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Zusammenfassung

Im Zuge der kontinuierlichen Verbesserung von dynamisch belasteten Bauteilen und
Systemen sind effiziente Simulationsmethoden fiir strukturdynamische Fragestellungen
von hoher Bedeutung. Insbesondere die Anforderung von geringem Gewicht bei zu-
gleich hoher Festigkeit und Lebensdauer erfordert hdufig Losungen, in denen Phanomene
wie geometrische Nichtlinearitédt, die durch grofse Rotationen verursacht wird, eine oft
dominierende Rolle spielen. Da die Beriicksichtigung von Nichtlinearitdten in Simula-
tionsmodellen jedoch einen erheblich gesteigerten Rechenaufwand nach sich zieht, ist
die Modellreduktion, die Approximation von rechenaufwéndigen Modellen durch deut-
lich reduzierte Modelle, eine attraktive Option.

Die meisten der etablierten nichtlineare Reduktionsverfahren basieren auf der Ana-
lyse von sogenannten Trainings-Simulationen des nicht reduzierten, mit sehr grofiem
Rechenaufwand assoziierten Modells. Diese Herangehensweise steht jedoch in einem
gewissen Widerspruch zur Idee von Modellreduktion, die genau die Reduktion des Mo-
dells anstrebt. Daher werden in der vorliegenden Arbeit sogenannte simulationsfreie
Methoden diskutiert und entwickelt, die nicht oder so wenig wie moglich auf Trainings-
Simulationen basieren.

Die effiziente Reduktion von geometrisch nichtlinearen Modellen erfordert die Lo-
sung zweier unterschiedlicher Probleme. Das erste Problem ist die Bestimmung einer Re-
duktionsbasis, die die Parametrisierung des kinematisch zuldssigen Bewegungsraumes
darstellt. Im Rahmen dieser Arbeit werden verschiedene Verfahren vorgestellt und un-
tersucht, die etablierte Reduktionsverfahren fiir lineare Systeme fiir geometrisch nicht-
lineare Systeme mit Hilfe von Perturbationsansidtzen erweitern. Zusitzlich werden wei-
terfiihrende Verfahren wie eine nichtlineare Projektion auf eine quadratische Mannig-
faltigkeit sowie eine Vergleichsmethode fiir Projektionsbasen vorgestellt und diskutiert.

Das zweite Problem fiir die effiziente Reduktion von geometrisch nichtlinearen struk-
turdynamischen Systemen ist die Approximation der Nichtlinearitit, genannt Hyper-
Reduktion. Ein Verfahren, das neben anderen im Rahmen dieser Arbeit diskutiert wird,
ist die ECSW-Methode, die die Anzahl der Elemente im Netz des reduzierten Modells
verringert. Fiir diese Methode werden jedoch Training-Sets benétigt, die bisher durch
eine Simulation des vollen, unreduzierten Modells generiert werden. In dieser Arbeit
werden zwei Ansdtze vorgestellt, die eine deutlich giinstigere Generierung von Training-
Sets ermoglichen. Des Weiteren werden Hyper-Reduktionsmethoden basierend auf der
polynomialen Struktur der Nichtlinearitdt sowie basierend auf einem Kollokationsansatz
diskutiert und auf die Brauchbarkeit in strukturdynamischen Anwendungen untersucht.

Abschliefiend wird die Leistungsfahigkeit und Praktikabilitit der vorgeschlagenen
Methoden anhand eines industriellen Modells einer LKW-Blattfeder demonstriert.
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Abstract

Due to the continuous improvement of mechanical parts and systems in dynamic appli-
cations, efficient simulation methods for structural dynamics problems are of high impor-
tance. Especially the requirement of low weight and at the same time high strength and
durability leads to designs where geometrical nonlinearity caused by large rotations is of-
ten dominating. However, since considering nonlinearities leads to significantly higher
computational costs, model order reduction, the approximation of large models with sig-
nificantly smaller ones, is an attractive option.

Most of the established nonlinear reduction methods are based on the analysis of so-
called training simulations of the full, unreduced model which is associated with high
computational costs. This approach, however, to a certain extent contradicts the idea
of model order reduction, which attempts to reduce the computational effort. Hence, the
following thesis discusses and develops so-called simulation-free methods which are not,
or as little as possible, based on training simulations.

The efficient reduction of geometrically nonlinear models requires the solution of
two distinct problems. The first problem is the computation of the reduced basis which
forms the parametrization of the kinematically admissible space for the displacements.
In this work, different methods are presented and investigated which extend the estab-
lished reduction techniques for linear systems to geometrically nonlinear systems by us-
ing perturbation approaches. In addition, further methods like a nonlinear projection on
a quadratic manifold and a comparison technique for reduced bases are introduced and
discussed.

The second problem for the efficient reduction of geometrically nonlinear structural
dynamics systems is the approximation of the nonlinear terms, which is referred to as
Hyper-Reduction. One approach, which is discussed amongst others, is the ECSW me-
thod which reduces the number of elements in the mesh of the reduced model. This tech-
nique, however, requires training sets that are hitherto generated using the full, unre-
duced model. In this thesis, two approaches are introduced which allow for a clearly
cheaper generation of the training sets. Furthermore, approaches exploiting the poly-
nomial structure of the nonlinearity or using a collocation technique are discussed and
investigated for their suitability in the context of structural dynamics.

Finally, the performance and practicability of the proposed methods are demonstrated
on an industrial model of a truck leaf spring.
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Chapter 1

Introduction

The development process in structural dynamics engineering has dramatically changed
in the past decades. With the numerical analysis tools available, the behavior of complex
structures and systems can be predicted as efficiently and effectively as never before.
However, despite the exponential growth of the hardware performance for over half a
century, which has already been predicted by Gordon Moore [Moo65] back in 1965, the
demand for faster and more accurate simulation tools is still unbroken.

To overcome the computational limitations set by the hardware development, bet-
ter numerical algorithms are strongly required, which provide both high accuracy and
moderate computational costs. One approach to achieve the contradicting goals of high
accuracy and low computational costs is model order reduction. In this framework, one
approximates a large model with a reduced model of less computational complexity. The
idea is to invest computational effort, the offline cost, to reduce the large model and thus
obtain the reduced model, as depicted in Figure 1.1. The online cost, i.e., the effort for the
actual computation yielding the desired results, is then clearly smaller for the reduced
model compared to the full model.

The advantages of the reduced online costs and hence of model order reduction itself
are effective in several scenarios. In control engineering, for instance, little online costs
are of high interest for real time controllers while the offline costs in the design process
barely matter. In various design analyses in engineering, model order reduction speeds
up the computation, if both online and offline costs to reduce and run the system are
lower than the online costs of the full system. In the analysis of multiple load cases or in
optimizations, reduction methods are often used when the offline costs of the reduction
have to be invested only once and pay off with multiple online runs. Also in substruc-

online

with model order reduction

computational cost

offline

number of solve calls / outputr

Figure 1.1: Offline and online costs in model order reduction.
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Figure 1.2: Wing displacements on ground (top), flight with 1 g (middle) and maximum load
(bottom) of the Boeing 787 Dreamliner. (source: [Dod].)

turing, where subcomponents are modeled and then assembled in a subsequent step, the
offline costs usually pay off.

In structural dynamics, the large model is commonly constructed using the finite ele-
ment method. It allows for the discretization of arbitrary geometries with excellent accu-
racy. However, this method is computationally too demanding for many nonlinear ap-
plications, especially when transient solutions over larger time spans are desired. Hence,
model order reduction is mandatory to make the nonlinear dynamical systems available
for broader analyses.

The need for simulating structural dynamics in the nonlinear regime is prominent,
since lightweight structures with high stiffness to weight ratios are prevalent in mod-
ern engineering. They are sometimes operated in the nonlinear regime to achieve the
goals of performance and efficiency. The maximum load case wing flex of the Boeing
787 Dreamliner depicted in Figure 1.2, for instance, is clearly geometrically nonlinear
yielding large displacements and rotations which cannot be captured by linear structural
dynamics theory. The analysis of geometrically nonlinear structures in the aerospace in-
dustry is crucial in many applications such as wing design and flutter analysis (cf. [LL04;
XX15]). Also in the automotive industry, elastic parts are operated in the geometrically
nonlinear regime like the leaf spring used in trucks (cf. [Sug+06; Kon+13]). The accurate
simulation is crucial in the prediction of the vehicle dynamics, fatigue and also relevant
for comfort including noise and vibrations. In Chapter 15, a geometrically nonlinear leaf
spring is chosen as industrial real-life example to prove the applicability of the proposed
methods. Among further industries where geometric nonlinearities play a crucial role are
manufacturers of microelectromechanical systems (cf. [Youll; Che+04]) or wind turbines
(cf. [BV10; LHB04]). Common to all applications is the presence of large displacements
and rotations or the existence of cable or membrane-effects, which make linear analyses
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insufficient and require geometrically nonlinear investigations.

1.1 Objective

Model order reduction is well established in linear structural dynamics. Various meth-
ods exist, which rely on intrinsic properties such as eigenmodes and hence are backed
up by system theoretic properties. For nonlinear systems, however, these properties do
either not exist or are very hard to compute, so that the linear methods are in general
not successfully applicable to nonlinear systems. Thus, the state-of-the-art approach in
nonlinear model order reduction is a detour over statistical methods, where so-called
training snapshots computed using the full, unreduced system are used to build the re-
duced models. This approach, however, is to a certain extent contradictory to the concept
of model order reduction, since the large, unreduced system needs to be solved first in
order to reduce exactly this system. Depending on the system and the computational
hardware available, these offline costs associated with the solution of the full, unreduced
system are inconvenient in the best case. In the worst case, model order reduction with
simulation-based methods requiring the large training snapshots is infeasible when the
computational hardware for the full system is not available.

Simulation-free methods solve this issue by circumventing the necessity of full sys-
tems’s training sets for generating nonlinear reduced models. They identify the nonlinear
effects by other means like Taylor expansions or cheaper static training sets with pseudo-
dynamic forces. Thereby, the task of model order reduction for nonlinear systems can
be subdivided into the reduced basis problem and the hyper-reduction problem. In the
former, the kinematic space of motion is reduced yielding a reduced set of generalized
coordinates. The latter deals with the accelerated evaluation of the nonlinearities in the
reduced equations of motion. Hence, the objective of this thesis is to discuss already known
and introduce new simulation-free methods for both reduced basis methods and hyper-reduction
methods in the context of nonlinear structural dynamics.

Not discussed are methods based on the proper generalized decomposition (PGD),
which take a completely different approach. While the reduced basis methods have
proven to be excellent procedures for the reduction of linear and nonlinear structural dy-
namical systems, it is still unclear if the PGD is applicable in this regime, see for instance
Boucinha et al. [BGA13; Bou+14].

1.2 Scientific Contributions

This thesis gives an overview of simulation-free reduced basis and hyper-reduction meth-
ods. Some approaches presented are novel scientific contributions of the author:

* A nonlinear projection technique named quadratic manifold approach introduced
in Chapter 7, of which parts are published in [RR14b; RRT14; Jai+17; Rut+17],

¢ a clarification and generalization of the static derivatives and how they fit into the
framework of simulation-free nonlinear reduction, which is published in [Rut+17],

* acomparison technique of reduction bases using subspace angles discussed in Chap-
ter 8, which is published in [RGR15],

¢ the alternative computation of the polynomial tensors used for polynomial tensors
hyper-reduction based on numerical differentiation as well as the speedup tech-
nique to exploit the symmetry of the polynomial tensors both addressed in Chap-
ter 11, and



4 Introduction

¢ the generation of almost simulation-free training snapshots named NSKTS and
NSMTS for the ECSW hyper-reduction proposed in Chapter 13, published in [RR17].

Furthermore, numerical experiments for the relevant methods are reported. Some of
them reveal novel results, which are discussed in the respective chapter. To enable the
application of the advanced reduction techniques to academic and industrial examples,
a non-linear structural dynamics research code named AMFE, based on finite elements
and written in Python and Fortran, was entirely developed by the author in the context
of this thesis.

1.3 Outline

After this introductory chapter, the fundamentals of the finite element method are in-
troduced in Chapter 2 with special focus on geometrical nonlinearity. Closely related is
Chapter A in the Appendix, where the nonlinear finite element formulation is covered in
detail together with the structure of the code AMFE.

Then, the thesis is subdivided in three parts. Part I is devoted to the reduced basis
approach which is introduced in Chapter 3. In the following four chapters, different
approaches to the construction of the reduced basis are discussed. Chapter 4 deals with
the reduction of linear structural dynamics systems. The two main methods proposed
are embedded in the substructuring context, which is very common in linear model order
reduction, as well as in the system theoretics context, which provides more underlying
theory.

The reduction of nonlinear systems is addressed by the three subsequent chapters.
Chapter 5 introduces the Proper Orthogonal Decomposition (POD), the state-of-the-art
method for the reduction of nonlinear systems, which is simulation-based, though. Thus,
Chapter 6 investigates the simulation-free reduced basis methods. These methods extend
the linear reduction methods introduced in Chapter 4 with static and modal derivatives,
making them suitable for geometrically nonlinear systems. Several variants of the static
and modal derivative approach are discussed as well as techniques for selecting specific
basis vectors. In numerical experiments, these procedures are applied to academic exam-
ples revealing certain novel patterns of the methods.

A fundamentally different approach for projective model order reduction is taken in
Chapter 7, where a nonlinear mapping technique is introduced. In this simulation-free
method, the projectional subspace is constantly altered based on a quadratic manifold
which is constructed using basis vectors and quadratic expansion vectors. These are ei-
ther chosen as modal derivatives or static derivatives which result from the so-called
force compensation approach. This technique provides a minimal number of degrees of
freedom (dofs), however it is limited to special cases. For deeper insights, the method
is discussed in the context of von Karman kinematics, where it evolves in a nonlinear
Guyan reduction scheme. A broad numerical investigation is conducted in the applica-
tions section. It unveils the pattern, that the quadratic manifold approach is successfully
applicable to structures where the nonlinearity is associated with small rotations, as it is
the case for membrane-like structures.

Chapter 8 addresses the comparison of bases using subspace angles and principal
vectors. They form a powerful and insightful tool for comparing reduced bases, which is
exemplarily applied to one of the examples used throughout this thesis. In this numerical
experiment it is shown that the linearization of rotations is the main reason for the fail-
ure of linear reduction methods in the context of geometrically nonlinear finite element
systems. Part I is concluded with a brief summary given in Chapter 9.

Part II is devoted to the hyper-reduction problem emerging from the reduced basis
reduction of nonlinear systems. In Chapter 10, the hyper-reduction problem is explained,
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which is then addressed in the following three chapters. Chapter 11 deals with the poly-
nomial tensors hyper-reduction. This method is based on the fact that the internal non-
linear forces are third order polynomials for systems modeled with St. Venant-Kirchhoff
material. To obtain the polynomial coefficients, different non-intrusive methods are in-
vestigated. Furthermore, an approach for exploiting the symmetry of the polynomial
coefficient arrays is proposed for both efficient storing and efficient multiplication.

A different hyper-reduction approach named Discrete Empirical Interpolation Method
(DEIM) is discussed in Chapter 12. It approximates the nonlinear internal forces in the
unreduced domain using an empirically computed force basis and a collocation scheme,
which however breaks the symmetry and with it the stability of the reduced system.
Various improvements of the method are discussed, which however cannot alleviate the
fundamental flaw of lost symmetry cast into the method. A brief empirical study inves-
tigates why the DEIM fails for what concerns both accuracy and stability when applied
in the geometrically nonlinear finite element context.

Chapter 13 is committed to the Energy Conserving Mesh Sampling and Weighting
(ECSW) hyper-reduction method. It is similar to the DEIM, as it also relies on a reduced
evaluation of the internal forces, but resolves the fundamental flaws of the DEIM allow-
ing for the construction of accurate and stable hyper-reduced models. The main issue of
the method in the context of simulation-free reduced bases is the need for training snap-
shots, which are commonly obtained from a training simulation of the full, unreduced
system. In order to make the ECSW applicable in a simulation-free context and fill the
gap between simulation-free reduced bases and the ECSW hyper-reduction, the novel
Nonlinear Stochastic Krylov Training Sets (NSKTS) and the Nonlinear Stochastic Modal
Training Sets (NSMTS) are proposed. In a detailed study, the applicability and robustness
of these lean training sets is demonstrated. In Chapter 14, a concise summary of Part I
ist given.

Part III of this thesis concludes the two previous parts. In Chapter 15, the simulation-
free framework of building a reduced basis and applying a hyper-reduction is demon-
strated on a real-life example of a leaf spring of a truck. The applicability, accuracy and
great speedup factors are confirmed in a thorough investigation. Chapter 16 summa-
rizes the thesis with a conclusion of the main results and with topics suitable for future
research.

1.4 Remarks on Notation

Throughout this thesis, the symbols are mostly used in a consistent manner. If not explic-
itly denoted otherwise, non-boldface symbols refer to scalar values, lowercase boldface
symbols are column vectors and uppercase boldface symbols are matrices. Calligraphic
letters, e.g., &, refer to sets.

All numerical experiments are conducted with AMFE, the Python module written in
the context of this thesis. Hence, the indexing and slicing convention follows the zero-
based style of Python, i.e., a]0] selects the first element of vector a, a[: 5] the first five
elements of a and A[:,: 3] the first three columns of the matrix A. Furthermore, in the
ranges used in for-loops of algorithms, the upper value is not included in the range, i.e.,
fori := 0 : 10 yields ten ascending values for i in every iteration with the first being
zero and the last being nine.






Chapter 2

Nonlinear Finite Elements

The key technology in structural dynamics is the finite element method, which allows
for the discretization of the continuous elasto-dynamic problem. Since the method is so
widespread and successful, it has an enormous body of literature. In this section, only
the basic concepts are briefly introduced, which are necessary for the understanding of
the reduction methods in the following chapters. For introductory textbooks on the topic,
the reader is referred to, e.g., Bonet and Wood [BW97], Belytschko et al. [BLMO00], Reddy
[Red04], Simo and Hughes [SHO6] or Crisfield et al. [C+12].

Different textbooks come with different notations. Throughout this thesis, the nota-
tion is kept close to Belytschko et al. [BLMO0] using the Total Lagrangian framework.
Several modifications are done in order to keep the notation consistent with the software
AMEFE, which is discussed in Chapter A in the Appendix.

2.1 Continuum Mechanics

reference configuration deformed configuration

Figure 2.1: Reference configuration )y and deformed configuration (); at time ¢ of an elastic
deformable continuous body.

First, the kinematics of a deformable continuum three dimensional body depicted in
Figure 2.1 is discussed, although the derivation is also valid for two dimensions. The
body has a reference configuration () at t = 0 and deforms over time. At time t the body
occupies the configuration ();. All material points of the body in the undeformed config-
uration )y are described by the vector X € RR® and all points of the deformed body at
time t are described by the vector ¥ = (X, t) € R®. Quantities referring to the reference

7
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domain are expressed with uppercase letters, whereas quantities in the deformed domain
are expressed with lowercase letters. The bar over the letters X and x denotes that these
variables are continuous in space in contrary to the nodal quantities of discretized finite
elements, see Section 2.3. The displacement of a particle is then expressed by the dis-
placement vector # describing the position of the deformed configuration relative to the
initial configuration:

n(X,t)=xX,t) - X. (2.1)

The deformation is measured with the deformation gradient F € R3*3. It is the partial
derivative of the deformed configuration with respect to the initial configuration and can
also be expressed in terms of the displacement vector # using the identity matrix I € R>:

ax om

=sz =3+l 2.2)

The deformation gradient describes the mapping of an infinitesimal vector dX from
the reference domain to the current domain d¥ = FdX, which is also denoted the push
forward operation. Since the mapping is bijective, dx can also be uniquely mapped to
dX with dX = F~!dx in the pull back operation. The deformation gradient F, which is
not symmetric in general, accounts for both stretching and rotation.

For describing strains in a large deformation context, a strain measure should not
feature strains for pure rigid body rotations, but should be rotation-invariant or objective.
Before introducing an objective strain measure, the deformation gradient F is investi-
gated further. The mapping of F can be decomposed mathematically with the singular
value decomposition (SVD) to

F = USVdZSVdVT (2.3)

svd’

where Ug,q € R3*® and V4 € R*3 are orthogonal matrices and Zg,4 € R**3 is a di-
agonal matrix formed by the singular values. In the geometric interpretation of the SVD,
the orthogonal matrices represent rotation operators in the 3D space, while the diagonal
matrix represents a stretching along the main axes. Hence, the mapping F from the refer-
ence configuration to the deformed configuration can be split into a rotation performed
by VI ; followed by a stretch along the main axes performed by L4 followed by an-
other rotation performed by Us,q. Since X4 is a diagonal matrix, the stretch operation
is performed along the main axes of the intermediate coordinate system, into which the
rotation V! , was transforming. The stretch operation performed by Eg4 can also be ex-
pressed as a stretch operation not along the principal axes but along axes different from

them, leading to the symmetric material stretch tensor U:
u= stdzsvdvgvd (2.4)

If F is to be expressed as a stretch operation with the material stretch operator U, the
rotation

R =Ug4V! (2.5)

svd

completes the mapping of F since V! V4 = I, leading to the polar decomposition of
the deformation gradient F:

F = RU. (2.6)

The orthogonal matrix R represents the rotation, which is performed after the mate-
rial stretching performed by the symmetric tensor U.
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Since the mapping of F can be decomposed into a rotational part and a deformation
part, a strain measure can be defined allowing for cancelling out the rotational part in or-
der to make the strain measure objective. The strain measure used in the Total Lagrangian
framework is the Green-Lagrange strain E € R3*3, which is defined as

1
E= E(FTF 1. (2.7)

The Green-Lagrange strain E is rotation-invariant, since R is orthogonal yielding

R'R=1:
1 1 1
E= E(PTP—I) = E(uTRTRu—I) = E(uTU—I). (2.8)

The Green-Lagrange strain tensor E is symmetric by construction and ignores the
rigid body motion of a body. Other objective strain definitions exist, which are not dis-
cussed here. For further readings the relevant textbooks, e.g., Bonet and Wood [BW97],
are recommended.

The interpretation of the Green-Lagrange strain is not as straightforward as for the
deformation gradient. Whereas the deformation gradient F describes the change of an in-
finitesimal element dX, the Green-Lagrange strain describes the change of their squares:

% <d5ch5c - dXTdX) — dX"E dX. (2.9)

It can be interpreted as the quadratic change measure of the length of the infinitesimal
element dX.

Complementary to a strain measure, a corresponding stress measure is necessary to
form an energy or work-conjugate pair allowing the application of energy or work prin-
ciples. The Green-Lagrange strain tensor is given in the reference domain. The true
Cauchy stress o, however, is defined in the deformed or material domain, as it returns
the traction vector ¢ for a given normal vector n of the cutting face:

t=on. (2.10)

To make the Cauchy stress o work-conjugate to the Green-Lagrange strain E, it needs
to be pulled back leading to the second Piola-Kirchhoff stress tensor S, which is also sym-
metric by construction:

S = F loF T det(F). (2.11)

In comparison to the true Cauchy stress o, the second Piola-Kirchhoff stress tensor S
does not have an intuitive interpretation. However, it can be regarded as the stress ex-
pressed in the reference domain leading to the work-conjugate associated to the Green-
Lagrange strain tensor E. Hence, the internal virtual work done by S in a body filling the
domain () in the reference domain is

SWiyp = /Q S : 6E dQyp 2.12)
0

with the variation of the strain /E. Since E is computed with the deformation gradient F
(cf. (2.7)), the variation of the Green-Lagrange strain tensor is given as

1
OE = E((SPTF + FI5F). (2.13)

The relation between strain and stress is defined by the constitutive law expressing
the elastic behavior of the material. In the following section, the modeling of nonlinear
materials is discussed.
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2.2 Nonlinear Material

The relation between stress and strain is determined by the material. If the stress tensor
is solely a function of the strain and not dependent on the deformation history or the rate
of deformation, the material is denoted as hyperelastic. It is characterized uniquely by the
so-called energy density function W(E), which describes the stored potential energy in
the material due to the applied Green-Lagrange strain E. The stress strain relation is then
given as

OW(E)
9E

S = (2.14)
i.e., the partial derivative of the energy density function with respect to the Green-La-
grange strain yields the second Piola-Kirchhoff stress tensor S.

The hyperelastic material mimicking the linear-elastic behavior as known in linear
elasticity is the St. Venant-Kirchhoff material. It has the quadratic energy density function

A
Wsy_x = E’crace(E)2 +uE:E, (2.15)

where A and y are the so-called Lamé constants, which are related to the Young’s modu-
lus E and Poisson’s ratio v known from linear elastic materials:

vE E

A arva-y . Pty

(2.16)

The relationship between the second Piola-Kirchhoff stress and the Green-Lagrange
strain in the St. Venant-Kirchhoff material is linear, since Wsy_k is quadratic and differ-
entiated once with respect to E (cf. (2.14)). Hence, the St. Venant-Kirchhoff material can
be interpreted as the hyperelastic representation of the linear material behavior. Though
it does not represent common materials for large strains, it is an often used material for
geometric nonlinearities, when the strains remain small and in the linear-elastic range, as
it often appears for instance in metallic structures.

For other materials exposing hyperelastic behavior like rubber, more advanced en-
ergy density functions are employed. For example, the compressible Neo-Hookean ma-
terial is characterized by

WNH =

N =

(trace(E)) — pIn(]) + & (in(]))?, 217)
leading to a nonlinear strain-stress relationship. ] is the determinant of the deformation
gradient and thus a measure of the material compression. Many more elaborate material
laws exist, like the Mooney-Rivlin or the Ogden material, which can be used for the
approximation of the nonlinear material behavior of rubber materials or organic tissues.
For further information on nonlinear materials, the reader is referred to the textbooks of
the field, e.g., Holzapfel [Hol00], Kim and Sankar [KS09] or Ogden [Ogd97].

2.3 Finite Element Discretization

Having defined the kinematics of the continuous deformable body and the constitutive
law, the equations of motion can be derived with a variational principle. In mechanics,
the principle of virtual work extended to dynamics by d’Alembert’s principle yields the
weak form of the equations of motion:
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SW = / sa” poiit Ay + / S:6EdQo— [ eaTtda0g — [ saTbdOp =0
[ON) (O} IoN (o)

5Wkin éwint Wext
(2.18)

with the kinematically admissible variation of the displacements di, the accelerations of
the particles # being the second time derivative of the displacements # defined in (2.1),
the density p of the body, the traction ¢ at the boundary of the body 9}y and the external
forces b acting in the body domain ).

2.3.1 Approximation with Shape Functions

The equation (2.18) above can be solved analytically only for special domains €}, trac-
tions t and volume loads b. To solve the equation in a systematic and approximate man-
ner, the continuous space can be discretized using the concept proposed by Ritz [Rit09].
There, the key idea is the expression of the field variables # and its derived quantities like
E and S as a sum of a number of trial or shape functions N(X) and their corresponding
amplitudes i1, (t). Hence the displacements are written as

B(X,1) = Yo Ni(X) (1), 2.19)
i=1

where the a priori defined shape functions N;(X) are purely space dependent and the
amplitudes i1, ;(t) are purely time dependent and are the variables which are generally
sought in the solution procedure.

In the finite element framework, the shape functions are defined and evaluated on
subdomains )y, dividing the global domain () into a set £ of geometrical primitives:

Qo ~ | Qo (2.20)

The primitives are referred to as finite elements responsible for the method’s name.
They are commonly tetrahedrons or hexahedrons in R® or triangles or quadrangles in IR?.
For every element, a set of low order polynomial functions N, ; is typically used as shape
function set which is defined in a local element coordinate system. For a Hexahedron
element, for instance, the local coordinates are & = (&,7,{)T, which are defined in [—1, 1]
for every component.

The shape functions are usually chosen as Lagrange polynomials, since they can be
hinged on nodes like corners or center points of edges of the geometric primitive. With
this choice, all discrete nodal values are interpolated by the Lagrangian polynomial shape
functions leading to the isoparametric concept. Hence, all field variables including the
reference configuration are expressed by the shape functions N(¢) and the nodal coordi-
nates X,, &, or il,:

X(&) =Y N:i(&)X.; = X, N(2), (2.21)
i=1

(&) = Y Ni(&)&; = 2IN(E), 2.22)
i=1

8(8) = Y. Ni(@)ite; = I N(©). (223)

The vector N(§) € R contains the shape functions defined for the element e with
n, being the number of nodes of the element, X, € R™*3 is the matrix of the nodal
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coordinates in the reference configuration, &, € R" *3 the matrix of the nodal coordinates
in the deformed configuration and #, € IR"*3 is the matrix of the nodal displacements.
For simplified notation, the displacement matrix #, is commonly reshaped to the column
vector u, € R3"™ describing the nodal displacements of an element. In the remainder
of this thesis, all displacements denoted with a plain u, for an element or u for a full
system are given in this column vector notation. For more details, see Section A.2 in the
Appendix.

To ensure CY continuity of the field variables across the boundary of elements, the
nodal variables of neighboring elements have to be shared. This is implicitly accounted
for by applying the assembly process discussed in Subsection 2.3.2, since local variables
belonging to multiple elements are picked from a unique set of global variables.

With the kinematic approximations (2.21) to (2.23), all derived field tensors can be
computed accordingly (cf. Section A.2). The space derivatives like the deformation gra-
dient F are carried out on the shape functions in the element coordinates ¢. The mapping
between the element coordinates and the reference domain is performed using the ele-
ment Jacobian | = 0X/9d¢, yielding the finite element discretization of the deformation
gradient F:

dit TON

For+ 2% _g Vo_
Tox T Thx

1ON [ TON\ '
ey (V)
Obviously, the deformation gradient is a function of the nodal displacements i, and
the initial configuration of the element expressed in the initial positions X,. The spatial
derivatives are carried out on the shape functions N defined for the element.
The virtual work of the inertia forces 6Wg;, . of element e is obtained by applying the
principle of virtual work using the discretizations (2.21) to (2.23):

JTIN 96

oN
9 _ ~T
I+a, 9F 9X

I+ue aigl_l

(2.24)

Wiine = / 5" poii A0, = /
QO,e

Oy,

N5, il Nog dQy,. (2.25)

The last term leads to the element mass matrix M, of element e by evaluating the
integral and expressing the quantities in matrix notation:

SWiine = oul Mit,. (2.26)

The internal virtual work of element e can be expressed similarly leading to the inter-
nal force vector f, of element e:

SWinte = /Q S: 6E dQ, = Sul f,(ue). (2.27)
0,e

The internal force vector f, is a nonlinear function of the elemental displacements .
For the computations of M, and f,, the evaluation of the integrals is commonly per-
formed with a quadrature rule. Thereby, the continuous integral is substituted by a
weighted sum of m discrete values of the integrand at distinct integration points or Gauss
points &; with corresponding weights w;. Exemplarily, the quadrature of the integrand i(¢)
for a one-dimensional integral in the domain of §; € [—1, 1] is written as:

1 m
[ i(6) de = Y wii(e = &), (228)
- i=1

The proper choice of geometric primitive, shape functions and Gauss points leads
to well-known element types. In the field of Element Technology, many combinations of
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these three ingredients have been tried and studied to build elements showing good ap-
proximation properties while keeping the computational costs low. For further informa-
tion, the interested reader is referred to the literature in this topic, e.g., Belytschko et al.
[BLMOO], Zienkiewicz and Taylor [ZT13] and for more fundamental studies Strang and
Fix [SF73] and Zienkiwicz et al. [ZTZ13]. The formulation to derive and evaluate the
field variables in (2.25) and (2.27) is given in the Appendix Section A.2.

2.3.2 Assembly

The virtual work W of the whole domain () is composed of the contributions of ev-
ery element e forming the domain. To compute a solution on the full domain, a global
displacement vector # € RN containing all nodal displacements is used. The nodal dis-
placements u, € R of an element e are then expressed by the global displacement
vector u using the mapping provided by the Boolean localization matrix L, € R3"*N:

U, = Leu. (2.29)

The virtual work dWy;,, of the inertia forces of the whole domain () is then expressed
as the sum of the virtual work of the inertia forces of all finite elements in the element
set £. With du. = L.0u one obtains:

Wiin = Y_ 6Wiine = y_ 6u' LIM.Leii, (2.30)

ec& ecé

leading to the assembled mass matrix M:

M=) LM.L. (2.31)

ec&

Similarly, the internal virtual work éW;,; is assembled by the sum of all elemental
contributions:

Wit = Z (swint,e = Z (SuTLgfg(Leu)/ (2.32)

ec& ec&

leading to the assembled nonlinear internal force vector f:

f=Y L f(Lu). (2.33)

ecf

Also the tangential stiffness matrix K. = df,/du, of element e is assembled in the
same way as the mass matrix:

K=Y LI K.(Leu) L. (2.34)
ecf

The assembly is written here as products of sparse Boolean matrices with the ele-
mental quantities. In efficient implementations, the assembly is performed using index-
operations addressing the dofs in the global vectors and matrices.

2.3.3 Equations of Motion
The virtual work expressed in (2.18) yields with the finite element discretization above

OW = dul (Mii + f(u) — g) =0, (2.35)

with the external generalized forces g stemming from the external forces b in the do-
main () and the traction forces t onto the boundary 9()y. Since the variations du are
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arbitrary, the term in brackets has to be equal to zero leading to the semi-discretized
equations of motion

Mii+ f(u) = g. (2.36)

With the finite element procedure, the spatial domain is discretized using the shape
functions of the elements while the time domain is still in its continuous form. The
equations of motion are nonlinear since the internal forces responsible for the elastic
restoration of the initial position are nonlinear, whereas the inertia forces Mii are lin-
ear with respect to the accelerations. In the typical setup, the external forces g are time-
dependent and sometimes also displacement-dependent, especially if follower-forces are
considered.

If the displacements are small, the nonlinear forces f can be considered linear. They
are then replaced by the linearized internal forces given as the product of the displace-
ments u with the linear stiffness matrix K, which is the Jacobian of the internal forces
with respect to the displacements u evaluated at u = 0:

K(u) = of k=% (2.37)

- ou’ S ou|,_y

The linear stiffness matrix K is equivalent to the tangential stiffness matrix K (u) eval-
uated at u = 0. To clarify the notation, K denotes the linear stiffness matrix which is equal
to the tangential stiffness matrix evaluated at # = 0. If the tangential stiffness matrix K(u)
as a function of the displacements is addressed, the dependence on the displacements is
explicitly given.

The linearized equations of motion are then written as

Mii+Ku =g, (2.38)

which is a second order linear ordinary differential equation (ODE). The homogeneous
solution of this equation is an eternal oscillation, since no viscous forces are considered
in the system. To approximate the physical behavior of structures which exhibit com-
monly decaying oscillations, viscous damping is often added to the finite element model
expressed by the damping matrix C leading to the damped linear equations of motion:

Mii+ Cit + Ku = g. (2.39)

The damping matrix C is often defined as a weighted sum of the mass and stiffness
matrix known as Rayleigh damping with the weighting factors « and f:

C =aM + BK. (2.40)

This purely phenomenological damping approximation is also often used in nonlin-
ear finite elements leading to the damped nonlinear equations of motion

Mii+ Ci+ f(u) = g. (2.41)

By now all equations above are semi-discrete equations of motion forming ODEs,
which stem from the PDE cast in the variational form (2.18). To solve the ODEs for a given
set of initial values, an appropriate time discretization technique is necessary, which is
addressed next.
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2.4 Time Integration

The semi-discretized equations of motion (2.41) or the counterpart without damping
(2.36) are ODEs, where only the spatial domain is discretized according to the finite
element methodology. For solving the equations of motion for given initial displace-
ments uy = u(t = 0) and velocities v9 = #(t = 0), suitable time integration schemes
are necessary. They transform the ODE to sets of algebraic equations, for which the solu-
tions are computed using appropriate algorithms. Thereby, the continuous time interval
t € [to, tena] is discretized leading to a set of discrete time steps 7 = {to,t1, ..., tena}, at
which the solution u is sought for.

For the solution of ODEs, many time integration methods have been developed. In
the realm of finite elements, second order one-step integration methods based on the
Newmark scheme have turned out to be most suited, since they exploit the second order
structure of the ODEs (2.41).

The basic second order one step scheme was proposed by Newmark [New59]. Sev-
eral enhancements of the method were proposed, of which the HHT-a scheme by Hilber
et al. [HHT77] and the generalized-a scheme by Chung and Hulbert [CH93] are the most
popular. The advantage of these schemes is the ability to control the numerical dissipa-
tion, which is a crucial property for the use in the finite element context. Finite element
models suffer from high eigenfrequencies which are artifacts from the spatial discretiza-
tion. Time integration schemes like the HHT-a and the generalized-a scheme allow for
the numerical damping of these spurious high frequency content while low frequency
motions are barely affected with numerical damping. In both schemes mentioned, the
damping of the high frequency content can be adjusted by a single parameter making the
schemes very handy.

In the second order time step schemes, two main approximations are performed. The
first is the approximation of the nodal displacements and velocities of the j + 1-th time
step in terms of all quantities of the preceding j-th time step and the unknown accelera-
tions at the j 4 1-th time step:

Wi = uj+ (1-— ’)/)I’lilj + vhiijiq, (2.42)
1
Ui =uj+ hil]' + <2 - ,B) hzil]' + ‘thilj+1. (2.43)

The value h is the time step size. The parameters y € [0,1] and B € [0, 3] are respon-
sible for the weighting of the previous and the current time step for the approximation
of the displacements and the velocities and determine the stability and accuracy of the
time integration scheme. For v = B = 0, the time discretization is completely explicit, so
that the displacements and velocities can be determined directly from all quantities of the
previous time step. The time integration with this choice of  and B, though, is always
unstable [GR14, pp. 530 ff].

The equations (2.42) and (2.43) have three unknowns: The displacements, the veloc-
ities and the accelerations of the j + 1-th time step. Hence, they can be rearranged to
express the velocities and the accelerations of the j 4 1-th time step in terms of the un-
known displacements u; 1:

il]'_H = ’[Zh(u]'_._l — u]) — i [B 'Bu] — v 2[32'81’111], (244)
, 1 1. 1-2B
u]‘+1 = W(ujJrl — u]‘) — @uj — ZIB uj.

(2.45)

The second approximation consists in the time point at which the equilibrium of the
equations of motion (2.41) is enforced. In the Newmark scheme, this time point is chosen
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to be the j + 1-th time step. The generalized-a method shifts this time points with the
two alpha-parameters a and a;, between the j-th time step for ay = ay, = 0 to the j + 1-
th time step for « F=ap =1 The displacements, velocities, accelerations and external
forces are thus evaluated at the shifted time step:

Ujil-a, = (1 —ap)uj1 +agu;, (2.46)
Uj1-ap = (1 —ap)itjg +agi, (2.47)
i1 0y = (1= )il 11 + @i, (2.48)
81 a; = (1—af)giq +arg; (2.49)

and then inserted into the semi-discretized equations of motion (2.41) yielding
Mil]'jq,am + Cil]url,af + f(ujﬂ,af) = gj+1*06f . (2.50)

The time integration methods mentioned above differ in the choice of the shift pa-
rameters a,, af and the choice of the parameters B and -y for the time discretization.

The generalized-a method expresses the set of parameters in terms of the spectral
radius po as:

200 — 1 N 1
=L . Y=g amtay, p=

_ B 2
= i1 ’lf_poo—i—l' 5 (1 —am+ap)”  (251)

=1 =

X

The spectral radius p. is the adjustment parameter for the numerical dissipation. For
P = 1 the numerical damping is zero and can be increased by setting p., smaller than 1.

The other time integration schemes can be expressed with the framework introduced
above. The classical Newmark scheme, for instance, is given for ay = a,, = 0. The HHT-
o scheme is given for a;; = 0 and &y = & € [0,0.3] where the damping is adjusted with «
instead of peo.

For a given parametrization of the time integration scheme, the solution process in-
volves the solution of the algebraic balance equation (2.50), which is nonlinear if f is a
nonlinear function. The solution process of the equation is performed iteratively with a
Newton-Raphson solver, where the residual of equation (2.50) is the function for the root
searching algorithm:

r(ujr1) = Mitj g, + Citjy1-a, + f(ujﬂ,,xf) —8jt1a - (2.52)

In the Newton-Raphson loop searching for r(u;;1) = 0, the residual is linearized
around the displacements u;. 41 of the current iteration step i and a correction Au;- 4118
computed. Then the correction is added to the current step yielding the subsequent i + 1-
th iteration step. This procedure is repeated until convergence is gained. Commonly, the
convergence is achieved, when the L2-norm of the residual is below a certain, carefully
chosen tolerance.

The linearization of the residual equation (2.52) yields the linear system with the Ja-
cobian matrix Ky, of the residual:

or(ujy1)

ou; ;
1 Ujp1 =W

Au§+l = —r(u§+l). (2.53)

Kfiyn,jJrl
The update routine is written as

@
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yielding the displacements for the subsequent iteration step. If the underlying equations
of motion are nonlinear, the iteration matrix Ky,,, changes with every iteration step. This
is due to the fact, that K, involves the Jacobian of the nonlinear forces which is also
known as the tangential stiffness matrix K(u) (cf. (2.37)):

. _ 1— .
o)) :<15h‘§mM+( ﬁzf>7c+(1—af)1<(u;“af>>.

Kziyn,j—s—l =
(2.55)

In the Newton-Raphson procedure above, the linear system of equations has to be
solved in every iteration step. Since the dimension of the system is associated with the
dofs of the finite element discretization, fine and accurate meshes involve computer in-
tensive solutions. One approach to circumvent the expensive solution is the use of ex-
plicit integration schemes. However, since the finite element system has very high fre-
quencies due to the spatial discretization, explicit integration schemes require extremely
small time steps, which are only efficient for scenarios, where shock wave propagations
are the relevant dynamics in the system (cf. [GR14]).

In other applications, where the overall global motion of the system is dominat-
ing, implicit time integration methods are indispensable. Thereby, the Newton-Raphson
method can be substituted by secant methods, quasi-Newton methods or other variants
of it. However, the appeal of the Newton method is the quadratic convergence in the
vicinity of the solution, which is not gained with other methods.

When static systems instead of dynamical systems are addressed, the same proce-
dure as described above is applied. In the nonlinear balance equation defining the resid-
ual (2.52), the inertia and damping terms drop out and the residual is composed of the
balance of internal forces f and external forces g. For the solution of these type of sys-
tems, the external force is usually stepwise increased using pseudo time steps or more
advanced techniques like arc-length continuation methods are used. Since the thesis is
mainly about the reduction of dynamical systems and the specific solution technique is
secondary, the interested reader is referred to literature on this topic, e.g., Bathe [Bat06],
Wriggers [Wri08] and Kim and Sankar [KS09].

In dynamical systems, the iteration matrix is a weighted sum of M, C and K. Since
these matrices are not fully populated, they are treated as sparse matrices where only
the non-zero entries are stored. They are commonly identified in a pre-allocation step, in
which an empty matrix with the sparsity pattern of the problem is built. The assembly
routine described in Subsection 2.3.2 uses this matrix for efficiently adding the elemental
contributions without allocating new memory by changing the sparsity pattern of the
system. Figure 2.2, left, shows exemplarily the sparsity pattern of the cantilever given in
the next section.

For efficient computations, not only the assembly is relevant but also the solution of
the sparse system. The strategies are basically divided in two classes: direct and indirect
solvers. The direct solvers use elimination to solve the linear system. Thereby, the spar-
sity of the system is heavily exploited yielding huge advantages over classical solution
techniques of dense systems. The computational cost is usually determined not only by
the dimension of the matrix, but also by its band width, which is also shown exemplarily
in Figure 2.2, right. The indirect solvers seek a solution in an iterative and approximate
manner. They are the method of choice for very large systems, where direct methods
are not feasible any more. They need very problem-specific preconditioning techniques
which go far beyond the topic of this thesis. The interested reader is hence referred to the
literature in that field, e.g., Quarteroni et al. [QSS10] or Golub and van Loan [GV12].

In all examples in this thesis, direct solvers are used. They show excellent accuracy
and good speed for the problems addressed in the thesis. The solver package used in the
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AMEE code is the PARDISO package [Sch+10] which has excellent execution speeds and
proved to be very efficient for PDE based nonlinear solutions (cf. eg. [Sch+01]).

2.5 Applications: Large Deformations and Geometric Nonlinear-
ity

To illustrate the effect of geometric nonlinearity, the nonlinear finite element methodol-
ogy outlined above is applied to two beam examples. In Figure 2.3, the discretization,
the loading and the observed nodes of the two examples are depicted, the cantilever
(Figure 2.3 top) and the clamped-clamped beam (Figure 2.3 bottom). Both are modeled
with a St. Venant-Kirchhoff material and discretized with triangular Tri6 elements with
quadratic shape functions. The external forces are applied in 20 equally spaced load steps
using a forcing factor from 0.05 to 1 representing the scaling of the external load.

Figure 2.4 depicts both the linearized and the nonlinear static solution of both beams.
Obviously, the linearized solution depicted with the green colored mesh differs clearly
from the blue colored mesh depicting the geometrically nonlinear solution. Basically,
two effects can be observed. First, the displacements in the linear setup are larger than in
the nonlinear setup. This is also illustrated in Figure 2.5, where the displacements of the
observation nodes are drawn over the forcing factor for both the linearized and nonlinear
solution. In both the cantilever and the fixed-fixed setup, the displacements of the linear
system are proportional to the external forces. In the geometrically nonlinear setup, the
displacements are not proportional to the loading for larger forces, but a stiffening effect
is visible producing smaller displacements.

Second, the rotations involved in the larger displacements produce a growth of the
elements in the linear case. This leads to unphysical behavior of the mesh with a blow up
of the volume. Whilst large translational displacements do not produce nonlinear behav-
ior a priori, large rotations are doomed to fail in a linearized description, as illustrated in
Figure 2.6.

Geometric nonlinear systems can exhibit many more effects including geometric in-
stabilities caused by buckling or snap-through behavior, dynamic instabilities in rota-
tions and many more. Since a detailed study of all effects goes far beyond the topic of
this thesis, the nonlinear examples are all in the domain of large deformations, as they
are common for geometrically nonlinear structural dynamics.
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Figure 2.3: Discretization, loading and observed nodes of the cantilever (top) and the clamped-
clamped beam (bottom).
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Figure 2.4: Linearized (green) and geometrically nonlinear (blue) static displacements of the
cantilever (left) and the clamped-clamped beam (right).
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metrically nonlinear cantilever (left) and clamped-clamped beam (right).
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Figure 2.6: Comparison of rotation of a single square element about 45° and the linearized
version of the rotation. The linearization of the rotation increases the area of the element in a
non-physical manner.
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Chapter 3

Model Order Reduction using Subspace Pro-
jection

Projective model order reduction is the key concept in reducing the number of dofs of
a dynamical system from a large number N to a small number n. Since the projection
can be interpreted as a Ritz or Galerkin method, it shares the same underlying theory
as the discretization of the finite element method, which has been discussed in the pre-
vious chapter. In contrary to the finite element method, where a continuous problem of
dimension infinity is reduced to a discrete problem of dimension N, the projective model
order reduction repeats the procedure to reduce N further to the reduced dimension 7. It
is, however, not limited to finite element systems but can be applied to various systems.
In this context, though, it is derived and discussed for nonlinear finite element systems
which have been introduced in Chapter 2.

3.1 Fundamentals of Projective Model Order Reduction

The point of departure are the semi-discretized equations of motion, which might stem
from a finite element system (cf. (2.41)):

Mii+ Ci+ f(u) = g. (3.1)

The matrix M € RM*¥ is the constant mass matrix, C € RN*¥ is the damping matrix
and f € RY denotes the nonlinear restoring forces. The vector g € RN represents the
external forces and u € RY is the vector of generalized displacements. If the equation
above stems from the finite element discretization, the generalized displacement vector u
represents the nodal displacements. The dimension N of the equations of motion rep-
resents directly the resolution of the finite element mesh, i.e., a coarse mesh results in a
smaller dimension of (3.1) compared to a finer mesh and vice versa.

The number of unknowns N is typically very high for industrial finite element mod-
els, since complicated geometries require fine meshes. The dimension of the dynamic
problem, though, is often much smaller than N, i.e., the resulting displacements u of the
mechanical problem are bound to a small subspace forming the set of all possible config-
urations. This fact is exploited by projective model order reduction.

If the subspace is known, in which the solution u of (3.1) is assumed to live, it can
be spanned by a set of n basis vectors. These basis vectors can be arranged in a ma-
trix V. € RN*" and the physical displacement vector u can then be approximated by a
linear combination of these basis vectors. When the amplitudes of the basis vectors are
stored in g € R", the physical displacements u can be expressed in terms of the basis V
and the new generalized coordinates gathered in g as:

u=1Vgq. (3.2)

23
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This approximation is the key concept in projective model order reduction. The matrix
V is referred to as reduced basis spanning the subspace onto which the problem is pro-
jected. If (3.2) is inserted in the equations of motion, a residual r € RN occurs, since the
N equations cannot be satisfied in general by the n unknowns in g:

MV +CVa+f(Vq) =g +r. (3.3)

This residual has to be treated in order to make the equation above uniquely deter-
mined. The common concept to handle the residual r is to keep it orthogonal to the
column space of V, which describes the space of all possible motions of u in (3.2). Hence,
with the condition

Vir=o, (3.4)

the residual can be projected out of (3.3) by premultiplying with V7, leading to the re-
duced equations of motion of dimension # instead of N in (3.1):

VIMVig+Vicvg+VIif(vg) =Vig. 3.5)
A i v q ;‘(()q) g (
r r rq gi’

The matrix M, € R"*" is the reduced mass matrix, C, € R"*" the reduced damping
matrix, f, € R" the reduced internal force vector and g, € R" the reduced external force
vector.

Similarly, the reduced equations of motion can also be retrieved by the principle of
virtual work, since the kinematically admissible displacements du are defined with (3.2)
to

ou = Vigq. (3.6)
The reduced equations of motion are then equivalent to the derivation above

W =38q"VI(MV§+CVg+ f(Vq) —g) =0, (3.7)
VIMVi+VIcvg+VIif(vg) =VTg (3.8)

The condition (3.4) for the residual is hence equivalent to the application of the princi-
ple of virtual work. This principle, which holds for all mechanical systems, results in the
orthogonal projection of the residual onto the column space of V (cf. (3.4)). For ODEs in
a domain, where the principle of virtual work does not hold like, e.g., heat transfer prob-
lems, the space for the left sided projection can be chosen differently to the approximation
space of the primal variable u. Then, (3.3) is premultiplied by a matrix W different from
V leading to the Petrov-Galerkin approach. The symmetric projection of the matrices M
and C is referred to as Galerkin or Bubnov-Galerkin approach, which is in accordance
with the principle of virtual work.

