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Computing the Drivable Area of Autonomous Road
Vehicles in Dynamic Road Scenes

Sebastian Sontges and Matthias Althoff

Abstract—This paper presents an algorithm for overapprox-
imating the drivable area of road vehicles in the presence of
time-varying obstacles. The drivable area can be used to detect
whether a feasible trajectory exists and in which area one
can limit the search of drivable trajectories. For this purpose
we abstract the considered road vehicle by a point mass with
bounded velocity and acceleration. Our algorithm calculates the
reachable occupancy at discrete time steps. At each time step the
set is represented by a union of finitely many sets which are each
the Cartesian product of two 2-dimensional convex polytopes.
We demonstrate our method with three examples: i) a traffic
situation with identical dynamic constraints in x- and y- direction,
ii) a highway scenario with different lateral and longitudinal
constraints of the dynamics and iii) a highway scenario with
different traffic predictions. The examples demonstrate, that we
can compute the drivable area quickly enough to deploy our
approach in real vehicles.

Index Terms—Autonomous cars, motion prediction, road ve-
hicle safety, reachable set.

I. INTRODUCTION

IGHLY autonomous cars and advanced driver assistance

systems provide a great opportunity for increasing safety
and comfort in transportation. These systems make decisions
automatically and choose the driving path themselves without
relying on a human driver. However, the decision making and
trajectory generation still pose a major challenge. Usually,
the planning yields high-dimensional search problems, which
must be solved with limited computational resources and hard
real-time constraints. These limitations demand appropriate
heuristics to accelerate the search and the need for anytime
algorithms which are able to produce solutions in a timely
manner.

In this work, we present a method for computing an
overapproximation of the set of all possible trajectories of
an automated vehicle. Our method constructs the set of all
states that can be reached by a vehicle considering speed and
acceleration bounds while moving in a two-dimensional plane
with static and dynamic obstacles.

One basic task of an automated vehicle is the trajectory
generation from the current position to some goal position
without causing any collision. A popular approach to generate
trajectories is to cast the trajectory generation problem into a
graph search problem [1]. A set of states in the continuous
state space of the vehicle is selected as nodes of a graph.
Trajectories connecting these states are added as edges in the
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graph. Depending on the motion model, the trajectories are
solutions to a boundary value problem of open or closed-
loop dynamical systems, kinematic models or purely geometric
curves. The nodes can be selected in a random fashion [2]
(e.g. RRT) or according to an appropriate deterministic scheme
[3], [4] (e.g. along the lane). Selecting states and trajectories
tailored towards the specific driving task, the structure in the
environment and the traffic situation can reduce the size of
the search graph [5]. A trajectory is found when a path in
the graph is found that connects the initial node to one in the
goal region. One major drawback of graph-based approaches
is that the size of the graph scales exponentially with respect
to the number of search dimensions. This may quickly lead to
restrictive, long search times. Suppose a vehicle can move
in a two-dimensional plane with time-dependent obstacles.
A vehicle model with two position variables, two velocity
variables and one time variable yields a 5-dimensional search
space. An exhaustive search for an appropriate, dense selec-
tion of trajectories is therefore difficult. An early approach
for reducing complexity involves decomposing the trajectory
generation to a path planning problem in a static environment
and a velocity planning problem in path-time space [6]. In
dynamic scenarios, this decomposition can be too restrictive.
A more general approach is to use heuristics to reduce the
searched subspace of the graph [7] and to accept suboptimal
solutions [8]. Besides graph-based approaches, other methods
such as artificial potential fields [9] and cell decompositions
[10] are proposed to generate collision free trajectories for
automated vehicles.

Our method calculates the possible search space under
consideration of static and dynamic obstacles and thus signifi-
cantly prunes the search space of the search methods reviewed
above. The dynamic obstacles can be arbitrary, time-varying
occupied regions. The computed set is an overapproximation
of the set of all states which can be reached by the host
vehicle. This set is often referred to as the reachable set. It
is guaranteed that all solution trajectories lie within this set.
All trajectories leaving the reachable set during planning can
be proven to either violate the constraints on the dynamics
or eventually collide. A related approach considering sets
of reachable states instead of trajectories is presented in
[11] which computes the backward reachable set of a goal
region using a method based on the Hamilton-Jacobi-Bellman
equation and involves solving partial differential equations.
An approximation of the projected reachable set on a grid
in spatial domain using optimal control is introduced in [12].
However, it is difficult to include arbitrary shaped time varying
obstacles in this method. In [13] the set of reachable positions
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is represented as a time varying polygon but the velocity
domain is neglected.

A second application of our method is to trigger driving
assistant systems, in particular collision mitigation systems.
In order to provide the driver with the possibility to avoid
a collision as long as possible, most collision mitigation
systems only intervene when a collision is no longer avoidable
[13], [14]. Many approaches only consider sampled candidate
trajectories, i.e. they check whether no safe solution from
a set of finitely many solutions still exists. However, since
infinitely many possible trajectories exist, approaches based
on sampling cannot guarantee that a safe trajectory still exists
and hence are only resolution or probabilistically complete.
However, if our approach returns an empty drivable area,
we can prove the non-existence of any evasive maneuver for
the given traffic prediction and can appropriately trigger the
collision mitigation system [15].

