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Abstract. We study weighted clustering problems in Minkowski spaces under balancing con-
straints with a view towards separation properties. First, we introduce the gravity polytopes and
more general gravity bodies that encode all feasible clusterings and indicate how they can be utilized
to develop efficient approximation algorithms for quite general, hard to compute objective functions.
Then we show that their extreme points correspond to strongly feasible power diagrams, certain
specific cell complexes, whose defining polyhedra contain the clusters, respectively. Further, we char-
acterize strongly feasible centroidal power diagrams in terms of the local optima of some ellipsoidal
function over the gravity polytope. The global optima can also be characterized in terms of the
separation properties of the corresponding clusterings.
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1. Introduction. Clustering methods are powerful tools for an abundance of
real-world problems; see, e.g., [7]. In the present paper we focus on weighted clus-
tering in Minkowski spaces (R?, || .||) under balancing constraints, a problem that is
motivated by a new approach to farmland consolidation based on lend-lease agree-
ments; see [11], [12], [9]. Here, a fixed number k of farmers who cultivate a total of
m lots want to reduce their operating costs by swapping lots so as to “move” their
lots closer together. Of course, each lot may have a different size w;. Naturally,
the original farm sizes k; should not change too much by the reassignment. This
means that the new size of the jth farm lies in some interval [k, x; ], where typically
(kf — K] )/k; is small. Since the focus is not on their geometric shapes, the lots are

K3
represented by points in R2; i.e., in this particular application we have d = 2.

Introducing and utilizing the concept of gravity bodies, specifically gravity poly-
topes, we will show that each extremal (fractional) clustering C = (C1, ..., Cy) admits
a Voronoi dissection of space; i.e., there exists a polyhedral cell complex whose defin-
ing cells Py, ..., P contain the clusters C1, ..., Cg, respectively. In fact, the extremal
clusterings can be characterized in terms of strongly feasible power diagrams; see [1]
for a survey on power diagrams. Hence, our results can be seen as a strengthening
extension and generalization of those of [6], [4], [18], [19], [8] to the weighted case.
Moreover, we identify certain particularly natural power diagrams and study con-
cepts of stability. In particular, we characterize the strongly feasible centroidal power
diagrams in terms of the local maxima of a convex ellipsoidal function over gravity
polytopes. The global maxima correspond to clusterings which maximize a certain
measure for the total distance between the clusters.
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For background information, closely related results, and further references, see
[10], [2], [21], [18], [19], [23], [20], [22], [5], [17], [15] and other papers cited therein.

The present paper is organized as follows. Section 2 gives the basic notation
and states our main results. Section 3 defines gravity polytopes and more general
gravity bodies as the central objects of the present paper. We give some elementary
properties of these bodies and indicate why certain approximations play a crucial
role for developing quite efficient approximation algorithms for (weighted) balanced
clustering. Section 4 characterizes the extreme points of gravity bodies in terms of
strongly feasible power diagrams. Section 5 then links the strongly feasible centroidal
power diagrams to the local maxima of an ellipsoidal function over the corresponding
gravity polytope. Also the global optima are characterized. Section 6 then closes with
some final remarks.

2. Basic notation and main results.

2.1. Constrained clustering. Let, in the following, d, k, m € N, typically with
m much larger than k. To exclude the most trivial cases, we will always assume that
m,k > 2. Let x1,..., 2, € R? be different points, wi, ..., wm €]0,00[, K1,...,kk €
10, oo, with

k m
E R; = E wy.
Jj=1

i=1
(In the following, intervals will be signified by rectangular brackets; e.g., [, ] indicates
a closed interval and ], [ an open interval.) Further, let s ,..., /i;,lﬁ;r, cee Hz S
10,00[ with k; < k; < K for all 4, and set X = {x1,...,2m}, Q@ = (W1,...,Wm),
K= (k1,...,6k), KT = (K1 ,..., K ), Kt = (k1. K1)

Let C = (Ch,...,Ck), where C; = (&1,...,&,m) and & ; € [0,1] such that
Zle &,; =1 for each j. Then C is called a (fractional) clustering of X. In fact, & ;
is the fraction of z; assigned to C;. If all & ; are in {0, 1}, the clustering C is called
integer. If all w; are 1, which will be indicated by writing 2 = 1, we will speak of the
combinatorial case.

The weight of the cluster C; is given by w(C;) = 7", & jw;; hence each point
x; is counted for C; with the product of its weight and the fraction belonging to Cj.

A (fractional or integer) clustering is called balanced if r; < w(C;) < k] for each
i. These conditions are referred to as balancing constraints. f K~ = K = KT, we will
speak of strongly balanced clusterings; balanced clusterings are then sometimes called
weakly balanced to emphasize the fact that we allow more general cluster weights.

Now, let BCE(k,m, X, Q,K~,K,K") and BC(k, m, X, Q,K) denote the set of all
weakly and strongly balanced fractional clusterings for the given parameters, respec-
tively. The set of all such clusterings which are, in addition, integer will be denoted
by BC%(k,m,X,Q,KﬂK,K*) and BCy(k,m, X, Q, K), respectively. If the context
is clear, we use the abbreviations BC¥, BCIi7 BC, and BCj. Trivially,

BC; ¢ BC c BC*,  BC; c BCT ¢ BCE.
Note that if the data 2, K are integer, the problem of deciding whether BCf,E #0
or BCy # () is NP-complete [9], while, due to our condition on K, we have BC # 0

and BC* # (). The latter fact is made explicit by including the parameters K
(K1,-..,Kk) in the definition of BCi(k,m,X7 Q,K K, KT).
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One might also wonder why in the notation for this and the other related sets
the point set X is mentioned explicitly. Of course, as combinatorial objects, the
corresponding clusterings do not depend on X. This paper studies, however, geometric
properties of the “representation” of the clusterings on the set X.

2.2. Separation and dissection. In the following we are interested in sepa-
ration properties of clusterings. Such properties were studied in [6], [3], [4], [8], and
other papers in the strongly balanced (integer) combinatorial case, i.e., for clusterings
in BCy(k,m, X,1,K). Some of the results of these papers have been extended to the
case of families of sets or, equivalently, to positive integer weights; see, in particular,
[18] for such fundamental work which is closely related to our approach.

