
Stability and Instability in Discrete Tomography

Andreas Alpers1, Peter Gritzmann2�, and Lionel Thorens3

1 Zentrum Mathematik, Technische Universität München
Arcisstr. 21, D-80290 München, Germany

alpers@ma.tum.de
2 Zentrum Mathematik, Technische Universität München

Arcisstr. 21, D-80290 München, Germany
gritzman@ma.tum.de

3 tfk GmbH, Baierbrunner Str. 39, D-81379 München, Germany
Lionel.Thorens@tfk-gmbh.de

Abstract. The paper gives strong instability results for a basic recon-
struction problem of discrete tomography, an area that is particularly
motivated by demands from material sciences for the reconstruction of
crystalline structures from images produced by quantitative high resolu-
tion transmission electron microscopy. In particular, we show that even
extremely small changes in the data may lead to entirely different solu-
tions. We will also give some indication of how one can possibly handle
the ill-posedness of the reconstruction problem in practice.

1 Introduction

The field of discrete tomography deals with the retrieval of information about
discrete objects from typically noisy data. The given data describe (possibly
weighted) incidences of the object with query sets. Typical query sets are lines,
planes, or various kinds of windows. The field’s numerous applications range
from scheduling problems, [GGP00], questions of data security, [IJ94], tasks in
image processing, [SG82] and many others, [Rys78], [FLRS91], to the question of
the reconstruction of crystalline structures from few of their images under high
resolution transmission electron microscopy, [SKB+93], [KSB+95], [GdV01]. In
the present paper we focus on the question of ill-posedness of the latter discrete
inverse problem.

The quantitative analysis of high resolution transmission electron microscopic
images of a given crystal yields essentially the information how many atoms of
the given object interact with sharply focused electron beams in a given viewing
direction, [SKB+93], [KSB+95]; see also [GdV01]. So, in principle, we are given
the information how many atoms there are on each line parallel to a given small
number of directions. To be more precise, let n ∈ N, n ≥ 2, let F be a finite
subset of Z

n, let S be a line through the origin, and let A(S) denote the set
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of all lines of Euclidean n-space E
n that are parallel to S. Then the (discrete)

X-ray of F parallel to S is the function

XSF : A(S) → N0 = N ∪ {0}

defined by
XSF (T ) = |F ∩ T | =

∑
x∈T

1lF (x),

for each T ∈ A(S). In the following let Fn = {F : F ⊂ Z
n ∧ F is finite} and

Ln =
{
lin {u} : u ∈ Z

n \{0}}. The elements of Fn and Ln are called lattice sets
and lattice lines, respectively. Quite typically, we have some additional a priori
information available. This can be modeled by considering suitable subsets G of
Fn.

Given m different lattice lines S1, . . . , Sm, central questions in discrete to-
mography are as follows. What kind of information about a finite lattice set F
can be retrieved from its X-ray images XS1F, . . . , XSmF? How difficult is the
reconstruction algorithmically? How sensitive is the task to data errors?

The surveys [Gri97], [GdV01] and the book [HK99] give an overview of the
known results dealing with the first two questions and their relatives. (The sur-
veys also include some further explanation for the restriction made here, give
examples for relevant classes G and describe the imaging process in more detail.)

In the present paper we focus on the stability and instability of the recon-
struction task. Of course, it is clear that small changes in the data can produce
inconsistency. But this is not really a problem. We will, however, prove the fol-
lowing two theorems which show that a small change in the data can lead to a
dramatic change in the image, already in the plane. Here the data is given in
terms of functions

fi : A(Si) → N0, i = 1, . . . ,m

with finite support, hence the difference of two data functions with respect to
the same line S is a function f : A(S) → Z whose size is measured in terms of
its 
1-norm

‖f‖1 =
∑

T∈A(S)

|f(T )|.

Theorem 1. Let m ∈ N, m ≥ 3, S1, . . . , Sm ∈ L2 and α ∈ N. Then there
exist F1, F2 ∈ F2 with the following properties:

F1 is uniquely determined by XS1F1, . . . , XSmF1;
F2 is uniquely determined by XS1F2, . . . , XSmF2;∑m

i=1 ‖XSiF1 −XSiF2‖1 = 2(m− 1);
|F1| = |F2| ≥ α;
F1 ∩ F2 = ∅.