A third application of our method is to assess the risk
of a traffic situation. Risk assessment has a huge impact
on maneuver selection and planning strategies since risk is
an essential part for determining optimal trajectories. An
overview of risk assessment methods can be found in [16].
The drivable area of a vehicle as obtained from our work can
be used to deduce risk measures, such as using the area of the
drivable region as a measure to compare alternative planned
trajectories.

The computation of the drivable area has a lot of re-
semblance with classical reachability analysis, but also sig-
nificant differences, which require special choices in terms
of the applied algorithms and the set representation. One
main difference is that the computation of the drivable area
requires set difference of the drivable area between the ego
vehicle and other traffic participants, which results in non-
convex and sometimes even non-connected sets. In classical
reachability analysis, however, reachable sets are typically
represented by connected and convex sets, including polytopes
[17], zonotopes [18], rectangular grids [19], ellipsoids [20],
support functions [21], oriented rectangular hulls [22], and
axis-aligned boxes [23]. We therefore propose a set repre-
sentation that borrows ideas from approximative rectangular
cell decomposition in the position domain [24] to consider
set differences, while we use convex polytopes in the velocity
domain to faithfully consider the vehicle dynamics. A second
main difference is for the application in road vehicles, the
available computation time is strictly limited.

The presented algorithm is based on our previous work [15].
The novelty of this work is as follows:

o Results of preceding and subsequent time steps are used
for the calculations of the reachable set. In our previous
work, the algorithm uses information exclusively from
the previous step to calculate the next step. In this work,
the calculated set is tightened by including information
from subsequent steps i.e. excluding states that eventually
enter forbidden regions.

o The set representation is refined. In our previous work,
we approximate the reachable set at each time step by the
union of four-dimensional intervals which may overlap.
Here, we approximate the reachable set by an union

of sets, of which each set is the Cartesian product of
two convex 2-dimensional polytopes. The interior of the
sets are disjunct and the boundaries may intersect. The
algorithmic realization is more efficient despite improved
accuracy.

e In contrast to our previous work, velocity limits are
considered. This is particularly important when the cho-
sen time horizon is so large, that otherwise meaningless
speeds are reached.

II. DEFINITIONS AND PROBLEM FORMULATION
A. Reachable set

Given an initial state sg, an input signal u(¢) and the system
dynamics $(t) = f(s(t),u(t)), the trajectory of the state is:

s(t) =so+ t f(s(7),u(r)) dr.

We assume a set of forbidden states F(¢) to be given. The
reachable set reach(t; Xp) is defined as the set of all states
that can be reached from an initial set Xy at time ¢:

reach(t; Xp) = {s(t;u, so) |[Fu € U, Tsp € Ay,
s(Tyu, so) ¢ F(r) for 7 € [to,t]} (D

where we use the notation s(t;u, sg) to refer to the trajectory
with initial state so and input u(t). In the above definition, the
reachable set is restricted to states which can only be reached
without entering the forbidden states (see Fig. 1).

We additionally define the anticipated reachable set

reach,; (t; Xo, T) = {s(t;u, so) [Fu € U, Tsg € Xy,
s(m3u, s0) ¢ F(r) for 7 € [to,T]} )

where ¢ € [to,T]. This set is a set of states which can be
reached at time ¢ and their trajectories can be continued until
time 7' > t without entering the forbidden region (see Fig. 1).
It holds that

reach,,(t; Xy, T) C reach(t; Ap).

B. Problem statement

We aim at calculating an overapproximation (i.e. a superset)
of the anticipated reachable set of a vehicle for a given set of
obstacles which corresponds to a forbidden region F(t). Com-
mon vehicle models f(s,u) possess nonlinear behavior and
several dimensions in the state space, which makes it difficult
to calculate the reachable set efficiently. We overapproximate
the vehicle behavior by a moving point mass with bounded
acceleration and speed.

The system model used is an abstraction of a realistic
vehicle. We motivate this through the following implication:
Given a model M of a dynamical system, the model M;
is an abstraction of M if the reachable set contains the
other reachable set, i.e. reach); C reach,;. We assume
the acceleration and speed to be bounded, which holds for
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Fig. 1. Reachable set considering collision free trajectories until the given time
step (top). Anticipated reachable set considering only collision free trajectories
for the whole planning horizon [tg, T] (bottom).

all realistic vehicles. Therefore the reachable set of realistic
vehicles is a subset of our computed reachable set.
The systems dynamics f(s,u) of the abstract system is:
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The occupied region of the vehicle in the workspace is
modeled by a disc A(s(t)). We choose the diameter of the
disc to be the diameter of the inner circle of the vehicle
shape, since an underapproximation of the shape yields an
overapproximation of the reachable set. The obstacle set O(t)
is supposed to be given and defines the forbidden region of the
ego vehicle. At all times in the planning horizon, the occupied
region of the vehicle A(s(t)) in the workspace at state s(t)
must not intersect with O(¢):

Vi A(s(t)) N O(t) = 0.
The forbidden region is deduced from the obstacles:
F(t) ={s(t) |A(s()) nO(t) # 0} .