The reduction of the semi-discretized equations of motion with the reduced basis V
is conceptually the same step as the finite element discretization in Subsection 2.3.1. In
the latter, the continuous problem (2.18) living in the infinite function space is projected
onto the function space spanned by the shape functions (2.19). This projection is inher-
ently performed by the principle of virtual work, which leads to the symmetric Bubnov-
Galerkin projection of the linear and nonlinear operators in (2.18). Due to this symmetric
projection, in which function space and trial space are equal, the resulting matrices M
and K are symmetric. They can be interpreted as the discrete representation of linear
operators defined in the function space spanned by the shape functions. The same holds
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also for the reduced matrices M, and K;, where the function space is not spanned by lo-
cal shape functions defined on the element level but global function spaces of piecewise
polynomials.

When the reduction of the semi-discrete equations of motion is performed according
to (3.5) or (3.7), the number of dofs is reduced from N to n. If n is much smaller than
N, the computational costs for the time integration as explained in Section 2.4 or other
analysis processes reduce drastically. This is usually the case, since the factorization of
a matrix of dimension 7 is much cheaper if n < N, even though the high dimensional
matrices are sparse. Since the reduced matrices are generally very small, they do not
need to be sparse, though they could be made sparse by a special choice of V.

Besides the reduced order, the reduced system does not represent the original system
accurately. Since the displacements, the velocities and the accelerations are forced to live
in the space spanned by V, the reduced system contains additional constraints. They
limit the motion of the system, as they reduce the number of dofs. Consequently the
reduced system is equivalent to the original system of dimension N with the constraints
(3.4) enforced.

3.2 Problem Statement

The key question in projective model order reduction is to find a set of basis vectors form-
ing the reduced basis V. Thereby, the reduced basis V should span the subspace, in which
the high dimensional displacements u evolve. Since the reduced system is constrained
to the subspace spanned by the reduced basis, the proper choice of V is elementary to
obtain a reduced system, which is a good approximation of the full, unreduced system.

In the construction of the reduced basis, the specific parametrization of V is arbitrary.
It can be built by combining various displacement vectors into the matrix V. Solely for
numerical reasons, it is beneficial for V having a low condition number. A poorly con-
ditioned V can be orthogonalized with orthogonalization schemes like Gram-Schmidt or
Householder procedures, so that the numerical procedures are stable. The results of the
reconstructed # = V¢q, however, only depend on the spanned subspace and not on the
column vectorsin V.

3.3 Measurement of Reduction Error

The ability of a reduced system to represent the full system is a key requirement in model
order reduction. Hence, the accuracy of a reduction method is measured by comparing
the displacement field obtained from the reduced system with the displacement field of
the full, unreduced model, which serves as a reference. To quantify this approximation
accuracy, the relative error measure RE is used:

_ Vier Mu®)TAut) . B B
= \/ZteTuref(t)Turef(t) 100% - with Au(t) - u(t) uref(t)' (3.9)

The vector u.s represents the displacement field of the full, unreduced system and
u = Vgq the restored displacements of the reduced system. The time step set 7 =
{to,t1,...,tenq} contains the time steps of the time integration.

The RE as a global error measure considers the error in the full time interval of the
time steps in 7. Since errors in a time integration are cumulated, the error measures
of different time spans are different even when the systems are equal but are run for
different time frames. Consequently, the RE error is only a valid comparative measure
for different reduction methods, when the time frame is kept equal.







Chapter 4

Model Order Reduction in Linear Structural
Dynamics

The finite element method was developed for linear elastic systems first and was sub-
sequently extended to nonlinear continuum mechanics. As the computational resources
were more limited in the early days of the development of the finite element method, re-
duction and substructuring methods were simultaneously invented in the field of struc-
tural dynamics. In the 1960s and 1970s, the most prominent linear substructuring tech-
niques were developed which are still state of the art like the Guyan Reduction method
[Guy65], the Craig-Bampton method [CB68], or later on the methods by MacNeal [Mac71]
or Rubin [Rub75].

Model order reduction did not only grow popular in structural dynamics. Also in
the field of systems theory and control, the demand for fast and compact linear mod-
els drove the development of linear reduction techniques. Since the linear equations of
motion can be investigated with the methods known from both structural dynamics and
systems theory, many methods were developed independently. Furthermore, these two
branches still face independent developments and improvements, and were linked, if so,
not from the early days on. Since the task of discussing linear reduction methods either
in linear structural dynamics or systems theory goes far beyond the scope of the thesis,
only a short introduction to the common concepts is given. Exhaustive overviews for
the system theoretics based methods can be found in the textbook of Antoulas [Ant09]
and the references therein. Model order reduction in the realm of structural dynamics
is discussed broadly in the textbook of Craig and Kurdilla [Cra81] and of Géradin and
Rixen [GR14].

4.1 Key Idea: Subspace Projection of Linear Operators

In linear structural dynamics systems, the internal forces are linearized around a point of
equilibrium. If the zero-displacements are chosen such, that the selected point of equilib-
rium is at # = 0, the governing equation is given as

Mii+Ci+Ku=g 4.1)

with the mass matrix M, the damping matrix C, the stiffness matrix K being the Jacobian
of the internal forces of /du|,—o and the external force vector g. Since all operators are
linear, the reduced system is obtained as

T . T . T _yvT
VMVj+V CVq—I—K\I’(_Zq—Vg 4.2)
M, C K, 2,
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with the reduced mass, damping and stiffness matrices M,, C, and K,, which can be
precomputed. These reduced matrices characterize the reduced system and can be inter-
preted as the projection of the linear operators onto the subspace spanned by V.

Since the linear mechanical system is entirely characterized by the mass, damping and
stiffness matrix, system theoretic properties and also rather intuitive physical insights
form the basis for the reduction methods. They are discussed in the following.

4.2 Modal Truncation

The oldest model order reduction technique is the modal truncation. It relies on the
principle, that the dynamical system is approximated by a superposition of modal dis-
placements. This idea goes back at least to Lord Rayleigh [Lor94], where the vibration
modes were computed in an analytical fashion for simple structures like bars, beams and
plates even before the finite element method was developed.

The basic idea is the analysis of the free motion of the undamped homogeneous sys-
tem:

Mii+Ku=0 (4.3)
which can be analytically solved with the ansatz
u(t) = ¢, cos(wit + a). (4.4)

Inserting this ansatz into (4.3) and cancelling out the time dependent part cos(w;t +
), one obtains the generalized eigenvalue problem

wiM¢p; = K¢, (4.5)

where the solutions w; are the undamped eigenfrequencies and ¢, are the corresponding
eigenvectors of the system characterized in (4.3).

The eigenvectors ¢;, which are also denoted as vibration modes, eigenmodes or mode
shapes, are the spatial solutions of the homogeneous undamped system (4.3), which os-
cillate with the associated frequency w; according to the ansatz (4.4).

The solutions of the eigenvalue problem (4.5) are not unique, since the norm of the
eigenvector ¢, is not determined. Consequently, an additional condition can be applied
to define the norm of ¢;. Most commonly, a mass normalization is employed which fixes
the length of the eigenvector ¢; to one in the M-norm:

¢/ M@, = 1. (4.6)

The vibration modes ¢; share a further property. They are mass and stiffness orthog-
onal, i.e., in both the M and K-norm, the modes are orthogonal to each other. For a
derivation of this property, the interested reader is referred to Ewins [Ewi84]. If all eigen-
modes are gathered in the matrix ® = [¢,, ..., ¢ ], the mass and stiffness matrix are di-
agonalized by the transformation given by ®. While the transformed mass matrix yields
identity, the stiffness matrix results in the squared diagonal matrix Q = diag(wy, ..., wN)
which contains the undamped eigenfrequencies w; of the system:

w? 0
S'M® =1, & Kd=0?= . (4.7)
0 Wi,
Model order reduction using modal truncation is realized by composing the basis V
of a selected set of vibration modes ¢;. When the damped system (4.1) is considered, the
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system can only be decoupled if the damping matrix C is diagonalized by the projection
onto the modal coordinates. When Rayleigh damping is applied (cf. Subsection 2.3.3), C
is diagonalized since M and K are diagonalized as above. Using the full modal basis ®
as reduction basis V, the system (4.1) decouples into

1 C1wr 1 wi 7 ¢!
N N I =

2

: &
GgN nwNn /) \4N wy/ \9n Px

(4.8)

leading to a system of N decoupled equations with the modal amplitudes g; gathered
ing = (q1,...,9n) and the damping ratio ;. The excitation of mode i is given by the
projection of the external forces g onto the mode yielding ¢! g.

As (4.8) illustrates, the modal basis ® decouples the equations of motion (4.1) into
N independent ODEs. In modal truncation, the full basis ® is truncated, so that V is
only composed of a selection of vibration modes ¢,. Since the equations of motion are
decoupled in the modal space, the truncation of a mode does not influence the result of
another mode, which is left in the basis V.

Basically two criteria exist for the selection of the modes ¢; as members for the ba-
sis V. The first criterion is based on the eigenfrequency w; associated with the eigen-
mode ¢;. According to Géradin and Rixen [GR14], as a rule of thumb, the modes with
eigenfrequencies up to twice as high as the frequency range of interest are recommended
to be taken into the basis. Hence, when the n-th eigenfrequency w; is about two times
the maximum frequency of interest, the reduced basis of size 7 is constructed as:

V=(¢r - ¢,) (4.9)

The second criterion is based on the excitation of one modal dof. Since the excitation
of the i-th mode is given by ¢!g, different variants of the so-called modal dominance
criterion can be applied. In this criterion, the modes where the term ¢/ g is high and
which are thus strongly excited are chosen for the basis V, whereas the modes with small
excitation are left out. In practical applications, usually both concepts are combined to
obtain a good approximation while keeping the size 1 of the reduced basis small.

The modal truncation approach has multiple advantages. Since the vibration modes
are associated with an eigenfrequency, they are a good choice for harmonic excitations.
Furthermore, modal reduction is commonly used when experimental data of the struc-
ture area available. Then, the modal decoupling allows for assigning modal damping
ratios obtained from the measurements to every mode. One further advantage of modal
reduction is, that the system is decoupled when transformed into modal space, as illus-
trated in (4.8). Due to the decoupling, the truncation of modes as performed in the modal
reduction does not affect the motion of the retained modes. That means, that the reduc-
tion error is limited to the space of the truncated modes in the metric of the M-norm. As
a consequence, the displacements of a modal reduced system are equal to the displace-
ments of a full, unreduced system, when observed in the modal space spanned by V in
the M-norm.

The drawbacks are the computational costs associated with the computation of the
eigenmodes. For large systems, this is a computer intensive task, for which several meth-
ods have been developed for the efficient computation of eigenmodes in a certain fre-
quency range. Most prominently, power iteration methods are used in combination with
Lanczos iterations. However, other methods have been developed like the Jacobsen or
the FEAST algorithm proposed by Bai et al. [Bai+00] and Polizzi [Pol09], which has not
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been used in the realm of structural dynamics yet. For established strategies for the com-
putation of large eigenvalue problems, the reader is referred to the textbooks of Craig
[CKO06], Géradin and Rixen [GR14] and Golub and van Loan [GV12].

4.3 Perturbation of Eigenmodes

When the linearized system (4.1) is a parametric system and the system matrices M and
K depend on a parameter p, the change of the vibration modes ¢; in dependence of p are
often of interest. This sensitivity is expressed by the so-called modal derivative d¢;/dp
yielding the perturbation of mode ¢; with respect to the parameter p. In the follow-
ing, the modal derivatives are derived based on the concept of Nelson [Nel76], which is
transformed to second order systems here. For the sake of completeness it is mentioned
that further techniques exist like, e.g., Seyranian [Sey93], Akgun [Akg94] and Zhangping
and JinWu [Z]J07]. The interested reader is referred to the extensive overview papers of
Tortorelli and Michaleris [TM94] and Van Keulen et al. [VHKO5] in that field.

With M = M(p) and K = K(p), the eigenvalue problem (4.5) becomes dependent on
the parameter p. The derivation of the eigenvalue problem with respect to this parameter
leads to

0
ap (—wiM(p) +K(p)) ¢; =0 (4.10)
dw? ,0M | 9K ) 99,
<— apM_wiap"”ap)¢i+(_wz‘M+K) 3p =0 (4.11)

with the modal derivative d¢;/dp of mode ¢; with respect to the parameter p. To keep the
notation uncluttered, the dependence of M and K on p is not given explicitly. The deriva-
tives 0OM /dp and 0K /dp are determined by the parametric mechanical system. They can
be computed via an analytic scheme, where the dependence of p is explicitly accounted
for or an implicit finite difference scheme. However, the derivative of the squared i-th
eigenfrequency cannot be obtained directly. To obtain dw?/9p from the equation above,
(4.11) is premultiplied by ¢!. With the definition of the eigenvalue problem in its trans-
posed form ¢! (w?M + K) = 0" and ¢! M¢p; = 1, one obtains the desired

ow? oM 0K
= (55 -

With dw?/9dp given in the equation above, the modal derivative can be determined
by solving the rearranged (4.11) with the right hand side rhs:

09, ow? oM 0K

~wIM +K 1=( 1M+w?—> - 413

( ) ap ap dp  Ip Pi ®.13)
rhs

The right hand side rhs is known, since 0M/dp and 0K/dp are given by the me-
chanical system and dw?/dp is computed according to (4.12). The coefficient matrix
(—w?M + K) is singular, though. This means, that the solution of the equation above
is not determined in the direction of the null space, which is formed by the vibration
mode ¢;. Consequently, an additional constraint is necessary for determining the com-
ponent of the modal derivative in the null space of the coefficient matrix. Requiring, that
the norm of the vibration mode (4.6) remains unchanged is one of the manners to impose
such a condition. With differentiating (4.6) with respect to p, one obtains:

55 (o7M9,) =0, (14
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ap,\" TOM TAr 0P
<8p> Me¢; + ¢; g‘l’i + ¢; M@ =0, (4.15)

and with the symmetry of M, the condition for the modal derivative d¢,/dp is:

¢\ " 1 ;oM
< 3p > Me; = —5&, @4’:’- (4.16)

The condition above gives an additional constraint to the modal derivative. To solve
the singular system (4.13), one dof affecting the null space of the coefficient matrix is fixed
in order to make the coefficient matrix invertible. The system is partitioned such, that the
index 2 denotes the index of the fixed dof:

—CL)iZMll +Kiy; O —(UZ-ZM13 + Kj3 01 rhsy
0 1 0 nl|l=10 1. (4.17)

—a)iZM31 + K3 0 —a)Z-ZM33 + K33 03 rhs;
The system is non-singular, if the pivot index v, is chosen well. Since the null space of

the coefficient matrix is ¢;, a good choice to affect the subspace is to pick the maximum
absolute value of the eigenvector ¢;. The solution of (4.13) is given with the particular

solution v = (vlT, 0, vg ) T of (4.17) and the null space solution which is ¢;:

9P,
dp

= v+, (4.18)

The amplitude of the null space solution is then determined with (4.16) yielding the
component c for the null space solution in the equation above:

1 ;OM

(v+ C‘Pi)TM‘/’i = _E‘Pi g‘l’ir (4.19)
1 oM
c= —§¢Z-T$¢ —v'M¢.. (4.20)

With the procedure described above, the derivatives of vibration modes can be de-
termined analytically. Other methods exist to incorporate the constraint (4.16) to the sin-
gular system (4.13). However, with the proposed approach, neither the sparsity nor the
symmetry of the coefficient matrix is spoiled, whereas several other approaches suffer
from these drawbacks. Note, that the procedure is only valid for two distinct eigenfre-
quencies w;. If multiple eigenfrequencies exist, they have to be accounted for as dis-
cussed, e.g., in Slaats et al. [SdS95].

The derivatives of the mass and stiffness matrices have to be computed within the
finite element program. This can either be done directly, so that the derivatives 0K/dp
and 0M /dp are computed on the element level and then assembled as described in Sub-
section 2.3.2 and discussed in Idelsohn and Cardona [IC85b]. Other approaches are the
computation via finite differences of the full assembled matrices. However, these pro-
cedures can lead to numerical errors, if one-sided difference schemes are used instead
of central differences with tuned step width. For speeding up finite difference schemes,
hybrid approaches as proposed by [VD98] or the refined version [DV00] can be used,
as they allow to obtain good accuracy with one-sided difference schemes by a special
treatment of the rigid body modes of every element. They require a modification of the
element routines, though.
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4.4 Krylov Subspace Reduction

The modal truncation method as described in Section 4.2 provides a good basis for var-
ious dynamic problems. It relies on the homogeneous equations of motion, where the
force excitation location is ignored. However, often many vibration modes have to be
taken into the basis to gain accurate results (cf. [CK06, p. 349]), since the external forces
are not accounted for in the method.

The Krylov subspace method, on the contrary, builds a basis with the knowledge of
the force input locations. In many cases the excitation forces act in a small subspace of
the physical vector space, since the external forces act only on few points or surfaces.
Then, the external force vector g can be expressed as a product of the constant location
matrix G € RN*? describing the subspace, in which the external excitation lives and the
time dependent amplitude ¢(¢) € R” representing the variation of the forces with respect
to time:

g =Gg. (4.21)

The key idea of the Krylov subspace method is to build the basis V from static dis-
placement fields and higher order approximations. The starting point are the linearized
equations of motion with neglected damping:

Mii + Ku = G3. (4.22)

Let v be the first approximation of the displacement field. If # = v, is inserted into
the equation above, one obtains

M7©, + Kvy = G3. (4.23)

As a first approximation of the solution, the acceleration forces are neglected and ¥,
is dropped from the equation leading to the first order approximation for v1:

v = K 'Gg. (4.24)

The time dependent amplitudes § are arbitrary. However, independently of g, v; lives
in the subspace spanned by K~ G leading to the first set of vectors U1y € RN¥P:

Uiy = K'G. (4.25)

Obviously the equation above states the solution of a static problem. Hence vy yry =
K1 G spans the subspace of all static solutions, which can be reached by Gg. Since v; is
only the first order approximation of the desired subspace, in which the displacements
u live, one can add a further vector v, to approximate the displacement field yielding
u = vy + vy. Inserting this equation into (4.22) results in

M (1 +92) + K(v1 +02) = G§ (4.26)

Once again, the acceleration ¥, of the unknown v, is dropped. Furthermore, Kv; on
the left hand side and Gg cancel out leading to the second order approximation vector v;:

vy = —K M. (4.27)

The acceleration ¥ is forced to live in the subspace of the displacements span(v).
Hence, the second order subspace approximation is

vZ,kry = Kﬁlel,kry = KﬁlMK?lG- (428)
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This procedure can be repeated m times leading to the raw Krylov basis spanning the
Krylov subspace:

Vieyraw = (K'G, K 'MK™'G,...,(K"'M)"1K'G). (4.29)

The linear independence of the raw Krylov basis is in general very poor. Hence,
an orthogonalization needs to be performed in every iteration step, so that v;,y is or-
thogonalized with respect to all previous Krylov vectors, which were recursively them-
selves orthogonalized with respect to their previous ones. This procedure is referred to
as Arnoldi or Lanczos iteration (cf. [Str07] or [GR14]). It produces the orthogonal and
well conditioned Krylov basis V., which spans exactly the subspace spanned by the
raw Krylov basis Viy raw-

In the derivation above, the static stiffness matrix K is used for the computation of
the Krylov subspace. The first Krylov vectors vy 1,y form the static solutions of arbitrary
inputs in the space spanned by G. Nevertheless, it is possible to run the Krylov iteration
not for a static solution but for a dynamic solution at a certain frequency wy,y. Then
the stiffness matrix changes to a dynamic stiffness matrix Ky, = —a)lzqu + K and the
first Krylov vectors vy iy 4y» form the dynamic solutions for arbitrary inputs in the space
spanned by G at frequency wi.y. The frequency-shifted Krylov subspace approximates
the responses in the neighborhood of the shift frequency wy,y more accurately than the
Krylov subspace with regular K, which can be regarded as a shifted Krylov subspace
around Wy, = 0.

With the shifted frequency Krylov subspace, the basis V can be tailored more specif-
ically to the problem, if the excitation frequency of the system is known. Furthermore, it
can be used for floating structures, since the shift eliminates the semi-definiteness of the
stiffness matrix stemming from the rigid body modes, as for instance in the use for space
structures in Ricles and Leger [RL93]. However, for non-floating problems exhibiting un-
known excitations or excitations in the low frequency range, the regular Krylov subspace
without frequency shift is commonly used.

When comparing the modal truncation method with the Krylov subspace method,
one difference is obvious. The modal truncation method relies solely on the system and
is independent of the excitation. The vibration modes describe the motion of the isolated
system and share thus solely system properties. The Krylov subspace method, on the
other hand, exploits the property of the input locations or, from the vector space point of
view, the excitation subspace. Hence, the subspace gathered in that manner knows of the
input locations and tailors the basis specially to these input locations.

Consequently both methods have their advantages and disadvantages. To combine
the advantages of both methods, several variants of mixing modal truncation and Krylov
subspace vectors were proposed like for example Dickens and Pool [DP92] or Rixen
[Rix01]. These methods are referred to as Modal Truncation Augmentation. The basic
idea is to combine the basis of modal truncation and a form of Krylov subspace resulting
in the basis Vj14:

VMTA - [4’1/ sy (Pq’ vkry,lz ceey vkry,r]- (430)

4.5 Component Mode Synthesis and Substructuring

The reduction strategies proposed above are designed to reduce a structural dynamical
system as a whole. Many applications and work flows though require the coupling of
dynamical subsystems. Similar to single finite elements, which are a discretized version
of a continuous dynamical system, it is often desirable to reduce a part of a mechanical
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system, which is commonly referred to as substructure, while allowing the coupling with
other substructures.

The most common approach to handle substructures is the primal assembly, which is
the conceptual continuation of the finite element method. A finite element has boundary
nodes which are coupled with the neighboring elements’ nodes in the assembly process.
With this process, the continuity of the displacements as well as the balance of forces
between the elements are implicitly accounted for.

A finite element can also exhibit internal nodes describing dofs, which do not require
a direct coupling with the neighboring elements. These dofs are commonly referred to
as bubble dofs since the displacement fields associated with these dofs have to be zero
at the boundary of the element but may have arbitrary shapes inside the element, which
however often exhibit a bubble-like shape.

The idea of substructuring and component mode synthesis is the application of this
principle to already discretized finite element substructures. Thereby the nodes are parti-
tioned in boundary nodes referred to with index b and internal nodes with index i. With
this partitioning, the undamped linear equations of motion can be recast to

Mbb Mbi ﬁb Kbb Kbi u,\ _ (8
<Mib Mii) (u1> + <Kib Kii> (ui> - (gl. (4.31)

with u;, being the boundary dofs and u; being the internal dofs of the finite element sys-
tem. In this partition, the boundary displacements u;, have to be preserved to enable the
coupling with the adjacent substructures, while the internal dofs can be reduced in order
to reduce the number of dofs.

4.5.1 Guyan Reduction

The substructuring technique which was proposed independently by Irons [Iro65] and
Guyan [Guy65] eliminates all internal dofs by forcing them to follow the external dofs
statically. When the inertia terms and the external forces acting on the internal dofs are
neglected, (4.31) yields

Kpy, Kpi) (wp) _ (8
(Kib Kii) (Mi) - <0b>' (4.32)

Since the dynamic effects of the internal dofs are neglected, they follow statically
the boundary dofs. The second line of (4.32) can then be solved for the internal static
displacements #u; in dependence of the boundary dofs u,

Kiu,+Kpu, =0 <+ u;= —K;lKibub (433)
and inserted then into the first line of (4.32)
(Kbb — KbiKglKib) u, = g, (4.34)

yielding the Schur complement of the internal dofs in the boundary dofs as additional
stiffness for the boundary dofs.

This reduction, in which the internal dofs follow the external dofs, is denoted as
Guyan reduction, Guyan-Irons reduction or static condensation. It can be achieved with the
following basis, if the dofs are partitioned in boundary dofs and internal dofs as in (4.31):

(v _ (1
Vguyan = (Vi> = (_KﬁlKib) (4.35)

As pointed out above, with this reduced basis the inertia effects of the internal dofs
are not considered with its own dynamics. However, the following extensions allow for
the consideration of the dynamics of the internal dofs.
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4.5.2 Craig-Bampton Reduction

In the Guyan reduction, the inertia effects of the internal dofs are only projected onto the
boundary dofs via the Schur complement, but no internal dynamics is considered. In
the substructuring technique proposed by Craig and Bampton [CB68], the static conden-
sation method is extended with so-called bubble modes accounting for the dynamics of
the internal dofs. These bubble modes are computed as the eigenvectors of the substruc-
ture, on which the boundary dofs are fixed. Since the fixation of dofs can be achieved by
deleting the dofs from the system, the internal eigenvalue problem is written as

wii jMiip; = Kiigp; (4.36)

with the mass matrix M;; and the stiffness matrix K;; of the internal dofs retrieved from
the partitioned system (4.31) and the eigenfrequencies wj; ; with the corresponding eigen-
vectors ¢, forming the bubble modes. The Craig-Bampton reduction basis is then given
as the reduced basis of the Guyan method (4.35) augmented with a selection of the bubble
modes ¢; forming the displacement fields for the internal dofs:

(V) 1 0 ... 0
VCB_<Vi>_<—K51Kib ¢ .- ¢m>' (#37)

The internal bubble modes ¢; are usually selected according to the corresponding
eigenfrequency. A common approach is that the bubble modes with eigenfrequencies
up to twice the eigenfrequencies which want to be approximated in the full system are
stacked into V5.

Besides the Guyan and the Craig-Bampton substructuring technique, various other
techniques proposed by and named after MacNeal[Mac71] or Rubin [Rub75] have been
developed to solve the problem of reducing substructures, in which the boundary dofs
are retained. The method proposed by Ocallahan et al. [OAR89] is specially pointed out,
since it allows to partition an arbitrary given basis V into boundary dofs and internal
dofs. For the sake of completeness it is mentioned that not only a primal coupling for sub-
structuring is possible, but also dual methods exist. In these methods, the displacement
continuity is not enforced implicitly with the assembly process, but explicitly with the
use of constraints enforced with Lagrange multipliers. Further information on the dual
substructuring methods can be retrieved in Rixen [Rix04] and Gruber et al. [GRR16]. For
substructuring itself, the reading of the extensive textbooks of Géradin and Rixen [GR14]
and Craig [Cra81] and of the references therein is recommended.

Since substructuring goes hand in hand with model order reduction, many develop-
ments in model order reduction were transferred to substructuring applications and vice
versa. In this thesis, the focus is the reduction of nonlinear uncoupled structures, which
are not coupled with other structures. Many concepts in nonlinear model order reduc-
tion and especially hyper-reduction can be applied with substructuring or transferred to
it. This task goes, however, beyond the scope of this thesis.

4.6 System Theoretic Approaches

Model order reduction is also broadly in use in the realm of control, since fast and accu-
rate models are necessary for real-time controllers. However, the common formulations
of dynamical systems and also the requirements of these systems differ to the ones in
structural dynamics. As a consequence, the concepts of model order reduction in systems
theory and structural dynamics differ. Nonetheless, many methods of the two fields have
their counterpart or at least a link to a method of the other field. Hence, one link is drawn
to the Krylov subspace method discussed in Section 4.4.
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4.6.1 Conceptual Differences

In control theory, dynamical systems are typically described and analyzed differently
than in structural dynamics. In the latter, the dynamics of the system is described using a
second order ordinary differential equation with symmetric and positive (semi) definite
mass, damping and stiffness matrices and the displacements as the primal variable (cf.
(4.1)). In control theory, the dynamical system is commonly described as a state-space
system, where both displacements and velocities form the unknown variables of the state
vector x:

;56 — Assx + Bssuss, (4.38)
Yss = CssX, (4.39)

which can be realized as

_(u N _ 0 I 2Nx2N
e <u> € R Ass = (—MlK —M1C> R
(4.40)

Bss = (M91G> eR?N*P,  u, =g ERP.

The subscript ss denotes state-space matrices and vectors. The system matrix Ags
describes the dynamics and can be constructed using the mass, damping and stiffness
matrix of the second order mechanical system. It is not symmetric and non positive
definite. The input locations are expressed with the input location matrix Bss and the
external excitation ug; is equal to the external forcing g.

The state-space description in the use of structural dynamics has the drawback that
the physical interpretation of a state-space vector is lost to a certain extent. While the
displacements u are associated to a displacement field, the state-space vector x describes
both a displacement field with a velocity field, which makes general interpretations dif-
ficult.

The reduction of a state-space system is performed with the expression of the state-
space vector x by a combination of basis vectors gathered in Vi € R?2NV*2" and the re-
duced state-space coordinates x, € R?>" with n < N:

x = Vgsxy. (4.41)

Similar to (3.3), the application of the transformation to the dynamics equations leads
to a residual 7:

Vssky = AssVissXy + Bsstss + tss. (4.42)

Again, as in (3.4), a constraint for the residual has to be found in order to make the
equations above determined. However, the physical units of the equations above are
not of one type like in second order systems, where the equations of motion are force
equations. With the realization (4.40), for instance, the units in (4.38) are both velocities
and accelerations. Since the constraints have to be applied to both units, the handling
of constraints is more complicated for first order state-space systems than for second
order systems. In the latter, the principle of virtual work requires the residual forces to
be orthogonal to the kinematically admissible displacements resulting in the symmetric
projection discussed in Section 3.2. In the former, the orthogonality is enforced with a
second matrix Wys, which is defined by the chosen first order reduction method:

Wlri =0. (4.43)
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With applying (4.43) to (4.42), the following reduced state-space system is obtained:

Xy = AssrXr + Bss 1t (4.44)

Yss = CosrXr (4.45)
with

Agsr = (WsTsVss)_lwsTsAssVss € RZ”XZH/ (4.46)

By, = (WLVs) 'WLB, € R*7, (4.47)

Css,r = CssVss € R™*21, (4.48)

Note, that in general Vi, and W are not equal. In the projective model order reduc-
tion for second order mechanical systems, the principle of virtual work requires the left
and right sided projection to be equal. When the principle of virtual work is not violated,
the mechanical system properties like stability, passivity and symmetry are preserved.
This makes second order reduction an easy task, since any non-singular basis V pre-
serves all properties associated with mechanical systems. In a reduction scheme for first
order systems, however, the preservation of the mechanical properties like stability or
passivity is not genuinely given and has to be investigated and proved for every method.

In control theory, commonly the input-output behavior of a system is of interest while
the approximation of the internal state variable x is not important. In structural dynam-
ics, on the contrary, the full displacement field is usually of interest, since very often
stress distributions are sought, e.g., for fatigue analyses where the critical location is not
known beforehand. Consequently, it is not the approximation of the input-output behav-
ior which matters most in structural dynamics, but the accurate reconstruction of the full
displacement field of the system.

Due to these differences, most projective reduction techniques from system theory
cannot be directly transferred to the realm of structural dynamics. However, several
links exist, for which the link between the moment matching technique and the Krylov
subspace technique introduced in Section 4.4 is drawn in the next subsection.

4.6.2 Moment Matching and Krylov Subspaces

As discussed above, the input-output behavior is the key property in the system theory
reduction methods. The transfer function H(s) describes the input-output behavior in
the Laplace domain. For the state-space system (4.38) it is defined as

~ Y(s)
T Ug(s)

H(s) = Cos(sI — Ags) ' Bs (4.49)
with the Laplace transform U (s) of the input vector ug(t) and the Laplace transform
Ys(s) of the output vector y(t).

The transfer function can be expanded as a power series around the point sy in the
Laplace domain (cf. [Ant09, p. 345]) yielding the so-called moments of the transfer func-
tion:

- 1) (50)E=50) |4 g g E=50)"
H(s) = H(so) + H'"(s0) =7 + -+ H" (s0)

=To+ T1(s —s0) + -+ Tp(s —s0)F + ... (4.51)

... (4.50)

The polynomial coefficients H(so) = To(so), HV (s9) = T1(s0), ..., H® /k! = T (s0)
are called zeroth, first or k-th Moment of the transfer function about the point so. They
can be derived as [Ant09, p. 345]:
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Ty = Css(s0I — Ags)~ ¥V B, (4.52)

The goal of model order reduction using moment matching is that the first k moments
of the reduced system about sy are equal to the first k moments about s of the full, unre-
duced system. Grimme [Gri97] showed that the first k moment are matched when the
left and right sided projection matrices Wss and Vs span the subspace of the following
Krylov subspace:

Vss,raw = ((SOI - Ass)_lBss/ ceey (SOI - Ass)_(k+1)Bss) (453)
Wosraw = ((sol — AL)71CL, ..., (soI — AL)~+1CL) (4.54)

The subspace spanned by V; is the so-called input Krylov subspace and the subspace
spanned by W is the so-called output Krylov subspace.

The concept of moment matching can also be applied to second order systems without
damping. When the full displacements u of the second order system are of interest, the
transfer function of the input vector § to the displacement field u is given as

H(s) = (M +K) ' G (4.55)
= ¥ [+ 3y M) (K -+ 5M) G5 - ) (4.56)
i=0

T;i(so)

with the force input location matrix G. The power series above yield the moments of the
second order system, which are matched (cf. [Bes+13]) when the second order projection
is performed with the following Krylov subspace:

V= ((K+M)7'G,..., [(K+53M)"'M]* (K + 3M)~'G) - (4.57)

Note, that this subspace is equal to the Krylov subspace stemming from the consid-
eration in Section 4.4, when sy = iwp. Hence, the Krylov subspace technique discussed
in Section 4.4 matches the first 2k moments of the transfer function of the undamped
mechanical system. In the presence of damping, second order methods to build an ap-
propriate Krylov subspace exist, e.g., Salimbahrami and Lohmann [SL06], Bai and Su
[BSO5] or Lehner and Eberhard [LE06].

For building the Krylov subspace, the expansion point sy can be chosen. In structural
dynamics, it is common to choose sy = 0 (cf. [Rix01], [GR14]), since the static approxi-
mation and the low frequency range is of great interest. When the input-output behavior
is addressed, however, the accuracy of the Krylov reduction basis can be increased by
a better choice of the expansion points sp. One popular strategy is the so-called IRKA
method proposed by Gugercin et al. [GABO08], which has been modified and improved
in various ways. The interested reader is referred to the work of Panzer [Pan14], Wolf
[Wol14], Beattie and Gugercin [BG16] and the references therein.

4.6.3 Further Approaches

Besides the Krylov subspace method, further system theory inspired methods have been
developed. The most prominent method is probably the Balanced Truncation method
tirst proposed by Mullis and Roberts [MR76] and then generalized by Moore [Moo81]
for general linear, time invariant systems, where the concept of controllability and ob-
servability is exploited to rank the state variables. The reduction basis is then built with
the states which are both well controllable and observable, and the remaining states are
truncated.
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This concept has been successfully applied to systems in control, elastic multibody
systems and other domains like electrical engineering, e.g., [FE10], [Now+13], [GA04].
With the high computational costs associated with the solution of a Lyapunov equation,
this method is limited to small size systems, where computations of systems with more
than 2,500 displacement dofs and hence 5,000 states become tough [Wol14, pp. 7f.].

Even though the method was extended to second order systems by Chahlaoui et al.
[Cha+06] and Reis and Stykel [RS08], it is merely used in structural dynamics. This might
also be due to the fact, that the modal basis yields systems, which are called almost bal-
anced, see Jonckheere [Jon84], Davis and Skelton [DS84], Gawronski and Lim [GL96] or
Gawronski [Gaw97; Gaw(04; Gaw06]. The Balanced Truncation method converges to the
Modal reduction method when the system is very lightly damped, the eigenfrequencies
are separated enough and the input and output locations are collocated, which is the case
for many metallic structures.

As mentioned above, many other model order reduction methods like the Hankel-
Norm approximation or Krylov-SVD methods were developed in the realm of systems
theory. The interested reader is referred to the textbook of Antoulas [Ant05] and the
references therein.






Chapter 5

Proper Orthogonal Decomposition (POD)

In the previous chapter, a few reduction methods for linear structural dynamical systems
are discussed. Since these systems are linear, they are characterized by a mass, stiffness
and damping matrix and sometimes by input and output locations. The reduction meth-
ods are hence explicitly or implicitly based on system theoretic concepts. For instance, the
decoupling of states results in modal truncation, the approximation of the transfer func-
tion results in the Krylov subspace methods with moment matching, or the concept of
controllability and observability results in Balanced Truncation or — for slightly damped
systems — in modal truncation with modal dominance ranking.

Nonlinear systems lack these systems theoretic concepts in most cases. They are usu-
ally not defined for nonlinear systems or, if they are defined, they are extremely expensive
to compute. Hence, the concept of finding a reduced basis V for a nonlinear system is
usually conceptually different to the strategies of finding a reduced basis for a linear sys-
tem. Since nonlinear systems cannot be fully described by system matrices, a detour over
data-driven methods is a common approach. This means that training simulations of the
full, high dimensional system are run in a first step, of which the results are analyzed in
a second step to build the projection matrix V. The most prominent method is the Proper
Orthogonal Decomposition (POD), which is discussed in this chapter.

According to Berkooz et al. [BHL93], the POD was developed independently by
a number of scientists, e.g., by Karhunen [Kar46] and Loeve [Loe48], after whom the
procedure is given the name Karhunen-Loéve decomposition, but also Kosambi [Kos43],
Pougachev [Pug53] and Obukhov [Obub4]. It was first used widely in fluid dynamics to
identify coherent structures [Sir87] and is now widely used in the field of model order
reduction for turbulent flows, see, e.g., [HTD00; WP02; Epu03; Lum07; Hol12]. Further-
more, it is used in the control of dynamical systems [Rav00; AMO02; BCBO05], damage
detection [DGO3; LD06; Muj+11], finite element model updating [HDO01; LKG03; KAS07]
and of course in model order reduction of structural dynamics, e.g., [AV99; KF99; AV01;
KLMO01; STO01; Lia+02b; AP03; TWSO05; GSD08], besides many other domains. For a more
detailed overview of the POD and its history, the publications of Kerschen et al. [Ker+05],
Liang et al. [Lia+02a] and Berkooz [Ber92] are recommended.

5.1 Key Idea: Principal Component Analysis

The POD is a data driven method, which identifies the optimal subspace from a set of dis-
placement snapshots u,. This task is related to the principal component analysis (PCA)
used in statistics, where the so-called principal components are sought, which minimize
the Euclidean distance to a set of data points. In the POD, the displacement snapshots u;
are the data points, for which the subspace V is sought to fulfill the following minimiza-
tion problem:

41



42 Proper Orthogonal Decomposition (POD)

min ) _ [|us(t;) — Vq(t:)]|2. (5.1)
i=1

In this minimization problem, the subspace V. € RN*" of predefined dimension n
is searched for, while the vector of amplitudes g(t;) € R" is adapted to minimize the
expression above. The solution of this minimization problem can be obtained with the
singular value decomposition (SVD), the underlying mathematical operation of the PCA
and the POD. It identifies the subspace V fulfilling (5.1) when applied to the snapshot
matrix S; € RN*™, in which the displacements of all m sampled time steps u; are gath-
ered:

Sa= (us(tr),..., us(tm)) = UsyaZV L5 g. (5.2)

The SVD of the snapshot matrix S; yields the orthogonal matrix Ug,q € RN*" con-
taining the left singular vectors, the diagonal matrix £ = diag(cy, . .., 0 ) containing the
singular values ¢;, which are ordered decreasingly with o; > 0;;1 and the orthogonal
matrix Vgyg € R™*™ containing the right singular vectors. The declared dimensions are
only valid for the case, in which the number of snapshots m is smaller than the number
of dofs N. This is the case in most reduction settings, when large models are considered.
In the other case for m > N, the dimensions of the matrices are Ug,q € RV*N, & €¢ RN*N
and Vg4 € RN*™,

The left singular vectors ug,q; form the principal components of the displacement
field set gathered in S;. For a given dimension n, the first n principal components ful-
fill the optimality condition (5.1) and minimize the Euclidean error. Consequently, the
POD builds the basis V using the first n left sided singular vectors ugq ;. Since both the
left and the right singular vectors are normalized, the amplitude for reconstructing the
displacement snapshots is stored in the singular values ;. Thus, the importance of the
i-th principal component u,q  is associated with the value of the corresponding singular
value ;.

While the left singular vectors ug,q; carry the information of the dominating spatial
displacement fields, the right singular vectors v4,q; composing Vg,q describe the tempo-
ral evolution of them. Consequently, the SVD of the snapshots does not only provide the
dominant subspace of the motion but also the temporal information, which can be used
in applications such as model updating as reported by Hemez and Deobling [HDO01] or
Lenaerts et al. [LKGO3].

The minimization (5.1) can also be expressed in matrix notation, where the SVD iden-
tifies an optimal low rank approximation S, approx With rank 7 of the snapshot matrix S;.
This optimal approximation is obtained when the L? norm or the Frobenius norm of the
difference between S; and S approx is minimal. The L? error €, and the Frobenius error e f
are given as:

€ = ||Sd,appr0x - Sd‘ ’2/ €f = Hsd,approx - Sd| ‘f (53)

According to the Eckart-Young-Mirsky theorem (cf. [GV12]), both errors €; and €
are minimized at the same time, when the approximation matrix S approx is built from a
sum of n rank one matrices. Each of them is defined as the outer product of the normal
vectors Ug,q,; and vg,q; and a weighting factor o; being exactly the left and right singular
vectors and the corresponding singular value stemming from the SVD:

n
T
Sd,approx = E Uillsyd,iOgyd, i+ (5.4)
i=1
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n =100 n =200

.|
Original (equivalent to n = 600)

Figure 5.1: Low rank approximation of the 600 x 900 bitmap picture with different ranks n.
Picture from the author.
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Figure 5.2: Singular values of the picture shown in Figure 5.1

This minimality principle is illustrated with a bitmap picture depicted in Figure 5.1,
inspired by Antoulas et al. [ASG06]. The 600 x 900 bitmap picture represents the snap-
shot matrix §; with N = 600 dofs and m = 900 snapshots. The columns of the picture
represent the single snapshots us; and the grayscale value of a pixel represents the dis-
placement magnitude of a single dof. With the SVD of §; stemming from the picture, a
low rank approximation is built for different n according to (5.4). Figure 5.1 depicts the
low rank approximations for n = 1, 2, 5, 10, 20, 50, 100 and 200. The singular values of
the picture are depicted in Figure 5.2. They indicate the convergence of the series (5.4),
i.e., quantitatively indicate, how well the original picture is matched with the low rank
approximation. This decay of the singular values in the context of the POD is an excellent
indicator of the complexity of the system’s dynamics. A rapid decay indicates that few
singular vectors can represent the relevant motion of the high dimensional system and
consequently the size n of the basis V can be chosen small. On the contrary, when the
decay of the singular values is slow, many basis vectors are necessary to span the sub-
space of the relevant motion requiring n being relatively large. Hence, the analysis of the
singular values provides a good measure of how the size of the reduced order n can be
chosen.

5.2 Variants and Improvements

The SVD carries the property that the left singular vectors u,4 ; of the snapshot matrix S,
and the squared singular values 07 are equivalent to the eigenvectors and eigenvalues of

the covariance matrix of the snapshot matrix S;:
T 2
Sdsd Usyd,i = 0; Ugyd,i- (55)

Since, by construction, the covariance matrix is symmetric and positive semi-definite,
the eigenvectors are orthogonal and the singular values o; are greater or equal to zero.
Hence, the POD can be seen as the solution of the eigenvalue problem of the covariance
matrix of the displacements. With this interpretation in mind, two variants of the POD
are discussed in the following.
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5.2.1 Smooth Orthogonal Decomposition

The first variant is the smooth orthogonal decomposition (SOD) proposed by Chelidze
and Zhou [CZ06]. In this approach, not only the displacement snapshots collected in S
are analyzed but also the velocity snapshots S,. They are obtained from the displacement
snapshots using a finite difference scheme, which can be expressed as S, = DS, with the
finite difference matrix D for equally spaced time increments At between the snapshots:

-1 1 0 0

110 -1 1 ... 0
D=l 6)

0 0 -1 1

The smooth orthogonal modes (SOMs) usom are then defined as the generalized eigen-
value problem of the covariance matrix of the displacements and the covariance matrix
of the velocities with the smooth orthogonal values A;:

Sdsgusom,i = )\isvsz;usom,z* (57)

Whereas in the classical POD, the regular eigenvalue problem of the displacement
covariance matrix identifies the dominating displacements, an additional property is ac-
counted for in the smooth POD. In this generalized eigenvalue problem, the solution
vectors associated with large A; are both dominant in the displacement covariance ma-
trix and non dominant in the velocity covariance matrix. This non-dominance in the
velocity matrix can be interpreted as smoothness meaning little fluctuation with respect
to time. Consequently, the smooth POD ranks the smooth orthogonal modes according
to both its dominance in the displacements and at the same time to its smoothness with
time.

For linear slightly damped systems, the smooth orthogonal modes us,p, ; correspond
to the vibration modes of the undamped system and the smooth orthogonal values A;
correspond to the inverse squared eigenfrequencies 1/w?. Hence, the smooth orthogonal
decomposition is an attractive tool for the modal analysis of linear systems, especially
measurements where the mass matrix is not known. For example, Farooq and Feeny
[FF08a] use this method for the linear modal analysis of randomly excited structures and
Rezaee et al. [RSB13] for the identification of modal parameters in suspension systems.

In the field of nonlinear model order reduction, however, the performance is in gen-
eral not superior compared to the regular POD, as reported by Przekop et al. [PGR12]
and Lilf et al. [LTO13]. The computation of the smooth orthogonal decomposition is
clearly more expensive than the POD, since a dense generalized eigenvalue problem has
to be solved instead of a regular eigenvalue problem. Probably, this is the reason why the
popularity of the method in the realm of nonlinear model order reduction is moderate
compared to the classical POD.

5.2.2 Weighted POD

The second variant of the POD discussed here is a form of a weighted POD, as used,
e.g., by Guo [Guoll]. As stated in (5.1), the POD identifies the subspace minimizing the
error of the snapshots in the Euclidean norm. This norm is not always optimal, since it
overestimates areas where the nodes of the mesh are dense and underestimates coarse
areas. Furthermore, it is not appropriate for displacement fields comprised of different
physical units like displacements and rotations. Hence, different norms for enforcing the
optimality in the low rank approximation are often attractive.
One popular choice, for instance, is the mass norm
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|[uel|pr = VuT Mu (5.8)

which eliminates the mentioned drawbacks of the Euclidean norm. The idea of the
weighted POD is the substitution of the L? norm in (5.1) with a norm like the M-norm
above.

With the Cholesky factorization of the mass matrix M

M=LL", (5.9)
the physical displacements u can be transformed to the displacements

i=L"u (5.10)
This transformation changes the M norm to the L? norm

w'Mu=u"LLTu =u"40 (5.11)
enabling the computation of the standard SVD with the transformed snapshot matrix S;:

LTS, = S; = UgqEVesvy. (5.12)

The mass scaled left sided singular vectors Usyq )1 are obtained by the transformation
back to the physical coordinates, which are obtained with the backward substitution of
the Cholesky factorization L of the mass matrix:

LTUsvd,M = ﬁsvd' (5.13)

In the weighted POD, the reduced basis V is built with the first n mass scaled left
sided singular vectors ugq . They are ranked with the mass-weighted singular val-
ues oy ;, which represent the mass associated with the displacements 4 51 ; in the snap-
shot matrix. Since the mass scaling equalizes the dofs of different units and different dis-
cretizations and gives it a model-based physical meaning, it is the recommended method
for inhomogeneous models. It comes with the additional cost of the factorization of the
mass matrix. For the sake of generality, the associated eigenvalue problem is given as

L"S4S] Lugya ;i = Ohgi L tova i (5.14)

where once again the strategy of the transformation of the Euclidean space to the M
space is clearly visible. The procedure is, of course, not limited to the M-norm but can be
applied to any other norm, as long as the matrix M is positive definite.

5.3 Advantages and Drawbacks

The POD is, as mentioned above, a data-driven method and hence independent of the
underlying system. Thus, the POD offers a maximum of flexibility and applicability, since
it can be applied to any model of any physical domain where representative simulations
of the high dimensional model are possible. This is one of the reasons why the POD
is so widespread also beyond applications in structural dynamics. To mention a few
applications, it has been applied in fluid dynamics and aero-elasticity [TDH03; CDM15;
AF08; XXD14; XX15], electrochemical applications [CW09], welding [CCI14; BMS16], and
elasto-plastic problems [RR14a; CDM15]. Furthermore, the singular values offer a good
insight into the complexity of the model, allowing for an estimation of the error that can
be assumed to correspond with the singular values which are not included.

The POD is a method which is also not only applied to nonlinear systems. As men-
tioned in the subsection above, especially the smooth POD is a great method for system
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identification of linear systems in both experimental and simulation setups. Intrinsic
properties of linear systems like vibration modes can be identified under certain circum-
stances. Literature discussing the relation of linear system properties and the POD are
for instance the publications of Feeny and Kappaguntu [FK98], Kim [Kim98], Kerschen
and Golinval [KG02], Feeny and Liang [FL03] or Feeny and Farooq [FF08b].

The necessity to require a high dimensional training simulation is one of the major
drawbacks though. In many applications, these immense offline costs are not affordable
or even not feasible if the computational resources are not available. Especially in sin-
gle query scenarios, where the number of reduced runs is limited, the POD is often not
attractive. However, in cases, where the offline costs do not matter like applications in
control or scenarios with many reduced runs, the POD is a very competitive choice.

Another drawback is associated with the inherent nature of the method as a statisti-
cal method. Since only the output data of the high dimensional model are analyzed, only
the states which are triggered in the training simulation are incorporated into the reduced
basis. If model parameters, boundary conditions or excitations change, the snapshots ob-
tained by the changed model can be different. Hence, the POD is very sensitive to the
parameters and especially the excitations of the training simulation. As often different
load cases compared to the trained ones should be simulated with the reduced model,
it is necessary to design training simulations capturing the full dynamics, which should
be represented by the reduced model. Hence, the generation of good snapshots remains
an open topic. The drawbacks of the POD mentioned above are motivation for so-called
simulation-free reduction methods, which are not based on training sets requiring full sim-
ulation runs. They are discussed in the following chapter.






Chapter 6

Simulation-Free Approaches

The previous two chapters discuss the construction of reduced bases for linear and non-
linear systems. The methods for generating a reduced basis for linear systems use invari-
ant physical properties characterizing the system like the mass and the stiffness matrix.
On the contrary, the state-of-the-art POD method uses the data generated by training
simulations, since invariant and meaningful physical properties are generally hard to
retrieve for arbitrary nonlinear systems.

For nonlinear structural systems, especially for geometric nonlinearity, the generation
of reduced bases in a non-POD fashion is possible, though. The key idea is the exploita-
tion of the physical structure of the system similar to the linear reduction methods, how-
ever with capturing the information about the nonlinearity. Hence, these methods rely on
the linearized system and extend the operation to the nonlinear regime via information
from perturbation techniques.