For the case of three directions Theorem 1 shows that even if the X-ray data
coincide on all but four single lines the corresponding solutions may still be
completely disjoint. The next result shows that this kind of instability persists
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even if we weaken our measure of the ‘distance’ from F1 to F2 by replacing
|F1 � F2| by the affinely invariant difference

δaff(F1, F2) := min{|F1 � h(F2)| : h is an affine transformation}.
For practical purposes the special case of translations is particularly interesting.
It refers to the situation that we regard an image the same no matter where we
look at it. As a generalization of Theorem 1 we show the following instability
even for the much weaker affinely invariant difference.

Theorem 2. Let m ∈ N with m ≥ 3 let S1, . . . , Sm ∈ L2 be m different lines,
and let α ∈ N. Then there exist F1, F2 ∈ F2 with the following properties:

F1 is uniquely determined by XS1F1, . . . , XSmF1;
F2 is uniquely determined by XS1F2, . . . , XSmF2;∑m

i=1 ‖XSiF1 −XSiF2‖1 = 2(m− 1);
|F1| = |F2| ≥ α;
δaff(F1, F2) ≥ |F1|.

Our two main theorems will be proved in Section 2. Section 3 will contain a
rather weak stability result and some remarks towards a possible regularization of
the ill-posed discrete inverse problem with a view towards our prime application
in semi-conductor industry.

2 Proof of Theorems 1 and 2

We will now prove our main theorems. In [KH98], [KH99] a construction is
given showing that whenever m ≥ 3 and S1, . . . , Sm ∈ L2 there exist arbitrarily
large irreducible switching components. Our construction can be regarded as a
modification of a generalization of this result. In the following we are not aiming
at smallest possible sets F1, F2 but try to give the most transparent construction
that covers both, Theorem 1 and Theorem 2 simultaneously.

Throughout this section, letm ≥ 3 and S1, . . . , Sm ∈ L2 bem different lattice
lines. Let v1, . . . , vm ∈ Z

2 such that Si = lin {vi} for i = 1, . . . ,m. We may as-
sume without loss of generality that v1 = (1, 0)T and v2 = (0, 1)T ; see [GGP99].

2.1 Some Technical Lemmas on Polynomials

Our construction given in Subsection 2.2 is based on two functionals. Rather
than giving it in all possible generality we will use two specific polynomials p
and q here, defined by

p(t) = t5 + t4 + t3 and q(t) = t6 + t5 + t4.

In addition, we use a parameter ω ∈ N that will be fixed later. The functionals
are then of the form

fω(x) = ωp(x) and gω(x) = q(x/ω).

Let us begin with a simple remark.
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Remark 3. For any ω ∈ N,

(a) fω(N), gω(ω · N) ⊂ N;
(b) fω and gω are strictly increasing on [0,∞[ whence invertible;
(c) fω(t) > g−1

ω (t) for every t ∈]1,∞[.

Next we prove auxilliary results on certain functional equations involving fω

and gω.

Lemma 1. Let α, β, γ, δ, σ, τ ∈ R such that αδ − βγ �= 0.

(a) Then the equation

αt+ βfω(t) + σ = gω

(
γt+ δfω(t) + τ

)
holds for at most 30 different values of t.

(b) The equation
fω

(
αt+ βfω(t) + σ

)
= γt+ δfω(t) + τ

holds for all t ∈ R if and only if α = δ = 1 and β = γ = σ = τ = 0.
Otherwise it holds for at most 25 different values of t.

(c) The equation
αgω(t) + βt+ σ = gω

(
γgω(t) + δt+ τ

)
holds for all t ∈ R if and only if α = δ = 1 and β = γ = σ = τ = 0.
Otherwise it holds for at most 36 different values of t.

Proof. To prove assertion (a) just note that deg (gω) = 6 > deg (fω) = 5 ≥ 2
implies that the equation cannot hold as an identity. Hence there are at most
deg (fω) · deg (gω) many solutions.

Similarly, if (b) holds identically, β = 0, and we have the equation

fω

(
αt+ σ

)
= γt+ δfω(t) + τ.

Taking the k th derivative on both sides for k = 2, 3, 4, 5 yields the condition

αkf (k)ω

(
αt+ σ

)
= δf (k)ω (t).

The equation for k = 5 yields α5 = δ, which implies δ = 1 if α = 1. Suppose that
α �= 1. By choosing t0 = σ/(1−α) �= 1/5 we obtain α5 = α4 = δ. For t0 = 1/5 it
follows that f (4)ω (t0) = 0, but f (2)ω (t0) �= 0. Thus, α5 = α2 = δ. In any case, this
implies α = δ = 1. Taking the fourth derivative shows now that σ = 0. Plugging
t = 0 into the original equation yields τ = 0, and finally γ = 0.