In the case of no obstacles, there is a closed-form solution
of the reachable set for our model (3). However, in the
presence of arbitrary obstacles, the set can only be computed
numerically since obstacles of arbitrary shape and arrangement
interfere with the closed-form solution. The actual reachable
set thus becomes a set that cannot be computed and repre-
sented efficiently. The objective of this paper is to present
an algorithm that tightly overapproximates this set, i.e. all
approximations we apply are strict in the sense that the actual
reachable set is a subset.

III. MATHEMATICAL MODELING

The dynamics of a state along the x- and y-direction of the
system (3) is modeled as independent and can be computed
separately. However, to check whether a state lies in the
forbidden region F, the pair of positions (x,y) of a state must
be considered jointly. In this section the mathematical solution
for the reachable set of the one-dimensional motion along one
direction is shown first. The reachable set of several of these
one-dimensional motions are then merged in our proposed
algorithm shaping an overapproximation of the reachable set
of the joined two-dimensional motions.

A. Reachable set of one-dimensional motion

We consider the subproblem of one-dimensional motion in
(3), but initially neglect the velocity constraint. In addition, we
assume that the system must pass at time tq,to,..., %, some
position interval I, I, ..., I,:

@ :@ (ﬁ) + @u @)

A B
|u9c‘ < Amazx,x

ZL‘(tl) eI, x(tg) el,..., x(tn) el,

Suppose the initial states are within a convex initial set &)
at tg = 0. The reachable set without any position constraint is
given by

reach(t; Xy) =

{s

= eAth P {3

t
Jsp € Xy, Ju e U, s = etsy + / €A(tT)BU(7')dT}
0

t
Jueld,s= / €A(tT)Bu(7')dT}
0

::Pu,m(t)
= eMA © P (t) (5)

where @ denotes the Minkowski sum, which is defined as:
eMXg ® Py (t) ={a+b la € e Xy, b € Py ()}

Pux (t) is the set of all states that can be reached from
an initial state (z,%)7 = (0,0)7 for all possible acceleration
constrained inputs. This region is bounded by the minimum
and maximum speeds, that can be reached at each position
after time ¢. Given a specific terminal position z; at time ¢, the
minimum/maximum speed at this position can be determined
using optimal control theory. Pontryagin’s principle yields
a bang-bang input candidate function with switching time
vt (y€[0...1]).

The upper velocity bound (full braking until time ~¢, then
full acceleration) is obtained by

. 1
xgh) (v) = zo + ot + a0t2 (2 — 2y + ’72>

igh) (v) = @0 + Amaz,al (1—-27)
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Fig. 2. Reachable set of one-dimensional motion of a point mass with bounded
acceleration. The position of the point mass is constrained to the intervals
Iy = I = --- = I, at time steps 1,2,...,n (a). Forward solution of
the reachable set (b) and solution using the backward minimal reachable set
approximation (c).

and the lower bound (full acceleration until time ~t, then full
braking) is obtained by

1
2y (v) = o + dot — agt? (2 Sy 72)

ngl)(’y) = i.() - amaz,xt (]- - 2’7) .

The upper bound is concave and the lower bound convex.
The intersection of both is convex (see Fig. 3).

We calculate the set of possible states P; at each time
step t1,t9,...,t, in a successive manner. First, the set is
propagated one time step further, then it is intersected with
the allowed position interval:

PrC (eA(t'i_ti’l)Piq @ Puz (ti — tFl))
N (I; x [—o0,00]) .

2 2" (7)
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Fig. 3. Closed-form solution P . of the reachable set of an acceleration-
bounded point mass with initial state (0,0)7 and a polytope approximation
using supporting halfspaces at switching times v = 0, 0.5, 1.

If additional speed constraints are considered:

P; C (eA(ti_ti’l)Pifl © Py (ti — 75%1)) (6)
N (Iz X [U77Lin,ac7 Uma:c,a:]) .

The last equation is an overapproximation, since the speed
constraint may be violated in between the time interval.

The set eAti—t-0)P, | @ P, . (t; — t;_1) is convex, for
convex P;_;. However, the curved boundary of P, , compli-
cates the computation of the Minkowski sum of the sets and
the intersections with halfspaces. To perform these calculations
efficiently, we overapproximate each set by a polytope P, ;
which has a fixed number of supporting halfspaces. Each state
on the set boundary corresponds to a switching time of the
bang-bang input. The linear equation for one halfspace at some
~ is given by (see Fig. 3):

dZL’(l) T T

dit 0 1 Tt <
d:i:?” -1 0 i) =
dy N

o\ T
%’”—% 0o 1\ [«
da’ctl) -1 0 .’tgl)
d~y N

(h)

and similarly for x; . Fig. 2 (b) shows the calculated reach-
able sets Py, Ps, ..., P, for an example where we choose the
intervals I; = I = --- = I,, to be equal.