Let Pi,..., P be polyhedra. (Here and throughout the paper it goes without
saying that all polyhedra are closed and convex.) P = (Pi,...,Py) is a dissection
of R*if P, U---U P, = R? and if the interiors int(P;) are pairwise disjoint. P is a
cell decomposition of R% if P is a dissection of R? and if, for each such choice, the
intersection of a face F; of P; and a face F; of P, is a face of both F; and F;. We
are interested in cell decompositions of R? whose defining polyhedra “contain” the
clusters C, ..., Cy of a given clustering C, respectively. Of course, in the integer case
the clusters can be identified with subsets of X, and it is clear what this means. In the
general weighted case, we will define this property by using the support supp(C;) =
{z; : &,; # 0} of C;. We say that a cell decomposition P = (Py,..., Py) is feasible
for C if supp(C;) C P; for all i. In the present paper we will focus on separation
properties that are stronger than just feasibility in the following two ways.

Of course, it is clear that in general we have to accept that some points are
fractionally assigned to more than one cluster and hence lie in (the boundary of)
more than one of the polyhedra of P. (As an example let k = 2, m = 2, d = 1,
1 =0,20 =1, w; =3, ws =1, and kK1 = ko = 2. Then x; has to be split among
the two clusterings of any strongly balanced clustering.) However, we would like to
exclude that points lie in polyhedra “accidentally”;i.e., z; € P; even though &; ; = 0.
Hence, we say that P supports C if, for all i,

supp(C;) = X N P;.
Note that if C is integer and P supports C, then P is strictly feasible for C, i.e.,
supp(C;) C int(F;) for all 4.
The following second condition enforces that P does not support C “just by cheat-

ing.” Before introducing this property more formally, consider the following simple
example to indicate what we mean. Let

d=k=2, m=2, wi=wr=1, kK1 =kK2=1, $1=—$2:<(1)>,

and set
Pr={(6,6)" eR?: & <0}, P={(&,&)" €R*: 64 >0}, P=(P,P).
Of course, all the balanced clusterings are of the form
C(8) = (C1(0), C2(9)) = (6,1 = 6), (1 = 6,0)), (3 €[0,1]).

Whenever ¢ € ]0,1[, the dissection P supports C(d). For § € {0,1} this is, however,
not the case. On the other hand, the integer clustering C(0) (or, similarly, C(1)) can be
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easily transformed into the fractional clustering C(d) for § € |0, 1[ by simultaneously
moving the fraction ¢ of 21 from C5(0) to C1(0) and the fraction § of zo from Ci(0)
to C2(0). Hence, one can reach the support property of P by making the clustering
“more fractional” and, of course, also worse with respect to many other criteria.

An appropriate general condition can be stated most easily in terms of a labeled
multigraph, the support multigraph G(C) of the clustering C = (C1, ..., Cf). Its vertex
set consists of C1,...,Cy, there is an edge between C; and Cj precisely for every j
for which x; € supp(C;) Nsupp(C;), and this edge is labeled with z;. In the above
example, for § €10, 1] the graph G(C(d)) is a 2-cycle. In fact, the relevant property is
essentially that G(C) does not have any cycle. More precisely, a cycle is called colored
if not all of its labels coincide. (A single-colored clique occurs if a point is split among
more than two clusters, e.g., k=3, m =1, 21 =0, w1 =3, k1 = ke = k3 = 1.) We
call G(C) c-cycle-free if it does not contain any colored cycle.

While the condition that G(C) be c-cycle-free does not involve P (and, in fact,
expresses that C corresponds to a vertex of the associated transportation polytope),
the following notation is motivated by our interest in clusterings that are induced by
dissections of space. Hence, the cell complex P is called strongly feasible for C if P
supports C and G(C) is c-cycle-free.

We say that a clustering C admits a Voronoi dissection or has the Voronoi property
if there is a cell decomposition of R? which is feasible for C. If the cell decomposition is
strongly (strictly) feasible for C, we refer to it as the strong (strict) Voronoi property.

Of particular relevance here are the power diagrams, defined with the aid of
different sites s1,...,s; € R? and associated sizes o1,...,0, € R. (In the standard
literature, the o; are called weights; we will use the term sizes here to avoid confusion
with the weights of the points and clusters we are dealing with.) Specifically, with
S =(s1,...,8;) and X = (01, ...,0k) the ith power cell PiS’E is defined by

ps® _ {x €R: ||z — 5,2 — 01 < ||z — 55]|%) — 0 for all j # z}
where || . [|(2) denotes the Euclidean norm. Then P%* = (PE=, .. .,P,f’z) is the
power diagram for (S,X). It is easy to see that power diagrams are special cell
decompositions of R? that generalize the well-known Voronoi diagrams; see [1] for
a survey. Hence we can also speak of a power diagram that is (strongly, strictly)
feasible for a given clustering.

2.3. Main results. We will characterize the strongly feasible power diagrams
in terms of the vertices of certain polytopes that encode our clusterings. To introduce
them, again let C = {Cy,...,Cx} € BCT, and for i = 1,...,k let

1 m
C; = C(Ol) = W(Cl) jzzlfi’jwjxj

denote the center of gravity of C;. Note that
m
0<k; <w(Cy) = Z€i>jwj <kl
j=1

hence, ¢; is well defined. Now,
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is called the gravity vector of C. The gravity body QF of BC* is then defined as
Q* = Q*(k,m, X, Q,K,K~,K") = conv{c(C) : C € BC*}.

Other gravity bodies @, Qli, and @y related to BC, BCIi, and BCj are introduced
accordingly. The latter three are polytopes (see Lemma 3.1) and are consequently
referred to as gravity polytopes. A clustering in any of the defined classes will be
called extremal if its gravity vector is an extreme point of the corresponding gravity
body. Of course, in the polytopal case the extremal clusterings correspond to the
vertices of the corresponding gravity polytope.

Now we are ready to state our first main result.

THEOREM 2.1. C € BC(k,m,X,Q,K) is extremal if and only if C admits a
strongly feasible power diagram.

Note that this theorem can be rephrased by saying that C is extremal if and only
if G(C) is c-cycle-free and there is a power diagram P that supports C.

As a corollary we see that extreme clusterings lead to strongly feasible power
diagrams even in the weakly balanced case.

COROLLARY 2.2. Let C € BCH(k,m, X,Q, K, K,KT) be extremal. Then C
admits a strongly feasible power diagram.