Of course, (c) follows similarly. ��
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2.2 The Basic Construction

Now let k ∈ N such that 2m−2·k > α, where α is the positive integer of Theorem 1
or Theorem 2. For the proof of Theorem 2 we may assume that α ≥ 22(m+2). We
begin by constructing two lattice sets Um and Vm with |Um|= |Vm| = 2m−2·k > α
that are tomographically equivalent with respect to S1, . . . , Sm i.e., they have the
same X-rays parallel to S1, . . . , Sm.

Let ω ≥ 2, set
λ1 = gω

(
fω(2)

)
,

and define
λi+1 = gω

(
fω(λi)

)
for i = 2, . . . , k − 1.

Remark 4. (a) The sequence (λi)i=1,...,k is independent of the specific choice
of ω;

(b) λ1, . . . , λk ∈ N

(c) λ1 < · · · < λk.

Now let

Bk−1 =
{(

λi

fω(λi)

)
: i = 1, . . . , k − 1

}
, Bk = Bk−1 ∪

{(
λk

fω(λk)

)}

and

Ck−1 =
{(

λi+1

fω(λi)

)
: i = 1, . . . , k − 1

}
, Ck = Ck−1 ∪

{(
λ1

fω(λk)

)}
.

Observe that the points of Ck−1 are all of the form (t, g−1
ω (t))T .

The two sets Bk and Ck are tomographically equivalent with respect to S1
and S2. The rest of the construction will depend on suitably chosen positive
integers θ3, . . . , θm ∈ N which will be fixed later. For each additional line in L2,
the sizes of the sets are doubled. For j = 3, . . . ,m we define

U2 = Bk V2 = Ck

Uj = Uj−1 ∪ (Vj−1 + θjvj) Vj = Vj−1 ∪ (Uj−1 + θjvj).

Clearly, we have the following properties.

Remark 5. For each ω the integers θ3, . . . , θm can be chosen suitably large, so
that Um ∩ Vm = ∅, |Vm| = |Um| = 2m−2 · k, and Um and Vm are tomographically
equivalent with respect to S1, . . . , Sm.

The required sets F1 and F2 are now constructed by removing a point of Um

and Vm each. In fact, we choose points z0 ∈ Um and z1 ∈ Vm that lie on the
same line parallel to S1 and set

F1 = Um \ {z0}, F2 = Vm \ {z1}.
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Note that the construction shows that

F1 ∩ F2 = ∅ and |F1| = |F2| = 2m−2 · k − 1.

Clearly,
m∑

i=1

||XSiF1 −XSiF2||1 = 2(m− 1).

Our theorems will follow if we can show that the integers ω and θ3, . . . , θm

can be chosen in such a way that no other finite lattice set is tomographically
equivalent to Um and Vm with respect to S1, . . . , Sm, and Um and Vm are such
that even affine transformations cannot place them ‘too closely’ on top of each
other.

In fact, from the former property which will be derived in Lemma 3 it follows
that F1 is uniquely determined by its X-rays parallel to S1, . . . , Sm. Indeed, if
F ∈ F2 is tomographically equivalent to F1, then z0 �∈ F , and F ∪{z0} is tomo-
graphically equivalent to Um. Since F ∪{z0} �= Vm we must have F ∪{z0} = Um

hence F1 = F . Analogously, F2 is uniquely determined by XS1F2, . . . , XSmF2.

2.3 Properties of Um and Vm

Now we derive some crucial properties of Um and Vm for appropriate choices
of the parameters. First note that every set that is tomographically equivalent
to Uj or, what is the same, to Vj is contained in the grid of Uj

Gj = Z
2 ∩

j⋂
i=1

⋃
x∈Uj

(x + Si),

for j = 2, . . . ,m. Of course,

G2 = {(λi, fω(λj))T : i, j = 1, . . . , k}.

Lemma 2. The integer ω can be chosen in such a way that there is no line
parallel to S3, . . . , Sm which intersects G2 in more than one point.

Proof. Suppose there are indices i1, i2, j1, j2 ∈ {1, . . . , k} with i1 �= i2, j1 �= j2,
and v ∈ {v3, . . . , vm}, and there exists a real µ such that

(
λi1

fω(λj1 )

)
−

(
λi2

fω(λj2)

)
= µv.

