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1 Introduction

The present paper is motivated by the demand from material sciences to re-
construct crystalline structures given through their images under high resolu-
tion transmission electron microscopy (HRTEM) in a certain limited number
of directions. In particular, [31] and [22] show how a quantitative analysis of
images from high resolution transmission electron microscopy can be used to
determine the number of atoms on atomic columns in certain directions; see
Sects. 2 and 3. Mathematically, this leads to the problem of reconstructing
finite lattice sets from certain of their marginal sums; see Sect. 4.

A full 3D-reconstruction of interfaces at the atomic scale may in particular
be used to fine-tune the production processes in semiconductor industry. In
fact, as silicon wafers are coated with an amorphous layer of oxidized silicon,
methods based on external surface scanning — like scanning tunnel microscopy
— cannot be used.

There are many other applications and potential applications of the math-
ematical techniques developed in this project in image processing, graph
theory, scheduling, statistical data security, game theory, to name just a few
areas (see e.g. [32], [30], [8], [21], [19], [11], [12]). In fact, discrete tomography
can be regarded as a prime paradigm for a whole new field dealing with
(typically ill-posed) discrete inverse problems.
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Peter Schwander for his constant support, particularly for helping with the
physics and the simulation of HRTEM and QUANTITEM.

2 High Resolution Transmission Electron Microscopy

In the early 1930’s conventional light-microscopy was pushed to its limits to
provide a resolution of about 0.5 um. In 1931/32, Ernst Ruska (Nobel Prize in
Physics in 1986) build the first imaging device utilizing electron beams. The
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first transmission electron microscopes (TEM) were mainly used to study
biological specimens. A TEM works essentially like a light microscope except
that the light beam is replaced by an electron beam and the optical elements
are replaced by electron-optical analogues (like electromagnetic or electro-
static lenses). Images are produced by measuring the electron intensities after
the beam passed through the specimen; regions with heavier atoms or greater
thickness diffract more electrons away from the detector and can hence be
detected.

High resolution transmission electron microscopy further improved the
resolution possible for very thin specimen. Since for thin samples only
marginal absorption occurs within the HRTEM imaging with high accel-
eration potential of about 200 keV the imaging process is driven by other
principles. As there is no loss of energy the resulting wave function ¥ of the
interaction between the electron beam and the electrostatic potential of the
crystal is governed by the time independent Schrodinger equation

V20 (r) + 8”;;”‘3 [E + V(r)¥(r) =0,

where e denotes the electronic charge, E is the acceleration potential of
the microscope, h is Planck’s constant, m is the mass of the electron, and
V(r) denotes the crystal potential at position 7. The interaction creates an
electron wave emanating from the ‘bottom side’ of the crystal (if the electron
beam hits the specimen from ‘above’). It is this wave that is magnified by
electrostatic lenses to obtain the final image. Unfortunately, at this high
magnification the lens distorts the image rather strongly; to worsen matters,
the distortion depends very sensitively on imaging conditions that cannot
be fully assessed. So traditionally, given an HRTEM image, the art is to
do simulations of different objects under different imaging conditions until a
simulated phantom is created that matches the obtained image. In the next
subsection we will sketch one particular simulation technique, the Multislice
Method due to Cowley and Moodie [5].

3 Simulation and Analysis of HRTEM Images

We will sketch how the electron wave at the exit face of a specimen can
be calculated from the specimen’s crystal potential and the imaging condi-
tions by using the multislice method. This allows us to simulate HRTEM
and compute realistic (though small) phantoms under full control of the
imaging process. Then we describe a vector analysis technique that can be
applied to recover height information. It is called QUANTITEM (quantitative
analysis of the information provided by transmission electron microscopy)
and was developed by Schwander, Kisielowski, Baumann, Seibt, Kim, and
Ourmazd [31], [22].

The main issue with the simulation is to solve the Schrédinger equation
in order to obtain a description of the wave at the exit face of the specimen.
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For an appropriate simulation it is important to take into account that the
involved energies are of quite different orders of magnitude: on the one hand
the low energy potential field of the crystal and on the other hand the electron
beam of about 200 keV. This difference in scale leads to an almost complete
absence of backscattering, i.e. most electrons of the beam are scattered only
forward, with the scattering occurring only within a very small angular
range. Hence the specific conditions allow it to describe the interaction in
terms of a wave propagation, permitting a slice-by-slice simulation with slices
orthogonal to the direction of the beam. The full potential of each slice is
projected onto the plane of the slice closer to the source of the electron beam
(entry face). It turns out that the interaction of the beam with the projected
potential on the entry face can be described approximately by a phase shift
for the beam’s wave. The propagation of the resulting wave from one entry
face to the next is then done by using Fresnel approximation.

