
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Spatio-semantic Comparison of 3D City
Models in CityGML using a Graph

Database

Huynh Duc An Son Nguyen

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Spatio-semantic Comparison of 3D City
Models in CityGML using a Graph

Database

Räumlich-semantischer Vergleich von
3D-Stadtmodellen in CityGML mittels

einer Graphdatenbank

Author: Huynh Duc An Son Nguyen
Supervisor: PD Dr. rer. nat. Georg Groh
Advisors: Univ.-Prof. Dr. rer. nat. Thomas H. Kolbe

M. Sc. Zhihang Yao
Submission Date: May 15, 2017

Slightly updated version with spelling and grammatical corrections.

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, May 15, 2017 Huynh Duc An Son Nguyen

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my advisor,
Univ.-Prof. Dr. rer. nat. Thomas H. Kolbe, for his constant guidance and support
throughout the research. Without his excellent academic expertise on the topic, this
work would not have been possible. I am truly grateful for his insights and, especially,
for the many long discussions we had during the research. His lessons were and always
are a delight, and for that I am extremely honoured. Furthermore, I would also like to
express my sincerest appreciation to M. Sc. Zhihang Yao for his continuous support
and encouragement over the course of this thesis. I am wholeheartedly thankful for his
numerous feedbacks and constructive advices. Finally, I would like to thank PD Dr. rer.
nat. Georg Groh for giving me the opportunity to conduct my research.

Abstract

A city may have multiple CityGML documents recorded at different times or surveyed
by different users. To analyse the city’s evolution over a given period of time, as well
as to update or edit the city model without negating modifications made by other
users, it is of utmost importance to first compare, detect and locate spatio-semantic
changes between CityGML datasets. This is however difficult due to the fact that
CityGML elements belong to a complex hierarchical structure containing multi-level
deep associations, which can basically be considered as a graph. Moreover, CityGML
allows multiple syntactic ways to define an object leading to syntactic ambiguities
in the exchange format. Furthermore, CityGML is capable of including not only 3D
urban objects’ graphical appearances but also their semantic properties. Since to date,
no known algorithm is capable of detecting spatio-semantic changes in CityGML
documents, a frequent approach is to replace the older models completely with the
newer ones, which not only costs computational resources, but also loses track of
collaborative and chronological changes. Thus, this research proposes an approach
capable of comparing two arbitrarily large-sized CityGML documents on both semantic
and geometric level. Detected deviations are then attached to their respective sources
and can easily be retrieved on demand. As a result, updating a 3D city model using this
approach is much more efficient as only real changes are committed. To achieve this, the
research employs a graph database as the main data structure for storing and processing
CityGML datasets in three major steps: mapping, matching and updating. The mapping
process transforms input CityGML documents into respective graph representations.
The matching process compares these graphs and attaches edit operations on the fly.
Found changes can then be executed using the Web Feature Service (WFS), the standard
interface for updating geographical features across the web.

iv

Contents

Acknowledgements iv

Abstract v

Acronyms ix

1 Introduction and Motivation 1
1.1 Motivation and Problem Statement . 1
1.2 Research Objectives and Questions . 2
1.3 Methodology . 3
1.4 Application Scenario and Employed Tools 5
1.5 Expected Results . 5
1.6 Outline . 6

2 Theoretical and Methodical Background 7
2.1 City Geography Markup Language (CityGML) 7
2.2 XML Processing . 10

2.2.1 XML Parsing . 10
2.2.2 XML Data Binding . 12

2.3 citygml4j - The Open Source Java API for CityGML 13
2.4 Graph Database in Neo4j . 13

2.4.1 From Relational to Graph Database 13
2.4.2 CityGML in Graph Database . 16
2.4.3 Neo4j Graph Database Management System 16
2.4.4 Graph Structures in Neo4j . 18
2.4.5 Developing in Neo4j . 19

2.5 R-tree Data Structure and Neo4j Spatial 23
2.5.1 R-tree Data Structure . 23
2.5.2 Neo4j Spatial . 26

2.6 Web Feature Service (WFS) . 28
2.6.1 WFS Communications . 28
2.6.2 WFS Operations . 30
2.6.3 WFS for CityGML . 31

v

Contents

3 Mapping 3D City Models in CityGML onto a Graph Database 34
3.1 Reading CityGML Datasets in Java . 37
3.2 Converting Java Objects to Graph Entities 38

3.2.1 Instance-based Approach . 40
3.2.2 Hierarchy-based Approach . 44
3.2.3 Combination of Instance and Hierarchy-based Approach 47

3.3 Connecting Mapped City Objects using XLinks 50
3.3.1 Existence of XLinks in Mapped Graphs 50
3.3.2 Resolving XLinks within the Graph Database 50

3.4 Calculating Minimum Bounding Boxes of Mapped City Objects 52
3.4.1 Reverse-mapping Graphs to Java Objects 53
3.4.2 Calculating Minimum Bounding Boxes of Java Objects 53

4 Matching 3D City Models in CityGML using a Graph Database 54
4.1 Comparing Node Properties . 54
4.2 Matching Node Relationships . 56

4.2.1 Matching Geometry of Points . 58
4.2.2 Matching Geometry of Line Segments 60
4.2.3 Matching Geometry of Rings . 62
4.2.4 Matching Geometry of Polygons 68
4.2.5 Matching Geometry of Solids . 70
4.2.6 Matching Geometry of Minimum Bounding Boxes 70

4.3 Spatial Matching Strategies . 74
4.3.1 Matching in a Grid Layout . 74
4.3.2 Matching in an R-tree . 82

5 Updating 3D City Models in CityGML using a Graph Database 85
5.1 Edit Operations . 85

5.1.1 Class Model . 85
5.1.2 Practical Example . 86

5.2 Updating Building Objects using WFS . 91
5.2.1 WFS Transactions on Building Objects 93
5.2.2 WFS Transactions on Thematic Properties 95
5.2.3 WFS Transactions on Geometric Properties 97
5.2.4 WFS Transactions on Complex Properties 99

6 Performance Optimization 104
6.1 Memory Tuning and Storage Selections 104

6.1.1 Memory Tuning . 104

vi

Contents

6.1.2 Storage Selections . 106
6.2 Batch Transaction Processing . 107
6.3 Concurrent Processing . 107

6.3.1 Multi-threading Approaches . 107
6.3.2 Deadlock Avoidance . 109

7 Application Results and Discussion 111
7.1 Test Setup . 111

7.1.1 Testing Environment . 111
7.1.2 Input Data . 111
7.1.3 Test Configurations . 111

7.2 Application Results . 113
7.2.1 Statistics of Mapped Graph Database 113
7.2.2 Single and Multi-threading Performance 115
7.2.3 Indexing Performance . 116
7.2.4 Differences in Performance between Building Batch Sizes 117
7.2.5 Performance of the Grid Layout and R-tree 118

7.3 Discussion . 121

8 Conclusion and Future Work 122

List of Figures 124

List of Tables 126

Listings 128

Bibliography 129

vii

Acronyms

ACID Atomicity, Consistency, Isolation, Durability. 16, 22

ADE Application Domain Extensions. 13

API Application Programming Interface. v, 10, 11, 13, 19, 21–23, 37, 38, 40, 122, 128

AWT Abstract Window Toolkit. 62, 66–68

CityGML City Geography Markup Language. iv–vi, 1–10, 12, 13, 16, 17, 25, 28, 31,
34–103, 106, 108, 111–114, 122–126, 128

CPU Central Processing Unit. 111, 121

CRS Coordinate Reference System. 59

DOM Document Object Model. 10–12, 37, 124

GC Garbage Collector. 105–107

GIS Geographic Information System. 28, 124

GML Geography Markup Language. 4, 7, 8, 10, 13, 28, 30, 31, 122

HDD Hard Disk Drive. 106

HTTP Hypertext Transfer Protocol. 29

JAXB Java Architecture for XML Binding. 12, 13, 37–39, 41, 50, 124

JTS Java Topology Suite. 26, 62, 66

JVM Java Virtual Machine. 105, 106, 111

KVP Key/Value Pair. 29, 30, 32, 93

LOD Level of Detail. 7, 8, 111, 124

viii

Acronyms

OGC Open Geospatial Consortium. 1, 7, 28, 31, 95, 122

OOP Ordinary Object Pointer. 106

OS Operating System. 104

PCIe Peripheral Component Interconnect Express. 111

RAM Random Access Memory. 104–106, 111

RDBMS Relational Database Management System. 14

SAX Simple API for XML. 10–12, 37, 50

SIG3D Special Interest Group 3D. 7

SOAP Simple Object Access Protocol. 29

SQL Structured Query Language. 14, 19

SRS Spatial Reference System. 59

SSD Solid-state Drive. 106, 111

StAX Streaming API for XML. 11, 12, 37, 50, 94

UML Spatial Reference System. 5, 8, 9, 39, 86, 124, 125

URL Uniform Resource Locator. 29

WFS Web Feature Service. iv–vi, 1, 3, 5, 6, 28–33, 91, 93, 95–103, 122–124, 126, 128

WFS-T Transactional Web Feature Service. 33

xAL eXtensible Address Language. 13

XLink XML Linking Language. vi, 2, 4, 16, 34, 36, 50–53, 111, 112, 116, 121, 122

XML eXtensible Markup Language. v, 4, 7, 9–13, 16, 29, 30, 32, 34, 37–39, 41, 50, 93, 94,
97, 99, 102, 122, 125

XPath XML Path Language. 10, 96, 97, 100, 102

XSLT Extensible Stylesheet Language Transformations. 10

ix

1 Introduction and Motivation

1.1 Motivation and Problem Statement

As an official OGC standard for encoding virtual 3D city models, CityGML opens
up opportunities for applications in a broad range of areas such as urban planning,
facility management, environmental simulations and thematic inquiries. One of the
main factors contributing to this success is CityGML’s capability of including not
only 3D urban objects’ graphical appearances, but also their semantic properties. This
ensures CityGML documents can be shared over various applications that make use of
the model’s common semantic information, which is “especially important with respect
to the cost-effective sustainable maintenance of 3D city models” [Grö+12].

However, although the increasing number of CityGML datasets in recent years
indicates a positive sign of the open standard’s steady growth, it has also been a great
challenge to maintain sustainable 3D city models. One prominent example is the
difficulty of handling undocumented collaborative as well as chronological changes of
an existing city model, which is currently unavoidable due to the fact that as cities grow
over time, so does the need to adjust their models accordingly [NBU10]. Furthermore,
because the current state of CityGML does not store such changes in its instances,
multiple model documents of the same city may accumulate over time. As a result,
during the maintenance phase, old city datasets are overwritten completely by newer
ones, which not only costs a large amount of time and computational resources, but also
loses track of collaborative changes and neglects the city’s progress recorded during
the given time period. Moreover, replacing entire large datasets due to only some small
changes would cause an unnecessarily huge volume of transactions, especially if the
database is managed via the Web Feature Service (WFS).

Therefore, instead of replacing older records, an ideal alternative should first compare
the models, then attach edit operations to detected deviations, based on which only real
changes are committed. This way, not only is there no more need to abandon any active
models, but older documents can both be updated and still retain their respective core
structure, including own rules of syntax and internal object references. This plays an
important role in enabling a version control system for collaborative work in modelling
and storing digital 3D city models [Cha+15]. Moreover, the number of transactions
required for a WFS-enabled database is also reduced significantly.

1

1 Introduction and Motivation

In order to achieve this, the first task is to determine key aspects, based on which
CityGML models should be compared. Since “one of the most important design princi-
ples for CityGML is the coherent modelling of semantics and geometrical/topological
properties” [Grö+12], a comparison between two CityGML instances should take into
account both their geometrical and semantic aspects to ensure reliable results. For
example, wall surfaces can be defined in-line for each building or referenced to other
walls of surrounding buildings via the XML Linking Language (XLink).

Thus, the further question arises as to how geometrical and semantic information
of CityGML documents can be stored and compared. Since CityGML elements belong
to a complex hierarchical structure containing multi-level deep associations, which
can basically be considered as a graph, all information of a CityGML instance can
theoretically be stored in a graph database. Hence, two CityGML models are equivalent
if, and only if, their respective graph representations are also equivalent.

Since to date, no known available algorithm is capable of detecting semantic and
geometrical changes in CityGML objects [Red14], in response to the above-mentioned
questions, the thesis proposes an approach that compares two CityGML models with
respect to both semantic and geometrical properties using a graph database.

1.2 Research Objectives and Questions

Old
CityGML
dataset

New
CityGML
dataset

map
Graph Graph

match

update

Graph database

map

Figure 1.1: An overview of three major steps mapping, matching and updating of 3D
city models using a graph database.

The main goal of this thesis is to develop a conceptual method of comparing two
arbitrarily sized CityGML datasets with respect to both their semantic and geometrical
information using a graph database. In general, the process can be divided into three
main steps (see Figure 1.1), in each of which their respective questions are listed as
guidelines below:

2

1 Introduction and Motivation

1. Mapping: Two CityGML datasets are mapped onto two corresponding graphs in
the same graph database. Research questions:

1.1. How can an arbitrarily large-sized CityGML datasets be mapped into a graph
database efficiently concerning memory and computational constraints?

1.2. CityGML objects belong to a well-defined class hierarchy. How can this
information be stored in a value-based graph database such as Neo4j?

2. Matching: The mapped objects in graph database are matched with respect to
their spatial and semantic properties. Research questions:

2.1. An object can be defined in different syntactic ways in CityGML. How can
these syntactic ambiguities be disambiguated?

2.2. How to deal with changed identifiers of the same real world objects stored
in both datasets without losing their internal structure and object references?

2.3. How to store and compare thematic values in graph nodes?

2.4. In which strategic pattern should objects be compared based on their geo-
metrical properties? What are the essential spatial traits that can reduce the
matching time of two objects in two and three-dimensional space?

3. Updating: The comparison results stored in the graph database are employed to
update the older city model. Research questions:

3.1. What should the class model of all edit operations look like?

3.2. How to convert edit operations stored in graph database to WFS transactions?

The proposed approach restricts only to the Building module (with Appearances)
defined in the CityGML schema. However, this can in principle be extended for other
modules due to their schematic similarities.

1.3 Methodology

To solve the above-mentioned questions, a number of tools and algorithms are con-
sidered. Firstly, an open source graph database software such as Neo4j is chosen.
Prior to the mapping step, based on the chosen graph database, a small test phase is
performed to examine its compatibility with CityGML documents as well as third-party
libraries, e.g. citygml4j and Neo4j Spatial. Some adjustments and fine tunings might
be needed, especially for large sample datasets. However, regardless of employed
software, the developed algorithms should ideally remain platform and application-
independent to ensure its generality and flexibility in as many use cases as possible.

3

1 Introduction and Motivation

The next step is to investigate potential syntactic ambiguities allowed in GML (such as
objects declared in-line or by the XML Linking Language (XLink)) according to XML
specifications [Bra+08]. However, since XLink reuses existing objects by referencing
to their identifiers [DeR+10], it is beneficial to take full advantage of this feature not
only to accelerate mapping time by eliminating redundant objects, but also for future
optimizations, especially in the matching step.

The next major part is to match two graph representations previously mapped
from CityGML models. Two nodes can be matched by comparing all their property
values and outgoing relationships recursively. Matching nodes simply by using their
identifiers often results in a much faster runtime, as the matching of a pair of nodes
reduces to a text comparison [Cha+96]. However, since a real world object may be
represented by objects with different IDs from two datasets, the matching process
should not rely solely on their identifiers. Thus, in such cases, to compare nodes
particularly of geometric objects with potentially altered identifiers, a “walk-through”
strategy is needed, since a brute-force comparison between all possible node pairs from
two large graphs could cause a computationally expensive quadratic time complexity
O(n2). Conventional diff tools, such as the Hunt–McIlroy algorithm [HM76], are only
applicable for pure texts and thus not compatible with hierarchical data structures
like XML and its application schemata. The majority of relevant existing matching
algorithms are available for XML and its tree representation, such as the tree-to-tree
method proposed by [RPB09]. In addition, the algorithms [Sel77; Tai79; ZS89; Cha+96]
and [CAM02] are well-known for their capability of detecting changes in ordered trees,
in which it does matter how the children of an inner node are ordered [Red14]. On the
other hand, unordered trees can be compared by using a heuristic “MH-Diff” algorithm
in cubic time complexity in worst-case scenarios [CG97]. Later, [WDC03] suggests
another method called “X-Diff” that considers tree equivalence as isomorphism.

However, despite being an application schema of XML, CityGML is not a tree data
structure by definition, as it may contain cycles and nodes linked by multiple parents.
Therefore, above-mentioned methods are generally not compatible with CityGML’s
graph data structure. Hence, this research proposes an approach specifically developed
to match two CityGML graph representations. Furthermore, especially for large
datasets, the ability to efficiently preselect candidates for the matching process based on
their spatial properties is prioritized. Topologically relative allocations of objects can be
expressed by the “4” or its extension “9-intersection model” (“4-IM” or “9-IM”) [EF91;
EH91]. Furthermore, an object can be localized by recursively dividing its parent graph
into the so-called quadrants (2D quadtrees) or octants (3D octrees) and colouring their
interior as well as exterior [Ber+08]. Alternatively, a grid layout or an R-tree can be
applied to spatial objects grouped in regions based on their topological properties.
Since R-trees are balanced, their query response time in logarithmic time complexity

4

1 Introduction and Motivation

O(logM n) is very efficient in large graphs, where M is the maximum number of entries
allowed per internal node. For primitive geometries such as points, lines and polygons,
their equivalence can be examined by comparing respective coordinates or shapes with
error tolerances taken into account.

If two nodes are spatially matched, they may still differ on the semantic level. There-
fore, after the geometric comparison is complete, a semantic matching follows. Potential
equivalences based on specifications provided by [Grö+12] should be considered. For
instance, a solid geometry can be further subdivided into wall and roof surfaces.
Comparing such objects leads to the comparisons of their compositions as well.

The final step is to store detected deviations in the underlying graph database, so
that they can easily be retrieved and processed. Such deviations in node properties or
relationships are represented by edit operations, for which a UML class diagram is to
be designed. These edit operations are linked to the deviation sources by graph edges,
while they themselves are stored as nodes in the graph database. Then, based on the
current specifications of the WFS, the standard interface for updating geographical
features across the web, edit operations can be transformed to WFS transactions to
update the corresponding CityGML dataset stored in a geospatial database. Note that
these edit operations are not limited to the WFS and hence can also be utilized by other
updating methods.

1.4 Application Scenario and Employed Tools

The main test use case of this research uses the CityGML dataset of the entire city
of Berlin, which contains approximately 550,000 buildings over the area of 890 km2

and occupies up to 20 GB of disk space. The application is implemented in Java.
Unmarshalling CityGML documents is done with the help of the citygml4j library. The
free-of-charge community version of the graph database Neo4j together with its plug-in
Neo4j Spatial are employed. To update a WFS-enabled database, the official WFS version
as well as its vendor-specific extension virtualcityWFS provided by virtualcitySYSTEMS
are applied.

1.5 Expected Results

The proposed approach should be able to map reasonably large CityGML datasets into a
graph database correctly. The matching step should theoretically deliver reliable results
based on objects’ geometrical and semantic properties efficiently. The edit operations
should be available in the graph database after the matching process is complete, so
that detected changes can be transformed to WFS transactions when required.

5

1 Introduction and Motivation

1.6 Outline

Chapter 2 introduces the theoretical and methodical background of some important
concepts and tools employed during the course of this thesis. Chapter 3 describes the
process of mapping CityGML instance documents to their respective graph represen-
tations stored in a graph database. Mapped graphs of two CityGML models are then
compared on both geometrical and semantic level in Chapter 4. Spatial search strategies
are also introduced in this chapter. CityGML documents can then be updated with the
help of created edit operations described in Chapter 5, where their transformation to
corresponding WFS transactions is also presented. Chapter 6 introduces some opti-
mization possibilities, such as memory tuning and concurrent processing. Results of
experiments conducted in this thesis are presented and discussed in Chapter 7. Finally,
Chapter 8 concludes and mentions some possible future work of this research.

6

2 Theoretical and Methodical Background

2.1 City Geography Markup Language (CityGML)

Figure 2.1: Official logo of CityGML. Source: SIG3D.

“CityGML is an open data model and XML-based format for the storage and exchange
of virtual 3D city models. It is an application schema for the Geography Markup
Language version 3.1.1 (GML3), the extendible international standard for spatial data
exchange issued by the Open Geospatial Consortium (OGC) and the ISO TC211”
[Grö+12]. The model was initially developed by the Special Interest Group 3D (SIG3D)
in 2002 and later became an OGC standard in 2008. In 2012, CityGML version 2.0.0 was
released.

Most of common city objects and features, such as buildings, vegetation, water,
terrain, traffic, tunnels, bridges, etc. can be described in CityGML. Unlike other models,
CityGML is capable of including not only 3D geometry and graphical appearances, but
also 3D topology and semantic properties of city objects [KGP05]. Moreover, CityGML
can represent city objects and features in five different Levels of Details (LOD), namely
from level 0 to 4, as illustrated in Figure 2.2.

To support city objects from different thematic areas, the CityGML data model is de-
composed into a core module and other respective thematic extension modules, namely
Appearance, Bridge, Building, CityFurniture, CityObjectGroup, Generics, LandUse,
Relief, Transportation, Tunnel, Vegetation, WaterBody and TexturedSurface as
shown in Figure 2.3. In the context of this thesis, only the module Building (with
Appearances) is considered. However, the implementation for other modules can in
principle be done in a similar manner.

7

2 Theoretical and Methodical Background

Figure 2.2: Five different Levels of Details (LOD) 0 - 4 of a building representation in
CityGML. Source: Delft University of Technology (TU Delft).

Figure 2.3: UML package diagram illustrating the separate modules of CityGML and
their schema dependencies. Each extension module (indicated by the leaf
packages) further imports the GML 3.1.1 schema definition in order to
represent spatial properties of its thematic classes. For readability reasons,
the corresponding dependencies have been omitted. Caption and figure
taken from [Grö+12].

The Building module enables “the representation of thematic and spatial aspects of
buildings, building parts, building installations, and interior building structures in five
levels of detail (LOD 0 – 4)” [Grö+12]. Objects that belong to this module are defined
in a class hierarchy illustrated in Figure 2.4.

8

2 Theoretical and Methodical Background Building module

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights Reserved. 11

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+yearOfConstruction : xs::gYear [0..1]

+yearOfDemolition : xs::gYear [0..1]

+roofType : gml:CodeType [0..1]

+measuredHeight : gml::LengthType [0..1]

+storeysAboveGround : xs::nonNegativeInteger [0..1]

+storeysBelowGround : xs::nonNegativeInteger [0..1]

+storeyHeightsAboveGround : gml::MeasureOrNullListType [0..1]

+storeyHeightsBelowGround : gml::MeasureOrNullListType [0..1]

<<Feature>>

_AbstractBuilding

<<Feature>>

_BoundarySurface

<<Feature>>

CeilingSurface

<<Feature>>

InteriorWallSurface

<<Feature>>

FloorSurface

<<Feature>>

RoofSurface

<<Feature>>

WallSurfacee

<<Feature>>

ClosureSurface

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BuildingInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

IntBuildingInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

Room

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BuildingFurniture

<<Feature>>

_Opening

<<Feature>>

Window

<<Feature>>

Door

<<Feature>>

Building

<<Feature>>

BuildingPart

<<Feature>>

core::_CityObject

<<Geometry>>

gml::MultiCurve

<<Geometry>>

gml::MultiSurface

<<Feature>>

core::_Site

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Geometry

<<Object>>

core::ImplicitGeometry

<<Feature>>

GroundSurface

<<Feature>>

OuterCeilingSurface

<<Feature>>

OuterFloorSurface

<<Feature>>

core::Address

*

lod4MultiSurface

*

lod3MultiSurface

*

*

boundedBy

*

0..1

*

0..1

*

*

lod4TerrainIntersection

* *

lod3MultiSurface

*

lod2MultiSurface

*
lod4MultiSurface

*

lod4MultiCurve

*

0..1

interiorFurniture

*

*

address

0..1

*

0..1

* lod3MultiSurface

*

*

interiorRoom

0..1

*

lod2MultiSurface

*

lod4MultiSurface

*lod4Geometry

*

*

boundedBy

*

*

outerBuildingInstallation

*

lod3MultiCurve

*

0..1

*

lod3ImplicitRepresentation

0..1

*

lod4Geometry

*

*

lod4ImplicitRepresentation
0..1

*

0..1

*

lod0FootPrint

*

0..1

boundedBy

0..1

*

lod2MultiCurve

*

lod0RoofEdge

*

lod3TerrainIntersection

*

0..2

opening

0..1

*

lod1MultiSurface

*

*

boundedBy

*

0..1

roomInstallation

0..1

*

lod4MultiSurface

0..1

*

*lod3Geometry

*

*

consistsOfBuildingPart

*

*

interiorBuildingInstallation

0..1

*

lod4Geometry

*

*

*

address

0..1

*

lod1TerrainIntersection

0..1
*lod2Geometry

*

lod2TerrainIntersection

lod4ImplicitRepresentation

lod3ImplicitRepresentation

lod2ImplicitRepresentation

lod4ImplicitRepresentation

lod4ImplicitRepresentation

lod4Solid

lod4Solid

lod1Solid

lod2Solid

lod3Solid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

Figure 2.4: UML diagram of CityGML’s building model. Prefixes are used to indicate
XML namespaces associated with model elements. Element names without
a prefix are defined within the CityGML Building module. Caption and
figure taken from [Grö+12].

9

2 Theoretical and Methodical Background

2.2 XML Processing

2.2.1 XML Parsing

Since CityGML is an application schema of GML, which is an extension of XML,
extracting and processing data stored in its documents can theoretically be done by
XML parsers. Depending on how such parsers handle the data structure, they are
divided into two categories: model-based and stream-based (or event-based) [SN09],
most of which are available as (Java) APIs.

Model-based APIs

One of the most well-known representatives of the model-based approach is the cross-
platform, language-independent Document Object Model (DOM), which reads the
entire input document into main memory and treats it as a tree structure, whose nodes
represent data elements stored in the input document [Kes+15] (see Figure 2.5). This
means that the model has full control over object navigation and data manipulation
(pull-parsing), such as programmatically finding objects by names or inserting new as
well as deleting existing elements in the document tree. Thus, the DOM is very popular
in most modern web browsers as it provides a fast and powerful way to handle web
documents. The major drawback is however its inefficient main memory consumption
while parsing large XML documents.

