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ABSTRACT
Assigning deterministic values to damping parameters in many numerical simulations of structural
dynamics is a very difficult task owing to the fact that such parameters possess significant uncer-
tainty. In this paper, the modal damping parameters are considered as random variables. The
generalized polynomial chaos (gPC) expansion is employed to capture the uncertainty in the para-
meters and dynamic responses. Finite element model of damped vibration analysis of a composite
plate is served as deterministic black-box solver to realize responses. The range of uncertainties
and the probability distributions of the parameters are identified from experimental modal tests. A
set of random collocation points are generated for which the constructed gPC expansions are used
to generate samples of damping parameters as deterministic inputs to the FEM model. This yields
realizations of the responses which are then employed to estimate the unknown coefficients. The
results show while the responses are influenced from the damping uncertainties at the mid and
high frequency ranges, the uncertainty impact at lower modes can be safely ignored. Furthermore,
the method indicates also a very good agreement compared to the sampling-based Monte Carlo
FEM simulations with large number of realizations. This leads to a very efficient simulation in terms
of computational time.
Keywords: stochastic structural dynamics, random damping , polynomial chaos, I-INCE Classifica-
tion of Subjects Number(s): 47.3

1. INTRODUCTION

Transient analysis (known also as time-history analysis) plays a very important role in investigation
of dynamic behavior of structures. The technique used to determine the dynamic response under
various time-dependent loads to calculate the time-varying kinematic responses as deformations
and consequential strain-stress results in the structure. The time-dependency of this type of anal-
ysis requires considering the effect of structural damping, especially, where the structure is under
step or impulse loading conditions, i.e. suddenly load variation in a fraction of time. On the other
hand, unlike dynamical properties such as mass and stiffness, the structural damping prediction is
often the most difficult process due to the complicated damping mechanism and related inherent
uncertainties [1]. An efficient and reliable estimation of the responses are achieved by considering
uncertainties, particularly, when one deals with engineering reliability analysis.

The uncertain structural damping parameters may be represented as random variables hav-
ing an expected mean value and a variation range denoted by the standard deviation [2]. This
is, however, true if one makes sure that damping parameters can be estimated as Gaussian ran-
dom variables. For non-Gaussian uncertain parameters, the whole range of uncertainty cannot
be captured only by means of the mean value and the standard deviation [3, 4]. Stochastic finite
element method (SFEM) based on sampling methods, e.g. Monte Carlo (MC) simulations, then
is the simplest way and straightforward to quantify the structural responses under uncertainty in
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modeling parameters. However, the accuracy of such a method depends extremely on the number
of samples and, consequently, very expensive in terms of computation time1. For that reason, in
this paper, the spectral based method [5] for uncertainty quantification is employed in which the
generalized polynomial chaos (gPC) expansion [6–12] plays the major role.

This work uses the gPC expansion for representation of the modal damping parameters of the
structures in transient dynamic analysis. The information on the uncertainty range and the proba-
bility distributions of the damping parameters are obtained from experimental modal tests on 100
samples of plates having identical nominal topology. The transient responses are then represented
in an explicit form as a random process approximating by means of the gPC expansion with un-
known time-dependent deterministic functions. A deterministic FEM model of the plate operates
as a black-box to realize samples of the responses, on a set of collocation points generated in the
random space. The modal superposition method is employed to estimate transient responses. In
the modal superposition method, the transient structural responses under the loading condition is
estimated from the linear combination of the eigenvectors obtained in a modal analysis. This yields
in an efficient sparse gPC expansion with a few unknown functions representing the responses.
The realizations then are served to estimate the unknown functions. This provides the major ad-
vantage of using limited number of realizations to estimate the system responses which normally
require large number of samples when using the MC method. Furthermore, any commercial or de-
veloped in-house FEM code can be used to accomplish desirable structural responses considering
parameter uncertainty [12].

This paper is prepared as follows: the stochastic spectral representation of random transient
analysis with random modal damping is given in the next section. Numerical and experimental
results are given in the section 3, and the final section discusses the conclusions.

2. MODAL-SUPERPOSITION BASED STOCHASTIC TRANSIENT DYNAMIC ANAL-
YSIS OF STRUCTURES

It is assumed that a set of experimental data on the modal damping parameters are available,
so that the uncertain modal damping parameters can be represented as random variables having
predefined probability density function (PDF) as discussed in [12]. The numerical finite element so-
lution of the structural transient analysis can be performed in full, reduced and modal-superposition
methods. The first method uses the full system matrices to calculate the transient responses while
the second one condenses the problem size by using master degrees of freedom and reduced
matrices. Both methods are more practically powerful because they allow all types of nonlinearities
to be included in the solution. The modal-superposition method uses the normal modes of the
structure modal analysis to estimate the nodal displacement responses in the transient analysis. It
is faster and less expensive than the first method for many problems while accepting modal damp-
ing. The coupled equations of motion then are transformed into a set of independent uncoupled
equations from which the dynamic responses of the original system are estimated from the super-
imposing responses of the uncoupled equations.
For the FEM model of a structural system having n degrees of freedom, let the modal damping
ratios ζr, r = 1, 2, . . . ,m for m ≤ n eigenvectors be represented as uncertain parameters with
specific PDF. The stochastic uncoupled modal equations can be then given as

q̈(t, ξ) + diag [2ζr(ξ)ωr] q̇(t, ξ) + diag
[
ω2
r

]
q(t, ξ) = ΦF (t) (1)

in which q = {q1, q2, . . . , qm}T is a vector of size m × 1 representing the modal amplitudes, Φ =