The construction of reduced bases for nonlinear structural dynamics goes back to
Noor and Peters [NP80] and Noor [Noo82], where so-called path derivatives are pro-
posed and applied to static problems. The subspace obtained by triggering the nonlin-
earity using displacement fields as perturbation parameters is successfully used for the
augmentation of the basis obtained from linear methods. Since then, several approaches
have been proposed which differ often only in details. Idelsohn and Cardona [IC85b]
propose the so-called modal derivatives, where the eigenvalue problem is perturbed to
obtain the derivatives of vibration modes of a nonlinear system, which are applied suc-
cessfully for the reduction of nonlinear dynamical problems. In [IC85a] they extend the
method to other types of vectors. Perturbation techniques for reduction in the realm
of structural dynamics are further used by, e.g., Chang and Engblom [CE91], Jacob and
Ebecken [JE92], Noor et al. [NAP93], Bauchau and Guernsey [BG93], Slaats et al. [SdS95],
Tiso and Rixen [TR11], Tiso et al. [TJA11] and Weeger et al. [WWS14; WWS16]. Recently,
methods based on this principle were extended to substructuring applications by Wen-
necker and Tiso [WT14], to localized nonlinearities by Witteveen and Pichler [WP14] and
to elastic multibody dynamics by Tiso and Wu [WT16b]. Selection strategies are proposed
by Tiso in [Tis11]. The concept of derivatives is further successfully used in computer
graphics, e.g., by Barbi¢ and James [BJ05] or Hildebrand et al. [Hil+11]. In the former, the
concept of modal derivatives is combined with a polynomial hyper-reduction technique
to obtain further speedups. Tycowicz et al. [Tyc+13] propose an alternative method to
obtain spatial augmentation modes based on rotational properties, which are similar in
performance to modal derivatives.

In the following, the necessity for augmentation of linear bases in the use for struc-
tural dynamics is illustrated and the concept of static and modal derivatives is discussed.
Furthermore, strategies to handle the rank deficiency, the quadratically increasing num-
ber of derivatives and the computation of the derivatives are given before the methods
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are applied to two selected examples for performance assessment.

6.1 Motivating Example

A naive approach to reduce a nonlinear system is to linearize the system, apply a linear
reduction method and use the reduced basis obtained this way to reduce the nonlinear
system. These reduced bases perform generally very poorly for geometrically nonlinear
systems as is shown for the cantilever introduced in Section 2.5 and depicted in Figure 2.3.
This model is linearized for obtaining the reduced basis using both the modal truncation
and the Krylov subspace method with a reduced basis of n = 5.

S X, nonlinear —x— y, nonlinear
X, linear y, linear
.-+ X, nonlinear, basis: ® —«— y, nonlinear, basis: ®
s x, nonlinear, basis: Viay y, nonlinear, basis: Viey

Tt
displacement [m]

| | | | |
0 0.2 0.4 0.6 0.8 1

forcing factor [-]

Figure 6.1: Static displacement of linear and geometrically nonlinear beam as well as the nonlin-
ear beam reduced with 5 vibration modes and 5 Krylov modes. The displacement of the reduced
nonlinear beam is severely underestimated.

Then this basis is used for reducing the nonlinear system. The nonlinear system is
loaded statically with the same boundary conditions as in the static experiment in Sec-
tion 2.5. The results of both reduced nonlinear models are given together with the results
of the numerical experiments in Section 2.5 in Figure 6.1. They indicate a very poor be-
havior, since the displacements are severely underestimated or, from the other point of
view, the naive reduced system is orders of magnitude stiffer. This problem of stiffening
is well-known in the finite element domain, where it is referred to with the term locking.
It occurs when the shape functions provided in the element cannot represent the relevant
deformation and, in consequence, the element exhibits a stiffer behavior.

In projective reduction, the same effect appears when the subspace spanned by the
reduced basis does not capture the deformation sufficiently well. In the example given
above, the subspace spanned by the basis Vy,y or by the truncated modes @ is not suf-
ficient to represent the motion of the geometrically nonlinear beam. Consequently, since
the reduced model is a constrained version of the original model as discussed in Chap-
ter 3, the constraints limit the motion of the reduced model resulting in a severe stiffening
of the system. Since in the example both the vibration modes and the Krylov modes are
transverse modes, i.e., modes with motion perpendicular to the beam axes in the unde-
formed configuration, the reduced system is forced to only exhibit displacements in the
transverse direction. When the beam is forced at the tip, it cannot move along the curved
trajectory as depicted in Figure 2.4 but has to move straight downwards, since the motion
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is constrained to the reduced basis. This, however, causes unphysical in-plane strains,
which cause the stiffening of the structure.

This academic example shows that the basis has to capture the full motion of the
nonlinear system. Otherwise, unphysical stiffening effects may occur making the ap-
proximation of the reduced model extremely poor. Thereby, the subspace identified with
a linear reduction method of the linearized system is generally too small and does not
capture directions in the displacement vector space, which are necessary to represent the
full nonlinear motion. So even adding more basis vectors from the linear reduction tech-
nique does not solve the problem, since they are based on the linearized system and do
not consider the nonlinearity triggered.

However, there exist techniques to identify possible directions, which are discussed
in the following. They investigate the nonlinearity and identify directions, which are
necessary to represent the nonlinear motion.

6.2 Key Idea: Augmentation of Reduction Basis

A way to account for the nonlinearities ignored by the linear reduction techniques is the
augmentation of the reduced basis V};,, stemming from the linearized system with basis
vectors 0 'knowing’ the nonlinearity. Hence the linear basis composed of m modes is
augmented with o basis vectors 0, ..., 8, to receive the augmented basis V as:

V=_(¢y....¢,,01...,6). (6.1)

In the following, the basis stemming from the linear system is called lin basis V;,
and the augmentation vectors capturing the nonlinearity are given with the symbol @ =
(64,...,6,), independent of the technique applied to generate them. The basis for the
reduction of the nonlinear problem is referred to as V.

6.2.1 Modal Derivatives

When a modal basis is used for the reduction of the geometrically nonlinear system, the
modes are based on the linearized system. Thereby the point of linearization is com-
monly the equilibrium position, for which both the internal and the external forces are
Zero.

The idea of modal derivatives (MDs) for use in nonlinear reduction is to introduce
the point of linearization as a parameter p for the perturbation of the eigenvalue problem
(4.11) in Section 4.3. If the nonlinear system (2.41) is linearized about a point in the dis-
placement space, the resulting system can be considered as both linear and parametric,
allowing for the modal derivative computation as outlined in Section 4.3. The displace-
ments form an N dimensional parameter space, though. To obtain a single parameter p
to compute the perturbation of mode ¢;, p is chosen as the amplitude of a given displace-
ment field, namely the j-th vibration mode ¢;. Hence, the stiffness matrix is treated as
a parametric stiffness matrix K(p), where the parameter p = 7; is the amplitude of the
displacement field formed by ¢;, which is the point of linearization:

0
K(p) = K(u = ¢,17;) = ’;” ) (6.2)
u= ]7]]

Since the mass matrix M of the nonlinear equations of motion (2.36) is constant, the
parameter dependency of the linearized system is only in the stiffness matrix K. The
modal derivative 8;; = d¢,/dy; is then the derivative of mode ¢; with respect to the
amplitude 77; of mode ¢;, see (4.13):
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(—wizM+K)%: ¢ITM M

- (6.3)

1=0

As in (4.13), the coefficient matrix (—w?M + K) of the linear problem above is singular
and is solved with the additional constraint (4.16) as given in Section 4.3. Since the mass
matrix is constant, the constraint is

9P,
Cr

Mg, = 0. (6.4)

Hence, any MD 6;; = d¢p;/d1; is M-orthogonal with respect to the vibration mode ¢,.

The augmentation of the lin basis (6.1) is then performed with the 0 = 1% modal
derivatives 0;; = d¢;/dn; corresponding to the n vibration modes of the lin basis. Since
the raw reduced basis, where both the vibration modes and the modal derivatives are
gathered, is not guaranteed to be well conditioned, a deflation as given in Subsection 6.2.3
is necessary to obtain a reduced basis with a low condition number.

6.2.2 Static Derivatives

The computation of the modal derivatives introduced in the previous section involve the
solution of a singular system, which is not desirable. Hence, in many applications, the
mass terms in (6.3) are neglected leading to the linear system of equations

NE oK(u = ¢ .n;
& 00T K= gmy) " 6.5)
an; oj -
Ui

which defines the so-called static Modal Derivative (SMD) 6;;; = d¢;/ 817j|s with the su-
per or subscript s indicating the static version. The computation of the SMDs is related to
smaller computational costs, since the coefficient matrix of (6.5) is the stiffness matrix K,
which is nonsingular when the system is not floating. Furthermore, the coefficient ma-
trix is constant, so that only one factorization of the matrix K is necessary to compute all
SMDs of a number of modes.

These benefits make the SMDs very popular in the literature for the reduction of geo-
metrically nonlinear systems. However, they are seldom distinguished from the classical
MDs as defined in (6.3). Consequently, the modal perturbations computed according to
(6.3) are referred to as modal derivatives (MDs) with the symbol 6;;, whereas the perturba-
tions with neglected mass effects as given in (6.5) are called static modal derivatives (SMDs)
(cf. [SAS95]) and referred to with the symbol 6 ;.

The MDs 0;; = d¢,/91; as well as the SMDs capture the change of the modes with
respect to a changed configuration. Hence, they capture the displacement fields, which
are necessary to complement the basis vectors from the linearized system to account for
the nonlinearity. This property is illustrated in Figure 6.2, where the SMDs of the first
three modes of a cantilevered plate are given.

The first three vibration modes of the plate are transverse modes: ¢, is the first bend-
ing mode, ¢, is the second bending mode and ¢, is the first torsion mode. These modes
can represent the transverse motion of a linearized system but not the in-plane motion
which is triggered by the geometric nonlinearity as illustrated in the motivating example
in the section before. The (static) modal derivatives account exactly for these in-plane mo-
tions. When the vibration modes are transverse modes, the corresponding (S)MDs turn
out to be in-plane modes representing the in-plane stretching which is triggered when the
transverse modes are applied to the nonlinear system. Consequently, the (S)MDs are the



6.2 Key Idea: Augmentation of Reduction Basis 53

¢

033

symm.

Figure 6.2: Static modal derivatives of the first three vibration modes of a cantilevered plate.
The figure is inspired by [Tis11].

complementary ingredients to the modal basis which are necessary to allow the curved
trajectory in the example given in Section 6.1.

When comparing the constitutive formulas for the computation of the MDs (6.3) with
the SMDs (6.5), two main differences are apparent. First, the coefficient matrix for the
SMDs, i.e. the stiffness matrix K, is independent of the vibration mode ¢;. The coefficient
matrix for the MDs, however, contains the information of the eigenfrequency of mode ¢;,
since it is K shifted with —w?M leading to the singular coefficient matrix. Second, the
right hand side of (6.5) is symmetric with respect to i and j. This is due to the fact that
the tangential stiffness matrix K(u) is the derivative of the internal forces with respect to
the displacements. In the derivation, the displacement field u is expressed in terms of the
modes ¢; and ¢; and the corresponding amplitudes 7; and 7j; as 4 = ¢;77; + ¢;77;. Then
the right hand side of (6.5) can be rewritten as

oK (u = ¢;17;) 2 f(u ou  ?fl(u
| #i= af-<(9) T:a]:g-) (6.6
17 7jou 7=0 i 1i01j

1j=0

since du/dn; = ¢;. The right hand side of (6.5) is hence the second derivative of the
nonlinear forces with respect to the modal amplitudes 7; and 7;. Consequently, since
the partial derivative is a commutative linear operation, d*f/91;d; = 0*f/9d1,;01; holds.
Thus, the SMDs are symmetric with respect to the indices i and j:

s_a¢js
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0,ij = an;

= 0, (6.7)

With the derivation above, the SMDs can be interpreted as the negative linear static
response to the second derivative of the nonlinear forces:

1 P (6.8)

Osij = on,01;
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With this in mind, it becomes clear that the SMDs ‘know’ the nonlinearity of the sys-
tem. They capture the quadratic nonlinearities triggered and extend the basis with com-
ponents, the linear reduction techniques are not aware of.

With the interpretation of the SMDs as the displacement fields triggered by the second
order derivatives of the nonlinear forces, the concept of SMDs is not limited to vibration
modes. This concept can be applied to all types of displacement fields used for linear re-
duction. These modes are referred to as static derivatives (SDs), since they do not involve
any dynamical effects but are based on the static higher order analysis of the nonlinear
internal forces. This generalization was first proposed in Idelsohn and Cardona [IC85a]
for Krylov subspace vectors, though lacking a sound theory. A deeper physical interpre-
tation can be achieved with the concept of Quadratic Manifold, which is introduced in
the following chapter.

Similar to the MDs, the SMDs or SDs form the augmentation vectors in (6.1). Since
the SMDs and SDs are symmetric with 6;;; = 6;;, 0 = n(n + 1) /2 distinct S(M)Ds for n
vibration modes exist. Like the MDs, the SMDs do not form a linearly independent basis
when combined with the vibration modes. Hence, the raw basis of the concatenated
modes and (S)MDs has to be processed further to build a basis which is numerically
stable.

6.2.3 Deflation and Orthogonalization

When the basis V. = (Vlin,G) is built according to (6.1), the condition number of V
becomes in general very high, when the size of V};;, and @ increases. This can cause
numerical errors, since the reduced system is projected onto this basis resulting in poorly
conditioned reduced mass, damping and tangential stiffness matrices. Since the matrices
M, = VIMV, C, = VICV and K,(q) = VIK(Vq)V are multiplied by V twice, the
condition number of V gets generally squared leading to very ill-conditioned systems in
the time integration causing poor convergence and even instability.

The potentially high condition number of the raw basis constructed in (6.1) stems
from the fact, that the (S)MDs or the SDs are based on perturbations of vibration modes or
the nonlinear forces and are not necessarily linear independent with respect to the other
basis vectors. In the reduced basis technique, though, only the subspace spanned by the
basis V is of interest, while the parametrization of the basis is arbitrary. Consequently,
a Gram-Schmidt like orthogonalization technique can be used to obtain a low condition
number for the basis. However, for the sake of efficiency, it is better to deflate the raw
basis, i.e., to remove the linear dependent vectors from the basis and capture the subspace
spanned by the raw basis. Then, the reduced dimension of the model is equivalent to the
rank of V.

To obtain the subspace spanned by Vj;,, and ©, an SVD can reveal the continuous
rank decay associated with the (5)MDs. Therefore, the basis vectors are normed and then
gathered in the raw matrix Ryaw:

— (o om0 01 0y Omm
Rraw = <|v1| ol Tenl 6wl [om] \emm|) : (6.9)
Note, that for the non-symmetric case of the MDs, all MDs are gathered in Rrayw €

R™(m+1) For the symmetric S(M)Ds, only the unique basis vectors are collected in Ryaw €
m(m+3)

R~z . The SVD of R;, results in
Rraw = usvdzsvdvsvd (610)

with the orthogonal matrices Ug,q and Vg,q and the diagonal matrix Xg,q composed of
the singular values arranged in decreasing order 07 > 0> > .... These singular values
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indicate the continuous rank decay of the raw basis Rraw. An orthogonal basis spanning
the relevant subspace of Ryayw can be built with the n left singular vectors, which are
associated with the n largest singular values. One possible way to identify the numerical
rank of Ry, is the introduction of the tolerance ¢, so that only singular vectors associated
with singular values smaller than ¢ oy are dismissed:

V = (usvd’l,. . .,uSVd,n) , with g0y > Op+1- (6.11)

The tolerance ¢ gives the accuracy, up to which threshold the subspace spanned by
Riaw is kept. In the applications in this work, ¢ is chosen to be 1078 and thus small
enough to capture the full rank of Ryay in a numerically stable way.

In the literature, refinements for the identification of the subspace are presented in
Barbi¢ and James [BJ05], where the procedure above is altered in two places. First, a
different norming of the raw matrix Ry in (6.9) is possible. The norming might be
based on the eigenfrequencies of the modes, the un-normed length of the (SYMDs or other
properties. The second place is the computation of the SVD in (6.10), where a weighted
SVD as explained in Subsection 5.2.2 can be used. Especially the mass-weighted SVD
is a proper choice, since it alleviates the issues of different mesh densities and different
physical coordinates.

6.2.4 Selection Criteria for Modal Derivatives

The augmentation approach presented in the previous subsections has one fundamen-
tal drawback: the quadratic growth of the basis with respect to the size of the lin basis.
This flaw is due to the fact, that the (5)MDs are quantities based on the interaction of
modes and hence the number of interaction possibilities rises quadratically. Though de-
flation strategies as proposed in the previous subsection are able to extract the relevant
subspace of all modes and the corresponding (S)MDs and thus may reduce the size of
the quadratically growing basis, this course of dimensionality is prohibitive for models
exhibiting complex motions, for which many linear modes are necessary.

To alleviate this issue, selection techniques have been developed in order to retain
only a few (S)MDs necessary to represent the motion properly. These techniques rely
on heuristic rankings of the (S)MDs, where either a cheap linear test run is performed
with the given external excitation or where system-specific properties of the linearized
system are exploited like the eigenfrequencies of the system. All these methods can be
generalized to a method, where a weighting matrix W € R"*" is built. This matrix,
where the row and column indices stand for the indices of the (S)MD, is filled by the
methods with importance factors so that the entry W;; represents the importance of MD
0ij or SMD 0 ;;. The value of these factors give then the ranking of the (S)MDs to be
selected for the basis V.

The first proposed method is inspired by Barbi¢ and James [BJ05], where the reduced
basis is used for real-time computer graphics. It is named here frequency weighting
(FW) as it selects the SMDs based on the eigenfrequency of the two modes involved in
the SMDs. Since in the weighting matrix W higher values are ranked higher, the inverse
of the product of both eigenfrequencies is used as weighting factor:

1

—_— 6.12
oo (6.12)

Wrw,ij =

This method selects the SMDs independently of the excitation, since the eigenfre-
quencies are properties obtained from the homogeneous linearized system. One method
considering the excitation is the Maximum Modal Interaction (MMI) scheme proposed
by Tiso [Tis11]. It relies on a training simulation of the linearized system reduced with
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modal truncation. The amplitudes #; of the modal coordinates are evaluated to identify
the modes which are triggered simultaneously in the linearized system:

T
Womisy = [ Im( (0] (6.13

When the training simulation is run with a time integration scheme with evenly
spaced time steps, the weighting matrix is obtained as

Wimiij = t; VAGUAG] (6.14)

with the set 7 of all time steps. The correction with At to fulfill the approximation of the
integral in (6.13) is not necessary, since the weights are ranked and constant factors do
not change this ranking.

Another technique named Modal Virtual Work (MVW) proposed by Jain et al. [Jai+17]
assesses the virtual work of mode i done on mode j based on the linear training set as in
the method before:

tmaxi = argmax |1;(f)]| (6.15)
Wmvw,ij = |¢]Tf(¢17]z(tmax))| (6.16)

Since the MVW method is not symmetric, it is specially suited for the MDs, which
are also not symmetric. However, if the symmetric SMDs are used, the symmetric Modal
Virtual Work (SMVW) is proposed with the weighting coefficients given as:

tmax,ij = argrnax(iyl-(if)ﬂj(t))2 (6.17)
Wonoraj = \/ (975 (@1 (tmasi)) + (075 (917 (b)) ) (6.18)

This method captures the approximated virtual work of a mode pair ¢; and ¢; in a
symmetric fashion.

All selection methods are purely heuristic methods which are based on the linearized
system. They rank the (5)MDs by importance according to the heuristic scheme and do
not suggest a selection of vibration modes. As they do not consider the nonlinearity,
their performance is very problem-dependent. Hence, a non-exhaustive investigation
of the performance of these methods is given in the application part of this chapter in
Section 6.4.

6.3 Numerical Differentiation

The computation of the (S)MDs and the SDs involves the derivative of the tangent stiff-
ness matrix with respect to a displacement direction. This derivative has to be carried
out either intrusively within the finite element framework or non-intrusively via finite
differences or an identification technique.

In the intrusive computation, the derivative with respect to the displacement field is
computed analytically on the level of the finite element, as for instance given in the ap-
pendix of Barbi¢ and James [BJ05]. This requires special implementation for all element
types and is often not available in general finite element codes. However, it enjoys the
benefit of accuracy up to machine precision. The non-intrusive methods, on the other
hand, do not require the access to special implementations within the finite element rou-
tines but allow the determination of the derivatives with multiple evaluations of tangen-
tial stiffness matrices or nonlinear forces. However, when these methods are used, special
care has to be taken in order to obtain accurate results.
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The most prominent method to obtain the derivatives is the finite difference method,
where the derivative is computed as a discrete difference of two evaluations. The dif-
ference can either be computed with forward, backward or central differences. For the
evaluation of the right hand side of the SMDs, the derivative of the tangential stiffness
matrix K(u) with respect to the amplitude #; of mode ¢ ; is approximated with forward
differences as

d
OK(u = ¢m;)| K(u=¢; h)—K(u=0)
BT = p , (6.19)
j yj=0
with backward differences as
bd
oK(u = ¢;1;) K(u=0)—K(u=—¢,h)
— — 7 (6.20)
Uli yi=0
and with central differences as
cd
aK(”:‘Pj’?j) K(u:gb]--h)—K(u: _‘Pj‘h)
_— = . (6.21)
1=0

The forward and backward differences share the benefit, that the linear stiffness ma-
trix K = K(u = 0) can be reused and hence only one evaluation of the tangential stiffness
matrix is necessary for the computation of one directional derivative.

The finite difference scheme is an approximation, which should come as close to the
original derivative as possible. To achieve good accuracy, both the choice of the scheme
and the step width & have to be chosen correctly. As measure for the accuracy of the finite
difference scheme, the symmetry of the SMDs can be used. Since for the computation of
8;; the derivative of K, (g) with respect to 77; is evaluated and for 6;; the derivative is taken
with respect to #;, numerical errors in the finite difference scheme result in deviations
between 6;; and 6;;. Hence, the error measure €symm is a good indicator for the quality of
the numerical differentiation scheme:

VI T (85— 6,7 (05— ;)
€symm =
\/ Y Y, 0)6;

(6.22)

In Figure 6.3, the relative symmetry error €symm for the cantilevered beam example
from Section 6.1 is depicted. The forward and backward finite difference schemes show
almost the same symmetry error for the given step width. They perform poorly, since
their minimal symmetry error is in the range of €symm = 107>, while the central finite
difference scheme achieves a minimal error in the range below €symm = 10711, The lowest
symmetry error and hence the highest accuracy of the one-sided schemes is in the range
of the step width 1 = 107°. This is in accordance with the common step width for floating
point computations as recommended for instance in Gill et al. [GMW81], which is given
in the range /¢, where ¢ is the machine precision which is approximately 2.2 - 1071 for
a 64 bit double precision floating point number. The central difference scheme, however,
has its minimum in the range of & = 10° — 10!. In the author’s experience, the optimal
step width with the lowest symmetry error is always in this range. However, a detailed
investigation revealing a reason or a pattern for the optimal step width is a topic for
future research.

The first reason for the poor performance of the one-sided finite difference schemes
lies in the rotational rigid body modes of the elements. They can spoil the accuracy of
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Figure 6.3: Relative symmetry error of the SMDs computed with different schemes and differ-
ent step widths & for the cantilever example. Only the central finite difference scheme yields
acceptable results.

the finite difference scheme, since the linearized rigid body rotations cause a change of
the volume. As illustrated in Figure 2.6 in Section 2.5, the linearized rotation distorts the
element in an unphysical manner causing large elastic forces to compensate for the vol-
ume growth. This results in bad approximations in the numerical differentiation scheme.
One way to overcome this limitations is the semi-analytical computation of derivatives as
proposed by van Keulen and de Boer [VD98; DV00], where the contribution of the rigid
body modes is computed analytically while the derivative of the deformation is obtained
via a one-sided finite difference scheme. These methods require a special implementa-
tion, however they accelerate the finite difference computation compared to central finite
differences. They, on the other hand, require more evaluations and thus higher computa-
tional efforts, but they allow for high accuracy close to machine precision, when the step
width & is well tuned. In this work, solely central finite difference schemes with tuned
step widths are used.

The second reason for the sensitivity of the SMDs with respect to the step width are
the right hand side pseudo forces in (6.5), which are depicted exemplarily for the SMD
011 of the first mode ¢, in the upper part of Figure 6.4. The SMD 61, is an in-plane mode
realizing a contraction of the beam similar to 8;; in Figure 6.2. This contraction is acting
in both the vertical an the horizontal direction and compensates the volume growth due
to the linearization of the rotation.

From the computational perspective, this compression is caused by the right hand
side pseudo forces of (6.5), which are depicted in the lower part of Figure 6.4. These
forces acting on the surface nodes with increasing amplitude towards the right hand
side are responsible for the compression displacement field 61;. If the forces on the top
and bottom face are not perfectly balanced due to numerical errors, they cause large
displacements of the beam in the vertical direction, even though the error of the forces is
in the range several magnitudes below.
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Figure 6.4: SMD 0,11 (top) and corresponding right hand side pseudo forces (bottom). The
pseudo forces cause an in-plane compression of the beam as well as a transversal compression.

In general, the solution of the static problem (6.5) can amplify errors immensely, lead-
ing to deteriorated SMDs. Hence, a proper tuning of the step width / is necessary before
the computation of the SMDs. Thereby the symmetry of the SMDs can be used as cross
validation indicator for the quality of the approximation. In the numerical experiments,
the optimal step width £ is identified by the evaluation of the relative symmetry error
€symm for the selected modes forming the linear basis. When the computation of €symm
for various step width is tedious due to the number of modes and the size of the finite el-
ement model, only a small number of modes spanning the frequency range of the modes
in the linear basis are used for the evaluation of €symm. In the numerical experiments,
commonly five modes were chosen. Once the optimal step width is determined for a
model, the MDs are computed with this tuned step width, too.

6.4 Applications

The capability of the simulation free augmentation vectors introduced above is demon-
strated on two examples. The first is the cantilever from the motivating example in Sec-
tion 6.1, which is loaded dynamically on the tip with a load given in Table B.1 together
with the other physical properties of the system and the time integration used.

First, the first ten vibration modes and the corresponding MDs and SMDs are com-
puted. To assess the consistency of the MDs and the SMDs, both are stacked in a ma-
trix @ € RV*190 and @, € RV*19 jn an ordered manner, so that the first ten (S)MDs are
all derivatives of the first mode ¢; and so on:

@Z(911,912,...,91n,921,...,enn) vnel,..., 10

(6.23)
®S - (65,11/ 65,12/ ey 65,171/ 05,21/ ceey es,nn) Vn € 1/ ceey 10

Then, the similarity of the MDs and the SMDs is checked. Therefore, the modal assur-
ance criterion (MAC) is used, see e.g. Allemang [All03], which is a quadratic correlation
measure of two displacement fields ¢; and #;. It is defined as:

T )2
MAC;; = % (6.24)
PP Y Y,
When applying the MAC to measure the similarity of MDs and SMDs, ¢, is the i-th
column of the matrix @ and #; is j-th column of the matrix @; defined in (6.23). Then the
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MAC as defined above represents the correlation of every MD with every SMD. If both
the MD with index i and the SMD with index j coincide, the values of the MAC is one
representing a perfect fit. If the displacement fields are barely correlated, the MAC value
is close to zero.

Since the MAC values are correlation coefficients between two variables, they can
be displayed in a table or matrix. If both variables correlate, the diagonal values are all
one, since equal vectors correlate perfectly. The off-diagonal entries indicate though, how
much vectors with different indices correlate with each other.

In Figure 6.5 the MAC tables are graphically depicted for three cases. On the top left,
the so-called auto-MAC of the MDs with respect to the MDs are given. The diagonal
is consistently one, while the off-diagonal entries are small indicating, that every MD
is different from the other. Only few index combinations show high MAC values indi-
cating a closeness of MDs with different indices. The depiction of the auto-MAC of the
SMDs given in the top right is different, though. Despite the consistent diagonal, many
more off-diagonal entries exist with high values. One reason for this phenomenon is the
symmetry of the SMDs, which is discussed in Subsection 6.2.2. However, despite that
fact, more SMDs with different indices are correlated than MDs. Especially the SMDs
from 40-49 and from 80-89 have a strong correlation among each other. This is due to the
fact, that both modes ¢, and ¢4 forming the parents of these SMDs are in-plane modes,
so that the corresponding SMDs are transverse displacements sharing similarity to the
other transverse modes.

The MAC criterion of the MDs with respect to the SMDs are given in the bottom
part of Figure 6.5. There, the diagonal entries are close to one only for the lower modes
and are small for the higher modes. This indicates, that the SMDs are an approximation
of the MDs only for lower frequency modes, whereas they diverge for higher frequency
modes. Furthermore, the SMDs corresponding to the in-plane-modes ¢, and ¢ are fully
uncorrelated. Consequently, the MDs and SMDs seem to capture different subspaces,
which will be discussed in the following, when (S)MDs are used as reduced bases.

For assessing the reduction capability of the (S\MDs, the linear basis is built from
vibration modes and Krylov subspace vectors. Then the corresponding MDs, SMDs and
SDs are computed and a deflated linear basis is constructed according to (6.9) and (6.10).
A time integration scheme is run and the relative error RE is measured according to (3.9).
The results of the reduction error are given in Figure 6.6. Thereby the left plot depicts
the relative error over the size m of the linearized system, i.e., the number of modes used
for computing the (5)MDs and SDs. The right plot displays the same information over
the dimension # of the reduced system after deflation. For comparison, the RE of a POD
basis is also given. It is, however, trained with the full solution of the model, which is
not a realistic scenario, since the training simulation usually deviates from the solution
sought. Nonetheless, the POD basis serves as a benchmark of the best basis possible,
since it is the optimal basis tailored to exactly this model, load case and integration time.

The left plot of Figure 6.6 indicates that the MDs are indeed not symmetric, since they
cover a larger subspace which performs better for the same number m of modes from the
linearized system. For this example, the MDs build the best reduced basis for mostly all
dimensions n compared to the simplified SMDs. Only for small reduction dimensions #,
the SMDs perform slightly better. The Krylov SDs, though, do not exhibit the accuracy of
the MDs or SMDs.

The performance of the selection criteria given in Subsection 6.2.4 is further investi-
gated. Therefore, the weighting matrices Wy, for frequency weighting, W,,,; for max-
imum modal interaction, W, for maximum virtual work and Wy for symmetric
virtual work are computed. They are depicted in Figure 6.9. Commonly, all weighting
schemes indicate a tendency to weight lower frequencies higher than higher frequencies.
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Figure 6.5: Auto-MAC of the MDs (top left), auto-MAC of the SMDs (top right) and MAC
between MDs and SMDs (bottom) for the cantilever example.

However, the in-plane modes 5, 9, 13, 16 and 19 exhibit clearly lower weights in the MMI
and MVW ranking, since they are barely triggered by the linear excitation or produce no
work on the transverse modes. Furthermore, both virtual work rankings clearly empha-
size the diagonal terms and weight (S)MDs which are derivatives with respect to itself
higher.

For investigating the performance of the ranking schemes, for m linear modes the
m+m(m+1)/6 highest ranked (S)MDs are added to the raw basis Rr.w according to
(6.9). The raw basis is deflated using (6.10) and (6.11) and used as reduced basis for the
reduction of the cantilever example.

The investigation of the displacements over time are given exemplarily for the size
m = 6 of the linearized system in Figure 6.8. In this plot, no difference between the
reference model and the reduced models is visible, though the system behaves strongly
nonlinearly, as the displacement snapshots in Figure 6.7 indicate. The reduced bases
obtained with selection techniques above have the dimension 7 of 18 and 19. The SMD
and Krylov SD basis has 27 dofs and the MD basis has 41 dofs.

A more detailed assessment is given in Figure 6.10. The relative error of the reduced
models with respect to the number m of basis vectors from the linearized system is given
in the left plot. In the right plot the same error is given with respect to the dimension n
of the reduced model. Both plots indicate, that the MMI selection technique does not
perform well compared to the other methods. Overall, the MDs tend to achieve better
results than the SMDs, especially for higher reduced dimensions. Furthermore, the sym-
metric MVW applied to SMDs performs very poorly, since the error rises with a larger
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Figure 6.6: Error of different reduction methods with deflation for the cantilever example. The
relative error is given over the dimension of the linear basis (left), and over the dimension of the
reduced model (right). The POD reduction was trained on the full solution.

dimension of the linearized system. This is due to the fact, that SMDs associated with
higher frequency modes are preferred to lower frequency mode interactions resulting in
a poor reduction basis.

Interestingly, the frequency weighting technique, which is the computationally cheap-
est, produces the best results for both, SMDs and SDs. It seems to favor the (S)MDs in the
most efficient fashion.

The cantilever is a special structure, which does not represent many phenomena. It
comprises a decoupling of in-plane and transverse motion, which is represented by the
modes which can be distinguished in these two categories. Hence the second example
c-shape is investigated, since it has both a slender structure but no separation in in-plane
and transverse modes.

First, the MDs and SMDs are computed. The same MAC investigation as with the
cantilever is given in Figure 6.11. Thereby, the trends in the difference between MDs and
SMDs are even stronger compared to the cantilever example. While most of the MDs
show a distinct decoupling against each other, the SMDs exhibit an extreme correlation
with many off-diagonal terms being close to one. Consequently, the SMDs are very of-
ten similar displacement fields while the MDs are mostly distinct besides in the top left
corner, where the MDs related to ¢; and ¢, show clear closeness.

The MAC between MDs and SMDs is far from exhibiting a dominant diagonal, indi-
cating that MDs and SMDs are different displacement fields. Given the lack of correlation
between MDs and SMDs, the SMDs are barely an approximation of the MDs for the c-
shape example. Hence, the approximation of MDs with SMDs might hold for simple
structures exhibiting decoupling effects as in straight or slightly curved beams (cf. the
examples in [IC85a]), but does not hold for complex models or modes in the higher fre-
quency range.

Next, the reduction capability is assessed for the c-shape example. Therefore, as in
the beam example before, the basis constructed of modes and (S)MDs is deflated and
the relative error is measured of the reduced models for different reduction orders. In
Figure 6.12 the RE is given over the size m of the linearized system and the order n of the
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Figure 6.7: Displacement snapshots of the two benchmark examples cantilever and c-shape at
random time instances. The motion of both is clearly geometrically nonlinear.

reduced system. The graph basically shows the same results as the cantilever example:
The Krylov SDs perform the worst while the MDs perform best. Also the MDs span the
larger subspace than the other derivatives, since they lack the symmetry. The errors are
also in the similar order of magnitude indicating a good approximation of the nonlinear
motion. As in the cantilever example, the tip displacements of reduced models with
m = 6 depicted in Figure 6.15 overlap with the full solution.

Also the selection strategies show a similar trend in Figure 6.14 compared to the can-
tilever example. Once again, the MDs outperform the SDs for larger reduced dimensions
while the methods exhibit similar performance. Also the trend of the SMVW selection to
perform worse for MDs with a larger number of vibration modes is clearly visible.

To summarize, both the MDs as well as the SMDs and SDs based on Krylov vectors
are generally suitable for augmenting the so-called lin basis stemming from linearized
systems like vibration modes or Krylov subspace modes. However, since the (S\MDs
grow quadratically with respect to the number of vibration modes or Krylov subspace
modes, the large size of the basis to achieve good results might be limiting. There exist
good techniques to rank the derivative vectors and augment the basis only with few,
however, they barely are as efficient as well-trained POD basis vectors. Nonetheless, the
(S)MDs are an attractive choice to reduce geometrically nonlinear models in a simulation-
free fashion. The issue of the quadratic growth of the basis is tackled in the following
chapter by a projection technique different from the linear projection technique.
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Figure 6.8: Displacement of the tip of the cantilever example for different simulation free re-
duction methods for m = 6. The dimension n of the reduced models are between 18 and 41.
The abbreviations for the selection strategies in the legend stand for: fw — frequency weighting,
mmi - maximum modal interaction, smvw - symmetric modal virtual work, mvw — modal virtual
work.
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of the reduced model (right).
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Figure 6.11: Auto-MAC of the MDs (top left), auto-MAC of the SMDs (top right) and MAC
between MDs and SMDs (bottom) for the c-shape example.
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Figure 6.12: Error of different reduction methods with deflation for the c-shape example. The
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Chapter 7

Quadratic Manifold

In the previous chapter, simulation-free reduction techniques were addressed. In these
techniques the basis is formed of two ingredients: the so-called lin basis stemming from
a linearized system and the augmentation vectors like (5)MDs, which account for the
nonlinearity. One issue of these techniques is, that the number of (S\MDs grows quadrat-
ically with the size of the lin basis. This leads to very large bases when the lin basis is
large, which limit the gain in computational time of the reduced basis projection.

One approach to tackle the problem is the use of selection criteria as discussed in Sub-
section 6.2.4 and Section 6.4. Another approach to alleviate the issue of the quadratically
growing basis is the concept of quadratic manifolds, where the (5)MDs are not treated
as independent dofs but are quadratically coupled with the modes of the lin basis. The
number of unknowns is then reduced to a minimum. Then, the mapping from the gener-
alized coordinates to the physical coordinates is nonlinear, leading to a different structure
in the equations of motion.

However, the reduction technique proposed in this chapter is not suitable for all
geometrically nonlinear problems. It is an attractive option for beam and shell struc-
tures, where the von Karman kinematic assumption is used for approximating the Green-
Lagrange strain. Hence, in Section 7.3 the von Karman beam theory is introduced and
the relation to the static condensation method discussed in Subsection 4.5.1 is studied in
Subsection 7.3.2.

Nonlinear projection with the aim of model order reduction is already used in the
Global Modal Parametrization technique introduced by Aarts and Jonker [AJ02] and ex-
tended by Briils et al. [BDGO07] and Naets et al. [Nae+11; Nae+12], where elastic multi-
body systems are reduced to a set of minimal coordinates using a database of configu-
ration-specific mappings. A similar approach is also used by Tamarozzi et al. [THD14]
and Blockmans et al. [Blo+15] to update the basis for contact problems, where the contact
location is changing. A further approach to reduce mechanical systems using nonlinear
projections is proposed by Millan and Arroyo [MA13], where the nonlinear projection is
trained in a machine-learning style from a set of training snapshots. With the method
proposed in this work, however, the manifold is defined to be quadratic leading to a
simple mathematical structure not requiring database operations.

In this chapter first the nonlinear projection framework is introduced and then spec-
ified further to the quadratic manifold approach. After the discussion of a stabilization
technique and the application of time integration schemes, the application to models us-
ing von Karman beams is discussed. The chapter ends with applications to various struc-
tures using von Karman beam elements and solid elements to illustrate the potential and
the limits of this method. The quadratic manifold approach is published in [RR14b],
[Jai+17] and [Rut+17], on which this chapter bases. Furthermore it is mentioned, that Wu
and Tiso [WT16a] propose an approach of the quadratic manifold approach in the context

69
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of nonlinear substructuring.

7.1 Key Idea: Nonlinear Projection

The key in the projectional reduction is the linear mapping (3.2) expressing the physi-
cal displacements u in terms of the reduced generalized coordinates g as u = Vgq. In
the framework of nonlinear projection, the physical displacements u are expressed as a
nonlinear function

u="_I(z) (7.1)

with the reduced generalized coordinates z € R". T : R" — RY is a nonlinear mapping
from the reduced generalized coordinates to the physical coordinates, which is to be de-
fined later. Since I is not an explicit function of time, the velocities and accelerations are
then given as

2

i = ggz, it = 322 + gzgzz (7.2)
with the Jacobian o' /9z € RN*" and the second derivative tensor 9°I'/9z? € RN*"x",
When the nonlinear transformation (7.1) and its derivatives (7.2) are inserted into the
nonlinear equations of motion (2.41), one obtains the residual r similar to (3.3). As in
Chapter 3, the principle of virtual work leads to the equations of motion for a reduced set
of generalized coordinates, since the residual is forced to be orthogonal to the kinemati-
cally admissible displacements and is thus projected out. The variation of the displace-
ment field # with the nonlinear mapping is given as

or
ou = Ecsz = Préz (7.3)
with the tangent projector Pr = 0I'/dz being the Jacobian of the nonlinear mapping,
which spans the tangent subspace of the kinematically admissible displacements du. Ap-
plying the principle of virtual work results in the nonlinear projected reduced equations
of motion

2

T
2z 4+ PLCPrz + PLf(I'(z)) = Plg, (7.4)

PIMPrz + P%M@

which can be rearranged to
M,z +p+Cz+ f,(z) = 3,(z,1). (7.5)

The reduced mass matrix M, = PLMPr € R"*" is state dependent, C, = PLCPr ¢
R™" is the reduced damping matrix, f,(z) = PLf(T(z)) € R" the reduced internal

force vector and g, = P[g the reduced external force vector. The term p = PfM 3271;2'2
can be interpreted as a convective term which is state dependent, proportional to the
squared velocities and proportional to the curvature of the nonlinear mapping I'(z). The
structure of equation (7.5) is well-known from multibody dynamics and finite elements,
where frames are rotating and thus the mapping of the derivative of the generalized
coordinates to the velocities involves a state depending mapping similar to (7.2).

The equations of motion (7.5) describe the dynamics of a reduced system for an ar-
bitrary nonlinear mapping I'(z). If the mapping is linear, as in the common projective
model order reduction, the question of reduction boils down to the question of the sub-
space spanned by the basis V. However, for a nonlinear mapping, first the structure of
the nonlinearity is to be chosen before the parameters of the mapping are determined.
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7.2 Mapping on Quadratic Manifold

In the Quadratic Manifold (QM) approach, the mapping I'(z) is chosen to be a quadratic
function of z. This allows to keep the dimension of the reduced generalized coordinates z
small while still incorporating the information of MDs or SMDs. However, first the gen-
eral framework of quadratic projection is addressed before the incorporation of MDs,
SMDs and SDs is discussed. The quadratic mapping can be expressed as

r=vz+ %(@z)z (7.6)

with the linear part of the transformation V € RN*" and the quadratic part @ € RN*"x",
In index notation, the quadratic mapping (7.6) is written as

1
U = Vl']'Z]' + E@l‘]‘kZ]'Zk. (7.7)

To make the mapping unique, ® has to be symmetric with respect to the last two
indices, since the anti symmetric part is eliminated by the quadratic form of z. To il-
lustrate this, an anti-symmetric three dimensional tensor A € RN*nxn i5 added to the
symmetric @. If A = —Ay;, then the mapping (7.6) yields

1
i = Vijzj + 5 (O + Aijic) 22k

2
1 1
= Vi]'Z]' + §®ijkz]-zk + EAiijjZk

1 1 1
— V,]Z] + Z@ijkzjzk + szijkzjzk + Ez\iijjZk ( )
7.8
1 1 1
= VZ']'Z]' + 1®ijkzjzk -+ 11&1‘]‘]{2]'2]( — 11\1'1(]‘2]'2](

1 1 1
= V,‘ij -+ Z@iijjZk + ZAi]'ijZk — EAiijij

1
= Vl']'Z]' + 1@1']'](2]'2](

eliminating the anti-symmetric part of the quadratic mapping (7.6). Consequently, ® has
only N -n - (n+1)/2 independent entries, while the remaining entries are defined with
the symmetry constraint.

The velocities and the accelerations of the physical dofs are then expressed as

i=I=Prz, i=1=Prz+0z2z, Pr=V+0z (7.9)

with the tangent projector Pr € RN*" being a function depending linearly on the gen-
eralized quadratic coordinates z. If the mapping is chosen to be quadratic, not only the
linear part V but also the nonlinear part ©® of the mapping need to be defined. In the
following, two options are presented to form the quadratic part, if the basis is filled with
vibration modes. Furthermore, the force compensation method is presented to build ©
for an arbitrary linear basis V.

7.2.1 Modal Derivatives

If the linear part of the quadratic mapping (7.6) is composed of vibration modes, the
quadratic part @ should capture the change of the vibration modes with respect to a
change of the geometrical configuration. This change is expressed by MDs, which are
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constructed by the perturbation of the eigenvalue problem and hence capture the change
of one mode with respect to a geometry change in the direction of another mode shape.

Consequently, the quadratic part ® can be composed of MDs when the linear part V
is built using vibration modes. However, since the MDs are not symmetric with respect
to the last two indices 0;; # 0;;, the quadratic tensor @ is to be composed of the symmetric
part of the tensor Q) € RN*"*" which is filled with the MDs 6;; = d¢p;/91;:

Q[:,i,j] = 61']' (710)

The quadratic tensor © of the mapping is then given as the symmetric part of O
yielding

1
®ijk = > (Qijk + Qikj) . (7.11)

The approach using MDs as the quadratic extension for a linear part V composed
of vibration modes is motivated by the conceptual idea of MDs. Since they represent
the perturbation of modes, it seems to be a reasonable quadratic extension to the linear
mapping of modes. The concept of using MDs as quadratic extension is purely heuristic.
The suitability of this approach is illustrated in the Applications in Section 7.4.

The SMDs also capture the change of modes in a different fashion than the MDs.
Hence, they can also be regarded as reasonable extensions for the quadratic mapping ©.

7.2.2 Static Modal Derivatives

As a second approach, the quadratic part ® can be composed of SMDs if the linear part V
is built using vibration modes. Since the SMDs are symmetric with respect to the last two
indices, they form directly the second order tensor ©:

O i,j] = 05 (7.12)

with 6, ;; = d¢p;/0n;|°. It should be pointed out, that the MDs and the SMDs are built
using different assumptions. While the MDs stem from the perturbation of an eigenvalue
problem, where the nonlinear system is made both linear and parametric, the concept of
the SMDs is different. They are solely based on the quadratic part of the nonlinearity of
the forces which can be given a different interpretation in the context of a QM mapping.
This other route to define SDs named force compensation method or force compensation
approach is given next.

7.2.3 Force Compensation Method

In the previous two sections, the quadratic part ® of the nonlinear mapping was built
either from MDs or SMDs in the case, that V is built from vibration modes. When using
SMDs in the quadratic part, however, a condition is satisfied which can be generalized
to the force compensation method. The motivation of this approach is that the quadratic
nonlinearity of the internal forces is swapped to the quadratic manifold, so that the inter-
nal forces have not quadratic terms on the manifold.

When only the linear part V is given as vibration modes or any other type of modes,
the quadratic part can be uniquely determined, when the second derivative of the non-
linear forces with respect to the generalized quadratic coordinate z is forced to be zero:

Pf(I(z)) —0. (7.13)

2
0z z=0
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This condition defines the quadratic manifold such that it compensates the quadratic
part of the nonlinear forces with respect to the generalized coordinates z. Then, the
quadratic tensor © can be derived from (7.13) in the following manner:

After applying the chain rule yielding

’f ou\ ou Of u
L) =4 L= = 7.14
[<au2 az> 9z | ou aZZLO 0 7.14)
with the first and second derivative of the quadratic mapping given as
2
ul - _y a—’z‘ ey (7.15)
0z z=0 0z z=0
and the definition of the stiffness matrix K = % lsu) , one obtains the equation for the
u=
third order tensor © as
2
f -V]V+K-0 =0. (7.16)
ou?|,_,

From (7.16), the tensor @ is uniquely defined if K is not rank deficient. In other words,
there exists a unique quadratic tensor ® compensating the nonlinear forces to meet con-
dition (7.13) for any linear basis V. Thereby, V does not have to be composed of vibration
modes, but can be composed of any suitably chosen set of linearly independent vectors.
Furthermore, © is symmetric with respect to the last two indices, i.e., @y = Oy;.

For further analysis (7.16) is recast to index notation yielding

< 9 fi

ou;ou,,

) V1iVij + Ku01ij = 0, (7.17)
u=0

where k,I,m € {1,..., N} are the indices of the physical domain, and i,j € {1,...,n} are
of the reduced domain. Since (7.16) is evaluated at # = 0, the matrix V can be interpreted
as the linear mapping of the reduced, linear generalized coordinates g to the full displace-
ments u = Vgq as in the linear basis projection discussed in Chapter 3. Then the partial
derivative du,,/9q;|u=o yields V,,; and one can rewrite (7.17) using 0 fi/0u;|u=0 = Ky to

9 (3fc\ dun B
o, <8ul> aT;] . Vii + K615 = 0 (7.18)
d oy,
— (Kyy) — Vi + K0 = 0. 7.1
— aum( k1) a0 | i + Ku0ij = 0 (7.19)

With the chain rule, (7.19) can be simplified to

JK
v+ K63 = 0. (7.20)
aq].

The expression above can be rewritten in matrix-vector notation with I being the index
of column vectors and k being the row-index of matrices as

JK oK
aqu’(),‘ + KBZ']‘ =0 < K@,‘]’ = —aqu

v;. (7.21)

The solution of (7.21) which yields the Static Derivatives (SDs) 6; ;; is equivalent to the
definition of the SMDs (7.21), if the linear part V of the quadratic mapping is chosen to
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consist of vibration modes: V = [¢, ¢,,..., ¢,]. Hence, SMDs are obtained as a special
case of the general framework described by the force compensation approach using (7.13).

The approach presented above yields the same static derivatives as presented in Sub-
section 6.2.2. In the force compensation approach, the nonlinearity is mapped from the
internal forces to the quadratic part of the basis, leading to exactly the static derivatives
in the quadratic part. The fact that the two interpretations are equivalent for vibration
modes enables one to extend the concept of quadratic manifolds to bases different from
vibration modes, such as Krylov subspace vectors or other linear reduction techniques.
Since both concepts are interrelated, a physical interpretation of the SDs obtained within
the QM framework should be given, which is also illustrated in Figure 7.1.

For two given linear displacement fields v; and v,, where for instance v; is a static
displacement mode of a unit force at the tip of the beam and v, is the second vibra-
tion mode, there exists a unique corresponding force distribution f, and f, such that
f; = Kv; : i € {1,2}. If both force distributions are combined and applied to the nonlinear
system, the resulting displacements can be split in two contributions: the linear displace-
ments v1 + v7, and a nonlinear correction resulting from the combination of both forces
and the nonlinearity. As is shown below, the quadratic part of this nonlinear contribution
contains exactly all SDs associated to the displacement fields v1 and v;.

