (ηL (d) , . . . , ηL (1));
3 create Λ = {0} ∈ Rd×d;
4 set md,d−1 = md,d;
5 for j = 3 to d do

6 solve minϕ∈Rj−1

(
1

2n

∑n
i=1

(
xi,j −

∑j−1
`=1 ϕj,`xi,`

)2

+ λj
∑j−1

`=1 |ϕj,`|
)

;

7 store Λ (λ, j) =
{
` : ϕ̂λj,` 6= 0 in ϕ̂λj

}
, with k (λ, j) = |Λ (λ, j)|;

8 set md,j = Λ (0, j)1;

9 calculate λ̃ > 0 such that k
(
λ̃, j
)
− k

(
λ̃− ε, j

)
= 1 and k

(
λ̃, j
)

= 1 where

ε > 0 ; // search λ̃ where ϕj,` vanishes

10 set Λd,j = λ̃;

11 end
12 for k = 2 to d− 1 do
13 for j = k + 1 to d do
14 if Λ (0, j)k adheres to the proximity condition then
15 set md−k+1,d−j+1 = Λ (0, j)k;

16 calculate λ̃ > 0 such that k
(
λ̃, j
)
− k

(
λ̃− ε, j

)
= 1 and k

(
λ̃, j
)

= k

where ε > 0 ; // search λ̃ where ϕj,` vanishes

17 set Λd−k+1,d−j+1 = λ̃;

18 else
19 define the set of potential regressors H (k, j) = {mj+1,j+1, . . . ,md,d};
20 define the whitelist W (k, j) = {md,j, . . . ,mk+1,j};
21 define the blacklist

B (k, j) = {` ∈ H (k, j) \W (k, j) : ` does not satisfy the pc.};

22 solve minϕ∈Rj−1−|B(k,j)|

(
1

2n

∑n
i=1

(
Xi,j −

∑
`∈H(k,j)\B(k,j) ϕj,`Xi,`

)2

+

∑
`∈(H(k,j)\B(k,j))\W(k,j) λj,` |ϕj,`|

)
;

23 set md−k+1,d−j+1 = Λ (0, j)k;

24 calculate λ̃ > 0 such that k
(
λ̃, j
)
− k

(
λ̃− ε, j

)
= 1 and k

(
λ̃, j
)

= k

where ε > 0 ; // search λ̃ where ϕj,` vanishes

25 set Λd−k+1,d−j+1 = λ̃;

26 end

27 end

28 end
29 return R-vine matrix M and regularization path matrix Λ;

Algorithm 5: RVineLassoSelect: Calculation of an R-vine structure M and reg-
ularization path matrix Λ

186

input : Data X ∈ Rn×d, λ ∈ Rd.
output: Ordering function η.

1 define B = {0} ∈ Rd×d;
2 for j = 1 to d do

3 solve minϕj∈Rd−1

(
1

2n

∑n
i=1

(
xi,j −

∑d
`=1,`6=j ϕj,`xi,`

)2

+ λ`
∑d

`=1,` 6=j |ϕj,`|
)

;

4 set B,j = (ϕj,1, . . . , ϕj,j−1, 0, ϕj,j+1, . . . , ϕj,d);

5 end
6 calculate ordering function ηL such that∑d

`=1 1{ϕηL(1),` 6=0} ≥ · · · ≥
∑d

`=1 1{ϕηL(d),` 6=0};
7 return ordering function ηL;

Algorithm 6: CalcOrdering: Calculation of an ordering function η

187

Appendix B Algorithms to Chapter 5

input : Data U ∈ [0, 1]n×d, R-vine matrix M , regularization path matrix Λ,
single thresholding parameter λT > 0 or adaptive thresholding parameter
µ ∈ [0, 1].

output: Sparse R-vine with structure M , family matrix Γ and parameter matrix
Θ.

1 if Single thresholding mode then
2 for k = 2 to d do
3 for j = 1 to k − 1 do
4 if Λk,j ≥ λT then
5 γk,j = 1;
6 else
7 do nothing;
8 end

9 end

10 end

11 else

12 solve bµ ·
(
d
2

)
c =

∑d
j=1,...,d−1,k=1,...,d−j 1{λk,j≥λµ}; for k = 2 to d do

13 for j = 1 to k − 1 do
14 if Λk,j ≥ λµ then
15 γk,j = 1;
16 else
17 do nothing;
18 end

19 end

20 end
21 for k = 1 to d− 1 do
22 for j = 1 to d− k do
23 if γk,j = 1 then
24 estimate pair copula using maximum likelihood or inversion of

Kendall’s τ ;
25 else
26 do nothing;
27 end

28 end

29 end

30 end
31 return R-vine with structure M , family matrix Γ and parameter matrix Θ;

Algorithm 7: RVineThresholdSelect: Single or adaptive thresholding of an R-
vine and estimation of pair copulas

188

Appendix C

Algorithm RVineClusterSelect

189

Appendix C Algorithm RVineClusterSelect

input : Data X ∈ Rn×d, dT ≤ d, kF < d.

output: R-vine in d dimensions.