B. Minimal backward reachable set

Considering the same one-dimensional motion (4) from the
previous subsection, some states may propagate over several
time steps through position intervals but eventually cannot
reach an allowed interval in a future time step. Such states
are denoted inevitable collision states (ICS) [25]. The region
of inevitable collision states is determined by the backward
minimal reachable set of the forbidden region [26]. States that
inevitably collide within [0, T'] can contribute to reach(t; Xp)
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Fig. 4. Position constraint for an acceleration-bounded point mass at time ¢
(a) and the corresponding allowed states at t; < t; (b).

but do not contribute to reach,,(¢; Xp,T") and may therefore
be removed during the iterative computation.

The exact computation of ICS yields again a reachability
analysis and can therefore in general not be computed effi-
ciently [27]. Instead we determine an underapproximative set
ZCS of states which inevitably collide and remove these from
the iterative computation of reach,t:

Pl .=P;\ICS = P; N1ICS,
with the complement set (see Appendix A)
ICS(E, ti, tj) = {(IZ, IZ)T

() ()< (i)
1 Atz] jji - Ijm@ax,w + %amawAt%j '
with At;; =t; —t;. Fig. 4 shows the set of feasible states ¢,
for the constraint x(t;) € I;. The set ZCS (I, t;,t;) at t; < t;
contains all states which can reach the feasible states at ¢;.
This can be repeated for all points in time ¢; < t; < 1, to
bound the set of all allowed initial states. Thus, the anticipated
reachable set at time ¢; can be tightened by the constraints after
tii

() ZCS(I; tist;)

j=it1

P ="Pi()

”P,f stays convex, since it is an intersection of a convex set
with halfspaces. Fig. 2 (c) shows the tightened reachable set
for the example scenario of the previous section.

IV. ALGORITHM - REACHABLE SET OF
TWO-DIMENSIONAL MOTION

So far we have only considered one-dimensional motion.
Our proposed algorithm calculates an overapproximation of
the anticipated reachable set of the two-dimensional motion (3)
at discrete points in time. The approximated set is represented
as the union R; of base sets ng), which can be represented
efficiently. Each BEQ) is the Cartesian product of two convex
2-dimensional polytopes Pi(q) Iy Each polytope corresponds to

T

one direction of motion along the x-axis and the y-axis. One

ti—1 propagated
@ — ()
o
] Fw i
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N © — )
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Fig. 5. Propagation and overapproximation of the reachable set after one time
step. Shown is the projected reachable set in xy-domain. The reachable set of
the previous time step (a) is propagated according to the dynamical system
as described in Sec. IV-A. The propagated set (b) is overapproximated (c)-(f)
considering collisions with obstacles as described in Sec. IV-B.

axis of each polytope corresponds to the position, the other to
speed:

reach,; (t;; X, T) C R; = U 87@
a

with B =P x p) 7)

nY?

int(B{")) Nint(BM) = 0 for r # 1.

The ng) are selected such that the interior is pairwise
disjoint.

The algorithm computes the sets R; iteratively (see Fig. 5
and Alg. 1, 1. 3 - 7; we use the notation {ng)}q =
{B}l),8§2)7...} to denote a list of elements). First, the
previous set R, = UqBEZ)l is propagated by one time
step according to the dynamical system (6) and ignoring the
obstacles O(t). Second, all colliding states are removed from
the propagated set. The resulting set is overapproximated by
a set with representation (7). Third, the new base sets ng)
are stored as nodes in a graph G. An edge is inserted into G
between Bz(l_)l and BES) if one is reachable by the other. Each
of these three steps are explained in the following Sec. IV-A
to Sec. IV-C.

A. Flow of the reachable set ignoring obstacles

Both polytopes ,Pi(z)l,z of each B, are propagated
according to the solution of the LTI system with the over-
approximation (6) and ignoring any obstacles:

o). (f(L At
m{ (l’) 'Umin,m S T S 'Umaa:,:r}
X

se P}%} o Pu,w(At)>
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Algorithm 1

Input: Initial set Xy = UqB(()q), collision detection for axis-
aligned rectangles with F(t).

Output: Graph G with nodes storing {ng)}q fori=1,...,n
time steps.

1: function COMPUTEREACHSET(U,BY)

2 G.INIT(U,B{")

3 for i =1 to n do

4 U,BL?  PROPAGATE(U,B"))

s5: UyB\? | € « OVERAPPROXIMATE(U,B\” \ F (t;))
6 G.UPDATEGRAPH(U,B'?, £)

7 end for

8 return G

9: end function

10: function PROPAGATE(U B(‘”l)
11: for all B\, in {B“”l}q do

12: 73( ) PROPAGATEX(P,? q )

13: 7?(7(1) — PROPAGATEY(P(") )
5 (q)

14: Bi (Pif; X Pi?y)

15: end for

16 return UB\”
17: end function

18: function OVERAPPROXIMATE(Uq[S’fq) \ F(t:))
19: {Rectil')} — DISCRETIZE({prijy(BZ( "
20: {Poly } — MERGE({Rect })

21: {Rect,(, b~ PARTITION({POZy })

22: {Rect( } SPLIT({Rectp H
23: &+ OVERLAP({RectE }s {prOJwy(Bg'))})
24: for all Rect(l) in {Rect(l)}l do