The nonlinear forces can be expanded using a Taylor expansion up to the quadratic
part as

2
f= s St 0 = K+ K+ O Jul ) (7:22)
with the linear stiffness matrix K € RN*N and the second order stiffness tensor K?) ¢
RN*NXN_ The external forces g in Figure 7.1 are the response of the linearized system
which is perturbed with the displacements v; and v, i.e.,

g = €eK(v1 +v2), (7.23)

where € > 0 is a load scaling factor. Setting the static equilibrium of the external forces g
with the Taylor expanded internal forces (7.22), one obtains

g=f (7.24)

s K (o1 +v2) :Ku-l-%K(z)uu-l—O(HuW), (7.25)

with the unknown displacement field u. When ¢ is assumed to be small, the solution can
be expanded with the bookkeeping notation as

u = €uq) + e2u(2) 4. (7.26)

Substituting (7.26) into (7.25) and comparing coefficients of different powers of €, one
obtains the leading order coefficient to the solution u as

u(l) = 01 + vy, (7.27)
and the second order approximation as

1
) =— EK’lK(Z)(m + 02)(v1 + 02) . (7.28)

Now, the SD 6;; is defined according to (7.17) as

0;; = —K 'K®vv,. (7.29)
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Thus, by using the fact that the SDs are symmetric, i.e., 0512 = 6521, u(2) from (7.28)
can be expressed in terms of SDs as

1 1
up) = E(Bs,n + 6512 + 0501 + 0522) = 0512 + 5(95,11 + 0520). (7.30)
Consequently, the displacement field is composed of all three static derivatives, 6; 11,

95,22 and 65/12.

7.2.4 Stabilization Through Orthogonalization

In some cases, the tangent projector Pr = V 4 @z is not well conditioned. As discussed
in Subsection 6.2.3, the subspace spanned by the linear part V formed by vibration modes
or other basis modes and the quadratic part ® formed by MDs or SDs is not necessarily
distinct. Then, for certain generalized coordinates z, the tangent projector Pr might be
poorly conditioned leading to poor or even no convergence in the Newton-Raphson loop
of the time integration scheme. To solve this issue, a Gram-Schmidt like orthogonaliza-
tion of the quadratic part with respect to the linear part can be applied, which alleviates
the convergence issue. The orthogonalization can be written as

n
@ v=(I-) vv/)0, with vfv;=1 (7.31)

i
i=1
so that the orthogonality condition of @ | y and V is fulfilled:
vie,y =o. (7.32)

This orthogonalization, however, breaks the quadratic manifold. If @ is built using
SDs for instance, the condition (7.13) is violated. In the other case, when the QM is con-
structed with MDs, the MDs are deteriorated so that the projection is performed on a
different manifold which is stabilized but not the original one.

The effect of the orthogonalization is commonly dependent on the size of the linear
part V of the mapping. In the extreme case of V being square and having full rank,
the orthogonalization (7.31) leads to ® vy = 0. However, if V is only composed of few
modes, the deterioration effect on the quadratic mapping due to the orthogonalization is
generally mild.

7.2.5 Time Integration

For solving the equations of motion (7.4) for a given set of initial reduced displace-
ments zp = z(t = 0) and velocities zg = 2(f = 0), a time stepping integration scheme
like the generalized-a method as outlined in Section 2.4 is necessary.

The generalized-a integration scheme has two different balancing time shifts «,, for
the acceleration forces and ay for the internal, external and damping forces. However,
since in the QM approach the basis is changed with the current displacement state, the
idea of balancing, which leads to an optimized numerical damping behavior, is hardly
physically reasonable for state dependent bases. In order to keep the time integra-
tion variationally consistent, so that both the acceleration forces as well as the internal,
external and damping forces are acting in the same tangential subspace Pr, the time in-
tegration recommended and used in the examples is the Newmark scheme, where the
balancing time shifts are set to zero, i.e. « 5 = am = 0. As a consequence, the tangential
subspace is consistent with the reconstructed displacement field u;, 1 = F(qj +1)- The nu-
merical damping can be adjusted by the damping constant & > 0, which determines the
parameters § and 7y as
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Displacement field vq Displacement field v,
(static mode)

(vibration mode)

A A
Force distribution 1 Force distribution 2
(static force to obtain v1: Kvq) (static force to obtain vy: Kvy)

Nonlinear displacement of combination of
both force distributions

linear displacement of force distribution 1

second order displacement = SDs:
1 1
0512+ 50511 + 50522

_l’_
higher order terms
O(u?)

Figure 7.1: Physical interpretation of the static derivatives (SDs): Two force distributions yield-
ing a linear displacement mode are applied to the nonlinear static problem. The result is a
combination of the two linear displacement modes, the SDs in a second order expansion and
higher order terms (O (u?)).

Note that for this beam example, both parent modes feature transverse displacements only,
while the SD features only an axial field.
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r=1ta ﬁ:iuﬂ)z, 0<a<03. (7.33)

Numerical damping is introduced by choosing a > 0. However, this choice destroys
the second order accuracy of the integration scheme, since the Newmark scheme is only
second order accurate for « = 0. In the author’s experience, the QM approach yields best
results with the Newmark integration scheme. Hence, this scheme using « F=uan=0is
derived in the following.

Similar to the balance equation (2.50), the balance equation for the j + 1-th time step
of the QM projected system is written as

M, 1% + Pit Crj1zjt1 + ]N‘r,j+1(zj+1) =8 j11(zjr1, tjv1)- (7.34)

The reduced quantities are obtained with the tangent projector Pr given with the
reduced generalized displacements z;, | at the j + 1-th time step:

Pr=V+ ®Zj+l' (7.35)
Consequently, the residual of the force balance equation (7.34) yields

r(zj11) =Pf <MPF:"~"]‘+1 +M®Ozj, 121 + CPrzj1 + f(T(zj41)) — gj+1> (7.36)

=Plraan(zj41), (7.37)

which is solved for in every iteration step with a Newton-Raphson iteration. The Jacobian
Kiynjs1 = or(zj11)/0zj11 necessary for the iteration is given exactly as

1 v .
Kimjin = gaPMPr+ g (PLCPr +2PIM®%;11 ) + PIK (T(zj11)) P

+P[ (MO%j,1 + COzjy1) + O rgu(z)41)

" (7.38)

with the residual of the full system rfull(Zj+1) from (7.37). The transposed third order
tensor multiplication 07 in the last term is expressed in index notation as

O = Oirrunk (7.39)

with i and [ being the row and column index of the resulting matrix.

The Jacobian given in (7.38) is the exact Jacobian leading to optimal quadratic conver-
gence in the Newton-Raphson iteration. However, it involves several terms arising due
to the change of the tangential projector Pr, which can be neglected. The approximate
Jacobian Ky, i1 = Kiyn,approx,j+1 then yields

1
Kdyn,approx,j+l = WPFMPF + IB’);ZPFCPF + PFK(F(Zj+1))PF' (7.40)

which can also be used in the Newton-Raphson iteration instead of Ky, ;11 from (7.38).
The convergence rate is not as good as with the exact Jacobian, though. In the author’s
experience it is problem dependent, if the approximate or the full Jacobian yields to faster
computations. In the given examples, the time integration is performed with full Jaco-
bians to benefit of the optimal convergence behavior.
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Figure 7.2: Kinematics of an Euler-Bernoulli beam.

7.3 Quadratic Manifold for von Karman Structures

The quadratic mapping introduced in Section 7.2 enslaves the displacement fields gath-
ered in ©® quadratically with the displacement fields in V. Hence, the QM approach is
only expedient, when the dominating nonlinearity is of quadratic nature. This is the case
in beam and shell formulations using the von Karman kinematic assumption. This as-
sumption is basically a simplification of the Green-Lagrange strain tensor, which is valid
for moderate displacements. In order to investigate the QM approach for von Karman
beams, the kinematic formulation and the polynomial structure of a beam with von Kar-
man assumption is investigated in the following. Furthermore, the relation to the Guyan
reduction technique described in Subsection 4.5.1 is discussed.

7.3.1 Kinematic Formulation and Polynomial Structure

For the derivation of the von Karman beam formulation (cf. [C+12, pp. 119 {.]), a beam
as depicted in Figure 7.2 is considered. The neutral axis, which is the set of all centroids
of the cross sections along the beam, is aligned with the x-axis in the initial configuration.

The vector of the reference configuration X = (x z) Tis given with the x and z position
of the neutral axis in the reference configuration.

According to the Euler-Bernoulli beam theory, the neutral axis has to stay orthogonal
to the cross section of the beam. Then the displacement field # of the cross section can be
expressed as

= <” - Zg) (7.41)

w

with the slope dw/dx of the beam. Note, that # and w are the displacements of the neutral
axis. The deformation gradient F is given as:

di u_ Pw Jw
P:aX+1=<axawax2 aéc +1. (7.42)
ox

The strain is expressed with the quadratic Green-Lagrange strain E. However, since
the initial configuration of the beam is aligned with the x-axis, only the xx-component of

the Green-Lagrange strain tensor is of interest yielding

ou Pw 1 [du Pw\* 1 /w)>
B 525 75 (5 75w ) 3 (5%) 74
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The von Karman assumption (cf. [FT01; C+12]) claims that the axial strains and the
curvature are small compared to the bending rotation. This condition is stated as

1/3u *w\’

resulting in the quadratic von Karman strain expression

2 2
ou w1 <aw> ‘ (7.45)

Ex,Karman = g - Z@ E g

When this strain is used with a linear constitutive law and the finite element proce-
dure is applied, one obtains a polynomial system of equations for the Euler-Bernoulli
Beam theory applied with von Karman strain assumption. The dofs can be partitioned
in membrane dofs u acting in x-direction and bending dofs w acting in z-direction re-
sulting in two coupled equations, which are given in index notation following Einstein’s
summation convention over repeated indices:

.. 2
Mol + Koyt + Ko 00k = g (7.46)
.. 1 2 3
My,ijt0; + Ké,i}wf + Kén?,ijkwfuk + Kl(),i}klw]'wkwl = 8b,i (7.47)

The subscripts b and m stand for bending and membrane respectively. The equa-
tions (7.46) and (7.47) are the coupled equations of motion for a von Karman beam for
the membrane and bending dofs, respectively. The first equation shows, that the mem-
brane dynamics is linear but coupled nonlinearly with the bending displacements, which
trigger the membrane forces quadratically. The bending restoring forces are linear and
cubic with respect to the bending displacements and coupled with the membrane dis-
placements in a bilinear fashion. The equations (7.46) and (7.47) can be rearranged to
highlight the structure of the coupling as

() () () () () = (%)
M, ) \w Kél) w K(Z)wu+K£3)www )

bm
(7.48)

7.3.2 Nonlinear Static Condensation

Consider a more general nonlinear system with separated nonlinear terms and neglected
damping for the sake of simplicity

Mii+ Ku + f(u) = g(t) (7.49)

and assume that the nonlinearity is such, that the equations can be written in partitioned
form as

My M) (in Kyq K12> <M1> <f1(u1,u2)> <g1(t)>
1) 4 + = ) 7.50
<M21 Mzz) <u2> <K21 K> ) \uy fo(u1) (1) (7.50)
Note, that in (7.49) and (7.50) a more general case is investigated which translates to
(7.48) with uy = w and up = u. In the partitioned equation (7.50), the nonlinearity is

coupled only in one way, so that the nonlinear forces f, are only dependent on u; and
not u,. If the inertia forces acting on u, are set to zero:

Myl + Mpii; =0, (7.51)
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the second line of (7.50) is an algebraic equation. It yields for the excitation forces g, ()
set to zero:

K21u1 + Kzzuz + fz(ul) =0. (752)
This algebraic equation can be solved for u; resulting in
wy = —K5) (Ko + fo(u1)). (7.53)

If this equation (7.53) is inserted into the first line of (7.50), one obtains the static
condensed equations of motion, where u; is eliminated under the condition (7.51).
Exactly the same result is obtained, if the nonlinear transformation

<Z;> - (—K;&(Kzfsl - fz(u1))> =T(m), (7.54)

in which u; is enslaved in terms of u, is applied to the linear and nonlinear restoring
forces in (7.50).

However, the mapping (7.54) can be applied not only to the restoring forces, as in the
nonlinear static condensation approach above, but also to the full system as in Section 7.1.
Then, the acceleration forces in the u; direction as stated in (7.51) are not forced to be
zero, since this is only the constraint for the kinematic mapping but not for the resulting
dynamic equation.

The procedure of nonlinear static condensation and full nonlinear mapping is sub-
sequently applied to the von Karman beam, which exhibits the decoupling structure as
given in (7.50).

7.3.3 Application to the von Karman Beam

Now, the theory developed in the previous section is applied to the von Karman beam
characterized by the partitioned system (7.48) with #; = w and u = u. The assumption
of the static condensation approach is, that the acceleration forces in the in-plane direction
are zero:

M ijii; = 0. (7.55)

Then the second line in (7.48) becomes an algebraic equation, which can be solved for
the membrane displacements u with the external forcing g, ; set to zero:

uj=— <K(1)

m,ij

-1
) Ki(nzg,ikl wywy (7.56)

This equation can be inserted into (7.47), yielding the equations of motion for the
membrane dofs with the bending dofs condensed out:

" 1 2 N\ 3
My,ijo; + Kl(n,i;'w]' - K;Sm),i]‘kwj (Kr(ngk> Kr(ng,lnownwo + Ké,z‘;‘kl WjwW; = &p,i- (7.57)
It can be recast to the condensed equation with all cubic terms gathered in Kﬁ.}kl:
My, 70 K(l) . K(?’) . — ) 7 58
b,ijWj + Ky ;Wi + Ky i WjWWr = &y (7.58)

In this equation, the nonlinear beam is modeled solely with bending displacements w,
whereas the membrane displacements u are forced to follow the bending displacements
in a static fashion. This equation is based, however, on the negligence of the membrane
dynamics by setting the inertia forces in x-direction to zero (7.55).
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As in the previous section, the static condensation approach can also be expressed in
terms of a nonlinear basis. The membrane dofs are then enslaved in terms of the bending
dofs by the following nonlinear mapping applied to (7.48):

<Z)> — I(w) = (‘ (Krg))_l Kffﬁ“’“’) _ <®mbww> (7.59)

w w

with the bending dofs w being the generalized quadratic coordinates z. If the mapping
(7.59) is applied only on the internal forces in (7.48) and the acceleration forces in mem-
brane direction are set to zero, i.e. Myii = 0, the resulting equations are exactly the

condensed equations of motion (7.57). The quadratic manifold is formed by the sym-
)

metric second oder tensor ®,,, = —(K,(?} ))_1K7(ﬂzb. Note that in the static condensation
approach, the quadratic mapping is only applied on the internal restoring forces and not
on the acceleration terms. Next, the force compensation approach is applied to the von
Karman beam and the similarities are pointed out.

7.3.4 Force Compensation Approach

Up to now, only the dofs of the beam are partitioned in bending and membrane dofs. If a
QM reduction is applied using the force compensation approach, first the linear basis is
defined. Assuming that the linear basis V is built using modes which are solely bending
modes, like the first vibration modes or Krylov subspace modes due to pure bending
forces, the linear basis V can be partitioned into

Vin
V= (w) (7.60)

with V,,, describing the membrane components and V), the bending components of the
linear basis V. Since the basis consists only of bending modes, the membrane components
are zero, leading to

Vo (“)b) . (7.61)

When the force compensation approach (cf. Subsection 7.2.3 is applied, the third order
tensor @ is defined in accordance with (7.16) and with &t = (w”,u”)T as

Z)iv]'. (762)

With the partitioning in (7.48), one finds

(KS,P)‘] 0 K%v,v,
o — (7.63)

OA
0 (") K2v,v,
with the second order derivative 92 f/du? of the internal forces forming the quadratic

2), Since V,;, = 0, (7.63) simplifies to

m

W\ ! @
@ — ((Km ) Kmebe> (7.64)
0

stiffness terms K,(jg and Klg

and the full quadratic mapping I’ is then given as
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M) ! @
L <u> _ {(Km ) Kmebe] 2z 7.65)
w Vyz
@) ! @
- <‘g > z+ <<Km ) Kmebe> 22. (7.66)
b 0
‘\/_/
v (€]

This quadratic mapping is the result of the force compensation approach applied to a
von Karman beam. This mapping shows clearly, that the membrane displacements u are
enslaved quadratically to the bending displacements w. Note that the mapping (7.65) is
equivalent to (7.59) with w = Vz substituted. This means that the force compensation
approach yields exactly the same basis as the static condensation approach for the von
Karman beam, given that the linear basis V is composed of bending displacements only.

7.3.5 Relation between QM Approach and Static Condensation

Using the mapping (7.59) solely on the internal forces and not the acceleration terms
results in the static condensation (7.57). However, when using the quadratic mapping
(7.59) in the nonlinear projection framework (7.4), the resulting equations of motion are
written as:

[(@mbw)TMQObw + Mb]ib + (G)mbw)TMmG)mbww

1 (7.67)
+ Kl(,l)w + Kl(fiw (Kf,?) Kfnzgww + Kl(f)www =g, +(@,,w)'g,
Or recast and written in index notation:
7 (3) " ~(3) L
[Mmlijklwkwl + Mb,ij] ZU]‘ —+ Mm,ijklewkwl (768)

1 ~(3
+ Klg,i;w]' + Klg,i}klwfwkwl = b, + OjikWk&m,j

with the membrane mass tensor Mf:z i Mi,10©4ij Ok and Oy = (Kfr},}i)fl K,(;gll].k.

When comparing the nonlinear projected equations of motion (7.68) with the equa-
tions of motion with static condensation (7.57), the difference between the nonlinear pro-
jection and the static condensation lies in the additional acceleration terms associated
with M,,, which are only in place in the nonlinear projection. They represent the inertia
effect in the membrane direction. They are only nonzero if the bending displacement w
is nonzero leading to a tangential motion of the nonlinear beam which carries a compo-
nent in membrane direction. This additional inertia is often negligible making the static
condensation a good choice in general. However, in special cases, they can play a non-
negligible role as illustrated in [RR14b].

Compared to static condensation, the QM approach carries the advantage that it is
applicable to systems where the decomposition in master and slave dofs is not possible
or convenient. Hence, the nonlinear mapping using a quadratic manifold opens the field
to other systems not comprising these properties.

7.4 Applications

To show the feasibility of the QM approach as well as its limits, it is applied to several
examples. The QM approach is an extension of the reduced basis approach introduced
in Chapter 3, the goal is the reduction of the number of dofs. Since, as will be discussed
in Part II of this thesis, the bottleneck of reduced models is very often the evaluation of
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the nonlinear, internal forces, decent speedup rates require the use of hyper-reduction
techniques. Hence, as the focus of this section is the kinematic fit of the QM assumption
for different applications, the computational times are not reported here.

7.4.1 Approach to Investigation of the Proposed Methods

The motivation of the QM reduction framework is the reduction of the number of dofs
when using (S)MDs for enriching the lin basis. The key idea is the quadratic enslavement
of the amplitudes of the (5)MDs to the master coordinates z representing the amplitudes
of the linear basis V. Consequently, the QM approach is compared to the simulation-free
approaches proposed in Chapter 6, where the (5)MDs are added to the basis V by not
enslaving them but giving them additional dofs.

However, when building a basis with modes and the corresponding (S)MDs, the lin-
ear basis has to be treated with an orthogonalization technique or a deflation technique
as proposed in Subsection 6.2.3 to keep the condition number of the linear basis in an ac-
ceptable range. A similar issue can also occur in the QM approach, where a stabilization
technique as proposed in Subsection 7.2.4 can be used to deteriorate the QM such, that
the quadratic part is orthogonalized with respect to the linear part and hence the system
remains stable.

As a result, basically three projection techniques are available which are investigated
here. First, the QM approach as defined in Section 7.2, where the quadratic part stems
directly from the MDs or from the SDs, which is equivalent to the force compensation
approach proposed in Subsection 7.2.3. Second, the QM approach, where the quadratic
part is orthogonalized with respect to the linear part in order to stabilize the reduced
system. And third, the approach proposed in the previous chapter, where the (S\MDs are
given independent dofs.

In addition to the projection techniques, different basis techniques are investigated.
Since they are mostly independent of the projection techniques, they can be combined
with all three projection techniques. An overview of the combinations are given in Ta-
ble 7.1, where the different choices of bases are combined with different projection tech-
niques and each combination is given a tag to identify the reduction method. Solely
the MD reduction technique is not combined with the QM-orthogonalized method, since
this combination does have stability issues in the numerical experiments. The basis tech-
niques are

¢ MD: Modal derivatives. The linear part of the basis V is composed of vibration
modes ¢; and complemented with modal derivatives d¢,/dy; as described in Sub-
section 6.2.1.

¢ SMD: Static modal derivatives. The linear part of the basis V is composed of vibra-
tion modes ¢; and complemented with static modal derivatives d¢;/d7;|* which
are computed as given in Subsection 6.2.2.

e KrySD: Static Derivatives using Krylov subspace vectors. The linear part of the
basis V is composed of Krylov-subspace vectors as given in Section 4.4. They are
complemented with the SDs corresponding to the basis.

¢ KrySD-SMD: Static Derivatives using both, a combination of vibration modes and
Krylov subspace vectors as linear part V of the basis. They are complemented with
the SDs corresponding to the basis.

In the following, different reduction techniques as given in Table 7.1 are investigated
on several examples. Some examples are discretized with beam elements, where the
displacement vector also contains rotational dofs additionally to the displacement dofs.
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Table 7.1: Combination of projection type (columns) and basis type (rows) for the numerical
experiments. The declarations are used to indicate the experiments.

oM QM-orthogonalized Linear Basis (LB)
MD QM-MD — LB-MD
SMD QM-SMD QM-SMD-orth LB-SMD
KrySD QM-KrySD QM-KrySD-orth LB-KrySD
KrySD-SMD | QOM-KrySD-SMD QM-KrySD-SMD-orth  LB-KrySD-SMD

Since the magnitude of the rotations is a matter of scaling, the relative error is expressed
with REy instead of RE as defined in (3.9), since the mass norm compensates for the
different kinematic quantities:

REy = VEer Mu(O)TMAU®) 000 i Au(t) = u(t) — tpe(t) (7.69)
\/ZteT uref(t) TMuref(t)

The mass matrix M is of the unreduced system, u,, is the reference displacement field
which is obtained using a full, unreduced simulation and u# = I'(z) is the restored full
displacement field of the reduced system, which is compared to the reference solution.

In all numerical experiments, the time integration is performed using the Newmark
scheme as outlined in Subsection 7.2.5. In the Newton-Raphson loop for solving the
nonlinear system of equations for the j + 1-th time step, the number of iterations is limited
to 30. If no convergence is gained within this number, the time integration is aborted and
declared as failed.

7.4.2 Clamped-Clamped Beam

The first example is the clamped-clamped beam as depicted in Figure 7.3. It is loaded
with a constant, time varying pressure on a part of the top side. The investigation is
conducted with two models: One model is discretized using von Karman beam elements,
whereas the other is discretized using solid elements with quadratic shape functions. The
parameters of both models are listed in Table 7.2.

First, the von Karman beam is investigated. A time integration is run for V com-
posed of five modes for the various reduction techniques outlined in Subsection 7.4.1.
The displacement results of the observer point depicted in Figure 7.3 are given in the
two top plots of Figure 7.5. The displacements of the reduced models show very good
agreement with the full, unreduced reference solution, independently of the reduction
method employed. Since the QM approach fits very well into the polynomial structure
of the von Karman assumption, this experiment is a verification of the theory employed
in Section 7.3.

Second, the clamped-clamped beam discretized with triangular elements as depicted
in Figure 7.3 is investigated. The reduction methods of Table 7.1 are applied and time
integrations of the reduced and the full models are conducted. The displacements of the
observed node depicted in Figure 7.5 show also an excellent match of the reduced models
with the reference solution for five modes. To compare the von Karman discretization
with the solid element discretization, the displacement of the observed node for both
full models is depicted in Figure 7.4. The trajectories of both full models show clearly
an excellent agreement in the y-direction indicating, that the von Karman assumption is
valid for the given clamped-clamped beam example.
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Figure 7.3: Beam model with external forcing for solid beam (top) and von Karman beam (bot-
tom).
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Table 7.2: Settings for the numerical experiments for the clamped-clamped beam. The proper-
ties of von Karman beam and solid discretized beam are equal.

Property solid beam von Karman beam

no of elements 326 40

no of dofs 1614 117

element type Tri6 Beam Elements (Karman)

Stress configuration plane stress plane stress

Young’s modulus E 210 GPa 210 GPa

Poisson ratio v 0.3 0.3

time step size At 1-10%s 1-107*

tond 0.2s 0.2s

x 0.1 0.1

excitation sin(72 - 27tt) + sin(100 - 27tt)  sin(72 - 27tt) + sin(100 - 27tt)

magnitude 2-10°N/m 2-10°N/m

solid beam - - - von Karman beam
I I I I
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Figure 7.4: Displacements at the observed node for the clamped-clamped beam discretized with
solid elements and with von Karman beam elements.
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Next the number of modes is varied and the relative error REy; is computed for the
different reduction techniques given in Table 7.1. The error measures for both models,
the solid and von Karman discretized beam are given in Figure 7.6. Only successful
numerical experiments are shown in the graph, whereas no markers are drawn when the
time integration failed. The following observations can be drawn from these results:

* In general, the quadratic enslavement of the dofs yields good results. This is in
accordance with the von Karman beam theory claiming, that the in-plane dofs are
related quadratically to the transverse dofs.

¢ The reduction error for the von Karman model test is in general lower than for
solid beam. Since the solid beam expresses the motion of every element nodes, the
motion can be considered as more complex making it difficult to approximate the
motion in order to obtain very low RE); values.

¢ Instability can be observed for the force compensation approach, i.e., using SDs in
the QM framework, for a higher number of modes. This is due to the fact, that
in-plane modes (modes number 7, 11, 14, 18) destroy the purely transverse linear
basis, which is then augmented with the SDs being completely in-plane motions.
Since both transverse and in-plane modes are in the linear basis V, the quadratic
part © consists also of both in-plane and transverse modes causing potentially ill-
conditioned tangential projectors Pr.

e The LB approach as introduced in Chapter 6 yields the best results, however at the
price of high number of dofs. As in Section 6.4, the accuracy of MD and SMD is
better than for KrylovSD bases.

To summarize, the QM approach works for the simple case of a straight beam which
is clamped on both sides. Even though the beam does not have to be modeled with von
Karman beam elements, the quadratic enslavement makes sense. However, the in-plane
modes can destroy the linear independence of the tangential subspace Pr making an
orthogonalization technique necessary to stabilize the problem. Nonetheless, the stabi-
lization destroys the accuracy of the QM mapping leading to a decreasing accuracy of the
reduced model even though the number of dofs increases. The MD approach by contrast
is always stable.

The success of the QM approach for the simple clamped-clamped beam is strictly
supported by the von Karman beam theory, which is valid for this setup. However, in
the following, more complicated examples are investigated.
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Figure 7.5: Displacements at the observed node for the clamped-clamped beam discretized
with von Karman beam elements (top plots) and continuum elements (bottom plots) for different
reduction techniques using 5 modes.
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Figure 7.7: Mesh of the arch with external forcing.

7.4.3 Arch

Next a slightly more complicated model compared to the clamped-clamped beam from
the section before is investigated. It is an arch carrying the same properties as the clam-
ped-clamped beam, however it is curved with a radius of R = 8 m. The mesh of the arch,
which is discretized also with triangular solid elements with quadratic shape functions,
is depicted in Figure 7.7. The properties of the model are given in Table 7.3.

Similar to the previous example, a time integration is performed and the displace-
ment results for the different reduction techniques using five modes for the linear part V
are investigated. The displacements of the observed node depicted in Figure 7.8 indi-
cate that some QM reduction techniques are successful, while others do not capture the
motion or do not gain convergence in the Newton-Raphson loop of the time integration.
The RE); measure overview for different reduction orders is given in Figure 7.9. The first
observation is, that all plain SD reduction techniques without orthogonalization fail to
converge. On the other hand, the QM-MD approach leads to incorrect results which do
not capture the motion of the reference solution. This deviation from the reference solu-
tion can be clearly seen in the time series plot in Figure 7.8. However, the SD approach
with stabilization through orthogonalization yields good results with few dofs. As in the
clamped-clamped example before, the accuracy decreases with a higher number of dofs,
since the orthogonalization destroys the quadratic mapping. Hence, the best QM results
are obtained with a moderate number of dofs. The greatest accuracy, though, is obtained
with the LB approach, similar as in the previous example. Once again, this accuracy
comes at the price of a clearly larger reduction base.

7.4.4 3D Membrane Structure

Next, a 3D membrane structure depicted in Figure 7.10 is investigated. The model is a
solid part which is thicker in the middle and clamped on the outer circular rim which
is colored in Figure 7.10. It is loaded at the bottom face with a constantly distributed
force acting in y-direction. The observed node is located nearly in the middle of the
bottom face. Figure 7.11 depicts the displacements in the y direction of this node for
different reduction schemes using five modes. Apparently, the QM-SMD and the QM-
KrySD-SMD projection techniques are not stable and diverge until the Newton-Raphson
loop does not converge within 30 iterations. But also the QM-Kry-SD does not follow the
reference solution. On the other hand, the orthogonalized QM approaches, especially the
QM-KrySD-orth and the QM-KrySD-SMD-orth represent the motion of the full system
fairly well.

The more general investigation of the REy is given in Figure 7.12. The QM ap-
proaches are mostly unstable and fail to converge for almost all reduction orders. How-
ever, the orthogonalization of the quadratic part with respect to the linear part stabilizes
the procedure leading to fairly good results. In this application, the Krylov subspace
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Figure 7.8: Displacements at the observed node of the arch example for different reduction
techniques using 5 modes.

bases perform better than the modal bases. This is due to the symmetry of the membrane
structure, which is also symmetrically loaded. The expected response of the structure
is also symmetric, and hence only symmetric displacement fields are good ingredients
in the linear part V of the quadratic mapping. Since the Krylov subspace technique ac-
counts for the symmetry in both the structure and the loading, the Krylov vectors are also
symmetric yielding the increase of accuracy compared to the modal approaches, where
several anti-symmetric modes are present. A second observation from the results given
in Figure 7.12 is that the orthogonalization in the QM framework does not lead to an in-
crease of the error with an increasing number of dofs. However, it is to be expected, that
the loss of accuracy would appear for higher number of dofs not displayed in Figure 7.12.
As in all examples before, the best accuracy is obtained with the LB approach. Again, this
comes with the price of large bases.
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Table 7.3: Settings for the numerical experiments for the arch and 3D membrane structure.

Property Arch 3D Membrane Structure
no of elements 325 9774

no of dofs 1616 52362

element type Tri6 Tet10

Stress configuration plane stress —

Young’s modulus E 70 GPa 70 GPa

Poisson ratio v 0.3 0.3

time step size At 1-10%s 4-107%s

tend 0.2s 0.01s

o 0.1 0.1

excitation sin(115 - 27tt) + sin(150 - 27t¢)  sin(500 - 27tt) + sin(1030 - 27tt)
magnitude 1-10°N/m 1-107 N/m?

7.4.5 Cantilever

The last application for the QM approach is the cantilever beam depicted in Figure 7.13.
As in the clamped-clamped beam, the cantilever is once discretized with von Karman
beam elements and once with quadratic solid elements. The cantilever is loaded with a
force at the tip. First, the von Karman discretization is investigated. For the given load
the tip displacements of all QM approaches using five modes perform extremely well,
as Figure 7.14 indicates. However, also the linearized system which is described by the
dark-green dashed line represents the motion in y-direction very well. This indicates
that besides the membrane effect responsible for the displacements in x-direction, the
transverse dynamics can be captured very well with a linearized system.

Secondly, the solid discretized beam is investigated. As Figure 7.15 clearly shows, the
QM approach fails to capture the dynamics of the beam for all types of bases, while the LB
approach and the linearized system capture the dynamics of the beam pretty well. Obvi-
ously the QM reduced system of the solid beam exhibits a stiffening effect as displayed
in Figure 6.1, while the von Karman discretized approach as well as the linearized ap-
proach shows a good behavior. To investigate this issue further, both cantilever models
are loaded statically with a constantly increasing force to examine the static displacement
behavior. Since the nonlinearity is only in the internal restoring forces, the nonlinearity
can be revealed by this static investigation.

In Figure 7.16, the responses to the static load on the tip are displayed in the left part
of the figure. While the displacements of the von Karman beam coincide with the solid
discretized beam for small displacements, they deviate for larger displacements. This is
not surprising, since the von Karman assumption neglects a term in the Green-Lagrange
strain, which is only admissible for small displacements. However, since not only the dis-
placement amplitude differs, but also the trajectory of the tip, which is depicted for both
examples in the right part of Figure 7.16, the mapping between in-plane and transverse
displacement differs in the two discretizations of the cantilever.

The von Karman beam exhibits a clear quadratic relation between the in-plane and
the transverse forces, as explained in Section 7.3. However, if the solid beam does not
follow the shape of the trajectory of the von Karman beam, the mapping of the internal
transverse forces with the in-plane forces is obviously different and not quadratic.

The first vibration modes of the cantilever are transverse modes. Consequently, as
shown in Figure 6.2 and Figure 7.1, the SMDs are in-plane displacement fields. In the
QM approach, the in-plane SMDs are forced to follow the transverse vibration modes
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Figure 7.9: Relative error of the arch for different reduction rates.

quadratically. However, if the internal forces violate the quadratic relationship which is
enforced by the kinematic relationship, a locking effect as illustrated in Section 6.1 arises.
Then artificial strains arise due to the mismatch of kinematically admissible displace-
ments and internal forces.

In Figure 7.16, the tip trajectory of the von Karman cantilever and the solid cantilever
diverge for a displacement at about 0.5m. At exactly this displacement value, the solid
cantilever starts to lock in the time series depicted in Figure 7.15 leading to the divergence
of the reference solution and the QM reduced solution. Consequently, the QM approach
fails to represent the motion of the solid cantilever. The von Karman cantilever, on the
other hand, has an internal relationship between the in-plane and transverse forces cast
into the formulation leading to accurate results for the cantilever example.

For the sake of completeness, the RE) errors of both cantilever discretizations are
given in Figure 7.17. They indicate a clear failure of the QM approach of the solid dis-
cretization while the QM reduction for the von Karman discretization works fairly well.
However, the orthogonalization destroys the QM mapping behavior for higher number
of modes leading to large errors. This is due to the fact that in-plane modes are taken
into the linear basis V leading either to instabilities due to bad conditioning of Pr or to a
disruption of the QM relation if the quadratic part is orthogonalized with respect to the
modes.

7.5 Discussion

The QM approach proposed in this chapter is twofold. On the one hand, it allows for the
reduction of the dofs to a minimum number. On the other hand, the approach is not very
robust for the applications to arbitrary structures. It is very suitable to structures where
the quadratic enslavement of certain dofs is backed by the polynomial structure of the
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Figure 7.11: Displacements in the y-direction at a node at the bottom face of the 3D membrane
structure for different reduction techniques using 5 modes.

Table 7.4: Settings for the numerical experiments for the cantilever.

Property Cantilever solid Cantilever von Karman
no of elements 326 40

no of dofs 1624 120

element type Tri6 Beam Elements (Karman)
Stress configuration plane stress plane stress
Young’s modulus E 70 GPa 70 GPa

Poisson ratio v 0.3 0.3

time step size At 1-107%s 1-107%s

tond 0.2s 0.2s

o 0.1 0.1

excitation sin(20 - 27tt) 4 sin(48 - 27tt)  sin(20 - 27tt) + sin(48 - 271t)
magnitude 3-10°N/m 1.5-10°N
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Figure 7.12: Relative error of the 3D membrane structure for different reduction rates and
techniques.

equations of motion, as it is the case for flat structures like beams and shells exhibiting the
von Karman kinematic assumption. Then, the QM approach can be seen as an extension
to the static condensation, where the inertia effects are consistently considered by the
projection onto a QM.

The range is however limited, when the structures are discretized without kinematic
assumptions. Then, the QM approach is reasonable when nonlinearities are triggered
while the displacements are moderate. This is the case in applications where the so-
called cable or membrane effect is dominating. Then, the triggering nonlinearity is of
quadratic nature and is well captured by the QM projection technique.

One further issue is the stability of the manifold projection. In many cases, the tan-
gential basis Pr of the quadratic manifold is ill-conditioned, leading to no convergence
in the Newton-Raphson loop of the time integration. This issue, however, can be solved
efficiently by an orthogonalization technique proposed in Subsection 7.2.4, where the
quadratic part is orthogonalized with respect to the linear part. This procedure, though,
destroys the QM mapping leading to larger error rates, especially for larger linear bases.

In the cases where the QM approach fails, the ingredients of the QM basis commonly
suit the nonlinear problem very well. If the lin basis modes and the corresponding
(SYMDs or SDs are given independent dofs which are not linked by a quadratic rela-
tionship, the reduced models are commonly very accurate, though equipped with many
dofs. This idea is already extensively discussed in the simulation free approaches of the
previous chapter.
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Figure 7.13: Cantilever discretized with triangular solid elements (top) and beam elements
using von Karman kinematics (bottom). The cantilever is loaded with a tip force in y-direction.
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Figure 7.14: Displacements at the marked node for the cantilever discretized with von Karman
beam elements for different reduction techniques using 5 modes.
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Figure 7.15: Displacements at the marked node for the cantilever discretized with solid ele-
ments for different reduction techniques using 5 modes.
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Figure 7.16: Static response of the cantilever discretized with von Karman beam elements and
triangular solid elements to an increasing tip load.
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Chapter 8

Comparison of Bases: Subspace Angles

When a system is reduced using a reduced basis as described in Chapter 3, the subspace
spanned by the reduction basis V is the essential contribution to the characteristics of the
reduced order model. This subspace can be parametrized in arbitrary variants, since an
infinite number of bases V cover exactly the same subspace. ROMs reduced with differ-
ent bases however covering the same subspace exhibit the same dynamics and lead to
exactly the same results, when the physical state is reconstructed. Hence, these equiva-
lent models can be seen as different realizations of the same physical model.

In this chapter, a method to compare different subspaces by the concept of subspace
angles is presented. It allows comparing different subspaces in a way that is not de-
pending on the specific vectors used to represent them. This chapter is based on the
publication [RGR15].

8.1 The Basis Problem in Nonlinear Reduction

The issue that an infinite number of systems have the same dynamics, is well-known
in systems theory as the realization problem [Ant09; Brol5]. To make the comparison of
systems independent of the realization, which is in its parts arbitrary, invariant system
theoretic properties can be used to describe the characteristics of the reduced system.
For linear systems, the most popular tool for investigation is the analysis of the transfer
function. This concept works, when only a few inputs and outputs are of interest as it
is most often the case in control theory. Hence, many reduction techniques rely on this
concept and minimize different error measures on the transfer function, mostly in the
Ho- or the Hoo-norm, (cf. [Ant09]).

In nonlinear systems, however, these system theoretic concepts are either not existent
or hard to compute. Hence, most error analyses rely on the comparison of the system
response to certain inputs requiring great computational effort. In nonlinear structural
dynamics, Nonlinear Normal Modes (NNMs) have been used for the characterization of
the reduction quality [KBA14; KA16]. They require the computation of the NNMs, which
is commonly performed with a shooting method, where a time integration is necessary.
Hence, these methods are also associated with high computational costs.

As a consequence, it is desirable to have a tool to compare the reduction bases for
nonlinear systems which do not require a full simulation of the system. In the following
a concept is proposed, where the reduction bases are compared in a mathematical rig-
orous way. It allows only to compare reduction bases and not measuring errors. As a
consequence, it cannot be directly applied to assess the quality of reduced bases. How-
ever, it can be used to assess the difference between one basis and another basis which
is known to be optimal, like the POD basis obtained for a given excitation. Then, for
instance simulation-free bases can assessed by the comparison against the optimal basis
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without requiring a full simulation.

8.2 Principal Angles of Subspaces: Measurements of Bases

The key idea of the comparison of bases is the concept of principal angles of subspaces.
This concept is well-known and used in numerical linear algebra, e.g., Betcke and Tre-
fethen [BT05], statistics, e.g., van Overschee and de Moor [VD93] or machine learning,
e.g., Dhillon and Modha [DMO01]. In model order reduction, it is used as interpretation
of the matrix interpolation used in parametric model order reduction, e.g., in Lieu and
Lesoinne [LL04], Lieu and Farhat [LF07] and Amsallem [Ams10, p. 93]. It has also been
used in damage detection in combination with the POD by de Boe and Golinval [DG03]
and sensor validation by Friswell and Inman [FI99] and Kerschen et al. [Ker+04].

In the concept of subspace angles, the n-dimensional subspace &; spanned by the
basis V1 € RV*" and the m dimensional subspace S, spanned by V, € RN*" embedded
in the N dimensional vector space are compared. If the subspace S; is not of higher
dimension than &, i.e.,, n < m, then n so-called principal angles 7, ..., ¥, exist, which
are recursively defined as

maximize cosvy; = fiT S
fi8i
subject to flT [fl,---,fl;ﬂ =0, giT [311---/31'—1] =0,
fieS, &€S Ifil,=1 lgl=1

with the i-th principal vector f; of subspace S; and g; of subspace S,. The principal vector
pair f; and g; are the closest possible vectors with unit length which are both members
of the corresponding subspaces and orthogonal to the previous principal vectors of the
same subspace. The subspace angles are the angles between the two vectors of the prin-
cipal vector pair indicating the difference between the two subspaces S; and 5.

Two relevant properties arise from the recursive definition (8.1). First, the subspace
angles are bound to the interval between zero and 7t/2:

(8.1)

0<vy,<m/2 V ie{l,...,n}, (8.2)

since the inner product of two unit vectors cannot be larger than one and the subspace
angles are defined to be positive. Secondly, the subspace angles are defined to be mono-
tonically increasing

Yi < Yit1 A iE{l,...,Tl—l}, (8.3)

so that the first subspace angle 1 is the smallest and the last subspace angle v, is the
largest subspace angle.

The concept of subspace angles identifies the separated and overlapping dimensions
of two subspaces. For instance, if S; and S, are equal and of same dimension, then all
subspace angles are zero. If 7, = 0 and & is of higher dimension than §; (m > n), $;
is fully included into S;. On the contrary, if all subspace angles are equal to 77/2, i.e.,
Yo = 7/2, then the two subspaces are fully orthogonal and do not share any vector. In
the case between the two aforementioned cases, principal vectors associated with small
principal angles indicated directions in the subspaces, where &; and S, overlap, and on
the contrary, principal vectors associated with large principal angles indicate directions,
where S; and S, are different.

This concept is illustrated in Figure 8.1 where two two-dimensional subspaces S; and
S are depicted in R3. S is realized by the basis V| = (vn,vu) and S is realized by
V, = (1721, vzz). Both subspaces are planes in three dimensional space, which have to
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7

Figure 8.1: lllustration of the concept of subspace angles

include the origin O. The first principal vectors f; and g, are equal and yield the inter-
section of the two planes, which is a line. The corresponding principal angle 7, is equal
to zero. The second principal vectors f, and g, are the vectors of S; and S, perpendic-
ular to the intersecting line. They yield the angle between the two planes, which is the
second principal angle ;. Whereas in this example the first principal angle y; is always
zero, the second principal angle can have all values between 0 and 7/2. For 7> = 0, both
planes coincide, for v, = 71/2 both planes are orthogonal.

In the illustration of a three dimensional vector space, the concept of subspace angles
of subspaces with different dimensions can also be interpreted. The principal angle of a
one dimensional subspace compared to a two dimensional subspace is the angle between
a line and a plane. In this setup, the full separation of subspaces is possible, if the line is
perpendicular to the plane and the principal angle is hence 77 /2. If two one dimensional
subspaces are compared in IR?, the principal angle is the angle between the two lines
through the origin.

The computation of the principal angles and the principal vectors is given in Algo-
rithm 1. It involves solely linear algebra manipulations, which is computationally no
big burden, if the dimensions of the subspaces n and m are moderate. Further insights
into the concept of subspace angles are given in the exhaustive textbook of Golub and
van Loan [GV12]. The computation of the principal angle using the arccosine operation
in line 4 in Algorithm 1 can lead to numerical errors when the principal angles are small.
However, Bjorck and Golub [BG73] discuss a way to circumvent this issue by computing
the small angles by an arcsin function. If the principal angles and vectors should not be
computed in the Euclidean L? norm but in the M-norm, since e.g. different displacement
variables like displacements and rotations are used, the subspace angles can be com-
puted according to the algorithms proposed in [KAQ2]. In the following applications,
the subspace angles are computed according to the straightforward algorithm given in
Algorithm 1, since the computation did not exhibit any numerical issues for these cases.
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Algorithm 1: Algorithm for computing the principal vectors and subspace angles
of two bases V1 and V5, based on [GV12]
Input :Reduced bases Vi € RN*" and V, € RN*™ spanning &1 and &,
Output : Vector of subspace angles y = (71,...,7u),
principal vectors F = (f,..., f,), G = (81,---,8,)
Vi=QR;, V2=Q,R
C=0Q{Q
ULV! = C with L = diag(c)
v = arccos(0)
F=(fi,....f,) = QU
G= (81/‘“/371) =Q,V

N Ul R W N -

8.3 Applications

To show the usefulness of the subspace angles and the corresponding principal vectors,
the POD reduction basis and the simulation free reduction basis are investigated with
this tool on the c-shape example of Section 6.4. The model is run with exactly the same
model parameters as there, however the simulation time is taken longer from 2s to 3s.

First, a POD is run. In the case when no parameters in the model are changed, the
POD basis is the optimal basis as discussed in Chapter 5. The first 100 singular values of
the POD are depicted in Figure 8.2. They indicate that the model is of limited complexity,
since the decay in the first 10 to 20 POD modes is over 3 to 4 orders of magnitude. To
check the results, one simulation is run with 10 POD vectors yielding a relative error of
RE = 8.7% and with 20 POD vectors yielding RE = 0.12%. The first 10 POD modes
can be considered as necessary to obtain good results while the first 20 POD modes are
necessary for very good results. For the sake of better presentability, the first 10 POD
modes are used as benchmark modes to be captured by a simulation free basis.

The naive basis composed solely of vibration modes has been shown to fail in captur-
ing the nonlinear effects, as illustrated with the static example in Section 6.1. A similar
investigation is performed by comparing purely modal bases of different sizes against
the ten dimensional POD basis using subspace angles. The results of this investigation
are depicted in Figure 8.3. As expected, a basis of 10 vibration modes is not equal to
the POD basis and consequently many subspace angles are fairly large. However, if the
number of vibration modes in the basis is increased, the subspace angles with greater
indices decrease only slowly, seemingly converging to a fairly large value.

To investigate this issue further, the principal vectors for the subspaces spanned by
40 vibration modes versus ten POD modes are computed and depicted as displacement
tields of the mesh in Figure 8.4. They confirm the observations already made. In ac-
cordance with Figure 8.3, the first four subspace angles are comparably low, and no
difference can be seen in the principal vectors, which are plotted as displacement field.
However, the principal vectors with larger indices show some deviation, so that the blue
principal vectors of the modal subspace do not cover fully the green principal vectors of
the POD subspace. A closer look at the difference reveals that the main difference be-
tween the modal subspace and the POD subspace is the contraction and the expansion of
the mesh.

As discussed in Chapter 6, the linear basis fails to capture the nonlinear effects of the
large rotation. These large rotations cause an enlargement of the mesh when they are lin-
earized. Consequently, the linear bases fail to capture the displacement fields necessary
for displaying nonlinear large rotations. However, the (static) modal derivatives are able
to capture them.
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Figure 8.2: Singular values of the snapshot matrix built by a full training simulation. The left
singular vectors associated with the first ten singular values were used as POD-basis.

Hence, the subspace angles between the first ten POD modes and a simulation-free
basis composed of the first 6 vibration modes and 14 SMDs are computed. The SMDs
are selected based on the frequency weighting algorithm introduced in Subsection 6.2.4.
The principal angles of this computation are also given in Figure 8.3 together with the
principal angles of the purely modal bases. The subspace angles of the simulation-free
basis composed of SMDs are all fairly small indicating a good match with the POD basis.
Also the principal vectors of the two subspaces, which are depicted in Figure 8.5, show
an extremely good overlap of the simulation-free basis and the POD basis. The principal
vectors of the simulation-free basis (blue) practically cover the principal vectors of the
POD basis.

The similarity of the simulation-free subspace and the POD subspace is also validated
with a time integration of the simulation-free reduced system. It exhibits a relative error
of RE = 2.0 % indicating that the subspace is chosen well with the simulation free tech-
nique. To recall, the relative errors of the POD reduced system were 8.7 % for 10 POD
vectors and 0.12 % for 20 POD vectors. Given that the simulation free technique does not
know the excitation, which the POD method does, the simulation-free basis turns out to
be very effective for these types of geometrically nonlinear problems.

The concept of subspace angles thereby turns out to be a valuable tool to compare
the subspaces spanned by the bases. Furthermore, the principal vectors can be used to
identify the similarities and differences of subspaces. Hence, they are an ideal tool for
post-processing, debugging, subspace identification of certain nonlinear methods and
the design of new methods.
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10 modes 20 modes
—— 30 modes —x— 40 modes
6 modes + 14 SMDs
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Figure 8.3: Subspace angles of 10 POD modes and a number of vibration modes (blue lines) for
the c-shape example. The green line denotes the subspace angles of the POD basis versus a basis
composed of 6 vibration modes + 14 SMDs selected with the frequency weighting technique as
explained in Subsection 6.2.4. The corresponding principal vectors are depicted in Figure 8.4 and
Figure 8.5.
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for the c-shape example.



Chapter 9

Summary of Part |

In the previous six chapters, various aspects of the reduced basis method have been dis-
cussed, which are summarized in this chapter. The main question in projective model or-
der reduction is the determination of a reduced basis V € RN*" spanning the subspace,
in which the relevant dynamics of the system of dimension N happens. The projection of
the system onto the subspace spanned by V is equivalent to a coordinate transform with
a subsequent truncation, resulting into a system on n reduced equations.

In linear structural dynamics, the established reduction methods for determining V
rely on system intrinsic properties, which are often supported by system-theoretic con-
cepts. This is due to the fact, that the linear system is fully characterized by its mass,
stiffness and damping matrix, which can be analyzed by system theoretic procedures re-
lying on linear algebra operations. The two methods covered in Chapter 4 are modal
truncation, which relies on the decoupling of states, and the Krylov subspace method,
where the higher order displacement fields of the force inputs are regarded. It is further
shown, that the Krylov subspace method exists also in systems theory, where the method
matches the moments of the transfer function.

In nonlinear systems, the characterization of the system solely with matrices is not
possible, though, since the nonlinear operators cannot be cast into matrix-vector opera-
tions. As a consequence, the state-of-the—-art reduction method for nonlinear systems, the
Proper Orthogonal Decomposition (POD) discussed in Chapter 5, takes a detour over a
statistical evaluation of training sets obtained with expensive training simulations of the
full, unreduced system. While this method builds an optimal basis for the given training
sets and is not limited to structural dynamics systems, the requirement of the full training
simulation is very prohibitive in many contexts, where the costs of the full simulation are
not affordable or even infeasible. Furthermore, the method is very sensitive with respect
to the training sets requiring them to be representative and not too different for the cases
for the reduced system.