Stream-based APIs

The Simple API for XML (SAX), one of the stream-based APIs, is basically the polar
opposite of DOM. Namely, while DOM loads documents as a whole, a SAX parser
sequentially processes only a piece of input data at a time. Its workflow is based
on events while streaming, such as when a start or end-tag of a specific element is
encountered. When triggered, these events report to the parser (callback) so that actions
can be taken accordingly (push-parsing). Afterwards, the parser discards irrelevant
information and loads a new piece of data into main memory, and so on until the whole
document is processed. Thus, the SAX requires much less memory compared to the
DOM. This is a strength while processing large XML datasets but also a disadvantage in
some other certain scenarios, where access to the entire document is required, such as
validating or transforming XML documents using XSLT and XPath, in which DOM is a
better approach. Moreover, the SAX cannot re-read elements that it has discarded from
previous iterations. Finally, the SAX is a read-only approach. Therefore, whether the
DOM or SAX is suitable depends on how the application processes XML documents.

10

2 Theoretical and Methodical Background

document

html

head

body

h1

p

“Some Title”

“First Heading”

“First paragraph.”

title

Root

Element

Text

<html>

<head>

<title>Some Title</title>

</head>

<body>

<h1>First Heading</h1>

<p>First paragraph.</p>

</body>

</html>

Figure 2.5: An example of a web document and its DOM representation.

Unlike the DOM, no formal specification for SAX exists. Hence, its Java implementation
is considered to be a standard.1

Another alternative is the Streaming API for XML (StAX), which is a combination
of both the DOM and SAX. Technically, the StAX is also a stream-based API like SAX
and thus applicable to large XML documents, but similarly to DOM, it only pulls
information from the parser when needed (pull-parsing). Additionally, StAX can both
read and write XML documents.

1http://www.saxproject.org/.

11

http://www.saxproject.org/

2 Theoretical and Methodical Background

2.2.2 XML Data Binding

XML data binding is a concept that represents XML documents as a single or a set of
business objects, which are made of instance attributes and associations with other
business objects. This allows access to data stored in XML documents via the business
objects without having to rely solely on the DOM or SAX.

To achieve this, an XML data binder converts an XML document into a business
object with the help of its associated XML schema. This process is called unmarshalling
[Ora17]. The reverse process is called marshalling, where the object is converted back to
XML. Since the business objects and its contents are completely held in main memory,
the XML data binding is considered a model-based approach [SN09]. However, by
combining JAXB with SAX or StAX, it is possible to divide XML documents into smaller
chunks, each of which can sequentially be mapped and processed in main memory
(partial unmarshalling and marshalling).

XML data binders are a suitable approach to complex and changing XML schemata
like CityGML. The Java Architecture for XML Binding (JAXB) is one of such XML
data binders capable of unmarshalling XML to Java objects in main memory and vice
versa (see Figure 2.6). The advantage of JAXB over DOM and SAX is that users are
not required to possess a thorough understanding of XML data structure. Moreover,
mapped instance objects are organized in a class hierarchy corresponding to the given
XML schema. This offers developers more freedom to focus on the application domain
rather than the internal XML parsing mechanism.

XML
schema

XML
document

JAXB
mapped
classes

Java
objects

marshal
(serialize)

unmarshal
(deserialize)

follows

bind

instances
of

Figure 2.6: The JAXB binding process. Adapted from [Ora15].

12

2 Theoretical and Methodical Background

2.3 citygml4j - The Open Source Java API for CityGML

Since CityGML is XML-based, reading, processing, writing CityGML datasets and
developing CityGML-aware software often require a thorough understanding of the
underlying data structure. However, not all software developers are familiar with XML
technology. Therefore, to enable and ease such CityGML related work, an open source
Java class library and API named “citygml4j” was developed [Nag17].

The citygml4j library makes use of the JAXB for binding and processing XML docu-
ments as explained previously in Section 2.2.2. At its core, based on the XML schema
definitions of CityGML, citygml4j unmarshals (or deserializes) CityGML instance doc-
uments accordingly into corresponding Java objects, whose contents and structures
are stored and organized in tree representations of given instance documents (see
Figure 2.6). Java developers can then manipulate these produced objects for their
own software developments without having to acquire knowledge of parsing XML
data structure beforehand. Furthermore, citygml4j is also capable of marshalling (or
serializing) Java objects back into CityGML elements.

Some key features of citygml4j listed by [3DC17] are:

• Full support for CityGML version 2.0.0 and 1.0.0 (read-only support for version
0.4.0),

• Support for CityGML specific subset of GML 3.1.1,

• Support for the eXtensible Address Language (xAL),

• Support for user-defined CityGML Application Domain Extensions (ADE).

Like CityGML, citygml4j is part of 3D City Database software and can be used free
of charge [3DC17].

2.4 Graph Database in Neo4j

This section introduces the concept of a graph database and its application for compar-
ing massive CityGML datasets. For this purpose, the software Neo4j is employed. A
brief introduction of its graph data model and database transaction mechanism follows.

2.4.1 From Relational to Graph Database

Relational Database

First described in 1969, the relational model has become one of the foundation concepts
for storing and maintaining data [Cod70]. The model organizes data into a set of tables

13

2 Theoretical and Methodical Background

(or “relations”), each of which consists of columns and rows (or “tuples”). Every row
in a table is identified by their unique (or primary) key. Rows between tables are linked
by foreign keys, which can be represented as additional columns holding the unique
keys of referenced rows (see Figure 2.7). A database, whose organization is based on
the concepts of the relational model, is called a relational database. Software systems
employed to maintain such databases are called Relational Database Management
Systems (RDBMS). The Structured Query Language (SQL) is used in most RDBMS.

STUDENTS COURSE_ATTENDEES COURSES

Figure 2.7: An example of the relational model. Each row of table STUDENTS (left) is
uniquely identified by a Student_ID key. Similarly, a course is identified
by a unique Course_ID in COURSES (right). Student and course entries are
linked together by a series of rows in COURSE_ATTENDEES, whose columns
contain foreign keys of respective referenced tables. Adapted from [Neo17a].

A sustainable relational database often requires strictly designed model structures
with a predetermined number and appointed types of columns in each table. Moreover,
as illustrated in Figure 2.7, references to rows between tables hold values of primary
keys from each respective table and therefore require these keys to be non-empty (e.g.
with constraints). In other words, the foreign keys stored in table COURSE_ATTENDEES

must be available in both tables STUDENT_ID and COURSE_ID. Then, the JOIN operator
between STUDENTS and COURSE_ATTENDEES basically looks for and match primary with
foreign keys stored in rows from relevant tables. If many-to-many relationships exist,
an associative (or junction) table containing all referenced foreign keys is needed. This
process costs computational and memory resources and causes the query response time
to grow exponentially with respect to table sizes.

14

2 Theoretical and Methodical Background

Graph Database

In many use case scenarios, accessing only a fraction of a database and its related data
at a time has much higher priority than iterating over the entire set of tables (e.g. to
find boundary surfaces of a given building in a city). In this context, graph database
is an appealing alternative to its relational counterpart, especially when data contains
hierarchical information and complex associations.

Graph databases make extensive use of graph entities such as properties, nodes and
edges (or relationships). Data are mainly stored in nodes and their properties, while
the relationships between data items are represented by edges between nodes. This
way, references are explicitly expressed in a graph database without having to rely on
additional auxiliary foreign keys as in the relational model. Since graph entities are
connected directly together, a query on their relationships is generally much simpler
than in a conventional relational database because JOIN operators are no longer required
(see Figure 2.8).

However, graph and relational databases do not replace each other. On the contrary,
they both complement each other due to their different types of application domains.
Relational databases are well-suited to flat data structures containing a large number of
records, where the maximum depth of relationships between entities is low (i.e. level
one or two). On the other hand, graph databases are specifically useful in handling
relationships of a given data model, whose elements are connected by a deep network
of complex references.

STUDENTS COURSE_ATTENDEES COURSES

Figure 2.8: Relevant connected data items from Figure 2.7. JOIN operators are no longer
required. Adapted from [Neo17a].

15

2 Theoretical and Methodical Background

2.4.2 CityGML in Graph Database

CityGML datasets can be stored and processed in a graph database. Some of the main
reasons are:

• CityGML elements belong to a complex hierarchical structure containing multi-
level deep associations. Moreover, a CityGML element can be pointed to by
multiple parents forming a cycle. Thus, CityGML is basically considered a graph
data structure;

• Graph databases allow fast access to a data entity and its related data (e.g. a
building and its boundary surfaces);

• Syntactic ambiguities in XML such as between in-line and hyper-link (XLink)
declarations can be solved in graphs;

• CityGML datasets can be very big in size (e.g. approximately up to 20 GB in the
test use case scenario of the city of Berlin). Hence, reading such huge datasets
completely into main memory should be the last resort. Therefore, an approach
that reads large CityGML in chunks (piece by piece) is employed, where a graph
database is needed to store the processed information for later use before the main
memory flushes and replaces the old chunk with the next one (see Figure 2.9).

Then, the comparison between two CityGML datasets is performed by matching
their graph representations stored in the graph database.

2.4.3 Neo4j Graph Database Management System

In order to create, manipulate and maintain massive graphs, the Neo4j graph database
is employed. Neo4j is a graph database management system developed by Neo
Technology, Inc. As of February 2017, Neo4j is the world’s most popular graph
database according to [DBE17]. Neo4j is a native, high performance graph database
built specifically for storing and processing graphs. It takes advantage of connections
between data stored in nodes and edges, thus accelerates query speed by ignoring data
that are not connected to relevant nodes. It is also a fully ACID (Atomicity, Consistency,
Isolation, Durability) transactional database.

Neo4j is available in three editions: Community, Enterprise and Government. Both
Enterprise and Government Editions are commercial and offer a number of comprehen-
sive functionalities such as clustering, hot backups, advanced monitoring and more.
The Community Edition is free of charge but lacks these features. In the context of this
thesis, the Community Edition is employed in the implementation.

16

2 Theoretical and Methodical Background

……

Input dataset
divided into chunks

Main memory

Graph database

Read chunk-wise
from input

Process data

Store data

(a) Large input CityGML dataset is divided into small pieces (rectangles), which are successively
loaded into main memory (red). There, the data pieces are processed sequentially (here:
blue rectangle first). The processed information is then stored in a graph database (green)
for later use. The main memory then flushes and loads new piece of data (yellow rectangle).

……

Input dataset
divided into chunks

Main memory

Graph database

Process data

Load stored data

(b) All input pieces that are previously processed and stored in the graph database (ellipses in
colours based on their origin) can now be loaded back to main memory.

Figure 2.9: An illustration of reading large CityGML datasets piece by piece. The main
memory serves as a “buffer” while the graph database is a storage for
processed information.

17

2 Theoretical and Methodical Background

2.4.4 Graph Structures in Neo4j

Neo4j stores graph data items in properties, nodes and relationships, where:

Property Flat data such as texts, numbers, booleans, etc. can be stored in properties.
Every property must exist inside a node or a relationship, where they are uniquely
identified by their respective names. In other words, no two properties have the
same name in a node or relationship. Properties in graphs correspond to column
values in an equivalent relational database.

Node Nodes are central data entities in Neo4j. A node can contain an arbitrary number
of labels and properties. Labelled nodes are indexed and can be retrieved using
one of their assigned labels (schema indexing). Nodes are linked together by
relationships. Graph nodes correspond to rows in entity tables from an equivalent
relational database.

Relationship Relationships connect nodes together. In Neo4j, relationships are directed
and thus point from a start to an end node. However, relationships can be
traversed in both directions (namely in INCOMING and OUTGOING direction). Each
relationship has a relationship type and like nodes, can contain an arbitrary
number of properties. Graph relationships correspond to foreign keys in an
equivalent relational database.

An illustration of properties, nodes and relationships in Neo4j can be found in Fig-
ure 2.10.

Furthermore, for performance and maintenance purposes, Neo4j (version 2.0 and
later) introduces an optional schema for graphs. Schema consists of indices and
constraints. Namely:

Index To enable efficient querying on data, Neo4j creates a redundant copy of graph
entities and stores it in database storage. This copy is called index. An index can
be created automatically for properties of all nodes of the same label (schema
indexing) or manually for nodes of different labels (legacy indexing). The draw-
backs of indices are the additional required storage and slower disk reads and
writes. Therefore, indices should only be used in scenarios, where the number of
queries requested on a given property far exceeds that of modification operations.

Constraint Another aspect of graph schema is constraints on nodes and relationships.
Neo4j allows unique and existence constraints on node properties as well as
existence constraints on relationship properties. In case of unique constraints, an
index is implicitly created for affected data.

18

2 Theoretical and Methodical Background

John Smith

: STUDENT

Informatics

Analysis

Database

: COURSE

: COURSE

: COURSE

: ATTENDS

: STUDENT

STUDENT Node

: COURSE

COURSE Node

Relationship

Figure 2.10: An example of a graph representation of the data model shown in Figure 2.8
in Neo4j. STUDENT and COURSE objects are stored as nodes, whose labels
are :STUDENT and :COURSE respectively. Name values of students and
courses are held in properties of respective nodes. Relationships connect
students and courses together, whose start node is a STUDENT and end node
is a COURSE. These relationships have the same relationship type, namely
:ATTENDS. Adapted from [Neo17a].

2.4.5 Developing in Neo4j

Two important aspects of interacting with Neo4j are querying and manipulating
database. For these purposes, Neo4j provides its own declarative query language
called Cypher and the Bolt protocol. For the more comprehensive use of database, the
Java Core API is employed.

Cypher and Bolt Protocol

Cypher is a declarative query language developed for Neo4j. Despite being rela-
tively simple, Cypher is well capable of expressing very complicated queries. Since
Cypher is designed to be understandable to humans, it is mostly aimed at operations
professionals.

The structure of Cypher is basically comparable to that of SQL in relational model.

19

2 Theoretical and Methodical Background

However, different key words, such as MATCH, WHERE and RETURN are used to form
queries. For example, Listing 2.1 describes a query that returns a building with a given
ID from the database.

Listing 2.1: A simple Cypher query to retrieve building(s) with ID equal to “Some_ID”.

1 MATCH (b:BUILDING)

2 WHERE (b.id = `Some_ID')

3 RETURN b

Cypher queries can be executed directly from the Neo4j browser-based client or
via Neo4j’s official drivers. Neo4j drivers enable application access to graph database
and are available in .NET, Java, JavaScript and Python. To establish communication to
database regardless of used drivers and database versions, the Bolt protocol is applied.
The Bolt protocol accepts Cypher queries, executes them and returns results that can
be further processed in the supported programming languages of the respective driver.
For example, the previously shown Cypher query can be executed in Java driver with
the code excerpt shown in Listing 2.2.

Listing 2.2: An example of Neo4j Bolt in Java.

1 Driver driver = GraphDatabase.driver("bolt://localhost:7687",

2 AuthTokens.basic("neo4j", "neo4j"));

3

4 try (Session session = driver.session()){

5 try (Transaction tx = session.beginTransaction()) {

6 StatementResult result = tx.run(

7 "MATCH (b:BUILDING) " +

8 "WHERE (b.id = {parameterId}) " +

9 "RETURN b",

10 parameters("parameterId", "Some_ID"));

11

12 while (result.hasNext()) {

13 Record record = result.next();

14 System.out.println(

15 "GMLID: " + record.get("id").asString())

16);

17 }

18 }

19 }

20

21 driver.close();

20

2 Theoretical and Methodical Background

Compared to other services, the Bolt protocol is relatively young and currently in
active development. However, due to its user friendliness and platform independence
across multiple driver and database versions, Bolt is a promising alternative aimed
at professionals and developers outside of the Java-ecosystem. For more information,
please refer to the Neo4j Developer Manual [Neo17b].

Neo4j Java Core API

In contrast to the Bolt protocol being designed specifically for multiple drivers and
programming languages, the Java Core API is aimed at Java developers. Since Neo4j is
developed in Java, the Neo4j Java Core API (or Neo4j Java Embedded) exists as one of
the most powerful interfaces in Neo4j. It allows comprehensive and fully customizable
database operations (such as creating, updating and deleting database), as well as
querying and traversing data in database. An example illustrating some of these
operations in Java is shown in Listing 2.3.

Listing 2.3: An example of Neo4j Java Core API.

1 // Create and start a new graph database

2 GraphDatabaseService graphDb

3 = new GraphDatabaseFactory().newEmbeddedDatabase("DB_PATH");

4 // Always wrap database operations in transactions

5 try (Transaction tx = graphDb.beginTransaction()) {

6 // Create a node representing a building object

7 Node building = graphDb.createNode();

8 // Assign an ID property to this building

9 building.setProperty("id", "Building_ID");

10 // Create a node representing a ground surface

11 Node groundSurface = graphDb.createNode();

12 // Assign an ID property to this ground surface

13 ground.setProperty("id", "GroundSurface_ID");

14 // Create a relationship between these two nodes

15 building.createRelationshipTo(groundSurface,

16 CityGMLRelTypes.BOUNDED_BY_SURFACE);

17 // Release database resources from current transaction

18 tx.success();

19 }

20 // Close the database

21 graphDb.shutdown();

21

2 Theoretical and Methodical Background

To ensure the ACID properties in Neo4j, all database operations, regardless of
whether being executed via Bolt or in Java Core API, must be wrapped in transactions
(see Line 5 in Listing 2.2 and Line 5 in Listing 2.3). This is a “conscious design decision”
[Neo17c]. If an attempt is made to access the database outside of a transaction, a
NotInTransactionException will be thrown. After a transaction is started, locks are
acquired and assigned accordingly to affected database objects. These objects remained
locked and held in main memory as long as the transaction is still active. To release
locks and affected objects, the transaction must be marked as either a success or failure.
In case of a successful transaction (Line 18 of Listing 2.3), changes are committed to
the database. In case of a failure, to maintain data integrity, all operations wrapped in
the transaction are rolled back and nothing is committed (see Figure 2.11). Finally, in
both cases, the transaction will then release acquired locks and affected objects from
main memory. For more information on the transaction management, please refer to
the Neo4j Java Developer Reference [Neo17c].

Memory

Transaction

rollback

success

failure

commitbegin
input write

Figure 2.11: An example of the transaction management in Neo4j. All database op-
erations must be wrapped in transactions. After a transaction is started
(orange), affected nodes and relationships are locked and held in main
memory. Only after the transaction is marked as either “success” or “fail-
ure” can these locks and data items be released from main memory. If the
transaction is successful, changes will be committed to database (green).
However if the transaction failed, all uncommitted changes will be rolled
back (red) to the initial state.

22

2 Theoretical and Methodical Background

One of the most important advantages provided by the Java Core API over other
services is the full control of how nodes, relationships and their properties are built
(Lines 7, 9, 11, 13 and 15 of Listing 2.3). Moreover, since nodes and relationships are
stored as Java objects, they are fully applicable to the object-oriented concepts. In addi-
tion, the fact that each node and relationship can easily be reused and referenced makes
the entire workflow more intuitive and manageable (Lines 9, 13 and 15). Furthermore,
since almost all other services (e.g. Cypher queries, the Bolt Protocol, the Traversal
Framework, etc.) are included in the Java Core API, the Java Core API is generally a
more universal approach to a broader range of applications.

Considering the above-mentioned advantages, the Neo4j Java Core API is extensively
employed throughout the implementation process of this thesis.

2.5 R-tree Data Structure and Neo4j Spatial

2.5.1 R-tree Data Structure

R-trees are tree data structures developed especially for spatial indexing, i.e. storing
and retrieving geographic information, such as locations of rectangles and polygons.
The “R” in R-tree stands for “rectangle”. The R-tree was introduced in 1984 [Gut84] and
not only has it since been recognized as one the most well-known tools used in both
theoretical and applied areas, it is also a “necessary” approach to enabling fast handling
of multi-dimensional data in spatial databases and geographical information systems
[Man+05]. The main concept of R-trees is that geometric objects spatially located near
to each other can be grouped into a larger object containing their minimum bounding
box (or rectangle). Each of these objects is represented as a leaf in the tree, while the
aggregated object containing the minimum bounding box is assigned to the next higher
level (see Figures 2.12 and 2.13). Recursively, multiple neighbouring internal nodes
can be grouped again to form a higher node on the next level. This means that if a
query geometry does not intersect a bounding box, then it also cannot reach any of
the contained objects. As a result, like in most tree data structures, spatial queries,
such as intersection and nearest neighbour search, are very efficient, as most irrelevant
nodes can be avoided. Moreover, since R-trees are also balanced search trees, the query
response time is generally bound by the depth of leaf nodes. Namely, the average time
complexity of a search operation in R-trees is

O(logM n),

where M is the maximum number of entries contained in an internal (or non-leaf) node
and n is the total number of stored nodes. Note that since R-tree rectangles can overlap,
multiple paths down to the leaves might be required to be searched.

23

2 Theoretical and Methodical Background

R1

R3

R4

R9

R11

R13

R10

R12

R16

R15

R14R8

R2

R6

R7

R17

R18

R19

R5

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

Figure 2.12: An example of an R-tree. Leaf nodes are represented as red rectangles,
while their minimum bounding rectangles are shown in blue and grey.
Source: [Bac10].

24

2 Theoretical and Methodical Background

Figure 2.13: An R-tree representation of an excerpt from the CityGML dataset provided
by the North Rhine-Westphalia state, Germany. The R-tree image was
produced automatically by Neo4j Spatial during the mapping process.

25

2 Theoretical and Methodical Background

2.5.2 Neo4j Spatial

The Neo4j Spatial2 is an open-source utility plug-in for Neo4j. Neo4j Spatial extends the
base Neo4j version with a number of key features, such as utilities for importing ESRI
Shapefile or Open Street Map files, support for all common geometry types in two-
dimensional space (e.g. Point, LineString, Polygon, . . .), etc. but most importantly, it
allows spatial operations on data by enabling an R-tree spatial index to already stored
graph entities in Neo4j. This means that:

• Search operations on stored geographical data should generally be executed in
logarithmic time complexity as an R-tree is in use (as explained previously in
Section 2.5.1);

• Spatial index can be applied to already available data in Neo4j without interfering
with how they are originally stored.

The latter can be achieved by providing an “adapter” that connects data to their
respective geometry (see Figure 2.14). Geometric objects are handled internally by the
Java Topology Suite (JTS) contained in this plug-in. Available spatial queries applicable
in two-dimensional space are listed as follows [Neo17e]:

• Contain

• Cover

• Covered by

• Cross

• Disjoint

• Intersect

• Intersect Window

• Overlap

• Touch

• Within

• Within Distance

In Neo4j Spatial, spatial indices are organized in layers, which are composed of nodes
stored internally in the same Neo4j database as that of referenced data. Note that the
R-tree’s internal nodes (with the exception of the root node) are unlabelled and hence
excluded from schema indexing. Once added, the geometry objects are stored in a
balanced R-tree of respective layer. Then, based on the type of requested spatial queries
(as listed above), the R-tree is traversed and a geometry with all its referenced data are
returned with the help of the constructed adapter.

2https://github.com/neo4j-contrib/spatial

26

https://github.com/neo4j-contrib/spatial

2 Theoretical and Methodical Background

…

…

…

…

…

…

…

…

…

…

R-tree IndexAdapterNeo4j Data

Figure 2.14: Illustration of an adapter (middle) connecting spatial indices in Neo4j
Spatial (right) with data already stored in Neo4j (left).

27

2 Theoretical and Methodical Background

2.6 Web Feature Service (WFS)

Large geospatial databases, such as the CityGML dataset of Berlin in the test use case,
are often stored in a central server and managed via web services. The Open Geospatial
Consortium (OGC) Web Feature Service (WFS) is one of such services. Applications
that operate on WFS-enabled data sources should thus also be WFS-compatible.

The WFS is a platform independent interface standard that enables the creation,
modification and exchange of geographic features across the web. One of its major
advantages over other protocols is the ability to retrieve and modify requested data at
the feature and feature property level with “fine-grained precision” [Vre14]. Instead
of unnecessarily providing a whole data file that contains the requested information,
the WFS responds with only features that met the criteria issued by querying clients.
The clients can then modify or perform a spatial analysis on the received data based on
their needs.

2.6.1 WFS Communications

In general, as illustrated in Figure 2.15, the WFS serves as a communicating component
located between the geospatial database and the clients. To enable transporting of
geographic features, the data held in the geospatial database must conform to the
GML schema (e.g. CityGML as a GML application schema in particular). In addition,
however, other formats like ESRI shapefiles are also allowed. In the following sections,
the WFS requests and responses between the clients and database are briefly introduced.

Web
Feature
Service

KVP/XML
Request

Response
XML (GML)

Data reads/writes

Retrieved data
or Status

Geospatial
Database

GIS Client
Data analysis
Spatial updates
Etc.

Figure 2.15: An overview of the Web Feature Service (WFS) in interaction with GIS
clients and geospatial database.

28

2 Theoretical and Methodical Background

Client Request

Multiple clients can simultaneously send requests to the WFS, which then executes
them accordingly (the maximum number of clients and requests that can be processed
simultaneously depends on the WFS server configurations). A WFS request can be
declared in two types of encodings: Key/Value Pair (KVP) and XML.

KVP The KVP is encoded in HTTP GET requests as query strings. An example of
an HTTP GET request with its encoded KVP of two keys key1, key2 and their
respective values value1, value2 is as follows:

http://example.com/web/service&key1=value1&key2=value2

The advantages of KVP are its compactness and simplicity. It suffices for most
read-only queries. However, requests that are encoded in KVP are often not
expressive enough for more complicated scenarios, such as updating a feature
with a new content.

XML HTTP POST (and SOAP) request contents are encoded in XML. The advantage
of this encoding is its strong expressiveness and can be employed in all scenarios.
In other words, HTTP GET requests can be replaced by corresponding HTTP
POST ones. The drawback is that HTTP POST contents are too complex to fit in a
URL and thus must be passed as additional parameters. Listing 2.4 illustrates a
simplified example of an HTTP POST content equivalent to the previous HTTP
GET request.