[φ1|φ2| . . . |φm] is an n × m modal matrix with φi as the ith-eigenvector, ωr denotes the natural
circular frequency of mode r and F represents the vector of external nodal loads. To develop the
spectral stochastic form of Eq. (1), the modal damping parameter and the modal amplitudes are
discretized employing the gPC expansions. That is, for the model damping parameter ζr

ζr =

Nζ∑
i=0

ariΨi(ξ) = aTr Ψ(ξ) (2)

1for n pseudo-random samples and a variance of σ2, the convergence rate of MC is σ√
n

.



in which aTr = {ar0 , ar2 , . . . , arNζ } denotes the vector of deterministic coefficients and Ψ(ξ) ={
Ψ0,Ψ1, . . . ,ΨNζ

}T
is the vector of orthogonal random basis function. Accordingly, using the same

random basis for the modal amplitudes, one can write

q(t, ξ) =

Nq∑
j=0

{Q(t)}j Ψj(ξ) = Q(t)Ψ(ξ) (3)

where Q(t) is a matrix of unknown deterministic gPC coefficient vector {Q(t)}j in its row j + 1.
Substituting the expansions in Eq. (1) yields to

Q̈(t)Ψ(ξ) + diag
[
2aTr Ψ(ξ)ωr

]
Q̇(t)Ψ(ξ) + diag

[
ω2
r

]
Q(t)Ψ(ξ) = ΦF (t) (4)

This equation denotes modal-superposition based spectral stochastic FEM (sSFEM) of transient
dynamic analysis of structures with random modal damping parameters. Knowing the gPC coeffi-
cients of the damping parameters, the goal is usually the calculation of unknown functions {Q(t)}j .
To this end, the corresponding random error ε(t, ξ) due to the discretization of the random parame-
ters and response has to be minimized, i.e.

ε(t, ξ) = Q̈(t)Ψ(ξ) + diag
[
2aTr Ψ(ξ)ωr

]
Q̇(t)Ψ(ξ) + diag

[
ω2
r

]
Q(t)Ψ(ξ)−ΦF (t) (5)

There are two broad classes of methods that can be used to minimize this error, namely, Galerkin
projection and collocation-based methods. While the former requires access to the data structures
of the FEM model or analytical governing equations to derive a system of deterministic equations for
the stochastic modes of the solution, the error in the latter is set equal to zero at sample collocation
points in the random space. Herein, the FEM model or the governing equations are employed
as solver/black box. The realized uncertain parameters on collocation points are then served as
deterministic inputs to the FEM solver to evaluate samples of responses. The major advantage
is using any deterministic numerical and analytical procedure for extracting the structural vibration
responses, cf. [12] for more details. Once the coefficient functions {Q(t)}j are calculated, the
vector of stochastic dynamic responses of the original system, u, is then estimated as

u(t, ξ) ≈
m∑
i=1

{φi} qi(t, ξ) = Φq(t, ξ) = ΦQ(t)Ψ(ξ) = Q̃(t)Ψ(ξ) (6)

where Q̃(t) = ΦQ(t). The first coefficient function Q̃0(t) denotes the expected function of the
dynamic response. Given the vector ξ as a set of Gaussian variables, the orthogonal Hermite
polynomials can be employed to represent the stochastic responses. For instance, considering the
first 6 random modal damping parameters as ζr(ξr), r = 1, . . . , 6, the 2-order gPC expansion of u
is represented as

u(t, ξ) =
2∑
i=0

Q̃i(t)Hi(ξ) =
2∑
i=0

Q̃i(t)Hi(ξ1, . . . , ξ6) (7)

The expansion includes a complete basis of 6-dimensional Hermite polynomials up to a fixed total
2nd-order specification. The total number of terms N in the expansion is given by [7]

N =
(6 + 2)!