The disadvantages of training simulations associated with the construction of a re-
duced basis are the motivation for the so-called simulation-free reduced basis methods
addressed in Chapter 6. There, extensions to the so-called lin basis obtained from a lin-
ear reduction method applied to the linearized system are addressed. As exemplarily
shown, these lin bases exhibit severe locking when applied to geometrically nonlinear
systems making them useless for the reduction of these systems. However, they form the
starting point for the established modal derivatives (MDs) and static derivatives (SDs),
which capture the nonlinear effects of the system. The concatenated lin basis and the
corresponding MDs or SDs form an excellent simulation-free basis suited for geometri-
cally nonlinear problems. The MDs are based on the perturbation of vibration modes and
require the solution of multiple singular systems in order to obtain the augmentation vec-
tors for the lin basis. Hence, this technique is limited to a lin basis composed of vibration
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modes. The SDs, on the contrary, base on the perturbation of the nonlinear internal forces
and are hence applicable to every lin basis. Furthermore, they are less computational ex-
pensive, since only one non-singular system needs to be solved for multiple right hand
sides.

The computation of both the MDs and the SDs requires derivatives of the nonlinear
internal forces. For this computation, a numerical differentiation approach is suggested,
which requires solely the computation of tangential stiffness matrices. The differentiation
scheme, however, is sensitive with respect to the step width requiring a tuning of this
parameter. This is achieved by exploiting the fact, that the SDs are symmetric allowing
for tracking the accuracy of the differentiation by evaluating the symmetry error. The
quadratic growth of the number of the augmentation vectors with respect to the lin basis
is a further issue of the simulation-free reduction schemes covered. Hence, selection
strategies which heuristically rank the importance of the SDs or MDs are discussed. In the
numerical experiments, reduced bases built with the different simulation-free methods
are investigated. Thereby, the MDs turn out to be excellent ingredients for the reduced
basis. The SDs perform also well, especially when combined with a selection strategy. For
the examples which are investigated, the frequency weighting strategy in combination
with static modal derivatives turns out to be the best, since it provides good performance
with computational ease.

A second attempt to address the quadratic growth of the number of SDs and SMDs
with respect to the size of the lin basis is given in Chapter 7. In this novel approach
named Quadratic Manifold (QM), the basis projection is not linear but nonlinear, project-
ing the equations of motion onto the tangent space of the nonlinear transformation. The
nonlinear function is chosen to be quadratic, enslaving the modal derivatives with the
vibration modes which form the linear part of the transformation. Alternatively, when
the linear part is built from basis vectors different from vibration modes, the so-called
force compensation approach allows to transfer the quadratic part of the nonlinear forces to
the quadratic transformation. Interestingly, it turns out that the resulting quadratic part
is composed of the SDs. Hence, the QM approach provides a further theoretic foundation
to the SDs.

The QM approach allows to keep the number of unknowns minimal, since the MDs
or SDs are not treated as independent dofs. Especially when dealing with flat structures
using von Karman kinematic assumptions within beam or shell elements, a sound theory
is derived supporting the good performance for applications with these structures. The
QM approach, however, turns out to be fairly unstable for discretizations using solid
elements. This can be solved by an orthogonalization procedure, which destroys the
original form of the quadratic mapping, though. Since sufficient accuracy is gained only
for membrane-dominated motions, as shown in the extensive numerical investigation,
the applicability of this method is fairly limited.

The key in projective model order reduction is the subspace spanned by the reduced
basis V. However, since the subspace is always realized by a parametrization leading to
the projection basis V, the comparison of subspaces is a non-trivial task. In Chapter 8,
subspace angles and principal vectors are suggested as main tools for the comparison
of reduced bases. Thereby, the angles give an insight to the proximity of the two inves-
tigated subspaces and detect intersections and differences. But not only the principal
angles, but especially the principal vectors can be used to identify the differences of the
subspaces making physically-based insights possible. In the context of geometrically
nonlinear reduction it is shown, that even a large reduction basis composed of vibration
modes does not capture the displacement fields necessary to describe rigid body rota-
tions of elements. It is further shown that the augmentation vectors in the simulation
free approaches like static derivatives capture these displacement fields.
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Part I of this thesis discusses extensively the reduced basis approach which reduces
the dimension of the system from a large number N to the small number n. As a conse-
quence, the solution of the system of linear equations necessary in the Newton-Raphson
loop is accelerated. However, since the reduced nonlinear internal forces cannot be pre-
computed a priory, the computational bottleneck of the reduced basis system is the con-
struction of the internal forces and, in implicit time integrations, the tangential stiffness
matrix. This issue, which is addressed with hyper-reduction, is the topic of the second
part of this thesis to follow.
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Chapter 10

The Need for Hyper-Reduction in Nonlinear
Model Order Reduction

The reduced basis technique applied to nonlinear systems reduces the size of the semi-
discretized equations of motion from dimension N to the much smaller dimension n. As
a consequence, the number of unknowns and hence the computational cost associated
with the solution of linearized systems of equations is drastically reduced. However,
after accelerating the linear systems solver necessary in implicit time integration schemes
by reducing the number of unknowns, a new computational bottleneck emerges, which is
still associated with the size of the full, unreduced system: the calculation of the internal
nonlinear forces. For accelerating the computation of these nonlinear internal forces,
the term hyper-reduction was created by Ryckelynck [Ryc05], even though attempts to
address this issue were undertaken before.

In the following section, the problem of hyper-reduction is formulated and different
approaches are discussed in the following three chapters. They are applied to rather
academic problems in order to give an insight to the methods. In Chapter 15, they are
applied to a real-life system to demonstrate the applicability in an industrial context.

10.1 Problem Statement

For linear systems, all members in the equations of motion are linear functions: The in-
ertia forces are a linear function of the generalized accelerations, the damping forces are
a linear function of the generalized velocities and the restoring forces are linear with re-
spect to the displacements. Hence all these functions can be expressed as matrix-vector
products. For projective model order reduction, this is of eminent benefit, since the matri-
ces can be projected on the reduced basis as depicted in Figure 10.1 resulting in reduced
matrices which can be precomputed.

In nonlinear systems, some functions in the equations of motion are nonlinear by def-
inition. In contrast to the linear functions, no underlying matrices can be precomputed.
Since the nonlinearity of the restoring forces in geometrically nonlinear finite elements
are formulated on the element level, the reduced internal force vector still requires the
computation of the full, unreduced, nonlinear internal force vector, which is projected
onto the reduction basis afterwards.

This computational sequence depicted in Figure 10.1 is the new computational bot-
tleneck in both static and dynamic simulations. It requires the expansion of the reduced
coordinates g to the full displacement field u = Vg, the computation of the full non-
linear internal force vector f(Vq) and the projection onto the reduced basis V to obtain
f, = VIf(Vq). While the number of equations is reduced to n < N and hence the
burden of the original dimension N of the problem is overcome in the solution, it is still
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Figure 10.1: Matrix-vector operations for a linear reduced system (top) and a nonlinear re-
duced system (bottom). The nonlinear system requires the evaluation of the nonlinearity in the
physical, unreduced domain.

present in the evaluation of the nonlinearity. Even worse, since the physical states of the
unreduced system have to be reconstructed from the reduced generalized coordinates
and projected back onto the subspace, the computation of the reduced nonlinear forces is
even more costly than the plain evaluation of the nonlinear forces in the unreduced, high
dimensional domain.

In nonlinear static and implicit time integration scenarios, it is not only the reduced,
nonlinear internal force vector which has to be computed in this computational sequence,
but also the reduced tangential stiffness matrix. They have to be computed in every
single step of the Newton-Raphson loop of static or dynamic computations, since both
the reduced internal force vector and the reduced tangential stiffness matrix are functions
of the reduced generalized coordinates.

As a consequence, hyper-reduction methods have been developed to reduce the com-
putational cost associated with the computation of the reduced forces. Their key idea
is the approximation of the reduced internal force vector f,(q) and the tangential stiff-
ness matrix K, (q) by the hyper-reduced internal force vector f, , and tangential stiffness
matrix K, j,:

fa) =V V)= f,,,, Klq) =V'K(Vq)V~xK,,. (10.1)

The resulting equations of motion of the hyper-reduced system are then the reduced
basis system with the hyper-reduced internal forces:

qu + er + fr,hr =& (10'2)

The matrix M, = VT MV is the reduced mass matrix, C, = VI CV the reduced damp-
ing matrix and g, = V"’ g the vector of the reduced external force.

As (10.2) and (10.1) clearly indicate, hyper-reduction is an approximation of the re-
duced internal forces on top of a reduced basis method. Thereby, hyper-reduction can
be realized in different ways. The approaches named DEIM and ECSW, which are dis-
cussed in Chapters 12 and 13, exploit the sum-structure of the finite element assembly,
see Subsection 2.3.2, and provide an approximation of the reduced forces based on less
summands. The computational speedup is realized as less elements of the mesh are eval-
uated. The polynomial tensors approach discussed in Chapter 11 takes a different tour
and exploits the polynomial structure of the nonlinear function for the special case of St.
Venant-Kirchhoff materials. There, the computational gain is associated with the smaller
costs of evaluating a multidimensional polynomial for small n compared to the evalua-
tion of the reduced internal forces as V' f(Vgq).
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10.2 Measurement of Hyper-Reduction Error

Since the hyper-reduction is applied to a reduced basis system, two errors are cumu-
lated when a hyper-reduced model is compared to the full, unreduced high dimensional
model. The first error is due to the reduced basis, as discussed in Section 3.3. The second
error is due to the actual hyper-reduction approximation.

In order to assess the hyper-reduction methods properly, two error measures are used.
The full relative error RE gives the relative error RE of the hyper-reduced model relative
to the full, unreduced model. This error is caused by both the reduced basis approxima-
tion of the displacements and the hyper-reduction approximation of the nonlinearity. To
recall the relative error RE from (3.9):

vV Eier Au()TAu(t) .
RE; ) = 100%  with  Au(t) = u(t) — tree(£). 103
f/h o (DT wi u(t) = u(t) — me(t) (10.3)

Hence, for the REf, u is the displacement field of the full, unreduced simulation
and u = Vg, is the reconstructed full displacement field of the hyper-reduced model.
For the second error measure REy,, the relative error measuring the error due to the
hyper-reduction approximation, u,f = Vg is the reconstructed full displacement field
of the reduced basis model and u = Vg, is the reconstructed displacement field of the
hyper-reduced model. In the numerical experiments of hyper-reduced systems, both
error measures are reported.

In the following chapters, several numerical experiments are conducted, of which the
wall times for the computation are reported. All numerical experiments are run with the
nonlinear finite element package AMFE, which is presented in detail in Chapter A. It is
written mostly in Python with the time critical parts implemented in Fortran in order to
achieve computation times in the range of commercial finite element codes. All experi-
ments were conducted on a workstation with 32 GB RAM and an Intel Xeon processor
operating at 3.6 GHz.







Chapter 11

Polynomial Tensors

Hyper-reduction, as pointed out in the previous chapter, is about the approximation of
the nonlinearity in the equations of motion. The common concept to achieve this is the
exploitation of the structure of the nonlinear terms being a sum, since the nonlinear term
is obtained by adding up the contributions of all elements in the mesh. Hyper-reduction
using polynomial tensors is different. It is not the sum structure of the nonlinearity, which
is exploited, but the polynomial structure of the nonlinearity, which is approximated us-
ing a Taylor series. When the Taylor series converges quickly, a reduction is achieved by
storing the coefficients of the Taylor series of the reduced system, making the computa-
tion of every elemental contribution unnecessary.

This can be a huge benefit in many cases, since the elemental formulation is not ex-
plicitly called in the computations of the reduced system. Furthermore, this allows for
an export of the reduced model in a standardized way, since only the polynomial tensors
need to be exported similar to the export of the mass and linear stiffness matrix. Hence,
no element libraries have to be called for time integration. However, the polynomial ten-
sors technique is only limited to models with a particular nonlinearity like finite element
systems with St. Venant-Kirchhoff materials.

The approach to hyper-reduce geometrically nonlinear systems by using polynomial
expressions can be traced back at least to Nash [Nas78] and Almroth et al. [ASB78],
where geometrically nonlinear, flat and curved beams, plates and shells are reduced us-
ing polynomial coefficients. They are computed by directly using the finite element for-
mulation of the elements. Similar approaches are taken in Przekop et al. [Prz+04] and
Shi and Mei [SM96]. Since these techniques require specialized finite element codes, in-
direct methods for the use with black-box commercial finite element codes are proposed
by Muravyov and Rizzi [MR0O3] and Kim et al. [Kim+13]. These methods compute the
polynomial coefficients by evaluating the nonlinear forces resulting from prescribed dis-
placements. An enhancement to these methods is proposed by Perez et al. [PWM14]
and Phlipot [Phl+14], where the tangential stiffness matrix instead of the internal force
vector is evaluated leading to clearly reduced offline costs, especially for larger models.
Another approach proposed by McEwan et al. [McE+01] called implicit condensation
identifies the polynomial coefficients by prescribing external loads and evaluating the
resulting displacement fields of the nonlinear system.

The Implicit Condensation and Expansion (ICE) method proposed in Hollkamp and
Gordon [HG08] addresses the two tasks of computing augmentation vectors for the re-
duced basis as discussed in Chapter 6 and determining the polynomial coefficients at
once. Thereby, this method evaluates the displacement fields of the nonlinear system
triggered by prescribed external loads.

The polynomial tensor approach is widely used for geometrically nonlinear applica-
tions like aeroelasticity, see for instance Abdel-Motaglay et al. [ACM99], Guo and Mei
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[GMO03] and Ghoman and Azzouz [GAMO09] or computer graphics, e.g., Capell et al.
[Cap+02] or Barbi¢ and James [BJ05]. In the latter, the polynomial tensor approach is
used in combination with the static modal derivatives discussed in Subsection 6.2.2. Fur-
thermore, substructuring techniques have been developed using polynomial expansion,
e.g., Kuether and Allen [KA14] and Kuether et al. [KAH15], as well as methods for use
with uncertainty, e.g., Capiez-Lernout et al. [CSM14]. For an overview of the differ-
ent methodologies and applications, the interested reader is referred to Mignolet et al.
[Mig+13].

11.1 Key Idea: Taylor Expansion

The key idea in polynomial tensor hyper-reduction is the approximation of the nonlinear
restoring forces f,(q) € R" as a Taylor expansion around the point of equilibrium. As in
linear systems, the displacements g € R" are zero at the point of equilibrium, so that the
constant part is zero. The Taylor expansion up to the k-th order is then:

_afr 1azfr 1a3fr 1akfrk

— — _ k+1
P = 300 F 3500491 g 119 T g T TOWT) (11.1)
1 1 1
= KWg+ EK(Z)qq + 61<(3>qqq + F1<<">q’< +0(g"h). (11.2)

Since the internal force vector is a multidimensional function, the Taylor coefficients
are symmetric arrays of dimension k + 1. They can be interpreted as higher order stiffness
arrays K (1), ..., K (k), of which the first array K 1 =9 f,/0q yields the reduced stiffness
matrix K, € R"*". The second term is the reduced quadratic stiffness tensor K? =
0% f,/9q* € R™ ™" and so on. Throughout this thesis, the polynomial tensors K" are
defined as the k-th derivative of the reduced internal force vector o* f,/dg* without the
coefficient 1/k! of the Taylor series. It is pointed out, that in several publications the
coefficients 1/k! are added to the tensors.

The size of the coefficient arrays grows exponentially with the number of members
in the Taylor series. As the higher order polynomial terms are very inefficient for both
storing in memory and evaluating through multiplication, a polynomial tensors hyper-
reduction is only efficient when only few members of the Taylor series (11.1) are necessary
to approximate the nonlinear forces accurately. Hence, the convergence of the series is
of extreme importance. To assess this, the mathematical structure of the internal forces
of a St. Venant-Kirchhoff material, which mimics the linear-elastic behavior for large
deformations, is investigated next.

11.2 Polynomial Structure for St. Venant-Kirchhoff materials

For analyzing the polynomial structure of the restoring forces of a hyperelastic St. Venant-
Kirchhoff material, the Total Lagrangian formulation discussed in Section 2.1 is used.
The deformation is characterized by the deformation gradient F which is the spatial
derivative of the continuous displacement field # with respect to the undeformed con-
figuration X. In the finite element approximation, the continuous displacement field is
expressed by the nodal displacements u#, which are the amplitudes of the spatial shape
functions N. As a consequence, i is a linear function of u. As the spatial derivative of
the deformation gradient acts only on the shape functions (cf. (2.24)), F is a function of
polynomial order one with respect to the nodal displacements u:
Ji

_ ou _ 1
F=oo+1 = F=0@"). (11.3)
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This relationship holds only for elements with nodal displacement dofs in three di-
mensions and rotational dofs in two dimensions. The polynomial order of the shape
functions N is irrelevant, as long as the dofs are solely nodal displacements. On the
contrary, if the displacements are expressed as three dimensional finite rotations, as it is
common for shell elements, the mathematical structure depends on the parametrization
of rotation and is more complicated.

The strain measure used in the Total Lagrangian framework is the Green-Lagrange
strain, which is a quadratic strain measure. Thus, it is a quadratic function of the nodal
displacements u:

1
E=(FFF-1) = E=0@. (11.4)
The potential energy I of an elastic deformable body occupying the domain () ex-
hibiting a St. Venant-Kirchhoff material can be expressed as a square function of the strain
measure with the material properties gathered in the fourth order material tensor Csg ex-
pressing the energy density function (2.15). It is given as

I :/ E:Csp:EdQy = I1=0(ub). (11.5)
(O

As a consequence, the potential energy of the elastic deformation is a quartic function
of the nodal displacements u. Finally, the internal forces of a conservative system are the
derivative of the negative potential with respect to the dofs yielding:

oIl
flu) = -, = f= O(ud). (11.6)

Consequently, the internal forces of any elastic system exhibiting a St. Venant-Kirch-
hoff material, which is discretized with a Galerkin scheme, are cubic polynomials with
respect to the displacements u. Since the displacements u are linear functions of the
reduced generalized displacements g, the resulting reduced equations of motion can be
written in the form

1 1
M,ij+ Crg +KVg + E1<<2>qq + 81<<3>qqq =g (11.7)
where the vector multiplications with the higher order arrays K® and K are multipli-
cations with all axes of the tensor besides the first one. In index notation (11.7) yields
.. . 1 1 2 1 3
M;iigj + Crijdj + Kl-(]- g+ gKi(jk)ka + EKZ'(jk)]qjqkql = 8i- (11.8)

To summarize the derivation above: When the linear St. Venant-Kirchhoff material is
used, the Taylor series (11.1) is completely converged after the third member. To accom-
plish the polynomial tensors hyper-reduction, the tensors K1), K?) and K® have to be
computed in an explicit form, so that the nonlinear force vector is computed using these
tensors explicitly as in (11.7) instead of the classical reduced formulation (3.5), where the
nonlinear forces are computed on the element level.

The polynomial tensors are derivatives of the elastic potential IT with respect to the
generalized coordinates g. Thus, the tensors are fully symmetric with respect to its in-
dices, i.e., the indices i, j, k and [ are fully interchangeable. For K (1) this means, that the
stiffness matrix is symmetric (K;; = Kj;), which is well known. For the higher order

arrays, this holds also, as given exemplarily for K(?):

2) _ x@) _ @ _ @ _ 2 (2
Ky = Ky = Kjje = Ky = Kygi = Ky Visj ke {1,...,n}. (11.9)

The symmetry of the coefficient arrays is convenient for the computation as well as
the storage and the multiplication to obtain the internal reduced forces. These topics are

discussed in the following.
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11.3 Computation of Coefficients

As shown in the previous section, the internal forces of a St. Venant-Kirchhoff material are
cubic polynomials. To hyper-reduce a reduced basis system using polynomial tensors,
KW, K and K® have to be present in the explicit form. Hence, different strategies
for obtaining the polynomial tensors of a given (reduced) system are discussed in the
following subsections.

11.3.1 Direct Computation

The most accurate way of computing the tensors is the direct computation of the coeffi-
cients in the element formulation. This can be done by formulating the internal poten-
tial I'l, of an element e similar to (11.5) on the element level. The polynomial tensors are
then first obtained on the element level by differentiating the potential Il of the element
multiple times:

2 3 4
1) oIl 2) oIl @) Oo°1l
Kew= ouz’ Ke' = ou3’ Ke™ = out’

(11.10)

The elemental tensors are then assembled with the elemental localization matrix L,
and the reduced basis V to

KO =Y vTIIkVL,v,
ect

K& = Y VLT [KP (L))« (L), (11.11)
ec&

KO = Y yTLT { [K§3)(L6V)] : (LEV)} L (L.V),
ecf

or in index notation with implicit summation over indices as

KZ-(]»l) = Z(VLe)ki Kgrlk)l (VLE)lj/
ecf
Kz-(ﬁc) = Y (VL) K& (VL)wj (VL) (11.12)

ecf

Kz‘(]?;()l = Z(VLe)mi ng,g;ilnop (VLe)nj (VLe)ok (VLe)pl-
ec&

Both, the element formulation and the assembly have to be formulated and imple-
mented for all elements in the element library of a finite element code. Especially for
codes with many different element types this can be tedious task, since the terms in the
formulation can become lengthy and cumbersome, see for instance Capell et al. [Cap+02].
In commercial packages, this feature is commonly not implemented. Hence, this ap-
proach is only attractive in cases where the source code is available and only few different
elements are used. For instance, Barbi¢ and James [BJ05] used this technique in computer
graphics, since all geometries were rendered in voxels and hence only polynomial tensors
for one element had to be formulated. As a consequence, so-called non-intrusive meth-
ods have been developed to circumvent the derivation and implementation efforts of this
method.

11.3.2 Determining the Tensor Expansion by Numerical Differentiation

In most finite element codes, the computation of higher order derivatives of the internal
forces is not implemented. Since in implicit time integrations solely the internal force vec-
tor f(u) and the tangential stiffness matrix K(u) is needed, only these two functions can
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be evaluated analytically. This leads to the concept of non-intrusive methods where the
coefficients K?) and K®) are obtained without having access to higher order derivatives.

The most straightforward way to compute the higher order derivatives K () and K©®)
is the use of numerical differentiation using a finite difference scheme. When the tan-
gential stiffness matrix K(u) is available in the code, the higher order derivatives can be
computed as derivatives of the reduced tangential stiffness matrix K, (q):

2

(2) — —
K aq’ g%’

(11.13)

When evaluating the partial derivatives with central finite differences, the higher or-
der derivatives are:

KV =K, = VTKV, (11.14)
K@ = yr Ko _Zf(_hvi)V, (11.15)
x©® _ yrK(i + hvj) — K(=hv; + hvj) — K(ho; — hv;) + K(—ho; — hoy)
Y 4n?
(11.16)

The dots in the indices denote the row and column dofs of the right hand side ma-
trix. The computation of the finite differences above requires multiple evaluations of
the tangential stiffness matrix K(u) for different displacements. Since the higher oder
derivatives forming the polynomial tensors are symmetric with respect to all indices, as
discussed in Section 11.2, only the finite difference quotients (11.16) for i > j have to be
evaluated while the remaining cases i < j can be restored using the symmetry of K.
With this technique, the computation of K1), K(2) and K®) requires n(n +1)/2 4 n + 1
evaluations of the tangential stiffness matrix with the dimension 7 of the reduced system.

In Section 6.3, a finite difference scheme is also applied to the tangential stiffness ma-
trix in order to obtain the static or modal derivatives. Consequently, the same consider-
ations given there are also valid for the numerical differentiation to obtain K® and K®.
Hence, the step width / has to be chosen appropriately to obtain good accuracy. Thereby,
the symmetry of K?) and K® with respect to all indices can be used as an indicator
of the accuracy making a proper adjustment of the step width & possible. Furthermore,
non-symmetric finite difference schemes like the forward or backward finite differences
lack of accuracy, and hence they are not suitable for the computation of the higher order
tensors. These techniques can be stabilized as, e.g., discussed by de Boer and van Keulen
[DV00], however requiring additional implementation effort on the element level.

11.3.3 Determining the Tensor Expansion by Identification

Another class of techniques is based on the fact that the polynomial structure of the non-
linear forces is known. Hence the coefficients can be identified by multiple evaluations
of the nonlinear forces for different displacements. To develop the strategy, recall the
polynomial cubic structure of the nonlinear internal forces:

1 1 1_ 3
fri(q) = Kfj i+ EKfjk)qu + ng‘(jk)IEIjquL (11.17)

The coefficients Ki(jl) , KZ.(]%() and Kf]i)l can be computed by setting up algebraic systems of
equations, see e.g. [Mig+13]. Therefore, the internal force vector has to be evaluated for
different vectors q. One systematic way to obtain the coefficients is the evaluation with

unit vectors in the reduced space. Let ej € R" be a unit vector in the j-th direction, i.e., ej is
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the j-th column vector of the identity matrix I € R"*". Then, for three randomly chosen
different displacement amplitudes a1, a2 and a3, the internal force vector is evaluated
for the displacement fields a1ej, a2e; and aze;. In this case, no summation over repeated
indices is assumed:

1 1
fri(q = a1ej) = ale'( - ”%2K1(11) +a %6K1(113
1 1
frilq = azej) = asz(J '+ ”%2Kz(ﬂ) +a %6K1(113’ (11.18)

1 1
fri(q = azej) = ”3K1(1 )+ ”gsz(J]) +a 36K1(113

The resulting system of equations allows determining the unknown coefficients Kl.(jl),

K% and K'®), which are obtained in a subsequent step by solving the linear system of

ifj ifjj’
equatlons
1)
Ki{) fri(q :alej)
i frz( —ﬂZe]) . (11.19)
( frz( _a3£’])
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This procedure is performed n times for j = 1...n to obtain all coefficients for all
combinations for i and j. In the next step, displacement fields composed from two unit
displacement vectors e; and e; are addressed. They have to be evaluated for three differ-
ent amplitudes a;, a; and a3 and are exemplarily given for a;:

1 1 1
frila = ar(ej+e)) =ar (K + K) +ad2 (K + K + 2K ) 120
1 .
32 (k©®) ®) ®)
+a 6 ( ijjj + 3K1]]k + 3K11kk)

The equation above has three new unknowns Kfﬁ() and Kl(]?]’z( and Kl(fk)k which can be
determined with three different amplitudes a1, a; and a3 and the coefficients obtained
from the previous step (11.18). Note that in this step the symmetry is exploited, since
Kijix = Kijj = Kijj is summarized by Kjjj. Consequently, only 3n(n —1)/2 evaluations
of (11.20) have to be performed, as only combinations with k < j have to be evaluated and
the other ones with k > j are obtained using symmetry. In the last step, the displacement
field with three different unit displacements e}, e, e; are evaluated yielding:

fri(q = ai(ej +ex+e)) :ﬂl(Kfj~1) + K+ K)

1 2
+ a%i (Kz(]]) + K + K + ZKl(]k) + 2Kl(]l) +2K)

1
3 ®3) ®3) ©) ()
+ (/116 (KZ]]] + 3K1]]k + 3Kijkk + 3Kz’jll

3) 3) (3) 3)
+ 3Kjyj; 4 3Ky + 3K +6Ki),

(11.21)

which can be directly solved for Kjj;. The symmetry is also exploited here so that only
n(n—1)(n —2)/6 cases for j < k < I have to be evaluated. The other terms are obtained
using the symmetry, as above.

The method described above evaluates the nonlinear internal forces. However, the
same information can be obtained by evaluating the reduced tangential stiffness ma-
trix K,(q) for different displacement fields, see Perez et.al. [PWM14]. The reduced tan-
gential stiffness matrix is a quadratic function:
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1
Ky ii(q) = Kfjl) + Kfﬁ) qx + EKf]-Bk)zv/kv/z- (11.22)

Similarly, the coefficients can be obtained by evaluating the tangential stiffness matrix
for the unit displacement with two amplitudes a; and a,. As in (11.18), no summation
over repeated indices is assumed:

2 1

Kr,ij(q = arex) = Ki(]-l) + alKi(jk) + a%EKl‘(jk)k’
1 2 1

Kyij(q = azex) = Ki(j) + asz'(jk) + ”%QKi(jk)k-

(11.23)

With the equations above, the unknown coefficients Kiﬁ) and Kl(]?k can be identified in
the same fashion as in (11.19). Then, in a subsequent step, the coefficients with different
indices can be obtained by solving

_ _ g 2 2 Lk® | ¢ 3)
Ky ij(q = ar(ex +e))) = Ki(j) +m (Ki(jk) + Ki(jl)> + “%5 <Ki(jkk + Ky + 2Kz’jkl>

(11.24)
1(]3,’()1 The identification technique using the stiffness matrix
needs only 2n computations of the tangential stiffness matrix in order to determine terms
with similar indices and n(n — 1) /2 evaluations for the terms with different indices, since
the symmetry can be exploited. As a consequence, the number of operations is clearly
smaller compared to the force identification technique.

In both techniques described above, the choice of the amplitudes a1, a; and a3 for
the unit displacements is to be specified. When the material of the underlying model
is a St. Venant-Kirchhoff material which exhibits a third order polynomial structure for
the internal forces, the choice of the parameters is arbitrary as long as they are sufficiently
different from each other leading to invertible matrices in (11.19). However, the inversion
of the matrix can be simplified, if the coefficients are chosen in a certain pattern like
a1 = 1,a; = —1 and a3 = 2. Then, the solution of the system like (11.19) can be obtained
directly by algebraic operations.

for the unknown coefficient K

11.3.4 Other Approaches

All approaches presented above are approaches where the polynomial coefficients of a
reduced system are computed and hence a hyper-reduction is performed. Thereby the
reduction basis is chosen a priori and the coefficients are independent of the method used.
However, for the sake of completeness it is mentioned, that a whole group of so-called
force-based methods exist. In these methods, instead of prescribing the displacements as
in the methods above for obtaining the nonlinear forces or tangential stiffness matrices,
the external force vector is prescribed on the full model and the nonlinear problem is
solved iteratively.

From the resulting displacement fields of the high dimensional, unreduced model,
different approximations can be taken. In the so-called Implicit Condensation (IC) method
proposed by Hollkamp et al. [HGSO05], the nonlinear effects, which are not considered in
the reduction basis, are accounted for in the polynomial tensors. In the extension of the
IC method named Implicit Condensation and Expansion (ICE), see Kim et al. [Kim+13]
and Mignolet et al. [Mig+13], the so-called dual modes similar to the SMDs introduced
in Subsection 6.2.2 are identified empirically.

These methods require multiple nonlinear static solutions of the full model. Further-
more, they require a careful selection of the forcing amplitudes, which have to be man-
ually controlled on certain points on the mesh requiring elaborate preprocessing, see
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Guerin et al. [GKA16]. These methods are attractive in scenarios where the solutions
of the nonlinear problem are used for both, the basis construction and the identifica-
tion of the polynomial coefficients. These methods have mainly been applied to flat or
slightly curved shell and beam problems [GKA16; KA16; Wan+09; Mig+13] as well as
more elaborate airplane structures [Phl+14] with moderate rotations. How they perform
for arbitrary geometries exhibiting large rotations is still an open question.

11.4 Efficient Treatment of Symmetric Arrays

The multidimensional arrays K? and K©® are highly symmetric. Hence, if they are
stored and treated naively as regular dense high dimensional arrays, a remarkable amount
of storage is used redundantly. Especially for K®), the amount of RAM can increase
quickly when the basis becomes larger. As an example, for a basis of n = 20, K©®) re-
quires 1.28 MB of storage, if 64 bit float numbers with double precision are used. How-
ever, when only the unique values are stored, this number reduces to 0.071 MB. This ratio
becomes even more dramatic, if n becomes larger. For instance for n = 50, the naive stor-
age of K®) requires 50 MB vs. 2.34 MB in efficient storage or 800 MB vs. 35.4 MB for
n = 100. Thus, efficient storage of the higher order tensors is necessary, if the memory is
limited.

However, not only for storage reasons, a special treatment of the high dimensional
arrays is necessary. The computation of the internal forces f, and the tangential stiff-
ness matrix K, (q) become extremely costly for growing reduction dimension 7, since the
number of multiplications and hence for floating point operations grows with order n*.
This makes the polynomial multiplication unattractive for larger #, if it is performed di-
rectly as given in (11.8). So not only an efficient storage strategy, but also an efficient
multiplication strategy is necessary to achieve good speedup factors for polynomial ten-
sor hyper-reduced models.

11.4.1 Efficient Storage

First, the efficient storage of K@ and K® is addressed. Since both multidimensional
arrays are symmetric with respect to all axes, it is sufficient to store entries with one index
combination only once. Hence, for efficient storage, only the unique, non-redundant

entries of K(®) and K® are stored in the vectors k® and k® in a prescribed sequence:

o ((68) ()" 43) (02)) s

V {ijke{l,...,n}|i>j>k},

= (o) ()" 66 (05) (60 ) ) ) )
vV {ijkle{l,...,n}]|i>j>k>1)}.
(11.26)

The vectors k2 € R(#D)(142)/6 and k(3 ¢ Rr(1+1)(142)(143)/24 gre column vectors
containing all entries corresponding to the index combination of the higher dimensional

arrays. For instance, k' contains all diagonal entries of K?), i.e., K2 = ( Kﬁ)l, ceey K,%L) .

iii iii

Similarly, the vectors containing combinations of different indices are constructed with
the first index i changing slowest and I changing fastest like in nested loops. For a deeper
explanation, the construction of the vector k@ is exemplarily given in Algorithm 2. The

construction of k'®), which is more lengthy, follows the same principle.
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With the construction of the vectors k®) and k), the memory consumption of storing
the polynomial tensors is reduced considerably. This is, however, not the only benefit.
Since the tensors are used in every evaluation of the internal forces and the tangential
stiffness matrix, the memory needs to be addressed leading to slow multiplication rou-
tines, if a large block of memory needs to be addressed. Consequently, the reduction of
memory space by transforming K?) into k@ and K® into k® can also reduce the time
for the multiplication. However, besides that, even more computational savings can be
achieved with an efficient multiplication technique.

Algorithm 2: Build the unique vector k@ from the highly redundant symmetric
array K )

Input :Symmetric tensor K (2) g Rroxmxn
Output : Vector of unique tensor entries k?) € R("+37°+21)/6

1¢c:=0

) k(z) c ]R(n3+3n2+2n)/6
3fori:=0:n

4 do

5 | k@[c] := K®i,i,i]

6 c:=c+1

7 end

8 fori:=0:n

9 do

10 forj:=0:i—1do

1 k@1c] := K@i, i, ]]
12 c:=c+1

13 end

14 end

15 fori:=0:n

16 do

17 forj:=0:i—1do

18 k@[c] := K@i, j,j]
19 c:=c+1

20 end

21 end

22 fori:=0:n

23 do

2 forj:=0:i—1do

25 fork:=0:j—1do
26 k@1[c] := K@i, j, k]
27 c:=c+1

28 end

29 end

30 end

11.4.2 Efficient Multiplication

In an implicit time integration, the internal forces f,(¢q) and the tangential stiffness matrix
K,(q) are needed. In the polynomial setup for St. Venant-Kirchhoff materials, these two
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(2)

Algorithm 3: Build the intermediate matrix K'*’ using the unique vector k@

Input : Vector of unique tensor entries k@ g R +3n*+2n)/6 representing
K ¢ R™"*" reduced vector of generalized coordinates g € R"

Output : Intermediate matrix K @ equivalent to K® g
1¢c:=0
2 K% =0 e RPn
3fori:=0:n
4 do
s | K@i = k?[dq]i]
6 ci=c+1
7 end
s fori:=0:n
9 do
10 forj:=0:i—1do
1 K®[i,i) = K[i,i] + k@ [c]q[j]
0 K[, j] = K[ ] + k@ [clqi]
13 c:=c+1
14 end
15 end
16 fori:=0:n
17 do
18 forj:=0:i—1do
19 K[, j] == K[, j) + kP [c]q[i]
2 K, j] = KP[i, ] + k@ [clqlj]
21 c:=c+1
22 end
23 end
24 fori:=0:n
25 do
26 forj:=0:i—1do
27 fork:=0:j—1do
28 K®i, ] := K?[i, ] + & (g
29 K[,k == K )[z K + K [c]qm
30 K[,k == KP [ K] + k@ [clq]i]
31 c:=c+1
32 end
33 end
34 end
35 fori:=0:n
36 do
37 forj:=0:i—1do
s | | K0 = KP,)
39 end

40 end
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quantities are given as

1 1
f,(a) =KVq+ 5K qq+ KVqqq (11.27)
K:(q) = K + K®q + %K“)qq- (11.28)

If both quantities need to be computed at the same time, it is most efficient to precom-
pute the matrices K @) (q9) € R"™*"and K ®) (q) € R"*" as intermediate values defined as:

K — k@4, PN Kl(j” _ K}J.Zk)qk, (11.29)
kY = KOgq, o R = Kaia. (11.30)

Then f,(q) and K,(q) are computed using K @) and K¥;

1 o 1.
filq) = <K(” + 5K ¢ 6K(3)> q, (11.31)
K (q) =KV + K@ 4 %K“). (11.32)

The question for an efficient multiplication is consequently the fast and efficient con-

struction of the two intermediate matrices K @) and K (3). For a fast construction, only the

necessary multiplications should be performed.

(2)

For the computation of K/, the symmetry can be exploited to reduce the number of

(2)

. 3 . . . .
ijk 9k requires n” multiplications, since every

needs n multiplications over the last index k. However,

multiplications. The direct multiplication K
2)
ol

is symmetric, it is sufficient to perform the multiplications only for the lower

entry in the resulting matrix K
(2)
g

half of the matrix, i.e., i > j, so that only the n(n + 1) /2 unique entries of K ) are filled.

since K

The upper half of K ) is then reconstructed from the lower half with copy operations.
As a consequence, this accelerated multiplication requires only n%(n + 1) /2 instead of n®
multiplication operations.

®)

‘i)MkQI- The direct approach

Similarly, the idea can be used for the computation of K
) _ g
) 1]
requires n* multiplications, since every index goes from 1 to n. However, the same idea
for the efficient multiplication of K @) can be used. Since also the resulting matrix Ki(]s)
is symmetric, only the entries with i > j are computed and the remaining entries with
i < j are filled with copy operations from the known ones. So for the first indices only
n(n + 1) /2 instead of n? entries need to be filled.

The multiplication of the last two entries in K

. There, two symmetries
can be exploited for the efficient multiplication of K

Z.(]i)lqkql follows the same pattern. In

the direct multiplication approach, there exist 7> combinations of g; and g;. However,
since the multiplication is commutative, it is sufficient to perform the multiplication only
for k > I similar to the first two indices. Then, only n(n + 1)/2 multiplications for the
indices k and [/ are necessary for every i-j index pair. The multiplications for the indices
k < I can be considered by multiplying the corresponding combination with k > [ with

l.(]i),qkql can be performed with

(n(n+1)/2)% = n?(n + 1)?/4 multiplication operations instead of n* operations for the
direct approach.

a factor of 2. As a consequence, the full multiplication K

One example of the efficient multiplication of K @ s given in Algorithm 3. Note,
that in this algorithm both the efficient storage of the higher order array and the effi-
cient multiplication are considered. With the combination of both the compact storage
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and the accelerated multiplication the computational effort can be clearly reduced. On
the one hand, the efficient multiplication requires less floating point operations to obtain
the results, as discussed above. On the other hand, the efficient storage of the higher
order tensors minimizes the memory reading effort, since the values are called subse-
quently and are not scattered in the memory. Since both effects promise to clearly reduce
the computational effort, this technique is applied to an academic but insightful exam-
ple in the subsequent section. An overview of the polynomial tensors hyper-reduction
technique using the accelerated multiplication is given in Figure 11.1. Note, that in the
overview and in the numerical experiments, first the symmetric higher order tensors K(?)
and K®) are computed before they are transformed to the lean vectorial representation
k@ and k©®. It is, however, possible to store the results of the coefficient computation
like the finite difference scheme or the identification directly into k@ and k® without the
detour over K? and K®). This enhancement which requires more sophisticated index-
ing is specially important for larger reduced models, since the size of K>} and especially
K® becomes quickly prohibitive for larger 7.

11.5 Applications

The following applications are run on the cantilever example introduced in Section 6.4.
The reduced basis model of the cantilever is constructed with a simulation-free basis
built with five vibration modes and all corresponding SMDs yielding a reduced model of
dimension n = 20. The parameters of the model and for the time integration are equal to
the experiments in Section 6.4.

11.5.1 Comparison of ldentification Techniques

First, the different methods for computing the polynomial tensors are compared. There-

fore, a relative error measure similar to the relative error given in (3.9) is used. With the

(2), or K® and I~<(3) respec-

)

error measure €, the multidimensional arrays K 2 and K

tively, are compared. The tensors K® and K(®) are the reference tensors and K~ and
K™ are the tensors to be measured against the reference:
2)  z(2)?
\/ Y1 X1 i (Ki(jk) - Kz'(jk)>
€rel = > ’
2
\/ Y1 X1 i (ngk)>
(11.33)
3)  =(3))?
\/ Yt X Y X (Ki(jk)l - Ki(jk)l)
€rel = .

2
\/ T K T X (K

The computation of K (2) and K® via finite differences, as shown in Subsection 11.3.2,
requires the choice of a proper step width h. Similar to the computation of the quadratic
tensor O in Section 6.3, the symmetry can be used to control the error, as the higher oder
tensors should remain the same when the indices are swapped. The symmetry of the

higher order tensors is assessed with the relative error €,,; given above. Thereby, the
2) ©)

tensors K and K"~ are equal to K 2) and K (3), however with swapped indices:
=(2) _ (2 =) _ 1)
Kix = Kijr Kijg = Kigy- (11.34)
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e A

Input:

¢ Finite element system using St. Venant-Kirchoff material

!

Define reduced system:

e Reduction basis V

M, =VImMv c, =vicv
f,(a) =VTf(vq) K. (q) = VIK(Vu)V
]

Compute polynomial tensors with method of choice:

¢ Direct computation (higher order derivatives have to be
implemented in codebase)

 Finite differences (step width & has to be chosen carefully)
¢ Identification using f, or K,

e Other identification method (e.g. force based methods like
IC or ICE)

Result: K, K@), k()

\. J

{

e A

Compute vectorial representation k? and k® of K? and K©®):

k@ = vectorize (K (2))

k®) = vectorize (K(S))

{

Define polynomially reduced system with efficient
multiplication:

k® (q) = accelerated multiply (k(z), q)

K® (q) = accelerated multiply (k(B), q)

o) = (KO + 3K% ) + ek ) ) g

K () =K+ K (g) + 3K )

Figure 11.1: Overview of the reduction process using polynomial tensors and accelerated mul-
tiplication.

®)

The relative error €, for assessing the symmetry is evaluated with K ® and K© given
in (11.34) for the cantilever example for different step width h, see Figure 11.2. The rel-
ative symmetry error has its minimum at the step width & ~ 1 similar to the finite dif-
ference scheme used for ®. The error is in the range of machine epsilon indicating, that
the finite difference scheme is very exact for the correct step width. The error for the ten-
sor K?) responsible for the quadratic contributions in the forces rises after this optimal
step width. The error for K ®) responsible for the cubic forces, however, remains in the
order of machine epsilon. This is due to the fact, that for larger step width, the secant er-
ror rises, whereas for small step width the round-off errors dominate, see Griewank and
Walter [GWO8]. Since the tangential stiffness matrix is a purely quadratic function, the
secant error is zero for the second order derivative, since the central difference scheme is
of second order accuracy (cf. [Str07, pp. 15]). Consequently, a larger step width & > 1 is
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Figure 11.2: Symmetry error of the higher order polynomial tensors computed with finite dif-
ference scheme for different step widths & for the cantilever example. The optimal step width is
in the range of h ~ 1.

appropriate for the correct computation of the cubic stiffness part.

Next, the accuracy of the different methods to compute the polynomial tensors are in-
vestigated. Therefore, the finite difference scheme with & = 1, the identification method
using the nonlinear forces (ID f) and the identification method using the tangential stiff-
ness matrix (ID K) are used to compute K2 and K®). They are compared against each
other using the relative error (11.33) yielding the cross errors depicted in Table 11.1. All
errors are in the range of 10~8 except the diagonal terms of the cross error, which are by
definition zero, since equal tensors are compared in this case. The range of the error indi-
cates, that all three investigated methods are of equal accuracy. Consequently, the choice
of the method for computing the higher order tensors is up to the user. However, since
all three methods take different approaches, the offline costs for computing K?) and K®)
are of interest.

The offline costs for the three different methods finite differences, identification us-
ing f and identification using K are measured for different reduction orders n. The wall
time for all three methods are given in Figure 11.3 using the same Intel Xeon Machine
working at 4.0 GHz with 32 GB RAM as in the previous experiments. The offline costs
for the identification method using K are the lowest, as expected. Since this method
needs only (n? + 3n)/2 + 1 evaluations of the tangential stiffness matrix, it is more effi-
cient than the finite difference scheme needing 4n(n + 1) + n + 1 evaluations of K,(q).
However, the finite differences are more efficient for larger n than the identification using
the internal forces, since it requires n(n? 4+ 6n — 1) /6 evaluations of f,(g). The higher
polynomial order of the force identification method is particularly slow, when reduced
models of higher order are reduced. Then, as expected, the methods using the tangential
stiffness matrix are in clear favor.

To assess both the speedup and the accuracy of the polynomial hyper-reduction, the
cantilever example and the reduction basis used above are used. To recall, the reduction
basis is formed of five vibration modes plus the corresponding SMDs yielding a basis of
n = 20 reduced dofs.

A time integration of the full system, the reduced system and a polynomial tensors
hyper-reduced system is run with the equal settings from the example in Section 6.4 given
in Table B.1. Since two multiplication schemes, the direct multiplication using the full ten-
sors and the accelerated multiplication using the minimal representation k@ and k® are
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Table 11.1: Relative errors (RE) between the different methods for computing K® and K®.
The finite difference scheme is performed with h = 1.

finite differences identification K identification f
@ finite differences 0.0 2.38-1078 4.75-1078
identification K 2381078 0.0 4.80-10°8
identification f 475-1078 4.80-1078 0.0
finite differences identification K identification f
) finite differences 0.0 3.62-10°8 7.53-1078
identification K 3.62-1078 0.0 7.63-1078
identification f 7.53-1078 7.63-1078 0.0

proposed in Subsection 11.4.2, a system with each method is run. Table 11.2 shows the
wall times, the full relative error RE £ and the hyper-reduction error REy, of the time inte-
grations carried out. The hyper-reduction error REj, is in the range of 107> %. Since this
order of magnitude is in the range of the tolerances of the integration scheme, both the
reduced system and the polynomial hyper-reduced system are equal up to tiny numeri-
cal differences. The accumulation of tiny round-off errors are also the explanation why
the different multiplication techniques yield different RE;, values in a very low regime.
The full error RE f of the experiments stem solely from the reduction basis. However,
the polynomially reduced system yields dramatically greater speedups compared to the
reduced basis system. To highlight the speed especially of the polynomial system with
accelerated multiplication, the wall time for the linearized system is also given. It can
be expected, that the main part of time integration resources of the linear system are de-
voted to overhead costs like writing the output of the current displacements, which occur
independently of the mathematical operations in the time integration scheme.

Since the polynomials systems exhibit such great speedups, the run time of this hyper-
reduction technique is investigated further in the next section.

11.5.2 Accelerated Multiplication

According to Table 11.1, the accelerated multiplication described in Subsection 11.4.2
yields remarkable speedups compared to the direct approach, where the tensors are mul-
tiplied ignoring the symmetry. In the computational framework AMFE used for all ex-
periments, the direct multiplication is performed in Python using the LAPACK routines
written in Fortran. For the fast execution of the accelerated multiplication, a compiled
function has to be run in order to achieve comparable speed. In the implementation
used in this section, the algorithms are implemented in Numba (cf. [Oli12] and [LPS15]),
which is based on the Low-Level-Virtual-Machine (LLVM) compilation technique. In
many benchmarks, Numba achieves execution speed similar to compiled implementa-
tions, see Vanderplaas [Vana; Vanb]), so that the comparisons of the speed are fair.

To assess the computational speedup when using the accelerated multiplication, the
computation of the internal force vector and the tangential stiffness matrix is measured
for different reduction orders. Thereby, the direct approach, where the internal forces
and the tangential stiffness matrix are computed according to (11.27) and (11.28), is com-
pared against the accelerated multiplication given in Subsection 11.4.2 and illustrated in
Figure 11.1. Figure 11.4 depicts the wall time taken for 10,000 evaluations of K,(g) and
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Figure 11.3: Wall time for computing KM, K® and K® using different methods.

f,(q) using these two methods. For any reduction size 1, the accelerated multiplica-
tion outperforms the direct multiplication. Probably due to some overhead costs in the
testing routine, the computational time increases barely for reduced orders n up to ten.
With increasing 1, the direct method consumes clearly more time than the accelerated
multiplication routine in the range of over an oder of magnitude. As a consequence, the
multiplication using the accelerated method is better for any reduction order.

Next, the runtime for full simulation runs is investigated. Therefore a POD basis is
built to enable reduced bases of arbitrary size, which are physically reasonable and do not
cause unwanted effects like different convergence rates in the Newton-Raphson scheme.
Then, a full simulation, a reduced simulation, a polynomial tensors hyper-reduced sim-
ulation with direct multiplication and a polynomial tensors hyper-reduced simulation
with accelerated multiplication are run for different reduction orders n. The wall times
of the time integrations are depicted in Figure 11.5. The accelerated multiplication, as
expected, is faster than the direct multiplication for all reduced dimensions. This is in
accordance with the observations of the previous experiment, where the accelerated mul-
tiplication was also faster in any case. Furthermore, Figure 11.5 illustrates that the hyper-
reduction effect of the polynomial tensor technique is only effective for small n. With
the accelerated multiplication technique, the hyper-reduced model breaks even with the
reduced model for n = 80. For greater n, the hyper-reduced model is slower than the
reduced model. Even worse, for n larger than 100, the original model is faster than the
hyper-reduced model with polynomial tensors. When using the direct multiplication,
the break even point of the hyper-reduced model versus the reduced basis model is even
below n = 60 and versus the full model below n = 80.

Even though the benchmark example is of academic nature and has a small mesh with
246 elements and 1224 dofs, the weak point of the polynomial tensors hyper-reduction
becomes obvious. While the technique is very efficient and fast for a small number of
generalized coordinates, it becomes more and more inefficient for larger numbers. This
is based in the polynomial nature of the tensor multiplication, where the computation of
the nonlinear forces and the tangential stiffness matrix is associated with O(n*). Even
though the evaluation of the nonlinearity is not associated with the original dimension N
of the high dimensional model, it becomes prohibitive for reduced models with larger
reduced dimensions.
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Table 11.2: Wall times and errors of the polynomial-tensor hyper-reduced cantilever using the
simulation-free basis of 5 vibration modes plus all corresponding SDs. The linearized run is given
for comparison

Method dofs elements REf[%]  REj [%] ty[s] speedup [—]
full 1224 246 — — 97.02 1.00
reduced basis 20 246 1.42 — 4592 2.11
poly direct mult 20 — 142 150-107°  9.66 10.04
poly fast mult 20 — 142 484-107° 446 21.75
linearized 1224 246 123.35 - 195 49.75
direct —w— accelerated
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Figure 11.4: Wall time for 10,000 evaluations of the nonlinear force vector f(g) and tangential
stiffness matrix K(g) with direct and accelerated multiplication method for different reduction
orders n.
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Figure 11.5: Wall times for the time integration of the cantilever example for different reduction
orders 1 using a POD basis.