Let us point out that unlike in Theorem 2.1 the converse of Corollary 2.2 does
not hold. An example is given in section 4 after the proof of Corollary 4.6.

As we will see, Theorem 2.1 implies, in particular, that in extremal balanced
clusterings all but at most £ — 1 points are completely assigned to some cluster.

COROLLARY 2.3. Let C € BC*t (k,m, X, Q, K=, K,KT) be extremal. Then at most
2(k — 1) variables are fractional.

Theorem 2.1 will be proved in section 4. For the combinatorial case the characteri-
zation follows as a geometric reinterpretation of Theorem 5 of [6]; the integer case with
positive integer weights was dealt with in [18]. (In fact, Theorem 5 of [6] and Theo-
rem 3.1 of [18] characterize the vertices of the bounded-shape partition polytopes; see
section 3 for a definition.) These papers also include various algorithmic implications
(in the binary Turing-machine model). The sufficiency part in the strongly balanced
combinatorial case was explicitly given in [4] (see also [3]). More precisely, [4] gave an
algorithm that accepts as input (k, m, X, K) and sites S = (s1,...,s;) and computes
a least-squares clustering C = (Cy,...,Ck) € BCr(k,m, X,1,K); i.e., C minimizes

k
YooY szl

=1 z€supp(C;)

among all clusterings in BC;(k, m, X, 1,K) and sizes ¥ = (01, ...,0k) such that the
power diagram P is feasible for C. In the plane the running time (in the real RAM
model) of this algorithm is computed in [4] to be O(k*mlog(m) + kmlog®(m)) using
an optimal space of O(m).

Our second main result characterizes a certain particularly natural class of power
diagrams where the sites s; coincide with the centers ¢; of the clusters. More pre-
cisely, a power diagram P5* is called centroidal for C if it is feasible for C and

S = (c1,...,cx). We characterize centroidal power diagrams in terms of the local

maxima of the ellipsoidal function o : R¥ — [0, 00[, defined for z1,...,2; € R? and
_ (T T 1,

z=1(2{,...,%,)" by

k
p(z) = px(2) = Y kil =il G-
i=1
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Note that

SIS

Il = (¢(2)

is an ellipsoidal norm. Hence maximizing ¢ over a gravity body is a task of norm
mazimization. We say that C is a local (or global) mazimizer of ¢ in its class if ¢(C)
is a local (or global) maximizer of ¢ over the corresponding gravity body.

In order to characterize the strongly feasible centroidal power diagrams, we need
one natural condition. Of course, if supp(C;) and supp(C}) consist of the same single
point, then there cannot exist a power diagram that is centroidal for C. Hence we
require that the clustering C be proper; i.e., we have for i £ [

|supp(Ci)| = [supp(C1)| =1 = supp(Ci) # supp(C).

Here is the second main result.

THEOREM 2.4. Let C € BC(k,m, X,Q,K) be proper. Then C admits a strongly
feasible centroidal power diagram if and only if C € BC(k, m, X, Q,K) is extremal and
a local mazximizer for .

As a corollary we see that locally maximal clusterings lead to centroidal power
diagrams also in the weakly balanced case.

COROLLARY 2.5. Let C € BCi(k,m,X,Q,K_,K,K+) be proper and extremal.
Further, set K(C) = (w(C1),...,w(Ck)), and let ¢(C) be a local mazimizer for ok c).
Then C admits a strongly feasible centroidal power diagram.

Again, the converse statement does not hold.

Theorem 2.4 will be proved in section 5. There we also discuss the requirement
that C be proper in more detail. Further, we show that the global maximizers of
¢ correspond to feasible Voronoi dissections that are “most separated” in a certain
sense.

3. Gravity bodies. Before we study some elementary properties of gravity bod-
ies we introduce an approximative variant and indicate why gravity bodies are relevant
for practical algorithms. (Naturally, our results have various combinatorial and algo-
rithmic implications that will be dealt with in a broader context in a separate paper.)

Let C={Ci,...,Cy} € BCE. Fori=1,...,k let

m
. 1
Ci = — E fi,jwjxj.
Ri 2
Jj=1

Then the point ¢; can be regarded as an approximation of the center ¢; of Cj; it will
be referred to as inexact center of C;. Of course, if C € BC, then ¢; = ¢;.

A natural (and in spite of the NP-hardness of the problem practically quite effi-
cient) approach described in [12] models optimal balanced weighted geometric clus-
tering as a convex maximization problem that involves two norms, a norm || .|| on
R¢ and some other norm || . ||, on RE*=1D/2 || ||, is required to be monotone; i.e.,
lzllo < [lyllo whenever z,y € RE*=1/2 with 0 < z < y. (Here, and in the following,
the inequalities are meant componentwise.) Then the convex maximization problem
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looks as follows:

~ ~ ~ ~ ~ ~ T
masc (e = éall, léx = eall, .. lex- = al) |
m
subject to KiCi — Z§i7jwjxj = 0 (i=1,...,k),
j=1

k
> & = 1 (G=1,...,m),
i=1

/i; < Zfi,jwj < /i:r (Z = 1, . .,k),
j=1

&ij > 0 (t=1,...,k;

j=1,...,m).

Here, intuitively, a feasible clustering is optimal if the corresponding inexact centers
of gravity are pushed apart as far as possible. Obviously, the convex maximization
approach is algorithmically difficult. However, the “hard part” in obtaining optimal
clusterings “takes place” only in the R of the k inexact centers. (Note, however,
that in the reduced formulation that is obtained by replacing each occurrence of ¢;
by Ki S & jwjzj the objective function involves the km variables &; ;.) One then

J
obtains approximate solutions by approximating the relevant clustering bodies

T
C={z=Cl\ . 2 €RM | (o1 — 2l o1 — 2l e — )| < 1)

in R% by polyhedra and solving a linear program in R¥™ for each of its facets; see
[12]. The structure of clustering bodies is studied in [13] in detail, and it is shown
that for many choices of norms one can give quite tight worst case bounds for the
approximation error. Hence, in spite of the NP-hardness of the general clustering
problem one obtains good approximate solutions very efficiently. Note, specifically,
that in our prime example of land consolidation d = 2 and that k is rather small
compared to m. Typically, we have about 8000 variables &; ;, while % is around 10.
This means the hard convex maximization can be approximately dealt with in some
R?° while the subsequent (less than 100 different) linear programs take place in some
[R8000_

Let us further stress this point by introducing inexact variants of our gravity
bodies. For C = (Ci,...,Ck) € BC* and inexact centers é1,...,¢, let ¢(C) =
(el',...,eNT be the inexact gravity vector of C, and define the inezact gravity body
QF of BCT as

QF = Q*(k,m, X, Q,K,K~,K") = conv{&(C) : C € BC*}.

