
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik
Lehrstuhl für Energiewirtschaft und Anwendungstechnik

Comparison of optimization methods for model predictive control:
An application to a compressed air energy storage system

Dipl.-Ing. Dennis Atabay

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:

Prof. Dr. rer. nat. Thomas Hamacher

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Ulrich Wagner
2. Prof. Dr.-Ing. Gunther Reinhart

Die Dissertation wurde am 27.07.2017 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 13.04.2018 angenommen.





Für Motte



ii

Abstract

In energy systems with a high share of renewable energy sources, electrical energy storage
plays an important role in balancing energy production and demand. The optimal operation
times of a storage can depend on locally available energy production (e.g. distributed solar
battery storage) or external signals such as a time-sensitive electricity price (e.g. pumped
hydroelectric energy storage). Model Predictive Control (MPC) is a modern control strategy
that allows one to consider forecasts of future parameters, such as power production or
electricity prices, and therefore has been widely applied to energy systems and storages
in the last years. A model of the energy storage system is used to define and solve an
optimization problem and find the optimal charging and discharging times. Since MPC is
not a unique technique but rather a set of methodologies, different models and optimization
methods can be used to solve the optimal control problem.
In this thesis, a compressed air energy storage system is used to compare different opti-
mization methods for MPC. Based on experimental investigations, the system parameters,
such as the electrical round-trip efficiency, are calculated. A linear, a mixed-integer-linear
and a nonlinear model of the system are developed and used for MPC. To compare the
different optimization methods, MPC is used to minimize operational costs covering a
given 24-hour air demand using a time-sensitive electricity price as an incentive. The
experiments are performed for several scenarios with variations in air demand, electricity
price, optimization timestep size and forecast quality.
The results indicate that dynamic programming demonstrates the most cost savings
throughout all performed experiments. For this application, it shows better results than
the other two nonlinear optimization methods used in this thesis, genetic algorithms and
mixed-integer nonlinear programming. Due to its detailed model, dynamic programming
also clearly outperforms the linear programming method. The results using mixed-integer
linear programming are only slightly different than with dynamic programming and even
better in some specific cases.
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Zusammenfassung

In Energiesystemen mit einem hohen Anteil fluktuierender erneuerbarer Energien spielen
Energiespeicher eine wichtige Rolle zum Ausgleich von Angebot und Nachfrage. Der
optimale Einsatz von einzelnen Speichern kann dabei von vorhandenen lokalen Erzeu-
gungsprofilen und Lasten (z.B. dezentrale PV Speicher) sowie variablen Strompreissig-
nalen (z.B. Pumpspeicher) abhängen. Prädiktive Regelstrategien erlauben es zukünftige
Ereignisse, wie die Vorhersage von Verbrauch und Erzeugung oder Strompreisverläufe,
mit einzubeziehen und sind somit für die Regelung von Energiespeichern prädestiniert.
Die modellprädiktive Regelung (Model Predictive Control, MPC) verwendet hierbei ein
Modell zur Vorhersage des zukünftigen Verhaltens des Systems. Durch Lösen eines
Optimierungsproblems basierend auf diesem Modell, können die zu wählenden Lade-
und Entladezeitpunkte für den Speicher für die nächsten Minuten, Stunden oder Tage
ermittelt werden. MPC beschreibt keinen exakten Algorithmus, sondern ein generelles
Verfahren zur prädiktiven Regelung von Systemen. Dabei wurden im Rahmen einer
modellprädiktiven Regelung von Energiespeichern bereits eine Vielzahl verschiedener
Optimierungsmethoden angewendet.
Diese Arbeit vergleicht verschiedene Optimierungsmethoden zur modellprädiktiven Rege-
lung am Anwendungsbeispiel eines Druckluftspeichers. Auf Basis von messtechnischen
Untersuchungen und der Bestimmung von verschiedenen Systemparametern, wie dem
elektrischen Speichernutzungsgrad, wird ein lineares, ein gemischt-ganzzahlig lineares
und ein nichtlineares Modell der Anlage entwickelt. Mit Hilfe dieser Modelle wird eine
modellprädiktive Regelung des Speichers für einen Zeitraum von 24 Stunden durchgeführt.
Ziel ist dabei die Deckung eines vorgegebenen Bedarfs mit minimalen Stromkosten. Für
die drei Methoden werden jeweils mehrere Szenarien mit verschiedenen Verbrauchs- und
Strompreisprofilen betrachtet. Zudem wird auch der Einfluss der Optimierungsschrittweite
sowie der Genauigkeit der Verbrauchsprognose auf die Ergebnisse untersucht.
Die Ergebnisse zeigen, dass bei Betrachtung aller durchgeführten Experimente mit Hilfe
der dynamischen Programmierung die größten Kosteneinsparungen erreicht werden
können. Für den untersuchten Anwendungsfall zeigt sich, dass die dynamische Pro-
grammierung besser geeignet ist als die beiden anderen untersuchten nichtlinearen
Optimierungsmethoden, der genetische Algorithmus und die gemischt-ganzzahlige nicht-
lineare Programmierung. Aufgrund der genaueren Modellierung des System können auch
im Vergleich zur linearen Programmierung deutlich bessere Ergebnisse erzielt werden. Die
Kosteneinsparungen, die mit Hilfe der gemischt-ganzzahligen linearen Programmierung er-
reicht werden können, sind im Vergleich zur dynamischen Programmierung nur geringfügig
schlechter. Für bestimmte Szenarien werden hier sogar bessere Ergebnisse erzielt.
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Chapter 1

Introduction

Reducing the worldwide greenhouse gas emissions in order to mitigate global warming is one
of the biggest challenges of today’s generation. To achieve its goal to reduce CO2 emissions
by 80 % compared to 1990 [14], one main part of Germany’s concept is to increase the share
of renewable energies in the electricity sector to 80 % by 2050 [12].

In 2015, wind turbines and photovoltaic (PV) systems provided more than half of the renewable
electric energy in Germany [15]. Subsidized by the government, both have already shown
tremendous growth in the last years. Because of the fluctuation of wind and solar generation,
which cannot be accurately predicted, the need for flexibility in the power system increases
with their installation. Energy storages are one approach to provide this flexibility.

There are different concepts and subsidy programs to integrate energy storages in Germany’s
energy system. Large-scale electric energy storages that are directly connected to the grid,
such as pumped hydro storages, are exempt from demand charges and EEG surcharges [12].
In May 2016, a subsidy program for small-scale battery storages combined with a PV system,
which are mainly installed in the residential sector, was launched [17]. Also, for heat storages
in combination with a combined heat and power (CHP) unit [13] or a heat pump [16], subsidy
programs were initiated. Heat storages can provide flexibility to the electric power sector by
decoupling electricity production (CHP) or consumption (heat pump) and heat supply.

The optimal operation to maximize revenues or minimize costs of such storage (and generation)
systems over a certain time horizon can depend on the given demand that has to be covered,
the availability of a variable energy resource and the electricity price curve. Model Predictive
Control (MPC) is an advanced method of system control that allows one to consider these
future parameters when calculating the next control action. MPC has been widely used for the
control of energy systems including storages in many recent publications.

1



2 1. Introduction

1.1 Introduction to Model Predictive Control

Model Predictive Control (MPC), also known as model-based predictive control or receding-
horizon control, is a modern control strategy for the operation of systems. While this section
provides a short introduction to MPC, a detailed overview of the topic and its applications can
be found in the books [89, 19, 87, 36, 55] and survey papers [72, 67, 26].

The general idea of MPC is to use an internal model of a system to predict its future behavior
over a given time horizon. The output of the system for each time sample t = 1:::N in this
horizon is calculated based on previous system inputs, outputs, states, and the proposed
optimal future control actions. This control sequence is calculated by solving an optimization
problem taking into account the objective function (e.g. minimizing costs) as well as constraints
for the system operation (e.g. covering the demand). At each instant, the first control signal of
the sequence is applied to the system and the new outputs and states are measured. Then the
horizon is displaced one timestep towards the future and the optimization problem is solved
again using the new information (receding strategy). The general structure of MPC is shown in
Figure 1.1 [19].

System

Optimization
Obtain optimal

future 
control sequence

Apply first 
control signal

Measured inputs, 
outputs, and states

Forecasts for 
the optimization 

horizon

Model of 
the system

Objective function 
and constraints

Figure 1.1: General structure of MPC

In contrast to classical control methods, such as PID controllers, in which the next control action
is calculated only based on previous measured inputs and outputs, MPC additionally allows one
to consider predicted or already known future parameters. Because of its systematic account
for constraints and its feed-forward design, MPC shows better performance than non-predictive
control methods [89, p. 5-6]. Therefore, it has become the most widely accepted modern
control strategy [55, p. 2] and the MPC technology can be found in a wide variety of industrial
application areas [84].
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1.2 Motivation

Model Predictive Control is a control strategy in which an optimal operation problem is repeat-
edly solved over a rolling horizon in real time with updated information. Thus, MPC is not a
unique technique, but rather a set of different methodologies that can be applied to control a
system [19, p. 4]. Thereby, the model, which describes the dynamic behavior of the system, is
the cornerstone of MPC. The chosen model defines not only the accuracy of the prediction of
the system behavior, but also the optimization method that can be used to calculate the control
sequence. While linear or quadratic (convex) models are limited in their accuracy of predicting
the system outputs, fast and reliable solvers are available to solve the optimization problem.
In contrast, nonlinear models are able to predict the system outputs more accurately, but the
implied optimization is computationally more intensive and, moreover, the convergence to a
global optimum cannot be assured [72].

In the last years, several reviews of optimization methods for the (model predictive) control
of energy systems containing storages, such as electric power systems [5, 34, 102, 4, 41],
microgrids [77, 31, 69, 37], tri-generation systems [99], heating, ventilation, and air conditioning
(HVAC) systems [1], and thermal energy storages [79] have been published. The commonly
used optimization methods in these studies are linear programming (LP), mixed-integer linear
programming (MILP), mixed-integer nonlinear programming (MINLP), dynamic programming
(DP) and evolutionary computation algorithms1.

All of these methods have already been applied to energy storage systems for experimental
investigations. So far, however, there are no studies comparing the performance of the model
predictive control of an energy storage using different optimization methods.

1.3 Objective and outline of this thesis

The objective of this thesis is to evaluate the influence of the model’s accuracy versus the
computational effort and reliability of the optimization problem’s solution for the model predictive
control of an energy storage. Therefore, different optimization methods for the MPC of an
energy storage system are evaluated. They are applied to a compressed air energy storage
(CAES) system to compare their performance under different scenarios.

In chapter 2 the optimization methods used in this thesis are introduced. For each method
an overview of publications where they were used for the model predictive control of energy
storage systems is given.

Chapter 3 describes the design and operation of the compressed air energy storage (CAES)
system. As for typical compressed air systems in the industry, the CAES system consists of
compressors, air treatment devices, and an air receiver tank. An additional booster is used to
raise the pressure of the compressed air delivered by the compressors and store it in a high
pressure storage tank. In this way, the electricity consumption and air supply can be decoupled.
Based on experimental results a method for calculating the electrical round-trip efficiency of

1There exist various different evolutionary computation algorithms that have been used for optimal control of
energy system, such as particle swarm optimization or ant colony optimization. In this thesis the genetic algorithm
(GA) is applied because it is the most commonly used method.
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the storage system is presented. Additionally, the specific storage costs of the CAES system
are calculated and compared to battery storage systems.

In chapter 4 the mathematical descriptions of the CAES system models for each optimization
method used in this thesis are given. Simulation results of the models are used to validate and
compare them to measured data.

In chapter 5 these optimization models are used for the model predictive control of the CAES
system, with the objective to cover a given air demand over 24 hours with minimal costs.
The experiments are performed with different air demand and electricity price scenarios.
Additionally, the influences of the optimization timestep size and the quality of the air demand
forecast are investigated.

Chapter 6 concludes the thesis.



Chapter 2

Optimization methods for Model
Predictive Control

In this chapter the optimization methods used in this thesis are introduced. For each method a
literature overview of their application to Model Predictive Control (MPC) of energy systems
including storage is given.

2.1 Linear programming

Linear programming (LP) problems are a subclass of convex optimization problems, where
the objective function and all constraints are linear. As for all convex optimization problems, a
local minimum of the objective functions is also a global minimum. In the last decades several
effective methods for solving linear programming (LP) problems where developed, such as
the simplex method and the interior point method. They can easily solve very big problems
with hundreds of variables and thousands of constraints. The main drawback of LP is that the
behavior of many real-world systems can only be approximated, since all variables have to be
real-numbered and all constraints and the objective function have to be linear. A general linear
program, where the vector x is the optimization variable and the matrices A, G and the vectors
b, c , d , h are problem parameters that specify the objective and constraint functions, can be
stated as follows. A detailed insight into the theory and practice of linear programming is given
in [8] and [86].

minimize cT x + d

subject to Gx ≤ h
Ax = b

(2.1)

In the last years various articles using LP for MPC or optimal control of energy systems
including storages have been published. Xie and Ilic [103] used LP for model predictive control
of a small electric energy system containing intermittent renewable resources. An application of
LP for optimal scheduling of a CHP system with a battery unit and a thermal energy storage unit
is presented by Majic et al. [63]. Ma et al. [61] propose a MPC technique using LP to reduce
costs for the operation of a HVAC system. Further examples can be found in [85, 20, 60, 78].

5



6 2. Optimization methods for Model Predictive Control

2.2 Mixed-integer linear programming

Mixed-integer linear programming (MILP) is a special case of the more general mixed-integer
programming. In MILP the objective function and constraints are linear. Some of the decision
variables are integers whereas others are continuous variables. Using integer or binary
variables allow a more detailed representation of energy systems than with LP by considering
e.g. start-up costs and part-load performance. State-of-the-art MILP solvers use a combination
of algorithms, such as branch-and-bound, cutting plane and heuristics. Although, they are
able to solve large problems with regard to the number of variables and constraints, the
computational effort compared to LP rises significantly due to the addition of integers to the
problem. An imporant advantage of these algorithms is that they provide an assessment of
the current solution. The time for solving a MILP depends upon the specific structure of the
problem and is thus hard to be estimated in general terms. Equation 2.2 states the general
formulation of a MILP with the integer variable vector y and the real variable vector x . The
matrices G, A, M, N and the vectors c , w , d , h, b are problem parameters that specify the
objective and constraint functions. Detailed mathematical foundations of integer programming
are presented in the textbook of Conforti [22].

minimize cT x + wT y + d

subject to Gx +My ≤ h
Ax + Ny = b

x ∈ R; y ∈ Z

(2.2)

Recently, MILP models have been used widely for the optimal control of energy systems
containing energy storages. They were used for the model predictive control of microgrids
including battery storage systems by Parisio et al. [81, 82], Palma-Behnke et al. [80], Bracco
et al. [11], and Kriett et al. [56]. An application of MPC using a MILP model for active load
management in a distributed power system containing a battery storage is presented by Zong
et al. [107]. Zhang et al. used MILP for model predictive control of industrial loads and energy
storage for demand response [106]. Stadler et al. used a MILP model for MPC of an energy
system in a building including heat and electric storages [95]. A MILP approach for model
predictive control of a residential HVAC system with a thermal energy storage is presented by
Fiorentini et al. [28, 29]. Further applications of MPC to energy systems with energy storages
using MILP can be found in [70, 68, 10, 65, 66, 101]

2.3 Mixed-integer nonlinear programming

Mixed-integer nonlinear programming (MINLP) covers a wide range of mathematical opti-
mization problems. In this thesis, MINLP refers to exact methods for solving problems where
the objective and constraint functions include non-convexities and the decision variables are
integers and continuous. There are some exact approaches to solve non-convex MINLP
problems, such as spatial branch-and-bound, branch-and-reduce and ¸-branch-and-bound.
Although there are software packages available that can solve non-convex MINLPs to proven
optimality, relative small problems can still cause existing methods to run into serious difficulties.
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Compared to MILP, solving MINLP problems requires a much higher computational effort and
are much more time consuming. The survey paper by Burer and Letchford gives a good
overview of non-convex MINLP [18]. The general formulation of a MINLP is given in equation
2.3, where the objective function f (x; y) is to be minimized finding the optimal values of the
integer variable vector y and the real variable vector x . The constraints are defined by a
number of inequality functions ci and equality functions cj . Here, I and E are two disjoint sets
of integers defining the number of constraints.

minimize f (x; y)

subject to ci (x; y) ≤ 0 ∀i ∈ I
cj(x; y) = 0 ∀j ∈ E

x ∈ R; y ∈ Z

(2.3)

Compared to other optimization methods, mixed-integer nonlinear programming is rarely used
for MPC of energy systems. Sachs et al. used MINLP for model predictive control of island
energy systems including a battery storage [90]. A MINLP model for MPC of an energy storage
system in the smart grid environment is used by Nojavan et al. [76]. Shirazi et al. [92] used a
MINLP model for optimal scheduling of residential HVAC system including a battery system.
Ma et al. [62, 105] used a nonlinear programming for model predictive control of a thermal
energy storage in building cooling systems.

2.4 Genetic algorithm

A genetic algorithm (GA) is a meta-heuristic optimization method inspired by biological evolution
and the most popular technique within the more general class of evolutionary algorithms. The
basic idea of GA is to create a population of candidate solutions (individuals) for the optimization
problem. Each candidate solution is evaluated based on the value of the objective function
(fitness). The best candidates are selected and used to create a new generation by crossover
(creating a new child candidate by combining two or more parent candidates) and mutation
(small random changes to an individual to explore the whole search space). The new generation
population is then again evaluated and the loop continues until the last population meets a
certain stopping criteria. GA can be applied to almost every optimization problem, such as
non-convex, discrete, mixed-integer and black-box problems and only needs rough information
of the objective function. Major disadvantages of GA are that solving big problems requires
tremendously high time and that it gives no information about the quality of a solution. A
detailed introduction to genetic algorithms is given in [93].

Because of its easy implementation, the genetic algorithm is often used for optimal control of
energy systems. Jungwirth applied MPC with a GA to control heating and cooling of buildings,
using the thermal building mass as heat storage [42]. Lipp used a GA for model predictive
control of a micro CHP unit with a thermal energy storage [43]. Lujano-Rojas et al. used GA
for optimizing the daily operation of battery energy storage systems under real-time pricing
schemes. A MPC approach using GA for the operation of an energy smart home lab including
an energy storage system is presented by Kochanneck et al. [54]. Further examples of using
genetic algorithm for MPC can be found in [3, 64, 73]
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2.5 Dynamic programming

Dynamic programming (DP) is an optimization technique introduced by Richard Bellman [6],
that can be applied to multistage decision problems requiring a sequence of interrelated
decisions. It is based on Bellman’s principle of optimality which states that a sub-policy of an
optimal policy for a given problem must itself be an optimal policy of the sub-problem. For a
given discrete-time dynamic system

xt+1 = ft(xt ; ut); t = 0; 1; :::; N − 1 (2.4)

where xt represents the state of the system and ut the control (decision) at time period t, DP is
able to find the optimal policy ı∗ = {uı∗

0 ; uı
∗

1 ; :::; uı
∗

N−1} that minimizes the total costs given by

Jı(x0) = gN(xN) +
N−1X
t=0

gt(xt ; u
ı
t ) (2.5)

for the given starting state x0 and the given cost functions gt .

To calculate the optimal policy ı∗, the DP algorithm proceeds backward1 in time (from t = N−1

to t = 0) and calculates the optimal decision u∗t to minimize the current (gt ) and following
(Jt+1) costs for each possible state xt .

JN(xN) = gN(xN) (2.6)

Jt(xt) = min
ut
gt(xt ; ut) + Jt+1 (ft(xt ; ut)) (2.7)

The optimal cost J∗ı(x0) and decisions ı∗ are then given for every initial state x0 after the last
step of this algorithm.

DP can deal with every problem given in this form, including non-convex, non-continuous,
non-differentiable and black-box functions and is able to find the global optimal solution of a
problem. If the state space is not already a finite set, it has to be discretized, which may lead
to suboptimal solutions. The computational requirements are depending on the number of
possible values of x and the number of possible decisions u as well as on the number of time
periods t. Therefore, DP can become quite time-consuming for very big problems (known as
Bellman’s curse of dimensionality). A detailed insight into the theory and practice of dynamic
programming is given by Bertsekas in [7].

DP has been widely used for model predictive and optimal control of energy storage systems.
Henze et al. used DP for MPC of a building thermal storage [38, 35]. A DP approach for
scheduling of residential energy storage systems under dynamic pricing was presented by Yoon
et al. [104] and Wang et al. [100]. Zhang et al. [59] and Nguyen et al. [75] used DP for optimal
control of a battery combined with a wind power system. Further applications of dynamic
programming for optimal control of energy storages are presented in [21, 88, 58, 27, 30]

1A forward in time implementation of the DP algorithm is also possible
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2.6 Overview of the optimization methods used in this thesis

Table 2.1 summarizes the optimization methods used for MPC in this thesis with their ad-
vantages and disadvantages. Linear programming is very limited in the available expression
to model the system, but is able to solve the optimization problem fast and reliable. With
mixed-integer linear programming the accuracy of the model, as well as the computational
effort of solving the problem, increases. The nonlinear optimization models, MINLP, GA and
DP, are able to represent complex interactions of the system very detailed, but require a very
high computational effort to solve the problem.