Listing 2.4: An example of an HTTP POST request.

1 POST

2 Host: http://example.com/web/service

3

4 HEADERS

5 Content-Type: application/xml

6

7 PAYLOAD

8 <?xml version="1.0" encoding="UTF-8"?>

9 <OperationType service="ServiceName" version="Version">

10 <key1>value1</key1>

11 <key2>value2</key2>

12 </OperationType>

Since only the XML contents (payloads) are of interest, HTTP POST requests are
represented by their contents from now on.

29

http://example.com/web/service&key1=value1&key2=value2

2 Theoretical and Methodical Background

WFS Response

Regardless of whether a WFS request is encoded KVP or XML, its response is always
encoded in XML [Vre14]. Which contents these responses hold depends on their
respective WFS requests. For instance, if the request is a transaction operation, the
response shall be a confirmation from the server stating whether said operation is
successful or failed. On the other hand, if the request is a query operation, the found
features shall be returned as GML elements nested in an XML parent.

2.6.2 WFS Operations

In order to cover a variety number of requests issued by clients, the WFS standard
defines a total of eleven operations, which can be divided into five major categories,
namely the discovery, query, locking, transaction and stored query operations [Vre14],
which are listed as follows:

• Discovery operations:

– GetCapabilities

– DescribeFeatureType

• Query operations:

– GetPropertyValue

– GetFeature

– GetFeatureWithLock (also a locking operation)

• Locking operations:

– GetFeatureWithLock (also a query operation)

– LockFeature

• Transaction operation:

– Transaction

• Stored query operations:

– CreateStoredQuery

– DropStoredQuery

– ListStoredQueries

– DescribeStoredQueries

30

2 Theoretical and Methodical Background

Table 2.1 shows an overview of WFS operations including their operation groups
(indicated by colours), descriptions and request encodings. For a more comprehensive
look at the syntax of their requests as well as responses, please refer to [Vre14].

It is however not compulsory for a WFS to support all the above-mentioned opera-
tions. In fact, [Vre14] defines four different versions with increasing complexity and
functionalities, namely “Simple WFS”, “Basic WFS”, “Transactional WFS” and “Locking
WFS” (see Table 2.2).

2.6.3 WFS for CityGML

Since CityGML is a GML application schema, it can be transported and manipulated
via a WFS that conforms with the previously introduced OGC international standard
[Vre14]. In particular, the 3D City Database WFS version allows direct access to 3D
city objects stored in a database by using platform and database independent calls.
Therefore, not only do users no longer have to solely rely on the 3D City Database
Importer/Exporter tool for data retrieval, they are also able to develop various CityGML-
aware applications that make use of the interface [3DC16].

The 3D City Database WFS conforms with the second version of the OGC WFS
international standard. In fact, it satisfies the “Simple WFS” conformance class defined
in [Vre14]. The development of this WFS is currently led by the company virtualcitySYS-
TEMS GmbH, which offers its own vendor-specific extension called “virtualcityWFS”.
This interface extends the basic 3D City Database WFS with additional functionalities,
such as thematic and spatial filter capabilities and transaction support (e.g. insertion
of CityGML complex (generic) feature properties) [3DC16; vir16]. Table 2.2 shows the
differences in supported operations between various WFS versions.

31

2 Theoretical and Methodical Background

Operation Description
Encoding

KVP XML

GetCapabilities Generates a service metadata document
describing a WFS service provided by
a server.

4 4

DescribeFeatureType Returns a schema description of feature
types offered by a WFS instance.

4 4

GetPropertyValue Allows the value of a feature property
or part of the value of a complex fea-
ture property to be retrieved from the
data store for a set of features identified
using a query expression.

4 4

GetFeature Returns a selection of features from a
data store using a query expression.

4 4

GetFeatureWithLock Is functionally similar to the
GetFeature operation except that
in response to a GetFeatureWithLock

operation, the WFS shall also lock the
features in the result set.

4 4

LockFeature Exposes a long-term feature locking
mechanism to ensure data consistency
in case of concurrent data transforma-
tion operations (e.g., update or delete).

4 4

Transaction Describes data manipulation opera-
tions to be applied to feature instances
under the control of a WFS.

4

CreateStoredQuery Creates a stored query. 4

DropStoredQuery Allows previously created stored
queries to be dropped from the system.

4 4

ListStoredQueries Lists the stored queries available at a
server.

4 4

DescribeStoredQueries Provides detailed metadata about each
stored query expression that a server
offers.

4 4

Discovery operations Query operations Query/Locking operation

Locking operations Transaction operation Stored query operations

Table 2.1: An overview of WFS operations including their operation groups (indicated
by colours), descriptions and request encodings. Adapted from [Vre14].

32

2 Theoretical and Methodical Background

Operation
Simple

WFS
Basic
WFS

WFS-T
Locking

WFS
3DCityDB

WFS
VCS
WFS

GetCapabilities 4 4 4 4 4 4

DescribeFeatureType 4 4 4 4 4 4

GetPropertyValue 4 4 4 4

GetFeature 41 43 43 43 41 45

GetFeatureWithLock 44

LockFeature 44

Transaction 4 4 46,7

CreateStoredQuery∗ 4

DropStoredQuery∗ 4

ListStoredQueries 42 42 42 42 42 4

DescribeStoredQueries 4 4 4 4 4 4

Notes:
1 Only the StoredQuery action is allowed.
2 One stored query that fetches a feature using its ID shall be available.
3 The Query action is allowed.
4 Either the GetFeatureWithLock or LockFeature operations shall be available.
5 Ad-hoc queries and filter encoding are also supported.
6 Insert, Delete and Update (not Replace) are supported.
7 Additional InsertComplexProperty (VCS-specific extension) are enabled.
∗ These operations shall be implemented in the “Manage stored queries” WFS.

Table 2.2: WFS versions and their implemented operations. The symbol 4 indicates a
supported operation in the respective WFS version. The vendor-specific ex-
tension “virtualcityWFS” (shown as “VCS WFS”) offers more comprehensive
operation capabilities compared to the ordinary WFS. Adapted from [Vre14;
3DC16; vir16].

33

3 Mapping 3D City Models in CityGML
onto a Graph Database

The first major step in the comparison of two 3D city models encoded in CityGML is to
map their instance documents onto a graph database, as graph databases like Neo4j
do not support XML as its underlying data structure. In order to enable automatic
mapping of arbitrarily large-sized CityGML datasets and to make preparations for
matching in the next chapter, the mapping process is divided into the following smaller
steps:

1. Reading CityGML datasets in Java,

2. Converting Java objects to graph entities,

3. Connecting mapped city objects using XLinks,

4. Calculating minimum bounding boxes of mapped city objects.

Steps 1 and 2 ensure arbitrarily large-sized input datasets can be completely read into
a graph database efficiently without heavily relying on available main memory capacity.
Java is used as the main programming language due to the fact that both citygml4j
and Neo4j are built in Java (as explained in Sections 2.3 and 2.4 respectively). Step
3 connects mapped graph components together using XLinks (or hrefs). The result
is a complete and connected graph representation of a respective CityGML instance
document. Step 4 makes preparations for the matching process so that two graphs can
be compared efficiently. Figures 3.1 and 3.2 give a graphical overview of the mapping
process.

34

3
M

apping
3D

C
ity

M
odels

in
C

ityG
M

L
onto

a
G

raph
D

atabase

CityGML input dataset
divided into chunks of features

Feature

Feature

Feature

Successive read
of each feature

Java objects produced from each
feature chunk held in main memory

using citygml4j
WallSurface

GroundSurface

RoofSurface

Building

WallSurface

Mapping Java
objects to graphs

using Neo4j
Java Core API

Neo4j graph components mapped
from Java objects of each feature

Figure 3.1: An illustration of Step 1 (unmarshalling CityGML documents) and Step 2 (mapping Java objects onto
graphs) of the mapping process.

35

3
M

apping
3D

C
ity

M
odels

in
C

ityG
M

L
onto

a
G

raph
D

atabase

Mapped features as
unconnected sub-graphs

Retrieve nodes
containing hrefs

and IDs

Connected feature sub-graphs
based on found IDs and hrefs

using indexing
or a hashmap

Compute bbox of
connected
city object

using customized
citygml4j

bbox function

Connected city object and
its bounding box

Figure 3.2: An illustration of Step 3 (resolving XLinks) and Step 4 (computing minimum bounding boxes as a
preparation for matching in the next chapter) of the mapping process.

36

3 Mapping 3D City Models in CityGML onto a Graph Database

3.1 Reading CityGML Datasets in Java

As explained in Sections 2.2 and 2.3, CityGML documents can be processed with the
help of various XML parsing APIs in Java such as the DOM, SAX, StAX or JAXB. Each
API comes with their own advantages and disadvantages over the others with respect
to the application domains.

To determine which XML APIs are applicable in the context of reading and later
comparing 3D city models encoded in CityGML, the following three factors are to be
considered:

1. CityGML datasets can grow quickly in size (e.g. approximately 20 GB of geo-
graphic information as in the 3D city model of Berlin);

2. Flexible navigation between loaded objects must be enabled;

3. An object-oriented view of read CityGML data must be maintained, as not only
stored data but how they are associated with each other play a central role in the
implementation of the mapping process.

The first factor excludes the sole use of the DOM or JAXB because loading an entire
large document completely into main memory is technically inefficient and might even
be impossible for huge files. The second factor rules out the SAX, as it only allows
navigation in one direction only. The third factor disqualifies the StAX, since, despite
its capability to navigate well through XML documents, it does not provide an object-
oriented view of read data. Thus, in order to fulfil all above-mentioned requirements, a
combination of JAXB and SAX (or StAX) is proposed. By combining the advantages
of these APIs, this approach allows partial unmarshalling (or deserialization) of XML
data to Java objects and vice versa with efficient main memory consumption (as an
advantage of SAX). In addition, it also offers an object-oriented view of mapped Java
objects and their associations (as an advantage of JAXB).

In fact, the library citygml4j makes extensive use of this combined approach to read
and handle CityGML datasets. As illustrated in Figures 2.6 and 3.1, the process of
reading arbitrarily sized CityGML instance documents into Java objects is summarized
as follows [SN09; Nag17]:

1. Based on a provided XML schema of the underlying CityGML data structure, the
JAXB binding compiler creates Java model classes accordingly;

2. The SAX (or StAX) controller divides CityGML documents into a series of chunks
(or pieces), each of which contains a (top-level) feature;

37

3 Mapping 3D City Models in CityGML onto a Graph Database

3. The JAXB sequentially unmarshals (or deserializes) each chunk completely into
Java objects. As CityGML documents conform with given XML schema, mapped
Java objects are instances of their respective model classes created in the previous
step. Moreover, since the produced Java objects are held in main memory, full
access to instance attributes and their associations is possible.

Operations can then be executed on mapped Java objects (which shall be explained
in the next steps) before they are eventually flushed and replaced, as new chunks are
unmarshalled into main memory.

3.2 Converting Java Objects to Graph Entities

This step takes place directly after each CityGML chunk has been unmarshalled into
Java objects as described previously. Its objective is to transform these Java objects
to corresponding graph entities in Neo4j conserving as much data as possible (see
Figure 3.1). For this purpose, the Neo4j Java Core API introduced in Section 2.4.5 is
employed. Conceptually however, two major challenges arise:

• Firstly, unmarshalled Java instances belong to a very complex class hierarchy
defined by the XML schema of CityGML. This poses the difficulty in designing
a suitable graph structure, such as how to efficiently represent instances of the
same superclass in such a meaningful way that their hierarchical information
can be made use of. Straightforward mapping of too much detail of the class
hierarchy would lead to unnecessary node redundancies. On the contrary, too
little information on the class hierarchy results in type ambiguities and data
losses;

• Secondly, Neo4j is a value-based graph database, which means that no explicit
schema modelling is possible. As a result, it is difficult to map Java objects
to graph entities without losing any information, especially their hierarchical
relations. Thus, it is utterly important to design an efficient but expressive enough
graph structure that can capture and store as much of such information from Java
objects as possible.

To resolve these challenges, three approaches have been developed throughout the
course of this research, namely the instance-based approach, the hierarchy-based
approach, and a combination of these two. Although eventually, they all effectively
produce graph representations of input CityGML datasets, the difference lies in their
handling of Java instances and the structure of respective created graphs.

38

3
M

apping
3D

C
ity

M
odels

in
C

ityG
M

L
onto

a
G

raph
D

atabase

class RectifiedGrid

grids::RectifiedGrid

- offsetVector: List<Vector>

- origin: PointProperty

+ accept(GeometryVisitor): void

+ accept(GeometryFunctor<T>): T

+ accept(GMLVisitor): void

+ accept(GMLFunctor<T>): T

+ addOffsetVector(Vector): void

+ calcBoundingBox(): BoundingBox

+ copy(CopyBuilder): Object

+ copyTo(Object, CopyBuilder): Object

+ getGMLClass(): GMLClass

+ getOffsetVector(): List<Vector>

+ getOrigin(): PointProperty

+ isSetOffsetVector(): boolean

+ isSetOrigin(): boolean

+ setOffsetVector(List<Vector>): void

+ setOrigin(PointProperty): void

+ unsetOffsetVector(Vector): boolean

+ unsetOffsetVector(): void

+ unsetOrigin(): void

grids::Grid

- axisName: List<String>

- dimension: int

- l imits: GridLimits

+ accept(GeometryVisitor): void

+ accept(GeometryFunctor<T>): T

+ accept(GMLVisitor): void

+ accept(GMLFunctor<T>): T

+ addAxisName(String): void

+ calcBoundingBox(): BoundingBox

+ copy(CopyBuilder): Object

+ copyTo(Object, CopyBuilder): Object

+ getAxisName(): List<String>

+ getDimension(): Integer

+ getGMLClass(): GMLClass

+ getLimits(): GridLimits

+ isSetAxisName(): boolean

+ isSetDimension(): boolean

+ isSetLimits(): boolean

+ setAxisName(List<String>): void

+ setDimension(Integer): void

+ setLimits(GridLimits): void

+ unsetAxisName(): void

+ unsetLimits(): void

geometry::AbstractGeometry

- axisLabels: List<String>

- gid: String

- srsDimension: Integer

- srsName: String

- uomLabels: List<String>

+ accept(GeometryVisitor): void

+ accept(GeometryFunctor<T>): T

+ addAxisLabel(String): void

+ addUomLabel(String): void

+ calcBoundingBox(): BoundingBox

+ copyTo(Object, CopyBuilder): Object

+ getAxisLabels(): List<String>

+ getGid(): String

+ getInheritedSrsName(): String

+ getSrsDimension(): Integer

+ getSrsName(): String

+ getUomLabels(): List<String>

+ isSetAxisLabels(): boolean

+ isSetGid(): boolean

+ isSetSrsDimension(): boolean

+ isSetSrsName(): boolean

+ isSetUomLabels(): boolean

+ setAxisLabels(List<String>): void

+ setGid(String): void

+ setSrsDimension(Integer): void

+ setSrsName(String): void

+ setUomLabels(List<String>): void

+ unsetAxisLabels(): void

+ unsetAxisLabels(String): boolean

+ unsetGid(): void

+ unsetSrsDimension(): void

+ unsetSrsName(): void

+ unsetUomLabels(): void

+ unsetUomLabels(String): boolean

base::AbstractGML

- description: StringOrRef

- id: String

- localProperties: HashMap<String, Object>

- metaDataProperty: List<MetaDataProperty>

- name: List<Code>

- parent: ModelObject

+ accept(GMLVisitor): void

+ accept(GMLFunctor<T>): T

+ addMetaDataProperty(MetaDataProperty): void

+ addName(Code): void

+ copyTo(Object, CopyBuilder): Object

+ getDescription(): StringOrRef

+ getGMLClass(): GMLClass

+ getId(): String

+ getLocalProperty(String): Object

+ getMetaDataProperty(): List<MetaDataProperty>

+ getModelType(): ModelType

+ getName(): List<Code>

+ getParent(): ModelObject

+ hasLocalProperty(String): boolean

+ isSetDescription(): boolean

+ isSetId(): boolean

+ isSetMetaDataProperty(): boolean

+ isSetName(): boolean

+ isSetParent(): boolean

+ setDescription(StringOrRef): void

+ setId(String): void

+ setLocalProperty(String, Object): void

+ setMetaDataProperty(List<MetaDataProperty>): void

+ setName(List<Code>): void

+ setParent(ModelObject): void

+ unsetDescription(): void

+ unsetId(): void

+ unsetLocalProperty(String): Object

+ unsetMetaDataProperty(): void

+ unsetMetaDataProperty(MetaDataProperty): boolean

+ unsetName(): void

+ unsetName(Code): boolean

+ unsetParent(): void

Figure 3.3: UML class diagram of RectifiedGrid and its superclasses Grid, AbstractGeometry and AbstractGML

from Java model classes bound by JAXB and XML schema of CityGML in citygml4j.

39

3 Mapping 3D City Models in CityGML onto a Graph Database

3.2.1 Instance-based Approach

This approach focuses on the fact that Neo4j is a value-based graph database. In other
words, it treats Java objects separately as sole data sources. The mapping concept of
this approach is summarized in Algorithm 1.

Algorithm 1: instance_based_map(instance)
Input : A Java instance

Output : Created node in graph database

1 create a node in graph database;
2 set node.label equal to instance.className;

3 initialize attributes as a set of all available attributes and references of instance;

4 foreach attribute of attributes do
5 if attribute can be stored as simple texts then
6 store attribute as a property in node;
7 else
8 create a child node by calling instance_based_map(attribute);
9 create a relationship from node to child;

10 end
11 end

12 return node;

Explanatory notes:

Line 1 A node is created using the Neo4j Java Core API;

Line 2 Each created node has a label indicating the type or class name of their respective
original Java objects;

Line 3 All available (i.e. own and inherited) attributes and references of the Java object
are retrieved (e.g. with the help of the so-called getter methods);

Lines 5 and 6 A simple attribute that can be stored as plain text without losing any
information (such as booleans, numbers, strings, etc.) is written to the cur-
rent node as its property. The condition in Line 5 may vary between different
implementations.

Lines 8 and 9 A complex reference (such as an object link to other instances) cannot be
described as plain texts and thus must be represented as another node (Line 8) and

40

3 Mapping 3D City Models in CityGML onto a Graph Database

a relationship between two nodes (Line 9). How this node is created depends on
specific implementations, for example via recursive calls or overloaded functions.
If a recursive method is used, it must be able to distinguish between different
types of Java classes. On the other hand, if a number of overloaded functions
are employed, then each of them must handle one type of classes. The process is
repeated until all Java objects have been mapped.

Consider an example of class RectifiedGrid and its super classes Grid,
AbstractGeometry and AbstractGML extracted from the Java model classes created
by the JAXB using the XML schema of CityGML in citygml4j as illustrated in Figure 3.3.
Classes RectifiedGrid and Grid are both instantiable, while AbstractGeometry and
AbstractGML are abstract and thus not instantiable. Additionally in this example, two
Java instances of Grid and RectifiedGrid are to be mapped to a graph database.

According to Algorithm 1, for the first Grid object, a node labelled GRID is created.
Searching through its available attributes and references with the help of visible
getter methods (Line 3 of Algorithm 1), a table containing these values sorted by
originating class is built, which is shown in Table 3.11. Depending on their data types,
node properties or additional child nodes are created accordingly (Lines 5 - 10). The
exemplary end result of this current node is illustrated in Figure 3.4.

Inherited from class
AbstractGML

Inherited from class
AbstractGeometry

Declared in class
Grid

description axisLabels axisName

id gid dimension

metaDataProperty srsDimension limits

name srsName

uomLabels

Table 3.1: Visible attributes and references of a Grid instance.

This approach produces intuitive results in a straightforward manner. Moreover,
the created graph captures all available information stored in Java objects while still
remaining compact. The drawback lies however in the technical difficulties encountered
during the implementation phase, namely: In order to achieve such compact but
expressive end results, Line 3 in Algorithm 1 in particular must be implemented
specifically for each possible class type, as this approach only concentrates on individual
Java classes and not how they are connected to each other.

1In citygml4j, it is not allowed to retrieve the entire hash map set of localProperties in class
AbstractGML without knowing its key values beforehand. For the sake of simplicity, the reference
parent is omitted.

41

3 Mapping 3D City Models in CityGML onto a Graph Database

GRID

axisName
dimension
axisLabels

gid
srsDimension
srsName
uomLabels

id

GRID_LIMITS

STRING_OR_REF

META_DATA_PROPERTY

META_DATA_PROPERTY

CODE

CODE

metaDataProperty

metaDataProperty

name

name

description

gridLimits

Figure 3.4: Result of mapping a Grid instance to a graph in the instance-based ap-
proach. Each rounded rectangle is a node, while (directed) arrows represent
relationships between them.

42

3 Mapping 3D City Models in CityGML onto a Graph Database

To illustrate this, consider the remaining RectifiedGrid instance in the example
above. To deliver values as shown in Table 3.2, the implementation of Line 3 in
Algorithm 1 searches through the entirety of RectifiedGrid and lists all found object
values via getters without knowing that the same workload performed while mapping
a Grid instance shown previously has also been executed. To be more specific, despite
the first three columns of Table 3.2 being the same as those of Table 3.1, they are
achieved by separate implementations. This leads to code redundancies. The deeper
the class hierarchy is, the more severe these redundancies may become, to an extent
that the disadvantages could outweigh the advantages.

Inherited from class
AbstractGML

Inherited from class
AbstractGeometry

Inherited from
class Grid

Declared in class
RectifiedGrid

description axisLabels axisName offsetVector
id gid dimension origin

metaDataProperty srsDimension limits

name srsName

uomLabels

Table 3.2: Visible attributes and references of a RectifiedGrid instance.

A further explanation as why Line 3 in Algorithm 1 must be specifically implemented
for each possible class type as mentioned previously is that in Java, it is not possible to
programmatically extract all attributes of arbitrary objects. Even with the help of the
Reflection library, it is still impossible to access attributes that are declared private in
the super classes without violating their internal structures and encapsulation purposes.
In other words, the available (public) getter methods are the only appropriate solution.

A summary of this approach’s advantages and disadvantages is shown below:

• Advantages:

– Intuitive approach,

– Compact but expressive results;

• Disadvantages:

– Code redundancies due to complex class hierarchy.

43

3 Mapping 3D City Models in CityGML onto a Graph Database

3.2.2 Hierarchy-based Approach

As opposed to the instance-based approach, the hierarchy-based approach focuses
heavily on the relations between Java classes with respect to their inheritance hierarchy.
The concept is summarized in Algorithm 2.

Algorithm 2: hierarchy_based_map(instance)
Input : A Java instance

Output : Created sub-graph representing instance in a graph database

1 create a node in graph database;
2 set node.label equal to instance.className;

3 initialize attributes as a set of local attributes and references of instance;

4 foreach attribute of attributes do
5 if attribute can be stored as simple texts then
6 store attribute as a property in node;
7 else
8 create a child node by calling hierarchy_based_map(attribute);
9 create a relationship from node to child;

10 end
11 end

12 if instance inherits SuperClass then
13 create a super node by calling hierarchy_based_map((SuperClass) instance);
14 create a relationship INHERITS from node to super;
15 end

16 return node;

Explanatory notes:

Lines 1 and 2 These lines are functionally identical to Lines 1 and 2 of Algorithm 1.

Line 3 All local attributes and references (that are defined in the current class) of
the Java object are retrieved. The use of getter methods is optional, since local
attributes and references are always visible within their originating class.

Lines 5 - 10 These lines are functionally identical to Lines 5 - 10 of Algorithm 1.

Lines 12 - 15 As long as the current object still inherits some super class in a given hier-
archy (Line 12), a new node shall be created to represent the contents of this super
class. To achieve this, the same function hierarchy_based_approach is called but

44

3 Mapping 3D City Models in CityGML onto a Graph Database

now with the current instance cast to its super class as input argument (Line 13).
Similarly to the instance-based approach, how this node is created depends on
specific implementations, for example via recursive calls or overloaded functions.
If a recursive method is used, it must be able to distinguish between different
types of Java classes. On the other hand, if a number of overloaded functions
are employed, then each of them must handle one type of classes. Finally, a
relationship called INHERITS between the current node and its “super” node is
created indicating an inheritance relationship between the pair (Line 14).

Thus, the main differences between the hierarchy and instance-based approach are:

• During its call, the hierarchy-based mapping function considers only local at-
tributes and references of given Java objects, while the instance-based function
searches for all local and inherited attributes;

• The hierarchy-based approach additionally creates “super” nodes representing
the contents inherited from the super classes of given objects. These nodes are
referenced by the relationships INHERITS.

Consider the same example of class RectifiedGrid and its super classes Grid,
AbstractGeometry and AbstractGML from Section 3.2.1 as illustrated in Figure 3.3.
According to Algorithm 2, for the object of Grid type, a node labeled GRID is created in
the first call. Searching through its local attributes and references (Line 3 of Algorithm
2), the third column of Table 3.1 is found. Similarly to the instance-based approach,
node properties or additional child nodes are created depending on their data types,
(Lines 5 - 10). Since class Grid inherits AbstractGeometry (Line 12), the function
hierarchy_based_map is called the second time to create further nodes representing the
contents of this super class (Line 13). Here, the second column of Table 3.1 is built. As
AbstractGML is the super class of AbstractGeometry, additional nodes shall be created
accordingly in the third function call, where the remaining column of Table 3.1 is filled.
Finally, returning nodes of each class are connected via the INHERITS relationships
accordingly (Line 14). The exemplary end results are illustrated in Figure 3.5.