Other inexact gravity bodies Q, Qli, and Q 7 are introduced accordingly.
Note that the above norm maximization task can now be written as

o . T
max H(I|61—CQH,---,HCk—l—CkH) Ho’

which, of course, can be regarded as an approximation of the corresponding maxi-
mization over QF. Trivially,

Q:Qa QI:QL
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Also we have the following simple result. S
LEMMA 3.1. All gravity bodies are compact, and Q, Q, Qli, Q*, Q, Qli, and
Q1 are polytopes. Further, in the combinatorial case, Q% is also a polytope, and

Q=Qr, Q" =Qr.

Proof. Since in the integer case there are only finitely many different clusterings,
the bodies @y, Qli, Qf, and Ql are trivially polytopes.

Let P denote the set of all points ({11, -+, &1my -5 Ek1s- - - ,§k,m)T that satisfy
the constraints

k m
0<&y Y &Giy=1, ki <Y wibiy <
i=1 j=1

for all 4 and j. Then P is a polytope. Let the function v : P — R*? map the point
(61,17 cee afl,mv cee 75]6,15 e 7§k,m)T to

w Liyun. Zw k. i 4
Zj 1%51]2 Jflﬂ Js ) Jf Jd

i g 1“’3ka e

Then v is continuous and in the strongly balanced case is, in fact, linear. In the inexact
case, the denominators in the definition of ¥ are replaced by k1, ..., kg, respectively,
again leading to a linear function. Hence @, Q, and QF are polytopes.

To prove the last two equalities, just note that, in the combinatorial case, the
conditions defining P are totally unimodular, and hence P is an integer polytope.
(See, e.g., [24] for corresponding background information.) O

By Lemma 3.1 we have Q = Q; and Q* = QIi in the combinatorial case. Hence,
in this case, Theorems 2.1 and 2.4 and Corollaries 2.2 and 2.5 can be directly applied
to yield strictly feasible (centroidal) power diagrams for extreme integer clusterings.
Even if strongly feasible integer clusterings do not exist (as, e.g., in the example with
k=2 m=2,d=1,21 =0, 20 =1, wg = 3, wa = 1, and kK1 = kg = 2 given
in subsection 2.2), these results can, nevertheless, be utilized even in the general
case to produce integer clusterings that admit feasible power diagrams by rounding
the (according to Corollary 2.3 typically very few) fractional entries. Of course, the
deviation in the balancing constraints increases; however, in the practical problems
from farmland consolidation this deviation was small and highly overcompensated by
the economic advantages of the new solutions.

Let us point out that in the combinatorial case, the gravity polytopes coincide
with the mean partition polytopes studied in [14]. Further, as observed in [14], in the
strongly balanced combinatorial case, i.e., for BC;(k, m, X, 1, K), the gravity polytope
Q is just a rescaling of a polytope studied in [6], [16], [19], [20], and other papers
there called single-shape partition polytope. The more general bounded-shape partition
polytopes are defined similarly to our gravity bodies with the one difference being that
the centers ¢; are replaced by the sums

m
E &ijwit;;
j=1

i.e., the division by w(C;) is omitted. The following example shows that in general
the set of extreme points of the gravity bodies is richer than that of bounded-shape
partition polytopes; i.e., it contains points that may lead to better clusterings.
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Let d=1, k=2 m=4, 24 = —21 =15, vz3 = —x2 = 3, w; = 1 for all j,
and let k; =2, K, =1, /4:;F = 3. Clearly, the corresponding bounded-shape partition
polytope is contained in the linear subspace normal to (1,1)7. In fact, it has the
vertices 4-(—18,18)7; the corresponding clusterings are given by C; = (1,1,0,0),
Cy = (0,0,1,1) and CF = (0,0,1,1), C5 = (1,1,0,0). Their centers of gravity are
c1 = F9, co = £9 with Euclidean distance 18. In addition the distance of nearest
points of the different clusters, which is an indicator for the quality of separation
between the two clusters, is 6. The gravity body Qli, on the other hand, contains the
points +(—15,5) that are associated with the clusters C; = (1,0,0,0), C2 = (0,1,1,1)
and C1 = (0,0,0,1), C% = (1,1,1,0). Here the Euclidean distance of the centers is 20
and the distance of nearest points 12. Hence, we can obtain a clustering that is better
with respect to these two measures. However, the corresponding points +(—15,15)
lie in the relative interior of the bounded-shape partition polytope and will never
be maximal with respect to any strictly convex objective function. (As a further
advantage in using gravity bodies rather than bounded-shape partition polytopes
note that a common translation of the points in X by some vector ¢ results only in
a translation of the gravity polytope by the same vector ¢. Hence all the properties
that are relevant here are invariant under common translations of the points of X.)

Let us close this section with the remark that the general objective functions

based on || .|| and || . ||, include some quite familiar notions. If || . || is the Euclidean
norm | .||y on R? and || . [|o is the ellipsoidal norm on R¥k=1/2 defined for v =
(v1.2,--,vk—1k)T (with coordinates listed in increasing lexicographic order of the

index pairs (7, 7)) by

k-1 & 2
lollo = | D2 > mimgiy |
i=1 j=i+1
then
. k=1 Kk 2
(e = eallsller = el lewr = enl) | = (D2 D2 mamslies = il
¢ i=1 j=i+1

As it turns out, the corresponding maximization problem is equivalent to that involv-

ing || . ||k. Hence, we are in fact in the case of Theorem 2.4, which concerns the local
maxima of || . ||k.

Other natural objective functions lead to norm maximization too. For instance,
maximizing || . ||k over @ is also equivalent to

k m—1 m
. 1 2
CH€1]13nC E :‘i_z E 5 fz,lwlfz,rerﬂJl - ZET”(Q)
=1 =1 r=I+1

and to

k m
. 2
Join, DO Ggwillen — a5y

i=1 j=1

Note that, in the combinatorial case, the latter objective function reads as

k
Z Z llci _ffngz)

=1 z;esupp(C;)
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and is, hence, the sum of the “total squared error” within the clusters.