Table 2.1: Optimization methods used in this thesis with their advantages and disadvantages
(based on [57, 25, 86])

Method Advantages Disadvantages

Linear programming
(LP)

– Scales well to big problems
– Globally optimal solution attain-

able

– Very limited expressions avail-
able

– Complex interactions difficult or
impossible to represent

Mixed-integer linear
programming (MILP)

– Can scale well to big problems
– Complex interactions repre-

sentable
– Quality of solutions can be as-

sessed

– Bad worst-case complexity
– Global optimum often not at-

tainable

Mixed-integer nonlinear
programming (MINLP)

– Complex interactions fully rep-
resentable

– High freedom of expression

– Scales horribly to big problems

Dynamic programming
(DP)

– Full freedom of expression (can
also be used with "black box"
models)

– Globally optimal solution of the
discretized system attainable

– Scales horribly to big problems
(Bellman’s "curse of dimension-
ality")

– Continuous variables must be
discretized which may lead to
a suboptimal solution

Genetic algorithm
(GA)

– Full freedom of expression (can
also be used with "black box"
models)

– Scales horribly to big problems
– Quality of solutions impossible

to assess





Chapter 3

Compressed air energy storage
system

To evaluate the different methods of control optimization, they are applied to a real energy
storage test system. Therefore, a small-scale compressed air energy storage system is
used. It represents a typical compressed air system in the industry that is used to cover a
given air demand. An additional booster allows one to store compressed air in high-pressure
storage tanks. The air from these tanks can then be used to cover the air demand without the
compressors running. Thereby, the electricity consumption of the system can be influenced
and adapted to a given incentive.

In this chapter at first the design and the operation modes of the compressed air energy storage
(CAES) system are introduced. Then the results for different experimental investigations are
shown. These results are used to calculated the specific costs of the CAES system and
compare them with battery storage systems.

3.1 Compressed air constants and definitions

Pressure is defined as force per unit area. There are three different categories for pressure
measurement. The absolute pressure pa is zero referenced to a complete vacuum, while the
gauge pressure pg is defined as the pressure referenced against the atmospheric pressure.
The differential pressure pd measures the difference between two unknown pressures [9, p.
145].
Although the SI unit of pressure is Pascal (Pa), in the compressed air industry the pressure
is usually depicted in bar gauge pressure. The pressure sensors used in the compressed
air system also have bar gauge pressure as output. In this thesis pa indicates the absolute
pressure and is given in Paa or bara, while pg given in the units Pag or barg shall indicate the
gauge pressure.

Compressed air flow, like the free air delivery (FAD) of the compressors or the compressed
air demand represent the mass flow ṁ of the air with the SI unit kg

s . In the compressed air
industry air flow is usually given as normal (or standard) volumetric flow V̇ n with the unit
standard (or normal) cubic meters per minute ( m3

n
min ). This represents a volumetric flow of the

air converted to standardized conditions of temperature Tn and pressure pn, often referred as

11
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normal temperature and pressure or standard temperature and pressure. Using the ideal gas
equation of state (3.2) [71, p.127], where p is the pressure, V the Volume, m the mass, Rs the
specific gas constant and T the temperature of the gas, the mass flow ṁ can be converted to
the normal volumetric flow V̇ n (and vice versa) given the standard conditions pn and Tn.

p · V = m · Rs · T (3.1)

V̇ n = ṁ · Rs · Tn
pn

(3.2)

There are a variety of normal or standard conditions for temperature and pressure established
by different organizations. In this thesis these reference values are defined to pn = 1:0 bara

and Tn = 273:15 K as per ISO 8778:2003. The specific gas constant of air is defined as
Rs;air = 287:0 J

kg·K [71, p.123]. All constants used for compressed air calculations are shown
in table 3.1

Table 3.1: Constants used for compressed air calculations

Symbol Value Unit Description

pn 1.0 bara Normal condition for pressure
Tn 273.15 K Normal condition for temperature
Rs;air 287.0 J

kg·K Specific gas constant of air

3.2 Design of the compressed air energy storage system

The compressed air energy storage system is located at the Technical University of Munich and
represents a typical compressed air system in the industry with an additional high-pressure
compressed air storage. Figure 3.1 shows the structure of the test system. The compressed
air is produced by three rotary screw compressors with a total maximum free air delivery (FAD)
of 2.53 m3

n
min and a maximum output pressure of 11 bar. The air treatment consists of two dryers

and two filters. The air receiver tank, with a volume of 2 m3, is used to reduce compressor
cycling. To simulate an arbitrary compressed air demand, a control valve is used, through
which the air is released into the ambient. A reciprocating compressor (booster) that is able to
boost the compressed air from the rotary screw compressors up to a pressure of 38 bar allows
one to store the air in two high-pressure storage tanks with a volume of 2 m3, each. The air
from these tanks can be fed back into the system by opening the outlet valve. To prevent a
pressure increase in the low-pressure part of the system when the the outlet valve is open, a
pressure regulator is used.

The electric power consumption of the compressors and the booster as well as the temperature
and the gauge pressure at three different positions is measured and stored with a time
resolution of one second. Table 3.2 provides an overview of all measured and calculated values
of the CAES system.

The technical data of the compressors are shown in table 3.3, information about the other
components can be found in appendix A.
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Figure 3.1: Schematic representation of the compressed air energy storage test system

Table 3.2: Measured and calculated values of the CAES system

Symbol Unit Description

p1 barg Gauge pressure at compressors output
p2 = psys barg System gauge pressure (after dryer and filter)
p3 = psto barg Gauge pressure in high-pressure storage
T 1 K Temperature at compressors output
T 2 K Temperature after dryer and filter
T 3 K Temperature in high-pressure storage
P 1 kW Electric power consumption of compressor C1
P 2 kW Electric power consumption of compressor C2
P 3 kW Electric power consumption of compressor C3
P 4 = P bo kW Electric power consumption of booster
P co kW Sum of electric power consumption of compressors C1, C2 and C3
P tot kW Sum of electric power consumption of compressors and booster
Etot kWh Sum of electric energy consumption of compressors and booster

Table 3.3: Technical specifications of the compressors from manufacturer KAESER

Compressor Model FAD or flow rate Max. output pressure Data sheet

( m3
n

min ) (barg)

C1 SM12 SFC 10 bar 0.34 - 1.04 11 [51]
C2 SM12 10 bar 1.01 11 [51]
C3 SX6 10 bar 0.48 11 [52]
Booster N153-g 10 bar 0.89 40 [48]
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3.3 Operation of the compressed air energy storage system

As shown in figure 3.2, the compressed air energy storage system is controlled by two different
components. The Sigma Air Manager (SAM) from KAESER Compressors controls the three
screw compressors, such that the system pressure psys stays above the setpoint of the
system pressure p̂sys within a given pressure range ∆p̂sys (p̂sys ≤ psys ≤ p̂sys + ∆p̂sys ). It
decides which compressors are running to cover the actual air demand. The control software
implemented in LabVIEW directly controls the outlet valve, the control valve and the booster.
Additionally, it communicates with the SAM and is able to specify the setpoint of the system
pressure p̂sys and to turn off all compressors.

LabVIEW
control software Control

sequence

Booster

High-pressure storage 
tanks

Air receiver tank

Air treatment

Outlet valve

Control valve

Compressed air 
demand

Compressors

psys

KAESER
Sigma Air Manager

(SAM)

psto

p Pressure sensor

System pressure

Setpoint system pressure

Compressors on/off

Compressor controls Stroke (%)

Target 
operation 

mode  
SMCΘ Θ

Compressed air

Control signal

Measured data

Figure 3.2: Control of the compressed air energy storage test system

The CAES system has three operation modes: normal, charge and discharge. The target
operation mode of the system Θ̂ is given by a control sequence that contains control signals
for each timestep. A superior mode controller (SMC) implemented in the LabVIEW control
software intervenes if the target operation mode Θ̂ is invalid (e.g. when the storage is already
full and should be charged) and assigns a valid concrete operation mode Θ.

Figure 3.3 shows an example of the system behavior of all three operation modes, based on
the time curves of measured system pressure psys and storage pressure psto as well as power
consumption of the compressors P co , of the booster P bo and the total power consumption P tot .
Additionally, the target operation mode Θ̂ applied by the control schedule and the concrete
operation mode Θ assigned by the superior mode controller are shown. For this example, the
compressed air demand is kept constant at 0.9 m3

n
min .

In normal operation mode (t < t1, t2 ≤ t < t3 and t > t4), the complete air demand V̇ d is
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Figure 3.3: Storage pressure, electric power consumption and operation modes of the CAES
system for one full cycle

covered by the compressors that are controlled by the SAM. The booster is switched off and
the outlet valve of the storage is closed. The setpoint of the system pressure p̂sys is set to the
normal setpoint pressure p̂normsys .

During the operation mode charge (t1 ≤ t < t2), the booster is running and the high-pressure
storage is filled. The compressors are controlled by the SAM and have to cover the complete
air demand V̇ d and the air consumption of the booster. If the sum of the air demand and the
flow rate of the booster exceeds the maximum free air delivery (FAD) of the compressors, this
will lead to a pressure decrease in the system. To avoid this, a system-pressure-dependent
hysteresis is implemented in the superior mode controller (SMC). If the system pressure drops
under the value of the lower bound of the hysteresis pchsys , the concrete operation mode Θ is
set to normal by the SMC. The CAES system stays in this mode until the upper bound of the
hysteresis pchsys is reached or a new target operation mode is applied.
When the storage pressure reaches the maximum pressure level psto , the concrete operation
mode Θ is set to normal. The state of the storage is set to full until the operation mode
discharge is applied, even if the pressure drops below the maximum pressure psto because of
a temperature decrease or leakage losses. When the target operation mode Θ̂ = charge is
applied while the storage is in the full state, the concrete operation mode Θ is set to normal by
the SMC (t2 ≤ t < t∗2 ).
Since the booster has a maximum compression ratio of rbo = 4, the input pressure of the
booster (which is the system pressure psys ) has to be adapted during charge mode. If the
storage pressure psto is greater than the system pressure psys multiplied by the compression
ratio rbo minus an offset of 1 bar for safety, the setpoint of the system pressure p̂sys is calculated
by dividing the actual storage pressure psto by the compression ratio rbo and adding an offset
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of 0.5 bar (t1 ≤ t < t ′2). Otherwise the setpoint of the system pressure is set to the normal
system pressure p̂normsys (t1 ≤ t < t ′2). For a maximum compression ratio of rbo = 4 the system
pressure has to be adapted for storage pressures psys > 23 bar .

p̂sys =

8<:psto=rbo + 0:5 bar if psto > psys · rbo − 1 bar;

p̂normsys else.
(3.3)

Depending on which value is higher, the setpoint of the system pressure is either set to the
normal system pressure p̂sys = p̂normsys (t1 ≤ t < t ′2) or calculated depending on the actual
storage pressure p̂sys = psto=rbo + 0:5 bar (t ′2 ≤ t < t2).

In discharge operation mode (t3 ≤ t < t4), all compressors and the booster are turned
off. The outlet valve is opened and the complete air demand V̇ d is covered by the air in the
high-pressure storage. When the storage pressure reaches the minimum pressure level psto ,
the outlet valve is closed and the CAES system is set to normal operation mode. The state of
the storage is set to empty until the operation mode charge is applied, even if the pressure
exceeds the minimum pressure again because of a temperature increase. When the storage
is in the empty state and the target operation mode Θ̂ is set to discharge, the SMC assigns
the concrete operation mode Θ = normal and prevents the system from being discharged
(t4 ≤ t < t∗4 ).

Table 3.4 shows the control parameters of the CAES system used for all experiments in this
thesis.

Table 3.4: Control parameters of the CAES system used in this thesis

Symbol Value Unit Description

p̂normsys 6 barg Normal setpoint pressure
∆p̂sys 0.5 bar Pressure range of the SAM
psto 38 barg Maximum storage pressure
psto 7 barg Minimum storage pressure

pchsys 5.9 barg Lower bound of the SMC system pressure hysteresis during charge

pchsys 6.4 barg Upper bound of the SMC system pressure hysteresis during charge
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3.4 Experimental investigations

To investigate the behavior of the compressed air energy storage (CAES) system, several
experiments measuring the power consumption of the compressors and the booster for different
operating conditions were performed. The obtained results are used for the calculation of the
parameters needed to identify different models of the CAES system (see chapter 4) as well as
for an economic evaluation of the system (see section 3.5).

3.4.1 Power consumption of the compressors

The electric power consumption of the compressors was measured during normal operation
mode for different air flows and system pressures. For each measurement the operating
state was kept constant for three hours and the mean power consumption was calculated.
Each measurement was performed three times and the mean value was calculated to reduce
the influence of measurement errors. As shown in figure 3.4 the power consumption of the
compressors increases monotonically with the air flow. The compressors also consume more
power for higher system pressures. The influence of the system pressure depends on the air
flow. For very small air flows, there is only little difference of the power consumption between
the different system pressures, while for high air flows the influence of the system pressure
increases.
The results also show that the maximum free air delivery (FAD) of the compressors decreases
for higher output pressures [45, 46, 47]. For a setpoint pressure of 8 barg and higher, the

compressors are not capable of covering an air demand over 2.5 m3
n

min .
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Figure 3.4: Power consumption of the compressors for different air flows and system pressures
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In figure 3.5 the specific power consumption of the compressors is illustrated. The specific
power consumption can be calculated by dividing the electric power consumption of the com-
pressors by the air flow.
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Figure 3.5: Specific power consumption of the compressors for different air flows and pressures

For very small air flows, the system has a high specific power consumption. The reason is
that for an air demand which is lower than the minimum FAD of each compressor, one or
more compressors are repeatedly switched on and off to cover the demand. This generates
additional losses during start-up and shut-down. As shown in figure 3.6, for a constant air
demand of V̇ d = 0:2 m3

n
min the SAM controller regulates the compressors differently depending

on the setpoint pressure. While for setpoint pressures of p̂sys = 6 barg and p̂sys = 10 barg

mostly just the smallest compressor SX6 is used, for a setpoint pressure of p̂sys = 7 barg

always the compressors SX6 and SM12 SFC are switched on and off together. Because of
this, the specific power consumption for p̂sys = 10 barg is lower than for p̂sys = 7 barg.
For increasing air flows, the specific electric power consumption of the system generally
decreases. But as shown in figure 3.5, this descent is not monotonic. For a constant setpoint
pressure of p̂sys = 6 barg and an air flow of 0.9 m3

n
min the specific power is lower than for an air

flow of 1.3 m3
n

min . The reason is the part-load efficiency curve of the variable frequency drive
compressor SM12 SFC. The SM12 SFC is constructed to have its best efficiency at a frequency
of 50 Hz, which corresponds to a FAD of about 0.9 m3

n
min at a system pressure of p̂sys = 6 barg

[53]. If the FAD differs from this value, the specific power consumption of the SM12 SFC
increases. As shown in figure 3.6, for p̂sys = 6 barg the SM12 SFC delivers less than 0.9 m3

n
min

air for the operation points V̇ d=0.7 m3
n

min and V̇ d = 1:3 m3
n

min . The efficiency decrease of the SM12
SFC compared to its best operation point leads to an increase of the specific electric power of
the system.
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For a system pressure of p̂sys = 10 barg the best efficiency at a frequency of 50 Hz of the

SM12 SFC corresponds to a FAD of about 0.8 m3
n

min [53]. Together with a reduced maximum
air delivery for higher system pressures this causes a different operation of the compressors
by the SAM controller as for lower system pressure (see figure 3.6). Therefore, in contrast to
p̂sys = 6 barg, the specific electrical power consumption increases with the air flow for values

between 0.7 m3
n

min and 1.3 m3
n

min for a system pressure of p̂sys = 10 barg, as shown in figure 3.5.
Thus the specific electrical power consumption of the system for a certain operation point
depends on how the three compressors are controlled by the SAM. The combination of
three different compressor models and the part-load dependent efficiency of the variable
frequency drive compressor SM12 SFC causes a nonlinear dependence of the electrical power
consumption on the air demand and the system pressure.
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Figure 3.6: Measured power consumption of the individual compressors for different exemplary
air flows and system pressures

3.4.2 Power consumption of the booster

The electric power consumption of the booster was measured with a resolution of one second,
while the high pressure storage was completely charged from an empty state (psto = 7 barg)
to the maximum pressure of psto = 38 barg. To reduce the influence of measurement errors,
the experiment was performed five times. Figure 3.7 shows the power consumption of the
booster in relation to the storage pressure. The illustrated mean value was calculated for
linear discretized pressure ranges of 0.1 bar. The increase of the system pressure at a storage
pressure of 23 bar (see eq. 3.3) results in a change of the power curve. The few points with
a higher power consumption at a storage pressure of 7 bar are caused by the start-up of the
booster.
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Figure 3.7: Power consumption of the booster

3.4.3 Round-trip efficiency

The round-trip efficiency ” of an energy storage is described by the ratio of energy a full energy
storage can deliver until it is empty (discharge energy Edch) to the energy needed to completely
charge an empty storage (charge energy Ech).

” =
Edch
Ech

(3.4)

The compressed air energy storage system described in this chapter, is used to shift the
electrical energy demand. To describe the CAES system as an electrical energy storage, the
electrical efficiency ”el has to be calculated.

The electrical power consumed by the compressed air system during charging, is used to
deliver the air needed to charge the storage as well as to cover the air demand V̇ d . To calculate
the power that is used only for charging the storage, the reference power P ref needed to
deliver the air demand has to be subtracted from the measured power P tot of the system.
Thereby P ref is the power the compressors would consume in normal operation mode to
cover the air demand V̇ d , which corresponds to the power consumption of the compressors
for p̂sys = p̂normsys = 6 barg (see figure 3.4). The charge energy Ech can be calculated by
integrating the difference of P tot and P ref over the charging time (tch0 to tch1 ), as shown in
figure 3.8.

Ech =

Z tch1

tch0

(P tot (t)− P ref (t)) dt (3.5)
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The CAES system is not able to deliver electrical energy during discharging. But because the
air demand V̇ d is covered by the air out of the storage, the compressors are turned off, which
leads to a reduction of the power consumption of the CAES system by P ref . The reference
power P ref here again is the power the compressors would consume in normal operation mode
to cover the air demand. When the compressors are turned off, they still consume electrical
power because of their stand-by losses which correspond to the measured total electrical
power P tot . Thus the charge energy Edch can be calculated by integrating the difference of
P ref and P tot over the discharging time (tdch0 to tdch1 , see figure 3.8).

Edch =

Z tdch1

tdch0

(P ref (t)− P tot (t)) dt (3.6)
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Figure 3.8: Charge and discharge energy for one full cycle of the storage with a constant air
demand

When the CAES system is charged, the setpoint of the system pressure p̂sys has to be in-
creased for high storage pressures (see section 3.3). As shown in figure 3.4, an increased
system pressure leads to a higher electrical power consumption of the compressors, depending
on the air flow. During charging, the compressors have to cover the air flow into the storage
as well as the air demand V̇ d . Therefore, the CAES system cannot be charged for high air
demands. Since the air flow into the storage is constant when the booster is running, the power
consumption of the compressors during charging and therefore the charge energy Ech of the
CAES system depends on the air demand. To determine the influence of V̇ d on the charge
energy Ech, measurements for different air demands where performed. Therefore, V̇ d was
kept constant while the empty storage was completely charged. For each air demand the mean
value of at least three measurements were calculated to reduce the influence of measurement
errors. The results are shown in figure 3.9. As expected, the charge energy generally increases
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for higher air demands. The deviation for an air demand of 0.7 m3
n

min is a consequence of the
nonlinear dependence of the electrical power consumption on the air demand and the system
pressure (see section 3.4.1).

The experiments to determine the discharge energy Edch were performed in the same way
as for the charge energy. When a full high-pressure storage is completely discharged, ap-
proximately the same amount of air can be retrieved from the storage, independent from the
actual air demand. But the reference power P ref used to calculate the discharge energy Edch,
which is the power the compressors would consume in normal operation mode to cover the air
demand, does depend on the air demand of the system. Therefore, the dependence of the
discharge energy Edch on the air demand is related to the specific power consumption of the
compressors for p̂sys = p̂normsys = 6 barg as shown in figure 3.5. The discharge energy Edch of
the CAES for different air demands during discharging is also illustrated in figure 3.9.
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Figure 3.9: Charge and discharge energy for different air demands during charging and
discharging

Using the values for the charging energy Ech and the discharging energy Edch of figure 3.9,
the electrical round-trip efficiency ”el of the compressed air energy storage can be calculated
with equation 3.4. As shown in figure 3.10, the round-trip efficiency has its maximum value
of 86.76 % for an air demand of V̇ d = 0:2 m3

n
min during charging and discharging. The minimum

round-trip efficiency of 52.47 % occurs for an air demand of V̇ d = 1:3 m3
n

min during charging and

V̇ d = 2:4 m3
n

min during discharging.
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Figure 3.10: Round-trip efficiency of the CAES for different air demands during charging and
discharging

3.5 Economic evaluation of the compressed air energy storage
system

For an economic evaluation of the CAES system, the specific energy costs csto are calculated
and compared with battery storages. The specific energy costs csto represent the costs for the
energy that is retrieved from the storage. They can be calculated by dividing the investment
costs C inv by the product of the discharge energy Edch that can be retrieved from the storage
for one full discharge cycle and the number of full charge and discharge cycles Z within a
certain observation period. If the number of full cycles Z within the observation period exceeds
the number of maximum full cycles Zmax , a new storage has to be used. This is considered by
using the round up operator dxe in equation 3.7. Additionally, costs for charging the storage
have to be considered. To take the losses during charging and discharging into account, the
energy costs cen (in e

kWh ) are divided by the round-trip efficiency ” of the storage.

csto =
C inv

Z · Edch
·
‰

Z

Zmax

ı
+
cen
”

(3.7)

For the CAES system three different cases are considered for the specific energy cost calcula-
tions. For the best and worst case the parameters with the resulting best and worst round-trip
efficiencies are used (see section 3.4.3). For the mean case, the air demand during charging
and discharging is considered to be the mean value of measured air demand data used for the
experiments in this thesis (see chapter 5.1.1, table 5.2). The round-trip efficiency is linearly
interpolated using the data shown in figure 3.9. For the investment costs of the CAES only
the components needed in addition to a typical compressed air energy storage system are
considered (see appendix A.2).