By Remark 4 (a) this equation is equivalent to

(
λi1 − λi2 0 −ν1

0 p(λj1 )− p(λj2 ) −ν2
) 

 1
ω
µ


 = 0,
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where v = (ν1, ν2)T . The rank of the 2 × 3 matrix is 2, hence its nullspace
is of dimension 1. On the other hand, for any two different numbers ω1, ω2
and arbitrary µ1, µ2, the vectors (1, ω1, µ1)T and (1, ω2, µ2)T are always linearly
independent, whence two such vectors cannot be in the nullspace simultaneously.
Taking all possible quadruples of indices i1, i2, j1, j2 ∈ {1, . . . , k} leads then to
the union of k2(k− 1)2 one-dimensional subspaces that we have to avoid. Hence
among any set of k2(k−1)2+1 different values of ω there must be one for which
none of the vectors (1, ω, µ)T lie in any of the nullspaces. ��

Note that the result of Lemma 2 is invariant with respect to translations
of G2. In the following we assume that ω is fixed according to Lemma 2. The
next lemma implies Theorem 1 already.

Lemma 3. The integers θ3, . . . , θm can be chosen large enough such that no
other finite lattice set is tomographically equivalent to Um and Vm with respect
to S1, . . . , Sm.

Proof. Since Gm is the grid of Um and Vm we clearly have Um ∪ Vm ⊂ Gm.
Setting G(2) = G2, it is also clear that we can choose θ3, . . . , θm large enough
such that

Gi ⊂ G(i) = G(i−1) ∪ (θivi +G(i−1))

for i = 3, . . . ,m. For a formal proof see [GGP99, Proof of Lemma 3.1].
The assertion will now follow if we make sure that Gm = Um ∪ Vm since the

only two subsets of Um∪Vm that are tomographically equivalent to Um or Vm are
precisely these two sets. We will show that for each point g ∈ G(m)\(Um∪Vm) the
line g+S3 does not intersect Um∪Vm. So, let g ∈ G(m) \ (Um∪Vm) and suppose
g + S3 intersects Um ∪ Vm. Of course, Um ∪ Vm consists of disjoint translates
of U2 ∪ V2, with translation vectors of the form

∑m
i=3 δiθivi with δ1, . . . , δm ∈

{0, 1}. Let t1 be such a translation vector with g ∈ t1 +G2. By our assumption
there is another such translation vector t2 with (g + S3) ∩ (t2 + G2) �= ∅. By
Lemma 2 no line parallel to S3 intersects t1 +G2 and t2 +G2 in more than one
point each. Hence these points must be g and (t2− t1)+g. But g �∈ t1+(U2∪V2)
hence (t2 − t1) + g �∈ t2 + (U2 ∪ V2). This contradiction concludes the proof of
the assertion. ��

2.4 The Affinely Invariant Difference

In order to prove Theorem 2 we need to study the power of affine transformations
on F2 to reduce the symmetric difference to F1. The next result is a corollary to
Lemma 1.

Lemma 4. Let A ∈ R
2×2 be nonsingular, let a ∈ R

2, and let h be the affine
transformation defined by h(x) = Ax + a. Then

(a) |Bk ∩ h(Ck)| ≤ 31;
(b) |Bk ∩ h(Bk)| ≥ 26 ⇒ h ≡ id;
(c) |Ck ∩ h(Ck)| ≥ 39 ⇒ h ≡ id.
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Proof. Since the one point in Ck \ Ck−1 is of slightly different form than the
points of Bk ∪Ck−1 we always count it as ‘matched’. Then the assertion follows
easily from Lemma 1. ��

Lemma 4 shows already that the ‘overlay’ power of affine transformations is
rather limited. In fact, suppose that A is not the unit matrix i.e., h is not just a
translation. If we use again that Um∪Vm consists of disjoint translates of U2∪V2
with translation vectors of the form

∑m
i=3 δiθivi with δ1, . . . , δm ∈ {0, 1}, and of

course that U2 = Bk and V2 = Ck then Lemma 4 implies that

|h(Um ∪ Vm) ∩ (Um ∪ Vm)|
≤ 2m−2 · 2m−2 ·

(
|h(U2) ∩ U2|+ |h(U2) ∩ V2|+ |h(V2) ∩ U2| + |h(V2) ∩ V2|

)
≤ 125 · 22m−4 ≤ 125 · α · 2−8 ≤ 1

2α ≤ 1
2 |F1|.

So it remains to study the effect of translations. To do this appropriately we
require one more property of the numbers θ3, . . . , θm. It is most easily stated
with the help of a geometric functional, the breadth bv(S) of a planar point set S
in a given direction v ∈ R

2, ‖v‖2 = 1; it is defined by

bv(S) = max
x∈S

vTx−min
x∈S

vTx.