Chapter 12

Discrete Empirical Interpolation Method (DEIM)

This chapter discusses the Discrete Empirical Interpolation Method (DEIM), a hyper-
reduction method to approximate the high dimensional nonlinear force vector using an
empirical force basis. In contrary to the polynomial tensors hyper-reduction discussed in
the previous section, the reduction is achieved by an evaluation of the nonlinear forces
only at selected points of the mesh.

The key idea of the DEIM goes back at least to the gappy POD method proposed
in Everson and Sirovich [ES95], where facial images are reconstructed using "gappy",
partial data. This idea is used in several approaches to hyper-reduce nonlinear dynamical
systems such as fluid dynamics, e.g., in Bui et al. [BDWO03], Willcox [Wil06] and Astrid
et al. [Ast+08], or process simulations in Astrid [Ast04].

The Empirical Interpolation Method (EIM) proposed by Barrault et al. [Bar+04] and
in a slightly different version by Ryckelynck [Ryc05] uses the same idea, however at the
continuous level. It can be seen as the underlying theoretical framework of the Discrete
Empirical Interpolation Method (DEIM) proposed by Chaturantabut et al. [CS10]. This
method distinguishes itself from the others by the ease of computation, since a greedy
algorithm is used for the selection of the gappy data points, the collocation points. Ap-
proaches similar to the DEIM are the best point interpolation method of Nguyen et al.
[NPP08] and the method proposed by Nguyen and Peraire [NPO08].

Further improvements for the DEIM were proposed, as to mention a few, the adap-
tation to finite element systems by Tiso and Rixen [TR13] called unassembled DEIM
(UDEIM), a localized DEIM approach proposed by Peherstorfer et al. [Peh+14], strategies
to handle parametric systems as proposed in Antil et al. [AHS14] as well as improved
selection strategies in Drmac and Gugercin [DG16]. Adaptations to parametric systems
are discussed in the overview paper on parametric model order reduction of Benner et al
[BGW15]. Radermacher and Reese [RR16] applied the DEIM to geometrically and mate-
rial nonlinear static systems.

12.1 Key Idea: Interpolation and Collocation

The idea of the DEIM is to approximate the high dimensional nonlinear force f(Vgq)
with a force basis Uy, similar to approximation of the full displacement field u using
the reduced basis V (cf. Chapter 3). Hence, f is approximated as linear combination of
the column vectors of the force basis Uy € RN*" with the time dependent amplitudes
collected in ¢(Vg) € R™:

f(Vq) =Usc(Vq) +r. (12.1)

Equation (12.1) has more equations than unknowns. Hence, the residual r occurs,
as the basis Uy can only represent forces in the subspace spanned by Uy. To solve the

135
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equation above for the unknown reduced force vector ¢(V¢q), a constraint for the residual
is necessary for projecting the residual out.

In the derivation of the basis projection in Chapter 3, the residual was made orthogo-
nal to the subspace spanned by the basis leading to the symmetric Galerkin projection. In
the DEIM, the residual is treated in a different way. It is made zero only for certain dofs,
which are the non-zero entries in the columns of the Boolean matrix P € RN*™. Every
column of P is a column of the identity matrix I € RN*N. With enforcing

P'r=o, (12.2)

the residual is hence set to zero only for the dofs corresponding to the non-zero coeffi-
cients in P. When the residual is zero at certain dofs, (12.1) is collocated at exactly these
dofs. Thus, the collocation of (12.1) is achieved by the premultiplication with the trans-
posed collocation matrix PT. This leads to a determined system of equations, which can
be solved for the unknown force amplitudes gathered in c:

PTf(Vq) = P"Usc(Vq) (12.3)
-1
c(Vq) = (PTuf) PTf(vyg). (12.4)

It can be inserted in the approximation (12.1), and with accepting the residual being the
error of the approximation, one gains the collocated reduced force vector

F(Va) & fomu(Va) = Uy (PTU;) " PTf(Vg), (125)

The collocated internal force vector approximating the internal forces is the DEIM
reduced internal force vector frrn(Vg). It can be computed cheaper than the full force
vector f(Vgq), since the collocation matrix P is a sparse matrix with many zero entries.
To evaluated the product P’ f in (12.5), only the entries corresponding to a non-zero row
in P have to be evaluated. The computation of all other entries in f corresponding to
zero-rows in P can be omitted leading to a reduction of the computational costs.

For the design of the DEIM approximation of the nonlinear forces (12.5), two ingre-
dients have to be determined: The force basis U and the Boolean collocation matrix P.
For the force basis, the issues discussed for kinematic bases in Chapter 5 hold also for
finding an appropriate force basis: The lack of system theoretic properties allowing for
proper nonlinear force estimations. Hence, the force basis U ris computed with a POD
of the force snapshots of a full, unreduced simulation similar to the POD reduced basis
method discussed in Chapter 5.

To compute the Boolean matrix P containing the collocation dofs, a greedy method
listed in Algorithm 4 is used, see also Chaturantabut and Sorensen [CS10]. This method
iterates over the column vectors of the force basis Uy. For every column, a residual r
is computed representing the gap in the forces, which cannot be represented using both
the force basis Uy and the collocation matrix P of the previous iteration step. Then the
maximum value of the residual is picked as new collocation dof and added to the collo-
cation dof set ©np. As the dof is associated with a node of the finite element mesh, it is
an option to manipulate the selected collocation dof. For instance, it is reasonable to pick
all dofs corresponding to the node of the selected dof. With the collocation point set ©¢
and the collocation points of the former iteration step, the Boolean collocation matrix P
is built for the next iteration step.

When the collocation point set @y, is manipulated, as for instance all dofs of the
selected node are collocated and not only the dof with the maximum residual, the num-
ber c of collocation points is larger than the number m of force basis vectors. Since then
P c RN*¢and U J&S RN*™ are of different dimensions with ¢ > m, the collocation (12.3)
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Algorithm 4: Greedy collocation algorithm used in DEIM [CS10]

Input : Force basis Uy € RN
Output : Collocation projection matrix P € RN*l¢x]

oo = {}

fori:=0:n

N

3 do

4 if i = 0 then

5 | 7= Uy[;, 0]

6 else

7 | r= Ul i) = Ul i = 1(PL UL, 00— 1)) TP UL ]
8 end

9 ©tmp 1= arg max(r)

10 Process collocation points @, based on collocation technique (e.g. add all dofs
of selected node: (), := all dofs of current node)

1 Qi = Pi—1Y Ptmp

12 | P;:=0¢c RNl

13 forj:=0:|p;| do

u | | Pipililjl=1

15 end

16 end

is overdetermined and cannot be fulfilled exactly leading to another residual 7 after ap-
plying the collocation matrix P:

P'f(Vq) = P'Usc(Vq) +T. (12.6)

The equation above cannot be solved directly for the reduced forces c(Vg), since the
residual is also unknown. However, it can be solved in a least-square sense, so that the
residual 7 is minimized in the L2-norm. Then the reduced forces c¢(Vq) are given as:

c(Vq) ~ (PTUf)+ PTf(vg), (12.7)

with (PTU £)" being the Moore-Penrose pseudo inverse of P'u 7. The DEIM approxi-
mated internal force vector fpp\ for ¢ > m, i.e., more collocation points than force basis
vectors, is then:

foma(Va) = Uy (PTUy) " PTf(Vy). (129

The formula above includes both cases ¢ = m and ¢ > m, since the Moore-Penrose
pseudo inverse yields the inverse for full rank square matrices. As (12.8) is more general
and includes (12.5), the former is used from now on to describe the DEIM independent of
the collocation technique employed. In Subsection 12.2.2, further collocation techniques
are discussed, especially for the UDEIM introduced in Subsection 12.2.1.

12.1.1 Oblique Projection

The approximation of the forces according to the DEIM (12.5) allows for an interpretation
in terms of projection. Thereby, the two cases of collocation have to be distinguished.
In the case with ¢ = m, both subspaces, the force subspace spanned by U and the
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Figure 12.1: Oblique projection of the force vector f onto the subspace spanned by Uy. The
orthogonal projection of f onto Uy results in f; The orthogonal projection of f onto P results
in f3; The oblique projection of f onto U perpendicular to P results in f,.

collocation subspace spanned by P are of equal size. They can be depicted as two di-
mensional planes in three dimensional space, as in Figure 12.1. There, the internal force
vector f is depicted as a point in the three dimensional vector space. The expression
Uf(PTUf)_lPT performs an oblique projection onto the subspace spanned by U, where
the error of the projection is forced to be orthogonal to the subspace spanned by P. This
oblique projection results in the point f,, which is an element of the space spanned by
Uy. It is, however, different from the perpendicular projection of f onto Uy which is
f1,if span(P) # span(Uy). The perpendicular projection of f onto U is optimal in the
sense of the L? norm. This means, that the distance between f and f, is minimal and that
the residual is orthogonal to U;. However, in the oblique projection, this is not the case.
There, the oblique projected force vector f, is, depending on the space spanned by P, not
equal or close to the optimal projection f,. Hence, the subspace spanned by P has a great
influence on the result of the oblique projection.

In the second case when more collocation points than force modes exist, i.e., ¢ > m,
the projection of the internal force vector (12.8) can be interpreted as a minimization prob-
lem. There, the force subspace spanned by U is of lower dimension than the collocation
subspace spanned by P. Hence, U is depicted as a one dimensional subspace, i.e., a line,
and P as a two dimensional subspace, a plane, in three dimensional space. This analogy
is depicted in Figure 12.2. The oblique projection of the force vector f onto U  with the er-
ror being orthogonal to P is not possible in general. This is equivalent to the projection of
the point f onto the line U y with the projection being orthogonal to the plane P. Since the
line forming the projection of f onto P is skew to the line U in general, this is generally
not possible. The projection operation U f(PT u f)+PT using the Moore-Penrose pseudo
inverse, however, performs a minimization by projecting the point f onto the subspace
spanned by U by minimizing the L? norm of the residual 7. This residual can be inter-
preted as the orthogonal projection of the connecting line between f and the resulting
force vector f, onto the space spanned by P. The two end points of the connecting line f
and f, are projected onto P resulting in f, and f,. These two points form the end points
of the residual 7, which is minimized.

Consequently, the operator U f(PTLI f)+PT performs the best oblique projection of f
onto Uy while keeping the error in the space spanned by P minimal.

Both illustrations of the projection indicate that the internal force vector f is treated in
a non-orthogonal way to achieve the approximation fg,. It is motivated by the sparse
evaluation of the nonlinear force vector f. However, the loss of orthogonality comes with
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Figure 12.2: Oblique projection of the force vector f onto the subspace spanned by Uy with
¢ > m. The orthogonal projection of f onto Uy results in f; With this oblique projection, the
residual 7 being the gap between f and f, projected onto P is minimized.

drawbacks which are discussed next.

12.1.2 Loss of Stability and Stabilization

The general concept of the DEIM comes with a fundamental drawback: The destruction
of the symmetry of the system. With it, desirable properties like stability, variational
consistency and an underlying energy function fitting into the Lagrangian framework are
lost. The loss of all these properties is clearly visible, when the DEIM-reduced tangential
stiffness matrix K;pgmv is expressed in terms of the symmetric tangential stiffness matrix
K(u) of the underlying high dimensional system. It is derived as:

0 +
K, pEmv = 3 <VTUf (PTUf) PTf(Vq)>

_yT T\t prof(u=Vq)
=viu; (Pluy) PTEEE—Ly

—v'u; (PTUf> " PTK(Vg)V.

The DEIM reduced tangential stiffness matrix is computed from the full stiffness ma-
trix K(u) by a left sided projection VTUf(PTUf)_lpT and the right sided projection V.
As both projectors are not equal, the symmetry of K is destroyed by the DEIM hyper-
reduction.

The loss of symmetry leads to a loss of stability, which is often observed in Newton-
Raphson loops in static solutions or in time integration schemes. In an attempt to improve
the stability of non-symmetric oblique DEIM projection, the linear and the nonlinear part
of the restoring forces are split apart (cf. [CS10; TR13]). The linear part is then sym-
metrically reduced as it is done in linear systems and only on the purely nonlinear part
the whole DEIM procedure is applied. That means, that the force basis U stems from
the SVD of the purely nonlinear part of the internal forces. The collocation scheme Al-
gorithm 4 is then applied on this purely nonlinear force basis to obtain P. The DEIM
hyper-reduced nonlinear force vector is then:

f=Ku+f, < f,=f—Ku (12.9)
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f,=VIKVg+VTf (12.10)

nl’

+
fopem = VKV + ViU (PTUf> PT(f(Vq) —KVq) (12.11)

+
_yT (1 —u; (PTuf)+ PT> KVg+ VU, (PTUf> PTf(Vq). (12.12)

K. in,DEIM

The matrix Ky jnppv = V(I —U f(PTLI f)*lpT)KV is the pseudo linear stiffness
matrix for the DEIM procedure, which can be precomputed. For the implicit solution of
static or dynamic problems, the tangential stiffness matrix is also necessary. It is given as

a T,
K, pem(Vgq) = fé]?]EIM

- <I —u; (PTuf>+ PT> KV +VTU; (PTuf>+ PTK(Vq)V.

K,
K, jin,DEIM 0l DEIM

(12.13)

As above, the pseudo linear stiffness matrix can be precomputed while the nonlinear
part has to be evaluated at every iteration step. The computational saving is effective,
as only the subset € of the element set £ is necessary to obtain the DEIM hyper-reduced
nonlinear forces:

+
fopena = X VTUs (PTUS) " PTLIf,(L.Vg) + Ky jinpEmad. (12.14)

ec&
The reduced element set & is defined as:
E={ec&|PL! #0}. (12.15)

All other elements ¢ in the element set £, which are not associated with a collocation
dof, i.e., PTLET = 0, do not contribute to the nonlinear DEIM forces and are hence not in
the reduced element set £.

In the DEIM procedure, the oblique projection operator and the reduced basis is con-
stant. Hence, a compact auxiliary matrix H € R"*¢ can be precomputed, so that the
resulting expression for the nonlinear force vector f, prp and the tangential stiffness
matrix K, pgnv is:

T Ty \ 7
H=V"u; (P uf) , (12.16)
fr,DEIM = Z HPTLeTfe(Lqu) + K lin, DEIMY, (12.17)
ec€
K, pem = ) HPTL{K.(L:Vq)LeV + K, jin DEIM- (12.18)
ec€

The operator PTL! is a Boolean matrix for every element e expressing the dof se-
lection of the elemental contributions f, acting onto the oblique projector. In computer
implementations it can be realized efficiently with index operations.

12.2 Variants and Improvements
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12.2.1 Unassembled DEIM (UDEIM)

The classical DEIM as first proposed in Chaturantabut and Sorensen [CS10] is designed
for schemes where so-called vector valued functions are present. This means, that the
evaluation of a force at one single dof involves only the displacements of the chosen dof
and its neighbors and can be computed efficiently. For example, this is the case in finite
difference schemes, where the derivatives are computed using the finite differences of
the chosen dof and the adjacent dofs directly.

In the finite element framework, though, the computation of the nonlinear force at a
single dof involves the evaluation of all adjacent elements of the chosen dof. Compared
to finite difference schemes, the cost of evaluating a single nonlinear force at a specific
dof becomes quickly expensive, since one node has usually multiple adjacent elements,
especially in 3D meshes. The classical DEIM reduction can quickly become inefficient
since many more elements have to be evaluated than collocation dofs exist.

To solve this issue, unassembled DEIM (UDEIM) has been proposed by Tiso and Rixen
[TR13]. The key idea is to apply DEIM to the unassembled finite element mesh, so that
only one element has to be evaluated when one collocation dof is chosen. The assembly
is then performed after the unassembled DEIM approximation.

The assembly operation (2.31) is a sum over all elements and can be expressed as a
matrix vector product, since the summation is a linear operation. It can be performed
with the linear assembly operator represented by the Boolean matrix By € RNel€/xXN,
which is the linear transformation operator between the unassembled and the assembled
domain. N, is the number of dofs per element, |£| the number of elements and N the
number of assembled dofs. The unassembled force vector f, € RNe'¢| and unassembled
stiffness matrix K, € RNe'l€IxNel€] are defined as

T
fu= (ff/---/f\Ta) , (12.19)
K, = diag (Ky,...,Kg|), (12.20)

with the internal force vector f, € RM and the tangential stiffness matrix K, € RNexNe
of the element e. The unassembled quantities are assembled with the Boolean assembly

matrix B, € RNe[€IxN.
T
T T
B, — (Ll,...,Lm) (12.21)
yielding the assembled force vector f and stiffness matrix K:
f=BLf,, (12.22)
K = BLK,B,. (12.23)

As UDEIM is equivalent to DEIM but operating in the unassembled domain, the force
basis Uy has to be computed for the unassembled domain yielding Uy,,. It cannot be
derived directly from U but has to be computed with a POD on the unassembled force
snapshots of the training displacement sets.

The UDEIM hyper-reduced nonlinear forces are computed similar to (12.12) but with
the collocation operator P, applied directly to the unassembled quantities. The assembly
is done directly before the projection onto the reduced basis V:

+
frupEM = V'B} (I — Uy, (quf,u> PE) K,B,Vgq

(12.24)

K )in,UDEIM

+
+ VB Uy, (PLUy.) PLf,(Va),
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TRT T oo
K.upem(Vq) = VTBT, <1 ~uy, (Pu uf,u) Pu> K,BAV

K lin,UDEIM (12.25)
+
+VTBLu,, (P§ Uf,u) P,K,(Vq)B4V.

K n1,UubEIM

For UDEIM, a compact auxiliary matrix H, € R"*¢ can be precomputed similar to
the DEIM. The reduced assembly procedure is then a sum over the reduced element set
£ as defined in (12.15):

+
H, = V'B, Uy, (PTUf,u) , (12.26)
fropem = 3 HuPy L f,(L:Vq) + K jin,upEnad, (12.27)
ec€
K, upem = Y HuPL{Ke(L:V) LoV + K, jin UEIM (12.28)
ec€

To obtain the unassembled collocation operator P, using the unassembled force basis
Uy, the same collocation method for DEIM listed in Algorithm 4 is used. However,
in the unassembled DEIM configuration, more collocation strategies are possible. In the
next subsection, further strategies for collocation are discussed.

Since the assembled force quantities can be computed from the unassembled quanti-
ties but not vice versa, both the DEIM and UDEIM can be implemented in one routine
operating on the unassembled domain. With the assembly operator B4 added at the rele-
vant places in the formulas, the UDEIM can be easily transferred to the DEIM. Note, that
the computation of the force basis U for DEIM has to be performed in the assembled
domain. The computation of the SVD in the unassembled domain and the application of
the assembly operator B4 onto Uy, to obtain Uy is not allowed, since the extraction of
the singular vectors of a matrix is a nonlinear operation.

An overview of the UDEIM is given in Figure 12.3. Since the UDEIM can be inter-
preted as a superset of the DEIM, the DEIM procedure can be inferred by substituting
the unassembled quantities f,, and K, by the assembled counterparts f and K and omit-
ting the assembly operator B 4.

12.2.2 Collocation Techniques

Algorithm 4 depicts the selection of the collocation points for a given force basis Uy. In
line 10 of Algorithm 4 the selected collocation can be processed, i.e., the selected set
of dofs used for collocation can be extended to exploit more information of the sparse
force evaluation, as suggested in [FCA13]. In the classical DEIM, the force of one dof is
computed by evaluating all adjacent elements of the node to which the dof belongs to.
Hence, it is reasonable to extend the set of selected dofs gy, to all dofs associated to the
node. In the UDEIM, however, the selected dofs are associated to unassembled elements
making more collocation strategies plausible. They are listed together with the strategies
for DEIM in Table 12.1.

The dof collocation strategy is the native DEIM strategy. In this method, ot is not
manipulated so that it only contains the selected dof. Only in this case, the number
of collocation points is equal to the number of force modes, i.e., ¢ = m. For all other
collocation strategies the number of collocation points is larger than the number of force
modes leading to the overdetermined system (12.6). In the Node collocation strategy, all
dofs associated of the selected node are added to @;,. In the Element collocation strategy,
all dofs contained in the unassembled element are selected. With this method, all of the



12.2 Variants and Improvements 143

Input:
S; € RN*k: Displacement snapshots
|m : number of force basis vectors

!

Compute force basis:
Compute unassembled internal nonlinear force snapshots from displace-
ment snapshots:

Sfu = (fu(Sal-0]) — KuBaSa[:,0), ..., f,,(Sal:/ K]) — KuBaS4[:, k])

Compute force basis via SVD and select the m most dominant force ba-
sis vectors:

U vaZVig = Stu
Uf,u = Uf,u,svd[:r: m]

\. J

{

Compute collocation:
Determine collocation projector P, using the force basis Uy, using Al-
Lgorithm 4. Use collocation technique of choice.
i
Precompute constant quantities:
Reduced Element set &, linear stiffness matrix K, jin upEmM and auxiliary
matrix H,:

5:{ee£|P$Le;ﬁo}
Tonill i 7
K, jin,upEM = V" By (1 — Uy, (Pu uf,u) Pu) KyuBsV
+
H, = V'Bhu;, (Piuy,)

!

Set up UDEIM hyper-reduced system:
fupEm (9) = Ko lin,unEIMY + ZNHMPZ;LtTfe(Lqu)
ecé

K, upem (9) = K, jinupem + Y HuPTLIK.(L.Vq)L.V
ec€

Figure 12.3: UDEIM algorithm for computing the nonlinear force approximation.

available information of the sparse internal forces computed in (12.27) is exploited. The
Component collocation strategy is similar to the Element collocation. It determines the
component of the selected node and adds the component of all nodes of the element

to ©tmp-

12.2.3 A Failed Attempt to Symmetrize UDEIM

One main drawback of the DEIM and the UDEIM is that the symmetry of the problem is
destroyed leading to the loss of many desirable properties, as discussed in Section 12.1. In
the recent publication by Chaturantabut et al. [CBG16], a symmetric version of the DEIM
is proposed, which preserves the Hamiltonian structure of mechanical systems and hence
all the desirable properties like symmetry, stability and positive definiteness. The key
idea of the symmetric DEIM is to apply the oblique projection operator U f(PTU f)*lPT
not only on the dual variables, the forces, but also transposed on the primal variable, the
displacements. The proposed formulation for the internal nonlinear force vector is:
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Table 12.1: Possible collocation types for DEIM and UDEIM reduction

Name selection strategy for DEIM UDEIM
dof only the selected dof + +
Node all dofs of the selected node + +
Element all dofs of the selected element - +
C ¢ all dofs belonging to the selected i N
omponen component of the selected element

f(q) = Viug (pTuf)+ PTf (p ((pTuf>+>T u}Vq> . (12.29)

This formulation is symmetric by definition, if the internal force vector f(u) is a sym-
metric function. In the example given in Chaturantabut et al. [CBG16], an application is
given for a vector-valued nonlinear circuit system.

However, when applying this concept to the finite element framework, the forces are
not evaluated in a vector-valued fashion as in finite differences, but in an element based
framework, where the forces are computed on the element level. Hence it is important
to reconstruct the full elemental displacement u, of element e, even if only one compo-
nent of the elemental forces f, is used. As a consequence, the oblique projection operator
P(PTu f)_TU} should reconstruct the displacements of the selected elements £ particu-
larly well.

The operator P(PTU f) *TU} performs an oblique projection on the subspace spanned
by P, where the error of the projection is orthogonal to the subspace spanned by Uy, as
depicted in Figure 12.1. As a consequence, the results of the projection lie in the subspace
spanned by P. Since P is a Boolean collocation matrix, only the dofs selected in P contain
results after the projection, while the other, non-selected dofs remain zero.

This is of particular concern, when the displacement of a finite element should be
reconstructed. Since the displacements of all dofs of an element influence all other dofs,
it makes only sense to reconstruct the full displacement of the selected element. Hence,
only the UDEIM is reasonable, as only there a selected dof can be associated to a free,
isolated element. Additionally, the Element collocation technique is necessary, as only
this method has the ability to reconstruct the full displacement of the element.

In principle, the UDEIM with element collocation could lead to proper results. How-
ever, the experimental results are very poor. The computations are seldom stable and if
they are, they do not follow the references in any way. The reason is, that the oblique
projection distorts the elements severely. In Figure 12.4 a displacement field of the can-
tilever example is given in the displaced configuration, and the configuration after the
oblique projection P(PTU f) _TU} of the reduced displacement field. The DEIM selected
elements highlighted in red are so severely distorted, that they have nothing in common
with the original displacement field. As a consequence, the internal forces f, are several
orders of magnitude higher than the internal forces of the regular displaced configuration
high as depicted in Figure 12.5.

Hence, the idea of symmetrizing DEIM in the finite element framework does not work
in the manner described in Caturantabut et al. [CBG16], even with considerations re-
flecting the methodological differences. However, there exist hyper-reduction techniques
which preserve the structure and are tailored to the finite element framework, which are
discussed in the following chapter.
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displaced configuration with selected elements in P,
distorted selected elements

Figure 12.4: Example of the distortion of the mesh due to the symmetric UDEIM approach for
the cantilever example at = 1.3s. The basis consists of 20 POD modes, the force basis Uy,
is of equal size. The deformed beam with the blue elements shows the deformed configuration;
The highlight blue beam with the red elements depicts the same displacement field after the
oblique projection.
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Figure 12.5: Nonlinear internal reduced forces of the symmetric UDEIM approach and the
reduced model for a POD basis of n = 20. The forces correspond to the displacement fields
in Figure 12.4. Since the elements are so drastically deformed, the nonlinear forces are several
orders of magnitude higher than the real nonlinear forces.
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12.3 Applications

To assess the properties of the (U)DEIM, the cantilever example used in the previous
chapters is investigated. Since the (U)DEIM needs training sets stemming from a refer-
ence solution, a full, unreduced simulation is run to obtain the training snapshots which
are gathered in the snapshot matrix S;. Then, a POD basis is computed using the first
10 POD modes. With the POD basis different (U)DEIM hyper-reduced models are built
with different sizes of the force basis U and Uy, respectively. For the numerical exper-
iments, both the collocation strategies proposed in Subsection 12.2.2 and the size for the
force basis Uy and Uy, are varied and a time integration for every combination is run.

Table 12.2: Run times and errors for (U)DEIM reduction of the cantilever example with a re-
duced basis of 10 POD modes.

Size m of DEIM-dof DEIM-Node

force basis | REj,[%] tw[s] | REy[%]  tw[s]

4 - - - -

7 . - - -

10 - - - -

15 - - - -

20 - - 6945 7.83

40 80.83 10.98 78.22 10.20
Size m of UDEIM-dof UDEIM-Node  UDEIM-Element UDEIM-Component
force basis | REj[%] tw[s] | RE[%] tw[s] | REy[%]  tw[s] | REp[%] tw|s]
4 , - _ - - - . -
7 - - - - - - - -
10 - - - -l 19826  7.69 - -
15 - - - - - - - -
20 - - 435 627 550 623 | 52156 11.68
40 20.72 8.73 1235 948 3.54 9.38 6.54 8.77

The wall time and the relative hyper-reduction error RE;, for the numerical experi-
ments are depicted in Table 12.2. When no value is given in the table, the time integration
scheme was not stable, i.e., the Newton-Raphson loop inside the time integration did not
converge within 30 iterations. As Table 12.2 illustrates, stability is an issue with all DEIM
and UDEIM variants with small force bases. Up to m = 15 no (U)DEIM variant is sta-
ble besides the UDEIM-Element. This variant, however, has a very poor accuracy with a
relative hyper-reduction error REj, being clearly greater than 100 %.

With an increasing size m of the force basis Us and Uy, respectively, the (U)DEIM
procedures become more stable, up to the point with m = 40, where every variant of
the (U)DEIM exhibits stability. The accuracy of the hyper-reduction, though, is different
for the investigated methods. While the DEIM hyper-reduced models show poor accu-
racy with REj, values in the range of 70-80 %, the UDEIM exhibits better accuracy. The
best method among all seems to be the UDEIM with Element collocation, the method
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UDEIM selected elements

Figure 12.6: Displacement fields of the cantilever example at t = 0.31 s for the full, reduced
and UDEIM Element collocation reduced model with m = 20.

where the whole information of the selected elements is exploited. Figure 12.6 depicts
the displaced mesh with the selected elements for the UDEIM with Element collocation
and m = 20 force basis vectors at t = 0.31s. With this collocation technique, 20 elements
are selected for collocation which are scattered along the beam. The hyper-reduced can-
tilever depicted in green approximates the full and POD reduced model well.

The displacements of the tip of certain selected (U)DEIM reduced models are shown
in Figure 12.7. The UDEIM with Node collocation and 10 force basis vectors becomes
unstable at about t = 0.31s. The DEIM with Node collocation and 20 force basis vectors
does not follow the reference solution well. The UDEIM with Element collocation and 20
force basis vectors, however, shows a good match with the reference solution, which is in
accordance with the low hyper-reduction relative error of REj, = 5.50 %.

With the (U)DEIM hyper-reduction the wall time for the computation decreases con-
siderably. Whereas the full cantilever model requires t, = 97.01s in wall time and the
POD reduced model with 10 POD basis vectors requires t,, = 36.50s, all (U)DEIM re-
duced models are below a wall time of 11.7s. Especially the UDEIM with Element col-
location and 20 basis vectors yields a good wall time of t,, = 6.23 s with a good hyper-
reduction error value.

The c-shape example depicted in Figure 6.15 is also investigated. Therefore, it is re-
duced using a POD basis with 10 POD modes and a time integration of the same variants
of the previous example is run. In Table 12.3, the computation wall time and the accu-
racy are listed of the several variants. They confirm the observations of the cantilever
example. For small force bases and hence small values for m, all (U)DEIM hyper-reduced
models are unstable and fail to converge in the Newton-Raphson loop of the time inte-
gration scheme. For higher values of m the UDEIM become stable with the UDEIM with
Element collocation exhibiting the best results in terms of accuracy and wall time. This is
in accordance with the previous experiment using the cantilever example. In the c-shape
example, on the contrary, both the DEIM with dof collocation and the UDEIM with dof
collocation never gain convergence for the given force basis sizes. As a consequence, the
pure collocation with the number of force modes being equal to the number of collocation
points, i.e., m = ¢, seems to have more issues with stability compared to a setup, where
the number of collocation points is larger than the number of force modes. In this setup,
where the collocation becomes a least square fit minimizing the residual 7 in (12.6), the
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Figure 12.7: Displacement of the tip of the cantilever for different (U)DEIM hyper-reduction
methods; m is the size of the force basis. The UDEIM-node with m = 10 does not converge in
the Newton-Raphson-iteration at approximately t = 0.31s.

information of more dofs is used leading to more stable and more accurate results.

The speedup for the c-shape example are also impressive. The full model requires
ty = 248.465s, the POD reduced model t,, = 137.37s. With the UDEIM with Element
collocation, the wall time with t,, = 14.99s yields a speedup factor of 16.6 versus the full
model and 9.2 versus the POD reduced model. Thereby the hyper-reduction error with
REj, = 11.2is acceptable.

Both the cantilever example and the c-shape example exhibit large rotations of the ele-
ments, as depicted in Figure 6.7. Due to the large rotations, the restoring forces are highly
nonlinear, as discussed in Section 2.5. However, since the (U)DEIM requires a split of the
linear and the nonlinear part due to stability reasons as discussed in Subsection 12.1.2,
the linear forces of the rotated elements are explicitly calculated. They are compensated
by the nonlinear forces to yield the internal forces f, see (12.9). This splitting of purely
linear and purely nonlinear part, however, leads to a cumbersome force splitting which
is not natural in the finite element framework of large rotations. It is exemplarily shown
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Table 12.3: Run times and errors for (U)DEIM reduction of the c-shape example with a reduced
basis of 10 POD modes.

Size m of DEIM-dof DEIM-Node

force basis | REj,[%] tw[s] | REj[%]  twls]

4 - - - -

7 - - - -

10 - - - -

15 - - - -

20 - - - -

40 - - 46.77 17.08
Size m of UDEIM-dof UDEIM-Node  UDEIM-Element UDEIM-Component
force basis | REj;[%] tw[s] | REy[%] tw[s] | REy[%]  tw[s] | REp[%] twls]
4 - - - - - - - -
7 - - - - - - - -
10 - - - - - - - -
15 - - 68.05 9.07 23.39 9.07 - -
20 - - 88.36 11.03 35.21 10.9 - -
40 - - 11.8 1522 112 14.99 17.82 15.5

with the cantilever example. Therefore, the cantilever example is reduced with a POD us-
ing 20 POD bases. The absolute values of the reduced internal forces f,(q), the linearized
internal forces K;q and the purely nonlinear forces f, , = f,(q) — K,q are depicted in
Figure 12.8. Every dot represents one component of the force vector for one time step of
the time integration. Since all time steps are plotted in the graph, the order of magnitude
of the internal, the linear and the purely nonlinear forces can be estimated.

The maximum values of the linear and purely nonlinear forces are at least one order
of magnitude larger than the internal forces. This means, that the splitting of the internal
forces in a linear and a nonlinear part leads to very high linear and nonlinear force contri-
butions. They are approximately equal but of opposite sign, so that they result in clearly
smaller internal forces when they are added. This is reasonable, since the linearization
of large rotations leads to severely distorted elements, as illustrated in Figure 2.4 and
Figure 2.6. Similarly, large rigid body rotations of an undistorted element lead to severe
linear forces. They have to be compensated with the purely nonlinear forces to obtain the
(nonlinear) internal forces of the element.

As a consequence, this splitting leads to high purely nonlinear forces f, ,, where the
values one or more magnitudes below determine the magnitude of the internal forces f,.
As a consequence, the approximation of the purely nonlinear forces, as it is done in DEIM,
has to be very accurate, since fluctuations several orders of magnitude below f, , deter-
mine the leading values of f,.

This conceptual weakness of all DEIM and UDEIM variants are a downside of the
method, since it is hard to estimate the nonlinear forces accurately. However, in the next

chapter, a hyper-reduction method is given which avoids most of the issues associated
with DEIM.
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Discrete Empirical Interpolation Method (DEIM)
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Figure 12.8: Absolute values of the reduced linear forces K¢, reduced nonlinear forces fr’nl(q)
and reduced internal forces f,(q) for the cantilever example using 20 POD modes. Every dot
denotes the value of one component for one time step. The internal forces are clearly smaller
than both the linear and the nonlinear forces.



Chapter 13

Energy Conserving Mesh Sampling and Weight-
ing (ECSW)

The hyper-reduction methods considered in the previous two chapters have two different
strategies. The polynomial hyper-reduction in Chapter 11 exploits the polynomial struc-
ture of the nonlinear finite element system and expands it using tensors. The computa-
tional speedup comes from the fact, that the internal forces can be computed faster using
polynomial arrays than evaluating every element in the mesh, when the reduced basis
is small enough. The DEIM hyper-reduction introduced in Chapter 12 approximates the
internal forces of the high dimensional model by reducing the number of elements in the
assembly routine. The computational speedup is due to the reduced mesh, i.e., the non-
linear internal forces are computed by evaluating only a few elements and not the full
mesh of the high dimensional model. However, this method does not guarantee stabil-
ity, since the symmetry is broken due to the approximation strategy based on collocation
using an empirical force basis.

In this chapter, the ECSW hyper-reduction method is discussed. The speedup is also
realized by reducing the mesh and hence reducing the number of elements to be called.
However, this method does not approximate the internal forces in the high dimensional
physical space and project them onto the reduced basis afterwards as the DEIM does, but
computes the approximation of the reduced forces directly. Within this strategy, the de-
sired properties like symmetry, stability and the existence of an underlying Lagrangian
energy function are preserved. As a consequence, this method is among the most promis-
ing hyper-reduction methods in the finite element framework.

The ECSW method was first proposed by An et al. [AKJ08] in the context of com-
puter graphics. It has been adapted to engineering applications by Farhat et al. [Far+14;
FCA15], where the method is applied to structural dynamics problems using POD bases.
Chapman et al. [Cha+17] investigate techniques to speed up the offline costs associated
with the solution of the non-negative least square problem, which is the core operation of
the ECSW method. Hernandez et al. [HCF17] propose a variation of the ECSW method,
in which the nonlinearity is not selectively evaluated on the element level but on the
Gauss point level.

Besides the ECSW, a structure preserving hyper-reduction method has been proposed
by Carlberg [CTB15]. This method is based on the Gauss-Newton with Approximated
Tensors (GNAT) method, see Carlberg et al. [CBF11], however with an adaptation to the
Galerkin projection allowing for the preservation of the structure. Since it does not enjoy
the simplicity of the ECSW in the finite element context, it is not further discussed in this
thesis.

The ECSW needs training sets for the computation of the reduced mesh similar to
the DEIM. When the reduced basis is computed using simulation-based methods like the
POD, these training sets are commonly the snapshots of the high dimensional model.

151
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However, when a simulation-free reduced basis is used, the training snapshots of the full
model are not available. Alternative computations of training sets are proposed in this
chapter, after the ECSW is outlined. Parts of this chapter are based on the publication
[RR17].

13.1 Key Idea: Reduced Quadrature

The ECSW can be seen as a reduced cubature method which preserves the virtual work of
the reduced forces for a set of training snapshots. The virtual work done by the reduced
internal forces is given as

Wy, =Y 6q" VL] f,(L.Vq). (13.1)

ec&

The ECSW is seeking to find an approximation 5Wf/r for 6Wy, with a sum over a
smaller number of elements. In order to match the energy of the full system and to ensure
positiveness, the virtual work of every element is weighted by a weighting factor ¢, > 0,
similar to a weighting factor of a quadrature method (cf. (2.28)). The approximated
virtual work is then written as

Wy, =Y Geoq"VILI f(LeVy), (13.2)

ec&

with the reduced set of elements £ containing all elements with a nonzero positive weight-
ing factor ¢,. The balance of virtual work 6Wy, and approximated virtual work Wy, is
enforced for a set of m reduced training displacements g, ;. To cast the balance in a matrix-

vector problem, one can collect the summands of (13.2) in the matrix Y € R"™*I€l and
the weights &, in & € RI¢l with |€| being the number of elements in the element set £. As
the virtual displacements g are arbitrary, the balance of approximated virtual work and
the virtual work of the full system is written as:

Y =b, (13.3)

VTLlel(leqt,l) e VTL\Tg|f|5\ (Llé‘\vqt,l)

Y — : ; ) (13.4)
VTLlel(Lqut/m) e VTL\];“|f|5\ (L\g\vqt,m)
Y VL f,(LVq,,)
ec&

b= : (13.5)
)3 VTLeTfe(Lqut,m)

ec&

The equation above is fulfilled exactly for & = (1,...,1)T; this translates (13.2) to (13.1)
with € = € and means that every element is contained in the reduced set and weighted
with one. In order to achieve a reduction, one tries to find a sparse weighting vector &*
with as many zero entries as possible fulfilling (13.3) up to a tolerance 7. Furthermore,
all entries of &* have to be positive in order to guarantee the positive definiteness of the
virtual work of the nonlinear forces. The problem to solve is stated as

argmin#(i | {F #0) subjectto |[[YZ*—b|l, <7||b|]lz and & >0. (13.6)

This optimization problem is NP-hard to solve, meaning that a solution cannot be
sought in polynomial time. However, an approximate solution for ¢* can be computed
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Algorithm 5: Sparse Non-Negative Least Square (SNNLS) Solver

Input :matrixY € R*m*I€] vector b € R"™, tolerance T €1]0,1]
Output : sparse vector & € RI¢l with ||YE — b||, < 7||b|]and & > 0

17Z:={}

2 £:=0¢c REI

3 1=

4 while ||r||2 > T||b||2

5 do

6 u= YTr

7 | i:=index max(pu)

8 T:=TUi

9 while True

10 do

1 {:=0c RFI

12 {r:=(Y7)"b

13 if min(g) >0

14 then

15 ¢ =

16 break

17 end

18 Vi={ieI| <0}
19 a:=min{¢;/(¢i— &) | i € V}
20 §:=C+a(l—-7)
21 Z:={i|¢& #0}
22 end

23 r:=>b—-Yzls

24 end

with a sparse Non-Negative Least Square (SNNLS) solver listed in Algorithm 5. It seeks
iteratively for a solution using a greedy method while enforcing the positivity constraint
in every iteration. It can be interpreted as a greedy method which runs in the outer loop
and a simplex-like algorithm in the inner loop to enforce the positiveness constraint, see
Lawson and Hanson [LH95] for more in-depth information. In line 19, the matrix Yz is a
sub-matrix of Y defined in (13.4). It is obtained by taking only the columns corresponding
to the elements in the active set 7.

Figure 13.1 depicts the correction step of the positivity constraint. The vector ¢ is con-
forming with the constraint since it lies in the first quadrant of the x-y coordinate system,
while the trial vector  is violating the constraint, since the x-component is negative. The
corrected vector ¢, is obtained with the correction factor « = ¢;/(¢; — ;) and the cor-
rection vector { — ¢. It is exactly the combination of ¢ and the trial vector {, for which
the positivity constraint is just fulfilled. Since the violated component, the x-component
in this example, is zero in the corrected vector ¢, this component is dropped from the
active element set Z. Note, that this update of the active element set, which happens in
line 21 of Algorithm 5, has to take care for numerical round off errors. For a stable nu-
merical implementation, the update of the index set is better accomplished by removing
the index i from the index set Z which determines the minimum value « in line 19.

The most expensive part of the SNNLS algorithm is the solution of the least-square
problem in line 12 in Algorithm 5. However, the index set Z of active elements increases
very often from one iteration to the other, since one element gets added to it and the
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Figure 13.1: Illustration of the positivity constraint enforcement. When  is violating the posi-
tivity constraint, the correction vector { — ¢ is added to ¢, such that &_,,, is exactly zero in the
violated coordinate direction i.

corr

positivity condition in line 13 in Algorithm 5 is fulfilled. Hence, the information of the
previous iteration step can be exploited to solve the least squares problem more effi-
ciently, as proposed by Chapman et al. [Cha+17]. There, further algorithms for solving
the problem (13.6) in an approximate fashion are discussed. In particular it is shown that
the sSNNLS solver equipped with the exploitation of the previous solutions in the least
square problem is the best choice in terms of accuracy and computational time.

Once the sSNNLS problem is solved and the weighting factors ¢, are obtained, the
reduced element set € is defined as

E={eec{1,...,|E]} | & >0} (13.7)

The hyper-reduced internal force vector and the tangential stiffness matrix are then
given as

frecsw(@) = Y2 VIL; fo(LVq), (13.8)
ec&

Ky ecsw(q) = Y &V LK (L.Vq)L,V. (13.9)
ec€

In contrast to the (U)DEIM, the tangential stiffness matrix is symmetric. Hence, the
ECSW does not require an artificial splitting of linear and nonlinear terms as it is com-
mon in the (U)DEIM. Therefore the problem with non-natural non-linear components as
discussed in the previous chapter does not appear here. Even better, since the ECSW
can be derived from the principle of virtual work, it enjoys a solid theoretical founda-
tion and preserves desirable properties like passivity, stability, symmetry and variational
consistency.

However, two questions remain: the choice of an adequate tolerance T and the choice
of appropriate training sets ¢, ;, for which the equality of the virtual work is enforced.
Whilst for the first, a tolerance in the range of 0.0001 < 7 < 0.01 is proposed in the
literature, see Farhat et al. [FCA13] and Chapman et al. [Cha+17], the choice of training
displacements remains a wider question.
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13.2 Simulation-Based Training Sets

In the case when the reduction method is simulation-based, like the POD and its differ-
ent flavors, displacement snapshots of the full simulation are available. Therefore it is
straightforward to use all or a subset of the snapshots gathered from the training simu-
lation as starting point for the training snapshots for the ECSW method. They have to
be projected onto the reduction subspace, since the ECSW balances the virtual work of
the reduced forces (13.1) and the hyper-reduced forces (13.2) which are both performing
their work in the subspace spanned by V (cf. Farhat et al. [FCA13]). Hence, the training
snapshots g, ; can be obtained from the high dimensional displacement vectors u;,; either

by projecting them onto the subspace V using the L2-norm as:

= (VIV) "'V, (13.10)
or, using the M-norm as:

q,; = (VIMV)"'V Mu,,. (13.11)

In the other case, when the reduced basis is built simulation-free, it is not appealing to
pay the cost of a full training simulation. Two methods to obtain the training sets cheaper
than using full training simulations are introduced in the subsequent section.

13.3 Simulation-Free Training Sets

When the reduced basis is built with a method which does not require a full simulation
run and is hence simulation-free, the training snapshots should be obtained without the
cost of a full training simulation. This is, however, not an easy task since the training
sets should match the displacement fields of the system in the dynamical regime. If the
training sets do not match these states, the balance of the virtual work between the hyper-
reduced and the reduced-basis system is not enforced at the states of operation, yielding
poor hyper-reduced models. Since the deformed states for a nonlinear, dynamical system
are hard to guess, the goal of simulation-free or lean simulation approaches is to guess
deformed states close to reality for the use as training sets as cheaply as possible.

13.3.1 Preliminaries and Previous Approaches

One approach proposed by Jain and Tiso [Jail5] suggests to use quadratically expanded
linear displacement fields gathered from a simulation of the linearized system. How-
ever, this method works only for structures where the QM approach works as discussed
in Chapter 7. The key idea of the QM-lifting approach is to linearize the equations of mo-
tion (3.1), reduce them with a reduced basis constructed of vibration modes and perform
a linear time integration scheme. Since the linear equations of motion are transformed to
the modal space, they are extremely cheap to solve. In order to account for the nonlin-
earity, the linear solution # in modal space is lifted on the quadratic manifold introduced
in Section 7.2. The lifted full displacement field u;seq4 Serves then as training sets for the
ECSW. It is expressed as

Witted = V11 + Onyy (13.12)

with the linear modal displacement field # obtained from the linear reduced time inte-
gration, the reduced basis V composed of vibration modes and the third order tensor ®
describing the quadratic expansion of the displacement field with MDs or SMDs, as dis-
cussed in Chapter 7.
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_— full (reference) red basis (5 modes + SMDs)
— red basis QM-hyper-reduced POD basis + POD hyper-reduced

x-displacement [m]

y-displacement [m]

Figure 13.2: Tip displacements in the x direction (top) and y direction (bottom) of the cantilever
for different reduction and hyper-reduction techniques.

To illustrate the limit of the QM-lifting, it is applied to the geometrically nonlinear
cantilever example used in the previous chapters. As discussed in Section 6.4, the modes
and the corresponding static derivatives form a suitable basis for the cantilever example.
The result of the time integration of a reduced basis composed of five vibration modes
plus the corresponding SMDs is depicted in Figure 13.2, where the x and y displacements
of the tip are plotted over time. They show a good overlay indicating, that the simulation-
free reduced basis suits the problem very well.

Next, the uplifting of the linear solution with modal derivatives is tested. Therefore,
the linear training system is built using five vibration modes. Then a linear training
simulation is run. The linear solution is lifted onto the quadratic manifold spanned by the
modes and the corresponding SMDs according to (13.12). The QM lifted displacements
are used as training set for the ECSW with tolerance T = 0.001. The results of the QM
hyper-reduced system are depicted in Figure 13.2 and indicate that the displacements are
far from the reference solution and do not capture the motion of the reference system at
all.

Finally, a simulation-based ECSW hyper-reduction is tested. The beam model is re-
duced using a POD basis with 20 basis vectors and an ECSW with the displacement fields
gathered in the full simulation. As expected, the results follow the reference very well
(cf. Figure 13.2). A displacement snapshot of the deformed beam at t = 1.0865s is de-
picted in Figure 13.3. Once again, this figure shows that the displacements of the reduced
system and of the simulation-based hyper-reduced system follow the reference solution
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Figure 13.3: Displaced configurations of the cantilever at t = 1.08655s. The color of the ele-
ments indicates the weights of the elements in the ECSW hyper-reduction.

pretty well. The hyper-reduction with the QM-lifting approach is clearly not suitable for
this type of geometric nonlinearity. Despite the fact that the computation of training vec-
tors is very cheap in the QM-lifting approach, the results are poor for systems which are
not characterized by small, cable-effect driven nonlinearities as necessary for the success
of QM approaches (cf. Chapter 7). In the next sections, the Nonlinear Stochastic Krylov

Training Sets and the Nonlinear Stochastic Modal Training Sets are proposed which over-
come this limitation.

13.3.2 Nonlinear Stochastic Krylov Training Sets (NSKTS)

As discussed in the previous section, the training sets used for ECSW should represent
displacement fields of the reduced system as accurately as possible. The main issue in
obtaining representative displacement fields is that linear superposition of displacement
fields does not lead to physical results, as the system behaves nonlinearly.

In the governing equations of motion (3.1), the nonlinear internal forces are triggered
by three types of forces: inertia forces which are linear with respect to the accelerations,
damping forces which are linear with respect to the velocities and external forces applied
to the system. These three types of forces have to be balanced by the (nonlinear) internal
forces while adjusting the displacements, velocities and accelerations.

The key idea of the proposed method is to mimic the forces in the equations of motion
which trigger the nonlinear internal forces and apply them as a pseudo external forces
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to the nonlinear static system. The triggering forces are linear with respect to the dis-
placements and their time derivatives, and can thus be superposed. They are assumed to
live in a Krylov-subspace, which is built to represent the external forces g together with
approximations of the inertia forces Mii. They are mixed using stochastic distributions
in order to obtain multiple training sets of possible pseudo-dynamic force vectors. The
damping forces are neglected in this method.

