
Cost-Optimal Composition Synthesis for Modular Robots

Esra Icer and Matthias Althoff

Abstract— The ongoing trend of increasing product indi-
vidualization requires more flexible solutions in production
systems. Modular robots address this demand since they can
be assembled in different ways from a given set of modules.
One of the reasons why modular robots are not yet successfully
introduced in the market is that it is not clear how to assemble
modules such that the robot will be able to achieve a specific
task optimally, especially in the presence of obstacles. This
problem is challenging since a huge combination of possible
assemblies exists and one has to find the optimal trajectory
for each of them. We address exactly this issue not by finding
optimal solutions for each assembly, but instead pruning the
search space: First, we remove assemblies that cannot achieve
the task before starting the process of finding optimal trajec-
tories. Second, we exploit the iterative nature of numerical
optimization routines by removing assemblies that are not
promising in each iteration. We demonstrate that our approach
is clearly better compared to finding assemblies by optimizing
trajectories for each assembly individually.

I. INTRODUCTION

Adapting industrial robots to changing tasks or environ-
ments is difficult although they are widely used due to their
efficiency, robustness, and accuracy. Modular robot manip-
ulators consisting of several interchangeable, pre-designed
joint modules and link modules which enable us to configure
various manipulators for different tasks from a set of given
modules are designed as a solution to this problem. The
unique properties of modular robots such as flexibility, easy
modification, easy maintenance and high versatility make
them a promising technology for future flexible manufac-
turing scenarios. One of the main challenges facing modular
robots is the problem of determining the optimal composition
of given modules for given tasks. We consider that the task is
to carry a given payload from an initial pose to a final pose
in a cost-optimal way without colliding with any obstacles
in the environment. In this work, we propose a time-efficient
algorithm for selecting the optimal module combination from
a set of given modules considering kinematics and dynamics
so that the predefined task is fulfilled.

Selecting the optimal composition of modular robot ma-
nipulators has been researched for the last 30 years. We
review previous works on task-based configuration synthesis
of modular robots and the selection of the optimal configura-
tion among the possible compositions considering the desired
objective function. Assembly synthesis methods for modular
robots which are based on assembly matrices that have
the information about the module type, module length and
connection type are presented in [1]–[3]. A genetic algorithm
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(GA) based synthesis method for modular robots to obtain
the optimal composition for a given task regarding modules’
physical properties is proposed in [4]. A two-level synthesis
method for non-redundant manipulators consisting of links
with adjustable lengths and rotational joints is presented in
[5]. As a first step of that work, the kinematic composition
of the robot is determined considering the given task and
then a GA is used to obtain the optimal lengths of the link
modules for the pre-defined composition [5]. Another two-
level GA-based method to obtain the optimal composition
at the given discrete poses is introduced in [6]. The top
level GA generates an assembly from the given modules and
the lower level GA optimizes joint positions for the task in
an environment with static obstacles. A GA-based modular
robot composition synthesis method which obtains optimal
kinematic configurations for task-based, fault-tolerant ma-
nipulators is proposed in [7]. In [8], a simulated annealing-
based optimal composition synthesis method only regarding
the kinematic constraints is presented. A concurrent optimal
design approach, which mainly depends on grouping the
variables to reduce the number of independent variables in
the optimization process, is proposed in [9]. A progressive
task-based design approach for non-modular manipulators is
proposed in [10], which divides the design procedure into
kinematic design, planning, and kinematic control. All pre-
viously mentioned works penalize unfeasible compositions
during the optimization process only considering the initial
and the goal positions. In our previous work [11], we propose
a composition synthesis method based on the elimination of
the unfeasible compositions not only taking into account the
initial and the goal feasible positions but also considering if
the given task is achievable or not. All the aforementioned
methods consider only the kinematics to obtain the optimal
solution.

To optimally solve the predefined task, the dynamics of
modular robots should also be taken into account. However,
classical dynamic model generation techniques are for fixed
robot structures and it is not efficient to generate the dynamic
model for each individual composition. As an affordable so-
lution to this problem, an automated design method consider-
ing the kinematic and the dynamic model for modular robots,
which is also applicable to parallel robots, is presented in
[12]. Then, given joint modules are assembled regarding the
given task specifications and then link modules are designed
for the previously defined assembly. Another technique to
automatically generate dynamic models of modular robots
based on the theory of Lie algebras is proposed in [13].
In [14], all kinematic and dynamic parameters are stored in
each module and the dynamics of the desired composition is



generated automatically. In this paper, we use the Newton-
Euler method as in [14] to generate the dynamics because
of its simplicity.