The advantage of this approach is that the inheritance hierarchy of Java classes is
represented explicitly in the value-based graph, as the chain of created nodes exposes
which attributes are contributed by which class within the hierarchy. Additionally,
since most functions can be recycled due to the explicit use of hierarchical modelling,
the implementation of this approach is much more compact. For instance, consider
the remaining RectifiedGrid object: Compared to the Grid instance, the mapping
process requires only one additional function implementation for class RectifiedGrid,
as other functions have already been implemented. Furthermore, since the handling
of each class is implemented only once, possible behaviour changes of the mapping

45

3
M

apping
3D

C
ity

M
odels

in
C

ityG
M

L
onto

a
G

raph
D

atabase

GRID

axisName
dimension

GRID_LIMITSSTRING_OR_REF

META_DATA_PROPERTY

CODE

m
et
a
D
a
ta
P
ro
p
er
ty

d
es
cr
ip
ti
on gridLimits

ABSTRACT_
GEOMETRY

axisLabel
gid

srsDimension
srsName
uomLabels

ABSTRACT_
GML

id

META_DATA_PROPERTY

CODE

n
a
m
e

INHERITSINHERITS

Figure 3.5: Result of mapping a Grid instance to a graph in the hierarchy-based approach. Each rounded rectangle
is a node, while (directed) arrows represent relationships between them. The INHERITS relationships
indicate inheritance between objects.

46

3 Mapping 3D City Models in CityGML onto a Graph Database

process against objects of these classes are easier to manage and maintain. However,
this approach does produce a significantly larger number of nodes compared to the
instance-based one. The deeper the class hierarchy is, the more nodes and INHERITS

relationships shall be created. In addition, the fact that attributes and references of an
object are stored in multiple nodes makes them more difficult to access from this object
node’s location. For example, in Figure 3.5, although the node labelled STRING_OR_REF

is connected to an ABSTRACT_GML node via the description relationship, it semantically
belongs to the GRID node on the right hand side. Thus, to travel between these two
locations, three relationships (one description and two INHERITS) and two nodes (one
ABSTRACT_GML and one ABSTRACT_GEOMETRY) are traversed, which generally complicates
the whole query process in such mapped graphs.

A summary of this approach’s advantages and disadvantages is shown below:

• Advantages:

– A clear object-oriented view of value-based nodes,

– Efficient implementation;

• Disadvantages:

– Significantly larger number of produced nodes,

– Complicated traversing between mapped nodes.

3.2.3 Combination of Instance and Hierarchy-based Approach

While the instance-based approach treats individual objects as sole data sources, the
hierarchy-based approach makes extensive use of the relations between objects with
respect to their class hierarchy. They both have advantages and disadvantages as
described previously. The third and final approach can be thought of as a median
between these two opposites: It takes advantage of objects’ relations and class hierarchy
like the hierarchy-based, but produces a compact graph similar to that of the instance-
based approach. An overview of its general concept is shown in Algorithm 3.

Explanatory notes:

Input parameter container A container node representing the entirety of a Java object.
All local and inherited contents of the object are stored in or connected to this
container.

Lines 1 - 5 If the container is not yet initialized (Line 1), a new node is created (Line
2) and labelled (Line 3). The container is then set to be this new node (Line 4).

Line 6 This line is functionally identical to Line 3 of Algorithm 2.

47

3 Mapping 3D City Models in CityGML onto a Graph Database

Algorithm 3: hybrid_map(instance, container)
Input : A Java instance

Output : Created node in a graph database

1 if container is null then
2 create a node in graph database;
3 set node.label equal to instance.className;
4 set container equal to this node;
5 end

6 initialize attributes as a set of local attributes and references of instance;

7 foreach attribute of attributes do
8 if attribute can be stored as simple texts then
9 store attribute as a property in container;

10 else
11 create a child node by calling hybrid_map(attribute, null);
12 create a relationship from container to child;
13 end
14 end

15 if instance inherits SuperClass then
16 call hybrid_map((SuperClass) instance, container);
17 end

18 return container;

Lines 8 - 13 These lines have similar functionalities to Lines 5 - 10 of Algorithm 1
as well as Lines 5 - 10 of Algorithm 2. However, instead of node, the variable
container is used. Furthermore, the function call in Line 11 is adjusted to have a
new empty container as additional parameter.

Lines 15 - 17 These lines are functionally similar to Lines 12 - 15 of Algorithm 2. How-
ever, the function hybrid_map has been adjusted to have an additional parameter,
which receives the value of the non-empty container. This means that in case of
an existing super class, the current container is extended with its contents. Also,
how this container is created and extended depends on specific implementations,
for example via recursive calls, or overloaded functions. If a recursive method is
used, it must be able to distinguish between different types of Java classes. On
the other hand, if a number of overloaded functions are employed, then each of
them must handle one type of classes.

48

3 Mapping 3D City Models in CityGML onto a Graph Database

The main difference between this “hybrid” and other approaches is the use of a
central expandable container node, where all (i.e. own and inherited) attributes and
references of respective Java object can be stored. Considering the previous example
of four classes RectifiedGrid, Grid, AbstractGeometry and AbstractGML as shown in
Figure 3.3, the following sequence of function calls illustrates the process of mapping a
Grid instance in this hybrid approach:

1. Call hybrid_map(instance, null):

• A GRID node as a container is created,

• axisName and dimension are added to the container’s properties,

• A GRID_LIMITS child node is attached to container;

2. Call hybrid_map((AbstractGeometry) instance, container):

• axisLabels, gid, srsDimension, srsName and uomLabels are added to the
container’s properties;

3. Call hybrid_map((AbstractGML) instance, container):

• id is added to the container’s properties,

• Child nodes STRING_OR_REF, META_DATA_PROPERTY and CODE are attached to
the container.

Therefore, the advantage of this hybrid approach is that it can achieve the same com-
pact but expressive mapped graphs as those produced by the instance-based approach,
while possessing the robust implementation based on hierarchical information as in
the hierarchy-based approach. The drawback is the loss of explicit class hierarchy in
created graphs. This is however acceptable, since hierarchical information is mainly
needed for the implementation of the mapping process and generally does not play a
central role in the comparison of value-based graphs.

A summary of this approach’s advantages and disadvantages is shown below:

• Advantages:

– Compact but expressive results;

– Robust implementation;

• Disadvantages:

– No explicit information about class hierarchies within created graphs.

Hence, to map Java objects to graph entities, the hybrid approach is employed in the
implementation of this research.

49

3 Mapping 3D City Models in CityGML onto a Graph Database

3.3 Connecting Mapped City Objects using XLinks

3.3.1 Existence of XLinks in Mapped Graphs

Severed Features Due to Partial Unmarshalling

Section 3.1 addresses the problems of parsing large CityGML documents regarding
the main memory consumption and proposes an approach dividing them into smaller
feature chunks with the help of JAXB and SAX (or StAX) in citygml4j. Each chunk
is then separately unmarshalled and consequently mapped onto sub-graphs in Neo4j
as described in Section 3.2. As a result, the explicit connection between split features
and their respective parent elements are lost during the process. Broadly speaking,
each created sub-graph representation of split features can be thought of as a graph
partition or an isolated region, of which the entire graph database consists. Thus, the
first objective of this section is to reconstruct lost connections between such isolated
regions and their respective parents as illustrated in Figure 3.2.

To enable the recovery of severed connections, before splitting, the library citygml4j
looks for the ID of affected feature. If none is available, a new unique one shall
automatically be generated. This ID is then stored in an XLink or href node, to which
the relationship between aforementioned feature element and its respective parent
now references (see Figure 3.6). This implicit information suffices for the connection
reconstruction but creates a large number of new XLink references.

Syntactic Ambiguities Between In-line and XLink Declarations

XLink is a simple yet practical means to reusing existing elements without having to
define them “in-line” repeatedly and thus reduces redundancies in XML documents
[Bra+08; DeR+10]. However, despite their syntactic differences, both XLink and in-line
declaration can be used to effectively define the same object. In order to match two
CityGML instance documents correctly and efficiently, such syntactic ambiguities must
be taken into account. Therefore, the second and last objective of this section is to
transform objects defined in-line or by XLink to an unambiguous graph representation.

3.3.2 Resolving XLinks within the Graph Database

Both above-mentioned objectives can be achieved by resolving XLink or href nodes in
a graph database, which can be realized in two different approaches using:

• A self-developed indexing mechanism with internal hash maps held in main
memory;

• Built-in indices available in Neo4j stored on disk.

50

3 Mapping 3D City Models in CityGML onto a Graph Database

BUILDING

BOUNDED_
BY_SURFACE

GROUND_
SURFACE

ROOF_
SURFACE

ID = G

ID = R

BOUNDED_
BY_SURFACE

BUILDING

BOUNDED_
BY_SURFACE

GROUND_
SURFACE

ROOF_
SURFACE

ID = G

ID = R

href
#R

href
#G

BOUNDED_
BY_SURFACE

split

connect

Figure 3.6: An illustration of the splitting mechanism per feature in citygml4j. Asso-
ciations to features from parent elements are replaced by corresponding
XLinks or hrefs, which can be used to connect split features back to their
original parents.

51

3 Mapping 3D City Models in CityGML onto a Graph Database

Resolving XLink Using Internal Hash Maps

Nodes containing IDs and hrefs are stored in two different hash maps per city model.
In Java, the ConcurrentHashMap instances can be employed as they support concurrency
of data retrievals and updates. Each time a node containing an ID is encountered during
the mapping process, a hash map entry consisting of this ID as key and a reference to
the node as value is generated on the fly. The href hash map is filled in the similar
manner. However, their major difference lies in the uniqueness of their keys:

• IDs are unique within a CityGML document, which means that each key of the
ID hash map must occur at most once;

• An href can appear multiple times within a CityGML document. Hence, the
structure of the href hash map must be adjusted accordingly so that multiple
identical keys are allowed.

To resolve XLinks, each key stored in the href hash map is searched through the ID
hash map. If a match is positive, both respective nodes are connected and the processed
href is removed from the hash map. The process repeats until no more href remains.

The main advantage of using internal hash maps is their fast response time. This
comes however at the cost of main memory consumption and thus may not be applicable
in memory-limited systems.

Resolving XLinks Using Neo4j Indices

Alternatively, XLink nodes can be resolved by employing (manual or legacy) indices in
Neo4j as described in Section 2.4.4. Similarly, two index sets for IDs and hrefs per city
model are required, which basically also store nodes in a hash map structure. Based on
specific implementations, multiple occurrences of href keys is possible in Neo4j.

The advantage of using Neo4j’s built-in indices is the lower main memory consump-
tion compared to the internal hash maps. However, this may slow down the mapping
process due to costly disk read and write operations. Moreover, sufficient additional
storage space must be reserved beforehand.

3.4 Calculating Minimum Bounding Boxes of Mapped City
Objects

Unlike previous steps described in Sections 3.1 to 3.3, which are required to create a
graph representation of a CityGML instance document, this last step (see Figure 3.2)
serves as preparation for different strategies utilizing minimum bounding boxes of
mapped city objects applied in the matching process in the next chapter.

52

3 Mapping 3D City Models in CityGML onto a Graph Database

3.4.1 Reverse-mapping Graphs to Java Objects

Ideally, in citygml4j, the minimum bounding box (i.e. minimum bounding rectangle in
2D or minimum bounding cuboid in 3D) of a spatial Java city object (e.g. Building)
can be computed by a built-in function that takes all of its geometric contents (e.g.
boundary surfaces) into account. However, this method has some limitations, namely:

• The function requires the input Java object to be completely available in main
memory as a whole, which is not always the case, since Section 3.1 shows that
large city objects are to be split into features;

• If the input Java object has an unresolvable XLink in runtime (e.g. XLink that
belongs to another feature not yet loaded in main memory), the function may not
be able to trace this reference.

By reversely transforming a sub-graph into its original Java object, the first limitation
can be overcome. Moreover, since Section 3.3 has already resolved all XLinks and
hence connected all sub-graphs, the second limitation will automatically be resolved,
as reversely created Java objects are connected and do not contain XLinks.

Conceptually, the reverse mapping of graphs to Java objects is the opposite of the
mapping process described in Section 3.2. However, they both are equally complex
and play an important role in different aspects of the whole image: while the mapping
process enables the creation of nodes and relationships from a given Java object and
ultimately the matching of two CityGML datasets, the reverse mapping produces
unambiguous Java objects from connected sub-graphs, which can then be marshalled
back to CityGML. Due to the time constraint of this research, only the reverse mapping
of Java objects of class Building and BuildingPart with their geometric properties
(such as RoofSurface, WallSurface, etc.) is implemented.

3.4.2 Calculating Minimum Bounding Boxes of Java Objects

With the help of the reverse mapping process, a Java object (e.g. Building) created from
a sub-graph can be passed to the previously mentioned built-in function in citygml4j
to calculate its minimum bounding box. However, this step is only necessary if the
sub-graph does not have the value of this minimum bounding box already (e.g. the
association boundedBy of BUILDING nodes). Moreover, if no envelope is available for
a city model, this value shall be successively computed on the fly from all minimum
bounding boxes of its buildings.

53

4 Matching 3D City Models in CityGML
using a Graph Database

This chapter describes the matching process of graphs mapped from CityGML datasets
as described previously in Chapter 3. Since nodes play a central role in graphs, the
matching process is based around the concept of their structure: Two graphs can
be matched by recursively comparing the properties and relationships of all of their
respective nodes. Thus, this chapter mainly focuses on matching nodes of provided
graphs. The general concept of comparing two graphs starting with their root nodes is
summarized in Algorithm 4.

Algorithm 4: match_node(node1, node2)

Input : node1 and node2 of graphs representing old and new city model resp.

1 match_properties(node1, node2);

2 match_relationships(node1, node2);

4.1 Comparing Node Properties

Actual data are mostly stored in node properties. Therefore, differences found in node
properties indicate possible deviations of respective data sources. The concept of this
step is shown in Algorithm 5.

Explanatory notes:

Lines 1 and 2 Property values stored in each node are retrieved. Depending on specific
implementations, a hash map can be employed to hold both property names and
their respective values.

Lines 3 - 10 Only values from the same property name (Line 3) are compared with
one another. If both are equal (Line 4), depending on specific implementations,
an action such as informing the matching process of this match may be taken
(Line 5). Otherwise, an UPDATE operation is created indicating that the old value

54

4 Matching 3D City Models in CityGML using a Graph Database

Algorithm 5: match_properties(node1, node2)

Input : node1 and node2 of graphs representing old and new city model resp.

1 let values1 be the set of all property values stored in node1;
2 let values2 be the set of all property values stored in node2;

3 foreach matched property_name of node1 and node2 do
4 if values1.property_name = values2.property_name then
5 inform matched property;
6 else
7 create an UPDATE operation;
8 end

9 remove property_name from node1 and node2;
10 end

11 foreach remaining property_name of node1 do
12 create a DELETE operation;
13 end

14 foreach remaining property_name of node2 do
15 create an INSERT operation;
16 end

of property_name has been changed in the new dataset (Line 7). An overview of
all edit operations is shown in Section 5.1. Then, this matched property name is
removed from both nodes. It is however recommended to use a temporary list
storing property names of both nodes, so that removing a matched one does not
interfere with the real contents of affected nodes.

Lines 11 - 13 Since node1 belongs to the graph representing the older city model, the
existence of unmatched properties (Line 11) indicates that they no longer exist
in the newer city model. Thus, a DELETE operation is created for each of such
properties.

Lines 14 - 16 An INSERT operation is created for each remaining properties in the
graph representing the newer city model (Line 15).

Due to the fact that properties in Neo4j must be unique in each node, Algorithm 5
guarantees that all properties of both nodes are processed.

55

4 Matching 3D City Models in CityGML using a Graph Database

4.2 Matching Node Relationships

As opposed to the comparison of node properties described in Section 4.1, matching
relationships between two given nodes is much more complex considering:

• In Neo4j, relationships can be traversed in both directions, namely OUTGOING and
INCOMING. The matching process must however remain consistent in one specific
direction while traversing through nodes, so that no node is processed twice. The
chosen direction is OUTGOING, since the matching process starts with root nodes;

• A relationship has a relationship type and optional properties as explained in
Section 2.4.4. The matching process uses only the former to distinguish and
compare node relationships;

• In contrast to node properties in Neo4j, a relationship may occur multiple times
for a given node. Its type however must be unique. For example, although a
BUILDING node can have several relationships referencing its BOUNDARY_SURFACE

child nodes, these relationships belong to a unique relationship type called
BOUNDED_BY_SURFACE.

Taking these into account, Algorithm 6 describes the main concept of matching
relationships of two given nodes, where:

Lines 1 - 19 Relationships of a matched type from both nodes are compared.

Lines 2 and 3 Since a node can theoretically have an arbitrary number of rela-
tionships from a single type and each relationship connects it with another
node, matching relationships inevitably leads to comparing child nodes of
the same relationship type. The matching process only traverses in OUTGOING

direction as explained above, hence child nodes are considered.

Lines 4 - 11 For each child node from the first input node (representing an
element from the older city model) (Line 4), the function find_candidate

searches for a corresponding candidate node from the second list of the newer
city model (Line 5) that it most likely matches. How this candidate is found
depends of specific implementations and predefined rules. If a candidate is
successfully found (Line 6), both two nodes are removed from their respective
lists (Lines 7 and 8) and matched (Line 9). To avoid endless loops caused by
cross-referencing, the mapping process ensures no directed circle exists in
the graph database. Since the function match_node in Algorithm 4 also calls
match_relationships, the whole process is considered recursive.

Lines 12 - 14 Child nodes from older city model that could not find a candidate
shall be deleted (Line 23).

56

4 Matching 3D City Models in CityGML using a Graph Database

Algorithm 6: match_relationships(node1, node2)

Input : node1 and node2 of graphs representing old and new city model resp.

1 foreach matched relationship_type of node1 and node2 do
2 children1← node1.get_children_by_rel_type(relationship_type);
3 children2← node2.get_children_by_rel_type(relationship_type);

4 foreach child1 of children1 do
5 child2← find_candidate(child1, children2);

6 if child2 is not empty then
7 remove child1 from children1;
8 remove child2 from children2;

9 match_node(child1, child2);
10 end
11 end

12 foreach remaining child1 of children1 do
13 create a DELETE operation;
14 end

15 foreach remaining child2 of children2 do
16 create an INSERT operation;
17 end

18 remove relationship_type from node1 and node2;
19 end

20 foreach remaining relationship_type of node1 do
21 children1← node1.get_children_by_rel_type(relationship_type);

22 foreach child1 of children1 do
23 create a DELETE operation;
24 end
25 end

26 foreach remaining relationship_type of node2 do
27 children2← node2.get_children_by_rel_type(relationship_type);

28 foreach child2 of children2 do
29 create an INSERT operation;
30 end
31 end

57

4 Matching 3D City Models in CityGML using a Graph Database

Lines 15 - 17 Similarly, child nodes from newer city model that could not find a
candidate shall be inserted (Line 16).

Line 18 The current relationship type is removed from both input nodes before
a new one is loaded. It is recommended to store relationship types in a
temporary list so that removing a relationship type does not interfere with
actual data stored in the graph database.

Lines 20 - 25 Unprocessed relationship types remaining in older city model indicate
that they no longer exist in the newer one. Hence, DELETE operations shall be
created (Line 23).

Lines 26 - 31 Similarly, INSERT operations (Line 29) shall be created for all unprocessed
child nodes remaining in the newer city model.

The function find_candidate in Line 5 of Algorithm 6 plays a decisive role in
terms of both efficiency and correctness of the whole matching process, as it dictates
which object pairs should be compared to one another. Depending on node types, a
corresponding implementation that can distinguish individual objects based on their
characteristics is required. In CityGML, the most important aspect that can be used as
a matching pattern among objects is their geometrical properties. Hence, the following
sections describe how geometries of most common objects can be taken into account
while searching for the best matching candidate in their graph representations.

4.2.1 Matching Geometry of Points

Points are a primitive notion, upon which all other geometric objects are built. In
citygml4j, a point can be represented by a number of various classes, which are listed
with their respective node labels in Neo4j in Table 4.1. Regardless of such diversity
in use cases, the geometric characteristics of a point remain unchanged: A point is
defined by an n-tuple, where n is a non-negative integer and equal to the dimension
of the underlying space. For instance, in one-dimensional domains (such as lines and
segments), n = 1 and thus, a point has one coordinate. In two-dimensional space (such
as areas), a point is represented by a 2-tuple (x, y), where x and y are its coordinates
in each dimension. A three-dimensional point (x, y, z) can be defined in the similar
manner. The most common point representations used in CityGML are two- and
three-dimensional.

Since points do not have length, area or volume, the only property employed to
distinguish them from others is their coordinates. In practice, however, coordinates of
the same point location in real world may differ due to:

58

4 Matching 3D City Models in CityGML using a Graph Database

Class name in citygml4j Node label in Neo4j
Coord COORD

Coordinates COORDINATES

DirectPosition DIRECT_POSITION

Point POINT

PointProperty POINT_PROPERTY

PosOrPointProperty-

OrPointRep

POS_OR_POINT_PROPERTY-

OR_POINT_REP

PosOrPointProperty-

OrPointRepOrCoord

POS_OR_POINT_PROPERTY-

OR_POINT_REP_OR_COORD

PointRep POINT_REP

Table 4.1: A list of point classes in citygml4j and their respective node labels in Neo4j.

• Spatial Reference System (SRS) or Coordinate Reference System (CRS): Since
the earth’s shape is an imperfect ellipsoid, a global reference system for all geo-
graphical entities leads to deviations in measured coordinates between locations.
Thus, they are often recorded in different reference systems based on geographical
locations called Spatial Reference System (SRS) or Coordinate Reference System
(CRS) [Bil16]. Each SRS defines its own specific map projection as well as coor-
dinate transformations between reference systems, which is out of scope of this
research. Therefore, input CityGML instance documents must be provided in the
same spatial reference system or a coordinate transformation must be performed
beforehand to bring both documents to the same reference system;

• Numeric and instrument errors: On the other hand, even provided in one ref-
erence system, coordinates of two representations of the same point may still
differ due to numerical (such as rounding) and instrument errors. Such minor
deviations should be tolerated. Thus, for a reference point P1 as centre, depending
on the chosen distance indicator, a neighbourhood N(ε) is constructed, where
ε is the maximum empirically predetermined allowed distance tolerance. For
example, if the Euclidean distance indicator is chosen, N(ε) shall be a circle (2D)
or a sphere (3D). However, to calculate this distance, expensive operations such
as square roots and multiplications are required. Since the research focuses on
matching 3D objects of massive datasets, for a small ε, it is often sufficient to
compare coordinates in each dimension, which requires only subtractions. In this
case, N(ε) shall be a square (2D) or a cube (3D) (see Figure 4.1). A point P2 is
geometrically matched with point P1 if, and only if, P2 is located inside of N(ε)

of P1 as formally described in Equation (4.1).

59

4 Matching 3D City Models in CityGML using a Graph Database

ϵ
ϵ

P1

P2

P3

x3x1x2

y1

y2

y3

x

y

O

(a) N(ε) as a square in 2D.

ϵ

ϵ

ϵ ϵ

ϵ
ϵ

P1

P2

P3

x

z

y

O

(b) N(ε) as a cube in 3D.

Figure 4.1: An illustration of the neighbourhood N(ε) of point P1 in 2D (4.1a) and 3D
(4.1b). Point P2 is located inside N(ε) and therefore geometrically matched
with P1. Point P3 on the other hand is located outside of N(ε) and thus
cannot be matched with P1.

P2(x2, y2, z2) is matched with P1(x1, y1, z1)

⇐⇒ P2 is located inside N(ε)

⇐⇒

|x2 − x1| ≤ ε

|y2 − y1| ≤ ε

|z2 − z1| ≤ ε.

(4.1)

Points geometrically matched by Equation (4.1) can be considered equal and thus no
further comparison is required.

4.2.2 Matching Geometry of Line Segments

In CityGML, a (closed) line segment is a part of a one-dimensional straight line and is
bounded by a start and end point called “control points”, which can be represented
as classes and labels in citygml4j and Neo4j respectively (see Table 4.1). A LineString

is a set of consecutive line segments with linear interpolation in between. Thus, a

60

4 Matching 3D City Models in CityGML using a Graph Database

LineString can be defined by at least one pair of control points representing one
segment. An end point of one segment must be a start point of the next one with the
exceptions of the start point of the first segment and the end point of the last segment,
which are allowed to be identical indicating the LineString is closed. Line segments
within a LineString are unique and must not intersect each other.

Since line segments and LineStrings are composed of points, they can geomet-
rically be matched using these points’ coordinates. All consecutive collinear line
segments (given an empirically predetermined distance tolerance) can be merged to-
gether and thus treated as a single segment during matching. As mentioned previously
in Section 4.2.1, all coordinates must be transformed into the same reference system
beforehand. Then, the geometries can be compared by iterating over all control points
and examining their spatial similarities with error tolerance ε taken into account (see
Equation (4.2) and Figure 4.2). LineStrings matched by Equation (4.2) can also be
considered equal, which means that no further comparison is required.

LineString L1 = (P11, P12, . . . , P1n) is matched with L2 = (P21, P22, . . . , P2n)

⇐⇒ Point P1i of L1 is matched with P2i of L2 ∀i ∈ [1, n] .
(4.2)

Figure 4.2: An example of two geometrically matched LineStrings (red and blue) each
consisting of three line segments.

A more general concept of LineStrings are curves, each of whose curve segments
may have a different interpolation method. A curve has a positive orientation. As
long as such curves are composed of points, Equation (4.2) can be applied in a similar
manner.

61

4 Matching 3D City Models in CityGML using a Graph Database

4.2.3 Matching Geometry of Rings

A ring in CityGML can be thought of as a closed LineString described in Section 4.2.2
(not as annulus as commonly called in mathematics). Buildings in CityGML make
extensive use of polygons (Section 4.2.4), whose boundaries are often represented as
LinearRings.

According to [Cox+04; Grö+12; Grö10], a finite sequence of points R = (P1, P2, . . . , Pn),
n ≥ 4, Pi = (xi, yi, yi) is a LinearRing if it fulfils the following requirements:

(i) The first and last point P1 and Pn are identical (closeness).

(ii) All points except the first and last one are different:

Pi 6≡ Pj ∀i, j ∈ [1, n− 1] , i 6= j.

(iii) Two arbitrary edges (Pi, Pi+1) and (Pj, Pj+1) with i, j ∈ [1, n− 1] , i 6= j do not
intersect one another at a start or end point. No self intersection exists.

A LinearRing can theoretically consist of non-coplanar points. In the context of this
research however, only planar LinearRings are considered. Figures 4.3a to 4.3d of
Figure 4.3 show some examples that do not fulfil at least one of the above-mentioned
requirements and thus are not qualified as LinearRings. On the other hand, the last
example shown in Figure 4.3e satisfies all requirements and is therefore a LinearRing.