4. Vertices of gravity polytopes and strongly feasible power diagrams.
In the following we will prove Theorem 2.1 and Corollary 2.2. One of the key ingredi-
ents will be linear programming duality, which has been utilized in the combinatorial
case before. We begin with the strongly balanced case.

Let by, ..., by € R? such that b= (b7, ...,b1)T is in K-general position, meaning
that

ﬁjbi#ﬁibj (]. Sl?é] S k)

Further, set a; = (1/k:)b; (i=1,...,k) and
1b 1b (1<i#j<k)
Q; s = A7 — Ay = —0; — —0; S ? < .
J j RS J

Of course, the vectors a;; are all nonzero. We study the optimization problem
maxceg bc in a formulation that does not explicitly involve Q. First note that
with

_ T
Vig = Wiai T

for all 7, j we have

k m kK m kK m
blc = L 1 & | = &l =
c= i | w;&i Ty | = w;iija; T = &ijig
i=1 vj=1

i=1 j=1 i=1 j=1

Then we can formulate the optimization problem as the following linear program,
which, in fact, is a transportation problem:

k. m
(LP) max Z Z ’Yi,jfi,j

i=1 j=1

k
subject to Zﬁm = 1 (j=1,...,m),
i=1

Zfi,jwj = Ky (i=1,...,k),
=1
§i.j

The vector with coefficients &; ; (again ordered lexicographically) will be denoted by
(&,5)- Note that, in general, there may be many different clusterings whose gravity
vectors coincide. However, the next lemma shows that this is not the case for extremal
clusterings. (For a result in the combinatorial case that is closely related to Lemma
4.1 and Theorem 4.7 below, see [6, Corollary 1].)

For C € BC(k,m,X,$,K) let N(C) denote the cone of outer normals of @) in
¢ = ¢(C). Then we have the following result.

LEMMA 4.1. Let C* € BC(k,m, X, Q,K) be extremal, let c* be its gravity vector,
and let b € int(N(C*)). Then (LP) has a unique optimum.

Proof. Let (£ ;) be the optimal solution of (LP) that corresponds to C*, and
suppose that (LP) has a different second optimum (§;J) We consider a subgraph
T of the complete directed bipartite graph on the partition (C*, X) of the node set

Y
[en
—~
N
|
—_

okii=1...,m).
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C* U X. The edge set of T consists of all edges (C}, x;) for which §; > & ; and all
edges (z;,C;) for which & ; < & ;5 its vertices are those incident to some edge. Each
edge (C},x;) carries the capacity & — while each edge (z;,C}) has capacity
6= &

Note that at each vertex x; the sum of the capacities of the ingoing edges is equal
to that of the outgoing edges. A similar equation holds for each vertex C; with the
capacities multiplied by the corresponding weights w;. Hence T contains a directed
cycle (Cf ,xj,, ..., C;‘p,xjp, C? ) of some length p.

(S (5%

!
i

Now, we consider clusterings C in BC(k,m, X,Q,K) that are obtained from C*
by the cyclic exchange

Tjy Tjg Tip—1 Lip
Cr Dy g Dy Dy o T o

that simultaneously, for { = 1,...,p, with 4,41 = i1, moves a fraction §;, of the point
z;, from C7 to C7 such that
/! !/
0< 6j < 5:17.71 - 5iz Jiuo 6jl < 5iz-¢-1,jz - 5;14-1;]'1’ Wiy 6jl = wjl+16jl+1'

Note that, by the third condition, o = w;,d;, is a constant; we call it the amount of
the cyclic exchange. Of course, by the optimality of (£ ;) we have

P
blc* — bTC(C) = Z(A/il-%—hjl - ’7iz7jz)6jz > 0.
=1

On the other hand, since we obtain (¢] ;) from (£} ;) by a finite number of such cyclic
exchanges, none of these inequalities can be strict; hence

bTc* = bT¢(C)

for all such é . } )
So, let C = (C1,...,C%) be some fixed clustering obtained from C* by a cyclic
exchange, say

Ty Tjo Tip—1 Tj
C, —C, —= - ——C; —C},

of amount a, and let ¢ = ¢(C) = (¢,...,&F)T. Then
~ (&% - o
Ciy = Ciy T+ _(xjp - le)’ Ciy = Ciy + _(sz—1 - sz) (2 <I< p)?
Kiy Ky

while, of course, the other centers stay the same. Since the points of X are all different,
¢;, # cj, for all I. Hence € # c*. On the other hand, b?¢ = bT'c*, contradicting the
assumption that ¢* is a vertex and b € int(N(C*)). O

The dual linear program of (LP) is

k m
(DLP) min Z Kilbi + Z nj
i=1 j=1
subject to Wik +15 > Vi (t=1,....k;7=1,...,m).

The vector (p1, ..., [tk M1, -« 7m) T will be abbreviated as (u;, n;).
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Let D denote the feasible region of (DLP). Note that D has 1-dimensional lineality
space. However, since the primal program is feasible and has a final optimum, so does
the dual. Let F* denote the optimal face of D, let us indicate a primal-dual pair
of optimal solutions by an uppercase * on the variables, and let C* = (C7,...,C})
denote the corresponding clustering. Then the complementary slackness conditions
read as

& j(wipi +nj —7i5) =0 (t=1,....kj5=1,....,m).

Now, suppose that £, > 0 for some index pair 4,j. Then, in conjunction with the
dual feasibility, it follows that

wip; +1; =Yg =0 <wpp + 00 — Y
for all index pairs [, r. Specifically, for j =1r
. * T T T
wi(pi — 1) < Yig — iy = wila; 5 — af xj) = wjag T
Hence we have

supp(C;) C Py = [z alyw < pi —pii}-
1£i

LEMMA 4.2. Let (LP) have a unique optimum (] ;), and let the dual optimal
point (uF, T];) be contained in the relative interior of the optimal face F* of D. Then
supp(CF) = X N P; for all i.

Proof. We show that for all 4, j

§i70 & wing +ij =g
Let A = {(i,5) : §; # 0}. Then (£,)(ij)c is optimal in the linear program (LP’)

that is obtained from (LP) by removing all variables whose index pairs do not belong
to A. The dual (DLP’) is then

k m
(DLP’) min Y ki + > 1
i=1 =1
subject to wii+n; > iy ((4,5) € A).