We choose the integers θ3, . . . , θm so that

‖θivi‖2 > bv̂i(Ui−1 ∪ Vi−1) for i = 3, . . . ,m,

where v̂i = vi/‖vi‖2. Of course, this choice does not interfere with the previous
requirements.

Now let t be a translation vector. Suppose first that

vT
mt ≥ bv̂m(Um−1 ∪ Vm−1).

This means on the one hand that t has the capability of moving a point of Um−1∪
Vm−1 into θmvm +

(
Um−1 ∪ Vm−1

)
. But on the other hand

(
Um−1 ∪ Vm−1

) ∩ (
t+

(
Um−1 ∪ Vm−1

))
= ∅.

Hence ∣∣∣(Um ∪ Vm

) � (
t+

(
Um ∪ Vm

))∣∣∣ ≥ |F1|,
which is the assertion. So we can assume that(

Um ∪ Vm

) � (
t+

(
Um ∪ Vm

))

=
((

Um−1 ∪ Vm−1

) ∩ (
t+

(
Um−1 ∪ Vm−1

)))
∪

∪
((

θmvm +
(
Um−1 ∪ Vm−1

)) ∩
(
t+ θmvm +

(
Um−1 ∪ Vm−1

)))
.

Hence by an induction argument we can reduce the assertion to Bk ∪Ck, and it
suffices to show that |Bk ∩ (t+Ck)| ≤ 1

2 |Bk|. This follows from Lemma 4, which
concludes the proof of Theorem 2.
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3 Dealing with Instability in Practice

The approximation algorithms given in [GdVW00] show that the ‘combinato-
rial optimization part’ of the reconstruction problem of discrete tomography can
be handled very efficiently in spite of its computational complexity. In particu-
lar, [GdVW00] considered the problem Best-Inner-Fit(S1, . . . , Sm) [BIF] that
accepts as input data functions f1, . . . , fm, and its task is to find a set F ∈ Fn

of maximal cardinality such that

XSiF (T ) ≤ fi(T ) for all T ∈ A(S) and i = 1, . . . ,m.

The results show that in spite of the underlying NP-hardness some simple heuris-
tics already yield good a priori approximation guarantees and behave surprisingly
well in practice. In fact a dynamic greedy/postprocessing strategy actually pro-
duced solutions with small absolute error; for instances with 250000 variables
and point density of 50% an average of +only 1.07, 23.28, 64.58 atoms were
missing for 3, 4, 5 directions, respectively.

As we have seen the reconstruction task of discrete tomography is intrinsically
instable. There is however the following (rather weak) stability result.

Lemma 5. Let F1 ∈ Fn and let f1, . . . , fm be given (generally noisy) data func-
tions. Then there exists a finite lattice set F2 with XSiF2(T ) ≤ fi(T ) for all
T ∈ A(S) and i = 1, . . . ,m such that

|F1 � F2| ≤
m∑

i=1

‖fi −XSiF1‖1.

Proof. F2 is constructed from F1 by deleting at most
∑m

i=1 ‖fi−XSiF1‖1 points
in order to satisfy the constraints XSiF2(T ) ≤ fi(T ) for all T ∈ A(S) and
i = 1, . . . ,m. ��

Lemma 5 shows in particular that under data errors the cardinality of a
solution behaves in a stable way. Also it shows that even with noisy data there
is always a solution of [BIF] that is ‘close’ to the original object in terms of the
symmetric difference. (Of course, it is not even clear how to recognize a ‘good’
solution if the original image is not known, let alone how to find one.) In view of
Theorem 1 this means that it is generally not a good strategy in practice to try
to satisfy the measured constraints as well as possible. In fact, Theorem 1 shows
that the ‘perfect solution’ for the noisy data may be disjoint from the original
image while by Lemma 5 a ‘nonperfect solution’ may be quite close.

In any case, it is important to utilize any additional physical knowledge and
experience available in order to actually produce solutions that are close to the
original physical objects. For the task of quality control in semi-conductor in-
dustry we can, e.g., utilize the fact that we know the ‘perfect’ object in advance.
Suppose we are given a few images under high resolution transmission electron
microscopy of parts of a silicon wafer that carries an etched pattern of some
electrical circuit. Our instability results seem to suggest that there is not much
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hope for a reasonably good reconstruction of the object from these measure-
ments since all physical measurements are noisy. On the other hand, we do not
need to reconstruct the object ‘from scratch’. We know what the object would
look like if the production process had been exact and the measurements were
correct. Hence it seems reasonable to measure the distance from the theoretical
perfect chip. This means we are trying to reconstruct a finite lattice set approx-
imately satisfying the (noisy) X-ray measurements so that its distance from the
perfect template is as small as possible. If there does not exist a good enough
approximation, we know that the chip is faulty. But if there exists a good enough
approximation, all we know is that the data from high resolution transmission
electron microscopy is not sufficient to rule out the possibility that the chip is
correct. Let us look at the following simple example of two images F1 and F2
depicted in Figure 1.