In order to match LinearRings (henceforth simply called rings) correctly, the follow-
ing two geometrical properties are considered:

• Planar rings are arbitrarily oriented in three-dimensional space;

• Two geometrically equivalent rings can have different orders or numbers of points.

Rotating Rings to Reference Plane

Despite being planar (as assumed previously), rings can still have arbitrary orientations
in three-dimensional space. An example of two perpendicular rings is shown in
Figure 4.4. Furthermore, most available geometry libraries such as the Java Abstract
Window Toolkit (AWT) or Java Topology Suite (JTS) only function reliably in two-
dimensional domains. Thus, normal vectors (or orientations) of 3D rings are first
computed and compared. Only rings that have similar orientations and near-zero
distance between their spanned planes (given an empirically predetermined angle and
distance tolerance respectively) are to be rotated to a common reference plane (see
description below). Otherwise, the process terminates as these rings have different
orientations and are therefore geometrically unequal.

62

4 Matching 3D City Models in CityGML using a Graph Database

(a) Not a LinearRing due to
a missing edge and thus
not being closed.

(b) Not a LinearRing due to
the middle point occur-
ring twice.

(c) Not a LinearRing due to
self intersection of two di-
agonal edges.

(d) Not a LinearRing due to
all collinear points.

(e) A correct LinearRing of
four coplanar points.

Figure 4.3: Some examples illustrating the three requirements needed for LinearRings:
closeness (Figure 4.3a), single occurrence of points (Figure 4.3b) and no
self intersection (Figure 4.3c). Collinear points as shown in Figure 4.3d
do not form a LinearRing. Figure 4.3e on the other hand shows a proper
LinearRing. Adapted from [Grö10].

63

4 Matching 3D City Models in CityGML using a Graph Database

y

x

z

O

R1

R2

𝑛1

𝑛2

Figure 4.4: An example of two perpendicular (planar) rings R1, R2 given normal vectors
−→n1 , −→n2 in three-dimensional space Oxyz.

64

4 Matching 3D City Models in CityGML using a Graph Database

Given an arbitrary plane (representing a ring) R1 = (P1, P2, . . . , Pn) and a reference
plane R2 = (Q1, Q2, . . . , Qn), n ≥ 3 in three-dimensional space Oxyz with unit
normal vectors −→n1 , −→n2 respectively (see Figure 4.4). The following steps rotate R1 to
a plane R′1 parallel to R2:

1. Compute the cosine value of θ = 6 (−→n1 ,−→n2):

cos(θ) = −→n1 · −→n2 (4.3)

The case of cos(θ) ≈ ±1 (given an error tolerance) indicates that both −→n1 and
−→n2 either point to the same or opposite directions. In other words, R1 and R2

are already parallel to one another and thus no further action is required.

2. Find the unit rotation axis −→u = (x, y, z):

−→u =
−→n1 ×−→n2

‖−→n1 ×−→n2‖
(4.4)

3. Construct the rotation matrix M−→u (θ):

M−→u (θ) =

 xxC + c xyC− zs xzC + ys

yxC + zs yyC + c yzC− xs

zxC− ys zyC + xs zzC + c

 (4.5)

where:

c = cos(θ)
s = sin(θ) =

√
1− cos2(θ)

C = 1− c

4. Transform all points Pi with i ∈ [1, n] of R1 using the constructed rotation
matrix:

P′i = M−→u (θ) · Pi (4.6)

All transformed points P′i form the new rotated plane R′1 of R1, which is now
parallel to R2.

65

4 Matching 3D City Models in CityGML using a Graph Database

Matching Shapes of Rings

Since two geometrically equivalent rings may still have different orders or numbers
of points, their shapes bounded by these points are compared instead. Since the
comparison of such shapes are often complex, an open-source third-party geometry
library such as the geometry package java.awt.geom of the Abstract Window Toolkit
(AWT), or the Java Topology Suite (JTS) is applied for the two-dimensional rings rotated
previously. The AWT represents rings as Area1 and their points as Path objects, where:

• A Path describes the outline of an Area but may have different point orders or
numbers of segments. Path objects stored in Area are always non-empty and
non-overlapping. Empty paths are discarded, while overlapping paths shall be
decomposed to separate non-overlapping components;

• Area objects are always closed. If an unclosed path or sub-path is given, it shall
be automatically enclosed. If such attempt failed, an empty Area is returned.

Moreover, some of the most relevant functions offered by this package are:

boolean contains(double x, double y)

Examines whether a point with given coordinates x and y is located inside the
considered Area;

boolean contains(Rectangle2D rect)

Examines whether the current Area entirely contains the given rectangle;

boolean equals(Area other)

Tests whether the geometries of the two objects are exactly equal;

void subtract(Area other)

Excludes the area of other from the interior of current object.

Since the function equals(Area other) examines whether the two given geometries
are identical, it does not always yield correct results as two geometrically equivalent
rings can have different orders or numbers of points. Based on the fact that two
geometrically equivalent objects are completely contained in one another, the function
contains(Rectangle2D rect) can be applied using the minimum bounding rectangle
of said objects. However, this also does not yield correct results, as rings are allowed
to have shapes different than rectangles as well as two different shapes may have the
same minimum bounding rectangle. Alternatively, based on the fact that the subtracted

1http://docs.oracle.com/javase/8/docs/api/java/awt/geom/Area.html

66

http://docs.oracle.com/javase/8/docs/api/java/awt/geom/Area.html

4 Matching 3D City Models in CityGML using a Graph Database

interior of two geometrically equivalent objects is empty, the function subtract(Area

other) is applied, where an empty result indicates the geometric equality of given
objects. This function generally gives reliable results in most cases but fails to do so in
scenarios, where numeric and instrument errors in measured point coordinates persist.

Therefore, specifically taking error tolerance into account, the class Area is extended
with an additional function called fuzzy_contains(Area other) (see Algorithm 7),
which returns true if the current Area completely contains other, otherwise false. The
key idea is to also consider all other eight “fuzzy” locations on the boundary of the
neighbourhood N(ε) (see Section 4.2.1) of each point along the path of other. Line 11
of Algorithm 7 employs the function contains(double x, double y) of class Area in
AWT shown previously. Then:

Ring R1 is matched with R2

⇐⇒ Area A1 of R1 and A2 of R2 are geometrically equivalent

⇐⇒ A1.fuzzy_contains(A2) and A2.fuzzy_contains(A1).

(4.7)

Algorithm 7: fuzzy_contains(other_area)
Input : An Area object other_area

Output : true if this completely contains the interior of other_area, else false

1 let path be the set of all points describing the outline of other_area;

2 foreach point p in path do
3 p1← (p.x− ε, p.y);
4 p2← (p.x− ε, p.y+ ε);
5 p3← (p.x, p.y+ ε);
6 p4← (p.x+ ε, p.y+ ε);
7 p5← (p.x+ ε, p.y);
8 p6← (p.x+ ε, p.y− ε);
9 p7← (p.x, p.y− ε);

10 p8← (p.x− ε, p.y− ε);

11 if this does not contain any of {p, p1, p2, . . . , p8} then
12 return false;
13 end
14 end

15 return true;

Ring candidates matched by Equation (4.7) require no further comparison.

67

4 Matching 3D City Models in CityGML using a Graph Database

4.2.4 Matching Geometry of Polygons

Polygons are extensively used in CityGML as a means to describe surfaces of e.g.
buildings and building parts. A polygon consists of exactly one exterior ring and an
arbitrary number of interior rings, all of which can be represented by LinearRings and
must be on the same plane. While an exterior ring defines the outline, interior rings
define holes in a polygon. Hence, the following rules must hold in polygons [Cox+04;
Grö+12; Grö10]:

• Interior rings are completely included inside the polygon, whose outline is
bounded by a respective exterior ring;

• No interior ring intersects or contains another in the same polygon;

• Interior rings may touch the exterior ring at a finite number of points as long as
the inner area of the respective polygon remains however connected.

An illustration of the above-mentioned requirements regarding polygon exterior and
interior rings can be found in Figure 4.5.

Since exterior and interior rings are basically LinearRings, they can be represented
by the Area class of the AWT. Moreover, as interior rings define holes to be excluded
from the polygon’s inner area, the function substract(Area other) described in Sec-
tion 4.2.3 can be applied.

Thus, to compare the geometry of two polygons:

1. Rotate one polygon to a plane parallel to that of the other, or rotate both
polygons to a predefined reference plane using Equations (4.3) to (4.6) in
Section 4.2.3;

2. Then, for each polygon, create an Area object representing its exterior;

3. For each polygon, subtract all its interior areas from the constructed exterior
area by calling the function subtract(Area other) introduced in Section 4.2.3;

4. The modified Area objects then represent the given polygons. To compare
their geometries, simply apply Equation (4.7) in Section 4.2.3. Geometrically
matched polygons are also considered equal and require no further comparison.

Furthermore, these steps can be extended for the comparison of Surface,
OrientableSurface, MultiSurface and CompositeSurface objects.

68

4 Matching 3D City Models in CityGML using a Graph Database

Exterior

Interior

(a) Not a Polygon due to the in-
terior ring (red) not being in-
cluded in the exterior ring.

Exterior

Interior

(b) A correct Polygon due to the
interior ring (green) being in-
cluded in the exterior ring.

Exterior

Interior

Interior In
terior

(c) Not a Polygon due to the inte-
rior rings (red) overlapping or
containing other interior rings.

Exterior

InteriorInterior

(d) A correct Polygon due to the
interior rings (green) not over-
lapping one another.

Exterior

(e) Not a Polygon due to the inte-
rior rings (red) dividing the in-
terior of the polygon into two
separate parts.

Exterior

Interior

(f) A correct Polygon due to
the interior ring (green) only
touching the exterior ring at a
single point.

Figure 4.5: Some examples illustrating the three requirements needed for interior
boundaries of Polygons: they are completely enclosed by the exterior ring
(Figures 4.5a and 4.5b), do not overlap or contain other interior boundaries
(Figures 4.5c and 4.5d) and do not divide inner area while touching the
exterior ring at a finite number of points (Figures 4.5e and 4.5f). Adapted
from [Grö10].

69

4 Matching 3D City Models in CityGML using a Graph Database

4.2.5 Matching Geometry of Solids

A solid geometry represents a rigid body and is bounded by a set of polygons.
According to [Cox+04; Grö+12; Grö10], the set C = {S1, S2, . . . , Sn}, n ≥ 4 containing

boundary polygons Sk of a given solid must fulfil the following requirements:

(i) The intersection of two polygons Sk and Sl of C with k 6= l and k, l ∈ [1, n] is either
empty or an edge shared between LinearRings of both respective polygons;

(ii) Each edge ek = Pk
i Pk

i+1 of a LinearRing Rk = (Pk
1 , Pk

2 , . . . , Pk
mk
), defining a polygon

Sk ∈ C is used exactly once for an edge el = Pl
j Pl

j+1 of a LinearRing Rl =

(Pl
1, Pl

2, . . . , Pl
ml
), defining a polygon Sl ∈ C, with Pk

i = Pl
j+1 and Pk

i+1 = Pl
j ;

(iii) The normal vectors of all polygons Sk ∈ C point to the outside of the solid;

(iv) All polygons Sk ∈ C are connected forming the dual graph GC = (VC, EC), where
VC and EC are the set of nodes and edges respectively. Each node v ∈ VC represents
exactly one polygon of C and edge e = (vk, vl) represents an edge shared between
two polygons Sk and Sl of C;

(v) For each vertex P of a LinearRing of a polygon in C, the graph GP = (VP, EP) built
by only polygons and edges touching P is connected. Each node v ∈ VP belongs
to a polygon, whose ring contains P. Each edge e = (vk, vl) ∈ EP represents an
edge shared between two polygons Sk and Sl that touch P.

The first and second condition dictate that surfaces of a given solid have no holes,
while the fourth and fifth condition allow only connected inner volume of the solid.

A matching candidate of a given solid can be determined by using its footprint (i.e.
its ground surface as a polygon in the Oxy plane) or minimum bounding box (see
Section 4.2.6). However, unlike previously discussed geometric entities, matched solid
candidates may still be unequal due to the fact that different solids can have the same
footprint or minimum bounding box. Therefore, found candidates are further compared
by successively matching their boundary polygons as described in Section 4.2.4.

4.2.6 Matching Geometry of Minimum Bounding Boxes

In contrast to points, line segments, rings and polygons, the minimum bounding boxes
of e.g. buildings and building parts are three-dimensional geometric objects. The
minimum bounding box of a building is calculated by all its contained geometries, such
as ground, wall and roof surfaces (see Section 3.4). The ability to identify buildings
correctly based on their geometrical properties, i.e. minimum bounding boxes, play a
critical role in the matching process.

70

4 Matching 3D City Models in CityGML using a Graph Database

In order to match the geometry of two minimum bounding boxes, several different
approaches exist per number of dimensions, for instance:

• Match by their centres (1D);

• Match by their shared footprint (2D);

• Match by their shared volume (3D).

The first approach is simple but tends to yield a large number of false positive results,
since representing a three-dimensional entity as a one-dimensional point inevitably
leads to information loss and geometrical ambiguities. It is therefore difficult to
determine a suitable error tolerance ε for matching buildings’ centres: it should be
small enough to limit the number of found nearest centres, but large enough so that
the correct match is obtained in the results.

The second approach compares shared footprints (in 2D) of given minimum bounding
boxes and thus yields generally more reliable results. However, it cannot distinguish
objects’ heights as illustrated in Figure 4.6. Thus, to make full use of all information
available in each dimension, this approach is extended with the third dimension. As a
result, the third approach is proposed, which matches minimum bounding boxes based
on their shared volume.

Figure 4.6: An example of two buildings, whose minimum bounding boxes have the
same footprint (left) but different heights (right).

71

4 Matching 3D City Models in CityGML using a Graph Database

Given two arbitrary minimum bounding boxes represented by lower corner
points P = (xP, yP, zP), R = (xR, yR, zR) and upper corner points Q = (xQ, yQ, zQ),
S = (xS, yS, zS) respectively as illustrated in Figure 4.7, where:{

xP ≤ xQ ∧ yP ≤ yQ ∧ zP ≤ zQ

xR ≤ xS ∧ yR ≤ yS ∧ zR ≤ zS

Their own and shared volume are defined by:

VPQ = (xQ − xP) · (yQ − yP) · (zQ − zP) (4.8)

VRS = (xS − xR) · (yS − yR) · (zS − zR) (4.9)

and

Vshared = dx · dy · dz (4.10)

where:

dx = max (min (xS, xQ)−max (xR, xP) , 0)

dy = max (min (yS, yQ)−max (yR, yP) , 0)

dz = max (min (zS, zQ)−max (zR, zP) , 0)

The computed shared volume Vshared is then compared relatively to the volumes of
both minimum bounding boxes:

pPQ =
Vshared

VPQ
(4.11)

pRS =
Vshared

VRS
(4.12)

These computed ratios are finally tested against a given threshold H ∈ (0, 1], which
only accepts equal or exceeding values as a match:

Minimum bounding boxes (P, Q) and (R, S)

are spatially matched

⇐⇒
{

pPQ ≥ H

pRS ≥ H
(4.13)

72

4 Matching 3D City Models in CityGML using a Graph Database

The comparison of both ratios to the predefined threshold H in Equation (4.13) is
necessary to exclude scenarios, where a minimum bounding box completely contains
the other despite both being not spatially matched. For example, assuming the reference
minimum bounding box (P, Q) is completely included in a much larger (R, S). The
shared volume Vshared is then equal to VPQ. As a result, the ratio pPQ becomes 1. Since
0 < H ≤ 1, the comparison pPQ ≥ 1 is always satisfied. If this were the only condition,
the minimum bounding box (R, S) would be matched with (P, Q), which is not the case
in this scenario. To eliminate this, the second comparison pRS ≥ H is also examined.
With a big enough H, (R, S) is excluded as a result due to its volume being much larger
than that of (P, Q) as assumed previously causing pRS to decrease below H.

Therefore, choosing a good and big enough threshold H plays a key role in this
step. If H is too high however, no matched minimum bounding box might be found if
reasonably large numerical or instrument errors exist. On the other hand, too small
H could lead to many false positives. The values of H can be empirically determined
based on the error tolerances allowed in the input datasets. Note that a positive match
does not always guarantee geometric equality, as different shapes can have the same
minimum bounding box.

P

Q

R

S

xP xR xQ xS
x

z

y

yP

yR

yQ

yS

O

zS
zQ

zR
zP

Figure 4.7: An example of the shared volume (red) of two minimum bounding boxes
(blue and green), whose lower corner points are P, R and upper corner
points are Q, S respectively.

73

4 Matching 3D City Models in CityGML using a Graph Database

4.3 Spatial Matching Strategies

Section 4.2, particularly Section 4.2.6, determines whether two geometric entities are
equivalent and thus can be matched. However, repeatedly matching all available
geometric objects is generally computationally expensive, especially if a large number
of objects of the same type exist. For instance, the CityGML dataset of Berlin contains
approximately 555,000 buildings, comparing the geometry of each possible building
pair from each city model results in a quadratic time complexity O(n2). Thus, to
enable more efficient object retrieval and querying based on their spatial properties,
two matching strategies are employed in the course of this research, namely:

• Organizing buildings in a grid layout,

• Organizing buildings in an R-tree.

Both approaches make use of the city models’ footprints to assign their buildings
in the respective spatial structure, so that the best matching candidates of a given
building can efficiently be found. Note that this step serves as the first spatial filtering
level, which is fast but may return more than one found candidates (e.g. all buildings
contained in the same tile or all buildings whose minimum bounding boxes intersect
with a rectangle stored in an R-tree). To narrow these down to one matching candidate,
the second filtering level described in Section 4.2 is applied.

4.3.1 Matching in a Grid Layout

By dividing the city model into smaller tiles arranged in a grid layout, it is much more
efficient to retrieve a building based on its spatial properties compared to the classic
approach, where each possible pair of buildings is successively examined.

Constructing the Grids

To construct a grid for each city model, the following steps are taken:

1. Information such as coordinates of the lower and upper corner are extracted from
its envelope or bounding rectangle. If such source is not available, it shall be
computed from all of its buildings’ minimum bounding boxes as described in
Section 3.4. Then, depending on the predefined number of allowed tiles in each
dimension, their heights and widths are computed. Alternatively, if tile sizes are
given, the total numbers of tiles in each dimension are computed;

2. Furthermore, since two city models are compared using grids, their structures
must coincide with one another as illustrated in Figure 4.8. In other words, no

74

4 Matching 3D City Models in CityGML using a Graph Database

tile from the first grid overlaps with more than one tiles from the second one.
Non-coincident grid layouts may prevent the matching process from functioning
properly. Therefore, a common point of reference (e.g. the point of origin O(0, 0))
is selected for both grids. Note that this point must be in the same reference
system as that of the two city models as explained in Section 4.2.1;

3. Then, for each city model, a grid is constructed. Moreover, an additional grid
boundary made of tiles is created to ensure all buildings are completely contained
in the grid and assigned to their respective tile (see Section 4.3.1).

An example explaining these steps can be found in Figure 4.9.

(a) Non-coincident grid layouts. (b) Coincident grid layouts.

Figure 4.8: Examples of non-coincident (Figure 4.8a) and coincident (Figure 4.8b) grid
layouts.

Assigning Buildings to Respective Tiles

To assign buildings to the grid constructed from the previous step, their spatial locations
relative to the grid are considered, where the footprint of a building may be completely
contained in a tile or overlap several tiles simultaneously. In such cases, it is often
difficult to determine which tile the building should be assigned to. Incorrectly assigned
buildings may lead to incorrect insert and delete operations as the process proceeds.
Therefore, to prevent this, a building shall be assigned to all tiles, with which the
footprint of its minimum bounding box overlaps.

75

4 Matching 3D City Models in CityGML using a Graph Database

Figure 4.9: An illustration of grid construction. Based on the envelope (dashed) of the
footprint (grey) of a given city model, a grid layout (white) is constructed.
An additional boundary made of tiles (green) is also created to ensure all
buildings assigned to this grid in the next step are included.

To determine whether a building footprint overlaps with a tile, several approaches
can be applied by using:

• The footprint’s centre,

• The footprint’s lower or upper point.

The overlapping test is then performed with the chosen point as described in Algo-
rithm 8.

Explanatory notes:

Line 1 A reference point representing the given building in the grid is initialized. This
point can either be the centre or lower or upper corner point of the building
footprint as listed previously.

Line 2 A corresponding tile containing the chosen point is found. This can be done by
comparing the point’s coordinates with those of tile corners in the grid.

Line 3 γ is the allowed distance tolerance near tile borders. In case the distance
between the selected point and a tile border is less than or equal to γ, it belongs
to both tiles sharing this border.

76

4 Matching 3D City Models in CityGML using a Graph Database

Algorithm 8: assign(building, grid)

Input : A building to be assigned in grid

1 let p be the centre (or lower/upper corner point) of the building’s footprint;
2 find tile tile of grid that contains p;

3 let γ be the distance tolerance allowed near tile borders;

4 left← distance(p, tile.left_border) ≤ γ;
5 right← distance(p, tile.right_border) ≤ γ;
6 down← distance(p, tile.down_border) ≤ γ;
7 up← distance(p, tile.up_border) ≤ γ;

8 tile.add(building);

9 foreach direction of {left, right, down, up, up.left, up.right, down.left, down.right} do
10 if direction then
11 tile.get_neighbor(direction).add(building);
12 end
13 end

Lines 4 - 7 The distances between the chosen point p to all four borders of the current
tile are computed. If they are within the tolerance range of γ, the respective
direction shall be flagged.

Line 8 Assign given building to current tile.

Lines 9 - 13 Depending on flagged directions, the given building may be assigned to
more than one tiles contained in the respective 8-neighbourhood.

Note that although Algorithm 8 holds for all positive tile heights and widths, it is
recommended to assign them appropriate values. Too small tiles can lead to significant
redundancies as a building can be assigned to many tiles simultaneously. Too big tiles
may however contain too many buildings and thus slows down the matching process.

Figure 4.10 illustrates how buildings are assigned to tiles accordingly. As shown in
Figures 4.10a to 4.10d and 4.10f to 4.10i, a building can be assigned to one or more
neighbours of the current tile. Therefore, the additional boundary made of tiles created
previously (Figure 4.9) is necessary, as otherwise some buildings may be assigned to
non-existing tiles located outside of the city model’s footprint.

77

4 Matching 3D City Models in CityGML using a Graph Database

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: An illustration of possible combinations that may occur while assigning
buildings (dashed) to tiles in a grid using its centre. Assigned tiles are
shown in grey.

78

4 Matching 3D City Models in CityGML using a Graph Database

Matching Buildings using the Grid Layout

With all preparations completed, the final step is to compare buildings of two city
models spatially using their grid layouts as described in Algorithm 9 and illustrated in
Figure 4.11.

Explanatory notes:

Line 1 The coincident tiles of both grids are considered.

Lines 2 - 21 Each spatially corresponding pair of tiles in the coincident area from both
city models are iterated (Line 2), where:

Lines 3 - 14 For each assigned building in one tile (Line 3), its geometric equiva-
lence is searched from the other corresponding tile of the considered pair
(Line 4). The function find_by_geometry is described in Section 4.2.6. If a
spatially equivalent building is found (Line 5), both buildings are removed
from all but their current respective tiles (Line 6). Then, they can be matched
using the function match_node (Line 7) introduced in Algorithm 4. Other-
wise, the building is removed from its current respective tile (Line 9) as it
does not have a valid match in this tile. If this building do not belong to any
tile afterwards (Line 10), a DELETE operation shall be created (Line 11).

Lines 15 - 20 On the other hand, unmatched buildings in the coincident area of
the new city model are removed from their respective tiles (Line 16). If such
buildings do not belong to any tile afterwards, an INSERT operation shall be
attached (Line 18) for each building.

Lines 22 - 29 The remaining non-coincident tiles of the old city model are iterated
(Line 22). Assigned buildings (Line 23) are removed from their respective tiles
(Line 24). If these buildings do not belong to any tile afterwards (Line 25), a
DELETE operation shall be created (Line 26).

Lines 30 - 37 Similarly, remaining buildings from the new city model shall be removed
from their respective tiles and eventually INSERT operations shall be created.

The first advantage of Algorithm 9 is that it makes use of the grid layout to divide
city models into smaller tiles and process them locally. With good tile height and width
values, the query response time in a grid layout is significantly reduced. Moreover, due
to the nature of grids, the approach is compatible with multi-threading without heavy
implementation tweaks and adjustments (see Chapter 6). The grid layout’s efficiency
however depends strongly on its tile sizes and buildings’ spatial distribution, which
can only be determined empirically. In the worst case scenario, all buildings of a city
model might be assigned to a single tile.

79

4 Matching 3D City Models in CityGML using a Graph Database

Algorithm 9: match_grid(grid1, grid2)

Input : Grids grid1 and grid2 of old and new city model respectively

1 let coincident be the coincident area of both grid1 and grid2;
2 foreach corresponding pair tile1 and tile2 in coincident do
3 foreach assigned building1 in tile1 do
4 building2← tile2.find_by_geometry(building1);
5 if building2 is not empty then
6 remove building1, building2 from all tiles but tile1, tile2 respectively;
7 match_node(building1, building2);
8 else
9 remove building1 from tile1;

10 if building1 does not belong to any tile then
11 create a DELETE operation;
12 end
13 end
14 end
15 foreach unmatched building2 assigned to tile2 do
16 remove building2 from tile2;
17 if building2 does not belong to any tile then
18 create an INSERT operation;
19 end
20 end
21 end
22 foreach non-coincident tile1 in grid1 do
23 foreach assigned building1 in tile1 do
24 remove building1 from tile1;
25 if building1 does not belong to any tile then
26 create a DELETE operation;
27 end
28 end
29 end
30 foreach non-coincident tile2 in grid2 do
31 foreach assigned building2 in tile2 do
32 remove building2 from tile2;
33 if building2 does not belong to any tile then
34 create an INSERT operation;
35 end
36 end
37 end

80

4 Matching 3D City Models in CityGML using a Graph Database

DELETE DELETE DELETE

DELETE

DELETE MATCHMATCH

INSERTINSERT

MATCHMATCH

INSERT

INSERT

INSERT

Figure 4.11: An illustration of matching city models by their grid layouts. Buildings
in coincident tiles are matched, while those of the remaining tiles of old
and new city model are deleted and inserted respectively. Note that a
DELETE and INSERT operation is only executed when the affected building
no longer belongs to any tile.