In addition to the composition synthesis method and
kinematic and dynamic model generation, determination of
how to achieve the given task is also a problem for modular
manipulators. Since there is a large number of different
manipulators to consider, a fast trajectory planning algorithm
is required to achieve the given task. There are two main
approaches for optimal collision-free trajectory planning
problems: i) obtaining the cost-optimal trajectory following
the pre-defined path [15], [16], and ii) using optimal control
methods considering the initial and the goal positions [17],
[18]. The methods in the first category may fail to find the
optimal path and non-collision is not guaranteed because of
the possibility of collision between pre-determined positions.
Direct methods for trajectory optimization, which are in
the second category, are based on the transformation of
the optimal control problem into a nonlinear programming
(NLP) problem. They are detailed in [17] and it is shown
that the multiple direct shooting method is one of the
best methods to obtain the optimal trajectory for a robot
arm considering the obstacles in the environment. Another
direct optimal control method is used in [18] to obtain
the time-optimal trajectory for manipulators considering
collision avoidance from static and dynamic obstacles as
state constraints. All previously mentioned methods have
been applied to fixed-structure robots. In this paper, we
introduce an algorithm to obtain the optimal composition
for a given task considering a set of given modules. To
the best knowledge of the authors, this is the first work
which determines the optimal composition considering how
to achieve the given task, taking into account the kinematic
and the dynamic constraints. Our proposed approach differs
from the previously proposed methods in i) we automatically
generate kinematic model and dynamic model for feasible
compositions, ii) we find an individual solution for each
feasible composition considering kinematic and dynamic task
requirements, and iii) we propose a composition elimination
method which is mainly based on the elimination of less-
likely compositions.

This paper is organized as follows: Sec. II defines the
combinatorial configuration synthesis problem for modular
robots. Sec. III explains our configuration synthesis method,
followed by implementation details in Sec. IV. Finally,
conclusions are drawn in Sec. V.

II. PROBLEM STATEMENT

We consider reconfigurable, serially-connected modular
robot manipulators with n degrees of freedom (DOFs), the
kinematics of which are determined uniquely by a vector
q ∈ Rn of joint positions where angles stand for rotational
joints and translations stand for prismatic joints. Throughout
this paper, we assume that i) we consider four different types
of modules which are bases, joints, links and end-effectors,
ii) all modules have only one input and one output connection
port, and iii) all manipulators begin with a base module, end
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Fig. 1. The problem of finding the optimal composition for task-based
modular robots.

with an end effector module and there are only joint and
link modules between the base and end effector modules.
These assumptions are fairly realistic for robots used in
industry for different scenarios. Without loss of generality,
the variable k ∈ {1, . . . , N} uniquely refers to a possible
composition and the variable N refers to the maximum
number of possible compositions without considering task-
defined constraints. The task requirements are constrained by
the kinematic model of the robot composition, the dynamic
model of the robot composition and static obstacles in the
environment. The space of the environment, which contains
the robot and obstacles, is denoted by W ⊂ R3 and we call
the subset of space occupied by the robot as A ⊂ W . The
occupancy of the robot for a specific joint position vector
q is indicated by A(q) ⊂ W and the variable A(qk) ⊂ W
refers to the space occupied by the kth composition. Arbitrary
geometric shapes represent the obstacles in R3 and the union
of all obstacles is denoted by O =

⋃
j Oj . For the sake of

simplicity, each obstacle in the environment is considered
to be enclosed with a sphere. Obstacle-free space in the
environment is defined as F =W\O. The time variable is
t ∈ [0, tf ], where tf is the final time to reach the goal. The
vector q(t) maps the time t to the joint position vector; initial
time is assumed to be zero. The forward kinematic function
from the joint position vector q(t) to the end effector position
is denoted by f(q(t)). We define the all path planning
problems starting from a given initial position ps, defined
as ps = f(q(0)), and end at a given position pg , defined as
pg = f(q(tf )).

The dynamic model of the modular robot is obtained from
(1), where M(q) ∈ Rn×n is the symmetric and definite
mass matrix, C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal
matrix, g(q) ∈ Rn is the vector of gravity term, τ ∈ Rn is
the vector of actuation forces/torques, q̇(t) is the vector of
joint velocity and q̈(t) is the vector of joint acceleration (see



[19]).

τ (t) = M(q(t))q̈(t) + C(q(t), q̇(t)) q̇(t) + g(q(t)) (1)

The set of module combinations, K, that fulfill a given task,
is described as:

K = {k | 1 ≤ k ≤ N ∧ ∀t ∈ [0, tf,k] ∃ qk(·) :
∧ A(qk(t)) ∈ F
∧ qk(t) ∈ [qk,min, qk,max]

∧ q̇k(t) ∈ [q̇k,min, q̇k,max]

∧ |τk(qk(t))| ≤ τk,max

∧ fk(qk(0)) = ps ∧ fk(qk(tf,k)) = pg}.