25: B « cREATEBASESET(Rect, {B} 1 1)ce)
26: end for
27: return U,B\?Y, £

28: end function

and similarly for the y- d1rect10n (Algorlthm 1 Steps 12-13).
The propagated set U, B (@) (P(q ><'PZ y ) may intersect
with the set of forbidden states F(¢;), and Bl

with each other.

may overlap

B. Overapproximation of the reachable set considering obsta-
cles

In order to consider obstacles and obtain an R; with the set
representation (7) for the next time step, the forbidden states
are removed from Uqu‘I) and the set is overapproximated such
that:

Ri = UBYY 2 (U,BD\ F(t:)) ®)

where Bl(q) are of the form (7).
We create this set R, by partitioning the projection of
\]-' (t;) in the position domain (see Fig. 5) and assign
an overapprox1mat10n of the velocity region to each subset of
the partition.

2

Fig. 6. Partitioning of an orthogonal polygon into rectangles.

a) Discretize and merge: The merge step computes the
union of the projection of {BEQ)}q in the position domain.
The boundaries in the position domain are axis-aligned rect-
angles (Algorithm 1 Step 19). We denote these rectangles by
Rectg). The union of the rectangles are orthogonal polygons
(Algorithm 1 Step 20). The computation of the polygons is
related to Klee’s measure problem and can be done efficiently
using a sweep line algorithm and a segment tree [28]. In
general, the coordinates of the vertices of the polygon are
real numbers. Thus, the calculation would yield orthogonal
polygons with a large number of corners even for slightly
displaced edges. Therefore we discretize the boundary by
enlarging the rectangles to a grid with segment length £, in
advance:

(q)
min(pro 73
Rectﬁfgm.{ EoL P |
kg
(q)
max(pro 73
Rectfff)maxx:{ (p ]ix( z)) &,
g

and similarly along the y-direction.

b) Fartition: The orthogonal polygons of paragraph b)
are split into axis-aligned rectangles (Algorithm 1 Step 21).
Through a sweep line algorithm the polygons are cut at each
vertical edge into a rectangle and the remaining polygon. This
continues until the remaining polygon is fully partitioned into
rectangles (Fig. 6).

c) Collision detection and splitting: So far, workspace
obstacles have been ignored. In this step (Algorithm 1
Step 22), each axis-aligned rectangle is split into two equally
sized rectangles if it intersects an obstacle. The split is done
by cutting the axis-aligned rectangle along the middle x- or y-
coordinate depending on which one is longer. This is repeated
until each rectangle is collision free or it collides and its
diameter is less than the radius of the occupied region of the
vehicle A(s(t)) (cf. Sec. II-B). In the latter case, all states
lying in the axis-aligned rectangle intersect an obstacle, and
the states can be excluded. The set of computed Rectg') covers
the projection of the desired set (8):

proj,., (UBY \ F(t)) € (U Reat®) .

d) Overlap: In order to extend the two-dimensional set
U, Rect'? of reachable positi -di i
q s positions to a four-dimensional set
with velocity information, it is determined which Rectgl) is
reachable by which ng). The reachable pairs (I, q) are stored
in the set £.
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Fig. 7. Relationship between ng) of different time steps.

e) Create new base sets: For each Rectgl) a set Bgl) =
771-(,2 X ’Pi(z with an overapproximation of the reachable veloc-

ities is created (Algorithm 1 Step 25). The polytopes 7?1-(2 and

PZ.(Z are constructed from the convex hull of the propagated

polytopes of all parent B’Z(k) intersected with the spatial bounds
of the axis-aligned rectangle Rectgl):

791.(’2 =convexhull U (751(};) ﬂ

(I,k)e&

{ <§> ’ ReCtiI,)min xSTS Rectg{)max x}) ) .

The union of the polytopes from the previous time step is in
general not convex. We use the convex hull to restore convex-
ity. Similarly, the polytope for the y-direction is assigned.

C. Reachability between base sets of succeeding time steps

Usually not all B§21 can reach all BE') in two succeeding
time steps. We express the reachability between sets Bgf)l and
BEZ) through a graph G (see Fig. 7). Each node in G contains
one set B. An edge is added between two nodes if one can
reach the other in one time step (l. 6).

V. MULTIPLE RUNS TO REFINE DRIVABLE AREA

In Alg. 1, the reachable set at each time step is constructed
from the result of the previous time step. This corresponds to
an overapproximation of reach(t; Xy) (cf. (1)) which neglects
information about subsequent steps. For the anticipated reach-
able set reach,,(t; Xp,T), it is additionally required that
there is a trajectory which continues each state until time 7T’
without entering F. This property is difficult to check because
it leads again to a reachability analysis.

Instead we use two approaches to tighten the overapprox-
imation of reach,,;: i) we remove ng) if it does not have
any descendant in G and ¢ is not the last time step (there are

no descendants in the last step) and ii), we calculate addi-
tional constraints to apply the simplified concept of inevitable
collision states from Sec. III-B.