The leaving wave is modeled as the sum of many spherical (actually, in
this approximation, paraboloidal) waves. Their joint effect on the next entry
plane is modeled by a convolution integral. Computationally, the convolution
is performed in Fourier space; for details see [5]. The magnifying electrostatic
lens is modeled by a similar procedure.

For the simulation of HRTEM we utilized the package EMS by Stadel-
mann [33]. As specimen we always used a wedge of pure silicon with some
cells at the top of atomic columns (viewed in direction (001)) removed at
random. The heights of the final probe varied between 0 and 14 atoms; see
Fig. 1la for the depiction of such a height-field (the tiny numbers give the
number of atoms in the corresponding column).

Using EMS we then computed the simulated image for the resolutions
2048 x 2048 subdivided into 30 slices orthogonal to the beam. (Higher res-
olutions were used to verify that the simulation stabilized.) The simulated
image is given in Fig. 1b.

It turns out that for important specimen examples like silicon (under
viewing direction (100)) or Germanium (under viewing directions (100) or
(110)) the wave function can be approximated very well at the exit face as the
superposition of only two Bloch waves. The vectors whose coordinates are the
intensities of all fundamental solutions of the PDE that satisfy the necessary
boundary and initial value conditions all lie on an ellipse. Furthermore, the
angle (to a fixed reference point on the ellipse) corresponds to the height of
the sample.

For a view in a main lattice direction an atomic column ‘influences’ only
a small region, in effect, the height information is localized. It is observed
in [22] that after being magnified and distorted by the lens the images can
still be approximated well by two basic images. In [22] this is utilized by
segmenting the picture into small rectangles that are influenced essentially
only by a single atomic column. Each of these rectangles is considered an
image vector on which a principal component analysis is based.
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Fig. 1. HRTEM-simulation of a 15 x 15 x 15-wedge at resolution 4096 x 4096. The
tiny(!) numbers in (a) show the heights of the corresponding columns

In our experiments we used the cells of the Voronoi diagram of the pro-
jection of the object to determine the (in this case: rhombic) cells. Then the
pixels within a cell were used to construct the image vectors. We computed
the principal components for the resolution 2048 x 2048; their projections
onto the two eigenimages with the largest eigenvalues are plotted in Fig. 1c.

The quality of the simulation and analysis can be inferred from the values
of the largest eigenvalues. Theory says, that there should be two significant
eigenvalues and all others should be smaller than 0.05; see Fig. 1d. For a
resolution of 2048 x 2048 this turned out to be true; resolutions smaller than
2048 x 2048 did not suffice to show this behavior. Actually, one would expect
the largest two eigenvalues to be similar in magnitude; but as the wedges
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we studied are very thin we see only a small piece of the ellipse which looks
locally like a line; so one eigenvalue dominates the other.

The projection onto the main eigenimages in Fig. 1c reveals a lot about
the atomic structure under consideration. Note that from left to right the 15
clusters correspond to columns of height 0 through 14 with only heights 0
and 1 not being separated. The band structure of the clusters is partly due to
errors at the boundary of the sample and to the fact that the sample is still
very thin compared to the extinction length that lies somewhere between 150
and 200 atoms. But it may also exhibit some additional information related
to the relative position of the atoms that may be utilized in the subsequent
reconstruction phase.

Since there was no substantial change between resolutions 2048 x 2048
and 4096 x 4096 the simulation seems to be stable. This is also supported by
the striking similarities between the two eigenimages at medium resolution
(Figs. 2b,e) to those at higher resolution (Figs. 2c,f), respectively. Even
though the second most important eigenimages (Figs. 2e, ) are of very little
influence here, the slight asymmetry between their top and bottom part can
be nicely explained by the fact that the bottom-top direction is the direction
along which the wedge rises.