In the following, the construction of the Krylov force subspace is spelled out similar to
the Krylov subspace for displacements in Section 4.4. It is based on the linearized system
without damping, where K = 9f/0du|,_, is the linear stiffness matrix for a reference static
equilibrium chosen here as # = 0. The external forces g(t) are assumed to have a time-
invariant input location expressed by § € RN and the time dependent amplitude g(t) €
R, so that g can be represented by g g(t). The linearized equations of motion are

Mii + Ku = 3 g. (13.13)

The inertia forces Mii are unknown and thus represented by a first order force correc-
tion h;. The equation is then written as

h+Ku=3g (13.14)
and can be solved for the displacements u:
u=K(gg—h). (13.15)

If the displacements and the second time derivatives are inserted in (13.13), one ob-
tains

MK '(gg—h)+KK'(gg—h)=3gg. (13.16)

The second derivative i of the correction is unknown and thus dropped from the
equation in a first order approximation yielding

hi = MK 'g §. (13.17)

As the acceleration of the external forces g ¢ lives in the subspace spanned by g, h;
lives in the subspace

hy € span(MK'g). (13.18)

This means that the direction of the unknown inertia forces Mii is approximated in
the first order by h;. The second order approximation can be obtained similarly, if the
acceleration term Mii in (13.13) is substituted by the sum of the already known h; and
the unknown second correction term hy:

ho+h+Ku=gg + u=K?'(gg—h —h) (13.19)
and inserted into the linearized equations of motion (13.13) yielding:
MK (8¢~ —h) +KK ' (gg—h—h)=gg (13.20)

Once again, h; is dropped as it is unknown, MK 'g ¢ and —h; cancel out leading to
the second order force expansion

hy = MK (—hy). (13.21)
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As above, 1 lies in the subspace spanned by h; and thus hy lies in the subspace
spanned by MK 'h;. The Krylov procedure explained above can be conducted p — 1
times leading to the Krylov force sequence

Fuyraw = (8 h1,h2,..., hy_1) = (3 MK 'g, (MK ')%g,..., (MK 1) 1g),
(13.22)

where p moments of the force subspace around frequency zero are matched. The vector
g is the low dimensional subspace in which the external forces g act. In the derivation
above it was chosen to be a one dimensional subspace. However, it could have been
equally derived for higher dimensional subspaces.

The Krylov force subspace is constructed similarly to a Krylov displacement sub-
space sequence for linear systems, which matches p moments around frequency zero,
as discussed in Section 4.4. However, in this case, the Krylov subspace is not a displace-
ment subspace, but a force subspace representing the expansion of the acceleration forces.
Likewise, it could have been obtained by multiplying the typical Krylov sequence for
displacements Vi, = (K “'g,...,(K"'M)P~'K'g) with K to obtain the corresponding
linear forces of the Krylov displacements.

Krylov sequences are usually poorly conditioned, as the vectors tend to become less
linearly independent for higher order corrections (cf. [Str07] and [GR14]). In order to
obtain a good basis, an orthogonalization is necessary, as classically performed in an
Arnoldi procedure or a Lanczos procedure for symmetric systems respectively. When
performing these orthogonalization iterations, a suitable norm has to be defined, for
which the Krylov vectors are made orthogonal.

In the case of the Krylov force subspace, a norm allowing for physical interpretation
is desirable. Forces applied to linear systems can be measured according to the work they
do when applied. The work W, of the forces g applied statically is defined as

W, = /gTdu = /gTKfldg = %gTKflg, (13.23)

as the linear displacements are # = K~ 'g. The metric expressed in the static energy of
force vector g is the so-called impedance norm:

x| = VaTK x. (13.24)

This norm is chosen for the orthogonalization of the Krylov force sequence (13.22),
such that the Krylov force basis is orthogonalized and normalized:

F{rnylpkry =1. (13.25)

With this orthogonalization, every column vector in F kry € RNx*p represents a force
vector that does the same work when applied to the static linear system. Or, from the
other perspective, the elastic potential energy stored in the mechanical system is equal
for every force vector applied.

In order to obtain force vectors mimicking the external and dynamic forces of the
system, all column vectors of Fy,y representing the subspace of these forces are amplified
randomly. The amplification is cast in the i-th random vector n; € IR? which carries
Gaussian distributed random values:

ni(p,0) = (Nl(y,a),...,/\/'p(y,a))T, (13.26)

with a Gaussian distributed random number N (y, ) for a given mean y and standard

deviation 0. A random force sample f,, 4. € RY is then expressed as
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frand,i = Fkryni' (13.27)

The training displacements are computed by solving the nonlinear static problem for
the displacements u; caused by the given random force vector. The force is applied in k
steps, for which the load is increased with 1-th of f

rand,i*

I .
i) = L franair With 1€ (1. K] (13.28)

The solution of the nonlinear displacements using a force increment technique leads
to k displacement training snapshots for one stochastic force vector f 4 ;- For d random
force vectors, d - k displacement training snapshots are generated. These training snap-
shots are then used as training sets to hyper-reduce a reduced-basis model by setting up
(13.4) and solving (13.6) with an appropriate solution strategy.

As hyper-reduction works upon a reduced basis model for a given V (cf. (13.8)), two
options exist for the computation of NSKTS:

1. compute the NSKTS in the physical, unreduced domain by solving full static prob-
lems and project the training snapshots u; afterwards onto the reduced basis using
(13.10), and

2. compute the NSKTS in the reduced basis domain of the desired hyper-reduced
model and obtain the training snapshots g, directly (cf. second block of Figure 13.4).

The first option involves the solution of the nonlinear static problem (13.28) in the
high dimensional physical domain. As this is a costly procedure, it is desirable to cir-
cumvent this costs with the second option where the nonlinear static problem is solved
in the domain of the reduced basis and the matrices to be factorized are of size n instead
of N. Furthermore, it has some additional advantages. First, in the author’s experience,
the number of iterations inside the Newton-Raphson loop of the nonlinear static solver
is smaller than for option one. Second, the training snapshots are directly computed in
the desired reduced form. Third, the reduced elemental forces are computed and can be
stored for setting up the SNNLS problem (13.4). Hence, the second option is favored and
the NSKTS are proposed to be computed in the reduced domain.

An overview of the NSKTS computation procedure is given in Figure 13.4. The am-
plitude of the input vector g for the Krylov force subspace has no effect on the NSKTS,
as g is scaled to one in the impedance norm. Hence g is evaluated at a random amplitude
to only obtain the direction of g in the physical domain. Furthermore, the coefficients
for the Gaussian distribution have to be specified. For the examples investigated by the
author, a Gaussian distribution with mean y = 0 and with standard deviation ¢ in the
range of the impedance norm of the external forces is used. For practical use, the maxi-
mum absolute value of the impedance norm of the external force vector is computed and
amplified with a correction factor a:

0 =a|gmaxlk-1- (13.29)

As the external forces are time dependent, g = is the external force vector for a time,
where g has its maximal L?-norm. The correction factor 4 is to be chosen such that the
resulting static displacements u; obtained by (13.28) are in the range of the expected mo-
tion of the system. In the author’s practical experience, a should be in the range [0.1, 5],
and toward the lower end, if the forces are applied for a short time or at a high frequency
and rather high if they are applied at a low frequency or close to an eigenfrequency of
the linearized system.
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Figure 13.4: Computation of the Nonlinear Stochastic Krylov Training Sets (NSKTS)
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Figure 13.5: Overlay depiction of the NSKTS (left) and the NSMTS (right) for the cantilever
example.

To illustrate the feasibility of the approach, the proposed method is applied to the
cantilever example of the previous section, with which the QM lifting approach is in-
vestigated (cf. Subsection 13.3.1). The same reduced basis composed of 5 modes plus
corresponding SMDs is used. The NSKTS are computed with the following parameters:
the force correction factor a = 3, the number of stochastic force vectors d = 8, the number
of force increments k = 20 and the number of moments p = 4. The left part of Figure 13.5
depicts the displacement fields of the NSKTS.

The NSKTS are used as training sets for the SNNLS solver of the ECSW with T =
0.001 leading to a hyper-reduced model depicted in Figure 13.6. The results of the time
integration using modes + SMDs as reduced basis and NSKTS for the ECSW are given in
Figure 13.7. The results indicate that the NSKTS are very good training sets for the ECSW
reduction method. This is further substantiated in the Section 13.4, where a larger, less
academic example is given.

13.3.3 Nonlinear Stochastic Modal Training Sets (NSMTS)

The NSKTS require the force input locations to obtain the Krylov force subspace, which
is the basis for the pseudo dynamic forces. As mentioned in the previous section, the
Krylov force subspace can be obtained from the Krylov displacement subspace as in-
troduced in Section 4.4, which is subsequently multiplied with the stiffness matrix of the
linearized system. Hence, the Krylov force subspace can be interpreted as the linear static
force response to the Krylov displacement subspace. With this interpretation in mind, it
is natural to extend the NSKTS technique to other reduction methods like the modal re-
duction, which does not require force input locations. This is the idea of the Nonlinear
Stochastic Modal Training Sets (NSMTS).
The raw modal force subspace is defined as

Fr,mod, raw — (KY‘Pr,lI sy Kr‘l’r,p) (1330)

with the dimension p of the force subspace. The impedance normalized and orthogonal-
ized modal force subspace F, o4 could be obtained with a Gram-Schmidt like orthogo-
nalization technique, such that the impedance orthonormality condition
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Figure 13.6: Weights of the simulation-based ECSW (top) using a basis of 20 POD modes and
the lean-simulation ECSW using NSKTS (middle) and NSMTS (bottom) using a basis with 5
vibration modes plus SMDs. In the top mesh, 65 elements are chosen for the reduced element
set, in the NSMTS mesh 82 elements, in the NSKTS mesh 62 elements.
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Figure 13.7: Tip displacement in the x direction (top) and y direction (bottom) of the cantilever
for the hyper-reduced system trained with NSKTS. The reference line is almost overlaid by the
reduced and hyper-reduced systems’ lines.
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Pz:modK;lFr,mod =1 (13.31)
is fulfilled. Then, as in the NSKTS above, the force vectors forming the column vectors in
the modal force basis F, 04 perform the same work when applied to the linear system.
However, since the modal force subspace is constructed with modes which are both M
and K orthogonal, the raw modal force subspace F, ;o4 raw is impedance orthogonal but
not normalized:
Pz:mod, rawK;lPr,mod, raw — q)ZKrK;lqu>r = Q;% (13.32)
The matrix ), = diag(wy1, ... ,wr,p) is a diagonal matrix containing the eigenfre-
quencies corresponding to the eigenvectors in the raw modal force subspace. Conse-
quently, the impedance norm of the modal force vector is exactly the eigenfrequency of
the corresponding mode. The impedance-orthonormalized modal force subspace fulfill-
ing (13.31) is then given as

F) mod = (%qubm, ey %WKNPW) (13.33)

or, with the definition of the generalized eigenvalue problem (cf. (4.5)), equivalently as

Fr,mod = ((Ur,er¢r,1, e ’Wr/er(PV,p) . (1334)

Hence, the Gram-Schmidt orthogonalization can be omitted by a direct weighting of
the modes with the inverse of the eigenfrequency to obtain the already orthonormalized
modal force subspace F, noq-

The subsequent steps for the computation of the NSMTS are identical to the ones for
the computation of the NSKTS and are depicted in Figure 13.8.

The feasibility of the NSMTS approach is demonstrated with the cantilever example,
too. The NSMTS are computed with the number of modes p = 6, the force correction
factor a = 1, the number of stochastic force vectors p = 8 and the number of force incre-
ments k = 20. All static displacement fields converged, so that a total of 160 displacement
fields are used as training sets. In the right part of Figure 13.5, the displacement fields of
the NSMTS are depicted. In contrary to the NSKTS shown in the left part of the figure,
the NSMTS exhibit a stronger over-bending of the beam. This is reasonable, since the fifth
mode is an in-plane mode and the corresponding modal forces act in the axial direction
of the beam. Depending on the random value and especially the sign of it, the pseudo-
dynamic forces may trigger strong nonlinearities as in the over-bending case shown in
Figure 13.5.

Next, the reduced cantilever model is hyper-reduced using the NSMTS. The weights
of the elements are depicted in Figure 13.6 and indicate, that the number of selected
elements to achieve the desired tolerance T = 0.001 in the SNNLS solver is slightly higher
than for the NSKTS and the full training sets. The tip displacement of the NSMTS hyper-
reduced model is given in Figure 13.7. It shows clearly that the hyper-reduced model
follows the reference very well.

In Table 13.1 the error measures and the computational wall times of the online costs
are listed together with the number of selected elements. The computational speedup
is associated with the number of elements selected in the active element set. While the
NSKTS hyper-reduction needs 62 elements to achieve the desired accuracy in the sSNNLS
solver and is hence the fastest hyper-reduced model, the NSMTS trained model has 82
elements in the active element set and is hence the slowest hyper-reduced model.

The convergence of the sSNNLS solver is depicted in Figure 13.9 for the different train-
ing sets. For the full simulation training set, all displacement snapshots from the full,
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Figure 13.9: Residual of the sSNNLS solver for the cantilever example. For the full simulation
training sets, all displacement snapshots of the full, unreduced simulation are selected as train-
ing set.

unreduced time integration are used as training snapshots for the ECSW. Both the max-
imum residual and the minimum residual after the convergence of the sSNNLS are dif-
ferent, since 7 is a relative tolerance (cf. (13.6)). In general, the convergence is strictly
monotonic, however with different rates depending on the training sets. Since elements
are dropped from the active element set when violating the positivity constraint, the ab-
solute value of the residual drops at certain points while the number of elements remains
equal or even decreases.

Table 13.1: Accuracy and computational wall times for the ECSW hyper-reduced cantilever
example.

Reduction Method dofs elements REf[%] REp [%] tyls] speedup [-]
full 1224 246 — — 713 —
POD 20 246 0.12 — 386 1.85
modes & SMDs 20 246 1.42 — 385 1.85
P.OD " ].ECSW (Full 20 67 0.2 0.12 15 4.75
simulation)
modes & SMDs +

20 62 0.84 0.75 14 5.09
ECSW (NSKTS)
modes & SMDs +

20 82 1.3 0.16 18.6 3.83
ECSW (NSMTS)

13.4 Applications

In the previous section, the NSKTS and NSMTS training sets and a full training set stem-
ming from a full, unreduced training simulation are applied to the cantilever example
known from the previous chapters. Both, the NSKTS and the NSMTS exhibit excellent
hyper-reduction results making them very attractive for real-life applications. To inves-
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tigate the NSKTS and NSMTS more in detail, two further applications are given in this
section. The first one is a nonlinear cantilever with hyperelastic material. The second is a
more realistic rubber-boot example exhibiting a mesh size closer to real-life examples. To
investigate if the method is suitable for real-life systems, further investigations regarding
the robustness of the NSKTS and the NSMTS are performed.

13.4.1 Cantilever with Nonlinear Material

One main feature of the ECSW hyper-reduction and also the NSKTS or NSMTS is the
ability to handle nonlinear, hyperelastic materials. The cantilever example of the previ-
ous section exhibits clear nonlinearities which are however triggered due to the large ro-
tation of the elements. As a consequence, a material nonlinearity is barely triggered. The
cantilever modeled with a Neo-Hookean material exhibits practically the same results as
the same beam modeled with St. Venant-Kirchhoff material, if the Lamé constants of both
material models are equal. As a consequence, the use of the St. Venant-Kirchhoff mate-
rial seems to be a valid assumption for nonlinear materials in many cases of nonlinear
structural dynamics.

In order to trigger the material nonlinearity in the cantilever, the height of the beam
is increased about a factor of 3, so that the strain and stresses are larger at the top and
bottom face of the cantilever. The mesh of the modified cantilever example is depicted in
Figure 13.10. The nonlinear material is modeled with a Neo-Hookean material as intro-
duced in Section 2.2. The properties of the mesh and the corresponding material values
are listed in Table B.1 on page 247 in the Appendix.

Since the modified cantilever example is two dimensional, either a plane stress or a
plane strain assumption has to be chosen. Since a plane stress assumption requires the
solution of a nonlinear system of equations within the element formulation, the Neo-
Hookean cantilever example exhibits a plane strain assumption, so that the stress can be
computed in a closed form for every Gauss point.

First, the level of material nonlinearity is investigated. Therefore, the displacements
of a full simulation of the modified cantilever modeled with Neo-Hookean material are
compared with the same modified cantilever modeled with St. Venant-Kirchhoff mate-
rial. In Figure 13.11, the tip displacement of the beam is depicted indicating that the
nonlinearity of the Neo-Hookean material results in a different motion compared to the
St. Venant-Kirchhoff material.

Next a reduced basis is computed. It is built using eight vibration modes and the
22 most important SMDs according to the frequency weighting scheme introduced in
Subsection 6.2.4 leading to a reduced basis of 30 basis vectors. In Figure 13.11 the tip
displacement of the reduced model is depicted indicating, that the reduced basis suits
the material nonlinear problem also well.

Next, simulation-free ECSW reduced models are built using the NSKTS and NSMTS.
The NSKTS are computed with the number of moments p = 4, the force correction fac-
tor 2 = 5, the number of stochastic force vectors d = 8 and the number of force incre-
ments k = 20. The NSMTS are computed with the number of force modes p = 6, the
force correction factor a = 2.5, the number of stochastic force vectors d = 8 and k = 20
force increments. The sNNLS is run in both cases with T = 0.001. The error measures,
the run times and the number of selected elements of the hyper-reduced models are listed
in Table 13.2. They indicate, that the hyper-reduction using the NSKTS and the NSMTS
leads to very low hyper-reduction errors REj, clearly below 1 %. Since the reduced ba-
sis is not too accurate, the full error of the hyper-reduced models is in the range of the
reduced basis model. For comparison, a POD reduced basis model as well as a POD
ECSW hyper-reduced model trained with the full displacement sets are also listed in Ta-
ble 13.2. They exhibit lower errors compared to the full reference simulation, since the
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Figure 13.10: Mesh of the cantilever used for the Neo-Hookean material.

POD basis is more accurate than the basis of same size composed of the vibration modes
and the SMDs. This fits the expectations, since the POD basis knows the results as it is
trained by the full solution. Similarly, the ECSW is also very accurate since it knows the
full solution as well. More interestingly, the NSKTS produce a hyper-reduction error in
the same range of accuracy without knowing the full solution. Even better, the number
of elements necessary for achieving this accuracy is lower compared to the full trained
ECSW leading also to lower computational wall times and hence greater speedup factors.
As a consequence, the NSKTS can be regarded as excellent training sets. In this case, the
NSMTS do not exhibit the high accuracy of the NSKTS. This is presumably due to the
fact, that the in-plane modal forces cause large over-bendings of the modified cantilever
leading to unrealistic training sets. As a consequence, both the hyper-reduction error and
the number of elements in the active elements set is higher.

Table 13.2: Accuracy and computational wall times for the ECSW hyper-reduced cantilever
example with Neo-Hookean material.

Reduction Method dofs elements REf[%] REj [%] tyls] speedup [-]
full 2244 518 — — 1424 —
POD 30 518 0.011 — 779 1.83
modes & SMDs 30 518 3.361 — 77.6 1.83
POD + ECSW (full 30 200 0088 0091 389 3.66
training)
modes & SMDs +

30 172 3.416 0.066 33.9 4.20
ECSW (NSKTS)
modes & SMDs +

22 722 37 43.1 .

ECSW (NSMTS) 30 3 3 0.376 3 3.30

13.4.2 Rubber Boot

Next, the less academic rubber boot example depicted in Figure 13.12 is investigated.
The boot is 440 mm high and has a radius of 250 mm at its greatest extent. The boot is
composed of two different materials: the top ring is made of steel and modeled as St.
Venant-Kirchhoff material with Young’s modulus E = 210 GPa, Poisson’s ratio v = 0.3
and density p = 10,000ks/m?; the boot itself is made of polyethylene also using a St.
Venant-Kirchhoff Material with Young’s modulus E = 200 MPa, Poisson’s ratio v = 0.3
and density p = 1000ks/m?. The boot is fixed on the bottom ring-shaped surface and

has a traction force at the rubber top surface of F = (0 1 1) T sin(14 -2 - 7r) 2 - 10° N/m?
acting in both the y and z directions. Rayleigh damping is applied so that the first two
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Figure 13.11: Tip displacement of the thick cantilever example depicted in Figure 13.10 with
Neo-Hookean material.

distinct eigenfrequencies of 12.25Hz and 18.14 Hz of the linearized system have a linear
modal damping ratio of 6 = 0.01.

The boot is discretized with a total of 9630 Hexahedron elements with quadratic shape
functions. Each element has 20 nodes, the constrained full model has 186,030 dofs in total.

First, a simulation-free reduction basis is computed. It is constructed using the first
25 Krylov subspace modes (cf. Section 4.4) using the force input location at the top ring
as external forcing vector g and the corresponding SDs (cf. Subsection 6.2.2). The basis is
deflated as described in Subsection 6.2.3 yielding a basis consisting of 346 basis vectors.
At this point it is mentioned that the construction of the reduction basis could also have
been performed with vibration modes instead of Krylov subspace vectors as linear basis
starting points. However, the computation of MDs were not as straightforward as for
SDs, as the system is symmetric and has identical eigenvalues. This has to be accounted
for in case MDs are used for the simulation-free reduction basis construction.

Next, the NSKTS are computed. In total d = 8 stochastic force vectors are chosen
with k = 20 force increments each. For the consideration of the dynamic effects, p =
4 moments are chosen; the external forces are corrected by a factor 2 = 2, so that the
maximum external force vector used for the computation of the standard deviation is 2
times higher than g __ . In the nonlinear static solver, the number of Newton-Raphson
iterations is limited to 20 iterations. If convergence is not achieved within these iterations,
the static solution procedure is stopped and all obtained training snapshots up to this
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Figure 13.12: Cross section (left) and mesh (right) of the benchmark example rubber boot with
the x-y-z coordinate system.

point are used as training sets. In the example, one nonlinear static solution is terminated
after 11 of 20 load increments, so that a total of 151 training snapshots are generated.
Based on these training sets, the ECSW element selection routine is run using a standard
sNNLS solver with T = 0.01. It selects 1267 elements out of 9630 elements using 1391
iterations. Both the obtained NSKTS and the selected elements of the ECSW scheme are
depicted in Figure 13.13.

Also NSMTS are computed. There, similar to the NSKTS, d = 8 stochastic force
vectors are used with k = 20 force increments each. Every stochastic force vector is
composed of p = 6 modal forces, which are not artificially amplified since the external
force correction factor 2 = 1. The number of iterations of the Newton-Raphson solver
was also set to a maximum of 20 iterations; all of the eight force cases converged within
these number of iterations so that in total 160 training snapshots are generated. Similar
to the NSKTS, the sSNNLS routine is run with T = 0.01 resulting in 1219 active elements
using 1336 iterations. Both the NSMTS displacement shapes and the resulting selected
elements are depicted in Figure 13.13.

For comparison, a simulation-based reduction is performed using POD and classical
ECSW as proposed in [FCA13]. In general, the applied forces of the reduced model are
not identical to the training simulation. To make the comparison more realistic, the train-
ing simulation is slightly modified by changing the excitation frequency from 14 Hz of the
reference model to 21 Hz used for the training model. All other properties of the system
remain similar, though. For the POD analysis, a smaller and a larger reduction base are
chosen. The small POD basis consists of 100 POD vectors, the large POD basis has 346
POD vectors and thus the same size as the simulation-free basis.

The time integration of all systems is performed using an HHT-a scheme with numer-
ical damping & = 0.1. The time range goes from ¢ty = 0s to tong = 0.3 s with a time step
size At = 5-10~*s yielding 600 time steps in total.

The time integration’s resulting displacements are depicted in Figure 13.14. It shows
the displacements in the x, y and z directions of a node at the tip of the boot. The solution
of the linearized problem is also given to show the degree of nonlinearity of the problem.

As the figure shows, both reduced basis models, the POD basis with 100 basis vec-
tors as well as the simulation-free reduced basis model lead to accurate reduced models
that follow the full solution well. Consequently both the subspace spanned by the POD
vectors as well as the Krylov subspace modes plus its SDs embrace the subspace of the so-
lution. Also all hyper-reduced models, the model trained with the full solution as well as
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Figure 13.13: Overlay picture of the Nonlinear Stochastic Training Sets (left) and the corre-
sponding reduced mesh (right) after the ECSW reduction. The top row shows the NSKTS, the
bottom row the NSMTS. The highest element weights are in the steel ring for both cases.

the models trained with NSKTS and NSMTS, show a very good match with the reduced
and full solutions.

An overview of the global error, time measures and number of dofs and selected ele-
ments is given in Table 13.3. The speedup factors indicate that the reduced basis models
allow only moderate accelerations of the computation. Especially for a higher number
of reduced dofs, the projection matrices V are very memory-intensive and slow down
the computation considerably. The gain of the reduction of the dofs is almost lost, as
the assembly routine and the basis projection are too expensive. Hence, hyper-reduction
techniques are necessary to obtain real speedups. They are considerable especially for the
small POD-hyper-reduced model. The combination of small reduced bases and a small
element set shows a great achievement in time reduction. This speedup can not be re-
alized with the larger bases, though the large POD basis yields a faster model than the
simulation-free hyper-reduced models trained with NSKTS and NSMTS, as the former
has fewer elements in the active element set.

A closer look at the selected elements of the hyper-reduced models trained with the
full simulation shows that the selection of the elements is very problem-specific. They
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Figure 13.14: Displacements of a node on the top ring of the rubber boot for the full model, the
reduced model using 25 Krylov subspace vectors plus corresponding SDs and the hyper-reduced
models using the same basis and NSKTS or NSMTS for the ECSW training.
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Figure 13.15: Deformed configuration of the rubber boot at t = 0.206s. The grey solid body
is the reference, the orange mesh depicts the mesh of the NSKTS hyper-reduced model with its
selected elements. The light grey mesh gives the undeformed configuration.

are predominantly selected on the x-z plane, which can be clearly seen in Figure 13.16.
The x-z plane is the plane in which the external forces act. In contrast to that, the NSKTS
and NSMTS-trained simulation-free models do not show any concentration of elements
in a specific direction (cf. Figure 13.13). Instead in these models clearly more elements
are selected which seem to be equally distributed. As more elements are selected, the
speedup rates are not as high as in the POD hyper-reduced models trained with the full
simulation.

However, the larger element set in the NSKTS-trained model results in a higher accu-
racy. The REy, error, which gives the error of the hyper-reduced model with respect to
the reduced-basis counterpart, is clearly smaller for both the NSKTS and NSMTS-trained
model compared to both full simulation-trained POD models. For the task of building
a hyper-reduced mesh for a given basis, the NSKTS and the NSMTS prove to be excel-
lent training sets, but with a tendency to build more accurate and thus more expensive
hyper-reduced models than the models trained with full simulation training sets. As
several setting parameters have to be chosen to compute the NSKTS and the NSMTS,
the robustness of the method is of great interest and hence investigated in the following
subsection.

13.4.3 Robustness of the Method

To assess the robustness of the reduced models generated above, first the hyper-reduced
models built with the nominal force are simulated with a higher force amplitude. The
amplitude is increased by a factor of 3, while all other parameters are kept the same.
Similar to the previous case, the resulting displacements of the tip node are given in
Figure 13.17 and the quantitative values are listed in Table 13.4. As the error of the hyper-
reduction step is given with the REy, value, the NSMTS-trained hyper-reduced model
clearly has the lowest hyper-reduction error. Also the NSKTS-trained hyper-reduced
model has a hyper-reduction error clearly below the full simulation trained POD hyper-
reduced model. Again, this accuracy comes with the cost of a lower speedup factor com-
pared to the full simulation-trained POD hyper-reduced models. In this example, how-
ever, the reduced basis of both the NSKTS and NSMTS hyper-reduced models does not
suit the problem well, and hence the REy is fairly high. But also the small POD system,
which had a smaller global error than the NSKTS and NSMTS hyper-reduced model in
the load case of Subsection 13.4.2, does not capture the relevant subspace of the problem
and performs even worse. The great problem-specificity resulting in small and efficient
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Figure 13.16: Weights of the POD-reduced rubber boot with 100 basis vectors (left) and 346
basis vectors (right). The plane depicts the x-z plane, which is the plane of the external forces;
the selected elements are predominantly located on this plane.

Table 13.3: Overview of the different reduction scenarios for the rubber boot example.

Reduction method dofs elements RE;/;[%] REp [%]  twls] speedup [-]
Full problem 186,030 9630 _ 23293 _
Reduced with 25
Krylov Modes + 346 9630 12.50 — 202 1.05
SDs
Hyper-reduced

7 . . .
Hyperredu 346 126 12.28 029 4,998 466
Hyper-reduced 4 121 12.44 7 4 47
Hyper reduc 346 9 . 0.07 4,906 75
POD-reduced 100 9630 5.74 — 16,051 1.45
POD-hyper- 100 183 433 210 757 30.77
reduced
POD-reduced 346 9630 0.50 — 2317 1.04
POD-hyper- 346 418 117 135 3109 7.49
reduced
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Table 13.4: Overview of the different reduction scenarios for the Rubber Boot example with
increased forcing about factor 3.

Reduction method dofs elements REf/rb [%] REy, [%] tw [s] speedup [-]
Full problem 186,030 9630 — 24947 _
Reduced with 25

Krylov Modes + 346 9630 2433 — 25,880 0.96
SDs

Hyper-reduced 4 1267 2424 018 5832 428
with NSKTS 346 6 : : ’ :
Hyper-reduced 346 1219 2431 004 5,833 4.28
with NSMTS

POD-reduced 100 9630 51.05 — 18,702 133
POD-hyper- 100 183 51.01 092 879 28.38
reduced

POD-reduced 346 9630 9.04 — 26281 0.95
POD-hyper- 346 418 8.62 084 3,668 6.80
reduced

reduced models has its flip-side in the lack of robustness for different load cases or a
change of boundary conditions. However, as the REy, error is fairly small for all hyper-
reduced models, the hyper-reduction step worked out well in all cases. It seems that for
building good hyper-reduced models using ECSW, the main challenge is the construction
of a suitable reduced basis.

In a second investigation, the NSKTS algorithm is inspected for the robustness of
its setting parameters. Hence, the setting parameters are both decreased and increased,
NSKTS are computed and hyper-reduced models with the same basis as above are trained
with them. The four setting parameters are

¢ the force correction factor a amplifying the external forces,

the number of stochastic distributions d,

the number of force increments k for the nonlinear solver and

the number of moments p up to which the Krylov force sequence is constructed.

An overview of the NSKTS with varied setting parameters and the corresponding
time integration results is given in Table 13.5. Despite the variations of all setting param-
eters, the resulting errors, both REf and REj, show very little fluctuation. Similarly, the
number of selected elements, and with it the wall time and the speedup factor, remain in
the same range. In the author’s experience, the variations stay in the same range as the
variations stemming from the random number generation in (13.26). As a consequence,
NSKTS prove to be training sets which are very robust with respect to their setting pa-
rameters. In a practical user setting, they can be chosen intuitively without requiring any
fine-tuning.

The last two rows in Table 13.5 show how the system behaves if the size of the basis is
reduced or the tolerance is loosened. If the reduced basis is chosen to have only 100 dofs,
the number of elements decreases by about a factor of % leading to higher speedup rates,
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Figure 13.17: Displacements of a node on the top ring of the rubber boot with triple the loading.
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Table 13.5: Overview of the variations of the setting parameters for the NSKTS and their results
on the reduction accuracy. As a random number generation is involved in the NSKTS computa-
tion, the numbers show just the trend. a: force correction factor, d: number of stochastic force
vectors, k: number of force increments, p: number of moments. The last two rows describe ex-
periments, where first the basis is chosen to have only 100 basis vectors instead of 346 and lastly
the tolerance T of the sSNNLS-solver was set to 0.1.

Name a d k p elements RE 5 [%] REj, [%] ty,[s] speedup [-]
regular 2 8 20 4 1267 12.28 0.29 4,998 4.66
al 1 8 20 4 1068 12.24 0.37 4,555 5.11
a’t 4 8§ 20 4 1346 12.33 0.22 5,129 4.54
dl 2 5 20 4 1106 12.21 0.41 4,586 5.08
dt 2 12 20 4 1158 12.26 032 4,739 492
k| 2 8 10 4 939 12.47 0.10 4,283 5.44
k1 2 8 30 4 1168 12.16 045 4,797 4.86
Pl 2 8 20 2 1141 12.27 0.32 4,664 4.99
p?t 2 8 20 6 1251 12.45 0.07 4,943 471
ve 2 8 20 4 537 54.65 1.53 1,362 17.11
RN *100 4

=01 2 8 20 4 833 7.55 11.11 4,086 5.70

of course with lower accuracy with respect to the full model. This fits into the picture of
the POD hyper-reduced model, where the size of the active element set increases, when
the size of the reduced basis is increased. A decrease of the tolerance T leads, as expected,
to a smaller element set and a larger REj,, error. Whether the decrease of the RE; error
has a random or systematic pattern is a topic for future investigations.

The same robustness with respect to the setting parameters is achieved, when the
NSMTS are used as training sets. In Table 13.6 the variations of the setting parameters of
the NSMTS computation are listed. As with the NSKTS, the number of selected elements
and hence the computational wall time fluctuates within the expected range, which ex-
ists, since the computation of NSMTS includes a random number generation. In the
discussed rubber boot example, all variations of the NSMTS setting parameters result in
very accurate hyper-reduced model, as every experiment results in a model with the REj,
value below 0.1 %. This is clearly below the average value of the hyper-reduced models
trained with NSKTS.

The question, for which type of models the NSKTS are the better training sets and for
which the NSMTS are better is a topic for future research. What can be stated is the fact,
that both the NSMTS and the NSKTS are computed with routines which are very robust
with respect to the setting parameters and can be performed without the necessity of a
tedious parameter fine-tuning.

13.4.4 Offline Costs

The last question remaining is about the offline costs associated with the computation of
the NSKTS, the NSMTS and the sSNNLS procedure. For the computation of the NSKTS
and the NSMTS, d nonlinear independent problems with k force increments have to be
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Table 13.6: Overview of the variations of the setting parameters for the NSMTS and their results
on the reduction accuracy. As a random number generation is involved in the NSMTS computa-
tion, the numbers show just the trend. a: force correction factor, d: number of stochastic force
vectors, k: number of force increments, p: number of force modes.

Name a d k p elements RE Y [%] REy [%] ty,[s] speedup [-]
regular 1 8 20 6 1219 12.44 0.072 4906 4.75
al 05 8 20 6 1106 12.43 0.087 4611 5.05
at 2 8 20 6 1308 12.47 0.032 5057 4.61
dl 1 5 20 6 1146 12.45 0.092 4676 4.98
dt 1 12 20 6 1229 12.46 0.057 4859 4.79
kl 1 8 10 6 1070 12.47 0.072 4497 5.18
k1 1 8 30 6 1240 12.45 0.093 4878 478
pl 1 8 20 3 1026 12.52 0.079 4422 527
p1 1 8 20 9 1253 12.43 0.089 4920 4.73

solved. As they can be parallelized with no effort, all NSKTS and NSMTS were computed
in a parallel manner on all four cores available on the workstation. The computation of
the NSKTS for d = 8 took 2811 s, and the solution of the SNNLS problem took 3218s. For
the NSMTS with d = 8, 3880 s were needed and the solution of the sSNNLS problem took
3288 s. With the construction of the reduced basis requiring 554 s, the total computation
effort of both offline and online is still considerably smaller than one single full training
simulation required for the POD and the ECSW with full training set.

Hence, both the NSKTS and the NSMTS are very attractive not only if hyper-reduced
models are to be obtained with little offline costs, but also for scenarios where the full
simulation is too expensive, and an approximation of the full solution is to be obtained
with less effort.



Chapter 14

Summary of Part Il

The previous four chapters cover the hyper-reduction of geometrically nonlinear struc-
tural dynamics systems, which are summarized in the following. The starting point of
hyper-reduction is the reduced basis method, which projects the equations of motion of
the full, unreduced system onto a low-dimensional subspace, resulting in a reduced set
of equations. The evaluation of the nonlinearities, however, is still associated with the di-
mension of the full, unreduced system leading to moderate speedup rates for nonlinear
reduced systems. Hyper-reduction accelerates the computation of the nonlinear terms,
which are the nonlinear internal forces and, as they are necessary for implicit time inte-
gration schemes, the derivatives forming the tangential stiffness matrix.

The first hyper-reduction method addressed in Chapter 11 speeds up the evaluation
of the internal forces by treating it as a Taylor series. Thereby it is convenient, that the
internal forces of a continuum modeled with the linear St. Venant-Kirchhoff material
and discretized with geometrically nonlinear finite elements are third order polynomi-
als. Consequently, the Taylor series converges with the cubic term resulting in an exact
representation of the internal forces. The computational effort is reduced, since evaluat-
ing the polynomials is less computationally expensive for highly reduced systems than
the standard finite element procedure involving an element-wise evaluation and a sub-
sequent assembly. In the offline stage, the polynomial coefficients have to be determined,
which can be arranged as multidimensional symmetric arrays of dimension two, three
and four. A numerical differentiation scheme operating on tangential stiffness matrices
is proposed for computing the polynomial coefficients. It turns out to be more efficient
than established displacement-based identification methods using the internal forces, but
less efficient than methods using the tangential stiffness matrix. The investigated meth-
ods are intrinsically simulation-free, since no training sets of the full, unreduced system
are required.

One issue of the polynomial tensors hyper-reduction is the O(n*) dependence of both
the model size and the number of multiplications with respect to the dimension 7 of the
reduced system. While for small systems the method is unbeatably fast, the requirement
of memory and computational time for large systems becomes quickly prohibitive. To
address this issue, an efficient storage and multiplication scheme is proposed, which ex-
ploits the symmetry of the polynomial coefficient arrays. With this technique, remarkable
speedups and perfect accuracies are reported for the examples investigated.

The Discrete Empirical Interpolation Method (DEIM) discussed in Chapter 12 takes
a different approach and reduces the computational costs by evaluating only a subset
of nodal forces. The omitted forces are accounted for with an empirically determined
force basis and a collocation strategy. This approach can be interpreted as an oblique
projection of the nodal forces onto the force basis which, however, destroys desirable
properties like symmetry and stability. The strategy to alleviate this issue proposed in
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the literature is a splitting of the internal forces into linear and nonlinear part. This is,
however, cumbersome in the framework of geometrically nonlinear finite elements and
leads to a very disadvantageous approximation of the internal forces.

A further issue of the DEIM is the operation on single nodal forces which are, how-
ever, computed on the element level in the finite element framework. The unassembled
DEIM called UDEIM adapts the DEIM to the finite element framework allowing for re-
duced computational costs and more flexibility and modifications in the choice of colloca-
tion points. This approach is used to adapt an approach reported in the literature to sym-
metrize DEIM and transfer it to finite elements, however without success. The numerical
experiments show that the symmetric application of the oblique projection distorts the
elements so severely, that no reasonable force evaluation is possible in general. Further-
more, the numerical experiments reveal that both the DEIM and the UDEIM perform
extremely poorly in geometrically nonlinear structural dynamics, especially when large
rotations are present. The instability issues are accompanied by high hyper-reduction
errors, even though training snapshots of the full solution are used in the experiments.
Since the methods perform so poorly even when they "know’ the solution a priori, further
possible modifications of the (U)DEIM to simulation-free techniques are not considered
in this work.

The Energy Conserving Mesh Sampling and Weighting (ECSW) method discussed
in Chapter 13 is based on the evaluation of a subset of elements, too. It does, however,
not suffer from instability and does not require an artificial splitting of linear and non-
linear part making it a stable and accurate hyper-reduction technique suited for geomet-
rically nonlinear structural dynamics systems. It carries the drawback, that it requires
training sets which are commonly obtained from full, unreduced training simulations.
To apply the method in a simulation-free context, lean, almost simulation-free training
sets named Nonlinear Stochastic Krylov Training Sets (NSKTS) and Nonlinear Stochastic
Modal Training Sets (NSMTS) are proposed. These training sets are obtained by solving
a set of nonlinear, reduced, static problems, where the right hand side consists of stochas-
tically weighted pseudo-dynamic forces. To compute these forces, a Krylov force basis
or a modal force basis is built for the NSKTS or the NSMTS, respectively. It is orthonor-
malized using the impedance norm of the linearized system and then multiplied with a
Gaussian distributed random vector resulting in one pseudo-dynamic force vector.

As reported by the extensive numerical experiments conducted, both the NSKTS and
NSMTS yield very accurate hyper-reduced models with convenient speedup rates. The
hyper-reduced models are very robust with respect to both parameter changes and differ-
ent load cases. In contrast to simulation-based ECSW hyper-reduced models, the NSKTS
and NSMTS ECSW hyper-reduced models tend to have more elements in the reduced
element set. They are also more robust with respect to a change of the excitation forces,
so that they are different from the ones used for generating the training set. Due to their
success in both accuracy and speedup rates, the NSKTS and NSMTS open the ECSW to
almost simulation-free scenarios.
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Chapter 15

Real-Life Application

In this thesis, several methods for the reduction and hyper-reduction of geometrically
nonlinear models are discussed. To illustrate the capability of these techniques, an indus-
trial application is reduced and hyper-reduced with some of the addressed techniques.
The model of this real-life application is a leaf spring of a truck which is mounted be-
tween the axle and the frame. It is a critical component for the simulation of the dynamic
behavior of the structure, since all dynamic loads initially caused by the road are trans-
ferred through this leaf spring. To precisely answer engineering questions summarized
under the term Noise-Vibration-Harshness (NVH) like comfort, vibration behavior, fa-
tigue etc., accurate models of the leaf spring are critical for reasonable simulation results
of the whole chassis, as reported in the literature by, e.g., Sugiyama et al. [Sug+06], Kong
et al. [Kon+13] or Addepalli et al. [Add+15].

Commonly the overall chassis is simulated using an elastic multi-body system, see,
e.g., Mousseau et al. [Mou+99]. Within this simulation framework, the sizes of full finite
element models are prohibitive in terms of computational times, as reported by Wasfy
and Noor [WNO3] and Omar et al. [Oma+04]. Consequently, reduced models are nec-
essary to fill the gap of the accuracy of finite element models, as they come from the
design and the computational speed of multi-body systems, where the models due to the
reduced number of dofs are commonly very efficient.

Hence, the full finite element model of the leaf spring is reduced and hyper-reduced
to illustrate the capability of the proposed methods of this thesis. The embedding of the
model within a multi-body framework goes beyond the scope of this work and is a topic
for further research.

15.1 Introduction to the Leaf Spring Model

The leaf spring model is depicted in Figure 15.1 together with the x-y-z coordinate sys-
tem. The leaf spring consists of a top leaf and a bottom leaf, which are firmly clamped
in the middle by a central fixture. This central fixture consists of layers of sheet metal
in between the leaf springs which are pressed together by a strap not contained in the
model. The strap fixing the central fixture is mounted on the axle, which is connected
with the wheels contacting the road. On both ends, the top leaf is curled forming an eye.
The eye pointing towards the driving direction, which is defined in negative x-direction,
is referred to as the front eye, the eye pointing against the driving direction is the rear
eye. The front eye is fixed with the frame with a joint allowing for rotations about the
y-axis. The rear eye is connected with the frame with a pendulum support allowing for
both a rotation about the y-axis and a translation in the x-direction. On the front side and
on the rear side, the top and bottom leaf are connected with a rubber pad. Both pads are
firmly clamped on the top side with the top leaf and have a sliding contact on the bottom,
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Figure 15.1: Leaf spring model

where they touch the bottom leaf.

All steel parts of the leaf spring, i.e., the top and bottom leaf and the sheet metal
layers in the central fixture are modeled with linear Hexahedron elements. The steel
is modeled with a St. Venant-Kirchhoff material with Young’s modulus E = 210 GPa,
Poisson’s ratiov = 0.3 and a density p = 7.85 - 10% kg/m?. The rubber part of the leaf spring
is also modeled with a St. Venant-Kirchhoff material with Young’s modulus E = 1GPa,
Poisson’s ratio v = 0.4 and a density p = 1.0 - 10°kg/m?. The mesh of the rubber parts is
built using linear Tetrahedron elements. In total, the leaf spring model consists of 53240
Hexahedron elements and 32522 Tetrahedron elements yielding a total of 85762 elements.
The Dirichlet boundary conditions are applied as depicted in Figure 15.2. The joint in the
front eye is modeled with a fixation of all displacement dofs of a row of nodes inside the
eye. The joint in the rear eye is modeled with a fixation of the y and z-dofs of a row of the
eye allowing for a rotation about the y-axis and a displacement in the x-direction.

The mesh of the rubber pads and the leafs is non-conforming. Hence, the rubber
pads are firmly fixed with the top leaf with a nodal collocation technique, where the
nodes of the top surface of the rubber pads are treated as slave nodes. The corresponding
nodes of the top leaf are the master nodes. The contact of the pads with the bottom
leaf is modeled as a linear sliding contact with the bottom leaf nodes being the master
nodes and the rubber pad bottom surface nodes being the slave nodes. The constraint is
however a linear constraint which is not updated, i.e., the relative motion of the nodes is
admissible with respect to the reference configuration and not with the actual deformed
configuration.

The loads for the model stem from a pseudo-realistic driving maneuver from an elas-
tic multibody simulation, where the internal forces and moments between the axle and
the leaf spring are tracked. They are given in x, y and z direction and form the excita-
tion of the leaf spring. To apply these forces and moments on the finite element system,
force distributions are computed which apply the unit forces and moments on the top
face of the central fixture. They are depicted in Figure 15.3. The time evolution of the
internal forces and moments between axle and leaf spring stemming from the multibody
simulation are depicted in Figure 15.4.

To measure the displacements and rotations of the finite element system at the inter-
face to the axle, the displacements are taken from the so-called master node depicted in
Figure 15.5. It is located almost in the middle on the top face of the central fixture. To
obtain the rotations of the central fixture, the displacements of the four nodes P;, P», P3
and Py depicted in Figure 15.5 are evaluated. The rotations a about the x-axis, g about
the y-axis and 7 about the z axis are computed as

A ; us(Pa) g ux(Py) ZuZ(Pl)’ y = (P1) ; ux(Py) (15.1)
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Figure 15.2: Dirichlet constraints in the front eye (left) and on the rear eye (right). The red
colored nodes of the front eye are fixed in all directions, the colored nodes of the rear eye are
fixed in the y and z direction.

with uy(P) and u(P) being the x or z displacement component of point P, respectively.
The length values I/; and I, are the difference of the x-component of P; and P; and the
y-component of P, and Py in the undeformed configuration.

The full model is equipped with proportional Rayleigh damping. The constants a
and f are adjusted such, that the first two eigenfrequencies around the undeformed con-
figuration of f; = 13.3Hz and f, = 41.7 Hz have a damping ratio of { = 0.005 resulting
ina = 0.633 and B = 2.89 - 107°. The subsequent undamped eigenfrequencies are at
f3 =432Hz, f4 =72.2Hz and f5 = 100.0 Hz.

The full model is integrated using a generalized-« time integration scheme with p, =
0.8 and a time step width At = 3.333-107%s. The simulation time goes from t; = 0
to teng = 5s resulting in a total of 1,500 time steps. The wall time for the simulation is
tw = 40,022 s and hence with more than eleven hours extremely long. For comparison, a
linearized model is computed. It is simulated with the same time integration settings and
takes a wall time of t,, = 288 s. Even though the computational time is below five minutes
and hence very attractive, the results are clearly different to the nonlinear simulation,
as depicted in Figure 15.6. The linearized simulation exhibits oscillations which are not
visible in the nonlinear simulation. This is presumably due to the force excitation in the x-
direction, which excites the first mode at 13.3 Hz. Since in linear models the undeformed
configuration is the reference configuration in which the external forces are applied to,
the force in x-direction has a lever enabling the excitation of the first eigenmode. In
the nonlinear simulation, however, the force is applied onto the deformed configuration
reflecting the change of the point of force application. Since the lever of the forces in
x-direction is almost zero, no excitation of modes is present in the nonlinear simulation.

Besides the oscillation, the mean displacements in both x and z-direction are over-
estimated in the linear simulation. Consequently it is necessary to reflect the nonlinearity
of the leaf spring in order to achieve accurate results.

15.2 Simulation-Free Basis

Next a simulation-free basis is built. Therefore the first 40 vibration modes are computed.
To compute the static derivatives, the step width for the finite difference scheme has to
be chosen appropriately (cf. Section 6.3). Hence, the symmetry error of the SMDs is
computed. To accelerate the computation, not the full basis of 40 modes is used for the
symmetry check but a pseudo basis of five modes composed of mode number 1, 5, 10, 15
and 20 is used for the check. The symmetry error defined in (6.22) is plotted over the step
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Figure 15.3: Unit force distributions at the central sheet package to apply the loads of the multi
body simulation.
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Figure 15.4: External forces and moments from a virtual road setting.
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Figure 15.5: Leaf spring model: Displacements and angles
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Figure 15.6: Displacements of a linear and a nonlinear time integration.
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Figure 15.7: Relative symmetry error of the central finite difference scheme. To accelerate the
computation, the error is computed with a basis composed of four vibration modes.

width h of the central finite difference scheme in Figure 15.7. It indicates that, as in the
academic examples before, the optimal step width is in the range of i = 1. With this step
width the full static derivative tensor © is built for the 40 vibration modes, as discussed
in Subsection 6.2.2. In Figure 15.8, the first three vibration modes and the corresponding
static derivatives are depicted. They show a similar behavior as for the academic can-
tilever plate example depicted in Figure 6.2, especially for mode ¢, and mode ¢; which
are the first and second bending mode. The corresponding static derivatives exhibit a
displacement field describing a contraction of the leaf spring in longitudinal direction,
which is necessary for the reproduction of geometrically nonlinear motions. The second
mode ¢, is a bending mode in the y-direction. In this mode, the lower leaf slips off the
rubber pads in the y-direction, since only a normal contact is enforced there.

For an efficient reduction, it is desirable to keep the reduced basis compact. Hence,
the frequency weighting selection criterion discussed in Subsection 6.2.4 is chosen, since
it proved to be both simple and effective in Section 6.4. Additionally to the 40 vibra-
tion modes, 60 static derivatives are chosen according to this selection resulting in a re-
duced basis V of 100 basis vectors. This basis is orthogonalized and deflated according to
Subsection 6.2.3, which does for this example, however, not change the number of basis
vectors.

Next a reduced simulation is run with the same time integration scheme as the full
system in the previous section. The displacements and rotations of the central fixture
are depicted in Figure 15.9 indicating a good fit with the reference solution especially for
the displacements. The rotation a about the x axis is not captured well. However, this
rotation is not of great interest, since most of the relevant dynamics of the leaf spring
happens in the x-z-plane. The underestimation of the rotations about the x-direction and
also slightly about the y-direction of the reduced basis model is due to the additional
constraints, which are applied to the reduced system, as discussed in Chapter 3.

The wall time for the reduced computation is 24127 s. Even though this is a speedup
of a factor of 1.66 compared to the full model, the time of over six and a half hours is still
very unappealing for dynamic simulations. Consequently, hyper-reduction is necessary
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Figure 15.9: Displacements of the time integration with the reduced model.
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to increase the speedup further.

15.3 Hyper-Reduction

The reduced basis reduction of the previous section allowed for a reduction of the compu-
tational time in a moderate range of 1.66. The reason is, as discussed in Chapter 10, that
the reduced basis projection accelerates the solution of the system of linear equations, but
not the computation of the reduced nonlinear forces and the tangential stiffness matrix,
which are still associated with the size of the high dimensional mesh.

To achieve even greater speedup factors, hyper-reduction methods are necessary.
Since the reduced basis for the problem is constructed in a simulation-free manner, lean
and efficient training sets proposed in this thesis, i.e., NSKTS and NSMTS, are used for
the ECSW hyper-reduction of the leaf spring model. Furthermore, the polynomial reduc-
tion is applied to the model as well.