Let D' denote its feasible region and F’ its optimal face. Then F” is given by
Fr= () {(uimy)  wjpi +m5 = vis}-
(i,j)eA

It suffices to show that F” is the affine hull of F*. Suppose that this was not the
case. Then the cone N of outer normals at D in the point (1, 7;) would be of higher
dimension than the cone N’ of outer normals at D’, and the dual objective function

vector (kK1,...,Kk, 1,...,1)T would lie in the relative interior of N. But this implies
that there is a solution of (LP) different from (£ ;). This contradicts the assumption
that (£ ;) is the unique maximizer of (LP). QO

Note that, in particular, the above proof shows that in the combinatorial case a
vertex (& ;) of the feasible region of (LP) corresponds to a k-dimensional face of D.
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Next we show that the polyhedra P, ..., Py defined before Lemma 4.2 with the
aid of the optimal dual variables p} actually form a power diagram.
LEMMA 4.3. Let for all i

si=ai, 07 = ||y — 24,
and set S = (s1,...,5,) and ¥ = (01,...,0%). Then for alli
P, = P>,
Proof. For the proof just note that
|z — 51’”%2) —0; < |z — SlH%Q) — g
is equivalent to
2af ;o < |laillty) — llaillty) + 05 — o0 = 27 — u7).

Hence, P, = P for all i. O

Since it is clear that the corresponding support multigraph is c-cycle-free, Lemmas
4.3, 4.2, and 4.1 imply that a vertex of @} corresponds to a strongly feasible power
diagram; i.e., any extreme clustering C admits a strongly feasible power diagram.

Before we continue with the converse, we prove Corollaries 2.2 and 2.3.

Proof of Corollary 2.2. Let C* € BCi(k,m,X,Q,K_,K,K+) be extremal, let

ct = ((e)7T,..., (CZ)T)T be its center of gravity, and let k} = Z;nzl w;&; for all @
and K* = (k},...,k}). Then c* is a vertex of the polytope Q* = Q(k, m, X, Q,K"),
and the assertion follows from Theorem 2.1. O

Proof of Corollary 2.3. The same argument as in the previous proof shows that
it suffices to deal with the strongly balanced case.

First note that by Theorem 2.1 the support multigraph G(C) is c-cycle-free. If
G(C) is cycle-free, the assertion follows from the fact that a forest on k vertices has
at most k — 1 edges and each edge counts for two fractional variables.

Now suppose there are single-colored cycles. Then, of course, they belong to
single-colored maximum cliques in G(C) of size at least 3, called sm-cliques in the
following. The sm-cliques come with a “forest-like” structure. More precisely, suppose
we would replace each sm-clique by a node and connect two nodes by as many edges
as the sm-cliques have vertices in common. Then, since G(C) is c-cycle-free, this graph
must be cycle-free.

Now we construct a new graph G’(C) as follows. We keep all edges that do not
belong to an sm-clique but delete in every sm-clique in G(C) all edges except for a
spanning tree. Then G (C) is cycle-free. Every sm-clique R of size r in G(C) contributes
exactly r fractional variables, so each of the r — 1 edges in the corresponding spanning
tree T in G(C) contributes r/(r — 1), i.e., less than 2, fractional variables. Edges
in G(C) that do not come from sm-cliques correspond to 2 fractional variables each.
Since a forest on k vertices has at most k — 1 edges, the assertion follows. |

Next we prove the converse direction of Theorem 2.1.

LEMMA 4.4. Let C € BC(k,m, X,Q,K), S = (s1,...,sk), and let (7 ;) be the
feasible solution of (LP) associated with C. Further, let ¥ = (01,...,01), and let P*
be strongly feasible for C. Let for all i

a; = si, ;= (”aiH%z) - Ui)’

N~
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and set

*_

Ny =%Yij — wjﬂf

for-all i,j with & ; # 0. Then (& ;) and (uj,nj) are optimal solutions of (LP) and
(DLP), respectively.

Proof. First observe that the n; are well defined. In fact, since each point z; is
assigned to some cluster, there is at least one ¢ with £ ; # 0. If there is a second such

index [, then z; € PN PZS’E. This implies

1
* * T T T
wj(p; —pf) = wjagz; = wjla; x5 — a; T5) = Yi,5 — N>
and hence

77; =i — Willy =Y, — Wik -
Next, note that by the definition of 7}, the complementary slackness conditions are
satisfied. Hence we need only show that (u;,7n;) is feasible for (DLP). Let x; €
supp(C;) and [ # i. Then, by the feasibility of P> for C, we have

0 < llej = sillfyy — o0 = 25 = sillfay + 00 = 2a{ 25 + 2p7 — 24
Hence
g — g = wia] & —wjal ©j = wialjz; < winp — wipg.
Since 07 = 7;,; — wjp;, we obtain

Y5 S wikg + 05

Thus (u7, ;) is feasible for (DLP). O

The following lemma completes the proof of Theorem 2.1.

LEMMA 4.5. Let C € BC(k,m, X,Q,K), S := (s1,...,8k), and X = (01,...,0%),
and let P> be strongly feasible for C. Then c = c(C) is a vertez of Q.

Proof. Let (& ;) be the solution of (LP) associated with C, and let (17, 77) be the
optimal point of (DLP) defined in Lemma 4.4. Since G(C) is c-cycle-free, there is a
unique representation of the objective function vector of (DLP) as a conic combination
of the normals of the active constraints of (DLP). Hence (& ;) is a vertex of the feasible
region of (LP), whence c is a vertex of Q. O

As a corollary, we see that, in the strongly balanced combinatorial case, i.e.,
for BC(k,m, X, 1,K), the vertices of the gravity polytope correspond to the strictly
feasible power diagrams; see [6], [8] for different proofs of this corollary.

COROLLARY 4.6. Let C € BC(k,m,X,1,K). Then C is extremal if and only if C
admits a strictly feasible power diagram.