A summary of this strategy’s advantages and disadvantages is shown below:

• Advantages:

– High efficiency and reduced runtime,

– Compatibility with multi-threading;

• Disadvantages:

– Strong dependence on the empirically determined tile sizes and buildings’
spatial distribution.

81

4 Matching 3D City Models in CityGML using a Graph Database

4.3.2 Matching in an R-tree

R-trees (as introduced in Section 2.5.1) are an exemplary solution for many problems
involving spatial access methods. Since R-trees are balanced, they generally offer
a logarithmic time complexity on search operations, which is a significant boost in
performance, especially when hundreds of thousands of buildings are to be processed.

Constructing the R-tree

The construction of an R-tree occurs in the plug-in Neo4j Spatial (Section 2.5.2), where
R-trees are represented as index layers. Information such as coordinates of lower
and upper corner point of city models are not needed beforehand, since an R-tree
automatically expands its envelope on the fly. Footprints and minimum bounding
boxes of buildings are however required. While iterating, the footprint of each building
is extracted or computed if not available (as described in Section 3.4), which then
represents its respective building in the R-tree. Splitting and merging nodes in an
R-tree are handled by Neo4j Spatial so that the tree structure is always balanced.

Depending on specific implementations, only one R-tree for the newer city model or
an R-tree for each city model may be constructed.

Assigning Buildings to the R-tree

The most important task while expanding an R-tree is to link spatial information to
data entities it represents, i.e. to link R-tree nodes to their respective buildings. To
achieve this, a suitable adapter is needed (Figure 2.14), where a connection between an
R-tree node and the minimum bounding box of respective building is established.

Like grid layouts, assigning buildings to an R-tree is executed on the fly while
processing their minimum bounding boxes. However, as opposed to grids, a building
is assigned to exactly one R-tree node (see Figure 2.14).

Matching Buildings using the R-tree

Algorithm 10 describes the process of matching buildings in two city models using an
R-tree.

Explanatory notes:

Line 1 The R-tree layer of the newer city model is considered.

Lines 2 - 10 The main part of the matching process. While iterating over each building
in the older city model (Line 2), its matching candidates from the other city
model are found by executing the intersection query in the R-tree (Line 3). These

82

4 Matching 3D City Models in CityGML using a Graph Database

Algorithm 10: match_rtree(city1, city2)

Input : City models city1 and city2 to be matched using an R-tree

1 let rtree be the R-tree layer representing city2;

2 foreach building1 in city1 do
3 candidates← rtree.find_intersection(building1);
4 building2← find_by_geometry(candidates);

5 if building2 is not empty then
6 match_node(building1, building2);
7 else
8 create a DELETE operation;
9 end

10 end

11 foreach remaining building2 in city2 do
12 create an INSERT operation;
13 end

candidates are then geometrically filtered again so that only the best candidate
remains (Line 4). The function find_by_geometry is described in Section 4.2.6
and thus the same as in Line 4 from Algorithm 9. If no best candidate is
found, a DELETE operation shall be created for the reference building (Line 8).
Otherwise (Line 5), both buildings are matched (Line 6). The match_node function
is introduced in Algorithm 4 and hence the same as in Line 7 from Algorithm 9.

Lines 11 - 13 For each remaining unmatched building in the newer city model (Line 11),
an INSERT operation shall be created (Line 12).

The function find_intersection in Line 3 from Algorithm 10 is executed in Neo4j
Spatial. The function searches for all rectangles that touch or intersect with given entity,
from which linked buildings are retrieved with the help of the constructed adapter.
Although R-trees generally offer a logarithmic time complexity in such operations,
their efficiency depends greatly on the maximum number of entries M in each internal
node (Section 2.5.1). Too large M results in a much shallower tree but increases the
number of intersection tests in each internal R-tree node. On the other hand, too small
M significantly expands the R-tree’s depth and thus increases the number of levels
traversed from the root node to each leaf.

To find remaining unmatched buildings in the newer city model in Line 11 of
Algorithm 10, an internal list containing all of its buildings can be used. Buildings

83

4 Matching 3D City Models in CityGML using a Graph Database

that have a match shall be removed from this list. Then, remaining elements represent
unmatched buildings in the newer city model. The approach is fast but may require
a large amount of main memory. Alternatively, an auxiliary node can be created and
referenced each time two buildings are matched. Eventually, unreferenced buildings
are also unmatched. This does not consume much main memory but may increase the
total number of nodes created in the graph database. Finally, the third approach uses
an additional R-tree layer for the older city model. Buildings from the newer city model
that do not intersect with any rectangles of this R-tree are the remaining unmatched
ones. This approach provides fast search operations but may increase the mapping
time of the older city model due to the R-tree being expanded on the fly.

The first advantage of using an R-tree is, in particular, the logarithmic time complexity
in most query operations. Moreover, with the help of Neo4j Spatial, employing an R-
tree while matching is simple and straightforward. In addition, as opposed to the grid
layout, each building is assigned to exactly one R-tree node, which reduces reference
redundancies and therefore saves runtime spent on matching these redundant objects.
However, Neo4j Spatial is not an official plug-in implemented by Neo4j and thus not
always compatible with the newest versions of Neo4j. As a result, a downgrade to
earlier releases of Neo4j is often required.

A summary of this strategy’s advantages and disadvantages is shown below:

• Advantages:

– High efficiency and performance in logarithmic time complexity,

– Simplicity and straightforwardness;

• Disadvantages:

– Incompatibility with newest versions of Neo4j. An older release of Neo4j is
therefore required.

84

5 Updating 3D City Models in CityGML
using a Graph Database

The matching process introduced in Chapter 4 creates edit operations on the fly when
deviations are detected. No actual data are changed during the process and only edit
operations are attached to affected source nodes, so that the updating process in this
chapter can execute them accordingly.

5.1 Edit Operations

5.1.1 Class Model

The general model of all edit operations is illustrated in Figure 5.1, where:

• Abstract class EditOperation is the super class of all edit operations. It defines
a targetNode, to which the edit operation is attached, and a flag isOptional

indicating whether said operation should be executed. This flag is mainly used
for scenarios where objects are geometrically equivalent but are represented by
different syntactic methods (see Section 5.1.2).

• Abstract class EditPropertyOperation defines all edit operations created on
node properties (i.e. object attributes). Thus a propertyName is needed to address
an affected property. There are three sub-types of edit operations on node
properties, namely:

– InsertPropertyOperation defines an insertValue of arbitrary type,

– UpdatePropertyOperation defines a newValue and oldValue of arbitrary
type, where the oldValue shall be replaced by newValue,

– DeletePropertyOperation requires no further attribute.

• Abstract class EditNodeOperation defines edit operations on the node level (i.e.
geo-objects) and has two subclasses, namely:

– InsertNodeOperation defines an insertNode reference of type Node and an
insertRelType of RelationshipType, both of which are required to uniquely
identify the insert position,

85

5 Updating 3D City Models in CityGML using a Graph Database

– DeleteNodeOperation requires no further attribute.

Furthermore, no update operation for nodes is required since it can be realized
by a series of EditPropertyOperation objects on their properties.

class EditOperation

EditOperation

+ isOptional: boolean

+ targetNode: Node

EditPropertyOperation

+ propertyName: String

EditNodeOperation

InsertPropertyOperation

+ insertValue: Object

UpdatePropertyOperation

+ newValue: Object

+ oldValue: Object

DeletePropertyOperation

InsertNodeOperation

+ insertNode: Node

+ insertRelType: RelationshipType

DeleteNodeOperation

Figure 5.1: A UML class diagram of all edit operations. EditPropertyOperation and
EditNodeOperation objects are shown in yellow and green respectively.

5.1.2 Practical Example

In this section, an example of comparing two CityGML instance documents is demon-
strated. Each document contains one building, whose footprint geometry is solely
defined by a square-shaped polygon in two-dimensional space Oxy. Both polygons are
geometrically equivalent but the first polygon has a single exterior and interior, while
the second has one exterior and two interiors (see Figure 5.2). Moreover, these polygons
are defined in various syntactic ways allowed in CityGML as shown in Listings 5.1
and 5.2. For instance:

• The interior of the first polygon is bounded by a ring defined by a posList, while
that of the second consists of a series of individual points pos;

86

5 Updating 3D City Models in CityGML using a Graph Database

• The first polygon contains a hole bounded by a series of pointProperty elements,
while the two holes of the second polygon are each defined by a posList.

O 1 2 3 4

1

2

3

4

y

x

(a) First polygon.

O 1 2 3 4

1

2

3

4

y

x

(b) Second polygon.

Figure 5.2: An illustration of two geometrically equivalent polygons defined in two
CityGML documents. The first polygon (left, Figure 5.2a) consists of an inte-
rior (grey) containing a hole (white). The second polygon (right, Figure 5.2b)
consists of an interior (grey) with two holes (white).

Listing 5.1: First sample CityGML document.

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

2 <CityModel xmlns="http://www.opengis.net/citygml/2.0"

3 xmlns:gml="http://www.opengis.net/gml"

4 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6 xsi:schemaLocation="http://www.opengis.net/citygml/building/2.0

7 http://schemas.opengis.net/citygml/building/2.0/building.xsd">

8 <cityObjectMember>

9 <bldg:Building gml:id="BLDG_ID">

10 <bldg:boundedBy>

11 <bldg:GroundSurface gml:id="GEO_ID">

12 <bldg:lod2MultiSurface>

13 <gml:MultiSurface>

14 <gml:surfaceMember>

87

5 Updating 3D City Models in CityGML using a Graph Database

15 <gml:Polygon>

16 <gml:exterior>

17 <gml:LinearRing>

18 <gml:posList srsDimension="3">

19 4.0 4.0 0.0

20 0.0 4.0 0.0

21 0.0 0.0 0.0

22 4.0 0.0 0.0

23 4.0 4.0 0.0

24 </gml:posList>

25 </gml:LinearRing>

26 </gml:exterior>

27 <gml:interior>

28 <gml:LinearRing>

29 <gml:pointProperty>

30 <gml:Point>

31 <gml:pos>3.0 3.0 0.0</gml:pos>

32 </gml:Point>

33 </gml:pointProperty>

34 <gml:pointProperty>

35 <gml:Point>

36 <gml:pos>1.0 3.0 0.0</gml:pos>

37 </gml:Point>

38 </gml:pointProperty>

39 <gml:pointProperty>

40 <gml:Point>

41 <gml:pos>1.0 1.0 0.0</gml:pos>

42 </gml:Point>

43 </gml:pointProperty>

44 <gml:pointProperty>

45 <gml:Point>

46 <gml:pos>2.0 1.0 0.0</gml:pos>

47 </gml:Point>

48 </gml:pointProperty>

49 <gml:pointProperty>

50 <gml:Point>

51 <gml:pos>2.0 2.0 0.0</gml:pos>

52 </gml:Point>

53 </gml:pointProperty>

88

5 Updating 3D City Models in CityGML using a Graph Database

54 <gml:pointProperty>

55 <gml:Point>

56 <gml:pos>3.0 2.0 0.0</gml:pos>

57 </gml:Point>

58 </gml:pointProperty>

59 <gml:pointProperty>

60 <gml:Point>

61 <gml:pos>3.0 3.0 0.0</gml:pos>

62 </gml:Point>

63 </gml:pointProperty>

64 </gml:LinearRing>

65 </gml:interior>

66 </gml:Polygon>

67 </gml:surfaceMember>

68 </gml:MultiSurface>

69 </bldg:lod2MultiSurface>

70 </bldg:GroundSurface>

71 </bldg:boundedBy>

72 </bldg:Building>

73 </cityObjectMember>

74 </CityModel>

Listing 5.2: Second sample CityGML document.

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

2 <CityModel xmlns="http://www.opengis.net/citygml/2.0"

3 xmlns:gml="http://www.opengis.net/gml"

4 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6 xsi:schemaLocation="http://www.opengis.net/citygml/building/2.0

7 http://schemas.opengis.net/citygml/building/2.0/building.xsd">

8 <cityObjectMember>

9 <bldg:Building gml:id="BLDG_ID">

10 <bldg:boundedBy>

11 <bldg:GroundSurface gml:id="GEO_ID">

12 <bldg:lod2MultiSurface>

13 <gml:MultiSurface>

14 <gml:surfaceMember>

15 <gml:Polygon>

16 <gml:exterior>

89

5 Updating 3D City Models in CityGML using a Graph Database

17 <gml:LinearRing>

18 <gml:pos>4.0 4.0 0.0</gml:pos>

19 <gml:pos>0.0 4.0 0.0</gml:pos>

20 <gml:pos>0.0 0.0 0.0</gml:pos>

21 <gml:pos>4.0 0.0 0.0</gml:pos>

22 <gml:pos>4.0 4.0 0.0</gml:pos>

23 </gml:LinearRing>

24 </gml:exterior>

25 <gml:interior>

26 <gml:LinearRing>

27 <gml:posList srsDimension="3">

28 3.0 3.0 0.0

29 1.0 3.0 0.0

30 1.0 2.0 0.0

31 3.0 2.0 0.0

32 3.0 3.0 0.0

33 </gml:posList>

34 </gml:LinearRing>

35 </gml:interior>

36 <gml:interior>

37 <gml:LinearRing>

38 <gml:posList srsDimension="3">

39 2.0 2.0 0.0

40 1.0 2.0 0.0

41 1.0 1.0 0.0

42 2.0 1.0 0.0

43 2.0 2.0 0.0

44 </gml:posList>

45 </gml:LinearRing>

46 </gml:interior>

47 </gml:Polygon>

48 </gml:surfaceMember>

49 </gml:MultiSurface>

50 </bldg:lod2MultiSurface>

51 </bldg:GroundSurface>

52 </bldg:boundedBy>

53 </bldg:Building>

54 </cityObjectMember>

55 </CityModel>

90

5 Updating 3D City Models in CityGML using a Graph Database

After the mapping and matching process are complete, a total number of 15 edit
operations are reported, where:

• 8 DeleteNodeOperation nodes are created indicating the deletion of 1 posList

and 7 pointProperty objects contained in the exterior and interior of the first
document respectively;

• 7 InsertNodeOperation nodes are created to insert 5 pos and 2 posList objects
from the exterior and interiors respectively of the second to first city model.

However, all 15 operations are flagged as optional indicating that they can be excluded,
since both polygons are geometrically equivalent and may remain so. If all these
operations are to be executed, the first instance documents shall be updated so that its
polygon is identical to that of the second document.

5.2 Updating Building Objects using WFS

The created EditOperation nodes can be executed in various ways to update provided
CityGML documents. However, large CityGML datasets (e.g. of the city Berlin in the
test use case) are often stored in a central database, wherein update operations can be
executed over the WFS as introduced in Section 2.6. Thus, this section describes the
process of updating a CityGML dataset with the help of created edit operations using
the WFS.

Since the WFS operates basically on building features and its properties, the updating
process focuses on such objects in given city models. Algorithm 11 describes the
controller function of the updating process, where:

Lines 1 - 3 For each building in the older city model (Line 1), the (recursive) function
update is called (Line 2);

Lines 4 - 6 The remaining buildings in the newer city model that are attached with
InsertNodeOperation node shall be inserted (Line 5).

The function update(node) is described in Algorithm 12, where:

Lines 1 - 4 If the current node is attached with a DeleteNodeOperation node, it shall
be deleted (Line 2) and the function terminates (Line 3);

Lines 5 - 8 Similarly, if the current node is attached with an InsertNodeOperation

node, it shall be inserted (Line 6) and the function terminates (Line 7);

91

5 Updating 3D City Models in CityGML using a Graph Database

Algorithm 11: update_controller(city1, city2)

Input : Graph representations city1 and city2 of old and new city model resp.

1 foreach building1 in city1 do
2 update(building1);
3 end

4 foreach building2 to be inserted from city2 do
5 insert building2;
6 end

Algorithm 12: update(node)
Input : A node potentially to be updated

1 if node is to be deleted then
2 delete node;
3 return;
4 end

5 if node is to be inserted then
6 insert node;
7 return;
8 end

9 foreach property attached with edit operations in node do
10 if property is to be deleted then
11 delete property;
12 else if property is to be inserted then
13 insert property with new value;
14 else if property is to be updated then
15 update old value of property with new value;
16 end
17 end

18 foreach node child of node do
19 update(child);
20 end

92

5 Updating 3D City Models in CityGML using a Graph Database

Lines Line 9 - Line 17 This part considers all properties contained in the current
node (Line 9). In case of an available DeletePropertyOperation (Line 10),
InsertPropertyOperation (Line 12) or UpdatePropertyOperation (Line 14) node,
actions are taken correspondingly (Lines 11, 13 and 15). Note that, depending
on specific implementations, an edit operation may only be executed if it is not
optional;

Lines 18 - 20 For each outgoing relationship, i.e. a child of current node (Line 18), the
function is called recursively (Line 19).

Both functions make use of the attached EditOperation nodes and take actions
correspondingly, e.g. delete, insert or update. The next sections explain how such
actions can be transformed to WFS requests encoded in HTTP POST (see Section 2.6.1),
since the KVP encoding is simply not expressive enough to transport transactions (as
shown in Table 2.1). Note that due to the technical limitations of the current version of
the WFS as well as of the virtualcityWFS, not all building properties can be updated
using these services (such as sub-objects of a building property). Therefore, only
properties that can be updated are listed in the following sections.

5.2.1 WFS Transactions on Building Objects

Inserting Buildings

The WFS HTTP POST request shown in Listing 5.3 inserts a new building into the
database.

Listing 5.3: WFS insert transaction of buildings.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:wfs="http://www.opengis.net/wfs/2.0"

4 xmlns:gml="http://www.opengis.net/gml"

5 xmlns:bldg="http://www.opengis.net/citygml/building/2.0">

6 <wfs:Insert>

7 <bldg:Building gml:id="BLDG_ID">

8 <!-- BUILDING_CONTENTS -->

9 </bldg:Building>

10 </wfs:Insert>

11 </wfs:Transaction>

The wfs:Insert element holds the whole contents of the building to be inserted. To
retrieve the XML contents of buildings from their respective graph representations, two
different approaches can be applied, namely:

93

5 Updating 3D City Models in CityGML using a Graph Database

New
CityGML
Dataset

WFS-
T

StAX

HTTP-POST
XML Content

Graph
DB

Graph
Parser

update

content

content

extract

parse

content

Old CityGML
DB on Server

Figure 5.3: Two approaches to retrieving XML contents of a CityGML object: using a
Graph-to-CityGML parser (blue) or alternatively, using StAX to extract XML
contents directly from source CityGML documents (red).

1. Using a Graph-to-CityGML parser to convert a building node and its respective
sub-graphs to 3D city objects encoded in CityGML. In general, the parser can be
divided into two steps: graphs are first reversely mapped back to Java objects,
which can then be marshalled by using the citygml4j library. The first step is the
so-called reverse-mapping process mentioned previously in Section 3.4.1. Thus,
this is a multi-purpose solution, as it can be utilized in multiple stages. However,
its implementation is estimated to be equally or even more complex than that of
the mapping process in Chapter 3, since as opposed to mapping Java objects to
graphs, where class hierarchy can be taken advantage of, parsing value-based
graphs back to texts encoded in XML is generally more difficult. Due to the time
constraints of this thesis, the parser is only partially implemented for geometric
objects as described in Chapter 3;

2. Using StAX to extract CityGML elements directly from CityGML documents
themselves. This requires CityGML datasets to be available in plain texts as data
sources, since it does not make use of the existing graph database. Therefore, this
approach is less robust and may be replaced by the Graph-to-CityGML parser in
the future.

Figure 5.3 gives an overview of both above-mentioned approaches.

Deleting Buildings

Listing 5.4 describes a delete HTTP POST transaction for building objects, where
BLDG_ID is the ID of building to be deleted from the database.

94

5 Updating 3D City Models in CityGML using a Graph Database

Listing 5.4: WFS delete transaction of buildings.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:wfs="http://www.opengis.net/wfs/2.0"

4 xmlns:fes="http://www.opengis.net/fes/2.0"

5 xmlns:bldg="http://www.opengis.net/citygml/building/2.0">

6 <wfs:Delete typeName="bldg:Building">

7 <fes:Filter>

8 <fes:ResourceId rid="BLDG_ID"/>

9 </fes:Filter>

10 </wfs:Delete>

11 </wfs:Transaction>

Updating Buildings

No update or replace transaction for buildings exists in the current version of WFS.
However, this can be achieved by deleting and then creating a new building as shown
previously.

5.2.2 WFS Transactions on Thematic Properties

The following building attributes can be altered via an OGC compliant WFS 2.0.0:

• Namespace xmlns:bldg="http://www.opengis.net/citygml/building/2.0" (by
default):

– class

– function

– usage

– yearOfConstruction

– yearOfDemolition

– roofType

– measuredHeight

– storeysAboveGround

– storeysBelowGround

– storeyHeightsAboveGround

– storeyHeightsBelowGround

• Namespace xmlns:core="http://www.opengis.net/citygml/2.0" (by default):

– creationDate

– terminationDate

– relativeToTerrain

– relativeToWater

95

5 Updating 3D City Models in CityGML using a Graph Database

• Namespace xmlns:gml="http://www.opengis.net/gml" (by default):

– id

– description

– name

The WFS request shown in Listing 5.5 can be employed to insert, delete or update a
building thematic property, where:

XPath_to_property An XPath expression (such as bldg:measuredHeight) uniquely
references the (relative) location of the affected property within its parent building
element. To address an attribute of such property, the XPath expression is
extended with the attribute name. For instance: bldg:measuredHeight/@gml:uom
references the attribute gml:uom of property bldg:measuredHeight. Note that
object namespaces must be given correctly. The path XPath_to_property must
not be empty for all three types of transactions;

AttributeValue This value should be empty if the attribute referenced by the
XPath_to_attribute above is to be deleted. Otherwise, in case the attribute does
not exist, the transaction shall insert one with given value. On the other hand, if
this attribute does exist, its old value shall be replaced with AttributeValue;

BLDG_ID The ID of considered building, which must not be empty in all cases.

Listing 5.5: WFS transaction of thematic properties.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:fes="http://www.opengis.net/fes/2.0"

4 xmlns:wfs="http://www.opengis.net/wfs/2.0"

5 xmlns:bldg="http://www.opengis.net/citygml/building/2.0">

6 <wfs:Update typeName="bldg:Building">

7 <wfs:Property>

8 <wfs:ValueReference>XPath_to_property</wfs:ValueReference>

9 <wfs:Value>AttributeValue</wfs:Value>

10 </wfs:Property>

11 <fes:Filter>

12 <fes:ResourceId rid="BLDG_ID"/>

13 </fes:Filter>

14 </wfs:Update>

15 </wfs:Transaction>

96

5 Updating 3D City Models in CityGML using a Graph Database

5.2.3 WFS Transactions on Geometric Properties

The following building geometric properties can be edited via WFS:

• Namespace xmlns:bldg="http://www.opengis.net/citygml/building/2.0" (by
default):

– lod0FootPrint

– lod0RoofEdge

– lod1Solid

– lod1MultiSurface

– lod1TerrainIntersection

– lod2Solid

– lod2MultiSurface

– lod2MultiCurve

– lod2TerrainIntersection

– lod3Solid

– lod3MultiSurface

– lod3MultiCurve

– lod3TerrainIntersection

– lod4Solid

– lod4MultiSurface

– lod4MultiCurve

– lod4TerrainIntersection

Inserting and Updating Geometric Properties

Insert and update WFS transactions of geometric properties can be performed by
executing the HTTP POST request shown in Listing 5.6, where:

XPath_to_property A unique non-empty XPath expression references to the location
of affected geometric property. If XPath_to_property links to a non-existing
object, a corresponding element containing given XML_CONTENT shall be created;

XML_CONTENT The new non-empty XML value of affected geometric property. If
XPath_to_property refers to an existing object, its value shall be replaced with
XML_CONTENT;

BLDG_ID The ID of considered building, which must not be empty.

Deleting Geometric Properties

To delete a geometric property from their respective parent building, the attribute
action of element wfs:ValueReference is set to remove as shown in Listing 5.7, where
both XPath_to_property and BLDG_ID values must not be empty and the element
wfs:Value is omitted.

97

5 Updating 3D City Models in CityGML using a Graph Database

Listing 5.6: WFS insert and update transaction of geometric properties.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:fes="http://www.opengis.net/fes/2.0"

4 xmlns:wfs="http://www.opengis.net/wfs/2.0"

5 xmlns:bldg="http://www.opengis.net/citygml/building/2.0">

6 <wfs:Update typeName="bldg:Building">

7 <wfs:Property>

8 <wfs:ValueReference>XPath_to_property</wfs:ValueReference>

9 <wfs:Value>

10 <!-- XML_CONTENT -->

11 </wfs:Value>

12 </wfs:Property>

13 <fes:Filter>

14 <fes:ResourceId rid="BLDG_ID"/>

15 </fes:Filter>

16 </wfs:Update>

17 </wfs:Transaction>

Listing 5.7: WFS delete transaction of geometric properties.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:fes="http://www.opengis.net/fes/2.0"

4 xmlns:wfs="http://www.opengis.net/wfs/2.0"

5 xmlns:bldg="http://www.opengis.net/citygml/building/2.0">

6 <wfs:Update typeName="bldg:Building">

7 <wfs:Property>

8 <wfs:ValueReference action="remove">

9 XPath_to_property

10 </wfs:ValueReference>

11 </wfs:Property>

12 <fes:Filter>

13 <fes:ResourceId rid="BLDG_ID"/>

14 </fes:Filter>

15 </wfs:Update>

16 </wfs:Transaction>

98

5 Updating 3D City Models in CityGML using a Graph Database

5.2.4 WFS Transactions on Complex Properties

The ordinary WFS is not expressive enough to support transactional operations on
complex XML properties such as external references and CityGML generic attributes as
shown in Table 2.2. The current workaround is to delete the entire old building object
and insert the new one in the database, which is inefficient. Thus, the vendor-specific
extension virtualcityWFS, which provides its own native implementation on inserting,
deleting and updating complex elements, is employed.