The first approach can be readily implemented on the sets
{B},,... {B'”,},. The second approach is explained in
the following. For each time step we construct an axis-aligned
rectangle Rect{ in position domain which must be passed
by all trajectories. The rectangle constraints RectiC:l_mm are
constructed by running Alg. 1 once and calculate the bbunding
box of {projwy(ng))}q at each time ¢;. In Sec. III-B it is
shown for the one-dimensional case that given a position
interval, which must be passed at time ¢;, the set of possible
initial states at some time ¢ < ¢; is restricted. We apply the
same technique here. If the state along the x- or y- direction
cannot reach either the x- or y- interval of the axis-aligned
rectangle of any Rectic in subsequent time steps, it is removed.

The propagation step of Alg. 1 is extended to exclude all
these states:

P — ({ ((1) Af) s|s e 731@1@} @m,x(m))
ﬂ { (z) |Umin,x <z < Umazx,x }

M

where I; ;. denotes the interval of RectjC along the x-axis. The
propagation along the y-direction is extended similarly.

In some cases a goal region is provided by a high-level
planner, e.g. an area corresponding to a selected lane at some
time t,, = 1. The reach,,; can be used to narrow down the
set of initial states which possibly can reach this goal region.
After a first run, all Bﬁlq) which intersect the goal region are
selected. All of their ancestors up to initial time ¢ are selected.
For this subset of {B1},...,{B,} the boundary boxes are
calculated and used as constraints for a second run of the
algorithm as described above.

-

Il
.

J

VI. EXPERIMENTS AND EVALUATION
A. Identical dynamical constraints in x- and y-direction

As a first example we consider the scenario shown in Fig. 8.
Two cars A and B are passing each other on two separate lanes
in opposite direction. The ego vehicle drives behind car A.

The parameters to compute the drivable area can be chosen
depending on the considered application. For emergency
situations high acceleration bounds shall be selected. Lower
values can be used to compute a bound of a comfortable
drivable area. The following parameters are used for the ego
vehicle in this examples:

time step At 0.15s
absolute maximum acceleration d,,z.0/y | 10.03z
minimum speed Vyin,a/y —-30.0%
maximum speed V40 2 /y 30.0%
grid size kg 0.5m
radius of vehicle 0.9m
time horizon T' 3.0s
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initial scenario

ego car car A

: 0.90 sec of 3.00 sec

time: 1.50 sec of 3.00 sec

: 1.80 sec of 3.00 sec

overtaking

Fig. 8. Drivable area at different time steps in the overtaking scenario.

We suppose that a prediction of car A and car B for the
given time horizon is provided. In this example, a prediction of
the occupied region is based on the following assumptions [29]
that i) each car stays in the lane and ii) each car may accelerate
or brake with 10.03; in longitudinal direction, if the speed is
below some parameterized speed vs. Above v, acceleration is
inversely proportional to speed, up to a maximum speed Up,x.
We emphasize that the prediction is not part of the presented
algorithm and is used here only for the sake of the example.
Any prediction that provides a collision detection with axis-
aligned rectangles at any given point in time can be used in
combination with the presented algorithm.

Fig. 8 shows the reachable set at different points in time. The
two dark regions are those forbidden due to the prediction of
the other two cars. The boundary of the street is modeled using

min. speed x-axis

max. speed x-axis

min. speed y-axis

max. speed y-axis

Fig. 9. Boundaries of the reachable velocities at time step 1.5 s of the
overtaking scenario.

first run

Rectic constraints from first run

== P

il \
Rect§ Rect§

Fig. 10. Refinement of the drivable area of the overtaking maneuver after a
second run of the algorithm.

I
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oriented rectangles (not shown in the figure). The evolution
of the reachable set shows that two maneuvers are implicitly
covered—braking and overtaking. The total number of sets
B is 1447. The computation takes approx. 75ms for the 3.0s
time horizon in a single-threaded C++ implementation on a
2.6 GHz Core i5 (I5-4288U).

The calculated set is 5-dimensional (x,,y,y,t). Fig. 9
shows the covered velocity region at time step 1.5 sec. To
simplify the plot, only the maximum and minimum speed for
each B in both directions are shown.

In a further step, we select the goal region to be the area
ahead of the overtaken car and run the algorithm again for a
refinement (cf. Sec. V). Fig. 10 shows the improvement after
the second run of the algorithm. The region shown for the first
run are all 53,, of the last time step lying in the goal region and
all their ancestors. For the second run, the bounding boxes of
each time step are used to construct constraints. This tightens
the reachable set, particularly in the early time steps. There,
a larger number of subsequent constraints apply which shrink
the area more strongly.

The information gained by the calculated reachable set
might be used for a subsequent trajectory planner. For ex-
ample, the narrow passage during overtaking can be easily
identified. Since any trajectory must lie within the determined
regions, intermediate goal regions at given time steps can be
constructed for a planning algorithm.