24 3. Compressed air energy storage system

For the economic evaluation of the compressed air energy storage system, the costs are com-
pared with battery storage systems with a similar energy capacity. The cost and technical data
needed for the specific energy cost calculation of the CAES system and the battery storages
are summarized in table 3.5. In addition to the parameters needed for the cost calculation, the
duration of one full charge and discharge cycle ∆tZ is given.

Table 3.5: Costs and technical data of the storages for the specific energy cost calculations

C inv Edch Zmax ” ∆tZ Source
Storage (e) (kWh) (1) (%) (h)

CAES mean 55,200 15.7 ∞ 64.3 5.7
CAES best 55,200 20.1 ∞ 86.7 10.8
CAES worst 55,200 13.9 ∞ 52.5 3.1
Sonnenbatterie eco 21,224 14.0 10,000 94.1 8.5 [94]
Tesla Powerwall 1 4,200 5.6 10,000 88.8 4 [97]

Figure 3.11 shows the specific energy cost of the CAES system cases and the battery storage
depending on the number of full cycles per day. Here the observation period is defined to be
10 years and the electricity costs during charging are set to 0.10 e

kWh . The different maximum
cycles per day of the curves are a result of the individual duration of one full charge and
discharge cycle ∆tZ . Each storage can only be charged and discharged with a certain number
of full cycles within the 24 hours of a day. The step in the specific costs of the battery storages
are caused by exceeding the maximum number of 10,000 cycles (2.74 cycles per day for
10 years). The results show, that the specific energy costs of the CAES system for all three
considered cases are higher than the costs of the battery storages.
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Figure 3.11: Specific storage costs depending on the number of full cycles per day for an
observation period of 10 years and electricity costs during charging of 0.10 e

kWh

1The costs and the round-trip efficiency are given including an inverter with investment costs of 2.000e and an
efficiency of 96 %.



Chapter 4

Optimization Models

In this chapter, a linear, a mixed-integer linear, and a nonlinear mathematical model used for
the different optimization methods are described and validated. While the sections of this
chapter present the general structure of the models and the most important equations, a
detailed mathematical description of each model is given in appendix B.

4.1 Objective function, sets, parameters, and variables

The objective of all optimization models described in this chapter is to minimize the total costs
ctot over the optimization horizon. The optimization horizon is described by the set of timesteps
T = {t1; :::; tN}, where ∆T is the duration of the optimization horizon, ∆t is the duration of
each timestep, and N is the number of timesteps t ∈ T (see table 4.1).

Table 4.1: Time set and parameters

Name Unit Description

T Set of all timesteps T = {t1; :::; tN}
∆T h Duration of the optimization horizon
∆t s Timebase of the optimization (duration of one time period)
N 1 Number of timesteps N = ∆T

∆t=3600

The total costs ctot are calculated by the product of the electricity price Ctel and the total
electrical energy consumption Ettot at each timestep t, summed up for all timesteps. The total
electrical energy consumption Ettot of the CAES system at each timestep is defined by the
total electrical power consumption P ttot and the timestep duration ∆t.

min ctot = min

0@X
t∈T

Ctel · Ettot

1A = min

0@X
t∈T

Ctel · P ttot ·
∆t

3600 s
h

1A (4.1)

To describe a mathematical optimization problem, the parameters used are distinguished
into constant model parameters (usually referred to as parameters) and variable parameters
(usually referred to as variables). The model parameters and variables are used to specify the
optimization problem. The values of the parameters are constant, which means they do not

25
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change while the optimization problem is solved. In contrast, the values of the variables are
unknown until the model has been solved. Solving an optimization model means finding the
values for the variables, that lead to an optimal result of the objective function, satisfying all
given constraints.

The parameters and variables used to describe the optimization problems in this chapter are
summarized in tables within the model description section for each model. The values of the
parameters for each model can be found in appendix C.

4.2 Linear programming model

The CAES system has three operation modes defining its behavior, normal, charge and
discharge (see section 3.3). Modeling these modes within an optimization problem requires
integer variables and, thus, is not possible using linear programming. Also, the behavior of the
booster, which has only an on/off mode, and the pressure dependency of the electric power
consumption of the compressors and the booster (see figure 3.4 and 3.7) can only be modeled
using integer variables. Therefore, instead of modeling the booster and high-pressure storage
tanks separately, they are summarized and treated as an electrical energy storage system
using the parameters calculated in section 3.4.3. Additionally, the three screw compressors are
summarized as well and modeled as one single component covering the whole air demand.
Figure 4.1 shows the structure of the LP model of the CAES system. The parameters and
variables used to describe the LP model are summarized in table 4.2 and 4.3.

Booster and high 
pressure tank 

as electrical energy 
storage

Compressors

Ptot

Pcomp

Pdch

Vcomp = Vd

Pch

Zuschneiden:
31

110
47

134

Compressed air
Electric power

Esto

Figure 4.1: Structure of the LP model of the CAES system

The objective of the LP model is to minimize the total costs over the optimization horizon. The
costs depend on the electricity price Ctel and the total power consumption of the system P ttot
at each timestep (see eq. 4.1). The total power consumption of the system P ttot is comprised
of the power consumption of the compressors P tco and the charge power P tch or discharge
power P tdch of the electrical energy storage.

P ttot = P tco + P tch − P tdch (4.2)
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Table 4.2: Parameters of the LP model

Name Unit Description

Esto kWh Maximum electrical energy capacity of the storage
&1

kW
m3

n=min Slope of the linear function used to model the electrical power consumption
of the compressors

”tch 1 Storage electrical charge efficiency at timestep t
”tdch 1 Storage electrical discharge efficiency at timestep t

V̇
t

d
m3

n
min Air demand at timestep t

P t
ch kW Upper limit of the electrical charge power at timestep t dependent on V̇

t

d

Ct
el

e
kWh Electricity price at timestep t

∆t s Timebase of the optimization (duration of one time period)

Table 4.3: Variables of the LP model

Name ∈ Unit Description

V̇
t

co R+
0

m3
n

min Compressed air produced by the compressors at timestep t
P t

co R+
0 kW Electrical power consumed by the compressors at timestep t

P t
tot R+

0 kW Total electrical power consumed by the CAES system at timestep t
P t

ch R+
0 kW Electrical charge power of the storage at timestep t

P t
dch R+

0 kW Electrical discharge power of the storage at timestep t
Et

sto R+
0 kWh Electrical energy content of the storage at timestep t

Compressors

For the LP model, the system pressure is assumed to be constant. Therefore, the power
consumption of the compressors P tco only depends on the air demand V̇

t
d and is modeled

as a linear function with the slope &1. Figure 4.2 shows the modeled compressor power in
comparison with measured values. The LP formulation does not allow to use an offset in this
function, which leads to an inaccurate representation of the model, especially for low and high
air demands.

P tco = &1 · V̇
t
d (4.3)

Storage

When the CAES system is in discharge mode, the compressors are switched off and the air
demand is covered by the air stored in the high-pressure storage tank. The power consumption
of the CAES system then becomes zero. In the LP model, this is represented by discharging
the electrical storage system. When the discharge power of the storage P tdch equals the power
consumption of the compressors P tco , the air demand is "covered" by the storage. The CAES
system is not able to generate electricity, so the discharge power of the storage is limited by
the power consumption of the compressors. The LP implementation does not allow one to use
a binary variable btdch representing the discharge mode of the system, thus, it is not possible
to define P tdch to be either 0 or P tco dependent on the mode (e.g. P tdch = btdch · P tco), as can
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Figure 4.2: LP function of compressor electric power consumption

be done for the MILP and the nonlinear model. This allows the LP model to obtain states in
which the air demand is partly covered by the compressors, while the rest is covered by the
storage. Because these states are not possible for the real CAES system, this could lead to
inaccurate optimization results.

P tdch ≤ P tco (4.4)

When the CAES system is in charge mode, the booster is switched on and the high-pressure
storage tank is filled. The compressors have to cover the additional air demand of the booster.
In the LP model, this is modeled by charging the electrical storage system. The charge energy
and, therefore, the mean charge power P tch of the electrical storage representation of the
CAES system is dependent on the air demand V̇

t
d (see chapter 3.4.3, figure 3.9). Therefore,

for each timestep and its (predicted) air demand V̇
t
d , the mean charge power P tch is calculated

as explained in appendix C.1.1 and used as an upper limit of the charge power P tch. As
explained before for the discharge power, it is not possible to to define P tch to be either 0 or P tch
dependent on the system mode using a LP model, which might lead to inaccurate modeling
results.

P tch ≤ P tch (4.5)

The energy content Et+1
sto of the electrical energy storage for the timestep t+1 is calculated

based on the energy content Etsto , the charge power P tch, and the discharge power P tdch
at timestep t. The losses during charging and discharging are represented by the charge
efficiency ”tch and the discharge efficiency ”tdch. The electrical round-trip efficiency of the
CAES system is dependent on the air demand during charging and discharging (see chapter
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3.4.3, figure 3.10). The charge efficiency and the discharge efficiency for each timestep are
calculated depending on the corresponding air demand as explained in appendix C.1.2.

Et+1
sto = Etsto + ”tch · P tch −

1

”tdch
· P tdch (4.6)

The energy storage content Etsto is limited by the maximum energy capacity of the storage
Esto . The value of Esto is the maximum measured discharge energy of the CAES system as
described in chapter 3.4.3 (Esto = 20:12 kWh).

Etsto ≤ Esto (4.7)

For visualization and comparison of the optimization and simulation results with measured data,
the energy content of the storage can be converted to pressure values by a linear interpolation
between the minimum (psto) and maximum (psto) values of the storage pressure.

ptsto =
Etsto
Esto

· (psto − psto) + psto (4.8)

Figure 4.3 shows the storage pressure profile for a charge and three discharging processes
calculated with equations 4.6 and 4.8 in comparison to measured values. The significant differ-
ence for the discharge process with an air demand of 0.2 m3

n
min results from the underestimation

of the electric power consumption P tco (which limits the discharge energy, see eq. 4.4) in this
operation point, as shown in figure 4.2.
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Figure 4.3: Calculated storage pressure for exemplary charging and discharging processes
using the LP model compared to measured data



30 4. Optimization Models

4.3 Mixed-integer linear programming model

In the mixed-integer linear programming (MILP) formulation of the optimization problem, binary
variables representing the operation mode of the CAES system can be used. Thus, the
CAES system can be modeled in more detail than with the LP model described in chapter 4.2.
Figure 4.4 shows the structure of the MILP model. Here the booster and the high-pressure
tank are modeled separately. The three screw compressors are summarized and modeled as
one single component. The demand that has to be covered by the compressors depends on
the air demand and the operation mode of the system. The parameters and variables of the
MILP model are summarized in table 4.4 and 4.5.
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Figure 4.4: Structure of the MILP model of the CAES system

Table 4.4: Parameters of the MILP model

Name Unit Description

p̂normsys barg Setpoint pressure in normal mode (normal system pressure)
& i Parameters used to model the electrical power consumption of the com-

pressors
˛i Parameters used to model the electrical power consumption of the booster
‹i Parameters used to model the storage pressure state equation

V̇
t

d
m3

n
min Air demand at timestep t

Ct
el

e
kWh Electricity price at timestep t

∆t s Timebase of the optimization (duration of one time period)
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Table 4.5: Variables of the MILP model

Name ∈ Unit Description

ptsys R+
0 barg System pressure at timestep t

ptsto R+
0 barg Storage pressure at timestep t

∆ptsto;ch R+
0 barg Pressure difference at timestep t when charging

∆ptsto;dch R+
0 barg Pressure difference at timestep t when discharging

P t
co R+

0 kW Electrical power consumed by the compressors at timestep t
P t

bo R+
0 kW Electrical power consumed by the booster at timestep t

P t
tot R+

0 kW Total electrical power consumed by the CAES system at timestep t

The objective of the MILP model is to minimize the total costs over the optimization horizon.
The costs depend on the electricity price Ctel and the total power consumption of the system
P ttot at each timestep (see eq. 4.1). In the MILP model, the total power consumption of the
system P ttot is comprised of the power consumptions of the compressors P tco and of the
booster P tbo .

P ttot = P tco + P tbo (4.9)

Compressors

In the MILP model, the power consumption of the compressors can be formulated depending
on the operation mode. When the system is in normal mode, the compressors have to cover
the complete air demand V̇

t
d . The system pressure is defined to be constant (ptsys = p̂normsys )

and, thus, has no influence on the consumed power. In the operation mode charge, in addition
to the air demand of the system V̇

t
d , the air demand of the booster V̇ bo has to be covered.

Furthermore, the system pressure ptsys during charging is not constant, which affects the
power consumption of the compressors. This is taken into account with a linear dependence
of the power consumption on the difference of the system pressure and the normal system
pressure (ptsys − p̂normsys ) and the product of the air demand (V̇

t
d + V̇ bo ) and the system pressure

increase (ptsys − p̂normsys ). In discharge mode, the air demand is covered by the air out of the
high-pressure storage and the compressors are switched off.

P tco =

8>>>>>>>>>>><>>>>>>>>>>>:

&1 · (V̇
t
d + V̇ bo) + &2 · (ptsys − p̂normsys )

+ &3 · (V̇
t
d + V̇ bo) · (ptsys − p̂normsys ) + &4 in charge mode,

&1 · V̇
t
d + &4 in normal mode,

0 in discharge mode.

(4.10)

During charging, the system pressure ptsys of the CAES system depends on the storage
pressure ptsto (see chapter 3.3). The system pressure has to be increased during charging,
when the storage pressure is above a certain value (ptsys · rbo − 1 bar = 23 bar), because of the
limited compression ratio rbo of the booster. If the storage pressure is below this value, or the
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system is in normal or discharge operation mode, the system pressure ptsys corresponds to
the normal system pressure p̂normsys . Figure 4.5 shows the modeled system pressure dependent
on the storage pressure in charge mode, as defined in equation 4.11.

ptsys =

8<:(ptsto + 2 bar)=rbo if ptsto > ptsys · rbo − 1 bar in charge mode,

p̂normsys else.
(4.11)
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Figure 4.5: System pressure as a function of the storage pressure in charge mode

Figure 4.6 shows the modeled compressor power using the MILP formulation in comparison
with measured values. The possibility to use an offset (&4) in the linear function results in
a more accurate representation of the power consumption in comparison to the LP model
(see figure 4.2). In contrast to the LP model, the MILP model considers energy losses during
start-up and shut-down of the compressors, as described in appendix B.2.

Booster

The power consumption of the booster depends mainly on its output pressure, which corre-
sponds to the pressure in the high-pressure storage. Therefore, the power consumption of the
booster is defined as a linear function of the storage pressure with an offset ˛2. The booster
only consumes power in charge mode. Figure 4.7 shows the modeled power consumption of
the booster compared to measured values. For the booster as well, losses for start-up and
shut-down are considered, as described in appendix B.2.

P tbo =

8<:˛1 · ptsto + ˛2 in charge mode,

0 else.
(4.12)
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Figure 4.6: MILP model for the electric power consumption of the compressors
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Figure 4.7: MILP model for the electric power consumption of the booster
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Storage

The pressure in the high-pressure storage tank at the beginning of the next timestep pt+1
sto

depends on the storage pressure ptsto at timestep t and the operation mode of the system. In
charge mode, the pressure difference ∆ptsto;ch is added. In discharge mode, the pressure is
reduced by ∆ptsto;dch.

pt+1
sto =

8>><>>:
ptsto + ∆ptsto;ch in charge mode,

ptsto in normal mode,

ptsto −∆ptsto;dch in discharge mode.

(4.13)

The pressure increase during charging is formulated as a linear function dependent on the
previous storage pressure ptsto .

∆ptsto;ch = ∆t ·
`
‹ch;1 · ptsto + ‹ch;2

´
(4.14)

The pressure decrease during discharging is modeled as a linear function dependent on the
air demand of the system V̇ d and the previous storage pressure ptsto .

∆ptsto;dch = ∆t ·
“
‹dch;1 · V̇ d + ‹dch;2 · ptsto + ‹dch;3

”
(4.15)

Figure 4.8 shows the storage pressure profile for a charge and three discharging processes
calculated with equations 4.13 - 4.15 in comparison with measured values. The calculated
values show only a slight deviation from the measured data for all four cases. Compared to LP
(see figure 4.3), the MILP model shows a better representation of the pressure characteristics
for charge and discharge, especially for discharge with a low air demand (V̇ d = 0:2 m3

n
min ).
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Figure 4.8: Calculated storage pressure for exemplary charging and discharging processes
using the MILP model compared to measured data
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4.4 Nonlinear model

The nonlinear (and non-convex) formulation of the optimization problem allows for very high
freedom of expression to describe the CAES system. Thus, the system can be modeled in
much more detail than with a LP or MILP formulation. The optimization methods dynamic
programming (DP) and genetic algorithm (GA) use the nonlinear description of the CAES
system implemented as a simulation model, as described detailed in appendix B.3. To use the
mixed-integer nonlinear programming (MINLP) method a simplified version of the nonlinear
model is formulated using equality and inequality functions, as describe in appendix B.4.

The structure of the nonlinear CAES system model is shown in figure 4.9. As in the MILP
formulation, the booster and the high-pressure tank are modeled separately. The three screw
compressors are summarized and modeled as one single component. Here, the air receiver
tank, which is used to reduce compressor cycling, is also taken into account. The parameters
and variables used to describe the nonlinear model are summarized in table 4.6 and 4.7.

Table 4.6: Parameters of the nonlinear model

Name Unit Description

p̂normsys barg Setpoint pressure in normal mode (normal system pressure)
pn bara Normal pressure
V rec m3 Volume of air receiver tank
& i Parameters used to model the electrical power consumption of the com-

pressors
˛i Parameters used to model the electrical power and air consumption of the

booster
‹i Parameters used to model the storage pressure state equation
rbo 1 Maximum compression ratio of the booster

V̇
t

d
m3

n
min Air demand at timestep t

Ct
el

e
kWh Electricity price at timestep t

∆t s Timebase of the optimization (duration of one time period)

Table 4.7: Variables of the nonlinear model

Name ∈ Unit Description

ptsys R+
0 barg System pressure at timestep t

ptsto R+
0 barg Storage pressure at timestep t

∆ptsto;ch R+
0 barg Pressure difference at timestep t when charging

∆ptsto;dch R+
0 barg Pressure difference at timestep t when discharging

∆ptth;de R+
0 bar Pressure decrease caused by temperature decrease after charging

∆ptth;in R+
0 bar Pressure increase caused by temperature increase after discharging

V̇
t

rec R m3
n

min Compressed air into (positive) or out of (negative) the air receiver tank

V̇
t

bo R+
0

m3
n

min Compressed air consumption of the booster at timestep t
P t

co R+
0 kW Electrical power consumed by the compressors at timestep t

P t
bo R+

0 kW Electrical power consumed by the booster at timestep t
P t

tot R+
0 kW Total electrical power consumed by the CAES system at timestep t
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Figure 4.9: Structure of the nonlinear model of the CAES system

The total power consumption of the system P ttot , which is used to calculate the total costs (see
eq. 4.1), is comprised of the power consumptions of the compressors P tco and of the booster
P tbo .

P ttot = P tco + P tbo (4.16)

Air receiver tank

The air receiver tank is used in compressed air systems to reduce compressor cycling by
smoothing high-frequent variations of the air demand. The pressure in the air receiver tank
is equal to the system pressure. When the CAES system is charged, the system pressure
has to be increased for high storage pressures. To increase the pressure in the air receiver
tank, additional air V̇ rec is needed, that has to be covered by the compressors. Figure 4.10
shows the increase of the system pressure during charging from time t1 to t2. When the CAES
system switches to normal or discharge mode after charging, and the system pressure pt−1

sys is
higher than the normal system pressure p̂normsys , the receiver tank releases air V̇ rec to reduce
its pressure. This air covers the air demand V̇ d as long as the pressure in the tank is greater
than the normal system pressure p̂normsys . As shown in figure 4.10, the power consumption of
the system becomes zero during this period (between t2 and t3).

Using the ideal gas equation of state (see eq. 3.1) the additional air to raise the pressure
(positive V̇ rec ) or the released air to decrease it (negative V̇ rec ), can be calculated by the
pressure difference from pt−1

sys to ptsys as follows1.

1It is assumed, that the air temperature is constant. The parameters of this equation have to be converted to SI
units. The absolute pressure value has to be used.
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V̇ rec =
60 s

min
∆t

· (ptsys − pt−1
sys ) · V rec

pn
(4.17)
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Figure 4.10: Storage and system pressure and total power consumption of the CAES system
during a charging process

Compressors

In the nonlinear model, the dependence of the power consumption of the compressors on the
system pressure and the air demand can be modeled in more detail than in the MILP model,
using a polynomial function of degree 3.

When the system is in normal mode, the compressors have to cover the air demand V̇
t
d . If the

system was charging one timestep before and the system pressure was increased, the air out
of the receiver tank V̇ rec covers a part of this demand.