(d) © ®

Fig. 2. Comparison of the most (top) and second most (bottom) dominating eigen-
images for HRTEM-simulations of a 15 X 15 x 15-wedge at resolution 512 x 512,
2048 x 2048, and 4096 x 4096 (from left to right)
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4 The Mathematical Model

In principle, the imaging process described in the previous section essentially
provides us with the information how many atoms of a given object interact
with given ‘sharply focussed electron beams’ in a certain small number of
viewing directions. In a simple but already highly relevant model suggested
by Peter Schwander and Larry Shepp the atoms are identified with lattice
points in 3-space while the electron beams are modeled as lines parallel to
a given direction. Due to the crystalline structure of the samples and the
affine invariance of the basic problem it turns out that it is mostly enough
to consider subsets of the integer lattice.

Since in practice, one degree of freedom for moving the imaging device is
used to control the position of the object, the view directions for which data
are provided all lie in one plane (i.e., virtually, the microscope is rotated
around one axis). Hence the 3D-problem lends itself to a 2D-slice-by-slice
reconstruction.

Now, let us be more precise. Let F' be a finite subset of Z", let S be a
line through the origin, and let .A(S) denote the set of all lines of Euclidean
n-space E" that are parallel to S. Then the (discrete) X-ray of F' parallel to
S is the function XsF : A(S) — Ny = NU {0} defined by

XsF(T)=|FNT| =) xr(x for T € A(S),
z€T

where xr denotes the characteristic function of F'. Note that the integral in
the definition of the standard X-ray transform of some function in comput-
erized tomography reduces to a finite sum here; see [27] for an exposition of
the mathematics of computerized tomography. Of course, for the practical
applications outlined before only the cases n = 2 and n = 3 are relevant.
However, many of the following results hold also in higher dimensions, and
for some of the other applications of discrete tomography mentioned in the
introduction higher dimensions are important.

In the following let 7™ = {F : F C Z" A F is finite} and 8™ = {lin {u} :
u € E™\ {0}}. The elements of F™ are called lattice sets. Quite typically,
we have some additional a priori information available. This is modeled by
considering a suitable subset G of F™. For instance, G may incorporate some
contiguity condition that reflects that the crystalline structures that are to
be reconstructed do not consist of ‘scattered’ atoms but are highly connected.
In most cases it will also be necessary to consider (highly restricted) subsets
T of 8™ since electron microscopic images of high enough resolution can
only be obtained in certain directions. An important subset of S™ is the set

= {lin{u} : ueZ"\{0}} of lattice lines.

Suppose now that Si,...,S, € L™ are m different lines specified before-
hand. Typically, in practice, m is at most 5 since the high energy needed to
produce the images leads to distortions already after a few images are taken.
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In the inverse problem RECONSTRUCTIONg(S1,...,Sm), we are given data
functions

sz(Sz)%No, 1=1,...,m

with finite support and the task is to find a set F' € G whose X-rays Xg, F
coincide with f; for i = 1,...,m. Of course, due to data errors, in practice it
is in general only reasonable to ask for approximate solutions.

To exclude trivial cases we will in the following always assume that m,n €
N with m,n > 2.

It should be mentioned that the whole model can be rephrased in a purely
combinatorial form that relies only on incidences. Hence many of our results
hold for query sets much more general than lines. Further, it is straight
forward to extend the model to ‘polyatomic’ structures so as to deal with
the reconstruction of compounds.

The following sections describe the main results some of which are based
on the additional assumption of exact data. Of course, this assumption is
not realistic for our prime application. It is all right though for some other
applications indicated above. Also, the uniqueness theorems, results on the
computational complexity of the problem, and the development of exact al-
gorithms under this additional assumption lay the ground for the subsequent
parts that deal with the treatment of data errors in practice.

We pointed out already that simulations were performed. For applications
in practice, visualization of the results is another important issue. In fact,
since typically, samples consist of 10® to 10° atoms, visualization tools are
needed that can cope with many orders of magnitude, viewing the object
from some distance in order to detect ‘interesting parts’ on which has to be
zoomed in then.

The main emphasis in the following will be on structural and algorithmic
aspects of the problem. Part of what is following is based on [13]. Figure
3 shows a (small) 3D-sample that has been reconstructed from three of its
X-rays by methods outlined in Sect. 8.

5 Uniqueness Results

A most fundamental question is that of whether the given information (mea-
surements plus a priori knowledge) determines the underlying object uniquely.
Of course, in practice data errors may corrupt solutions hence one has to
resort to approximate solutions. But how sensitive are solutions under data
errors? Clearly, this question, while looking quite innocent, touches all basic
practical problems related to the ill-posedness of the task.