Inserting Complex Properties

Listing 5.8: WFS insert transaction of generic atributes.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:vcs="http://www.virtualcitysystems.de/wfs/2.0"

4 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"

5 xmlns:gml="http://www.opengis.net/gml"

6 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

7 xmlns:wfs="http://www.opengis.net/wfs/2.0"

8 xmlns:fes="http://www.opengis.net/fes/2.0"

9 xmlns:core="http://www.opengis.net/citygml/2.0">

10 <wfs:Native vendorId="VCS" safeToIgnore="false">

11 <vcs:InsertComplexProperty typeName="bldg:Building">

12 <vcs:Property>

13 <vcs:Value>

14 <gen:intAttribute name="Gen_name">

15 <gen:value>Gen_value</gen:value>

16 </gen:intAttribute>

17 </vcs:Value>

18 <vcs:TargetReference>XPath_to_parent</vcs:TargetReference>

19 </vcs:Property>

20 <fes:Filter>

21 <fes:ResourceId rid="BLDG_ID"/>

22 </fes:Filter>

23 </vcs:InsertComplexProperty>

24 </wfs:Native>

25 </wfs:Transaction>

Listing 5.8 describes an insert transaction of generic attributes, where:

99

5 Updating 3D City Models in CityGML using a Graph Database

vcs The namespace vcs is a vendor-specific extension of the standard WFS protocols;

Gen_name, Gen_value Name and value of generic attribute to be inserted respectively;

XPath_to_parent The XPath expression to parent element containing this generic at-
tribute. If the parent is a building, element vcs:TargetReference can be omitted;

BLDG_ID The ID of building object, to which the generic attribute shall be inserted.

Furthermore, the virtualcityWFS also allows the creation of sets of generic attributes
as shown in Listing 5.9, where names of the generic set and its elements (GenSet_name
and Member_name respectively) are additionally required.

Listing 5.9: WFS insert transaction of generic atribute sets.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:vcs="http://www.virtualcitysystems.de/wfs/2.0"

4 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"

5 xmlns:gml="http://www.opengis.net/gml"

6 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

7 xmlns:wfs="http://www.opengis.net/wfs/2.0"

8 xmlns:fes="http://www.opengis.net/fes/2.0"

9 xmlns:core="http://www.opengis.net/citygml/2.0">

10 <wfs:Native vendorId="VCS" safeToIgnore="false">

11 <vcs:InsertComplexProperty typeName="bldg:Building">

12 <vcs:Property>

13 <vcs:Value>

14 <gen:genericAttributeSet name="GenSet_name">

15 <gen:stringAttribute name="Member_name">

16 <gen:value>Gen_value</gen:value>

17 </gen:stringAttribute>

18 </gen:genericAttributeSet>

19 </vcs:Value>

20 <vcs:TargetReference>XPath_to_parent</vcs:TargetReference>

21 </vcs:Property>

22 <fes:Filter>

23 <fes:ResourceId rid="BLDG_ID"/>

24 </fes:Filter>

25 </vcs:InsertComplexProperty>

26 </wfs:Native>

27 </wfs:Transaction>

100

5 Updating 3D City Models in CityGML using a Graph Database

The external reference objects can be inserted by executing requests shown in List-
ing 5.10, where the URI to information system Uri_to_information_system and exter-
nal object’s name Name_of_external_object are required.

Listing 5.10: WFS insert transaction of external references.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:vcs="http://www.virtualcitysystems.de/wfs/2.0"

4 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"

5 xmlns:gml="http://www.opengis.net/gml"

6 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

7 xmlns:wfs="http://www.opengis.net/wfs/2.0"

8 xmlns:fes="http://www.opengis.net/fes/2.0"

9 xmlns:core="http://www.opengis.net/citygml/2.0">

10 <wfs:Native vendorId="VCS" safeToIgnore="false">

11 <vcs:InsertComplexProperty typeName="bldg:Building">

12 <vcs:Property>

13 <vcs:Value>

14 <vcs:externalReference>

15 <core:informationSystem>

16 Uri_to_information_system

17 </core:informationSystem>

18 <core:externalObject>

19 <core:name>Name_of_external_object</core:name>

20 </core:externalObject>

21 </vcs:externalReference>

22 </vcs:Value>

23 </vcs:Property>

24 <fes:Filter>

25 <fes:ResourceId rid="BLDG_ID"/>

26 </fes:Filter>

27 </vcs:InsertComplexProperty>

28 </wfs:Native>

29 </wfs:Transaction>

Deleting Complex Properties

Deleting complex properties of a building is similar to that of geometric properties. For
instance, to delete a generic attribute, the attribute action of wfs:ValueReference is

101

5 Updating 3D City Models in CityGML using a Graph Database

set to remove and the XPath expression is pointed to target element, e.g. a request with
gen:intAttribute[@gen:name='Gen_name'] shall delete the generic attribute named
Gen_name in the respective building (see Listing 5.11). Moreover, to delete an external
reference element, the XPath expression wfs:ValueReference shall simply have the
value core:externalReference.

Listing 5.11: WFS delete transaction of generic attributes.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:vcs="http://www.virtualcitysystems.de/wfs/2.0"

4 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"

5 xmlns:gml="http://www.opengis.net/gml"

6 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

7 xmlns:wfs="http://www.opengis.net/wfs/2.0"

8 xmlns:fes="http://www.opengis.net/fes/2.0"

9 xmlns:core="http://www.opengis.net/citygml/2.0">

10 <wfs:Update typeName="bldg:Building">

11 <wfs:Property>

12 <wfs:ValueReference action="remove">

13 gen:intAttribute[@gen:name='Gen_name']

14 </wfs:ValueReference>

15 </wfs:Property>

16 <fes:Filter>

17 <fes:ResourceId rid="BLDG_ID"/>

18 </fes:Filter>

19 </wfs:Update>

20 </wfs:Transaction>

Updating Complex Properties

Complex properties can be updated in the same manner as in geometric properties.
Updating the value of a generic attribute requires an XPath expression referencing
its (relative) location within the respective parent building. For example, an update
operation containing the path gen:intAttribute[@gen:name='Gen_name']/gen:value

shall replace the old value of a generic integer attribute named Gen_name with a new
one (see Listing 5.12). The same applies for other types of generic attributes. To replace
the whole contents of a generic set or an external reference object, the wfs:Value

element may contain their body encoded in XML.

102

5 Updating 3D City Models in CityGML using a Graph Database

Listing 5.12: WFS update transaction of generic attributes.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <wfs:Transaction service="WFS" version="2.0.0"

3 xmlns:fes="http://www.opengis.net/fes/2.0"

4 xmlns:wfs="http://www.opengis.net/wfs/2.0"

5 xmlns:bldg="http://www.opengis.net/citygml/building/2.0">

6 <wfs:Update typeName="bldg:Building">

7 <wfs:Property>

8 <wfs:ValueReference>

9 gen:intAttribute[@gen:name='Gen_name']/gen:value

10 </wfs:ValueReference>

11 <wfs:Value>42</wfs:Value>

12 </wfs:Property>

13 <fes:Filter>

14 <fes:ResourceId rid="BLDG_ID"/>

15 </fes:Filter>

16 </wfs:Update>

17 </wfs:Transaction>

103

6 Performance Optimization

This chapter provides an overview of hardware and system configurations as well as
adjustments in the implementation for optimal throughput.

6.1 Memory Tuning and Storage Selections

6.1.1 Memory Tuning

Correctly configured and sufficient main memory ensures a stable testing environment
and optimal outputs. Three relevant types of main memory are: Operating System
(OS) Memory, Page Cache and Heap Space, whose total sum must not exceed the total
amount of available main memory in the testing system as described in Equation (6.1).

OS Memory + Page Cache + Heap Space ≤ Available RAM. (6.1)

OS Memory

Although the availability of a Neo4j instance has the highest priority, the hosting OS
should be provided with enough main memory to handle OS-specific processes. In
addition, since indexing in Neo4j requires a buffer cache that loads graph.db/index

and graph.db/schema directory into main memory, the OS memory should also include
this amount as shown in Equation (6.2) [Neo17d].

OS Memory = (Reserved memory for non-Neo4j processes)

+ (Size of graph.db/index) + (Size of graph.db/schema).
(6.2)

Page Cache

Most of Neo4j database is stored on disk but can be loaded back into main memory
when needed. To avoid costly disk operations, a page cache as a reserved portion of
available RAM is used. To determine the needed main memory for the page cache,

104

6 Performance Optimization

[Neo17d] proposes to add up all sizes of graph.db/*store.db* files and leave an
additional 20% of that amount for potential growth as described in Equation (6.3).

Page Cache = 1.2 ·∑ (Size of graph.db/*store.db*) . (6.3)

To determine the sizes of graph.db/*store.db* files for a new database, it is recom-
mended to first perform a test import of n-th the size of the actual data and investigate
their sizes. The expected sum can then be estimated by multiplying this with n.

Heap Space

Both Neo4j and the Java Virtual Machine (JVM) share the same heap space, where all
internal variables are temporarily stored. [Neo17d] suggests a minimum amount of 8
or 16 GB of available RAM should be reserved for the heap space. However, for large
input datasets as in the test use case, a larger heap space might be needed.

Garbage Collector

The Garbage Collector (GC) is a complex background memory management process
in the JVM that automatically reclaims objects occupied in main memory that are no
longer in use. A generational GC divides the heap space into at least two groups:
young generation and old generation. Newly created objects are allocated in the young
generation and shall later be moved to the old generation if its lifespan exceeds a
specific period of time. Each time a generation fills up, the GC pauses all running
threads and performs a collection. This pause time in the young generation correlates
with the live set of objects and is thus generally faster than that in the old generation,
where pause time roughly correlates with the whole heap’s size [Neo17d]. Therefore,
ideally, database transaction and query objects should never be moved to the old
generation.

To achieve this, the size ratio between the new and old generation can be configured
by the flag -XX:NewRatio. For instance,

-XX:NewRatio=n

indicates that the old generation is n times as large as the young generation. Typical
values of n range between 2 and 8. If the implementation changes a large number
of database objects, then the ratio n should be small (e.g. n = 1) to increase the size
of the young generation. However, too big young generation forces the GC to collect
objects in the filled up old generation more frequently, which performs a collection in
the whole heap space as explained previously. On the other hand, too small young

105

6 Performance Optimization

generation causes the so-called “premature promotion”, where objects are moved to
the old generation too early due to the young generation running out of space.

Furthermore, the initial and maximum heap space can be adjusted with the help of
the flags -Xms and -Xmx respectively. A heap space starts with the initial size and will
be expanded towards the maximum value once the current heap space has no available
free space. Each expansion triggers a call on the GC. Therefore, to prevent the costly
collection for every heap growth, [Neo17d] recommends that both initial and maximum
size of heap space should be set to the same value. For example,

-Xms16384m -Xmx16384m

assigns the initial and maximum size values of the heap space to 16 GB. For the large
CityGML datasets of Berlin tested in this research, an initial heap space of at least 12
GB is recommended.

Note that to save main memory, the JVM employs the Compressed Ordinary Object
Pointer (OOP) feature that compresses object references. The feature can be enabled by
using the flag

-XX:+UseCompressedOops

in JDK 6 before the 6u23 release. In newer versions, the feature is enabled by default.
In Java SE 7, the compressed OOPs is activated in 64-bit JVM if the value of flag -Xmx

is undefined or smaller than 32 GB [Ora16]. Therefore, a maximum heap space size
value of 32 GB and beyond shall deactivate the compressed OOP and thus might cause
marginal or negative gains in performance, unless the increase in size is significant (64
GB or above) as stated in [Neo17d].

Finally, since some long-lived objects in Neo4j may remain in the old generation, the
use of a concurrent GC is suggested:

-XX:+UseG1GC.

6.1.2 Storage Selections

A storage of sufficient free capacity is required to store the Neo4j database. For instance,
mapping and matching two city models of the city Berlin with approximately 550,000
buildings per model requires a storage allocation of at least 200 GB (incl. transaction
logs).

Moreover, since Neo4j communicates back and forth with storage devices, its perfor-
mance depends greatly on their read and write speed. For instance, an SSD is noticeably
faster in this regard than an HDD. However, both are much less responsive than a
RAM-disk, which is a partition mounted directly from the system’s main memory. The
RAM-disk is however volatile, meaning that all stored data shall be lost once the system
reboots.

106

6 Performance Optimization

6.2 Batch Transaction Processing

As described in Section 2.4.5, all database operations must be declared inside a trans-
action. A transaction holds affected resources in main memory and locks them until
it is closed. In case of a successful transaction, its effects shall be committed to the
database storage, which is generally slow due to costly disk read and write operations.
Therefore, database operations are often performed and committed together in batches.
For instance, to create 1000 nodes, instead of creating 1000 transactions, one transaction
for each node, thus requiring 1000 costly disk write operations, the same process can
be achieved by using only one transaction, which can reduce the runtime significantly.

The number of database operations per transaction (or batch size) is often empirically
determined. Too small batch size results in minimal gains in performance, while too
many database operations in a batch increases the demand on main memory as well as
the frequency of GC calls.

6.3 Concurrent Processing

Database performance can be improved significantly using concurrency. This section
introduces some available multi-threading approaches and then briefly describes the
used deadlock avoidance mechanism.

6.3.1 Multi-threading Approaches

Classic Approach

Typically, to achieve concurrency, each database operation is submitted to a new
thread. Threads are then executed simultaneously. This classic approach is simple to
implement but may provide marginal or negative gains on performance due to the
following problems:

• If the majority of submitted workloads consist of of only one or a few database
operations each, then runtime is spent mostly on switching contexts between
threads;

• Since transactions are bound to their respective thread in Neo4j, a transaction
must be closed before its thread ends. This means that too many transactions for
too few operations per thread may result in an excessively large number of costly
disk writes;

• Since a transaction does not exist outside of its thread, processing database
operations in batches is difficult without further adjustments.

107

6 Performance Optimization

Producer-consumer Approach

The producer-consumer approach is one of most well-known solutions for the multi-
process synchronization problems. This design pattern consists of two types of pro-
cesses: producer(s) and consumer(s), where at least one producer and one consumer
must exist. The producers produce data simultaneously, which are then placed into a
buffer shared among all producers and consumers. At the same time, the consumers
attempt to remove the data from the buffer. If none is available, the consumers wait
until the next cycle. Otherwise, retrieved data are consumed and removed from the
buffer. Consumers also consume data simultaneously (see Figure 6.1).

Producer Consumer

Consumer ConsumerProducer

Consumer

Figure 6.1: An example of two producers and four consumers in the Producer-consumer
design pattern.

In Java, producers and consumers can be represented as threads, while the buffer
shared among them is realized as a blocking queue [Goe+06]. The advantages of this
approach are listed as follows:

• This design pattern is particularly suitable to the mapping process, where a
producer unmarshals CityGML elements to Java objects and puts them into the
queue, while the consumers transform these to respective graph representations;

• The blocking queue provides a separate view between the producers and con-
sumers, and even among producers and consumers. In other words, producers
and consumers function independently from each other;

108

6 Performance Optimization

• Executing database operations in batches is possible in this approach, since each
producer and consumer is a thread. For instance, the consumers remove n Java
feature objects from the queue, map them to graphs and then commit these
changes together to the database.

The total number of producers and consumers N are often determined by the
maximum number of threads that can be handled simultaneously by the system
processor. The ratio between the number of producers Np and consumers Nc depends
however on specific use cases. Too many producers with an unbounded buffer often
quickly leads to insufficient memory error, since there are not enough consumers
to consume produced data, especially if the workloads of the consumers are more
computationally intensive. On the other hand, if consuming is not as intensive as
producing data, a combination of several producers and consumers is possible.

6.3.2 Deadlock Avoidance

Parallel processing offers great gains on performance but often comes with deadlocks
when threads concurrently attempt to write a shared object and block one another. For
example, while matching buildings from two city models using grids as explained in
Section 4.3.1, since a building may be assigned to multiple tiles in its neighbourhood,
potential deadlocks are detected if concurrent threads attempt to access and modify
buildings assigned to the same neighbouring tiles (see Figure 6.2).

To avoid deadlocks, objects are isolated from each other so that threads are conflict-
free and do not (write-) block each other at runtime. For instance, in the matching
process using a grid layout, threads are executed in such an order that no two build-
ings with overlapping neighbourhoods are processed simultaneously (as shown in
Figure 6.2a). Moreover, database transactions should be closed as soon as possible so
that they do not block too many objects for a prolonged period of time.

109

6 Performance Optimization

(a) No deadlock is detected. (b) A potential deadlock is detected.

Figure 6.2: An illustration of a deadlock encountered while concurrently matching
buildings using a grid layout. Figure 6.2a shows two tiles (dark green, dark
orange) containing buildings to be matched and their respective neighbour-
ing tiles (light green, light orange) with no deadlock detected. On the other
hand, a potential deadlock is detected in Figure 6.2b since a tile (grey) is
shared between threads at runtime.

110

7 Application Results and Discussion

The previously proposed theoretical approaches are applied to real-world input data in
this chapter, where several experiments with various test configurations are performed.
The results recorded during these experiments are then presented and discussed.

7.1 Test Setup

7.1.1 Testing Environment

The majority of experiments in this chapter are performed on a dedicated server-class
machine provided with the following specifications:

• Operating system: SUSE Linux Enterprise Server 12 SP1 (64 bit),

• CPU: 2x Intel® Xeon® E5-2667 v3 @3.20GHz (16 CPUs in total + Hyper-threading),

• Storage: a Solid-state Drive Array (SSD) connected via PCIe,

• RAM: 1 TB in total.

7.1.2 Input Data

The real-world input data applied in this chapter is the entire 3D city model of Berlin
encoded in CityGML v2.0.0. It contains LOD2 information of 539,182 buildings within
the city area of 890 km2 and occupies 15.5 GB in physical storage.1 The new dataset
contains changes (such as replacing in-line objects with XLinks and vice versa, adding
small deviations in points’ coordinates, using different equivalent geometries for
polygon boundaries, etc.) made manually to the old one.

7.1.3 Test Configurations

Java Virtual Machine (JVM) Configurations

Both the testing system and Neo4j share the same JVM, which is provided with the
following run configurations:

1The datasets are available under http://www.businesslocationcenter.de/en/downloadportal.

111

http://www.businesslocationcenter.de/en/downloadportal

7 Application Results and Discussion

• Initial and maximum heap space size: 30,000 MB (-Xms30000m and -Xmx30000m),

• Garbage collector: concurrent G1GC (-XX:+UseG1GC).

Program Configurations

The application can be executed using various configurations, some of which are:

• The choice between single and multi-threading in the mapping and matching
process. In case of multi-threading (Section 6.3.1), the number of producers as
well as consumers per producer are adjustable;

• XLinks can be resolved using either Neo4j’s (built-in legacy or manual) indices
stored on disk or internal hash maps held in main memory (Section 3.3.2);

• Both of the mapping and matching process can be executed using different
numbers of database operations as well as features and buildings wrapped per
batch transaction (Section 6.2);

• It is possible to employ different spatial search strategies, namely the grid layout
and R-tree, in the matching process. In case of a chosen grid layout (Section 4.3.1),
the unit tile sizes (i.e. height and width) are editable. Otherwise, if an R-tree is
applied (Section 4.3.2), the maximum entries M per internal node can be adjusted.

The application configurations are empirically determined to ensure a stable test-
ing environment and optimum throughput. Unless otherwise specified, the default
configurations of all experiments performed in the next sections are as follows:

• Mapping:

– Multi-threading: enabled with 1 producer and 15 consumers,

– Index storage: internal hash maps held in main memory,

– Split CityGML documents: per collection member (top-level feature),

– Building batch size per one transaction: 10,

– Database operation batch size per one transaction: 5000;

• Matching:

– Multi-threading: enabled with 1 producer and 15 consumers,

– Spatial search strategy: R-tree,

– Maximum number of entries M per internal R-tree node: 10,

– Building batch size per one transaction: 10,

– Database operation batch size per one transaction: 5000.

112

7 Application Results and Discussion

7.2 Application Results

7.2.1 Statistics of Mapped Graph Database

Table 7.1 shows node labels and their respective frequencies (in descending order) in
the graph database after the mapping process of two CityGML datasets of Berlin is
complete. The total number of nodes created by the mapping process is 321,142,046.
Note that unlabelled and auxiliary nodes such as R-tree nodes are not listed in the
table.

Node label No. nodes Percentage

SURFACE_DATA_PROPERTY 30,940,736 9.635%
STRING_ATTRIBUTE 23,941,698 7.455%
COLOR 17,902,720 5.575%
SURFACE_PROPERTY 15,407,528 4.798%
CODE 14,950,860 4.656%
DIRECT_POSITION 13,887,228 4.324%
DIRECT_POSITION_LIST 12,939,316 4.029%
LINEAR_RING 12,939,316 4.029%
EXTERIOR 12,928,580 4.025%
POLYGON 12,928,580 4.025%
TEXTURE_COORDINATES 11,532,330 3.591%
TEX_COORD_LIST 11,526,400 3.589%
_TEXTURED_SURFACE 11,526,400 3.589%
COLOR_PLUS_OPACITY 11,520,154 3.587%
PARAMETERIZED_TEXTURE 11,520,154 3.587%
TEXTURE_TYPE 11,520,154 3.587%
WRAP_MODE 11,520,154 3.587%
BOUNDING_SHAPE 6,943,614 2.162%
ENVELOPE 6,943,614 2.162%
MULTI_SURFACE 5,864,808 1.826%
MULTI_SURFACE_PROPERTY 5,864,808 1.826%
BUILDING_BOUNDARY_SURFACE_PROPERTY 5,864,792 1.826%
INT_ATTRIBUTE 4,041,104 1.257%
DOUBLE_ATTRIBUTE 3,510,252 1.092%
BUILDING_WALL_SURFACE 3,245,878 1.011%
APPEARANCE 3,235,024 1.007%
APPEARANCE_PROPERTY 3,235,024 1.007%
X3D_MATERIAL 2,127,522 0.662%
BUILDING_ROOF_SURFACE 1,524,522 0.475%

113

7 Application Results and Discussion

Node label No. nodes Percentage

ADDRESS 1,172,086 0.365%
ADDRESS_DETAILS 1,172,086 0.365%
ADDRESS_PROPERTY 1,172,086 0.365%
COUNTRY 1,172,086 0.365%
LOCALITY 1,172,086 0.365%
LOCALITY_NAME 1,172,086 0.365%
XAL_ADDRESS_PROPERTY 1,172,086 0.365%
BUILDING_GROUND_SURFACE 1,094,392 0.341%
EXTERNAL_OBJECT 1,078,818 0.336%
EXTERNAL_REFERENCE 1,078,818 0.336%
BUILDING 1,078,364 0.336%
CITY_OBJECT_MEMBER 1,078,364 0.336%
THOROUGHFARE 1,028,160 0.320%
THOROUGHFARE_NAME 1,028,160 0.320%
THOROUGHFARE_NUMBER 1,028,160 0.320%
THOROUGHFARE_NUMBER_OR_RANGE 1,028,160 0.320%
LENGTH 978,336 0.305%
COMPOSITE_SURFACE 149,692 0.047%
SOLID 149,570 0.047%
SOLID_PROPERTY 149,570 0.047%
COUNTRY_NAME 143,800 0.045%
INTERIOR 10,736 0.003%
BUILDING_PART 458 0.001%
BUILDING_PART_PROPERTY 458 0.001%
STRING_OR_REF 152 0.001%
URI_ATTRIBUTE 4 0.001%
CITY_MODEL 2 0.001%

Total 321,142,046 100.000%

Table 7.1: Labelled nodes and their respective frequencies after two CityGML instances
of the whole city Berlin are mapped.

The graph database allocates a total number of 132,158,372 bytes (or approximately
126 GB) of disk storage in total. However, this does not include the input test data
as well as the graph.db/index directory used for indexing in Neo4j, which could
additionally add up about several to tens of gigabytes to the total allocation.

114

7 Application Results and Discussion

7.2.2 Single and Multi-threading Performance

The differences in performance between the single-threaded and some combinations of
different numbers of producers and consumers in the multi-threaded processing are
shown in Figure 7.1. Result discussion and explanation can be found in Section 7.3.

0 20 40 60 80 100 120 140 160 180

ST

1P1C

1P7C

1P15C

1P31C

1P63C

164

146.1

26.4

15.7

13.5

13.6

112

107.5

58.8

63.7

82.6

108.7

minutes

Runtime of Mapping
Runtime of Matching

Figure 7.1: The differences in performance between the single-threaded (ST) and some
combinations of different numbers of producers and consumers in the multi-
threaded processing, where mPnC denotes m producer(s) and n consumer(s).

115

7 Application Results and Discussion

7.2.3 Indexing Performance

The impact of storing indices on disk (Neo4j’s built-in indices) and in main memory
(self-developed indexing mechanism using internal hash maps) on performance is
shown in Figure 7.2.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Indexing
in memory

Indexing
on disk

15.7

13.6

9.9

9.7

9.2

53.3

44.1

271.2

minutes

Runtime of Mapping (Creating feature graphs)
Runtime of Mapping (Resolving XLinks)
Runtime of Mapping (Computing bounding shapes)
Runtime of Matching

Figure 7.2: The impact of (built-in) indices in Neo4j on performance compared to an
internal hash map used for indexing in main memory.

116

7 Application Results and Discussion

7.2.4 Differences in Performance between Building Batch Sizes

The effects on performance of applying different numbers of buildings wrapped in a
batch transaction during the mapping and matching process are illustrated in Figure 7.3.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

15.9

15.6

16

15.9

15.9

16.6

62.1

63.7

69

72.4

78.1

84.6

minutes

nu
m

be
r

of
bu

ild
in

gs
in

a
ba

tc
h

Runtime of Mapping
Runtime of Matching

Figure 7.3: The effects on performance of applying different numbers of buildings
wrapped in a batch transaction during the mapping and matching process.

117

7 Application Results and Discussion

7.2.5 Performance of the Grid Layout and R-tree

The performance differences in mapping and matching using the grid layout and R-tree
approach are shown in Figure 7.4. Finally, Figures 7.5 and 7.6 visualize two R-tree
images of the entire area of Berlin with values of M equal to 10 and 100 respectively.