In the operation mode charge, in addition to the air demand of the system V̇
t
d , the air demand

of the booster V̇ bo and the air needed to increase the pressure in the receiver tank V̇ rec has to
be covered. Thereby the air demand of the booster V̇ bo is not constant during the charging
process and depends on the storage pressure ptsto . In contrast to the LP and MILP model, this
relation is taken into account in the nonlinear model (see eq. 4.19). The increase of the system
pressure related to normal system pressure (ptsys − p̂normsys ) also affects the power consumption
of the compressors. The relation between the system pressure ptsys and the storage pressure
ptsto during charging is formulated in the same way as in the MILP model (see eq 4.11 and
figure 4.6).

In discharge mode, the air demand is covered by the high-pressure storage and the air
delivered by the compressors is zero.



38 4. Optimization Models

P tco =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

&1 · (V̇
t
d + V̇ bo + V̇ rec) + &2

+ (ptsys − p̂normsys )

·(&3 · (V̇
t
d + V̇ bo + V̇ rec)3

+ &4 · (V̇
t
d + V̇ bo + V̇ rec)2

+ &5 · (V̇
t
d + V̇ bo + V̇ rec)

+ &6) in charge mode,

&1 · (V̇
t
d + V̇ rec) + &2 in normal mode,

0 in discharge mode.

(4.18)

V̇
t
bo = ˛7 · ptsto2 + ˛8 · ptsto + ˛9 (4.19)

Figure 4.11 shows the modeled compressor power in comparison with measured values.
Especially the power consumption for an increased system pressure is represented in more
detail than with the MILP model (see figure 4.6). As in the MILP model, energy losses
during start-up and shut-down of the compressors are considered in the nonlinear model (see
appendix B.3).
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Figure 4.11: Nonlinear model for the electric power consumption of the compressors
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Booster

In the nonlinear model, the dependency of the power consumption of the booster on the
storage pressure ptsto is defined as a polynomial function of degree 5. Figure 4.12 shows the
modeled power consumption of the booster compared to measured values. The nonlinear
formulation results in a better representation of the power consumption, in comparison with the
MILP model (see figure 4.7). For the booster as well, losses for start-up and shut-down are
considered, as described in appendix B.3.

P tbo =

8>>>>><>>>>>:
˛1 · (ptsto)5 + ˛2 · (ptsto)4 + ˛3 · (ptsto)3

+ ˛4 · (ptsto)2 + ˛5 · (ptsto) + ˛6 in charge mode,

0 else.

(4.20)
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Figure 4.12: Nonlinear model for the electric power consumption of the booster
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Storage

The pressure in the high-pressure storage tank at the beginning of the next timestep pt+1
sto

depends on the storage pressure ptsto at timestep t and the operation mode of the system.
In addition to the pressure increase ∆ptsto;ch and decrease ∆ptsto;dch during charging and
discharging, pressure changes ∆ptth;in or ∆ptth;de because of variations of the air temperature,
are taken into account in the nonlinear model.

pt+1
sto =

8>><>>:
ptsto + ∆ptsto;ch in charge mode,

ptsto + ∆ptth;in −∆ptth;de in normal mode,

ptsto −∆ptsto;dch in discharge mode.

(4.21)

The pressure increase during charging is described as a polynomial function of degree 3,
dependent on the previous storage pressure ptsto .

∆ptsto;ch = ∆t ·
“
‹ch;1 · (ptsto)3 + ‹ch;2 · (ptsto)2 + ‹ch;3 · ptsto + ‹ch;4

”
(4.22)

The pressure decrease during discharging depends on the air demand of the system V̇
t
d (taking

into account the air provided by the air receiver tank V̇
t
rec ) and the previous storage pressure

ptsto and is modeled as follows.

∆ptsto;dch = ∆t ·
 
‹dch;1 · (V̇

t
d + V̇

t
rec)

‹dch;2 + (V̇
t
d + V̇

t
rec)

+ ‹dch;3 · ptsto + ‹dch;4

!
(4.23)

In normal mode, the pressure storage is neither charged nor discharged. Nevertheless,
changes in the storage pressure caused by temperature variation have to be taken into account.
During charging, the air in the storage is heated up. After switching from charge to normal
mode, the air in the storage slowly cools down, which leads to a pressure decrease ∆ptth;de
(see figure 4.13). Analogous to the up-heating during charging, the air in the storage cools
down when the CAES system is discharged. After switching from discharge to normal mode,
the air in the storage slowly heats up, which leads to a pressure increase ∆ptth;in. The pressure
decrease and increase are modeled by an exponential function of the storage pressure of the
form ∆p = ∆p0 · e−kt . The mathematical formulation is described in appendix B.3.1, eq. B.47
and B.48.

As for the LP and the MILP model, the equations of the nonlinear model are used to calculate
the storage pressure profile for a charge and three discharging processes, as shown in figure
4.14. Compared to the other models (see figures 4.3 and 4.8), the nonlinear model shows
the best representation of pressure characteristics for charge and discharge. Here, only when
discharging with V̇ d=1.3 m3

n
min , differences between the simulated and measured values can be

seen.
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Figure 4.13: Pressure profile of an exemplary charge and discharge cycle of the CAES
system (a) with magnified pressure decrease after charging (b) and pressure increase after
discharging (c)
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Figure 4.14: Calculated storage pressure for exemplary charging and discharging processes
using the nonlinear model compared to measured data
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4.5 Validation of the models

To validate the different models of the CAES system, simulation results for the storage pressure
and total electrical power are compared to measured values.

4.5.1 Validation data

To obtain the validation data, three different control sequences with a time horizon of 24 hours
are applied to the CAES system. In control sequence "normal", the system is in normal
operation mode the whole time, so that the compressors cover the complete air demand. In
control sequence "random", a randomly chosen sequence of the operation modes normal,
charge and discharge is used. The third sequence "2 cycles" is chosen to result in two full
charge and discharge cycles of the system. For each control sequence two measurements
with a different air demand profile are performed.

Figure 4.15 shows the measured storage pressure and total electrical power consumption of
the CAES system for the three control sequences with the typical working day air demand
profile, as described in chapter 5.1.1. The same data for the air demand profile typical non-
working day is shown in figure 4.16. Because of the lower air demand in the non-working day
profile, the pressure decreases slower during discharging, which leads to different pressure
profiles. Also the power consumption of the system is lower because of the lower air demand.

0

10

20

30

40

P
re

ss
ur

e 
(b

ar
)

Normal

0 10 20
0

10

20

30

E
l. 

po
w

er
 (k

W
)

Random

0 10 20
Time (h)

2 cycles

0 10 20

Figure 4.15: Validation data for air demand working day
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Figure 4.16: Validation data for air demand non-working day

4.5.2 Results

For each model, the equations described in this chapter are used to simulate the operation of
the CAES system. The operation mode for each timestep is given by the measured validation
data. Figure 4.17 shows the resulting pressure storage and power consumption of the CAES
system using the linear (LP), the mixed-integer (MILP) and the nonlinear (NL) model for the
"random" control sequence with air demand typical working day. The models are simulated
using a timestep size of 5 minutes. The results are compared to the measured data, which is
aggregated to 5 minute average values for better visualization. Looking at the pressure profiles,
it can be seen that the results of LP model show the largest deviation, while the NL model
shows the best result.

To compare the results of the models, the mean absolute error of the pressure and the power
consumption for each model and validation data set was calculated. The results are shown
in figure 4.18. The LP model shows the poorest results for all cases regarding pressure and
electric power. For the "random" and "2 cycle" cases, the NL model outperforms the MILP
model in both, pressure and electric power simulation. In the "normal" cases, both models
show the same results for the electrical power consumption.
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Figure 4.17: Simulated results using the equations of the linear (LP), the mixed-integer (MILP)
and the nonliner (NL) model for the "random" control sequence with air demand "typical working
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Chapter 5

Model Predictive Control of the
compressed air energy storage
system

In this chapter, the optimization models are used for the Model Predictive Control (MPC) of the
compressed air energy storage (CAES) system, with the objective to cover a given air demand
over 24 hours with minimal costs. In the first part of this chapter, the general implementation of
MPC for the CAES system is described and the scenarios are defined. The experiments are
performed with different air demand and electricity price scenarios. Additionally, the influences
of the optimization timestep size and the quality of the air demand forecast are investigated.
Then, preliminary investigations and the optimization parameters are described. In the third
part of this chapter, the results of the comparison between the optimization methods are
presented.

5.1 Implementation

Figure 5.1 shows an overview of the implementation of MPC for the CAES system. The
CAES system always starts with an empty storage (psto = 7 bar) and in normal operation
mode. For each experiment, a given air demand for one day (24 hours) has to be covered. A
time-sensitive electricity price is applied as an incentive to make sure that the storage system
is used. Forecasts for the air demand and the electricity price are used as inputs to the
optimization. Depending on the chosen model and optimization method, the optimal future
control sequence for the 24-hour time horizon is calculated, so that the electricity costs are
minimized. The first control signal, which represents one of the possible operation modes,
normal, charge or discharge, is then applied to the CAES system. The superior controller
prevents the applied target operation mode from being invalid by setting the concrete operation
mode to normal if necessary (see chapter 3.3). After every multiple of the timestep size, the
storage pressure, the system pressure and the concrete operation mode are measured and
used to start a new optimization for the remaining time horizon. To make sure that the results
of the different experiments can be compared, the end of the optimization horizon is not shifted
towards the future, but stays at the end of the 24-hour time horizon of the experiment.

45
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Figure 5.1: Implementation of MPC for the CAES system

To compare the results of the different optimization methods, various experiment scenarios
varying the air demand, the forecast quality and the electricity price are used. Additionally, two
different values for the timestep size of the optimization are used to investigate their influence
on the results. Table 5.1 provides an overview of all experiment scenarios used in this thesis to
compare the different optimization methods. A detailed description of the respective differences
is given in the following sections.

5.1.1 Air demand time-series and forecast scenarios

In order to apply realistic values of the air demand of an industrial compressed air system for the
experiments within this thesis, real measured air demand time-series data is used. Therefore,
the compressed air demand of the toolmaking department of an automotive manufacturer was
measured for one year with a time resolution of one minute. Since the compressed air system
of this department has a maximum free air delivery of about 20 m3

n
min and a maximum measured

air demand of 18 m3
n

min , the values have to be scaled down to be used for the compressed air
system introduced in this chapter. The scaling factor is fixed to 8 based on the relation of
the maximum free air delivery of the two systems. All following values for the air demand are
already scaled by the factor of 8. Table 5.2 shows the minimum, mean and maximum values
for the measured and scaled air demand data.

To compare different methods of Model Predictive Control, in the performed experiments in
this thesis air demand time-series for one day (24 hours) are used. To find typical days for
the air demand, they are separated into working days and non-working days. Therefore, the
weekends and the official holidays of Bavaria are defined as non-working days. This may
differ from the real working and non-working days of the department because of some days of
weekend work or company holidays.
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Table 5.1: Scenarios used in this thesis to compare the different optimization methods

Forecast Air demand Electricity price Timestep size

Perfect

Working day

Typical
5 minutes

15 minutes

Untypical
5 minutes

15 minutes

Non-working day

Typical
5 minutes

15 minutes

Untypical
5 minutes

15 minutes

Inaccurate

Working day Typical
5 minutes

15 minutes

Non-working day Typical
5 minutes

15 minutes

Worst-case

Working day Typical
5 minutes

15 minutes

Non-working day Typical
5 minutes

15 minutes

Table 5.2: Scaled minimum, mean and maximum values of the measured air demand

Days Minimum Mean Maximum

All days 0 m3
n

min 0.57 m3
n

min 2.25 m3
n

min

Working days 0 m3
n

min 0.69 m3
n

min 2.25 m3
n

min

Non-working days 0 m3
n

min 0.33 m3
n

min 2.25 m3
n

min

For the working and non-working days, the typical and the untypical day of air demand time-
series were respectively determined. Therefore, the absolute difference of every minute of
one day to the mean demand of the same minute of all considered days was calculated and
summed up for the whole day. The day with the smallest error was chosen as the typical
day and the day with the biggest error as the untypical day. These demand time-series are
used to simulate a perfect and a worst-case air demand forecast scenario for the experiments.
Thereby, the air demand forecast used for the optimization always corresponds to the typical
air demand. In the case of a perfect forecast, the same typical air demand is applied to the
CAES system, whereas for the worst-case forecast, the untypical air demand is applied.

Additionally, an inaccurate forecast scenario is defined, where the difference of the applied
air demand to the typical air demand used for the optimization is less than in the worst case
scenario. Therefore, for the working and the non-working day, respectively, the day 7 days after
the typical day is chosen. Since this is the same day of the week and in the same period of the
year, this is considered to represent a realistic relation between forecast and actual demand.

Figure 5.2 shows the air demand for the typical and untypical working day as well as for the
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day seven days after the typical one. Figure 5.3 shows the same graphs for the non-working
day. Table 5.3 summarizes the definitions for the different forecast scenarios.
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Figure 5.2: Working day air demands (used for the respective forecast scenario)
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Figure 5.3: Non-working day air demands (used for the respective forecast scenario)

The available air demand was measured in a one minute resolution and this data is directly
applied to the control valve of the CAES system. The timestep size of the optimization used in
this thesis is either 5 or 15 minutes, as described in section 5.1.3. Therefore, the mean value of
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Table 5.3: Definition of forecast scenarios

Forecast scenario Air demand for the optimization Air demand applied to CAES system

Perfect Typical day Typical day
Inaccurate Typical day 7 days after typical day
Worst-case Typical day Untypical day

the air demand over one time period has to be aggregated and used for the optimization. This
averaging over the optimization timestep size leads to a difference between the air demand
used for the MPC and the air demand applied to the CAES system, even in the perfect forecast
scenarios.

5.1.2 Electricity price scenarios

The variation over time of the electricity price provides the incentive to use the compressed air
energy storage system. For the experiments to compare the optimization methods for MPC
in this thesis, two different electricity price time-series are used. Based on the EPEX SPOT
day-ahead auction prices for Germany (Phelix) in 2015, the days with the typical and untypical
price curve were identified. To use them for this thesis, an offset was added to both curves,
so that their mean values over the day result in 0.13 e

kWh , which is a typical electricity price for
industrial customers in Germany. Additionally, for both curves, the difference to the mean value
in each hour was scaled by a factor so that the difference between the maximum and minimum
price of the day results in 0.15 e

kWh . This ensures a big enough incentive to use the storage
system and prevents that the cheapest operation to cover the demand is staying in normal
mode for the whole day.
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5.1.3 Optimization timestep size

The timestep size of the optimization is an important parameter for Model Predictive Control. A
large timestep size may result in poor accuracy of the model and the reduced possibilities to
change the control signal based on measured parameters can lead to higher total costs. On
the other hand, a small timestep size leads to a larger optimization problem that takes more
time to be solved. This can result in an inexact solution either because the algorithm has to
be aborted before finding the optimal solution or the parameters of the algorithm have to be
adapted.

According to Müller [73] and Mauser [64], for the optimization of device operation, the timestep
size is usually between 15 and 60 minutes. In the German power sector, a 15 minutes time
period is currently the shortest temporal resolution of trading (EPEX SPOT intra day market) or
measuring (industrial customers). Therefore, in this thesis, a timestep size of 15 minutes is
used for optimization. To investigate the influence of a decrease in the timestep size, every
experiment is additionally performed with a 5 minute timestep size, as shown in table 5.1.

5.2 Preliminary investigations and optimization parameters

5.2.1 Reference values

The results of the experiments using MPC for the CAES system are evaluated based on
cost savings compared to the normal operation of the system in which the booster and high-
pressure storage tank are not used and the air demand is always covered by the compressors.
Therefore, reference measurements for each demand (see figures 5.2 and 5.3) were performed.
Based on these measurements, the reference energy costs for each scenario defined in section
5.1 were calculated. The energy consumption and total costs for each reference measurement
are summarized in table 5.4.

Table 5.4: Energy consumption and costs of the reference measurements

Air demand Electricity price Energy consumption Costs
(kWh) (e)

Working day (typical) Typical 139.22 18.21
Working day (typical) Untypical 139.22 17.08
Working day (7 days after typical) Typical 109.73 14.17
Working day (untypical) Typical 73.51 9.05
Non-working day (typical) Typical 70.32 8.66
Non-working day (typical) Untypical 70.32 8.56
Non-working day (7 days after typical) Typical 86.49 10.84
Non-working day (untypical) Typical 173.19 22.60

5.2.2 Influence of measurement inaccuracy and operation

When the CAES system is controlled using MPC, different parameters can influence the power
consumption and thereby the resulting costs of one experiment. On the one hand, the power
consumption of the compressors and the pressure of the storage tank depend on ambient
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Table 5.5: Energy consumption, costs and cost savings of 4 experiments for the same scenario

Measurement Energy consumption (kWh) Costs (e) Cost savings (e)

1 155.05 16.82 1.39
2 154.70 16.75 1.46
3 154.04 16.65 1.56
4 155.11 16.85 1.36
Maximum difference 2.17 0.20 0.20

conditions like temperature and humidity of the air. On the other hand, all measurement
devices, such as the pressure transmitters and the power meters, have a certain measurement
inaccuracy. Additionally, the compressors are not controlled directly. The MPC only gives
the current operation mode to the SAM (as described in section 3.3), which decides which
compressors are running based on internal calculations. Another influence that can affect
the results is the initial storage pressure. Before every experiment, the storage is completely
discharged to a pressure of 7 bar. As explained in section 4.4, temperature variations can
lead to a small pressure increase after discharging the storage. Because the level of the
pressure increase depends on the discharge time and the ambient temperature, the initial
storage pressure is not exactly the same for every experiment.

To estimate the total possible deviation caused by the described influences, the same experi-
ment is performed four times and compared regarding the cost savings. Therefore, MPC using
LP as the optimization method1 is applied to the scenario with perfect forecast, air demand
working day , the typical electricity price and a timestep size of 5 minutes. Table 5.5 shows the
energy consumption, costs and cost savings of these 4 experiments as well as the maximum
difference of each parameter. These values can be used to assess and interpret the results,
when the different optimization methods are compared.

5.2.3 Optimization parameters

Each optimization method is defined by various parameters that influence the solution quality
and solving time. Since it is crucial for MPC that the problem is solved within the time period of
one timestep, the optimization parameters have to be adjusted to ensure this. All optimization
problems are solved using an Intel Core i7-3930K CPU 3.20 GHz, 64 GB RAM.

The linear programming (LP) and the mixed-integer linear programming (MILP) model are
formulated with Pyomo [83] and solved using the state of the art solver CPLEX [40]. The solver
allows one to set a time limit, that stops the solving process when the limit is exceeded and
returns the best current solution. To ensure that the solution can be used for the MPC within
one timestep period of 5 or 15 minutes, considering time for pre and post-processing, the time
limit is set to 4 minutes and 30 seconds or 14 minutes and 30 seconds, respectively2. The
maximum number of CPU threads to be used by the solver is set to 8. For the MILP problem,

1LP is used as the optimization method, because it finds the global optimum within the given time limit, so that
the measured deviations are not caused by imperfect solutions of the optimization problem

2For all experiments performed within this thesis, the LP problem was always solved in under 1 minute so that
the time limit was never exceeded. For the MILP problem with a 5 minute timestep size, in some cases the time
limit was exceeded before the absolute or relative MIP gap was reached.
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the relative MIP gap is set to 0.0001 and the absolute MIP gap is set to 0.001. For all other
parameters, the default values are used.

The mixed integer nonlinear problem is also formulated with Pyomo but solved using the state
of the art solver BARON [98]. BARON also allows to set a time limit and the maximum number
of CPU threads. For both parameters the same values as for the LP and MILP settings are
used. CPLEX is set as the LP solver, which is used by BARON to solve linear sub-problems.
For all other parameters the default values are used.

For the implementation of the genetic algorithm (GA) the evolutionary computation framework
DEAP [23] is used. DEAP does not allow to set a time limit to stop the solving process.
Therefore, the number of individuals within one generation (population) and the number
of generations which are evaluated define the solving time of this algorithm. Based on
investigations of Jungwirth [42], the number of individuals of one generation is set to 10, the
mutation probability to 1/N (where N is the number of timestep) and the crossover probability
to 0.7. Given this parameters, the number of generations has to be chosen such that the time
limit of 5 minutes or 15 minutes, respectively, is not exceeded. Based on empirical experiments,
the number of generations is set to 7 or 90, respectively. For all other parameters the default
values are used.

To implement dynamic programming as an optimization method for MPC in this thesis, a new
open-source toolbox prodyn was developed and published online [24]. prodyn is a generic
implementation of the dynamic programming algorithm for optimal system control written in
Python. The time for solving a DP problem using prodyn can not be limited to a maximum value.
Therefore the number of discretization steps for the state variable, which is the storage pressure
in this case, has to be adjusted to ensure that the problem is solved within the given time
limits. Empirical experiments showed that, with 621 discretization steps, the time for solving the
problem does not exceed the time limit for the 5 minute optimization timestep. For the storage
pressure, which is limited by its minimum value of 7 bar and its maximum value of 38 bar, this
results in a discretization step size of 0.05 bar. For the 15 minute optimization timestep size,
the discretization steps can be increased to 3101, which results in a discretization step size of
0.01 bar for the storage pressure.

The software and solvers with the parameters used for the different optimization methods are
summarized in table 5.6.