(2)

The optimal composition, which fulfills the given task
considering the minimum cost, is obtained from (3). The
composition that gives the cost-optimal solution is denoted
by κ and the optimal cost value for the kth composition is
denoted by ck:

κ = argmin
k∈K

ck. (3)

III. PROPOSED METHOD

Increasing the number of the modules and changing their
assemblies, exponentially increases the design space of possi-
ble compositions, which makes the task-based configuration
synthesis problem complex and computationally expensive.
In our previous work [11], we propose a composition syn-
thesis method which aims to reduce the computational time
by eliminating unfeasible compositions via required tests to
achieve the given task. These tests go from simpler ones to
more complicated and time-consuming ones and only con-
sider kinematic task requirements. In addition to our previous
work, we consider dynamics to determine the cost-optimal
composition in this paper. Throughout the paper, the task
is defined as carrying the pre-defined payload from a given
initial position to a given goal position in a cost-optimal
way without colliding with any obstacles in the environment
(see Fig. 1). The schematic representation of our proposed
method is shown in Fig. 2, which consists of five steps:
A generation of all possible compositions, B generation
of feasible compositions considering the initial and the goal
positions, C generation of the cost-optimal solutions for the
remaining compositions from B , D elimination of the cost-
inefficient compositions in each iteration of the optimization

process, and E selection of the cost-optimal composition.
The first two steps of the proposed method, A and B , are
detailed in [11]. For the following steps, the robot dynamics
is considered and compositions which are unlikely to be the
optimal solution are eliminated to reduce the computational
time while obtaining the optimal composition regarding the
desired objective function.

C Generation of the Cost-Optimal Trajectories

The general form of our optimal control problem for
ordinary differential equations (ODEs) in the Lagrangian
form is defined as in (4), where x(·) is the vector of
state variables, defined as x = (q; q̇) where x ∈ R2n, u(·)
is the vector of control variables which are defined as
the torques/forces acting on the joints, where u = τ and
u ∈ Rn, and L(x(t),u(t)) is the desired objective function
as in [17]. The robot dynamics is transformed from (4)
to the state space form ẋ = g(xk(t),uk(t)). Point to point
motion is constrained by x(0) = x0 and x(tf ) = xf where
x0 and xf indicate the initial and the final state variables
obtained from B , respectively. The joint limits and collision
avoidance constraints are defined as inequality constraints in
the function h(x(t),u(t)).

minimize
x(·),u(·),tf

∫ tf

0

L(x(t),u(t)) dt (4)

subject to

x(0)− x0 = 0, (initial constraints)
ẋ(t)− g(x(t),u(t)) = 0, (ODE model)
h(x(t),u(t)) ≥ 0, (path constraints)
x(tf )− xf = 0. (terminal constraints)

Some of the most used trajectory planning methods are
direct methods which convert the infinite optimal control
problem in (4) into a finite dimensional NLP problem [20].
When compared to other methods, direct methods have a
good balance of computational efficiency and accuracy [17].
As a solution to our problem, we use the direct multiple
shooting method due to its robustness, fast convergence, easy
parallelizability and applicability for unstable systems [17].
After obtaining the set of feasible compositions at the initial
and the goal positions, we implement the direct multiple
shooting method for finding optimal compositions, which
passed the tests in B . For the direct multiple shooting
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method, the state variables and the control variables are
discretized into Nint pieces between the initial and the goal
positions. To simplify the formula, each discretized control
value is defined as {∀t : u(tint) = bm, tint ∈ [tm, tm+1]}.
The variable m is defined as m ∈ {0, . . . , Nint−1}. The
ODE solver is individually used in each tint and it is
considered that each interval starts with an artificial value
sm, which is defined as xm(tm) = sm. The solutions of
the ODE solver are trajectory pieces xm(tm; sm,bm), where
sm+1 = xm(tm+1; sm,bm) must be satisfied for all times.