2!6!
= 28 (8)

Therefore, the expansion in Eq. (7) is stated as

u(t, ξ) = Q̃0(t) + Q̃1(t)ξ1 + Q̃2(t)ξ2 + Q̃3(t)ξ3 + Q̃4(t)ξ4 + Q̃5(t)ξ5 + Q̃6(t)ξ6

+ Q̃7(t)(ξ
2
1 − 1) + Q̃8(t)ξ1ξ2 + Q̃9(t)ξ1ξ3 + Q̃10(t)ξ1ξ4 + Q̃11(t)ξ1 ξ5 + Q̃12(t)ξ1 ξ6

+ Q̃13(t)(ξ
2
2 − 1) + Q̃14(t)ξ2ξ3 + Q̃15(t)ξ2ξ4 + Q̃16(t)ξ2 ξ5 + Q̃17(t)ξ2 ξ6

+ Q̃18(t)(ξ
2
3 − 1) + Q̃19(t)ξ3ξ4 + Q̃20(t)ξ3ξ5 + Q̃21(t)ξ3 ξ6 + Q̃22(t)(ξ

2
4 − 1)

+ Q̃23(t)ξ4ξ5 + Q̃24(t)ξ4ξ6 + Q̃25(t)(ξ
2
5 − 1) + Q̃26(t)ξ5ξ6 + Q̃27(t)(ξ

2
6 − 1) (9)

The first coefficient function Q̃0 denotes the deterministic (mean) value of the random response.
Due to the independent modal damping parameters in modal superposition analysis, the multi-
plicative terms in the above expansion, i.e. ξiξj, 0 < i, j ≤ 6, are vanished. This yields the
reduced-order expansion with 13 unknown terms.



3. NUMERICAL AND EXPERIMENTAL STUDY

The application of the above mentioned theory is examined to determine the transient response of
fiber-reinforced composite (FRC) plate made of symmetric 12 layers with 60% glass fibers oriented
in [0/90]s in epoxy matrix under an impulsive excitation having amplitude of 100 N in the FEM
model. The impulse is applied on the upper right corner of the plate over one integration time
step of 0.0003 [s]. The plate exhibits dimensions of 250 × 125 × 2 mm3 and the black-box FEM
model is constructed having nominal elastic parameters of E11 = 47.45, E22 = 9.73, G12 = 4.00

(all in Gpa) with the major Poisson’s ratio of ν12 = 0.24. The experimental modal analysis has
been conducted on 100 sample plates having identical nominal topology to realize the damping
parameters and their uncertainty ranges. The responses are measured by continuously scanning
of 35 points on plates using Laser Doppler Vibrometer (LDV). The randomness in the damping
parameters is well represented by the lognormal distributions compared to results obtained from
the maximum likelihood estimation (MLE). The identified PDF are shown in Fig. 1 for the first 6
modes. Once the PDF types of the parameter are identified, the procedure introduced in [7] is
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Figure 1 – The identified PDF of the first 6 experimental modal damping parameters [12]

adopted to calculate the unknown coefficients of the gPC expansions. The numerical algorithm
presented in [12] is employed to realize samples of the transient responses in time domain of
[0, 0.3] seconds. For that, the numerical Matlab R© code given in [12] is adopted to generate 60
collocation points from the 4th roots of multi-dimensional Hermite polynomials. Accordingly, the
FEM code developed in [12] is used as black-box solver of the transient dynamic analysis of the
plate. As preliminary to transient dynamic analysis using modal-superposition, the modal analysis
of the plate for calculation of the first 20 modes are performed. The stochastic time-dependent
response at the node in which load acts, cf. Eq. (6), is approximated by 2nd-order gPC expansion
having multi-dimensional orthogonal Hermite polynomials of 6 random variables, H(ξ1, ξ2, . . . , ξ6),
each of which represents randomness in 6 modal damping parameters. The response realizations
are served to calculated the unknown deterministic functions Q̃i(t). The results are shown in Fig. 2
for the zeroth-order function Q̃0(t) and the Q̃i(t), i = 1, . . . , 4. As expected, Q̃0(t), the expected
deterministic response, diminishes as the load is removed in a short period of time due to the
damping. The convergence of the higher order terms as time increases can be detected from the
right plot in Fig. 2. It is also demonstrated that the higher order terms converge to zero faster than
the lower order terms.
To ensure the accuracy of the method, the mean and the standard deviation functions derived from
the gPC expansion of the stochastic dynamic response compared to the results obtained from 1000
MC realizations are shown in Fig. 3. As clearly observed, while no difference between the expected
functions is detected, the variance functions show some disagreements when time increases.



Figure 2 – The first gPC coefficient function Q̃0(t) (left) represents the mean value of the re-
sponses. The higher terms show the range of uncertainty in the response due to the random-
ness in damping parameters. The right plot demonstrates the coefficients Q̃i(t), i = 1, 2, 3, 4.

Figure 3 – The mean value µ(t) and the standard deviation σ(t) of the dynamic response con-
structed from the 2nd-order gPC expansion (dashed line) using 60 collocation points compared
to the results obtained from 1000 MC realizations (bold lines)

4. CONCLUSIONS

The stochastic FEM is used to investigate the impact of damping parameters on the dynamic re-
sponse of structures. The major contribution of the study is using experimental data for constructing
the gPC expansions of the damping parameters. The numerical FEM solver utilizes the modal-
superposition method which effectively decreases the simulation cost in terms of computational
time. A few realizations of the system responses were required compared to sampling based meth-
ods such as MC simulations. Thanks to collocation based stochastic simulation, the procedure can



be implemented to complex structural systems with uncertain parameters for which the FEM model
serves only as deterministic solver/black-box.
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