5.2.4 Comparison of the nonlinear optimization methods

Before the differences of the linear, mixed-integer and nonlinear models for MPC are inves-
tigated, one of the nonlinear optimization methods is chosen. Therefore, all three nonlinear
optimization methods, MINLP, DP and GA, are used for MPC of the CAES system for the
scenario with the air demand working day , a perfect forecast and a typical electricity price.
For each method, the experiment is performed using an optimization timestep size of 5 and
15 minutes. Figure 5.5 shows the resulting costs for the different methods. Additionally, the
reference costs (Ref) for normal operation of the CAES system without using the storage are
shown (see section 5.2.1).

For both scenarios, the DP method shows the best result, leading to the lowest costs. Since the
resulting costs are almost the same for both scenarios, it seems that the error made because
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Table 5.6: Parameter settings of the used software and solvers for the different optimization
methods

Method Software/solver Optimization parameters

Linear programming
(LP)

Pyomo/CPLEX
– Maximum threads = 8
– Time limit = 870 s (15 minute timestep size)
– Time limit = 270 s (5 minute timestep size)

Mixed-integer linear
programming (MILP) Pyomo/CPLEX

– Maximum threads = 8
– Relative MIP gap = 0.0001
– Absolute MIP gap = 0.001
– Time limit = 870 s (15 minute timestep size)
– Time limit = 270 s (5 minute timestep size)

Mixed integer nonlinear
programming (MINLP) Pyomo/BARON

– Maximum threads = 8
– LP solver = CPLEX
– Time limit = 870 s (15 minute timestep size)
– Time limit = 270 s (5 minute timestep size)

Dynamic programming
(DP)

prodyn
– Discretization steps = 3101 (15 minute timestep

size)
– Discretization steps = 621 (5 minute timestep size)

Genetic algorithm (GA) DEAP

– Population = 10
– Crossover probability = 0.7
– Mutation probability = 1/N
– Generations = 90 (15 minute timestep size)
– Generations = 7 (5 minute timestep size)

of the discretization of the storage pressure in order to ensure the problem is solved within
one time period has only minor affects on the results. Using the MINLP and the GA method to
solve the optimization problem, the costs using the MPC correspond to the reference costs
(the small deviations are caused by measurement inaccuracy, as explained in section 5.2.2).
This is the case, because both methods were not able to find a control schedule leading to
lower costs than the normal operation mode of the system.

To analyze how much the limited solving time influences the optimization result of the different
methods, the respective limiting parameters3 are increased and the first optimization problem
of the MPC for the 15 minute scenario (from the first timestep until the end of the horizon)
is solved. The solution is then used as an input for the nonlinear simulation model (as used
for the validation of the nonlinear model in chapter 4.5, the results are not applied to the real
CAES system in this case). The resulting costs calculated by the simulation over the solving
time are shown in figure 5.6. The results show, that using the DP method, the solution found
within the required 15 minutes already is very close to the optimal solution and an increase
of discretization steps does not bring a benefit. For the MINLP method the resulting costs
decrease with the increase of the allowed solving time. It seems that the best solution is still
not found after 12 hours. This shows, that the MINLP method, which is able to solve a wide
range of general optimization problems, is not suited to solve the given problems in the time
required to implement MPC. The results of the GA show, that this method is not able to find a

3The following values are used for the increase of the limiting parameters (see section 5.2.3):
Discretization steps for DP: 3101, 12401, 31001, 62001, 310001, 496001
Time limits for MINLP: 15 min, 1 h, 2 h, 4 h, 12 h
Number of generations for GA: 90, 360, 720, 1440, 4320
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Figure 5.5: Cost comparison of the nonlinear optimization methods for scenario perfect forecast,
air demand working day and typical el. price with 5 and 15 minutes timestep size

better solution than operating in normal mode for all calculated cases except the last one. The
principle of the genetic algorithms is to evaluate a number of candidate solutions and create
new candidates using different genetic operators. The number of possible solutions for this
problem is 396, where only 10−40 % of these possibilities can be evaluated in the case with
4320 generations, which takes about 12 hours. This shows that the given problem is too big to
reliably find a good solution using GA within the required time limit.
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Figure 5.6: Simulated daily costs over solving time of the nonlinear optimization methods (air
demand working day , typical el. price, 15 minutes timestep size)
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The results show that DP is the most suitable method to solve the nonlinear optimization
problems in this thesis. Therefore, in the following DP is compared with the LP and MILP
method for MPC of the CAES system.

5.2.5 Differences of the models in completely charging/discharging the
storage

How the pressure increases and decreases just before the storage is completely full or empty
is implemented in the different models can have a distinct influence on the optimization results,
especially for the MILP model. To illustrate the differences between the models, figure 5.7
shows the modeled time curves of the storage pressure used for the optimization methods LP,
MILP and DP. The pressure curves are shown for a timestep size of 15 and 5 minutes.

For the 15 minute step size example, the storage pressure is at 36.5 bar at the beginning of
timestep 1. When the CAES system is in operation mode charge during the first timestep,
the maximum storage pressure of 38 bar is reached after half of the period. In this case, the
superior mode controller changes the operation mode to normal (see chapter 3.3).

The nonlinear model used for DP is able to divide a time period in which the pressure limit is
exceeded in two parts for internal calculations. As for the real system, the storage is in charge
model until the pressure is full and switches to normal mode after. For the solution of the
optimization problem, in which one period can only have one operation mode, here the mode
is set to charge. As described before, the superior mode controller prevents the pressure from
being raised above its maximum value when the result is applied to the CAES system.

Using the LP method, dividing one time period into two parts is not possible. But because the
charging power, which represents the pressure increase, is only limited to an upper bound
when charging (specifying an exact value is not possible without integer variables), it can be
reduced so that the maximum pressure is reached exactly at the end of the period. This is
not possible for the real system, since the booster can either be on or off and leads to an
inaccurate calculation of the power consumption. But since any charging power greater than
zero is treated as mode charge for the solution of the optimization problem, for this example it
would lead to the same results as with the DP method.

In the MILP model, the pressure increase during one timestep is determined exactly. Also
dividing the period into two parts is not possible. This is a more realistic representation than
with the LP model, but it also means that the storage can not be completely charged in this
case. For the internal calculations, running the system in charge mode during the first timestep
would lead to a storage pressure that is greater than the maximum allowed value. Since this
does not satisfy the constraint psto ≤ 38 bar, it is not a feasible solution of the MILP method.
Further charging of the system using MPC with the MILP method is therefore not possible and
it has to run in normal (or discharge) mode. The same problem can occur during discharging
so that the storage can not be discharged completely. This limitation in using the whole storage
capacity can lead to lower cost savings using the MILP method. As also shown in figure 5.7, a
smaller timestep size of 5 minutes reduces this problem. The shorter periods allow the MILP
model to use more of the storage capacity by getting closer to the pressure limits.
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Figure 5.7: Pressure increase at the end of the charging process

In figure 5.8, the optimization results using MILP for the same scenario with slightly different
initial storage pressures of 7.0 bar and 7.1 bar are shown. The small difference in the starting
pressure results in very different solutions for the same optimization problem, which will lead to
different costs when used for MPC. As explained in section 5.2.2, the initial storage pressure
for the experiments is not always exactly the same. Therefore, the effects of this deviation on
the results of the MILP model has to be taken into account when the results are discussed.
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Figure 5.8: Comparison of the optimization results of the MILP model with different initial
storage pressures
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5.3 Results

To compare the optimization methods LP, MILP and DP for Model Predictive Control of the
compressed air energy storage system, various experiments with different scenarios for the air
demand, the electricity price and the forecast quality are performed. Primarily, the experiments
are performed with a optimization timestep size of 15 minutes. The influence of the reduction
of the timestep size to 5 minutes is then discussed in section 5.3.3. The results of the different
methods and scenarios are evaluated based on the achieved cost savings compared to the
respective reference costs (see chapter 5.2.1, table 5.4) over the 24 hour time horizon.

5.3.1 Perfect air demand forecast

At first, the optimization methods are compared using a perfect forecast of the air demand. As
shown in table 5.1, two different air demand scenarios, working day and non-working day, each
with two different electricity price scenarios, typical and untypical , are used for the comparison.

Figure 5.9 shows the storage pressure and the electric power consumption over time for the
three optimization methods for the working day air demand using the typical electricity price.
For reasons of clarity, the electric power consumption is aggregated to 15 minute values, which
is the case for all of the following figures in this section. The charging and discharging times
of the MILP and the DP methods are different, but the general pattern is very similar, which
results in almost the same costs for both approaches (see figure 5.14). With the LP method,
the storage is not completely discharged in the first cycle, because the model does not take into
account that the booster consumes more power when the storage pressure is higher during
charging. Additionally, the charge and discharge processes are sometimes interrupted for
some time. This happens, when the feedback of the MPC differs from the predicted system
behavior of the model and the control schedule has to be adapted. Therefore, the resulting
costs of the LP method are higher than for the other two methods.
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Figure 5.9: Results for perfect forecast, air demand working day and typical el. price
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For the scenario using the untypical electricity price and the air demand working day , the
charging and discharging times of all three methods have only little differences, as shown in
figure 5.10. Using the DP method, the storage is charged completely and discharged without
interruption during the first cycle. Using the LP and the MILP method, the storage is not
fully charged, which leads to an interruption during discharging in a time with high electricity
prices around hour 12. In the second charging process, it can be seen that the LP model
overestimates the time for charging, as it starts charging a few minutes before the electricity
price decreases at hour 15 but is already full a few minutes before the electricity price increases
at hour 17. In contrast, the MILP model underestimates the charging time in such a way that
the end of the charging process, where the most power is consumed, takes place after the
price increase in hour 17. The DP model almost perfectly predicts the charging process, in
such a way that it ends almost at the time of the price increase. This results in the lowest costs
for the DP and the highest costs using the LP method, as shown in figure 5.14.

0

10

20

30

40

P
re

ss
ur

e 
(b

ar
)

0

10

20

30

E
l. 

po
w

er
 (k

W
) LP

MILP
DP

0 4 8 12 16 20 24
Time (h)

0
10
20

E
l. 

pr
ic

e
(c

t/k
W

h)

Figure 5.10: Results for perfect forecast, air demand working day and untypical el. price

The results of the scenario using the untypical electricity price and the air demand non-working
day also show few differences between the optimization methods, as can be seen in figure
5.14. The resulting costs of the DP and the MILP method are almost the same, while the costs
of the LP model are slightly higher caused by the corrections in the second cycle.

Figure 5.12 shows the storage pressure and power consumption for the scenario with air
demand non-working day and the typical electricity price. Despite the repeated interruption
during the first discharging process using the DP method and the correction using the LP
method during the second cycle, the resulting costs for both methods are almost the same (see
figure 5.14). One reason for the higher costs using the MILP model is that not the whole storage
capacity can be used in the first cycle and that the storage is charged to a higher pressure
level and cannot completely be discharged in the second cycle, because of the limitations of
the MILP model described in section 5.2.5. Additionally, with the MILP method the charging of
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Figure 5.11: Results for perfect forecast, air demand non-working day and untypical el. price

the second cycle begins almost an hour before the charging with the LP and DP method. This
happens because of the differences in modeling the power consumption during a charging
process in combination with the electricity price, which has its minimum of the second half of
the day in hour 15 (3.277 ct

kWh ), while the prices of hour 14 (3.404 ct
kWh ) and hour 16 (3.394 ct

kWh )
are only slightly higher. Figure 5.13 shows an example of a measured power consumption
during charging and the simulated power consumptions using the LP, MILP and nonlinear DP
(NL) model. These are the first hours of the validation results for the scenario 2 cycles for air
demand non-working day , as described in chapter 4.5. All methods try to consume the most
energy during hour 15. Since the charging power is constant for the LP model and the price
in hour 16 is lower than in hour 14, it begins charging at the beginning of hour 15. For the
DP model, the power consumption at the beginning of a charging process is higher than in
the middle part. Therefore, here, the charging process starts at the beginning of hour 15 as
well. As shown in figure 5.13, the MILP model underestimates the power consumption at the
beginning and end of the charging process and overestimates it in the middle part. Therefore,
the charging is started in hour 14 so the middle part of the charging process with the most
energy consumption takes place during hour 15. This results in higher costs for the MILP
model, because the real power consumption of the CAES system is more similar to the DP
model.

Figure 5.14 shows the resulting cost savings of all scenarios with a perfect air demand forecast
using an optimization timestep size of 15 minutes. Taking into account that the influence of
measurement inaccuracy and the operation of the system can result in a cost difference of up
to 0.20e (see section 5.2.2), there is no significant variation in the results for the non-working
day air demand. For the working day air demand, the resulting cost savings with the LP
method are significantly lower than with the other methods. Except in the scenario with an
untypical electricity price, the cost savings with the DP and the MILP method are very similar.
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Figure 5.12: Results for perfect forecast, air demand non-working day and typical el. price

0

10

20

30

40

P
re

ss
ur

e 
[b

ar
]

0.0 0.5 1.0 1.5 2.0 2.5
Time [h]

10

12

14

16

18

20

E
l. 

P
ow

er
 [k

W
]

Measured
NL
MILP
LP
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measured data
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Figure 5.14: Cost savings for perfect air demand forecast with 15 minute optimization timestep
size

5.3.2 Imperfect air demand forecast

To compare the influence of the quality of the air demand forecast on the performance of the
different optimization methods, experiments with an inaccurate and a worst-case air demand
forecast are performed, as described in section 5.1.1. For each forecast scenario, two different
air demand scenarios, working day and non-working day , are used for the comparison.

Air demand working day

To investigate the influence of an imperfect air demand forecast, the air demand time series
used for the optimization is different than the demand applied to the CAES system. The
optimization always uses the typical air demand shown in figure 5.2, which is also applied
for the perfect forecast scenarios (as described in section 5.1.1). For the scenarios with an
inaccurate forecast, a demand time series that differs a little bit from the typical one is applied
to the CAES system. For the scenarios with a worst-case forecast, the applied air demand is
very different from the one used for the optimization.

Figure 5.15 shows the storage pressure and the electric power consumption over time for
the three optimization methods using the inaccurate air demand forecast and an optimization
timestep size of 15 minutes. With the LP method, the storage is not completely discharged in
the first cycle because the model does not take into account that the booster consumes more
power when the storage pressure is higher during charging. This results in higher costs than
with the other two methods, as shown in figure 5.19. Because of the limitations of the MILP
model described in section 5.2.5, in contrast to the DP method, the storage capacity is not
used completely in the first cycle. Additionally, the more detailed DP model leads to a longer
charging period in the second cycle. This results in higher costs savings using the DP method.
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Figure 5.15: Results for inaccurate forecast, air demand working day and typical el. price

0

10

20

30

40

P
re

ss
ur

e 
(b

ar
)

0

10

20

30

E
l. 

po
w

er
 (k

W
) LP

MILP
DP

0 4 8 12 16 20 24
Time (h)

0
10
20

E
l. 

pr
ic

e
(c

t/k
W

h)

Figure 5.16: Results for worst-case forecast, air demand working day and typical el. price
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For the worst-case forecast scenario with the working day air demand, the storage can be
charged completely during the first cycle because of a slightly different starting pressure (as
explained in section 5.2.5). Therefore, the behavior of the MILP and the DP method are very
similar in this scenario, which leads to almost the same resulting cost savings. Because the
applied air demand is much lower than the air demand used in the optimization (see figure
5.2), all three methods underestimate the discharging time. Because of the lower air demand,
particularly at the end of the day, also less energy and money can be saved during discharging
in the high price periods. This leads to lower cost savings especially for the LP method, in
which the storage is completely discharged during this time.

Air demand non-working day

For the non-working day air demand also an inaccurate and a worst-case forecast scenario
are investigated. The non-working day air demands used for the imperfect forecast scenarios
are shown in Figure 5.3.

Figure 5.17 shows the storage pressure and power consumption for the inaccurate forecast
scenario with air demand non-working day . The results for the worst-case forecast scenario
with the same air demand are shown in figure 5.18. The charging times of both scenarios
are very similar, whereby in the worst-case forecast scenario, the storage is discharged faster
because of the higher air demand. The earlier charging process of the MILP method is caused
by the difference in modeling the power consumption during charging, as explained in section
5.3.1 for the non-working day air demand with a typical electricity price and perfect forecast
scenario (see figure 5.12).

In the inaccurate forecast scenario, the similar behavior of the LP and DP method lead to
almost the same cost savings (see figure 5.19). Because of the low air demand, the short
discharging and charging period in the middle of the second cycle using the LP method has
only little influence on the costs. The earlier charging sequence of the MILP method together
with the fact that the storage can not be completely discharged in this case (as explained in
section 5.2.5) leads to lower savings.

In the worst-case forecast scenario, the short discharging and charging of the LP method has
a bigger influence on the costs, as the higher air demand leads to a higher additional energy
consumption. In this case, the storage can be discharged completely using the MILP method.
Additionally, the higher storage pressure in the second cycle leads to higher cost savings.
Therefore, the costs of the MILP and the DP are almost the same in this scenario.

Figure 5.19 shows the resulting cost savings of all scenarios with an imperfect air demand
forecast using an optimization timestep size of 15 minutes. For both inaccurate forecast
scenarios, the DP method leads to the highest cost savings, while the savings of the LP and
the MILP model depend on the air demand. For the worst-case forecast scenarios, the results
of the DP and the MILP model are very similar and significantly better than with the LP method.
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Figure 5.17: Results for inaccurate forecast, air demand non-working day and typical el. price
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Figure 5.18: Results for worst-case forecast, air demand non-working day and typical el. price
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Figure 5.19: Cost savings for imperfect air demand forecast with 15 minute optimization
timestep size

5.3.3 Influence of the optimization timestep size

To investigate the influence of the optimization timestep size, all experiments were performed
with a timestep size of 5 and 15 minutes. A smaller timestep size allows a faster adjustment
of the system operation, if the measured system behavior differs considerably from the one
predicted by the model. Additionally, the system is modeled in more detail and it is possible to
apply more operating state changes within a certain time period. But more timestep during
the optimization horizon increases the complexity of the optimization problem. Instead of
96 operation state decisions with a 15 minute timestep size, 288 decisions with a 5 minute
step size have to be calculated for a 24-hour optimization horizon. Additionally, the maximum
solving time decreases with the timestep size, since the problem has to be solved within one
time period. For the LP method, the optimization problem is always solved within the time limit
for both variants. For the MILP model in some cases the solving process is stopped because
the time limited is exceeded, before the absolute or relative MIP gap (see section 5.2.3) is
reached, when a timestep size of 5 minutes is used. This may lead to a suboptimal solution
and therefore higher costs. For the DP method, the discretization steps of the storage pressure
have to be reduced when using a 5 minute step size, to ensure the problem is solved within the
time limit (see section 5.2.3). This results in a less accurate model and therefore can also lead
to worse optimization results than with a 15 minute step size.

Perfect forecast

Figure 5.20 shows the comparison of the cost savings between the two different optimization
timestep sizes for all perfect forecast scenarios. For all three optimization methods, the
difference in the resulting costs using a 5 minute or a 15 minute timestep size is very small.
The most detailed nonlinear model used by the DP method leads to the least differences. The
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less detailed LP model shows the highest deviations using the different timestep sizes, but as
for the MILP model both variants can lead to lower costs, dependent on the given scenario.
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Figure 5.20: Cost savings compared by optimization timestep size for perfect forecast

With the MILP method, in two cases the 5 minute and in two cases the 15 minute timestep size
lead to lower costs dependent on the air demand and electricity price. Figure 5.21 shows the
results for both timestep variations for the scenario with the air demand working day and an
untypical electricity price. The different charging and discharging times and pressure levels
are mainly caused by the slightly different starting pressures, as explained in section 5.2.5. In
this case, the costs for the 5 minute timestep size are lower. In contrast, for the scenario with
working day air demand and typical electricity price, the costs using a 5 minute timestep size
are higher. As shown in Figure 5.22, the storage cannot be completely discharged in the 5
minute case.

The LP method shows the widest cost difference between the two timestep size scenarios.
Here in 3 of 4 cases the 15 minute step size results in higher cost savings, whereas in the
scenario with the highest difference, the 5 minute step size results in higher savings. Figure
5.23 shows the storage pressure and the power consumption for both timestep variations for
the scenario with the air demand working day and a typical electricity price. Here the short
discharge period in hour 8, which is only performed in the 5 minute scenario, leads to a lower
pressure level for the following hours and causes some interruptions during the discharging
period in hour 20. The additional power consumption in this period with a high electricity price
leads to higher costs than for the 15 minute step size. In the scenario with the air demand
working day and a untypical electricity price, which is shown in figure 5.24, the discharging in
hour 20 can be stopped after 5 minutes in the case with the lower step size. As a consequence
the storage can be discharged longer in the following hours with higher electricity prices, which
results in lower costs.
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Figure 5.21: Results for perfect forecast, air demand working day , untypical el. price with
optimization method MILP
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Figure 5.22: Results for perfect forecast, air demand working day , typical el. price with
optimization method MILP
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Figure 5.23: Results for perfect forecast, air demand working day , typical el. price with
optimization method LP
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Figure 5.24: Results for perfect forecast, air demand working day , untypical el. price with
optimization method LP
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For the DP method, the cost savings using the 15 minute step size are slightly higher for
all scenarios. Figure 5.25 shows the storage pressure and the power consumption for both
timestep variations for the scenario with the air demand working day and an untypical electricity
price. Although the curves are not exactly the same, there is no obvious explanation for the
higher costs using the 5 minute step size. Therefore, the very small difference in the costs is
probably caused by inaccuracy of the measurement and operation, as described in section
5.2.2.
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Figure 5.25: Results for perfect forecast, air demand working day , untypical el. price with
optimization method DP

Imperfect forecast

Figure 5.26 compares the cost saving between the two optimization timestep sizes for all
scenarios with an inaccurate and a worst-case forecast. In general, the differences in the
resulting costs using a 5 minute or a 15 minute timestep size are higher than for the perfect
forecast scenarios. For the LP method the 15 minute step size leads to better results, the 5
minute step size yields superior results for the MILP method. For the DP method both variants
can lead to lower or higher costs.