1 calculate
(
G1 = (

⋃p1

i=1 V 1
i ,
⋃p1

i=1 E1
i) , . . . ,GJ =

(⋃pJ
i=1 V J

i ,
⋃pJ
i=1 EJ

i

))
and

assume V j
i are ordered such that

∣∣V j
i

∣∣ ≤
∣∣V j
i−1

∣∣ for i = 2, . . . , pj and j = 1, . . . , J ;

2 select GT such that T = arg maxj=1,...,J δj ≤ dT with δj = maxi=1,...,pi

∣∣V j
i

∣∣;
3 for i = 1 to pT do

4 set νi =
∣∣V T
i

∣∣, H =
(
W = VTi ,F = ET

i

)
, H0 = (W ,W ×W);

5 if νi ≥ 3 then

6 for (j, `) ∈ W ×W do

7 if (j, `) /∈ F then

8 set cj,` = 1;

9 else

10 estimate pair-copula cj,`;

11 end

12 end

13 calculate weights µj,` = |µ (cj,`)| ; // e. g. Log-Lik., AIC, BIC

14 calculate optimal spanning tree T1 = (W , E1) on H0 w.r.t. µ;

15 for k = 2 to νi − 1 do

16 set Tk = (Ek−1, Ek) with Ek admissible edges by proximity condition;

17 for (j, `;D) ∈ Ek do

18 if j ⊥ ` | D [H] then

19 set cj,`;D = 1;

20 else

21 estimate pair-copula cj,`;D;

22 end

23 end

24 calculate weights µj,`;D = |µ (cj,`;D)|;
25 calculate optimal spanning tree Tk = (Vk, Ek) w.r.t. µ;

26 end

27 else

28 if νi = 2 then

29 estimate pair-copula cj,` for pair (j, `) ∈ ET
i ;

30 end

31 end

32 end

33 combine sub-R-vines and isolated nodes into R-vine matrix M ∈ {0, . . . , d}d×d;
34 for k = 1 to kF do

35 estimate pair-copulas between sub-R-vines in tree k of in R-vine matrix M ;

36 end

Algorithm 8: RVineClusterSelect: Selection of an R-vine in d dimensions.

190

	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Dependence Modelling with Vine Copulas
	Copulas
	Sklar's Theorem
	Copula Families
	Dependence Measures
	Estimation of Pair Copulas

	Vine Copulas
	Model Assessment
	Model Selection
	Model Simplification

	Mathematical Foundations and Sparse Modelling
	Mathematical Foundations
	Time Series Models
	Conditional Independence
	Properties of the Multivariate Gaussian Distribution

	The Lasso in Linear Regression
	Graphical Models
	Graph Theory
	Undirected Graphical Models
	Estimation of Undirected Graphical Models
	Directed Graphical Models
	Estimation of Graphical Models on DAGs

	Structural Equation Models (SEMs)

	Representing Sparse Gaussian DAGs as Sparse R-vines
	Motivation: Combinatorial Example
	Representing Truncated R-vines as DAGs
	Representing DAGs as Truncated R-vines under Sufficient Conditions
	Representing 1-DAGs as 1-Truncated R-vines
	Representing k-DAGs under Sufficient Conditions
	Special k-DAGs with R-vine Representations
	A Necessary Condition for R-vine Representations

	Representing Arbitrary k-DAGs
	Algorithmic Implementation
	Toy Example

	Application

	Selection of Sparse Vine Copulas in High Dimensions with the Lasso
	Motivation: SEM Representation of R-vines
	Vine Copula Structure Selection with the Lasso
	Calculation of the Ordering Function
	Sparse R-vine Structure Selection
	R-vine Regularization Paths
	Selection of the Tuning Parameter

	Application

	Dependence Modeling in Ultra High Dimensions with Vine Copulas and the Graphical Lasso
	A Divide-And-Conquer-Strategy
	Motivation: Considering Computational Complexity
	Clustering High Dimensional Data
	Improving Estimation Accuracy

	Algorithmic Implementation
	Computational Implementation
	Toy Example

	Application

	Comparison Studies Utilizing the Proposed Methods
	Set up of the Comparison
	Data Preparation
	Numerical Implementation

	Simulation Study
	Runtime Comparison
	Value at Risk (VaR) Forecasting and Backtesting in 400 Dimensions
	Data Preparation and Modelling
	Value at Risk (VaR) One Day Ahead Forecasting
	Value at Risk (VaR) Backtesting

	Conclusion and Outlook
	Contribution
	Future Research Directions

	Supplementary Material to Chapter 4
	DAGs Estimated on the Euro Stoxx 50 Data Set
	Numerical Results of Fitted Models
	Algorithms to Chapter 4

	Algorithms to Chapter 5
	Algorithm RVineClusterSelect