Proof. Let C be an integer clustering, and let P be a cell decomposition. Then
‘P supports C if and only if P is strictly feasible for C. The assertion now follows
from Theorem 2.1 in conjunction with the fact that, by Lemma 3.1, @ is an integer
polytope. ad

Note that a hyperplane with its normal vector in sufficiently general position
supports a polytope in a vertex. Hence, we see that for every feasible power diagram
there is another one, whose sites and sizes are arbitrarily close to that of the first,
that is, strongly feasible for some clustering of Q.
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Naturally, one might wonder whether the full characterization of Theorem 2.1
carries over to the weakly balanced case. However, the following example shows that
the converse of Corollary 2.2 does not hold. Let d =1, k =2, m = 3, x1 = —1,
x2:0,x3:1,w1:w3:1,w2:2,f$1:@:2,/{:55:1,5{:5;:3.
Then, of course, the clusterings C; = ((1,0,0),(0,1,1))7 Cy = ((0,1,1),(1,0,0)),
Cs = ((1,1,0),(0,0,1)), C+ = ((0,0,1),(1,1,0)), and C5 = ((1,1/2,0),(0,1/2,1)) are
feasible. The corresponding gravity vectors are

- 1/ -3 _ 1 1 1 -1
C1——C4—§ R C2——C3—§ —3 > C5—§ 1 /-

Note that cs5 is in the interior of Q*. However, the dissection P = (Joc, 0], [0, oa]),
which is, of course, a (centroidal) power diagram, is strongly feasible for Cs.

The above example also shows that a result similar to that of Lemma 4.1 does
not hold for bounded-shape partition polytopes. In fact, (—1,1)7 is a vertex of the
associated bounded-shape partition polytope but corresponds to Cy, Cs, and C5. These
clusterings are not only different but also behave differently in terms of their separation
properties; C; and C3 do have the strict Voronoi property, while Cs does not. We will
close this section by showing that the gravity body behaves differently.

THEOREM 4.7. Let C* = (C%,...,C}) and C' = (CY,...,C}) be clusterings of
BCi(k,m,X,Q,K_,K,K+), c* =c(C*), ¢ =¢c(C'), and b = (b, ..., b])T € R¥.
Let C* be proper, let c* = c’, and suppose that c* is the unique mazimizer of the linear
functional ¢ — bTc over Q*. Then C* =C'.

Proof. The proof is by contraction and, in fact, similar to that of Lemma 4.1.
As before, we consider the directed graph 7 on the partition (C*,X) of the node
set C* U X. If Tcontains a directed cycle, the same argument as in Lemma 4.1
yields a contradiction. Hence we may assume that 7 does not contain any such
cycle. Of course, this means that (w(C}),...,w(C})) # (w(CY),...,w(C})). Now let
(Cr gy, L Tjpr C’fp) be a directed path in 7. We may assume that C; has
indegree 0 and C} has outdegree 0. Now, let C = (C1,...,C) be a clustering in BCT
that is obtained from C* by the path exchange

x  Tip % Tiz 1_7'?,1 *
cr oy L Dl o

of amount « that simultaneously, for [ = 1,...,p— 1, moves a fraction §;, of the point
xj, from C7 to C5 | such that

0< 6jl S gzﬁL,jz - éhgujz’ 6jl = é-;H»lvjl - £Z+lvjl’ Wiy 6jl = wjl+16jl+1'
Let ¢ = c(C) = (¢T,...,éN)T. Then, in particular,

_ !
Ciy = Cj +_(sz—1 _$jz) (2§l§p—1)7
Ri,
whence ¢;, # c;‘L for all such [. If p > 3, the same argument as in Lemma 4.1 again
yields a contradiction.
So suppose (without loss of generality) that our path exchange is of the form

* T1 *
Cl —> CZ .
If ¢ # ¢} or éa # ¢}, we again obtain a contradiction. Hence, we have

w(CY)ey — axy
* ~ 1/%1 * ~
a=6=—7, ¢y =& =

w(Cy) —a

w(C3)ch + axy
w(C) +a

)
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which implies
&} = =5

By Corollary 2.2, C* admits a strongly feasible power diagram. Let H denote the
corresponding hyperplane that separates C7 from C;. Then, of course, cj,c; € H.
This implies supp(CY), supp(C5) C H; thus supp(Cy) = supp(C5). Since C* is proper,
this contradicts the fact that the support multigraph G(C*) is c-cycle-free. d
Note that, in Theorem 4.7, the assumption that C* is proper cannot be abandoned.

5. Centroidal power diagrams. In this section, we prove Theorem 2.4. Let
us begin with an observation related to the assumption that C is proper.

LEMMA 5.1. Let C € BC be proper and extremal, and let b = (bT,.. .,bg)T €
int(N(C)). Then b is in K-general position, and hence a; ; # 0 for all i, 7.

Proof. Let C be obtained from C by a cyclic exchange

i Zj

of length 2 and some positive amount «, involving two different points z; and z;, and
let € denote its center of gravity. Then ¢ # €. Suppose now that x;b; = x;b;. Then

bTc —ble = gbgﬂ(a:j —z;) + gb?(xi —z;)=0;
Kj Rj

hence b ¢ int(N(C)), a contradiction. O

If C € BC(k,m,X,Q,K) is extremal and b € int(N(C)), then, by Lemma 5.1,
the vector b is in K-general position if C is proper. Otherwise there are two clusters
C;,Cj (i # j) whose supports consist of the same single point xo of R, and it might
not seem appropriate to distinguish C; and C; at all. Rather, one might consider the
joint cluster with support {x¢} and cluster weight x; + ;. If one insists, however,
one may introduce an arbitrary weakly separating hyperplane through xy. This leads
to a strongly feasible Voronoi dissection which, however, cannot be centroidal.

Now, again let K = (k1,..., k%), set K™' = (1/k1,...,1/k1), and let

D = diag(ki,...,K1y.e s Bk, Kk) e RR)x(dk)

Dt = Aiag(\/RL, - s /Ly oo s /Fiks - - s /EE) € REF)IX(dR)

Note that the unit ball Bk with respect to ||z||k and its polar, the unit ball By with
respect to ||z]/g-1, can be expressed as

Bk ={z:|z|xk <1}={z:2"Dz <1} ={z: p(z) <1},
B =Byx-1={y:z€Bx = yz<1}={z:2"D'z<1}.

The next lemma is needed in the proof of Theorem 2.4. It is a special case of a more
general folklore result on polarity; an elementary proof is included as a service to the
reader.