For the MILP method, the cost savings using a 5 minute optimization timestep size are either
higher or the same as for the 15 minute case. The reason being that for a larger timestep
size, is that completely discharging the storage is not always possible, as explained in section
5.2.5. This is the case for scenario inaccurate forecast - non-working day, where the storage is
completely discharged for only the 5 minute timestep size, which leads to lower costs (see figure
5.27). For scenario inaccurate forecast - working day, the storage is completely discharged
using both variants, as shown in figure 5.28. Although the charging and discharging times and
pressure levels are different for this scenario, the resulting cost savings are the same.
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Figure 5.26: Cost savings compared by optimization timestep size for imperfect air demand
forecast

The differences in cost savings between the 5 and 15 minute timestep size using the DP
method are generally very small. Dependent on the scenario, the deviation of the real from the
predicted system behavior because of the imperfect air demand forecast can lead to higher
cost savings using both timestep sizes. For the inaccurate forecast - working day scenario,
shown in figure 5.29, the fact that the air demand is slightly lower than predicted, leads to
higher cost savings using the 15 minute timestep size. In contrast, for the worst-case forecast -
working day scenario (see figure 5.30), where the air demand is much lower than the forecast
used for the optimization, higher savings are achieved using the 5 minute step size.

For the LP method, the 15 minute timestep size results in higher cost savings for every scenario.
Figure 5.31 shows the storage pressure and electric power consumption for the scenario with
a worst-case forecast and non-working day air demand. The reason for the higher costs using
the 5 minute step size are the frequent changes of the operation mode, especially during the
second cycle. These changes are caused by the failure of the predicted system behavior of
the inaccurate LP model and lead to additional start-up and shut-down losses of the system,
which can not be modeled using linear programming.
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Figure 5.27: Results for inaccurate forecast, air demand non-working day , typical el. price
with optimization method MILP
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Figure 5.28: Results for inaccurate forecast, air demand working day , typical el. price with
optimization method MILP
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Figure 5.29: Results for inaccurate forecast, air demand working day , typical el. price with
optimization method DP
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Figure 5.30: Results for worst-case forecast, air demand working day , typical el. price with
optimization method DP
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Figure 5.31: Results for worst-case forecast, air demand non-working day , typical el. price
with optimization method LP

5.3.4 Result summary

Figure 5.32 shows the average cost savings for the scenarios with perfect and imperfect air
demand forecast, as well as for all performed scenarios together (total), compared by the
optimization timestep size and method. The results show that, in average, the highest cost
savings can be achieved using the most detailed nonlinear model solved with the dynamic
programming optimization method. However, the cost savings obtained by using the MILP
method are only 0.9 % less for all scenarios taken together and even 0.8 % higher for the
imperfect forecast scenarios. Although the LP method guarantees a fast and reliable solution of
the optimization problem within the MPC, the limited accuracy of the model leads to obviously
lower cost savings than the other methods (in average 11.7 % lower than DP fo all scenarios).

For the DP method, the influence of the two applied optimization timestep sizes is with 0.9 %
difference for all scenarios very small. For the MILP method, a lower timestep size reduces
the problem that the storage can not be completely charged and discharged in some cases,
as explained in section 5.2.5. Therefore, using a 5 minute timestep size leads to higher costs
saving for the MILP method. A lower step size causes an increased number of changes in
operation mode because of the inaccuracies in the LP model. The resulting start-up and
shut-down losses lead to increased costs at a lower step size and thus the higher cost savings
are obtained for the 15 minute step size for the LP model.

Table 5.7 summarizes the cost savings of the different optimization methods for all performed
experiments.
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Figure 5.32: Mean cost savings compared by optimization timestep size and method for perfect
and imperfect air demand forecast and all scenarios (total)

Table 5.7: Cost savings of the optimization methods for all scenarios

Forecast Air demand Electricity price Timestep size LP MILP DP

(e) (e) (e)

Perfect

Working day

Typical
5 minutes 1.56 1.93 1.94

15 minutes 1.69 1.95 1.94

Untypical
5 minutes 1.88 1.97 2.04

15 minutes 1.64 1.85 2.10

Non-working day

Typical
5 minutes 1.85 1.87 1.88

15 minutes 1.89 1.83 1.91

Untypical
5 minutes 1.52 1.75 1.70

15 minutes 1.66 1.76 1.74

Inaccurate

Working day Typical
5 minutes 1.32 1.54 1.62

15 minutes 1.51 1.52 1.71

Non-working day Typical
5 minutes 1.61 1.79 1.69

15 minutes 1.76 1.49 1.76

Worst-case

Working day Typical
5 minutes 1.10 1.83 1.84

15 minutes 1.17 1.71 1.66

Non-working day Typical
5 minutes 0.96 1.69 1.65

15 minutes 1.48 1.67 1.67



Chapter 6

Conclusion

In this thesis different optimization methods for Model Predictive Control (MPC) of a com-
pressed air energy storage system were used and compared. In the first part of the thesis,
the implemented optimization methods were introduced and theoretically analyzed by their
advantages and disadvantages.

The compressed air energy storage (CAES) system, which was used to compare the optimiza-
tion methods, was described in the second part of this thesis. The CAES system represents
a typical compressed air system in the industry that is used to cover a given air demand. An
additional booster is used to store compressed air in a high-pressure storage tank. The stored
air can then be retrieved to cover the air demand. In this way, the electricity consumption of the
system can be influenced and adapted to a given incentive.

A methodology, based on experimental measurements, to calculate the electrical round-trip
efficiency of the storage system was introduced. It was shown that the round-trip efficiency of
the system highly depends on the air demand during charging and discharging. The system
has its best round-trip efficiency of 87 % when charging and discharging in times of low air
demand, which can decrease down to 52 % in the worst-case when the air demand during
charging and discharging is high. An economic evaluation showed that the specific costs of the
CAES system are significantly higher compared to battery storages. Based on the performed
measurements, a linear, a mixed-integer and a nonlinear model was developed and used for
the different Model Predictive Control optimization methods.

The nonlinear model was used to compare the nonlinear optimization methods dynamic
programming (DP), genetic algorithm (GA) and mixed-integer nonlinear programming (MINLP).
Here the DP method showed the best results for MPC of the CAES system and was used for
further investigations.

To compare the linear programming (LP), mixed-integer linear programming (MILP) and dy-
namic programming methods, several scenarios with different air demands, electricity prices,
optimization timestep sizes and forecast quality were defined. The CAES system was controlled
using MPC with each method for each scenario to cover the given 24-hour air demand with
minimal operational costs. The methods were evaluated based on the cost savings compared
to normal operation mode (covering the demand without using the storage).

The results showed, that over all performed experiments, using the DP method leads to the
highest cost savings. With the LP method, in average 11.7 % less savings could be achieved.
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76 6. Conclusion

Although LP is able to solve the given optimization problems very fast and with guaranteed
optimality, this cannot compensate the limitations in the model representation. The difference
in cost savings between the MILP model and the DP model was only 0.9 %. The MILP model
is not able to represent the CAES system as exact as the nonlinear model used for DP but
more in detail than the LP model. Here the inaccuracy compared to nonlinear model does not
affect the results significantly. The identification of the model parameters and implementation
of the optimization problem is much more complex for the DP than for the MILP method. The
MILP method can also be used for larger energy systems with multiple storages, while the DP
method is limited in the system complexity due to the "curse of dimensionality". Additionally,
for the imperfect forecast scenarios, which are more realistic than a perfect forecast of all
future parameters, the MILP model showed slightly better results in this thesis. Taking this into
account, in general, a MILP programming model might be a better choice to use for MPC of an
energy system with storages. For small systems with a good forecast, the results of this thesis
showed that a nonlinear model using DP leads to the best results.

The general structure of the CAES system introduced in this thesis is very similar to other
systems that can be used for load management in the electricity sector, such as CHP units or
heat pumps in combination with a heat storage. While the main purpose of the system is to
cover a given demand (air or heat), the storage is used to decouple electricity consumption or
production and supply of air or heat. In this way, the storage systems provide flexibility to the
electricity system. Battery storage in combination with a PV system, where the battery is also
used to decouple demand and production, can be interpreted similarly.

Therefore, the most important question that has to be explored in further investigations is the
way in which the results of this thesis can be transferred to other applications. The changes
in performance of the different optimization methods when applied to more complex systems
with additional storages or power conversion processes should also be further investigated.
Additionally, the influence of the forecast quality and the optimization time horizon on the results
should be explored further.



Appendix A

Compressed air energy storage
system specifications

A.1 Technical data

Table A.1 summarizes the components of the compressed air energy storage systems.

Table A.1: Components of the compressed air energy storage system

Component Manufacturer Model Type

Dryer KAESER Secotec TB 19 Refrigeration dryer [50]
Filter KAESER FE 18 D Filter [49]
High-pressure tank Maschinen- und

Behälterbau GmbH
2000 l, 50 barg, vertical Air receiver [44]

Air receiver tank OKS Otto
Klein GmbH

2000 l, 16 barg, vertical air receiver [44]

Valve Gemü 751 40D 137 51AU08KC0 Ball valve [33]
Control valve Gemü 554 20D 1 9 51 1RS013 Control valve [32]
Control valve Gemü 1434000Z1A141A001030 Positioner [32]
Pressure regulator Aircom R120 - 12 E01 Pressure regulator [2]
T1, T2, T3 tecsis TEP11x222006 Resistance ther-

mometer
[96]

p1, p2 HYDAC HDA 4745-A-016-000 Pressure transmitter [39]
p3 HYDAC HDA 4745-A-045-000 Pressure transmitter [39]
P1, P2 Müller + Ziegler Pdr-MU 50 Hz 400/230V

20/1A 10kW
Electric power meter [74]

P3, P4 Müller + Ziegler Pdr-MU 50 Hz 400/230V
10/1A 6kW

Electric power meter [74]
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78 A. Compressed air energy storage system specifications

A.2 Costs

Table A.2 shows the costs of the components for the CAES needed in addition to a typical
compressed air system in the industry.

Table A.2: Component costs of the compressed air energy storage system

Component Costs

Outlet valve 200e
Pressure regulator 1.300e
High-pressure storage tanks 45.000e
Booster 8.700e
Total 55.200e



Appendix B

Mathematical description of the
models

This chapter contains the detailed mathematical description of all optimization models used in
this thesis.

The linear programming (LP), the mixed-integer linear programming (MILP) and the mixed-
integer nonlinear programming (MINLP) models are implemented using Pyomo, a Python-
based algebraic modeling language [83]. In Pyomo, as in other algebraic modeling languages,
optimization problems are defined by sets, variables, parameters, an objective function and a
number of equality and inequality constraints. The mathematical description of the models in
this thesis is based on this formulation.

The simulation model used for the genetic algorithm (GA) and dynamic programming (DP) is
implemented in Python.

B.1 Linear programming model

The LP model is described by a set of linear equality and inequality functions, shown in this
section. The parameters and variables used to describe the problem are summarized in table
B.2 and table B.1. The values of the constant parameters are shown in section C.1, table C.2.
The optimization horizon is described by the set of timesteps T = {t1; :::; tN},where ∆t is the
duration of each timestep, and N is the number of timesteps t ∈ T .

The objective of the LP model is to minimize the total costs over the optimization horizon, that
depend on the electricity price Ctel and the total power consumption of the system P ttot at
each timestep. The total power consumption of the system P ttot is comprised of the power
consumption of the compressors P tco and the charge power P tch or discharge power P tdch of
the electrical energy storage.

min ctot = min

0@X
t∈T

Ctel · P ttot ·
∆t

3600 s
h

1A (B.1)

P ttot = P tco + P tch − P tdch ∀t ∈ T (B.2)
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Table B.1: Variables of the LP model

Name ∈ Unit Description

V̇
t

co R+
0

m3
n

min Compressed air produced by the compressors at timestep t
P t

co R+
0 kW Electrical power consumed by the compressors at timestep t

P t
tot R+

0 kW Total electrical power consumed by the CAES system at timestep t
P t

ch R+
0 kW Electrical charge power of the storage at timestep t

P t
dch R+

0 kW Electrical discharge power of the storage at timestep t
Et

sto R+
0 kWh Electrical energy content of the storage at timestep t

ctot R+
0 e Total costs to be minimized

Table B.2: Parameters of the LP model

Name Unit Description

Esto kWh Maximum electrical energy capacity of storage
&1

kW
m3

n=min Slope of the linear function used to model the electrical power consumption
of the compressors

”tch 1 Storage electrical charge efficiency at timestep t
”tdch 1 Storage electrical discharge efficiency at timestep t

V̇
t

d
m3

n
min Air demand at timestep t

P t
ch kW Upper limit of the electrical charge power at timestep t dependent on V̇

t

d

Ct
el

e
kWh Electricity price at timestep t

∆T h Duration of the optimization horizon
∆t s Timebase of the optimization (duration of one time period)
N 1 Number of timesteps N = ∆T

∆t=3600

The power consumption of the compressors P tco is modeled as a linear function of the air
demand V̇

t
d with the slope &1.

P tco = &1 · V̇
t
d ∀t ∈ T (B.3)

The energy content Et+1
sto of the electrical energy storage for the timestep t + 1 is calculated

based on the energy content Etsto , the charge power P tch, and the discharge power P tdch
at timestep t. The losses during charging and discharging are represented by the charge
efficiency ”tch and the discharge efficiency ”tdch, that are dependent on the corresponding air
demand at each timestep.

Et+1
sto = Etsto + ”tch · P tch −

1

”tdch
· P tdch ∀t ∈ T (B.4)

The energy storage content Etsto is limited by the maximum energy capacity of the storage
Esto .

Etsto ≤ Esto ∀t ∈ T (B.5)
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The power consumption of the compressors is used as an upper limit of discharge power P tdch
in every timestep.

P tdch ≤ P tco ∀t ∈ T (B.6)

The mean charge power P tch is used as an upper limit of the charge power P tch in every
timestep.

P tch ≤ P tch ∀t ∈ T (B.7)

The compressed air energy storage (CAES) system expects a target operation mode, normal,
charge, or discharge as an input. Therefore the results of the solved LP problem has to be
converted to an adequate operation mode. Therefore, in every timestep where the storage is
charged (P tch > 0) the target operation mode is set to charge, and in every state where the
storage is discharged (P tdch > 0) it is set to discharge. If both, charge and discharge power
are zero, the target operation mode is set to normal.
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B.2 Mixed-integer linear programming model

This section describes the set of linear equality and inequality functions used to model the
mixed-integer linear programming (MILP) optimization problem. The parameters and variables
used to describe the problem are summarized in table B.3 and table B.4. The values of the
constant parameters are shown in section C.2, table C.3. The optimization horizon is described
by the set of timesteps T = {t1; :::; tN},where ∆t is the duration of each timestep, and N is
the number of timesteps t ∈ T .

Table B.3: Parameters of the MILP model

Name Unit Description

p̂normsys barg Setpoint pressure in normal mode (normal system pressure)
psto barg Maximum storage pressure
psto barg Minimum storage pressure

V̇ co
m3

n
min Maximum free air delivery of the compressors

Eco;su kWh Start-up losses of the compressors
Eco;sd kWh Shut-down losses of the compressors
Ebo;su kWh Start-up losses of the booster
Ebo;sd kWh Shut-down losses of the booster
& i Parameters used to model the electrical power consumption of the

compressors
˛i Parameters used to model the electrical power consumption of the

booster
‹ch;i , ‹dch;i Parameters used to model the storage pressure state equation
rbo 1 Maximum compression ratio of the booster

V̇
t

d
m3

n
min Air demand at timestep t

Ct
el

e
kWh Electricity price at timestep t

∆T h Duration of the optimization horizon
∆t s Timebase of the optimization (duration of one time period)
N 1 Number of timesteps N = ∆T

∆t=3600

In the MILP formulation of the optimization problem binary variables representing the operation
mode of the CAES system can be used. Here the three modes normal, charge and discharge
are represented by two binary variables btch and btdch that can be either 0 or 1. At timestep t,
the CAES system is in charge mode, when btch = 1, and in discharge mode, when btdch = 1 .
When both variables are zero, the system is in normal operation mode. The constraint in eq.
B.8 avoids that both variables become 1 at the same timestep.

btch + btdch ≤ 1 (B.8)

The objective of the MILP model is to minimize the total costs over the optimization horizon,
that depend on the electricity price Ctel and the total power consumption of the system P ttot
at each timestep. The total power consumption of the system P ttot is comprised of the power
consumptions of the compressors P tco and of the booster P tbo .
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Table B.4: Variables of the MILP model

Name ∈ Unit Description

ptsys R+
0 barg System pressure at timestep t

p̃tsys;ch R+
0 barg Auxiliary variable representing the product of the system pressure and

the binary variable btch
p̃tsys;dch R+

0 barg Auxiliary variable representing the product of the system pressure and
the binary variable btdch

ptsto R+
0 barg Storage pressure at timestep t

∆ptsto;ch R+
0 barg Pressure difference at timestep t when charging

∆p̃tsto;ch R+
0 barg Auxiliary variable for calculating ∆ptsto;ch

∆ptsto;dch R+
0 barg Pressure difference at timestep t when discharging

∆p̃tsto;dch R+
0 barg Auxiliary variable for calculating ∆ptsto;dch

ptbo R+
0 barg Pressure for calculating the power consumption of the booster

V̇
t

co R+
0

m3
n

min Compressed air produced by the compressors at timestep t
P t

co R+
0 kW Electrical power consumed by the compressors at timestep t

P t
bo R+

0 kW Electrical power consumed by the booster at timestep t
P t

tot R+
0 kW Total electrical power consumed by the CAES system at timestep t

btch [0; 1] 1 Binary variable related to the operation mode charge at timestep t
btdch [0; 1] 1 Binary variable related to the operation mode discharge at timestep t
btco;su [0; 1] 1 Binary variable related to the compressors startup at timestep t
btco;sd [0; 1] 1 Binary variable related to the compressors shut-down at timestep t
btbo;su [0; 1] 1 Binary variable related to the booster startup at timestep t
btbo;sd [0; 1] 1 Binary variable related to the booster shut-down at timestep t
ctot R+

0 e Total costs to be minimized

min ctot = min

0@X
t∈T

Ctel · P ttot ·
∆t

3600 s
h

1A (B.9)

P ttot = P tco + P tbo ∀t ∈ T (B.10)

Booster

The power consumption of the booster P tbo is modeled as a linear function dependent on the
pressure ptbo at its output. The offset ˛2 is added if the system is in charge mode (btch=1).
Additionally, energy losses Ebo;su during startup (btbo;su = 1, when the system changes from
charge or normal to discharge mode) and energy losses Ebo;sd during shut-down (btbo;sd = 1,
when the system switches from discharge to another mode) are considered.

P tbo = ˛1 · ptbo + ˛2 · btch

+btbo;su · Ebo;su ·
3600 s

h
∆t

+btbo;sd · Ebo;sd ·
3600 s

h
∆t

∀t ∈ T

(B.11)
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btbo;su ≥ btch − bt−1
ch ∀t ∈ T (B.12)

btbo;sd ≥ bt−1
ch − b

t
ch ∀t ∈ T (B.13)

When the booster is running (btdch=1), its output pressure ptbo corresponds to the pressure in
the high pressure storage ptsto . To make sure, that the power consumption of the booster is
zero when it is not running, ptbo has to be zero in this case.

ptbo − ptsto ≥ −psto · (1− btdch) ∀t ∈ T (B.14)

Compressors

The power consumption of the compressors is modeled as a linear function dependent on the
air covered by the compressors V̇

t
co , the difference of the system pressure and the normal

system pressure (ptsys -p̂
norm
sys ) and the product of both. To implement the multiplication V̇

t
co ·

(ptsys − p̂normsys ) as a linear expression, the auxiliary variables p̃tsys;chand p̃tsys;dch, representing
the multiplication of (ptsys -p̂

norm
sys ) with the binary variables btch and btdch (as definde in eqs. B.22

- B.27), and the definition of the air covered by the compressors V̇
t
co in eq. B.18 are used. The

offset &4 is added if the system is in charge or normal mode (btdch = 0). Additionally, energy
losses Eco;su during startup (btco;su = 1, when the system changes from discharge to another
mode) and energy losses Eco;sd during shut-down (btco;sd = 1, when the system switches from
normal or charge to discharge mode) are considered.

P tco = &1 · V̇
t
co + &2 · (ptsys − p̂normsys )

+&3 ·
“
V̇
t
d · (ptsys − p̂normsys )− V̇ td · p̃tsys;dch + V̇ bo · p̃tsys;ch

”
+&4 · (1− btdch)

+btco;su · Eco;su ·
3600 s

h
∆t

+btco;sd · Eco;sd ·
3600 s

h
∆t

∀t ∈ T

(B.15)

btco;su ≥ bt−1
dch − b

t
dch ∀t ∈ T (B.16)

btco;sd ≥ btdch − bt−1
dch ∀t ∈ T (B.17)

When the system is in normal mode (btch = btdch = 0), the compressors have to cover the
complete air demand V̇

t
d . In the operation mode charge (btch = 1), additionally the air demand

of the booster V̇ bo has to be covered. In discharge mode, the air demand is covered by the
high-pressure storage and the air delivered by the compressors is zero. The air that can be
delivered by the compressors is limited to V̇ co .