In the present section we are dealing with the issue of uniqueness under
the assumption of exact data. This will give a first glimpse of the underlying
difficulty of the problem; see also [10].

We say that a subset G of the set F™ of all finite lattice sets of R” is
determined by m X-rays parallel to the lines in a subset 7 of S™ if there



448 P. Gritzmann and S. de Vries

Fig. 3. Reconstruction of a 3D-phantom based on X-ray data in directions
(1,0,0),(0,1,0) and (1,1,0). (The front plane is the xy-plane)

exist S1,...,Sm, € T such that the following holds: When Fj, F; € G and
ijFl = XSjF2 for j=1,...,m, then F; = F5.
Here is an utterly trivial result.

With respect to 8™, the class F™ is determined by one X-ray.

Of course, a line in a non-lattice direction either misses Z™ or, if it contains
a lattice point, this lattice point is the unique lattice point on this line.
As simple as it is, this result indicates already the fundamental difference
between discrete and continuous tomography. In fact, it is well-known that
compact sets are not determined by their (continuous) X-rays in finitely
many directions. Hence discrete tomography is not just the discretization
of continuous tomography in the sense that the latter comes from a limiting
process of the former using lattice refinements.

Since sufficiently high resolution in the practical imaging process can only
be achieved in certain main directions of the lattice, for all practical purposes
we have to restrict ourselves to L", actually to small subsets thereof. Then
the situation is less promising.

Let L be a finite subset of L™. Then there are sets in F™ that are not
determined by the their X-rays parallel to the lines in L.
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There are examples that resemble crystals with just ‘a few impurities’,
see [10]. Hence this negative result captures already some of the problems
that can actually be seen in practice. Hence, at best, one can only hope for

somewhat weaker uniqueness results. Here is a simple one due to [28] and
(18].

Let F(m) be the class of sets in F™ of cardinality less than or equal
tom. Let L C L™ with |L| > m + 1. Then the sets in F™(m) are
determined by their X-rays parallel to the lines in L.

The problem with this result in practice is that the typical atomic struc-
tures that have to be reconstructed comprise about 108 to 10° atoms. Hence
an extremely large number of X-ray images would be needed to guarantee
uniqueness. Since the energy needed for the imaging process is very high,
after just very few images the object is, however, corrupted by the radiation.

Here is a uniqueness result of [9] for the restricted class C" of convex
lattice sets, i.e., finite subsets F' of Z" such that F' = Z™ N conv (F'), see [6]
for an extension.

Let L C L™ with [L| > 7 and all lines in L being coplanar. Then
the sets in C™ are determined by X-rays parallel to the lines in L.
Further, there is a set L C L™ with |L| = 4 such that sets in C" are
determined by X-rays parallel to the lines in L.

This result says that the class C" is determined by X-rays parallel to
suitable 4 or any 7 different coplanar lattice lines. As pointed out before, in
practice the coplanarity assumption is satisfied since in essence the micro-
scope is only rotated about one axis.

While this result is quite reassuring, it is only partly practical. There may
be some applications, for instance in colloid physics, but the main demand
for mathematical methods for solving the inverse problems of discrete tomog-
raphy comes from applications that involve the reconstruction of nonconvex
objects. In particular, quality control in certain stages of chip production
involves the detection of ‘bumps’ on the interfacial surface of silicon chips,
hence convexity is not an appropriate condition in this situation.

Another possibility to outsmart the general nonuniquess result is to change
the ‘experimental environment’. The above concept of unique determination
was based on an a priori choice of the lines for taking X-rays. What if we take
the first X-ray in an arbitrary direction but then use the information gained
from analyzing the image in order to determine the next line for taking an
X-ray? For the third direction, then use the complete information given by
the first two X-rays and so on. This approach of successive determination
leads to strong uniqueness results even for higher dimensional X-rays and
even for sets more general than lattice sets, see [9]. In particular

F™ can be successively determined by 2 X-rays.
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Again, while seeming to be satisfactory, this result is not practical at
all. In essence it resembles the first uniqueness result that utilized irrational
slopes. In fact, the second X-ray has to be so ‘skew’ that one cannot produce
HRTEM images of high enough resolution in this direction.