LEMMA 5.2. Let z* € R¥*, p = ||z*||k, and b* = (1/p)Dz*. Then b* spans
the cone of outer normals of pByk at z*. Further, z* is the unique maximizer of the
linear functional z +— z'b* over pBx, and b* is the unique mazimizer of the linear
functional b — bT'z* over BS.
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Proof. Let z € Bk \ {0} and b € By, \ {0}. Then it follows from the Cauchy—
Schwarz inequality that

b’z =b"D 2Dz = (D *b)"(D?2) < D" 2b](z) - [| D>z (2)
1 1
2 2

(2" Dz)” = |blx-1 - |lzllx <1
with equality if and only if
Ibllk-» = ||z|lk =1 and b = Dz.

This implies the assertion. g
The following lemma proves one direction of Theorem 2.4.
LEMMA 5.3. Let C € BC(k,m,X,Q,K) be proper and extremal, let ¢ = ¢(C) =

(T, ... eD)T be a local maximizer of || . ||k over Q, and set S = (c1,...,c). Then
there exist sizes ¥ = (01, . .., 01) such that the power diagram P> is strongly feasible
for C.

Proof. First, note that ¢ € ||D%c|\(2)IBBK. By Lemma 5.2, Dc spans the cone of
outer normals at ||D%c||(2)IB%K in c¢. Since c is a local maximizer of || . ||x over @
and extreme, we have Dc € int(N(C)). Hence by Lemma 5.1 and Theorem 2.1, there
exists P> that is strongly feasible for C. a

The next lemma proves the reverse direction of Theorem 2.4.

LEMMA 5.4. Let C € BC(k,m,X,Q,K), ¢ = ¢(C) = (,...,c)T, and S =
(c1,...,ck), and let P5* be strongly feasible for C. Then c is a local mazimizer of
[ - llx over Q.

Proof. Since P%¥ is strongly feasible for C, Lemmas 4.5 and 4.4 imply that
Dc € int(N(C)). By Lemma 5.2, Dc spans the normal cone of ||c||kBk at c. Hence,
c is a local maximizer of || . ||k over Q. O

Of course, the proof of Corollary 2.5 now follows with the same argument used in
the proof of Corollary 2.2.

Next we characterize the global maxima of ¢ over ). We will show that a norm
maximal clustering with respect to || . ||k maximizes the total linear intercluster dis-
tance

k m m
9(C,b) = . Z SO G pwpal (2 — 1)

for C € BC and b € int(N(C)). (To avoid confusion, let us mention that the use
of terms may differ in different communities dealing with clustering problems. Here,
of course, we refer to a measure to which, in effect, only pairs of points that lie in
different clusters can contribute.) In the following, we use the abbreviations

T
m k k
Tzzwj, A=— <Zniai> ZKJjCj
j=1 i=1 j=1
Of course, for strongly balanced clusterings, 7 = Zle ki and

k m
E RiC; = E W;Ty.
=1 Jj=1
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Note that we could assume A = 0 without restricting generality. In fact, any intrin-
sic property of a clustering is invariant under a common translation of the points

Z1,...,ZTm. Hence we may add the translation vector t = —(1/71) Z _, wjx; to every
point of X.

THEOREM 5.5. Let C,C* € BC(k,m, X, 0, K), let c = (cF,...,e5)T, and let c*
be its gravity vectors, respectively, and let b = (bT ..., bf)T € By. Further let c* be

I . [lk-norm mazimal over Q. Then
g(C,b) =7bTc+ X < 7llc* Ik + A

with equality if and only if ¢ is || . ||k-norm mazimal over Q and b = Dc/||c*||k.
Proof. Let 1 <i < j <k. Then

m
ZZ& wi&j pwrag (T, — —&ij rwral @y — Ky Y il
=1 r=1 =1
= mazjj <Z §j7rwrxr> — /ijafj <Z §i7lw1xl> = /imja;fj(cj —¢).
r=1

=1
Summing up over all pairs of clusters yields

k k k
(€)= 33 ey — ) = 373 ey (1~ ey~ )

i=1 j:1 i=1 j=1
k

—27'Zma cz+2)\—2/\—|—27'2b cZ—Z(Tch—I—)\)

=1 =1

The other statements now again follow from the Cauchy—Schwarz inequality. d
As a corollary we characterize clusterings with globally maximal total linear inter
cluster distance. To state the result precisely, we use again the abbreviation K(C) =
(w(C1),...,w(Ck)) for C = (C4,...,Cy). For a clearer formulation we will also assume
that A = 0. (As pointed out before, this is no restriction of generality.)
COROLLARY 5.6. Let A = 0. Then the following mazima are attained, and we
have

max max C,b)=r1 max .
ax, bEBK(C)g( ) =7 max, le(C)]k(e)

Proof. Clearly, with S(3) denoting the Euclidean unit sphere in RF we have for
every C € BC*

b
max ¢(C,b) = max L
€B% ¢y beSe) ||bllk(e)-1

Since K™ > 0, the functional on the right-hand side is continuous on the compact set
BCE (k,m, X, 0, K™, K,K") x S

Hence, the maximum on the left-hand side of the assertion exists, and we obtain from
Theorem 5.5

max{g(C,b) : € € BC*(k,m, X, 2, K™, K, K*),b € By, |

= max rnax{g(C, b) : C € BC(k,m, X,Q,K),b € IB%K(C)}

=7 max max c|lk =7 max |lc(C . O
K_§K§K+CEQ(W’X’Q7K)I\ Il ax, el
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Theorem 5.5 and Corollary 5.6 can be viewed as a characterization of feasible
clusterings that are “most separated” with respect to the total linear intercluster
distance. Of course, it is simple to define other notions of best separation. For
instance, if one asks for maximal stability of a clustering C with respect to changes of
the sites of a corresponding power diagram, one is led to a normal to ¢(C) that is “at
maximal distance” to the boundary of N(C).

6. Final remarks. In addition to their direct application to clustering, the re-
sults of the present paper suggest studying properties of the classical 0-1-partition
polytopes which “live” in R™F, in the typically much lower-dimensional space R?% of
the points X themselves. As an example note that for X = {1,...,m} and m = k,
the corresponding 0-1-incidence polytope lies in R™" and the gravity polytope (as the
natural presentation of the permutahedron) lies in R™, while X C R. Hence we can,
in principle, study properties of this 0-1-partition polytope by analyzing dissections
of the real line.
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