0 10 20 30 40 50 60 70 80 90

Grid tile
W = H = 100

Grid tile
W = H = 200

Grid tile
W = H = 300

R-tree
M = 10

R-tree
M = 50

R-tree
M = 100

14.4

14.8

14.3

15.9

17.9

19.3

54.6

57.8

58.3

63.7

73

84.3

minutes

Runtime of Mapping
Runtime of Matching

Figure 7.4: The performance differences in mapping and matching using the grid layout
and R-tree approach, where W, H denote width and height of grid tiles
respectively and M denotes the maximum number of entries per internal
R-tree node.

118

7 Application Results and Discussion

Figure 7.5: R-tree visualization with M = 10 of the entire area of Berlin. Each rectangle
represents an R-tree node. Nodes of the same colour have the same height.
Thus, this R-tree can be visualized as a tall but narrow-shaped tree.

119

7 Application Results and Discussion

Figure 7.6: R-tree visualization with M = 100 of the entire area of Berlin. Each rectangle
represents an R-tree node. Nodes of the same colour have the same height.
Thus, this R-tree can be visualized as a shallow but broad-branched tree.

120

7 Application Results and Discussion

7.3 Discussion

The overall application performance depends on a number of factors tested in this
chapter, namely:

Multi-threading In multi-core systems, executing the mapping and matching process
concurrently often results in a great boost in performance. Figure 7.1 shows
significant increases in both mapping and matching where multi-threading is
applied. In addition, the matching process tends to benefit more from the number
of used threads than mapping. For instance, an increase of 76% and 945% are
observed in the mapping and matching process respectively going from single
to multi-threaded with 1 producer and 15 consumers. However, diminishing
returns are encountered if too many concurrent consumers (relatively to available
physical CPU cores) are employed. For example, a negative performance of 71%
of the mapping process is recorded in the work-pool of 63 consumers compared
to 15 consumers, while the matching process remains almost constant. Thus,
empirically, 1 producer and 15 consumers are recommended for systems with
similar hardware. One producer for reading and writing data from and to disk is
often sufficient, as these tasks do not benefit from concurrency.

Means of indexing Figure 7.2 shows that by using a self-developed indexing method
using internal hash maps stored in main memory, the performance of the mapping
process is accelerated to more than 5 times as fast as that of storing indices on
disk. Therefore, indexing using hash maps is recommended in systems with
sufficient main memory (e.g. an initial heap space of 30,000 MB of main memory
is employed in this test). However, only the first two steps of the mapping process
(i.e. creating feature graphs and resolving XLinks) are affected, others remain
almost unchanged.

Building batch size Figure 7.3 shows that the greater (≥ 10) the number of buildings
wrapped in a batch transaction is, the slower the mapping process becomes. On
the other hand, the matching step remains virtually constant among various batch
sizes. Thus, it is suggested to execute no more than 10 buildings per batch.

Spatial search strategies While the grid layout offers almost constant matching and
slightly increasing mapping time as tile size grows, the performance of both
processes using an R-tree depends noticeably on the maximum number of entries
M per internal node as shown in Figure 7.4. Moreover, although the grid layout
is generally faster in this experiment, it is advised to investigate buildings’ spatial
distribution beforehand. On the other hand, an R-tree can be applied for almost
all scenarios while still giving decent performance for M ≤ 10.

121

8 Conclusion and Future Work

Overall, the concepts and their implementations developed in this thesis have achieved
the intended results mentioned in Chapter 1, namely:

• The mapping process is capable of handling arbitrarily large-sized CityGML
documents given a reasonable amount of main memory and storage allocation.
It facilitates the seamless interaction between unmarshalling CityGML elements
to Java objects with the help of the library citygml4j and mapping Java objects
to graph entities using the Neo4j Java Core API. The generated graph database
represents its input CityGML instance documents with minimum data loss during
the transformation of object-oriented Java objects to value-based graph entities in
Neo4j.

• The matching process is generally capable of detecting arbitrary changes made
manually to the old dataset. It can disambiguate most common syntactic am-
biguities existing in GML, e.g. between XLink and in-line object declarations.
Moreover, geometric objects such as points, line segments, polygons, surfaces,
etc. are compared based on their geometrical properties given a predefined error
tolerance. These entities can be matched correctly even with altered identifiers.
Furthermore, buildings can be organized in a grid layout or an R-tree based
on their spatial allocation. These strategies offer a noticeable boost in overall
performance.

• Found deviations are attached to their respective sources in the graph database
and can be transformed to WFS requests complying with the official OGC stan-
dards. In case of complex XML properties, such as CityGML generic attributes
and external references, although the update procedures can be formally repre-
sented by graphs, the ordinary WFS is not expressive enough in such scenarios.
Therefore, vendor-specific extensions allowed by the WFS standard, such as
defined by the virtualcityWFS, can be employed.

While the current implementation is capable of mapping, comparing and updating
changes reliably between arbitrary CityGML documents, improvements and extensions
are possible in the near future. For instance, momentarily, only the module Building

122

8 Conclusion and Future Work

(with Appearances) is implemented. Other CityGML modules, like CityFurniture,
Transportation, Bridge, Tunnel, etc. can be included in the future.

Moreover, it is previously assumed that both CityGML input documents are provided
in the same spatial reference system, which is not always the case in practice. Therefore,
one future task is to integrate the transformation between different spatial reference
systems in the implementation.

Furthermore, the current assignments of buildings to grid tiles or R-tree nodes do not
consider objects defined by implicit geometry. The calculation of buildings’ bounding
shapes can also be further optimized. A (reverse) parser capable of converting graph
entities back to Java objects and CityGML elements correspondingly is of interest.

In addition, due to the technical limitations persisting in the current WFS versions,
some sub-objects of building features cannot be updated using WFS transactions.
However, this is subject to change as more extended specifications are released.

Finally, the methods and algorithms proposed in this research can be extended and
applied to enable a version control system for collaborative work in modelling and
storing digital 3D city models in the future as proposed by [Cha+15].

123

List of Figures

1.1 An overview of three major steps mapping, matching and updating of
3D city models using a graph database. 2

2.1 Official logo of CityGML. 7
2.2 Five different Levels of Details (LOD) 0 - 4 of a building representation

in CityGML. 8
2.3 UML package diagram illustrating the separate modules of CityGML

and their schema dependencies. 8
2.4 UML diagram of CityGML’s building model. 9
2.5 An example of a web document and its DOM representation. 11
2.6 The JAXB binding process. 12
2.7 An example of the relational model. 14
2.8 Relevant connected data items from Figure 2.7. 15
2.9 An illustration of reading large CityGML datasets piece by piece. 17
2.10 An example of a graph representation of the data model shown in

Figure 2.8 in Neo4j. 19
2.11 An example of the transaction management in Neo4j. 22
2.12 An example of an R-tree. 24
2.13 An R-tree representation of an excerpt from the CityGML dataset pro-

vided by the North Rhine-Westphalia state, Germany. 25
2.14 Illustration of an adapter connecting spatial indices in Neo4j Spatial with

data already stored in Neo4j. 27
2.15 An overview of the Web Feature Service (WFS) in interaction with GIS

clients and geospatial database. 28

3.1 An illustration of Steps 1 and 2 of the mapping process. 35
3.2 An illustration of Steps 3 and 4 of the mapping process. 36
3.3 UML class diagram of RectifiedGrid and its superclasses. 39
3.4 Result of mapping a Grid instance to a graph in the instance-based

approach. 42
3.5 Result of mapping a Grid instance to a graph in the hierarchy-based

approach. 46
3.6 An illustration of the splitting mechanism per feature in citygml4j. . . . 51

124

List of Figures

4.1 An illustration of the neighbourhood N(ε) of point P1 in 2D and 3D. . . 60
4.2 An example of two geometrically matched LineStrings each consisting

of three line segments. 61
4.3 Some examples illustrating the three requirements of LinearRings. . . . 63
4.4 An example of two perpendicular (planar) rings R1, R2 given normal

vectors −→n1 , −→n2 in three-dimensional space Oxyz. 64
4.5 Some examples illustrating the three requirements needed for interior

boundaries of Polygons. 69
4.6 An example of two buildings, whose minimum bounding boxes have the

same footprint but different heights. 71
4.7 An example of the shared volume of two minimum bounding boxes. . . 73
4.8 Examples of non-coincident and coincident grid layouts. 75
4.9 An illustration of grid construction. 76
4.10 An illustration of possible combinations that may occur while assigning

buildings to tiles in a grid using its centre. 78
4.11 An illustration of matching city models by their grid layouts. 81

5.1 A UML class diagram of all edit operations. 86
5.2 An illustration of two geometrically equivalent polygons defined in two

CityGML documents. 87
5.3 Two approaches to retrieving XML contents of a CityGML object. 94

6.1 An example of two producers and four consumers in the Producer-
consumer design pattern. 108

6.2 An illustration of a deadlock encountered while concurrently matching
buildings using a grid layout. 110

7.1 The differences in performance between the single-threaded and some
combinations of different numbers of producers and consumers in the
multi-threaded processing. 115

7.2 The impact of (built-in) indices in Neo4j on performance compared to an
internal hash map used for indexing in main memory. 116

7.3 The effects on performance of applying different numbers of buildings
wrapped in a batch transaction in the mapping and matching process. . 117

7.4 The performance differences in mapping and matching using the grid
layout and R-tree approach. 118

7.5 R-tree visualization with M = 10 of the entire area of Berlin. 119
7.6 R-tree visualization with M = 100 of the entire area of Berlin. 120

125

List of Tables

2.1 An overview of WFS operations including their operation groups (indi-
cated by colours), descriptions and request encodings. 32

2.2 WFS versions and their implemented operations. 33

3.1 Visible attributes and references of a Grid instance. 41
3.2 Visible attributes and references of a RectifiedGrid instance. 43

4.1 A list of point classes in citygml4j and their node labels in Neo4j. 59

7.1 Labelled nodes and their respective frequencies after two CityGML
instances of the whole city Berlin are mapped. 114

126

List of Algorithms

1 instance_based_map(instance) . 40
2 hierarchy_based_map(instance) . 44
3 hybrid_map(instance, container) . 48

4 match_node(node1, node2) . 54
5 match_properties(node1, node2) . 55
6 match_relationships(node1, node2) . 57
7 fuzzy_contains(other_area) . 67
8 assign(building, grid) . 77
9 match_grid(grid1, grid2) . 80
10 match_rtree(city1, city2) . 83

11 update_controller(city1, city2) . 92
12 update(node) . 92

127

Listings

2.1 A simple Cypher query to retrieve building(s) with given ID. 20
2.2 An example of Neo4j Bolt in Java. 20
2.3 An example of Neo4j Java Core API. 21
2.4 An example of an HTTP POST request. 29

5.1 First sample CityGML document. 87
5.2 Second sample CityGML document. 89
5.3 WFS insert transaction of buildings. 93
5.4 WFS delete transaction of buildings. 95
5.5 WFS transaction of thematic properties. 96
5.6 WFS insert and update transaction of geometric properties. 98
5.7 WFS delete transaction of geometric properties. 98
5.8 WFS insert transaction of generic atributes. 99
5.9 WFS insert transaction of generic atribute sets. 100
5.10 WFS insert transaction of external references. 101
5.11 WFS delete transaction of generic attributes. 102
5.12 WFS update transaction of generic attributes. 102

128

Bibliography

[3DC16] 3DCityDB. 3D City Database for CityGML. Version 3.3.0. Chair of Geoinfor-
matics, Technische Universität München (TUMGI), virtualcitySYSTEMS
GmbH, and M.O.S.S. Computer Grafik System GmbH. 2016. url: http:
//www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB_

Documentation_v3.3.pdf (visited on 03/01/2017).

[3DC17] 3DCityDB. citygml4j - The Open Source Java API for CityGML. Mar. 2017. url:
http://www.3dcitydb.net/3dcitydb/citygml4j/ (visited on 03/01/2017).

[Bac10] R. Baca. R-tree example. 2010. url: https : / / upload . wikimedia . org /

wikipedia/commons/6/6f/R-tree.svg (visited on 03/01/2017).

[Ber+08] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational Ge-
ometry: Algorithms and Applications. 3rd ed. Santa Clara, CA, USA: Springer-
Verlag TELOS, 2008. isbn: 3540779736, 9783540779735.

[Bil16] R. Bill. Grundlagen der Geo-Informationssysteme. 6. völlig neu bearbeitete und
erweiterte Auflage. 6th ed. Wichmann, 2016. Chap. 3. Raum und Zeit in GIS,
pp. 157–198. isbn: 978-3-87907-607-9.

[Bra+08] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensi-
ble Markup Language (XML) 1.0. Fifth edition. World Wide Web Consortium
(W3C). Nov. 2008.

[CAM02] G. Cobena, S. Abiteboul, and A. Marian. “Detecting changes in XML docu-
ments.” In: Data Engineering, 2002. Proceedings. 18th International Conference
on. 2002, pp. 41–52. doi: 10.1109/ICDE.2002.994696.

[CG97] S. S. Chawathe and H. Garcia-Molina. “Meaningful Change Detection in
Structured Data.” In: Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’97. Tucson, Arizona, USA:
ACM, 1997, pp. 26–37. isbn: 0-89791-911-4. doi: 10.1145/253260.253266.

[Cha+15] K. Chaturvedi, C. S. Smyth, G. Gesquière, T. Kutzner, and T. H. Kolbe.
“Managing versions and history within semantic 3D city models for the
next generation of CityGML.” en. In: Selected papers from the 3D GeoInfo 2015
Conference. Ed. by A. A. Rahman. Lecture Notes in Geoinformation and
Cartography. Kuala Lumpur, Malaysia: Springer, 2015.

129

http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB_Documentation_v3.3.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB_Documentation_v3.3.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB_Documentation_v3.3.pdf
http://www.3dcitydb.net/3dcitydb/citygml4j/
https://upload.wikimedia.org/wikipedia/commons/6/6f/R-tree.svg
https://upload.wikimedia.org/wikipedia/commons/6/6f/R-tree.svg
https://doi.org/10.1109/ICDE.2002.994696
https://doi.org/10.1145/253260.253266

Bibliography

[Cha+96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. “Change
Detection in Hierarchically Structured Information.” In: SIGMOD Rec. 25.2
(June 1996), pp. 493–504. issn: 0163-5808. doi: 10.1145/235968.233366.

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks.”
In: Commun. ACM 13.6 (June 1970), pp. 377–387. issn: 0001-0782. doi:
10.1145/362384.362685.

[Cox+04] S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside. OpenGIS Geography
Markup Language (GML) Implementation Specification. Specification OGC
03-105r1. Version 3.1.1. Open Geospatial Consortium (OGC), 2004.

[DBE17] DB-Engines. DB-Engines Ranking. 2017. url: http://db-engines.com/en/
ranking/graph+dbms (visited on 03/01/2017).

[DeR+10] S. DeRose, E. Maler, D. Orchard, and N. Walsh. XML Linking Language
(XLink) Version 1.1. World Wide Web Consortium (W3C). May 2010.

[EF91] M. J. Egenhofer and R. D. Franzosa. “Point-set topological spatial relations.”
In: International Journal of Geographical Information Systems 5.2 (1991), pp. 161–
174. doi: 10.1080/02693799108927841. eprint: http://dx.doi.org/10.
1080/02693799108927841.

[EH91] M. J. Egenhofer and J. Herring. Categorizing binary topological relations between
regions, lines, and points in geographic databases. Technical report. Department
of Surveying Engineering, University of Maine, 1991.

[Goe+06] B. Goetz, J. Bloch, J. Bowbeer, D. Lea, D. Holmes, and T. Peierls. Java
Concurrency in Practice. Addison-Wesley Longman, Amsterdam, 2006. isbn:
0321349601.

[Grö+12] G. Gröger, T. H. Kolbe, C. Nagel, and K.-H. Häfele. OpenGIS(R) City Geog-
raphy Markup Language (CityGML) Encoding Standard. Version: 2.0.0. Open
Geospatial Consortium (OGC). Apr. 2012.

[Grö10] G. Gröger. Modeling Guide for 3D Objects - Part 1: Basics (Rules for Validating
GML Geometries in CityGML). Version 0.6.0. SIG3D - Special Interest Group
3D. Dec. 15, 2010. url: http://en.wiki.quality.sig3d.org/index.
php/Modeling_Guide_for_3D_Objects_-_Part_1:_Basics_(Rules_for_

Validating_GML_Geometries_in_CityGML) (visited on 03/01/2017).

[Gut84] A. Guttman. “R-trees: A Dynamic Index Structure for Spatial Searching.” In:
Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’84. Boston, Massachusetts: ACM, 1984, pp. 47–57. isbn:
0-89791-128-8. doi: 10.1145/602259.602266.

130

https://doi.org/10.1145/235968.233366
https://doi.org/10.1145/362384.362685
http://db-engines.com/en/ranking/graph+dbms
http://db-engines.com/en/ranking/graph+dbms
https://doi.org/10.1080/02693799108927841
http://dx.doi.org/10.1080/02693799108927841
http://dx.doi.org/10.1080/02693799108927841
http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Objects_-_Part_1:_Basics_(Rules_for_Validating_GML_Geometries_in_CityGML)
http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Objects_-_Part_1:_Basics_(Rules_for_Validating_GML_Geometries_in_CityGML)
http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Objects_-_Part_1:_Basics_(Rules_for_Validating_GML_Geometries_in_CityGML)
https://doi.org/10.1145/602259.602266

Bibliography

[HM76] J. W. Hunt and M. D. McIlroy. An Algorithm for Differential File Comparison.
Computing Science Technical Report. Bell Laboratories, June 1976.

[Kes+15] A. van Kesteren, A. Gregor, Ms2ger, A. Russell, and R. Berjon. W3C DOM4.
World Wide Web Consortium (W3C). Nov. 19, 2015. url: https://www.w3.
org/TR/domcore/ (visited on 03/01/2017).

[KGP05] T. H. Kolbe, G. Gröger, and L. Plümer. “CityGML: Interoperable Access
to 3D City Models.” In: Geo-information for Disaster Management. Ed. by P.
van Oosterom, S. Zlatanova, and E. M. Fendel. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 883–899. isbn: 978-3-540-27468-1. doi: 10.1007/
3-540-27468-5_63.

[Man+05] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis.
R-Trees: Theory and Applications. Springer Publishing Company, Incorporated,
2005. isbn: 1852339772, 9781852339777.

[Nag17] C. Nagel. citygml4j - The Open Source Java API for CityGML. Version 2.4.3.
2017. url: https : / / github . com / citygml4j / citygml4j/ (visited on
03/01/2017).

[NBU10] G. Navratil, R. Bulbul, and A. U. Frank. “Maintainable 3D Models of Cities.”
In: Proceedings of the 15 International Conference on Urban Planning, Regional
Development and Information Society. Real CORP, 2010, pp. 411–418.

[Neo17a] Neo Technology. From Relational to Neo4j. Neo Technology. 2017. url: https:
//neo4j.com/developer/graph-db-vs-rdbms/ (visited on 03/01/2017).

[Neo17b] Neo Technology. The Neo4j Developer Manual. Version 3.1. Neo Technology.
2017. url: http://neo4j.com/docs/developer-manual/current/ (visited
on 03/01/2017).

[Neo17c] Neo Technology. The Neo4j Java Developer Reference. Version 3.1. Neo Tech-
nology. 2017. url: http://neo4j.com/docs/java-reference/current/
(visited on 03/01/2017).

[Neo17d] Neo Technology. The Neo4j Operations Manual. Version 3.1. Neo Technol-
ogy. 2017. url: https://neo4j.com/docs/operations-manual/current/
(visited on 03/01/2017).

[Neo17e] Neo4j Spatial. Neo4j Spatial v0.24-neo4j-3.1.1. Version 0.24. Neo Technol-
ogy. 2017. url: http://neo4j-contrib.github.io/spatial/ (visited on
03/01/2017).

[Ora15] Oracle Corporation. Java Architecture for XML Binding (JAXB). Oracle Cor-
poration. 2015. url: http://docs.oracle.com/javase/tutorial/jaxb/
intro/arch.html (visited on 03/01/2017).

131

https://www.w3.org/TR/domcore/
https://www.w3.org/TR/domcore/
https://doi.org/10.1007/3-540-27468-5_63
https://doi.org/10.1007/3-540-27468-5_63
https://github.com/citygml4j/citygml4j/
https://neo4j.com/developer/graph-db-vs-rdbms/
https://neo4j.com/developer/graph-db-vs-rdbms/
http://neo4j.com/docs/developer-manual/current/
http://neo4j.com/docs/java-reference/current/
https://neo4j.com/docs/operations-manual/current/
http://neo4j-contrib.github.io/spatial/
http://docs.oracle.com/javase/tutorial/jaxb/intro/arch.html
http://docs.oracle.com/javase/tutorial/jaxb/intro/arch.html

Bibliography

[Ora16] Oracle Corporation. Java HotSpot™Virtual Machine Performance Enhancements.
Version 8. Oracle Corporation. 2016. url: http://docs.oracle.com/
javase/8/docs/technotes/guides/vm/performance-enhancements-7.

html (visited on 03/01/2017).

[Ora17] Oracle Corporation. JAXB User’s Guide. Oracle Corporation. 2017. url:
https://jaxb.java.net/2.2.11/docs/ch03.html (visited on 03/01/2017).

[Red14] R. Redweik. “Semantic Change Detection for CityGML Documents.” Mas-
ter’s thesis. Institute for Geodesy and Geoinformation Science, Technical
University of Berlin, Oct. 2014.

[RPB09] S. Rönnau, G. Philipp, and U. M. Borghoff. “Efficient Change Control of
XML Documents.” In: Proceedings of the 9th ACM Symposium on Document
Engineering. DocEng ’09. Munich, Germany: ACM, 2009, pp. 3–12. isbn:
978-1-60558-575-8. doi: 10.1145/1600193.1600197.

[Sel77] S. Selkow. “The tree-to-tree editing problem.” In: Information Processing
Letters 6.6 (Dec. 1977), pp. 184–186. issn: 00200190. doi: 10.1016/0020-
0190(77)90064-3.

[SN09] M. Scholz and S. Niedermeier. Java und XML: Grundlagen, Einsatz, Referenz.
Galileo Computing. Bonn, 2009. isbn: 9783836213080.

[Tai79] K.-C. Tai. “The Tree-to-Tree Correction Problem.” In: J. ACM 26.3 (July
1979), pp. 422–433. issn: 0004-5411. doi: 10.1145/322139.322143.

[vir16] virtualcitySYSTEMS. virtualcityWFS 3.1.0 Manual. Manual. Version 3.1.0.
virtualcitySYSTEMS, Aug. 2016.

[Vre14] P. A. Vretanos. OGC® Web Feature Service 2.0 Interface Standard. OGC®

Standard 09-025r2. Version 2.0.2. Open Geospatial Consortium (OGC), July
2014.

[WDC03] Y. Wang, D. J. DeWitt, and J. Y. Cai. “X-Diff: an effective change detection
algorithm for XML documents.” In: Data Engineering, 2003. Proceedings. 19th
International Conference on. Mar. 2003, pp. 519–530. doi: 10.1109/ICDE.2003.
1260818.

[ZS89] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems.” In: SIAM J. Comput. 18.6 (Dec. 1989),
pp. 1245–1262. issn: 0097-5397. doi: 10.1137/0218082.

132

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
http://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
http://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
https://jaxb.java.net/2.2.11/docs/ch03.html
https://doi.org/10.1145/1600193.1600197
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1145/322139.322143
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1137/0218082

	Acknowledgements
	Abstract
	Acronyms
	Introduction and Motivation
	Motivation and Problem Statement
	Research Objectives and Questions
	Methodology
	Application Scenario and Employed Tools
	Expected Results
	Outline

	Theoretical and Methodical Background
	City Geography Markup Language (CityGML)
	XML Processing
	XML Parsing
	XML Data Binding

	citygml4j - The Open Source Java API for CityGML
	Graph Database in Neo4j
	From Relational to Graph Database
	CityGML in Graph Database
	Neo4j Graph Database Management System
	Graph Structures in Neo4j
	Developing in Neo4j

	R-tree Data Structure and Neo4j Spatial
	R-tree Data Structure
	Neo4j Spatial

	Web Feature Service (WFS)
	WFS Communications
	WFS Operations
	WFS for CityGML

	Mapping 3D City Models in CityGML onto a Graph Database
	Reading CityGML Datasets in Java
	Converting Java Objects to Graph Entities
	Instance-based Approach
	Hierarchy-based Approach
	Combination of Instance and Hierarchy-based Approach

	Connecting Mapped City Objects using XLinks
	Existence of XLinks in Mapped Graphs
	Resolving XLinks within the Graph Database

	Calculating Minimum Bounding Boxes of Mapped City Objects
	Reverse-mapping Graphs to Java Objects
	Calculating Minimum Bounding Boxes of Java Objects

	Matching 3D City Models in CityGML using a Graph Database
	Comparing Node Properties
	Matching Node Relationships
	Matching Geometry of Points
	Matching Geometry of Line Segments
	Matching Geometry of Rings
	Matching Geometry of Polygons
	Matching Geometry of Solids
	Matching Geometry of Minimum Bounding Boxes

	Spatial Matching Strategies
	Matching in a Grid Layout
	Matching in an R-tree

	Updating 3D City Models in CityGML using a Graph Database
	Edit Operations
	Class Model
	Practical Example

	Updating Building Objects using WFS
	WFS Transactions on Building Objects
	WFS Transactions on Thematic Properties
	WFS Transactions on Geometric Properties
	WFS Transactions on Complex Properties

	Performance Optimization
	Memory Tuning and Storage Selections
	Memory Tuning
	Storage Selections

	Batch Transaction Processing
	Concurrent Processing
	Multi-threading Approaches
	Deadlock Avoidance

	Application Results and Discussion
	Test Setup
	Testing Environment
	Input Data
	Test Configurations

	Application Results
	Statistics of Mapped Graph Database
	Single and Multi-threading Performance
	Indexing Performance
	Differences in Performance between Building Batch Sizes
	Performance of the Grid Layout and R-tree

	Discussion

	Conclusion and Future Work
	List of Figures
	List of Tables
	Listings
	Bibliography