The lack of practically satisfactory uniqueness results even in the absence
of noise indicates already that we need to settle for less. We may ask for the
‘core’ of all solutions, the set of all invariant points that must belong to all
solutions. Equally, we are interested in as large as possible sets of points that
do not belong to any solution. We might also wish to determine a ‘typical’
solution. Of course, such weaker concepts of ‘solution’ do make immediate
sense even in more realistic models that allow data errors.

6 Computational Complexity

Another realistic relaxation of the concept of uniqueness in the previous sec-
tion is to ask only for a certificate of uniqueness for a given concrete instance
of the problem. IL.e., rather than requiring general a priori uniqueness results
we want to check uniqueness of a solution for each instance separately. Hence,
in effect we are asking for an efficient procedure for checking uniqueness
algorithmically. This brings up the algorithmic aspect of discrete tomography
in the context of uniqueness. But it is certainly clear that efficient procedures
for reconstruction are needed anyway.

In this section we begin the discussion of algorithmic features of discrete
tomography by stating results on the computational complexity of the ques-
tions of checking consistency of X-ray data, of determining uniqueness of
given solutions and, of course, of finally reconstructing the objects. In the
following we will focus on the full family F", and the results will only be
stated for that case. However, most of the results hold for a great variety of
other subclasses G as well, [10].

Suppose that Sy,...,S, € L™ are m > 2 lines specified beforehand.
The inverse problem RECONSTRUCTION(SY,...,Sy,) was already defined in
Sect. 4. (Here and in the sequel we will omit the subscript F™.) In the
realm of computational complexity theory decision problems are more ap-
propriate than reconstruction problems. Hence we consider also the problem
CONSISTENCY(Sy, . .., Si) whose instances are just the same, i.e, consist of
given data functions

fi + A(S;) — Ny, i=1,...,m

with finite support, but whose task is restricted to the decision whether a
solution exists (without being obliged to produce one). Similarly, the prob-
lem UNIQUENESS(S1,...,Sy,) asks whether, given a solution F, there exists
another one.

Here are some basic tractability and intractability results. (Of course, one
needs to specify the data structures for the problems more precisely. But this
is easily done; see [11].)
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Let S1,...,8n € L™ be m different lines. If m = 2, the problems
CONSISTENCY(S1, S2), UNIQUENESS(S1,S2) and RECONSTRUCTION
(S1,S2) can be solved in polynomial time. For m > 3, CONSISTENCY
(S1,...,Sm) and UNIQUENESS(Si,...,Sy) are NP-complete in the
strong sense while RECONSTRUCTION(SY, ..., Sy,) is NP-hard.

Proofs of the tractability part of the above result, i.e. for the statement
for m = n = 2, can be found in [4], [32], [29], [30] or [1] while the in-
tractability result is due to [11]. The particular case of the NP-completeness
of CONSISTENCY(S1, S2,53) when Si, S, S35 are the coordinate axes in E3
was previously dealt with in [21, Section 4.1] in the context of statistical
contingency tables.

Let us emphasize that the constructions exhibit intractability already
for solid crystals with ‘just a few impurities’, i.e. for physically reasonable
objects, whence explaining the algorithmic difficulties observed in practice.
Some extensions focusing on nonapproximability results are given in [16].
Some related complexity results can be found in (2], [25] and [10].

7 Integer Programming, LP-Relaxation
and Randomized Rounding

Various approaches have been suggested for dealing with the basic NP-hard
problems in discrete tomography; see [16] for an account of the success and
failure of many of those techniques. In the following we will outline some basic
standard approaches for RECONSTRUCTION(SY, . .., Sp,) that are based on an
integer programming formulation of this problem whose variables correspond
to the possible positions of elements of a solution. The grid G of a given
instance of the problem consists of all (finitely many) lattice points that arise
as points of intersection of m lines parallel to Sy, ..., S, respectively, whose
data function value is nonzero, i.e., ,

G=Z”mﬁ Ur

i=1TeT;

where 71, ..., 7T, denote the supports of the given data functions f1,..., fm,
respectively. The incidences of G and 7; can be encoded by an incidence
matrix A;. If G consist of, say, N points, M; = |T;| for ¢ = 1,...,m, and
M = M; + --- 4+ My, then the incidence matrices A; are in {0,1}Mi*N
and can be joined together to form a matrix 4 € {0,1}*V. Identifying a
subset F' of G with its characteristic vector zr € {0,1}", the reconstruction
problem amounts to solving the integer linear feasibility problem