V̇
t
co = (1− btdch) · V̇ td + btch · V̇ bo ∀t ∈ T (B.18)
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V̇
t
co ≤ V̇ co ∀t ∈ T (B.19)

As described in chapter 4.3 (see eq. 4.11 and figure 4.5), the system pressure ptsys during
charging depends on the storage pressure ptsto . In normal or discharge operation mode, the
system pressure ptsys corresponds to the normal system pressure p̂normsys . Using the output
pressure of the booster ptbo , which is equal to the storage pressure in charge mode and zero
else (see eq. B.14), this can be formulated as follows.

ptsys ≥ p̂normsys ∀t ∈ T (B.20)

ptsys ≥
ptbo + 2

rbo
∀t ∈ T (B.21)

The definition of the power consumption of the compressors (eq. B.15) includes the product
of the the air covered by the compressors and difference of the system pressure and the
normal system pressure V̇

t
co · (ptsys − p̂normsys ). Using the expression of the air covered by the

compressors V̇
t
co in eq. B.18 this can be stated as:

V̇
t
d · (ptsys − p̂normsys )− V̇ td · btdch · (ptsys − p̂normsys ) + V̇ bo · btch · (ptsys − p̂normsys ).

Since multiplication of the two variables btch and ptsys would lead to a discontinuous problem,
the expression btch · (ptsys − p̂normsys ) is substituted with the auxiliary variable p̃tsys;ch, which is
defined as follows:

p̃tsys;ch − (ptsys − p̂normsys ) ≤ psto · (1− btch) ∀t ∈ T (B.22)

p̃tsys;ch − (ptsys − p̂normsys ) ≥ −psto · (1− btch) ∀t ∈ T (B.23)

p̃tsys;ch ≤ psto · btch ∀t ∈ T (B.24)

The same applies to the expression btdch · (ptsys − p̂normsys ), which is substituted with the auxiliary
variable p̃tsys;dch.

p̃tsys;dch − (ptsys − p̂normsys ) ≤ psto · (1− btdch) ∀t ∈ T (B.25)

p̃tsys;dch − (ptsys − p̂normsys ) ≥ −psto · (1− btdch) ∀t ∈ T (B.26)

p̃tsys;dch ≤ psto · btdch ∀t ∈ T (B.27)

Storage

The pressure in the high pressure storage tank at the beginning of the next timestep pt+1
sto

depends on the storage pressure ptsto at timestep t and the operation mode of the system. In
charge mode, the pressure difference ∆ptsto;ch is added. In discharge mode the pressure is
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reduced by ∆ptsto;dch. The storage pressure is limited by the lower bound psto and the upper
bound psto .

pt+1
sto = ptsto + ∆ptsto;ch −∆ptsto;dch ∀t ∈ T (B.28)

psto ≤ ptsto ≤ psto ∀t ∈ T (B.29)

The pressure increase during charging is modeled as a linear function dependent on the
previous storage pressure ptsto .

∆p̃tsto;ch = ∆t ·
`
‹ch;1 · ptsto + ‹ch;2

´
∀t ∈ T (B.30)

The pressure difference ∆ptsto;ch corresponds to the pressure increase ∆p̃tsto;ch only during
charging (btch=1), and has to be zero else. This can be stated using the following equations:

∆ptsto;ch ≤ btch · psto ∀t ∈ T (B.31)

∆ptsto;ch −∆p̃tsto;ch ≤ psto · (1− btch) ∀t ∈ T (B.32)

∆ptsto;ch −∆p̃tsto;ch ≥ −psto · (1− btch) ∀t ∈ T (B.33)

The pressure decrease during discharging is modeled as a linear function dependent on the
air demand of the system V̇

t
d and the previous storage pressure ptsto . The additional pressure

decrease at the beginning of a discharge period (btco;sd=1) is modeled with the parameter
‹dch;4.

∆p̃tsto;dch = ∆t ·
“
‹dch;1 · V̇

t
d + ‹dch;2 · ptsto + ‹dch;3

”
+ ‹dch;4 · btco;sd ∀t ∈ T (B.34)

As for charging, the pressure difference ∆ptsto;dch corresponds to the pressure increase
∆p̃tsto;dch only during discharging (btdch=1), and has to be zero else. This can be stated using
the following equations:

∆ptsto;dch ≤ btdch · psto ∀t ∈ T (B.35)

∆ptsto;dch −∆p̃tsto;dch ≤ psto · (1− btdch) ∀t ∈ T (B.36)

∆ptsto;dch −∆p̃tsto;dch ≥ −psto · (1− btdch) ∀t ∈ T (B.37)
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B.3 Nonlinear simulation model for dynamic programming and
the genetic algorithm

This section describes the simulation model, which is used for dynamic programming (DP) and
the genetic algorithm (GA) optimization methods. For the GA algorithm the model is simulated
for every individual that is evaluated, returning costs for the whole optimization horizon. For the
DP algorithm the model is used to calculate the cost and follow up state (storage pressure) for
every timestep and state independently. The parameters and variables to describe the model
are summarized in table B.5 and table B.6. The parameter values are shown in appendix C.2,
table 4.4. The simulation model is split into three parts, one part for each operation mode
(normal, charge, discharge).

Table B.5: Parameters of the nonlinear model

Name Unit Description

p̂normsys barg Setpoint pressure in normal mode (normal system pressure)
psto barg Maximum storage pressure
psto barg Minimum storage pressure
pn bara Normal pressure

V̇ co
m3

n
min Maximum free air delivery of the compressors

V rec m3 Volume of air receiver tank
Eco;su kWh Start-up losses of the compressors
Eco;sd kWh Shut-down losses of the compressors
Ebo;su kWh Start-up losses of the booster
Ebo;sd kWh Shut-down losses of the booster
& i Parameters used to model the electrical power consumption of the com-

pressors
˛i Parameters used to model the electrical power and air consumption of the

booster
‹i Parameters used to model the storage pressure state equation
rbo 1 Maximum compression ratio of the booster
Cpen e Penalty charge t

V̇
t

d
m3

n
min Air demand at timestep t

Ct
el

e
kWh Electricity price at timestep t

∆T h Duration of the optimization horizon
∆t s Timebase of the optimization (duration of one time period)
N 1 Number of timesteps N = ∆T

∆t=3600
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Table B.6: Variables of the nonlinear model

Name ∈ Unit Description

ptsys R+
0 barg System pressure at timestep t

p̃tsys R+
0 barg Theoretical system pressure (auxiliary variable)

ptsto R+
0 barg Storage pressure at timestep t

∆ptsto;ch R+
0 barg Pressure difference at timestep t when charging

∆p̃tsto;ch R+
0 barg Auxiliary variable for calculating ∆ptsto;ch

∆ptsto;dch R+
0 barg Pressure difference at timestep t when discharging

∆p̃tsto;dch R+
0 barg Auxiliary variable for calculating ∆ptsto;dch

∆ptch;last R+
0 bar Pressure growth of last charge process

∆ptdch;last R+
0 bar Pressure reduction of last discharge process

∆ptth;de R+
0 bar Pressure decrease caused by temperature decrease after charging

∆ptth;in R+
0 bar Pressure increase caused by temperature increase after discharging

∆ptdch;f irstR
+
0 bar Additional pressure decrease when starting discharge process

ttch;last R+
0 1 Timestep of last charge process

ttdch;last R+
0 1 Timestep of last discharge process

fi ch R+
0 1 Relative charging time during one timestep

fidch R+
0 1 Relative discharging time during one timestep

V̇
t

co R+
0

m3
n

min Compressed air produced by the compressors at timestep t

V̇
t

rec R m3
n

min Compressed air into (positive) or out of (negative) the air receiver tank

V̇
t

bo R+
0

m3
n

min Compressed air consumption of the booster at timestep t
P t

co R+
0 kW Electrical power consumed by the compressors at timestep t

P t
co;su R+

0 kW Electrical power consumed when compressors start up at timestep t
P t

co;sd R+
0 kW Electrical power consumed when compressors shut down at timestep

t
P t

bo R+
0 kW Electrical power consumed by the booster at timestep t

P t
bo;su R+

0 kW Electrical power consumed when booster starts up at timestep t
P t

bo;sd R+
0 kW Electrical power consumed when booster shuts down at timestep t

P t
tot;ch R+

0 kW Total electrical power consumed by the CAES system in charge mode
during timestep t

P t
tot;dch R+

0 kW Total electrical power consumed by the CAES system in discharge
mode during timestep t

P t
tot;n R+

0 kW Total electrical power consumed by the CAES system in normal oper-
ation during timestep t

P t
tot R+

0 kW Total electrical power consumed by the CAES system at timestep t
Θt [−1; 0; 1] 1 Operation mode of the CAES system at timestep t (-1=discharge,

0=normal, 1=charge )
btco;run [0; 1] 1 Binary variable related to the compressors running status at timestep

t
btbo;run [0; 1] 1 Binary variable related to the booster running status at timestep t
ststo [−1; 0; 1] 1 State of the storage at timestep t (-1=empty,1=full)
cten R+

0 e Energy costs at timestep t
ctpen R+

0 e Penalty costs at timestep t

cttot R+
0 e Total costs at timestep t

ctot R+
0 e Total costs to be minimized
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B.3.1 Normal mode

In normal mode the compressors have to cover the air demand. If the system pressure is
greater than the normal system pressure (because the storage was charge previously), a part
or all of the air demand is covered by the air from the air receiver tank. At first the theoretical
system pressure p̃tsys if the complete air demand would be covered by the air receiver tank is
calculated using the ideal gas equation of state1 (eq. 3.1).

p̃tsys = pt−1
sys − V̇

t
d ·

∆t

60 s
min
· pn
V rec

(B.38)

The concrete system pressure ptsys has to be al least p̂normsys .

ptsys =

8<:p̃tsys if p̃tsys > p̂normsys

p̂normsys else.
(B.39)

The air, that is covered by the air receiver tank, then can be calculated dependent on the
system pressure change, using again the ideal gas equation of state1 (eq. 3.1).

V̇
t
rec =

60 s
min

∆t
· (ptsys − pt−1

sys ) · V rec
pn

(B.40)

The air, that has to be covered by the compressors, is composed of the air demand and the air
from the receiver tank2 V̇

t
rec .

V̇
t
co = V̇

t
d + V̇

t
rec (B.41)

If the compressor have to deliver air, they need to run. In this case the power consumption of
the compressors is calculated

btco;run =

8<:1 if V̇
t
co > 0

0 else.
(B.42)

The power consumption of the compressors is modeled dependent on the air covered by the
compressors V̇

t
co . It is zero, when all the air is covered by the receiver tank and.

P tco =

8<:&1 · V̇
t
co + &2 if V̇

t
co > 0

0 else.
(B.43)

Additionally, energy losses Eco;su during startup are considered, if the compressors are running
at the end of timestep t and were were not running at the beginning.

P tco;su =

8><>:Eco;su ·
3600 s

h
∆t

if (btco;run = 1) ∧ (bt−1
co;run = 0 ∨ V̇

t
rec < 0);

0 else.
(B.44)

1It is assumed, that the air temperature is constant. The parameters of this equation have to be converted to SI
units. The absolute pressure value has to be used.

2V̇
t
rec is negative for air out of the storage
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The booster is not running in normal mode. But shut-down losses have to be considered if the
booster was running in the previous timestep.

P tbo;sd =

8><>:Ebo;sd ·
3600 s

h
∆t

if bt−1
bo;run = 1;

0 else.
(B.45)

The total power consumption of the system is comprised of the power consumption of the
compressors with their start-up losses and the shut-down losses of the booster.

P ttot = P tco + P tco;su + P tbo;sd (B.46)

In normal mode the pressure storage is neither charged nor discharged. Nevertheless, changes
of the storage pressure caused by temperature variation have to be taken into account. During
charging, the air in the storage is heated up. After switching from charge to normal mode,
the air in the storage slowly cools down, which leads to a pressure decrease ∆ptth;de . This
is modeled by an exponential decrease of the storage pressure of the form ∆p = ∆p0 · e−kt .
The pressure decrease between two timesteps can be stated as follows.

∆ptth;de =

8>>><>>>:
(‹ch;5 ·∆pt−1

ch;last + ‹ch;6 · ptsto + ‹ch;7)

·
“
e−‹ch;8·∆t·(t−1−tt−1

ch;last) − e−‹ch;8·∆t·(t−t
t−1
ch;last)

”
if ∆ptch;last > 0;

0 else:

(B.47)

Analog to the up-heating during charging, the air in the storage cools down when the CAES
system is discharged. After switching from discharge to normal mode, the air in the storage
slowly heats up, which leads to a pressure increase ∆ptth;in. This is modeled in the same way
as the pressure decrease after charging. This effect does not occur if the pressure decrease of
the last discharging process ∆ptch;last is small. Therefore, it is only taken into account after
pressure decreases greater than 5 bar.

∆ptth;in =

8>>><>>>:
(‹dch;6 ·∆pt−1

dch;last + ‹dch;7 · ptsto + ‹dch;8)

·
“
e−‹dch;9·∆t·(t−1−tt−1

dch;last) − e−‹dch;9·∆t·(t−t
t−1
dch;last)

”
if ∆ptdch;last > 5;

0 else:
(B.48)

The storage pressure pt+1
sto at the beginning of the next timestep t+1, is calculated based on

the storage pressure the beginning of timestep t, taking this thermal pressure in- and decrease
into account.

pt+1
sto = ptsto + ∆ptth;in −∆ptth;de (B.49)

The total costs of the CAES system at timestep t can be calculated using the electricity price
Ctel and the total power consumption P ttot .
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cttot = Ctel · P ttot ·
∆t

3600 s
h

(B.50)

At the end some variables needed for the following timesteps have to be specified. The booster
is never running in normal mode. The pressure growth of the last charging process ∆ptch;last
and the corresponding timestep ttch;last as well as the pressure reduction of the last discharging
process ∆ptdch;last and its last timestep ttdch;last are unchanged. Also the state of the storage
does not change in normal mode.

btbo;run = 0 (B.51)

∆ptch;last = ∆pt−1
ch;last (B.52)

ttch;last = tt−1
ch;last (B.53)

∆ptdch;last = ∆pt−1
dch;last (B.54)

ttdch;last = tt−1
dch;last (B.55)

ststo = st−1
sto (B.56)

B.3.2 Charge mode

As described in section 3.3 (eq. 3.3), the system pressure ptsys during charging depends on
the storage pressure ptsto . Its minimum value is given by the normal system pressure p̂normsys .

ptsys =

8<:(ptsto + 2 bar)=rbo if ptsto > p̂sys · rbo − 1 bar

p̂normsys else.
(B.57)

With the system pressure, the pressure in the air receiver storage is increased as well. The air
flow needed for this can be calculated using the ideal gas equation of state3 (eq. 3.1).

V̇
t
rec =

60 s
min

∆t
· (ptsys − pt−1

sys ) · V rec
pn

(B.58)

In charge mode, the compressors have to cover the air demand V̇
t
d , the air consumed by the

booster V̇
t
bo and the air needed to raise the pressure in the air receiver tank V̇

t
rec . The air

consumed by the booster V̇
t
bo depends on the storgae pressure and is modeled as a quadratic

function.

3It is assumed, that the air temperature is constant. The parameters of this equation have to be converted to SI
units. The absolute pressure value has to be used.
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V̇
t
bo = ˛7 · ptsto2 + ˛8 · ptsto + ˛9 (B.59)

V̇
t
co = V̇

t
d + V̇

t
bo + V̇

t
rec (B.60)

The power consumption of the compressors is modeled as a polynomial function of degree 3
dependent on the air covered by the compressors V̇

t
co and the difference of the system

pressure ptsys and the normal system pressure p̂normsys .

P tco = &1 · V̇
t
co + &2

+(ptsys − p̂normsys ) ·
“
&3 · (V̇

t
co)3 + &4 · (V̇

t
co)2 + &5 · V̇

t
co + &6

” (B.61)

Additionally, energy losses Eco;su during startup are considered, if the compressors were not
running in the previous timestep (bt−1

co;run = 0).

P tco;su =

8><>:Eco;su ·
3600 s

h
∆t

if bt−1
co;run = 0;

0 else.
(B.62)

The power consumption of the booster P tbo is modeled as a polynomial function of degree 5
dependent on the storage pressure ptsto at its output.

P tbo = ˛1 · (ptsto)5 + ˛2 · (ptsto)4 + ˛3 · (ptsto)3

+˛4 · (ptsto)2 + ˛5 · (ptsto) + ˛6

(B.63)

Additionally, energy losses Ebo;su during startup are considered, if the booster was not running
in the previous timestep (bt−1

bo;run = 0).

P tbo;su =

8><>:Ebo;su ·
3600 s

h
∆t

if bt−1
bo;run = 0;

0 else.
(B.64)

The total power consumption of the system is comprised of the power consumption of the
compressors and the booster with their respective start-up losses.

P ttot;ch = P tco + P tco;su + P tbo + P tbo;su (B.65)

The theoretical pressure increase ∆p̃tsto;ch of the storage tank during charging is calculated
based on the storage pressure ptsto at the beginning of timestep t using a polynomial function
of degree 3.

∆p̃tsto;ch = ∆t ·
“
‹ch;1 · (ptsto)3 + ‹ch;2 · (ptsto)2 + ‹ch;3 · ptsto + ‹ch;4

”
(B.66)

To avoid that the storage pressure exceeds its maximum psto , the concrete pressure increase
∆ptsto;ch is calculated.
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∆ptsto;ch =

8<:psto − ptsto if ptsto + ∆p̃tsto;ch > psto ;

∆p̃tsto;ch else.
(B.67)

To calculate the storage pressure pt+1
sto at the beginning of the next timestep t+1, the concrete

pressure increase ∆ptsto;ch is added to the storage pressure the beginning of timestep t.

pt+1
sto = ptsto + ∆ptsto;ch (B.68)

If the concrete pressure increase ∆ptsto;ch is lower than the theoretical ∆p̃tsto;ch, this means
that the the CAES system is not in charge mode during the whole time ∆t in this timestep. As
soon as the maximum storage pressure is reached, the system switches to normal mode (see
3.3). The relative time where the system is in charge mode can be calculated as follows:

fi ch =
∆ptsto;ch
∆p̃tsto;ch

(B.69)

If fi ch is equal to 1, the system is charged the whole time ∆t. If fi ch is e.g. 0.7, the system is
70 % of the time ∆t in charge mode and 30 % in normal mode. To determine the total power
of the CAES system for this case, the power consumption in normal mode P ttot;n has to be
calculated. In normal mode, the booster is not running and the compressors only have the
cover the air demand V̇

t
d .

P ttot;n = &1 · V̇
t
d + &2 (B.70)

Changing from charge to normal mode, the shut-down losses of the booster P tbo;sd have to be
considered as well.

P tbo;sd = Ebo;sd ·
3600 s

h
∆t

(B.71)

The total power consumption P ttot of the CAES system during timestep t can then be calculated
as follows:

P ttot =

8<:P ttot;ch if fi ch = 1;

fi ch · P ttot;ch + (1− fi ch) · P ttot;n + P tbo;sd else:
(B.72)

The energy costs of the CAES system at timestep t can be calculated using the electricity
price Ctel and the total power consumption P ttot .

cten = Ctel · P ttot ·
∆t

3600 s
h

(B.73)

In some cases charging the CAES system is not possible. To avoid that the optimization
algorithm chooses charge mode as cost optimal in these cases, penalty costs are applied.
For charging penalty costs are used if the air demand V̇

t
d is greater 1.26 m3

n
min (maximum air

demand where the system can be charged), the storage pressure ptsto or the air delivered by
the compressors V̇

t
co exceed their maximum or the state of the storage is already full (st−1

sto =1).
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ctpen =

8<:Cpen if V̇
t
d > 1:26 m3

n
min ∨ ptsto ≥ psto ∨ V̇

t
co > V̇ co ∨ st−1

sto = 1;

0 else.
(B.74)

The total cost in timestep t are composed of the energy costs cten and the penalty costs ctpen.

cttot = cten + ctpen (B.75)

At the end some variables needed for the following timestep have to be specified. In charge
mode the compressors are always running. The booster is only running at the end of timestep
t if the system is in charge mode during the whole timestep (fi ch = 1). The pressure growth of
this charging process ∆ptch;last is either initialized with (if the system was not in charge mode
in the previous timestep) or raised by the pressure increase of this timestep. The timestep
representing the end of the last charging process ttch;last is set to t. The pressure reduction of
the last discharging process ∆ptdch;last is reseted to zero. The state of the storage is set to full
(ststo=1) if the storage pressure equals its maximum psto .

btco;run = 1 (B.76)

btbo;run =

8<:1 if fi ch = 1;

0 else:
(B.77)

∆ptch;last =

8<:∆pt−1
ch;last + ∆ptsto;ch if Θt−1 = 1;

∆ptsto;ch else:
(B.78)

ttch;last = t (B.79)

∆ptdch;last = 0 (B.80)

ststo =

8<:1 if pt+1
sto = psto ;

0 else:
(B.81)

B.3.3 Discharge mode

In discharge mode the compressors and the booster are shut down and the air demand is
covered by the storage tank. If the system pressure is greater than the normal system pressure
(because the storage was charged previously), a part or all of the air demand is covered by the
air from the air receiver tank. At first the theoretical system pressure p̃tsys if the complete air
demand would be covered by the air of the air receiver tank is calculated using the ideal gas
equation of state4 (eq. 3.1).