B. Different dynamical constraints in lateral and longitudinal
direction

At higher speeds, for example on highways, it is often
reasonable to consider the lateral and longitudinal direction
separately. On curved roads we choose a coordinate system,
which aligns along the center of the road [30]. The longitudinal
positions are located along the arc length of the curved road
center, the lateral position is given along the normal vector of
the road center at a given longitudinal position. This makes it
possible to map a Cartesian coordinate system to the curved
road. In this example, the reachable set of lateral-longitudinal
position and speeds is determined on a part of a highway as
shown in Fig. 11. The cars’ future positions are predicted using
the assumption that i) each car stays in the lane and ii) each
car brakes. A safety margin is added behind and in front of all
cars. Again, any prediction may be used as long it provides
collision checks with axis-aligned rectangles at a given point
in time.

The following parameters are chosen for the ego vehicle in
this examples:

time step At 0.15s
time horizon T’ 3.0s
absolute maximum acceleration (long.) amaz,q« 10.0?2
minimum speed (Iong.) Vmin,z 0.0
maximum speed (long.) Vpmaz,» 45.0%
absolute maximum acceleration (lat.) ap,qaq,y 3.0?2
minimum speed (lat.) Vpin,y -3.0%
maximum speed (1at.) Vmaz,y +3.0%
grid size (lat. and long.) kg 0.5m
radius of vehicle 0.9m

(a)

®

time

E.; Il_f“m (€3]
== =y

()

time: 2.10 sec of 3.00 sec
!

time: 2.55 sec of 3.00 sec
!

time: 3.00 sec of 3.00 sec
!

Fig. 11. Reachable set for the same scenario (a) with two different initial
longitudinal speeds of 35 m/s (b) and 43 m/s (d). Underapproximation of the
reachable set through a randomly sampled tree of trajectories (c,e-i).
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We compare the overapproximation of the reachable set
with a strict underapproximation. The underapproximation is
calculated using a rapidly-exploring random tree [31]. The
states are connected using an analytical solution for the
reachable set of the speed and acceleration bounded system
[32]. The exact drivable area of our model is therefore larger
than the one computed by sampling, but smaller than the
one computed by our approximative set-based method. The
distance of the samples to the border of the reachable set
indicates the maximum overapproximation.

Two different initial states for the host vehicle are simulated.
These two scenarios show the impact of the initial state on
the calculated reachable set. In the first scenario, the initial
longitudinal speed is 35 m/s. In the second scenario, the initial
longitudinal speed is 43 m/s. The initial position and lateral
speed are the same in both cases. The total number of sets
B is 1074 and 362, respectively. The computation times are
50ms and 20ms. The slower initial speed shows a clearly larger
bound of maneuverability region. The reachable set of the
faster initial speed vanishes at prediction time 3.0 sec. Since
all evasive maneuvers must lie in the reachable set, it proves
that in this case and in the given traffic prediction, no such
maneuver exists. Possibly, new measures for risk assessment
can be constructed from properties of the reachable set, for
example its volume or its change of size over different time
steps.

C. Computation with different prediction models

In this example, we show that our approach can be easily
combined with different traffic prediction methods. The driv-
able area for two traffic predictions is computed and both areas
are compared. One prediction covers all possible occupancies
of surrounding traffic with formal guarantees [29], the second
prediction uses a constant velocity model. In this scenario,
the ego vehicle and three surrounding vehicles drive on a
highway. The parameters for the drivable area computation are
chosen as in the previous Sec. VI-B. The prediction of each
traffic participant following the method in [29] is shown in
Fig. 12 (a)-(c). The computed drivable area of the ego vehicle
is shown in Fig. 12 (d). Since in this prediction uncertain
behavior is considered by enlarging the occupied region, the
drivable area is reduced compared to a less conservative
prediction. For example, car A can either stay in its current
lane or merge into the middle lane and block the ego vehicle.
Therefore, the ego vehicle is forced to merge into the right
lane as shown by the computed drivable area in Fig. 12 (d).
In contrast, the constant velocity prediction as shown in Fig. 13
leaves considerably more space for the ego vehicle. The cars
A, B and C stay in their lanes and may not accelerate or brake.
Thus, the ego vehicle can either stay in its lane or merge
into the left or right lane. The computed drivable area can
immediately show the influence of different prediction models
on the feasibility of possible maneuvers of the ego vehicle.

VII. CONCLUSION

We present a novel approach for efficiently computing the
drivable area of road vehicles with formal guarantees. Our

10

=TI

(b) Prediction of car B.

(D)

BT,

(c) Prediction of car C.

(d) Computed drivable area of the ego vehicle.

Fig. 12. Conservative prediction of the three surrounding vehicles (a)-(c).
Computed drivable area of the ego vehicle (d).

(b) Computed drivable area of the ego vehicle.

Fig. 13. Constant velocity prediction of the three surrounding vehicles (a).
Computed drivable area of the ego vehicle (b).

approach opens up new application areas that were previously
impossible. First we can prune the search space of possible
trajectories since we can guarantee that certain combinations
of positions and velocities are impossible and will result in a
crash or the traversal of road boundaries—this would not be
possible with non-formal results. Second, we can determine
with certainty that no action exists for avoiding a collision
and thus can appropriately trigger collision mitigation systems.
Third, the size of the drivable area can be used to determine
the risk of a traffic situation, e.g. by analyzing the drivable
area over time and determining whether times exist for which
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the solution space is tight, which corresponds to a dangerous
situation. Another possibility to assess the risk of a situation
is to compute the drivable area for an uncertain prediction
with probabilistic occupancies with different level sets of
probability to determine at which level a collision cannot be
avoided anymore.