Az =b, s.t. z € {0,1}",

where b7 = (b7,...,bL) contains the corresponding values of the data func-
tions f1, ..., fm as the right hand sides of Ay, ..., A,,, respectively. Of course,
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the equality constraints model the situation of exact data. In practice, this
problem will be infeasible and should be replaced by some relaxation, e.g.

maxc’z st Az <b, z € {0,1}",

where the objective function  — ¢Tz models some specific goal. The all-
ones vector 1= (1,...,1)T, for instance, is used to maximize the number of
points that can be placed under the data constraints, but other objectives like
the ‘closeness’ to some template etc. can also be facilitated. Approximation
algorithms will be dealt with in Sect. 9.

Since linear programming problems can be solved in polynomial time the
first natural approach is to consider the LP-relazation

maxclz st Az<b0<z< I;

see [7]. Since linear programming codes are available for solving these prob-
lems very efficiently for all sizes of crystalline structures that are relevant
in practice, computation time is not so much of an issue for this heuristic.
However, the solution is usually far from being integer. N. Young studied a
randomized rounding strategy where in some stochastic experiment an atom
is placed at some lattice point with the probability coming from the fractional
solution produced by the LP-solver. This way an approximative solution is
produced. Compared to the heuristics described in Sect. 9 known bounds for
such solutions are, however, in general rather weak.

8 Polytopes in Discrete Tomography

Of course, one cannot expect too tight general a priori error bounds for
polynomial-time approximations in general. For most practical purposes,
however, good bounds generated in the course of the computation for a given
specific instance are good enough. One can run an improvement algorithm on
the given data until the gap between upper and lower bounds is small enough
(or until the allotted time elapsed) and then terminate with an approximate
solution including a performance guarantee for exactly that solution. This
is the underlying idea of branch-and-cut strategies. These are branch-and-
bound methods augmented by cutting plane techniques that we are going to
sketch now.

The ultimate object for studying cutting planes is of course the convex
hull

P(A,b) = conv {z € {0,1} : Az = b}

of all solutions of the problem. In general, even computing the dimension
of the polytope P(A,b) is NP-hard. Also, P(A,b) is only relevant in case of
consistency whence typically irrelevant in the presence of noise in the imaging
process. Hence the submissive

T(A,b) = conv {z € {0,1} : Az < b}
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is much more appropriate and we study the facial structure of that polytope.
As we know that the reconstruction problem is NP-hard, we cannot aim at
a ‘concise’ description of T'(A,b) by means of a system of linear inequalities.
However, appropriate local information is all that is needed; see [3] for a
nontechnical introduction to polyhedral combinatorics.

The algorithm begins by maximizing a suitable objective function, say
z — 17z, over the polytope

T P (A,b) = conv {z € [0,1]" : Az < b}.

This is a task of linear programming that can be handled efficiently. If the
produced vertex z* at which the optimum is attained is integral then the
problem is solved. Otherwise, we try to improve the relaxation TVF(A,b)
of T'(A,b) by adding a suitable inequality that separates z* from T'(A4,b).
Geometrically we intersect TVF(A,b) with an appropriate closed halfspace
that contains T'(A,b) but not z*. Such a halfspace is called a cut and the
approach of successively solving the current LP-relaxation, and adding a cut
if still necessary is called a cutting-plane algorithm. In general, it is not
clear how to find reasonably deep cuts efficiently, and typically some lurking
NP-hardness is connected to this. (Of course, if the original problem was
NP-hard, its intractability cannot magically disappear.) Hence it may be
possible that the current LP-optimum is not integer, yet we do not know
any cut that can be added. Then we need to resort to a branching strategy,
splitting the problem into various others by forbidding certain properties for
some and forcing them for other subproblems. For instance, we may split the
tomographic reconstruction task into two, one where a certain point must be
present, the other, where this point must not be present.

This is the branch-and-cut approach, performed within the branch-and-
bound framework, with cutting planes used for improving the upper bound
at each node of the branching tree.

Of course, it is similarly important to obtain good lower bounds, i.e.
approximate solutions close to the optimum. They can be achieved by running
heuristics in each branching node. We report about theoretical and practical
results for such approximation algorithms in Sect. 9. Primal improvement
strategies based on tests sets were studied in [35], where a general algebraic
framework for improvement strategies in discrete tomography was developed.