15.3.1 Nonlinear Stochastic Krylov Training Sets (NSKTS)

To compute the NSKTS, the Krylov force subspace for all six force input directions de-
picted in Figure 15.3 is constructed with p = 4 moments each. The impedance norm for
the maximum external force is computed independently for all six components. There-
fore, the maximum value of each force component (cf. Figure 15.4) is chosen. Then the
NSKTS are computed with the force correction factor a = 1, the number of stochastic
force vectors d = 8 and the number of force increments k = 20. The computation of the
NSKTS is performed in parallel on four cores taking 1525s in wall time, i.e., less than
26 minutes. Every load step converged within 30 iterations leading to 160 training sets
depicted in Figure 15.12. Then the ECSW is run with the NSKTS. The construction of
the matrices Y and b and the sNNLS solver take in total 2840s for T = 0.01, i.e., about
47 minutes. The resulting reduced mesh consists of 816 elements, which are depicted in
Figure 15.11. The wall time for the time integration of the hyper-reduced system is 1047 s,
i.e. less than 18 minutes. Compared to the full solution, this is a speedup factor of more
than 38 allowing for the use of the reduced model within a full chassis simulation.

The accuracy of the hyper-reduced model using NSKTS is very high, which is re-
flected in the low hyper-reduction error of RE;, = 0.13 %. The displacements and rota-
tions of the central fixture of the hyper-reduced simulation practically overlay the dis-
placements of the full, unreduced simulation, as depicted in Figure 15.10.

15.3.2 Nonlinear Stochastic Modal Training Sets (NSMTS)

Also the NSMTS are used as training sets to hyper-reduce the reduced basis model of
Section 15.2. The NSMTS are computed with p = 6 modal force bases, d = 8 stochas-
tic force vectors and k = 20 force increments for the nonlinear solution. The standard
deviation ¢ of the random variable was chosen as the sum of the impedance norm of
the respective maximum value of all six independent force input directions resulting of a
force correction factor a = 1.

The NSMTS are computed on four processors with a wall time of ¢, = 1728s, i.e.
about 29 minutes. All static solutions converged, so that a total of 160 training sets, which
are depicted in Figure 15.13, are available for the SNNLS solver. The ECSW reduction for
T = 0.01 takes a total wall time of t, = 5465s, i.e. about 91 minutes, so clearly longer
than for the NSKTS. The resulting mesh contains of 1133 elements and is depicted in
Figure 15.13.

Next the time integration of the NSMTS hyper-reduced model is performed. The wall
timeis t, = 1177, i.e., less than 20 minutes, resulting in a speedup factor of 34 compared
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Figure 15.10: Displacements of the time integration with the reduced model and different
hyper-reduced models.
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Figure 15.11: Hyper-reduced mesh of the leaf spring using NSKTS as training snapshots.
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Figure 15.12: NSKTS training snapshots

to the full, unreduced simulation. Consequently, also the NSMTS are very good hyper-
reduction training sets resulting in a model which is in the same range of speedup as
the NSKTS hyper-reduced models. The accuracy of the NSMTS hyper-reduced model is
also illustrated in Figure 15.10, where the displacements and angles of the NSMTS hyper-
reduced model practically overlay the reduced basis model. The accuracy is reflected also
with the tight error measure of REj,, = 0.08 %.

15.3.3 Polynomial Tensors

The last hyper-reduction technique investigated is the polynomial tensor reduction dis-
cussed in Chapter 11. Since the material used for the leaf spring is a St. Venant-Kirchhoff
material, this hyper-reduction strategy should represent the reduced basis model accu-
rately.

First, the polynomial tensors K?) and K® are computed. Since the different com-
putations strategies result in equal higher-order arrays besides tiny numerical errors, the
identification using the tangential stiffness matrix is chosen. It is associated with the low-
est off-line costs (cf. Figure 11.3). For the simulation-free basis of n = 100 basis vectors,
the identification requires 5150 evaluations of the tangential stiffness matrix. It takes a
wall time of 28,856 s, slightly more than eight hours. The higher dimensional arrays K2
and K® are stored in the efficient storage scheme reducing the memory requirement
from 8 MB for K@ and 800 MB for K©® to 1.4 MB and 35.4 MB, respectively.

Next, the time integration is performed using the efficient multiplication scheme im-
plemented in Numba, see Subsection 11.5.2. The wall time for the computation is 113s
and hence with less than two minutes clearly below all other computational times. The
speedup factor is enormous with over 354 in comparison to the full, unreduced simula-
tion. The polynomially hyper-reduced system is even faster than the linearized simula-
tion of the full system, since the single factorization of the iteration matrix and the for-
ward and backward substitution in every time step consume more computational effort
than the computation of the tangential stiffness matrix based on the polynomial algo-
rithm discussed in Section 11.4.

Also the accuracy of the polynomial tensors hyper-reduction approach is excellent.
The hyper-reduction error is RE,, = 5.3-1077 = 5.3 107> %, and hence in the range
of the relative tolerance of the time integration scheme. As a consequence, the polyno-
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Figure 15.13: NSMTS training snapshots

mial hyper-reduction scheme is extremely efficient for the online stage making it a very
attractive hyper-reduction technique for geometrically nonlinear systems for St. Venant-
Kirchhoff material systems, where the reduced basis is reasonably small.

15.4 Discussion

The real life example introduced in Section 15.1 with initially 216,499 dofs has been re-
duced using a simulation-free basis composed of vibration modes and SMDs yielding a
reduced basis of order n = 100. In Table 15.1 an overview of the experiments performed
in this chapter is given. The low reduction error RE 1 of the reduced model indicates, that
the reduced basis using modes and static derivatives works well for the given loads and
settings, since the static derivatives capture the nonlinearities well.

Then, three different hyper-reduction techniques are applied. The training sets pro-
posed in this thesis, the NSKTS and NSMTS, prove to be very good for the hyper-re-
duction using the ECSW. The speedup rates in the range of 35 show, that the ECSW in
combination with NSKTS and NSMTS leads to both, accurate and fast hyper-reduced
models.

The polynomial hyper-reduction, though, yields speedup factors in the range of one
order of magnitude higher than the NSKTS or NSMTS trained ECSW models. This
speedup rates, or, from the other perspective, the reduction of the online costs from more
than six hours to under two minutes make the simulation of the leaf spring in the context
of multibody simulations a feasible scenario.

The two drawbacks of the polynomial tensor reduction are the limitation to St. Venant-
Kirchhoff materials and the high requirement for memory and offline computational time
when the reduced system is fairly large. Thereby, the memory requirement scales with
O(n*) with the size n of the reduced model. While the basis size of n = 100 leads to ex-
cellent results in this example, the size of n = 346 like in the rubber-boot example leads
to a full K® array requiring 114.7 GB in memory. Even with the reduced storage con-
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Figure 15.14: Hyper-reduced mesh of the leaf spring using NSMTS as training snapshots.

cept of Subsection 11.4.1, the size is still 4.9 GB. For even larger bases, e.g., n = 1000, the
size of 335.3 GB for the efficient storage of K®) is prohibitive for simulations on a regular
workstation.

Table 15.1: Errors and speedup rates of the different reduction techniques for the leaf spring
example.

Reduction Method dofs elements REf[%] REj [%] ty,[s] speedup [-]
full 216499 85762 — — 40022 —
reduced basis (modes +

100 85762 0.68 — 24127 1.66
SMDs)
Modes & SMDs +

1 1 7 1 1047 2
ECSW using NSKTS 00 816 078 013 0 38.23
Modes & SMDs +

100 1133 0.74 0.08 1177 34.00
ECSW using NSMTS
Modes & SMDs + Poly3 100 — 0.68 0.00 113 354.18
linearized 216499 85762 45.14 45.56 288 138.97




Chapter 16

Closure

In this thesis, simulation-free model order reduction methods are investigated in the con-
text of geometrically nonlinear structural dynamics. This chapter discusses the main
results of the thesis and emerging research topics for future work. Since the thesis is
divided in three parts, the rather detailed summary of the first two parts is given at its
respective last chapter: Part I is summarized in Chapter 9 on page 107, Part II in Chap-
ter 14 on page 179. The summary and a discussion of the real-life example addressed in
Part III of the thesis is given at the end of the previous chapter in Section 15.4. The main
conclusions resulting from the work described in this thesis are given in the following.

16.1 Conclusions and Discussion

Linear reduction methods cannot be naively applied to nonlinear systems. When ge-
ometrically nonlinear systems are considered, the computation of a reduced basis is not
a trivial task. For linear systems various methods exist which rely on system intrinsic
properties like decoupling of states, approximation of the transfer function or balancing
of observability and controllability. In nonlinear systems, however, these properties do
not exist or are extremely expensive to compute. Hence, the linear reduction methods,
which are addressed in Chapter 4, cannot be applied to nonlinear systems. When they
are applied to the linearized version of the nonlinear system, the resulting reduced basis
is not suited for the nonlinear system, since it does not capture the nonlinear behavior
and leads to severe locking, as illustrated in Section 6.1. As a consequence, the common
approach to reduce nonlinear systems is a detour over a statistical investigation of train-
ing sets obtained in training simulations of the full, unreduced system, as discussed in
Chapter 5. A further class of approaches used in nonlinear structural dynamics is based
on perturbations of reduced bases, which are addressed in Chapter 6.

Modal derivatives and static derivatives are excellent simulation-free augmentation
vectors for linear reduction techniques to reduce geometrically nonlinear structural
dynamics systems. The reduced bases obtained with linear reduction methods applied
to a linearized system are not suited to the original nonlinear system. However, the
linear basis can be extended by modal derivatives (MDs) and static derivatives (SDs)
which both capture the nonlinear behavior and make the augmented basis applicable
to the nonlinear system. While the modal derivatives are based on the perturbation of
vibration modes and are hence limited to bases composed of those, the static derivatives
are applicable to all types of linear bases. In the literature, MDs and SDs are sometimes
used synonymously, but they are different vectors as shown in the numerical experiments
conducted in Chapter 6. The experiments also reveal that both MDs and SDs are well
suited to reduce geometrically nonlinear systems. One drawback is, though, that their
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number grows quadratically with respect to the number of modes gathered in the initial
linear basis. To address this issue, heuristic selection strategies are available to select a
small number of MDs or SDs forming smaller bases.

Quadratic manifold approach allows to reduce a system to a minimum set of gener-
alized coordinates, however it is limited in its applicability. A conceptually different
method for reduction is the quadratic manifold approach, where the transformation be-
tween physical coordinates and reduced generalized coordinates is a quadratic function
and hence nonlinear. The full system is projected onto the tangent subspace of the non-
linear transformation resulting in more complicated reduced equations of motion. The
quadratic manifold approach allows to reduce a geometrically nonlinear system to a min-
imum set of generalized coordinates. In the method proposed, the quadratic transforma-
tion is composed of a linear part, which is formed by a linear basis, and a quadratic part,
which is chosen to be either MDs or SDs. The quadratic manifold approach is closely
related to nonlinear static condensation when applied to beams and shells with von Kar-
man kinematics. While the quadratic manifold approach leads to accurate results in these
cases, it suffers from locking when applied to general structures discretized with solid
elements. As revealed by the numerical experiments, they are then only applicable to
structures with a membrane-dominated nonlinearity exhibiting small rotations.

Subspace angles allow for comparison of reduced bases. Principal vectors can show the
differences of reduction bases making them a useful tool for analyses. With subspace
angles and the corresponding principal vectors, the overlapping and distant spaces of
two reduced bases can be identified independently of the realization. The principal vec-
tors correspond to displacement fields which can be visualized for an intuitive investi-
gation of the differences. In Section 8.3, this technique is used to descriptively show that
the linear bases do not capture the contraction of a mesh necessary to represent large ro-
tational deformations. To assess the suitability of a reduced basis to a certain problem, a
comparison to a POD basis is often expedient, since this basis can be considered optimal
for a certain system under given excitation. When multiple bases need to be assessed, it is
in general cheaper to compute the POD basis and compare the basis against this optimal
basis using subspace angles instead of running full simulations of the reduced system
with a subsequent investigation of the reduction error.

Hyper-reduction is necessary to exploit the full potential of projective model order re-
duction for nonlinear systems. While the reduced basis method decreases the number
of dofs of a finite element system, it does not reduce the cost for the computation of the
nonlinear terms, which are evaluated on the finite element level. As a consequence, the
computation of the nonlinear internal force and the tangential stiffness matrix is the com-
putational bottleneck of a nonlinear reduced basis system limiting clearly the speedup
rate of the reduced basis system. To alleviate the computational burden associated with
the evaluation of the nonlinearity, hyper-reduction is necessary. It approximates the non-
linear internal force leading to clearly reduced computational costs allowing for clearly
larger speedup rates, as illustrated in the numerical examples given in Part II.

Polynomial tensors hyper-reduction is the method to go for reduced systems with small
number of dofs and St. Venant-Kirchhoff material. Among the hyper-reduction meth-
ods investigated within this thesis, the polynomial tensors hyper-reduction has clearly
the lowest online costs for systems with a low reduced order n. This is due to the fact
that the computational cost of the evaluation of the polynomial tensors scales with O (n?),
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which makes this method the clear winner for small n. This hyper-reduction method ex-
presses the nonlinear internal forces as third order polynomials, which is an exact repre-
sentation for St. Venant-Kirchhoff materials. Hence, the hyper-reduction error is in the
range of the tolerances used for the computation, e.g., the numerical tolerances set in
the time integration scheme. A further advantage of the method is that the reduced sys-
tem is independent of the finite element formulation, since the three symmetric arrays
KM e R, K e R and K®) e R™™ "1 completely describe the nonlinear
internal forces of the reduced system. This makes the method very attractive for scenar-
ios like model predictive control, in which a nonlinear system needs to be exported to
a controller software framework, for instance. The drawbacks of this method, however,
are the limited applicability to only St. Venant-Kirchhoff materials and the fourth order
growth of the memory requirement and the computational effort with respect to the or-
der n of the reduced system. The efficient storage and multiplication scheme proposed
in Section 11.4 allows to keep both memory and computational effort to a minimum but
does not revoke this general issue.

Discrete Empirical Interpolation Method (DEIM) has many drawbacks in the context of
geometrically nonlinear structural dynamics. The DEIM turns out to be a second-class
hyper-reduction method for geometrically nonlinear structural dynamics when compared
to the other investigated methods. This is mostly due to the fact that the approximation
of the internal nonlinear force using a force basis and a collocation strategy destroys the
symmetry of the system and with it desirable properties like stability. Furthermore, the
DEIM requires a cumbersome splitting of the internal force in a linear and a nonlinear
part, which is very unfavorable in the context of large rotations of elements present in
geometrically nonlinear systems. While the unassembled DEIM (UDEIM) as a special
adaptation to the finite element framework allows for more flexibility in the application
of collocation strategies, it does not repeal the main issues. As shown in the numeri-
cal experiments, both the DEIM and the UDEIM suffer of instability and poor accuracy
making them an inferior choice as hyper-reduction method for geometrically nonlinear
structural dynamics.

Energy Conserving Mesh Sampling and Weighting (ECSW) is a very promising method.
The use of NSKTS and NSMTS allows to use this method in a simulation-free context.
The ECSW is a hyper-reduction method similar to the DEIM which, however, does not
carry the drawbacks of it. It allows for the hyper-reduction of geometrically nonlinear
structural dynamics systems with different hyperelastic materials and leads to accurate
and stable hyper-reduced systems. However, training snapshots are required for the
computation of the active element set, which is the reduced set of elements responsible
for the reduced computational costs. To use the ECSW in a simulation-free setup, the
so-called Nonlinear Stochastic Krylov Training Sets (NSKTS) and Nonlinear Stochastic
Modal Training Sets (NSMTS) are proposed in this thesis. They allow for an accurate
hyper-reduction in an almost simulation-free way, since the training snapshots are ob-
tained by solving a set of nonlinear problems with pseudo-dynamic right hand sides. As
demonstrated in Section 13.3, both the NSKTS and NSMTS are very robust in terms of
changes of the parameters which are needed for the computation as well as changes of the
excitation forces of the reduced system. While the polynomial tensors hyper-reduction
distinguishes itself with the extremely low online costs for small reduced systems, the
ECSW using NSKTS and NSMTS shows clearly lower offline costs especially for larger
reduced systems making them an attractive hyper-reduction method.
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The proposed simulation-free reduced basis and hyper-reduction methods are applica-
ble in an industrial context. As proved by the industrial example of a leaf spring of a
truck discussed in Chapter 15, both simulation-free reduced basis methods and (almost)
simulation-free hyper-reduction methods are applicable to drastically reduce the compu-
tational times in geometrically nonlinear structural dynamics. Thereby, speedup rates of
over two orders of magnitude for the online computation are possible. The polynomial
tensors hyper-reduction achieves the best online speedups while the ECSW using NSKTS
and NSMTS are clearly slower. However, this trend is flipped in the offline costs, where
the computation of the polynomial tensors is clearly more computationally demanding
than the computation of the NSKTS or the NSMTS and the ECSW hyper-reduction. The
methods proposed and discussed form a foundation for future applications in geometri-
cally nonlinear structural dynamics and further research in this field.

16.2 Future Directions of Research

This thesis shows that geometrically nonlinear dynamical systems can successfully be re-
duced by the appropriate methods in a simulation-free fashion. However, the successful
simulation of a system is usually not the end point of a development cycle but the start-
ing point. In many cases, parameter studies, optimizations, what if?-scenarios and more
in-depth investigations are executed, in which numerical simulations should be quick
and affordable making model order reduction an attractive option. However, many as-
pects which are required in these studies are not addressed within this thesis. They form
exciting questions and possible directions of future research:

* For optimization and parameter studies, the systems are treated as parametric re-
quiring parametric model order reduction techniques. Parametric reduced basis
systems have been studied in the literature in the field of simulation-based reduced
basis methods, see e.g., Amsallem et. al. [Ams+09; Ams10; AF11], where reduced
bases are computed for certain points in the parameter space. However, it is yet un-
clear, if parametric, geometrically nonlinear structural dynamics systems can be re-
duced more efficiently by exploiting intrinsic physical properties. Furthermore, the
hyper-reduction of parametric systems is an open topic in both simulation-based
and simulation-free setups.

e Within this thesis, solely systems with linear Dirichlet boundary conditions are
addressed. Many real-life applications, however, are characterized by nonlinear
constraints such as joints, rigid body elements or contacts. One way to express
these nonlinear constraints systematically is the use of Lagrange multipliers, where
the nonlinear constraint equations are considered explicitly. It has not been clari-
tied yet, to what extent the concepts of simulation-free reduced bases and hyper-
reduction are applicable to systems with nonlinear constraints. For possible adap-
tations, novel methods are required to handle these systems.

* The systems covered in this thesis are only characterized by viscous damping. It
does, however, not recognize the geometric nonlinearity since it is not objective
and results in damping forces for pure rigid body motions (cf. Section 2.1). A more
accurate damping approximation can be expected from viscoelastic material mod-
els like the Kelvin-Voigt model, where the stress originated from viscous damping
is proportional to the rate of deformation of the nonlinear strain measure. These
models, however, result in equations of motion with a different mathematical struc-
ture compared to the ones discussed here, which stem from hyperelastic materials.
Hence, further research is necessary to adapt the simulation-free methods discussed
and developed here to the field of geometric nonlinearity with viscoelasticity.
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* In several industrial applications, nonlinear structural dynamics problems are cou-
pled with other physical areas such as thermal effects, plasticity, fatigue or fluid
structure interaction. Fundamental research is necessary to answer the questions,
how these coupled systems can be reduced in a simulation-free manner.

¢ Untapped potential lies in the transformation and adaptation of the discussed simu-
lation-free reduced basis methods and the hyper-reduction methods to substructure
frameworks. This would allow to assemble large nonlinear systems using small,
reduced substructures with the potential to higher speedup rates, particularly for
large systems with complex dynamics requiring a high number of basis vectors.
Notably the polynomial tensors hyper-reduction technique could unfold its poten-
tial, when the system to be reduced is divided in small parts of which each part
requires only a small number of basis vectors. Since the computational costs of this
method are associated with O(n*) with respect to the dimension 7 of the reduced
system, or in this context with the substructure, impressive online cost reductions
even for large systems are feasible in principle.

¢ The polynomial tensors hyper-reduction suffers of the curse of dimensionality mak-
ing it not attractive for reduced systems with large n. In principle, a low rank ap-
proximation of the higher order tensors could allow for further speedup factors
making the polynomial tensors hyper-reduction accessible for higher reduction or-
ders n. However, approaches for low rank approximations for higher order sym-
metric arrays as well as identification techniques still need to be developed.
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Appendix A

AMFE: The Finite Element Toolbox for Python
with Simplicity in Mind

All numerical experiments in this thesis are performed with the finite element framework
AMFE, which has been developed in the context of this thesis. In comparison to many
other finite element frameworks, the goal of AMFE is to provide a tool for the rapid
prototyping of algorithms in an interpreted environment. The goals determining the
design are given in the following list:

¢ Comprehensiveness: The code should be able to handle regular finite element prob-
lems as they are common in industry with a large element library.

* Access to all internal routines: In nonlinear model order reduction, especially in
hyper-reduction, internal routines of the computational process have to be accessed
and modified.

¢ Interactivity: The data types appearing in a simulation should be available in an
interactive interface allowing for quick investigations, analyses and debugging.

* Modularity and Extensibility: The code should be organized such, that the depen-
dency of different routines is set to a minimum. The interactions of the routines
should be clearly specified.

¢ Speed: The code should have execution times similar to commercial packages in
order to make runtime comparisons reasonable.

¢ Simplicity: The code should exhibit a clear structure and be simple to read and
understand.

The AMEFE toolbox is developed in a way to achieve the best possible balance of the
often contradictory requirements. It is mostly written in Python with some of the time-
critical parts implemented in Fortran in order to achieve comparable speeds to commer-
cial software packages.

A.1 Design of the Code

A finite element simulation is typically split in three parts: pre-processing, solving and
post-processing. The AMFE code is a pure solver only capable of the intermediate so-
lution step. Hence, it relies on preprocessing tools for the mesh generation and post-
processing tools for the analysis of the results.

In Figure A.1, the general workflow of a simulation using AMFE is depicted. In the
preprocessing step, the mesh of the spatial domain is generated. A mesh is defined by
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its nodes and the elements composed of nodes. Furthermore, areas for the application of
boundary conditions are defined in this preprocessing step, too. Typically, the domain
is also subdivided in different parts, for instance when different materials are present in
the body. These information are stored in a mesh file in a specified manner and form the
output of the preprocessing step.

In many finite element programs, the mesh information and the instruction for the
solver are cast together in the so-called input file (cf. [HKS01; McC72]). In AMFE, the
design decision was made against that concept. The concept of AMFE is that of a toolbox
embedded in the scripting language Python, so that the scripted instructions are specified
in the same ecosystem as the finite element core functionality is. Consequently, the mesh
file which can be created with gmsh [GR09], Abaqus [HKS01] or Nastran [McC72] contains
solely the geometry. All other specifications like the material properties, the type and
parameters of Dirichlet and Neumann boundary conditions and the instructions for the
solution procedure are all given in the Python script using the functionality of the AMFE
module.

The output of the computation using the AMFE toolbox can be stored for graphical
postprocessing according to the xdmf standard [CNO1]. This standard proposes a sepa-
ration of so-called heavy data and light data. The heavy data are the mesh information
and the field variables like displacements, stresses or strains. They are stored using the
hdf5 file specification [Fol+11], which allows for storing the heavy data in a hierarchical
manner. The light data, i.e., the complementary metadata of the heavy data like element
types, mesh groups etc., are stored in an xdmf-file using the xml-standard. Consequently,
the resulting data can be post-processed both in tools with an xdmf-interface like the
open-source ParaView as well as further analysis environments like Python by using the
.hdfs file.

As pointed out above, the AMFE framework is a Python library solely addressing the
finite element computations. It is organized in a modular fashion, as depicted in Fig-
ure A.2. The main class used for setting up the finite element problem in the python
script file is the MechanicalSystem class, which covers the whole finite element sys-
tem containing the Mesh with its element lists and the material, the Assembly class and
the Boundary class.

The MechanicalSystem serves as the interface class interacting with routines of the
Solver module or other routines part of the Tools or the ModelReduction module like
modal analysis, Krylov subspace reduction, NSKTS or NSMTS computation or the com-
putation of (5)MDs. Consequently, the finite element routines are hidden behind this
class, which can be modified to represent other systems. Hence, the ReducedSystem is a
sub-class of MechanicalSystem realized with the object-oriented core principle inheritance
[Lut10]. The HyperReducedSystem is then a sub-class of the ReducedSystem, as depicted
in Figure A.2 realizing the accelerated evaluation of the nonlinearity.

In the following, the different modules of the AMFE toolbox shown in Figure A.2 are
briefly explained:

Material The material class represents the constitutive law of any hyperelastic material.
It provides the second Piola-Kirchhoff stress tensor S and the tangent modulus C*% for 2D
and 3D problems for a given Green-Lagrange strain E. The Material class is commonly a
member of the Element class, so that the Element performs a callback on the constitutive
law to compute the stress at the Gauss points. Since the evaluation of a nonlinear material
is performed extremely often in a nonlinear finite element procedure, the routines are
implemented in Fortran for high execution speed.
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Preprocessing
Open-source or commercial preprocessing tools for
mesh generation like gmsh, Abaqus or Nastran

!

Mesh File
File containig
mesh information,
e.g.. mesh.msh /
mesh.inp / mesh.bdf

[

Finite Element Calculation in AMFE
?| Computation of the finite element problem as de-
fined in instructions.py.

!

Output
Output storage using
xdmf format: Heavy-
Data (displacements,
stresses, strains, forces
etc.) stored in . hdf5 file
Light-weight data stored
in . xdmf file using xml:
output.hdfs,
output.xdmf

|

Postprocessing
Visualization in tools capable for reading xdmf file
format like Paraview.
Processing of output data also possible with script-
ing tools using the . hdf5 format.

Python Script
Python script with
instructions for the
problem setup and
the solution routine:

instructions.py

Figure A.1: Structure of the general workflow with AMFE.

Element The Element class represents a finite element of the system. It is a super-class
providing the interface for the element internal forces f,(u.), the tangential stiffness ma-
trix K,(u,) and the mass matrix M,. The different element types like Tri3, Tri6, Quad4,
Quads, Tet4 and Tet10 or Hex8 and Hex20 are realized as sub-class of the super-class Ele-
ment providing a standardized interface. For the evaluation of the constitutive law, every
Element class has a shallow copy of the Material class. Since the elemental quantities are
evaluated very often in the finite element procedure, the methods for computing f,, K.
and M, are implemented in Fortran for high execution speed.

In AMFE, the handling of Neumann boundary conditions, i.e., external loads, is real-
ized using so-called skin elements. These elements, which are also realized as sub-classes
of the Element super-class, describe the boundary of the domain and provide the trac-
tion or pressure forces. They are assembled in the same routine as the internal forces to
the global external force vector using a method provided in the Assembly class. With
this concept it is also possible to realized more sophisticated external forces like contact
forces.

Mesh The Mesh class handles the import and export of meshes. Thereby it has differ-
ent import methods for the different file types like .msh from gmsh, .inp from Abaqus or
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HyperReducedSystem «

Tools
ReducedSystem <—[ Solver ]
ModelReduction
l  MechanicalSystem  k
- r > N >
[ Mesh ](— Assembly [ Boundary ]
~N /
Element
i L i
Material

Figure A.2: Structure of the AMFE toolbox.

bdf from Nastran. It also handles the export to the .hdf5 files for the heavy data and the
xdmf files for the light data. It has furthermore methods for deflating a mesh, i.e., re-
moving nodes which are not associated with an element as well as methods for selecting
the elements and dofs associated to different mesh domains. For the database-like oper-
ations for selecting different mesh properties, it operates on a Pandas Dataframe object
(cf. [McK12]) representing the mesh, allowing for flexibly selecting elements belonging
to different physical groups or geometric domains. The Mesh class contains a list of the
nodal coordinates and a list of all element nodes. The list of all elements is realized as a
list of shallow element copies, i.e, pointers to a set of unique elements. For assembly, this
list is provided to the Assembly class where the desired method of every element of this
list is called.

Assembly The assembly class organizes the assembly of the elemental contributions to
the global vectors and matrices. Thereby, it has efficient methods implemented in Fortran
to perform the assembly to the global, sparse matrices. Furthermore, this class has a
method for preallocation, i.e., for the determination of the sparsity pattern of the system
matrices. Additionally, this class has methods for the assembly of reduced systems and
hyper-reduced systems.

Boundary The boundary class organizes the application of linear Dirichlet boundary
conditions. This is performed with a sparse matrix B, which maps the dofs of the con-
strained system st to the dofs of the unconstrained system u,,constr as

Uynconstr = Bllconstr- (A1)

The unconstrained domain is the domain, in which the quantities are assembled. This
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has the advantage, that the assembly is independent of the constraints of the system sim-
plifying these routines. The assembled mass and stiffness matrices in the unconstrained
domain can be transformed to the constrained domain by

Mconstr = BTMunconstrB Kconstr = BTKunconstrB- (A2)

Similarly, the internal force vector is constrained by

T
fconstr =B funconstr' (A3)

The generation of a constrained vector from the unconstrained displacement vector,
for instance, is performed with

Uconstr = (BTB)_lBTuunconstr- (A4)

When the matrix B is orthogonal, as it is the case when the boundary conditions
involve only the fixation of certain dofs, the term (BT B)~! = I and can hence be omitted
in (A.4).

The realization of the boundary conditions via a projection matrix B comes with the
drawback, that the application of constraints involves the multiplication of sparse matri-
ces and hence computational costs. In the numerical profiling experiments, the impact
on the computational time was so low that this procedure was chosen instead of the
commonly used elimination of row and column entries. The elimination method has the
drawback that many operations like the computation of eigenvalues and eigenvectors in-
volve special handling of the blocked dofs. For AMFE, the design decision was made that
the dofs provided by the MechanicalSystem class are equal to the dofs of the underlying
mechanical system.

MechanicalSystem The MechanicalSystem class is the abstraction class representing
the full finite element model. It organizes the interaction of the mesh class, the Assembly
class and the Boundary class, so that these objects are hidden behind the Mechanical-
System class. As illustrated in Listing A.1, the common setup operations are performed
directly with methods of the MechanicalSystem class not requiring method calls of the
mesh class contained in the MechanicalSystem.

The MechanicalSystem class offers the interface methods for static or dynamic solu-
tion schemes like providing the internal or external forces, the tangential stiffness matrix,
the mass matrix and the storing of displacement fields. Furthermore, it offers the inter-
face for building up the finite element system like loading a mesh, applying Dirichlet
boundary conditions or applying Neumann Boundary conditions. Moreover, it enables
the export of the mesh with the saved displacement fields and possibly other field vari-
ables to ParaView.

As pointed out in the previous paragraph, the MechanicalSystem provides the finite
element system in a minimal coordinate style, i.e., all dofs in the internal force vector
for instance represent a real dof of the underlying mechanical system. Consequently, the
MechanicalSystem class is not bound to finite element Systems, but could also represent a
multibody system or a constrained system, where the additional dofs represent Lagrange
multipliers.

Solver The solver module contains functions for the efficient solution of problems by
interacting with a MechanicalSystem object. It has a binding to the Intel MKL solver Par-
diso [Sch+10] allowing for the efficient solution of sparse systems. It provides functions
for linear and nonlinear static solutions as well as linear and nonlinear time integration
schemes.



238 AMEE: The Finite Element Toolbox for Python with Simplicity in Mind

Tools The tools module provides functions necessary for software development like
unit test routines and functions necessary for scientific investigations like hdf5 file input
and output, error computation or numerical methods like the SNNLS solver. It is not
associated with a particular class.

ModelReduction The ModelReduction module is a collection of functions providing
linear and nonlinear reduced basis methods. Examples are routines for generating a
modal basis, a Krylov subspace, a Craig-Bampton basis, modal derivatives, static deriva-
tives or POD modes. The module also provides routines to compute training sets like the
NSKTS or the NSMTS. Furthermore, it has functions to convert a MechanicalSystem to a
ReducedSystem or a HyperReducedSystem.

ReducedSystem The ReducedSystem class is an inherited sub-class of the Mechanical-
System class. It provides the same interface like the super-class, however returns the
reduced variables of a reduced basis system in contrary to the full system. It can be built
using a function from the ModelReduction module as shown in Listing A.2.

HyperReducedSystem The class HyperReducedSystem is a sub-class of ReducedSys-
tem. It has the same interface as both super-classes. In contrary to the ReducedSystem it
provides the reduced nonlinear forces bases on the selected hyper-reduction scheme.

To demonstrate the workflow of a finite element simulation in AMFE, Listing A.1 de-
picts an example of a 2D finite element setup realized with AMFE. After the loading of
the amfe module, the finite element system is set up by interacting with the Mechani-
calSystem object my _system. Different computations can be executed in an interactive
fashion like the solution of a linear static problem, a nonlinear static problem or the com-
putation of the eigenmodes of the system. Note that the displacement fields are saved in
the my_system object, so that the export to ParaView exports the results of the previous
computation.

Listing A.2 shows a more advanced setup, where a hyper-reduced model is built.
After the definition of a mechanical problem in line 5 - 11, a simulation-free basis is com-
puted using vibration modes and static derivatives (lines 13-17). This basis is then used
for the computation of NSKTS, which are used as training sets for the ECSW hyper-
reduction. Finally, a time integration is performed and the results of the time integration
are exported.

In Listing A.2, the concept of AMFE is illustrated. The computations not directly
associated with finite element systems can be performed using the numerical toolbox
numpy of Python like the definition of a time function for the excitation in line 11 or
the generation of time steps in line 33. Since the input is interpreted and does not re-
quire compilation, workflows like the ones in Listing A.2 or Listing A.2 can be developed
interactively, which can be a huge benefit in practice.

Listing A.1: Example of a Python input file solving a planar finite element problem using AMFE.
The mesh is generated with gmsh.

import amfe

my_material = amfe.KirchhoffMaterial (E=210E9, nu=0.3, rho=1E4,
plane_stress=True)

my_system = amfe.MechanicalSystem ()

my_system .load_mesh_from_gmsh ( , 7, my_material)

my_system.apply_dirichlet_boundaries (8, )
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10|# apply a load on domain number 9
11 |my_system.apply_neumann_boundaries (key=9, val=1E8, direct=(0,-1),
12 time_func=lambda t: t)

14|# Perform a linear static solution
i5/u_lin = amfe.solve_linear_displacement(my_system)
16 |# Export displacement to ParaView
17 |my_system . export_paraview ("displacement_linear”)

# Perform a nonlinear static solution

20|u_nonlin = amfe.solve_nonlinear_displacement(my_system, no_of_load_steps=>50)
21|# Export displacement steps to ParaView

2 |my_system . export_paraview ('displacement_nonlinear ")

24 |# Perform a modal analysis

»5|lomega, V = amfe.vibration_modes(my_system, save=True)
26 |# Export mode shapes to ParaView

27 |my_system . export_paraview ('mode_shapes”)

Listing A.2: Example of a Python input file performing a lean hyper-reduction using a reduced
basis composed of vibration modes and SMDs and NSKTS for the hyper-reduction.

import amfe
# Load the numerical library numpy
import numpy as np

G W N =

# define a mechanical Problem

6| my_material = amfe.KirchhoffMaterial (E=210E9, nu=0.3, rho=1E4)

7|my_system = amfe.MechanicalSystem ()

s |my_system .load_mesh_from_gmsh (' mesh_file .msh’, 7, my_material)
o|my_system.apply_dirichlet_boundaries(8, ’'xy’)
10|my_system.apply_neumann_boundaries (key=9, val=1E8, direct=(0,-1),

11 time_func=lambda t: np.sin(35+np.pixt))

13|# compute a simulation—free basis using modes + SDs

11|omega, V = amfe.vibration_modes(my_system, n=10)

15| Theta = amfe.static_correction_theta (V, K_func=my_system.K, h=1.0,
16 finite_diff="central”)

17|Q = amfe.linear_qm_basis(V, Theta, tol=1E—8, symm=True)

# compute NSKTS using a reduced system

20 |my_reduced_system = amfe.reduce_mechanical_system (my_system, Q)

21 |nskts = amfe.compute_nskts(my_reduced_system, no_of_moments=4,

2 no_of_static_cases=8, load_factor=2,

23 no_of_force_increments=20)

24|# build hyper—reduced system

25 |my_hyper_system = amfe.hyper_reduce_mechanical_system (my_system, Q)
26 |# perform mesh reduction using ECSW

27 |my_hyper_system.reduce_mesh (nskts, tau=0.001)

N

) |# perform a time integration from 0 to 2s with dt=0.001

30(q0 = np.zeros(shape=Q.shape[1])

51/dq0 = np.zeros_like (q0)

»|dt = 0.001

3|T = np.arange (0, 2, dt)

32 |lamfe. integrate_nonlinear_gen_alpha (my_system, q0, dq0, T, dt, rho_inf=0.8)
35 |my_system . export_paraview ('time_stepping_output’)
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A.2 Nonlinear Finite Element Formulation

The finite element formulation, as pointed out in Chapter 2, is about the computation of
the matrix and vector quantities of the finite element. They are the internal forces f,(u.),
the tangential stiffness matrix K, equal to the Jacobian df,/du, of the nonlinear forces
and the mass matrix M,. The tangential stiffness matrix is needed for linear and non-
linear static solution techniques, for linear dynamical systems and for nonlinear implicit
time integration schemes. In the following, the Total Lagrangian nonlinear finite element
procedure is spelled out and explained on the two dimensional four node quadrilateral
element. Since this element is a two dimensional element, the number of dimensions is
ndim = 2. The number of nodes is 1, = 4. The formulation presented here is also the
formulation used in the AMFE code framework developed by the author of this thesis.

Starting with the kinematics, the approximation of all field variables is expressed in
terms of the nodal coordinates and the shape functions, see also (2.21) to (2.23):

X(@) = Y. Ni(§)X,; = X, N(§), (A.5)
i=1

(&) = Y. Ni(&)xe; = 2IN(E), (A.6)
i=1

8(8) = Y. Ni(@)ue; = I N(@). (A7)

The nodal quantities X, € Rmxndim g c Runxndim gnd g, ¢ R™*Mim denoted with
a hat are quantities arranged in matrix form, where the rows stand for the nodes and the
columns form the x-y and possibly z-components. Nodal quantities without a hat are ar-
ranged as a full column vector, as shown in (A.19). The continuous quantities are denoted
with a bar, where also nodal quantities exist, i.e., X,, X, and .. For a four node Quadrilat-
eral element, for instance, the nodal coordinates X, € R**3 and displacements i1, € R**3
are given as

X1 1 4 Uyl Uyl Uz

e | X2 Yo Zp Lo | Ux2 Uy Uz

X, = i, = . (A.8)
X3 Y3 Z3 Uy3 Uyz Uz
Xy Yy Z4 Uyg Uyg Uz

The shape functions N € R for the four node quadrilateral element are given as

e (162967

| N2(S, (1 4+ 1-79

NO= N | = [ Tasdasn | (A9)
Nn))  \a—daen

The spatial derivatives of the field variables are performed on the shape functions.
Thereby, the derivatives are always computed with respect to the element coordinate
system ¢ allowing for an analytical computation. The derivatives with respect to the
reference coordinates X, as typical in the Total Lagrangian framework, are carried out
using a detour over the element Jacobian | = 0X/d¢ € Rrdimxndim \hich is computed
with the derivative of the shape functions N with respect to the element coordinates ¢:

~TON

J =0X/9¢ =X, P (A.10)
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For the Quad4 element, for instance, the derivative of the shape functions N with
respect to the element coordinates ¢ = (¢, 7) T is written as

N 1%(7—1)) li((éé—l))

| z(=n+1) z(=C—1

ey ey | (A1D)
W=n-1) X(-¢+1)

The spatial derivatives are then obtained using the inverse of the element Jacobian.
The deformation gradient F € R™mxndim for instance, is written as

ox . om . omdf . 70N [, N\ '
P_aX_I+aX_I+agaX_I+”eag <X€a€> . (A.12)

The spatial derivative with respect to the reference configuration can be concatenated
yielding the spatial derivative operator By € R"*"dim;
o 1= ~ AN [ oN\ !
—= =1,B ith By = — | Xe=5 . A13
Sx — B0 witn Bo— 5 (2.57) (A13)
The Green-Lagrange strain tensor E € R™m>ndim js computed using the auxiliary
matrix H = 0i1/9X. In comparison to the direct computation with the deformation gra-
dient, the following procedure is numerically more stable [BLMOO]:

1 ~
E=_(H+ H" + H'H) with H = a!B,. (A.14)
The next step is the evaluation of the internal virtual work (2.27). There, the inner
product of the two tensors S and E has to be computed. Hence, the so-called Voigt notation
has been established to describe the equivalent operations with one dimensional vectors.
The Voigt representation S° of S and E? of E is written as

Si1 S12 Si13
S” = (S11,522, 533,523,513, S12)7 with S= Sy Sxn Sy (A.15)
S31 S S33
Eyn Eip Egs
E’ = (Ey1, Ex, Es3,2E23,2F13,2E12)T with E= | Eyy Exn Ens (A.16)
E31 Ezx Ess
for three dimensional problems and as
v _ T . (St S
SY = (511, 522,512) with S = (A17)
So1 S»
v _ T . _ (En Ep
E° = (Elll E22,2E12) with E = (AlS)
Eyi Ex

for two dimensional problems. Also the nodal values are written as vectors, e.g.,

T
e = (Uyy, Uy1, Uz1, Und, Uy, Uzd, Uxd, Uy3, Uz3, Uxd, Uya, Uzg ) (A.19)

representing i, in Voigt notation. The nodal quantities without a hat are given in Voigt
notation forming a column vector of dimension ndim - n,. The off-diagonal entries in the
strain measure are multiplied with a factor of 2 in order to keep the internal virtual work
of the element e simple. To compute the virtual work, only an inner vector product needs
to be evaluated:
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SWinte = / S :6E dQyg, — / (6E*)TS® dQy,. (A.20)
QO,e QO,e

For the application of the principle of virtual work, the variation of the Green-Lagran-
ge tensor JE is necessary. According to the definition (2.13), recalled here for clarity:

OE = %(MTF + FT5F), (A.21)

the variation of the Voigt representation E” can be expressed in terms of the variations
of the displacement vector du:

SEY = Bodu,. (A.22)

The tangent matrix By € R™m(ndim+1)/2xndim-n jg dependent on the deformation and
hence a linear function of the nodal displacements. It is composed of both entries of the
deformation gradient and of the spatial derivative matrix By. The first three columns are
given as

F1Bn F>1B11 F31B11
F12B1 F»Bio F3 By
Fi3B13 Fx3By3 F33B13
Byl:,: 3| = A.23
ol:»+ 3] F12B13 + Fi3B1o  F2pBi3 + Fo3B1p  F32Biz + Fz3Bio ( )
Fi11B13 + Fi3B11 Fx1Bi3 + F3Bi1 F31Bi3 + Fs3Byg
F11B1p + Fi2B11 - Fo1Bio + FooBi1 - F31Bip + F32B1g
with
Fii1 B F3 _ Bi1 B2 Bz
F=|Fy, Fn Fp and By = By By Bos || (A.24)
Fi3 F3 Fs3 : : :

Having defined the tangent operator JE?, the virtual work 6Wjy; , yields the nonlinear
internal forces f,(u.):

SW, = / (6E?)T'S? dQy, = ou” / BI'S? dQy, = ou f, () (A.25)
QO,@ QO,B
as

ffz(ue) = L Bgsv dQqe, (A.26)
0,e

since the variations of the nodal displacements éu, are arbitrary. The evaluation of the
integral in the equation above is performed using Gauss integration (cf. (2.28)).

Next the virtual work of the inertia forces is evaluated. Recalling (2.25), Wi, . is
written as

SWiine = /Q 5" piit dQ,p- (A.27)
0,e

To receive the mass matrix in terms of the displacements u, in Voigt notation, the
matrix of shape functions N need to be given in Voigt notation as well, so that the contin-
uous displacement field is a function of the nodal displacements given in Voigt notation
u= Nvue:

Ni(&) 0 0 No(& 0 0o ...
N=| 0 N(& 0 0 No(& 0 ... (A.28)
0 0 Ni(§) O 0 Na¢)
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Then the virtual work of the inertia forces dWg;,, , is rewritten as

Wiine = /Q sul (N?)TpoNTit, dQe = 6u] /Q o(N*)TN? dQq, iie = 6ul Myil,
0,e 0,e
(A29)

yielding the mass matrix M, of element e as

M, = / o(N®)TN? dQy.. (A30)
0,e

Similar to the internal nonlinear forces, the integrals are evaluated with a Gauss
quadrature scheme.

Finally the tangential stiffness matrix K, is derived. It is the Jacobian of the internal
forces (A.26) with respect to the nodal displacements. Since in the expression (A.26) both
members in the integrand are dependent on the nodal displacements, the stiffness ma-
trix is split into two parts, the geometric stiffness matrix Kg . and the material stiffness
matrix Kyt e:

) oB! 0s?
e _ g, = 052 40y, + / B2 dOy,. (A31)
ou, Qg OUle Qpe Ol

ngo,f Kmat,e

The geometric stiffness matrix Kg,, is different from zero only for deformed states
and is thus omitted in linear finite elements. The material stiffness matrix K, is equal
to the linear stiffness matrix for a zero displacement. It is simple to derive using the chain
rule:

3s? 9S? 9E
Ky = | BI?2 40 :/ B> %% 40 :/ BICSEB, dQy,. (A.32
mat,e \/()O/B 0 aue O,E QO,B OaEv aue O,E Qo/e 0 0 0,e ( 3 )

The matrix C°F = 98 /9E? is the so-called tangent modulus describing the tangential
map between the second Piola-Kirchhoff stress tensor S and the Green-Lagrange strain
tensor E. This tangent modulus is provided by the constitutive law as discussed in Sec-
tion 2.2.

The geometric stiffness matrix is more complicated to derive. The internal virtual
work can be expressed by another work-conjugate pair, the deformation gradient F and
the first Piola—Kirchhoff stress tensor P = FS yielding

OWinse = ot : f, = [ 6F : P d0y, = /Q SF;P; . (A.33)
- 0,e 0,e

Since the variation of the deformation gradient is F = 4] By, in index notation
0F;j = 01, xiBo xj, the internal forces f, given in matrix notation are

Winte = Oty : f, = 60, ki foi (A.34)
- /Q OFP; dQy, = bty / BoyiPij Ay, (A.35)
0,e
= dil, : BoPT dOy,. (A.36)
QO/e

Hence the nonlinear forces f, in matrix notation are given as

f. = A BoPT dQyg, = /Q BoSFT dQy,. (A.37)
0,e 0,e
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The tangential stiffness matrix can be obtained by taking the time derivative of the
internal forces, since Jacobians of matrices are difficult to book-keep:

= [ BoSFT dOy, + /Q BoSET dy, . (A39)
0,e 0,e

fmnf,e fgeo,e

The first summand represents the change of the forces due to the material change in-
duced by S. The second summand represents the change of the forces due to the change
of the geometry, represented by the change rate of the deformation gradient F. The sec-
ond change rate leads to the geometric stiffness matrix Ko e, since the rate of the defor-

mation gradient F can be expressed in terms of the nodal velocities to F = #! By:

A

D T D =T A 2 A
fgeo,e - /Q BoSF dQOre = /Q BUSBO dQU,E Ue = ngo,eue, (A.39)
0,e 0,e
leading to the geometric stiffness matrix K geo for one coordinate direction:
N ~ =T
ngo,e = /BOSB() dQO,e- (A.40)

The matrix ngo,e can be expanded to the geometric stiffness matrix Ko for Voigt
notation by applying the Kronecker product with the identity matrix I € R™im>ndim,

ngo,e = ngo,e ® I (A41)

The tangential stiffness K, of element ¢ is then given as the sum of both, the material
and the geometric stiffness:

K, = Kmat,e + ngo,e- (A.42)

The procedure of the finite element method to compute the elemental matrices K., M,
and the internal force vector f, is given in Algorithm 6. For more in-depth information
the reader is referred to [BLMOO].
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Algorithm 6: Computation of the nonlinear elemental quantities

10
11

12

13

14

15

Input :Nodal positions X, € R™" nodal displacements u, € R™ "
Output : Nonlinear internal force f, € R™"" Tangential stiffness

matrix K, € R™im-mxndinn, Mass matrix M, € R im - xndinm:n,

Allocate output variables to zero: f, =0 € Rdimnn K, — () e R xndimn,
Me =0c Rndim-nnxndim-nn

AHOCate kgeole - 0 € IRYlnXVly,, Kmat’e - 0 S ]Rndim-nnxndim-nn

for &; € Gauss points and w; € weights

Compute element Jacobian J = dX,/9d¢&; according to (A.10)

Compute spatial derivation matrix B,(&;) according to (A.13)

Compute auxiliary matrix H and Green-Lagrange strain E according to (A.14)

Compute deformation gradient F = I + H

Compute second Piola-Kirchhoff stress tensor S(E) and tangent modulus C5t
according to constitutive law

Compute tangent strain matrix By according to (A.23)

Add Gauss point contribution to elemental internal force f, (cf. (A.26)):
f. = f,+B{S"w;det(])

Add Gauss point contribution of material stiffness to matrix K. according to
(A.32): Kyate = Kiate + BE C3FBow; det(])

Add Gauss point contribution to geometric stiffness matrix K geo,e according to
(A.40) and (A41): Kgeoe = Kgeo + BoSByw; det(])

Add Gauss point contribution of mass matrix to M, according to (A.30):
Mg = Me + Nv(NU)Tpowi det(])

end
Compute tangential stiffness matrix K, = Kyt e + ngo,e ® I with I e R?dim>ndim







Appendix B

Parameters of Numerical Experiments

Table B.1: Parameters of the examples cantilever, c-shape and cantilever with Neo-Hookean

material used in several chapters.

Property cantilever c-shape cantilever Neo-Hookean
Mesh

no of elements 246 612 571

no of dofs 1224 2796 2244
element type Tri6 Tri6 Tri6
Material

Stress configuration plane stress plane stress plane strain
Young’s modulus E 210 GPa 210 GPa 0.9 GPa
Poisson ratio v 0.3 0.3 0.4
Density p 10000 kg/m® 10000 kg/m? 1000 kg/m?
Time integration

time step size At 5-107%s 5-107%s 1-1073%s
tend 1s 2s 2s

oo 0.8 0.8 0.4
Excitation

x-direction

excitation — sin(3 - 27tt) —
magnitude — 1-10”N/m —
y-direction

excitation sin(50 - 27tt) 4+ sin(8 - 27tt)  sin(5-27t)  sin(4 - 27tt) + sin(25 - 27tt)
magnitude 5-10°N/m 1-10”N/m 2-10°N/m
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