We reformulate the optimal control problem for modular
robots in (5) to obtain the cost-optimal trajectory for the
kth composition with the following definitions: lk,m is the
discretized objective function for the kth composition which
is in the interval [tk,m, tk,m+1]. The variables xk,max and
xk,min are the maximum and the minimum state variables
for the kth composition, uk,max and uk,min are the maximum
and the minimum control variables for the kth composition
and rj is the radius of the jth obstacle. Furthermore, the
occupancy set of the robot is projected onto a function dk(t),
which represents the distance between the robot components
and the jth obstacle at time t.

minimize
sk,bk

Nint−1∑
m=0

lk,m(sk,m,bk,m) (5)

subject to

sk,0 − xk,0 = 0, (initial constraints)
sk,m+1 − xk,m(tk,m+1; sk,m,bk,m) = 0,(ODE model)
h(sk,m,bk,m) ≥ 0, (path constraints)
sk,Nint

− xk,f = 0 (terminal constraints)

where

h(sk,m,bk,m)=


xk,max − sk,m
sk,m − xk,min

uk,max − bk,m

bk,m − uk,min

dk(t)− rj

 .

Defining the optimal trajectory, collision avoidance is
considered as an inequality constraint in the optimization
problem. We apply task space collision avoidance algorithms
due to the complexity of mapping the environment onto each
composition’s configuration space. To implement the task
space collision avoidance, task space coordinates of each
module are obtained for each time interval. This process is
realized by using the transformation matrices of the Denavit
and Hartenberg (D-H) frames and an additional translation
for the ith link which is defined as ni in [14]. All link
modules are modeled as lines, and base module, all joint
modules and end effector modules are modeled as points.
The thickness of each module is added to the radii of
the obstacles while checking the collisions between the

modules and the obstacles in the environment. Although
this assumption provides larger obstacles than real ones, it
dramatically reduces the computational time when compared
to other collision checking methods.

D Elimination of the Cost-Inefficient Compositions in Each
Iteration

Implementation of the optimal control method to obtain
the cost-optimal trajectories for all compositions, which
fulfill the tests in B , is time-consuming. As a solution to this
problem, we propose a composition elimination method for
modular robots. Based on the proposed method, all feasible
compositions are considered for the initial iterations and the
multiple direct shooting method is applied to all of them.
We roughly optimize all feasible compositions in parallel
constraining the maximum number of iterations and record
the obtained cost values in each iteration. Starting from the
second iteration, we compare the change in cost values for
each composition with the change in cost values for the other
compositions with the formula ck,l−cmin,l

ck,l
, where ck,l is the

cost value of the kth composition in the lth iteration and
cmin,l is the minimum cost value among all compositions
in the lth iteration. In case the obtained difference rate is
greater than a specific value, we discard the composition. We
repeat this procedure for every composition in each iteration
and thus eliminate the compositions less likely to be the
optimal until we find the optimal cost value for the remaining
compositions.

E Selection of the Cost-Optimal Composition

To obtain the cost-optimal module composition, we com-
pare the results remaining from the previous section. After
the optimization procedure ends, we may have several re-
maining possible solutions. To find the optimal composition,
we consider the cost values and select the composition with
the minimum cost value as the optimal solution as shown in
(3).

IV. NUMERICAL EXPERIMENTS

To demonstrate the applicability of our proposed algo-
rithm, we implement it in MATLAB R2016a on an Intelr

CoreTM i7 processor with 2.30 GHz and 16 GB of memory.
We use one type of fixed base module, two types of one
DOF joint modules (rotational (R) and prismatic (P)), three
types of zero DOF link modules (α1 = 90◦, α2 = 0◦,
and α3 = 90◦) and two types of one DOF end effector
modules (rotational (R) and prismatic (P)), see Fig. 3. The
required properties for each module are given in Tab. I.
For all compositions, we consider serially-connected modular
manipulators whose bases are located at (0, 0, 0)T . The task
is defined as carrying the given payload from the given
initial position to the given goal position in the shortest
time without colliding with the obstacles in the environment
and without violating the joint limits with the maximum
5-DOFs robot. The payload is given as 50 kg, the initial
and the goal positions are defined as ps = (1.5, 1.5, 2)T

and pg = (−2, −1.2, 0.6)T , respectively. It is assumed that
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there are two static obstacles in the environment whose
center points are defined as p1,O = (1.5, −1.3, 1.1)T and
p2,O = (−1.2, 2.1, 0.8)T . The radii of the obstacles are
given as r1 = 0.3 m and r2 = 0.35 m. Following the as-
sumptions in Sec. II and Sec. III, we generate all possible
module combinations from 2-DOF to 5-DOF: 3108 different
compositions are generated. After generating all possible
compositions, the tests in B are applied to all combinations
and it is seen that only 21 of them are feasible regarding the
initial and the goal positions.