Our method is particularly applicable to problems in dy-
namic environments with a short planning horizon of a few
seconds. For these short time horizons, the motion of other
vehicles can be predicted reasonably. Our set representation
and the construction of our algorithm are tailored towards
an efficient approach despite the necessity to operate in five
dimensions. We have demonstrated in this paper that our
approach is fast enough to be embedded in automated vehicles.
In the future, we plan to exploit the benefits of this approach
for efficient trajectory planning. In particular our approach is
able to detect narrow passages between obstacles which are
usually difficult to find by trajectory planners.

APPENDIX A
DERIVATION OF THE APPROXIMATIVE MINIMAL
BACKWARD REACHABLE SET

Consider the one-dimensional motion with position con-
straints (4). We denote the position x at time ¢; for an initial
state (x;,4;)7 at time ¢; and an input u(t) by

t; ot
zj(uyz, ) =z + & - (4 — ;) +/ / u(r)drdt. (9)
t; Jt,

If we set the forbidden region to the complement of the
position constraints F(t;) := I, for tg, ..., t,, we obtain from

(2):
(x4, ;)T € reach,,, = Ju, xj(u; 5, %) € [Lmin, Ljmaz)-

If a state only reaches the forbidden region F for any input
u, it is an ICS and does not belong to reach,:

Vu, xj(u; i, &) & [Lmin, Ljmaz] = (xi,ii)T ¢ reach,,.

(10)

We denote by ZCS an underapproximation of the ICS set.
One approximate ZCS deduced from (10) is the set of all states
(x4, ;) which are accelerated by +a,,q, but their position at
t; i8S < I min, and all states which are accelerated by —a.q2
but their position at t; is > I maz:

ICS(I;, tiyty) = {(ws, )" | 2j(+Amaz: Tis &) < Ljmin
\ xj(*am(mt; Ty, 'T1) > Ij,max}-

Y

The complement set ZCS is obtained from (11) and (9):
ICS(Z, ti, t]‘) = {(l‘i, j}i)T ‘

1 2
-1 *Atij xl S _Ij,min,m +1§amamA§ij
1 Atij T Ij,ma:c,m + §amamAti]‘

with Atij = tj — ti.

APPENDIX B
COMPUTATIONAL COMPLEXITY

This section gives a brief summary of the algorithms we
use for the geometric calculations in our implementation. The
number of newly created sets B; in each iteration generally
depends on the obstacle set O(t) and cannot be predicted. We
therefore give the complexity in terms of b, which denotes the
maximum number of elements B; of all iterations. Similarly,
we use the maximum number p of vertices of P; in all
iterations. The number of time steps is 7.

z/y

Two polytope representations are distinguished. The V-
representation of a polytope through the convex hull of a
set of points, and the H-representation through the bounded
intersection of a set of halfspaces:

Piwyy  V-representation  p points
Pu,w/y V-Tepresentation  u points
Ic$s ‘H-representation  2n halfspaces

The points in V-representation are stored either in counter-
clockwise order or lexicographically in ascending x-direction.

The complexity of the operations involving convex 2-
dimensional polytopes is:

a) Linear mapping et P, /y° O(p), result keeps counter-
clockwise point order of P, /, for the particular A.

b) Minkowski sum Py, © Py: O(p + u), if both P,/
and R, are sorted in counter-clockwise order [33, Theorem
3.10].

¢) Intersection Py, N (N'_oZCS(I;)): O(p + 2n), if
N7_oZCS is given in V-representation and both are ordered

counter-clockwise. The conversion from H-representation

takes O(2nlog 2n) [33, Corollary 3.10].

d) Convex hull of Us_,P\? : O(bplogbp) and, if all
points are sorted lexicographically, O(bp) [33, Theorem 1.1].
The sorting step can be improved if each Piq/)y is ordered

counter-clockwise. The points of each Pi‘j)y can be distributed

into two lists: one in lexicographically ascending order, and
one in descending order in O(p). Then, all 2n sorted lists are
merged using a k-way merge in O(bplog2b) [34, Problem
9.5-9].

Next, we consider the complexity of the operations in-
volving axis-aligned rectangles and orthogonal polygons. The
number of edges of polygons is denoted e. For orthogonal
polygons the number of horizontal edges equals the number
of vertical edges e, = e/2.

e) Fartition orthogonal polygons into axis-aligned rect-
angles: O(e,loge,). We use a sweep line algorithm that cuts
parts of the polygon at vertical edges. The active set of vertical
edges is kept in an interval tree. It can be shown that the
number b, of newly created axis-aligned rectangles in this
partition is 2b,, > e,, > b,,. By assumption it holds that b > b,,.

f) Merge axis-aligned rectangles to orthogonal polygons:
O(blogb + elog(b?/e)) [28].

g) Overlap between two sets of axis-aligned rectangles:

O(b?), if all rectangles of one set overlap with all rectangles
of the other.
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