The tomography polytopes T'(A,b) have some quite special structure. In
particular, all submatrices of A corresponding to just two directions are totally
unimodular. Since all tomography polytopes are 0-1-polytopes it follows from
[26] that the combinatorial diameter of a tomography polytope is at most N.
This means that, in principle, an edge-path could be found leading from 0 to
a solution of the problem that is rather short.

Further, by means of various preprocessing techniques, the practically
relevant dimensions of these polytopes can be reduced to about 10%. Judged
on the base of the sizes of successfully solved instances of the traveling sales-
man problem this seems encouragingly small. While the traveling salesman
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polytopes correspond to the complete graph on the given number of ‘cities’
and are hence universal, tomography polytopes depend, on the other hand, on
the right-hand side b. So the most important goal of polytopal investigations is
to find large systems of valid inequalities that are facet-defining under week
conditions on the right-hand side. In [34] various classes of facet-defining
inequalities are determined under weak assumptions on b. Usually it is only
necessary to require that all components of b are at least 2 or 3 and that no
X-ray line is completely filled with atoms.

9 Approximation Algorithms

In view of the computational complexity of RECONSTRUCTION(S, ..., Sm)
for m > 3 and in view of the presence of noise in the data b it is reasonable to
study approximation algorithms for this problem. It turns out that in spite of
the underlying NP-hardness some simple heuristics already yield good a priori
approximation guarantees and behave surprisingly excellent in practice.

The problem BEST-INNER-FIT(Si,...,Sy) [BIF| accepts as input data
functions fi,..., fm; its task is to find a set F' € F" of maximal cardinality
such that

Xs. F(T) < fi(T) foralTeT,andi=1,...,m.

This problem and its outer counterpart were studied in [15]. In particular,
various greedy and improvement strategies were fully analyzed. The main
results will now be stated.

The greedy algorithm considers the positions of the grid G of candidate
points in some order and successively fills in points as long as this is possible
without violating the constraints. A simple observation shows that any such
algorithm produces a solution V such that

VI/IF| = 1/m,

where F' is an optimal solution; cf. [24]. The bound is sharp and reflects the
fact that the more data are given, the harder it is for a greedy strategy to
satisfy them. In the experiments it turns out, that |V|/|F| is typically greater
than 0.9 and for large instances greater than 0.96 even for m = 5.

The greedy strategy is very flexible and allows various specifications for
breaking the ties between different choices for points to be placed next. For
example, the X-ray data can be used in a way that is very similar to back-
projection techniques to express preferences. Also connectivity of the solution
(in a sense that is justified by the physical structure of the analyzed material)
can be rewarded. Similarly, information of neighboring layers can be taken
into account in a layer-wise reconstruction of a 3D-object.

In the practical experiments, an algorithm ‘GreedyC’ was particularly
good. Here the insertion order is based on weights that are dynamically



Reconstructing Crystalline Structures 455

assigned to the candidate points and represent the ‘changing importance’
of a point to be included in a solution. The computational part of [15] shows
that GreedyC actually produces solutions with small absolute error. The
average for GreedyC when applied to instances with 250000 variables and
point density of 50% were 21.62, 64.13 and 111.88 missing atoms for 3, 4, 5
directions, respectively.

In order to further improve the performance of such iterative insertion
algorithms, one can apply r-improvements for r € Ny that replace an r-point
subset of a current feasible solution F' C G by r + 1 points of (G \ F) while
maintaining feasibility. (Of course, 0-improvements are just insertions.) A
feasible set F' C G is called t-optimal for the given instance of [BIF] if no
r-improvement is possible for any r < t.

The power of r-improvements can be seen in the next result; (asymptoti-
cally) the a priori performance bound is improved by another factor of 2.

Let t € N, let F' be a solution of a given instance of [BIF] and let
V C G be t-optimal. Then

V 2
% Z ;l - 61'7'1,(t)a

where €, (t) approaches 0 exponentially fast.

In [15] €,(t) is given explicitly and examples are constructed that show
that the bounds are tight. Computationally, it turns out that performing 1-
improvements after GreedyC yields substantial improvements. In fact, in our
computational study the absolute errors go down to 1.07, 23.28, 64.58 for 3,
4, 5 directions, respectively; see [15].