In the next step, multiple shooting is applied to the
remaining compositions from B . Considering that the cost
is defined as the minimum execution time, the objective
function L(xk(t),uk(t)) is set as 1. Limits of each joint
module qmin,max, q̇min,max and τmin,max are forwarded as
lower and upper bounds to the optimization, which are also
given in Tab. I. The initial and the final velocities of each
joint are fixed to zero. As an initial estimate, the trajectories
between the initial and the goal positions are considered
as linear lines for each composition. We use 8 multiple
shooting nodes which are determined by linear interpolation

of the initial and the final state values. Starting from the
initial position, trajectories are generated from integrating the
equation ẋ(t) = g(x(t),u(t)) for each point until the goal
position. The ODEs are solved for each of these points using
ode45 in MATLAB. The continuity condition explained in
C is considered as a nonlinear equality constraint in the
optimization. For the last ODE solution, the last point of
the trajectory generated in the 7th node must be at the goal
position, which is indicated in terminal constraints. To obtain
the robot dynamics, the Newton-Euler equation in (1) is used.
The obstacle avoidance constraints are defined as nonlinear
inequality constraints and all collision possibilities in [11]
are checked for each module.

The optimization process is done in MATLAB Optimiza-
tion ToolboxTM using the fmincon solver for which we
select the interior-point method. All compositions remaining
from B are considered in the first two iterations and then
we compare the results obtained from the iterations for all
different compositions. The values of the state variables, time
value, and control variables are normalized and the tolerances
for them are set as 0.01. We compare the results in each two
iterations and eliminate the compositions in case their cost
values are 50% higher than the best result for the current
simulation. Until reaching the optimal time values for all
remaining compositions, this process is repeated in every
iteration.

After 16 iterations, the optimal time is computed
and only 4 different compositions remain at the end.
Their cost values are compared to each other and
it is seen that the optimal composition achieving
the given task in minimum time is the composition
κ =B - J1 - L3 - J1 - L3 - J1 - L2 - J1 - L1 - E1, which
executes the given task within the minimum time as in
Fig. 4.

We also implement the optimal trajectory generation
method to all compositions achieving the tests in B indi-
vidually. When we compare the total number of iterations
for both methods, it is seen that the computational time for
the proposed method is 35% more efficient when compared
to the brute force method. It is also seen that the time-
optimal composition is the same module composition for
both methods. We also compare the optimized time values

TABLE I
THE MODULE PARAMETERS INVOLVED IN SIMULATION (SEE FIG.3)

l d τ qlimits q̇limits m I r
[m] [m] [Nm] [rad or m] [rad/s or m/s] [kg] [kgm2] [m]

L1 0.75 0.2 - - - 0.05 - -
L2 0.75 0.2 - - - 0.05 - -
L3 0.75 0.2 - - - 0.05 - -
J1 0.25 0.2 100 [-π, π] [−1,1] 1 (2, 2, 0.65) · 10−3 (0, 0, 0)T

J2 0.25 0.2 90 [0, 0.2] [−5,5] 0.9 (2, 2, 0.65) · 10−3 (0, 0, 0.1)T

EE1 0.2 0.2 95 [-π, π] [−1,1] 0.5 (2, 2, 0.65) · 10−3 (0, 0, 0)T

EE2 0.2 0.2 85 [0, 0.1] [−5,5] 0.75 (2, 2, 0.65) · 10−3 (0, 0, 0.025)T



Fig. 4. Changes in the joint angles for the time-optimal composition

of the cost-optimal solution and the most cost-inefficient
composition each composition and it is seen that the cost of
the optimal composition is 45.2% of the most cost-inefficient
composition.

V. CONCLUSION

In this paper, we present a task-based cost-optimal compo-
sition synthesis method for modular manipulators consider-
ing robot kinematics and dynamics. Unfeasible compositions
are eliminated starting from easier tests to more difficult
and more time-consuming ones. After implementing the
kinematic tests, we apply direct multiple shooting to obtain
the cost-optimal trajectories for the remaining compositions.
Implementing the direct multiple shooting method to all
remaining compositions would require significantly more
time. To address this problem, we propose a method which is
mainly based on the elimination of less-likely compositions
considering the obtained cost values after each iteration. As
a result, we decrease the total computational time while
eliminating the compositions with high-cost values when
compared to the other compositions. The results of our
method are compared to results without implementing any
elimination and it is seen that the proposed method is
more time efficient. The main advantages of the proposed
optimal composition synthesis algorithm are: i) it is appli-
cable to different kinds of modules, ii) it avoids repeated
compositions, iii) it considers the kinematics and dynamics,
iv) it generates obstacle-free trajectories for each composition
without violating the task requirements and the limits of the
robots, and v) it provides a faster solution when compared
to finding assemblies by optimizing trajectories for each
assembly individually.
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