4It is assumed, that the air temperature is constant. The parameters of this equation have to be converted to SI
units. The absolute pressure value has to be used.
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p̃tsys = pt−1
sys − V̇

t
d ·

∆t

60 s
min
· pn
V rec

(B.82)

The concrete system pressure has to be al least p̂normsys .

ptsys =

8<:p̃tsys if p̃tsys > p̂normsys

p̂normsys else.
(B.83)

The air, that is covered by the air receiver tank, then can be calculated dependent on the
system pressure change, using again the ideal gas equation of state1 (eq. 3.1).

V̇
t
rec =

60 s
min

∆t
· (ptsys − pt−1

sys ) · V rec
pn

(B.84)

In discharge mode, the compressors and the booster are not running and therefore not
consuming electrical power. Only shut-down losses of both systems are considered, if they
were running in the previous timestep.

P tco;sd =

8><>:Eco;sd ·
3600 s

h
∆t

if bt−1
co;run = 1;

0 else.
(B.85)

P tbo;sd =

8><>:Ebo;sd ·
3600 s

h
∆t

if bt−1
bo;run = 1;

0 else.
(B.86)

P ttot;dch = P tco;sd + P tbo;sd (B.87)

The theoretical pressure decrease ∆p̃tsto;dch of the storage tank during discharging is calcu-

lated based on the air demand V̇
t
d , taking into account the air covered by the receiver tank

V̇
t
rec , and the storage pressure ptsto at the beginning of timestep t.

∆p̃tsto;dch = ∆t ·
 
‹dch;1 · (V̇

t
d + V̇

t
rec)

‹dch;2 + (V̇
t
d + V̇

t
rec)

+ ‹dch;3 · ptsto + ‹dch;4

!
(B.88)

To avoid that the storage pressure deceeds its minimum psto , the concrete pressure decrease
∆ptsto;dch is calculated.

∆ptsto;dch =

8<:ptsto − psto if ptsto −∆p̃tsto;dch > psto ;

∆p̃tsto;dch else.
(B.89)

To calculate the storage pressure pt+1
sto at the beginning of the next timestep t+1, the con-

crete pressure decrease ∆ptsto;dch is subtracted from the storage pressure the beginning of
timestep t.

pt+1
sto = ptsto −∆ptsto;dch (B.90)
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If the concrete pressure increase ∆ptsto;dch is higher than the theoretical ∆p̃tsto;dch, this means
that the the CAES system is not in discharge mode during the whole time ∆t in this timestep.
As soon as the minimum storage pressure is reached, the system switches to normal mode
(as described in chapter 3.3). The relative time, during which the system is in discharge mode
can be calculated as follows:

fidch =
∆ptsto;dch
∆p̃tsto;dch

(B.91)

If fidch is equal to 1, the system is discharged the whole time ∆t. If fidch is e.g. 0.7, the system
is 70 % of the time ∆t in discharge mode and 30 % in normal mode. To determine the total
power of the CAES system for this case, the power consumption in normal mode P ttot;n has to
be calculated. In normal mode, compressors are running and have the cover the air demand
V̇
t
d .

P ttot;n = &1 · V̇
t
d + &2 (B.92)

Changing from discharge to normal mode, the start-up losses of the compressors P tco;su have
to be considered as well.

P tco;su = Eco;su ·
3600 s

h
∆t

(B.93)

The total power consumption P ttot of the CAES system during timestep t can then be calculated.
While the power consumption in normal mode P ttot;n is only taken into account partly (with the
relative time 1-fidch the system is in normal mode in this timestep), the start-up and shut-down
losses always are fully considered.

P ttot =

8<:P ttot;dch if fidch = 1;

fidch · P ttot;dch + (1− fidch) · P ttot;n + P tco;su else:
(B.94)

The energy costs of the CAES system at timestep t can be calculated using the electricity
price Ctel and the total power consumption P ttot .

cten = Ctel · P ttot ·
∆t

3600 s
h

(B.95)

In some cases discharging the CAES system is not possible. To avoid that the optimization
algorithm chooses discharge mode as cost optimal in these cases, penalty costs are applied.
For discharging penalty costs are used the state of the storage has already been empty
(st−1
sto = −1).

ctpen =

8<:Cpen if st−1
sto = −1;

0 else.
(B.96)

The total cost in timestep t are composed of the energy costs cten and the penalty costs ctpen.
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cttot = cten + ctpen (B.97)

At the beginning of each discharge process, an additional pressure reductions was observed,
which is modeled using the constant parameter ‹dch;4.

∆ptdch;f irst =

8<:‹dch;5 if Θt−1 > −1;

0 else:
(B.98)

Additionally, changes of the storage pressure caused by temperature variation have to be taken
into account. During charging, the air in the storage is heated up. After switching from charge
to discharge mode, the air cools down, which leads to a pressure decrease ∆ptth;de . This is
modeled by an exponential decrease of the storage pressure of the form ∆p = ∆p0 · e−kt
(see eq. B.47).

∆ptth;de =

8>>><>>>:
(‹ch;5 ·∆pt−1

ch;last + ‹ch;6 · ptsto + ‹ch;7)

·
“
e−‹ch;8·∆t·(t−1−tt−1

ch;last) − e−‹ch;8·∆t·(t−t
t−1
ch;last)

”
if ∆ptch;last > 0;

0 else:

(B.99)

To calculate the pressure at the beginning of the next timestep, these pressure reductions have
to be taken into account.

pt+1
sto = pt+1

sto −∆ptdch;f irst −∆ptth;de (B.100)

At the end some variables needed for the following timesteps have to be specified. In discharge
mode the compressors are running at the end of timestep t if the system is not in discharge
mode during the whole timestep (fidch < 1). The booster is never running. The pressure
reduction of this discharging process ∆ptdch;last is either initialized with (if the system was
not in discharge mode in the previous timestep) or declined by the pressure decrease of this
timestep ∆ptsto;dch. The timestep of the end of the last discharging process ttdch;last is set to t.
The pressure growth of the last charging process ∆ptch;last is reseted to zero. The state of the
storage is set to empty (ststo = −1) if the storage pressure equals its minimum psto .

btco;run =

8<:1 if fidch < 1;

0 else:
(B.101)

btbo;run = 0 (B.102)

∆ptch;last = 0 (B.103)

∆ptdch;last =

8<:∆pt−1
dch;last + ∆ptsto;dch if Θt−1 = −1;

∆ptsto;dch else:
(B.104)
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ttdch;last = t (B.105)

ststo =

8<:−1 if pt+1
sto = psto ;

0 else:
(B.106)
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B.4 Mixed-integer nonlinear programming model

The mixed-integer nonlinear programming (MINLP) model is formulated as a set of equality
and inequality functions, that are described in this chapter. The variables used for the definition
of the optimization problem are summarized in table B.7. The parameters are the same
as for the nonlinear simulation model described in section B.3, table B.5, with the values
shown in section C.3, table C.4. The optimization horizon is described by the set of timesteps
T = {t1; :::; tN},where ∆t is the duration of each timestep, and N is the number of timesteps
t ∈ T .

The CAES system is represented in the same way as for the simulation model, except the
pressure decrease and increase after charging and discharging as well as the air receiver tank
are not considered in the MINLP model to reduce the solving time.

Table B.7: Variables of the MINLP model

Name ∈ Unit Description

ptsys R+
0 barg System pressure at timestep t

ptsto R+
0 barg Storage pressure at timestep t

∆ptsto;ch R+
0 barg Pressure difference at timestep t when charging

∆ptsto;dch R+
0 barg Pressure difference at timestep t when discharging

V̇
t

co R+
0

m3
n

min Compressed air produced by the compressors at timestep t
P t

co R+
0 kW Electrical power consumed by the compressors at timestep t

P t
bo R+

0 kW Electrical power consumed by the booster at timestep t
P t

tot R+
0 kW Total electrical power consumed by the CAES system at timestep t

btch [0; 1] 1 Binary variable related to the operation mode charge at timestep t
btdch [0; 1] 1 Binary variable related to the operation mode discharge at timestep t
btco;su [0; 1] 1 Binary variable related to the compressors startup at timestep t
btco;sd [0; 1] 1 Binary variable related to the compressors shut-down at timestep t
btbo;su [0; 1] 1 Binary variable related to the booster startup at timestep t
btbo;sd [0; 1] 1 Binary variable related to the booster shut-down at timestep t
btp;raise [0; 1] 1 Binary variable related to the necessity of raising the system pressure

during charging at timestep t
ctot R+

0 e Total costs to be minimized

As for the MILP model, in the MINLP formulation of the optimization problem binary variables
representing the operation mode of the CAES system can be used. The three modes normal,
charge and discharge are represented by two binary variables btch and btdch that can be either
0 or 1. At timestep t, the CAES system is in charge mode, when btch = 1, and in discharge
mode, when btdch = 1. When both variables are zero, the system is in normal operation mode.
The constraint in eq. B.107 avoids that both variables become 1 at the same timestep.

btch + btdch ≤ 1 (B.107)

The objective of the MINLP model is to minimize the total costs over the optimization horizon,
that depend on the electricity price Ctel and the total power consumption of the system P ttot
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at each timestep. The total power consumption of the system P ttot is comprised of the power
consumptions of the compressors P tco and of the booster P tbo .

min ctot = min

0@X
t∈T

Ctel · P ttot ·
∆t

3600 s
h

1A (B.108)

P ttot = P tco + P tbo ∀t ∈ T (B.109)

Booster

The power consumption of the booster P tbo is modeled as a polynomial function of degree 5
dependent on the pressure ptbo at its output. The booster is only running when the system is in
charge mode (btch = 1). Additionally, energy losses Ebo;su during startup (btbo;su = 1, when
the system changes from charge or normal to discharge mode) and energy losses Ebo;sd
during shut-down (btbo;sd = 1, when the system switches from discharge to another mode) are
considered.

P tbo = btch · (˛1 · (ptsto)5 + ˛2 · (ptsto)4 + ˛3 · (ptsto)3

+ ˛4 · (ptsto)2 + ˛5 · (ptsto) + ˛6)

+btbo;su · Ebo;su ·
3600 s

h
∆t

+btbo;sd · Ebo;sd ·
3600 s

h
∆t

∀t ∈ T

(B.110)

btbo;su ≥ btch − bt−1
ch ∀t ∈ T (B.111)

btbo;sd ≥ bt−1
ch − b

t
ch ∀t ∈ T (B.112)

Compressors

The power consumption of the compressors is modeled as a polynomial function of degree 3
depending on the air covered by the compressors V̇

t
co , the difference of the system pressure

and the normal system pressure (ptsys − p̂normsys ) and the product of both. The offset &2 is added
if the system is in charge or normal mode (btdch = 0). Additionally, energy losses Eco;su during
startup (btco;su = 1, when the system changes from discharge to another mode) and energy
losses Eco;sd during shut-down (btco;sd = 1, when the system switches from normal or charge
to discharge mode) are considered.

P tco = &1 · V̇
t
co + &2 · (1− btdch)

+(ptsys − p̂normsys ) ·
“
&3 · (V̇

t
co)3 + &4 · (V̇

t
co)2 + &5 · V̇

t
co + &6

”
+btco;su · Eco;su ·

3600 s
h

∆t

+btco;sd · Eco;sd ·
3600 s

h
∆t

∀t ∈ T

(B.113)
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btco;su ≥ bt−1
dch − b

t
dch ∀t ∈ T (B.114)

btco;sd ≥ btdch − bt−1
dch ∀t ∈ T (B.115)

When the system is in normal mode (btch = btdch = 0), the compressors have to cover the
complete air demand V̇

t
d . In the operation mode charge (btch = 1), additionally the air demand

of the booster V̇ bo has to be covered. In discharge model, the air demand is covered by the
high pressure storage and the air delivered by the compressors is zero. The air that can be
delivered by the compressors is limited to V̇ co .

V̇
t
co = (1− btdch) · V̇ td + btch · V̇ bo ∀t ∈ T (B.116)

V̇
t
co ≤ V̇ co ∀t ∈ T (B.117)

As described in chapter 4.3 (see eq. 4.11 and figure 4.5), the system pressure ptsys during
charging depends on the storage pressure ptsto . In normal or discharge operation mode, the
system pressure ptsys corresponds to the normal system pressure p̂normsys . In charge mode the
system pressure has to be raised, if the storage pressure is higher than p̂normsys · rbo − 1. In
the MINLP model therefore the binary variable btp;raise is introduced, which is 1 if the system
pressure has to be raised (the system is in charge mode and the storage pressure is greater
than p̂normsys · rbo − 1) and 0, else.

ptsto · (1− btp;raise) · btch ≤ p̂normsys · rbo − 1 ∀t ∈ T (B.118)

ptsto · ·btch ≥ (p̂normsys · rbo − 1) · btp;raise ∀t ∈ T (B.119)

btp;raise ≤ btch ∀t ∈ T (B.120)

ptsys ≥ p̂normsys · (1− btp;raise) + btp;raise ·
ptsto + 2

rbo
∀t ∈ T (B.121)

Storage

The pressure in the high pressure storage tank at the beginning of the next timestep pt+1
sto

depends on the storage pressure ptsto at timestep t and the operation mode of the system. In
charge mode, the pressure difference ∆ptsto;ch is added. In discharge mode the pressure is
reduced by ∆ptsto;dch. The storage pressure is limited by the lower bound psto and the upper
bound psto .

pt+1
sto = ptsto + ∆ptsto;ch −∆ptsto;dch ∀t ∈ T (B.122)

psto ≤ ptsto ≤ psto ∀t ∈ T (B.123)
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The pressure increase during charging (btch = 1) is modeled as a polynomial function of
degree 3 depending on the previous storage pressure ptsto .

∆ptsto;ch = btch ·∆t ·
“
‹ch;1 · (ptsto)3 + ‹ch;2 · (ptsto)2 + ‹ch;3 · ptsto + ‹ch;4

”
∀t ∈ T

(B.124)

The pressure decrease during discharging (btdch = 1) is modeled as a function depending
on the air demand of the system V̇

t
d and the previous storage pressure ptsto . The additional

pressure decrease at the beginning of a discharge period (btco;sd=1) is modeled with the
parameter ‹dch;5.

∆ptsto;dch = btdch ·∆t ·
 
‹dch;1 · (V̇

t
d + V̇

t
rec)

‹dch;2 + (V̇
t
d + V̇

t
rec)

+ ‹dch;3 · ptsto + ‹dch;4

!
+‹dch;5 · btco;sd ∀t ∈ T

(B.125)



Appendix C

Values of the constant model
parameters

In this chapter, the values of the constant parameters used to describe the different models of
the CAES system are summarized. If not specified otherwise, the parameters are calculated
using linear regression to find the optimal values for the given functions so that they match the
measured data. In this thesis the "curve_fit" method within the python package SciPy [91] is
used for calculating the values. Table C.1 shows the values for parameters that are used for
more than one optimization model. The model specific values are summarized in the following
sections.

Table C.1: General parameters of the CAES system

Symbol Value Unit Description

p̂normsys 6 barg Normal setpoint pressure
psto 38 barg Maximum storage pressure
psto 7 barg Minimum storage pressure

V̇ co 2.5 m3
n

min Maximum free air delivery of the compressors
rbo 4 1 Maximum compression ratio of the booster
Eco;su 0.01 kWh Start-up losses of the compressors
Eco;sd 0.02 kWh Shut-down losses of the compressors
Ebo;su 0.24 kWh Start-up losses of the booster
Ebo;sd 0.06 kWh Shut-down losses of the booster
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C.1 Linear programming model

Table C.2 summarizes the values used to describe the linear programming (LP) model. The
following subsections describe how the time-dependent parameters ”tch, ”

t
dch and P tch are

calculated.

Table C.2: Parameter values of the LP model

Name Value Unit Description

Esto 20.12 kWh Maximum electrical energy capacity of storage
&1 7.684 kW

m3
n=min Slope of the linear function used to model the electrical power consump-

tion of the compressors
P t

ch kW Upper limit of the electrical charge power at timestep t depending on
V̇

t

d (see section C.1.1)
”tch
”tdch

% Storage electrical charge/discharge efficiency at timestep t (see section
C.1.2)

C.1.1 Charge power

As explained in chapter 3.4.3, the electrical charge energy of the CAES system is depending
on the air demand during charging (see figure 3.10). The charge energy Ech can be calculated
by integrating the difference of P tot and P ref over the charging time (tch0 to tch1 ) (see eq. 3.5).
Thus, the mean charge power P ch for each measured charge energy of figure 3.9 can be
calculated as follows.

P ch =
Ech

tch1 − tch0

(C.1)

To calculate the mean charge power P tch for a specific air demand V̇
t
d at timestep t, a linear

interpolation between the measured points is used. For each air demand V̇
t
d the corresponding

P tch is calculated and can be used as an upper limit for the LP optimization model. Because

the CAES system can not be charged for air demands greater than 1.26 m3
n

min , in these cases
P tch is set to zero. Figure C.2 shows the mean charge power P tch used in the LP model as a
function of the air demand .
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Figure C.1: Mean charge power as a function of the air demand

C.1.2 Charge and discharge efficiencies

As shown in chapter 3.4.3 (figure 3.10), the electrical round-trip efficiency of the CAES system
is depending on the air demand during charging and discharging. Therefore, also the charge
efficiency and the discharge efficiency for each timestep are depending on the corresponding
air demand. To calculate the charge and discharge efficiencies, first the best round-trip
efficiency ”best and its corresponding charge energy Ech;best and discharge energy Edch;best
are identified from the measured values of figure 3.9.

”best =
Edch;best
Ech;best

(C.2)

Then the charge energy Etch and the discharge energy Etdch for the respective air demand V̇
t
d

is calculated by linearly interpolating the measured values shown in figure 3.9.

The discharge efficiency ”tdch is defined to be ”dch;best = 1, when the discharge energy Etdch
equals the best discharge energy Edch;best . For lower values of Etdch, the efficiency decreases.

”tdch =
Etdch

Edch;best
(C.3)

The round-trip efficiency is defined as product of the charge and the discharge efficiency.

” = ”tch · ”tdch (C.4)

With ”dch;best = 1, this means that the best charge efficiency ”ch;best (when Etch = Ech;best )
is defined as the best round-trip efficiency ”best
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”best = ”ch;best · ”dch;best = ”ch;best · 1 = ”ch;best (C.5)

The charge efficiency ”tch of a specific air demand V̇
t
d and its corresponding charge energy

Etch can therefore be calculated as follows.

”tch =
Ech;best
Etch

· ”best (C.6)

Because the CAES system can not be charged for air demands greater than 1.26 m3
n

min , in
these cases the charge efficiency is set to zero. Figure C.2 shows the charge and discharge
efficiencies used in the LP model as a function of the air demand. They have the same behavior
as the charge and discharge energy shown in figure 3.9.
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Figure C.2: Charge and discharge effciencies as a function of the air demand
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C.2 Mixed-integer linear programming model

Table C.3 shows the values of the parameters for the mixed-integer linear programming (MILP)
model.

Table C.3: Parameter values of the MILP model

Name Value Unit Description

&1 7.225 01 kW
m3

n=min

Parameters used to model the electrical power consumption of
the compressors

&2 −8.845 · 10−3 kW
barg

&3 0.662 25 1
&4 0.835 88 kW
˛1 0.073 54 kW

barg Parameters used to model the electrical power consumption of
the booster˛2 1.180 55 kW

‹ch;1 2.877 · 10−6 1
s

Parameters used to model the storage pressure state equation
‹ch;2 3.737 · 10−3 bar

s

‹dch;1 4.670 · 10−3 bar
m3

n=60

‹dch;2 9.423 · 10−6 1
s

‹dch;3 1.524 · 10−4 bar
s

‹dch;4 0.739 84 kW
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C.3 Nonlinear model

The parameters used for the nonlinear models are summarized in table C.4.

Table C.4: Parameter values of the nonlinear models

Name Value Unit Description

&1 7.225 01 kW
m3

n=min

Parameters used to model the electrical power consumption of
the compressors

&2 0.835 88 kW
&3 −0.177 06 1

(m3
n=min)2

&4 0.803 36 1
m3

n=min

&5 −0.359 59 1
&6 0.282 38 kW

barg

˛1 −1.916 · 10−7 kW
(barg)5

Parameters used to model the electrical power consumption of
the booster

˛2 1.504 · 10−6 kW
(barg)4

˛3 2.595 · 10−5 kW
(barg)3

˛4 5.005 · 10−3 kW
(barg)2

˛5 0.240 19 kW
barg

˛6 0.138 50 kW

˛7 0.240 19 m3
n

bar2

Parameters used to model the air consumption of the booster˛8 0.240 19 m3
n

bar

˛9 0.138 50 m3
n

min

‹ch;1 −6.292 · 10−8 1
(barg)2·s

Parameters used to model pressure increase during charging
‹ch;2 1.082 · 10−5 1

(barg)1·s

‹ch;3 3.620 · 10−4 1
s

‹ch;4 6.623 · 10−3 bar
s

‹ch;5 2.688 · 10−3 1
Parameters used to model the pressure reduction due to tempera-
ture decrease after charging

‹ch;6 5.153 · 10−3 1
‹ch;7 0.150 70 bar
‹ch;8 3.741 · 10−3 1
‹dch;1 0.102 63 bar

s

Parameters used to model pressure decrease during discharging
‹dch;2 20.1408 m3

n
min

‹dch;3 9.103 · 10−6 1
s

‹dch;4 2.725 · 10−4 bar
s

‹dch;5 0.745 82 bar
‹dch;6 3.216 · 10−3 1

Parameters used to model the pressure raise due to temperature
increase after discharging

‹dch;7 7.091 · 10−3 1
‹dch;8 0.066 36 bar
‹dch;9 4.836 · 10−3 1
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