Another approximation algorithm is based on LP-relaxation. It turns out
that by rounding down all fractional components of an optimal vertex of TLF
we obtain a solution of [BIF] with objective value at most M worse than
the optimum. This permits to devise polynomial approximation schemes for
certain classes of instances of [BIF]; see [14] for details.

10 Dealing with Ill-Posedness

The results of Sect. 9 are extremely encouraging in that they show that the
‘combinatorial optimization part’ of the reconstruction problem of discrete
tomography can be handled very efficiently in spite of its computational
complexity. However, there is more to be taken care of. In fact, the rele-
vant measure for the quality of an approximation to a binary image would
of course be the deviation from this image. Hence in order to devise the
most appropriate objective function one would have to know the underlying
solution of the given inverse problem. However, the whole point is of course to
find this unknown solution. Hence one can only consider objective functions
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for measuring the quality of approximation that are based on the given input
data. While a good approximation in this sense is close to a solution in that
its X-ray images parallel to the given lines are close to those of the original
set, the approximating set itself may be off quite substantially. In fact, the
inverse discrete problem is ill-posed and it is precisely this property that
causes additional difficulties. In particular, if the input data do not uniquely
determine the image even a ‘perfect’ solution that is completely consistent
with all given data may be quite different from the unknown real object.

There are various approaches for dealing with nonuniqueness. If we use
the fact, that in our prime application the lines parallel to which the X-
ray images are taken are coplanar, then the objects can be reconstructed
in a layer-by-layer wise process. Suppose that the first layer has been re-
constructed and that it is uniquely determined by the given information (or
known beforehand). Then it may be reasonable to assume, that the second
layer does not vary too much from the first. As pointed out already this can
be modeled easily by an objective function for the second layer that is given
through the incidence vector of the solution for the first layer. In case of just
two X-rays such an approach was suggested by [32].

In [7] an interior point heuristic is proposed for identifying positions that
are uniquely determined by the given data. While the problem of detecting
whether a given subset of G belongs to all solutions for a given instance is
again NP-hard, [11], [16], it is demonstrated in [7] that for certain phantoms
such an approach produces quite a large number of fixed variables. Note that
the problem of deciding whether a subset of a possible solution can actually
be extended to a full solution is again NP-complete, see [11].

Various other techniques for reducing ambiguity are proposed in the study
[17]. In any case, it is still important to utilize additional physical knowledge
and experience in order to be able to produce solutions that are close to the
actual physical objects.

The main problem, however, is that of instability under changes of the
data b. Of course, it is easy to see that the cardinality of a maximum solution
of [BIF] is stable. Also, if b; and by are close and Fi is a solution for the
measurement by, then there is always an approximate solution F; for by that
is close to F in terms of their symmetric difference. However, one can use
constructions of [23] to produce for any given m > 3 and k € N two vectors b;
and by with ||b; —ba||(1) < 2(m—1) such that there are unique but disjoint sets
F,, F, of cardinality at least k whose X-rays coincide with b;, bz, respectively.
Hence the data differs only by a constant, while the symmetric difference
of the optimal solutions can be arbitrarily large. This shows the ultimate
limitations of general theoretic stability results. However, the examples are
very specific and in practice the results are typically quite reasonable in that
they exhibit the main features of the original object. In any case, a general
theory of discrete inverse problem is still to be developed.
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11 Software

The software is build around a module that encapsulates all data-structures
that are specific to questions of discrete tomography. In particular, they
permit to treat the case of arbitrary three-dimensional lattices.

We implemented all the approximation algorithms mentioned in Sect. 9
and several others. Further, we included a branch-and-bound module based
on CPLEX [20].

On top of these modules with data-structures and solver algorithms re-
sides the user-interface. Besides being the command center for the solvers
it provides means for file-input/output and different methods for generating
instances of various types. One such feature is line-convexity in certain di-
rections, used in a first experimental study of large instances that mimic the
etching process applied in silicon wafer production.

Fig. 4. Screenshots of the user interface for a small example. In the upper left the
underlying phantom is depicted. The lower left shows a reconstruction from images
parallel to the lines spanned by (1,0), (0,1), and (1, —2). The symmetric difference
between the phantom (black) and its reconstruction (grey) is printed in the upper
right corner. The main menu of the tool is shown in the lower right
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