The corresponding grid G has the size 40 × 40; whence the reconstruction
problem involves 1600 0-1-variables. The sets F1 and F2 are depicted as fat
black points (•); the empty places are represented as small dots (·). Template F1
is regarded as proper, while template F2 is faulty since the conductor path is
blocked. Now we consider X-rays parallel to the lines S1 = lin {(1, 0)T}, S2 =
lin {(0, 1)T} and S3 = lin {(1, 1)T }. Note that F1 and F2 are uniquely determined
by their X-rays parallel to these lines.

However, as shown in Figure 2 there are finite lattice sets F ′
1 and F ′

2 with

−1 ≤ XSiF1(T )−XSiF
′
1(T ) ≤ 1 for each T ∈ A(Si), i = 1, 2, 3,

and −1 ≤ XSiF2(T )−XSiF
′
2(T ) ≤ 1 for each T ∈ A(Si), i = 1, 2, 3
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(b) F ′
2

Fig. 2. Reconstructions of F1 and F2, respectively, based on data with error at
most one on each line

that do not share the same ‘conductor path structure’. Also, F ′
1 and F ′

2 look
similar and it does not seem justified to distinguish a ‘proper chip’ from a ‘faulty’
one based on this reconstruction. But after all, the goal is only to see whether
there is a chance to detect faulty chips even in the presence of considerable
data errors. And in fact, if the error on each X-ray line is reasonably small such
information can be derived. Let ε ∈ N, and suppose that for j = 1, 2 the data
functions f j

1 , f
j
2 , f

j
3 are measured with

−ε ≤ XSiFj(T )− f j
i ≤ ε for each T ∈ A(Si), i = 1, 2, 3, j = 1, 2.

We pursue an approach motivated by Lemma 5, choose some δ ∈ N and deter-
mine two sets F 1 and F 2 that minimize the symmetric difference to F1 under
the constraints that

−δ ≤ XSiF
j(T )− f j

i ≤ δ for each T ∈ A(Si), i = 1, 2, 3, j = 1, 2.

Clearly, if δ ≥ ε, the set F 1 coincides with the template F1. Further, if

δ + ε < max
i=1,2,3

‖XSiF1 −XSiF2‖∞,

then F 2 �= F1. In our specific example this is for instance the case when δ = ε = 3.
The question is whether this trivial observation which is only based on the ‘local’
information of what happens on single X-ray lines can be substantially extended
when all the given information is taken into account and if the error is regarded
as random variable with some given underlying distribution. Also, what can be
said for real-world data? These questions will require further theoretical investi-
gations and an extended experimental study for the above and other conceivable
regularization techniques.
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1999. 177

[KSB+95] C. Kisielowski, P. Schwander, F. H. Baumann, M. Seibt, Y. Kim, and
A. Ourmazd. An approach to quantitative high-resolution transmission
electron microscopy of crystalline materials. Ultramicroscopy, 58:131–155,
1995. 175

[Rys78] H. J. Ryser. Combinatorial Mathematics, chapter 6, Matrices of zeros and
ones. Mathematical Association of America and Quinn & Boden, Rahway,
NJ, 1963, pp. 61–78. 175

[SG82] C. H. Slump and J. J. Gerbrands. A network flow approach to reconstruc-
tion of the left ventricle from two projections. Comput. Graphics Image
Process., 18:18–36, 1982. 175

[SKB+93] P. Schwander, C. Kisielowski, F. H. Baumann, Y. Kim, and A. Ourmazd.
Mapping projected potential, interfacial roughness, and composition in
general crystalline solids by quantitative transmission electron microscopy.
Phys. Rev. Lett., 71(25):4150–4153, 1993. 175


	Stability and Instability in Discrete Tomography
	Introduction
	Proof of Theorems 1 and 2
	Some Technical Lemmas on Polynomials
	The Basic Construction
	Properties of Um and Vm
	The Affinely Invariant Difference

	Dealing with Instability in Practice


