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Abstract— While teleoperation provides a possibility for a
robot to operate at extreme conditions instead of a human,
teleoperating a robot still demands a heavy mental workload
from a human operator. Learning from demonstrations can
reduce the human operator’s burden by learning repetitive
teleoperation tasks. However, one of challenging issues is that
demonstrations via teleoperation are less consistent compared
to other modalities of human demonstrations. In order to
solve this problem, we propose a learning scheme based on
Dynamic Movement Primitives (DMPs) which can handle less
consistent, asynchronized and incomplete demonstrations. In
particular we proposed a new Expectation Maximization (EM)
algorithm which can synchronize and encode demonstrations
with temporal and spatial variances, different initial and final
conditions and partial executions. The proposed algorithm is
tested and validated with three different experiments of a peg-
in-hole task conducted on 3-Degree of freedom (DOF) master-
slave teleoperation system.

I. INTRODUCTION

Imitating a task through observations is inherently easy
for humans, but can surprisingly be challenging for robots.
Generally a robot has to be pre-programmed for performing
different tasks. A slight change in a task or the environment
can require re-programming of the robot, which can be a
tedious and a time consuming process [1]. Learning from
Demonstrations (LfD), also known as imitation learning,
provides an intuitive way to readily teach new skills to the
robots [1], [2]. In LfD, instead of programming, a task is
learned from human demonstrations.

The most common teaching modalities for providing
demonstrations in LfD include (i) vision based human mo-
tion tracking and (ii) kinesthetic teaching. In vision based
motion tracking, kinematics information is extracted by a
motion tracking system, which is then mapped to a physical
model that resembles the human, for instance a humanoid
robot [3] [4]. On the other hand, kinesthetic teaching involves
providing physical action as a learning paradigm where
human moves robots body physically to demonstrate the
skill, ruling out the correspondence problem [5] [6]. It is
accepted as a more intuitive way of teaching simple tasks.

However, learning paradigm based on kinesthetic teach-
ing is not feasible for certain applications where human

*This work is partially supported by the German Research Foundation
(DFG) and the Industrial Strategic Technology Development Program
(10069072) funded by the MOTIE, Korea

1 Affan Pervez and Dongheui Lee are with Department of Electrical and
Computer Engineering, Technical University of Munich, Germany. Email:
{affan.pervez, dhlee}@tum.de

2Arslan Ali and Jee-Hwan Ryu are with Department of Mechanical
Engineering, Korea University of Technology and Education, Korea. Email:
{arslanali, jhryu}@koreatech.ac.kr

(a) (b)

Fig. 1: (a) Kinesthetic teaching by directly holding the robot,
(b) Teleoperation by using 3-DOF haptic device

demonstrator cannot be co-located with a robot, for instance
nuclear waste handling, underwater manipulation and space
applications. In those cases, teleoperation often can be con-
sidered as the only way for operating a robot located at
such inaccessible places [7], [8]. There were several studies
which use LfD with teleoperation. One of the earliest work
was presented in 1993 which illustrates the skills learning
using Hidden Markov Models (HMMs) [9]. In [10], NASA
space humanoid robot learned how to perform low level
task “reaching and grasping”, whereas high-level commands
were given by the operator. Rozo et al. [11], [12] used
Gaussian Mixture Model (GMM) and Gaussian Mixture
Regression (GMR) for teaching a rigid-container emptying
skills to a robot via a haptic interface. Other work considered
encoding of force/torque signal with large time discrepancies
by using a GMM with temporal information encapsulated by
a HMM [13].

Even though there have been several prior researches on
learning via teleoperation, but most of them were focused on
applying Lfd approaches developed for kinesthetic teaching,
undermining the need to address the problems encountered
during teleoperation. To the best of our knowledge, there has
been no research on developing learning from demonstration
approach which can handle inconsistent demonstration with
large spatial and temporal variations, demonstration with
different starting/ending phases and partial demonstrations
of the task. In this paper, we propose a novel approach
for handling the unique features encountered during tele-
operation. Our approach is based on Dynamic Movement
Primitives (DMP) for learning the demonstrations provided
by an operator during teleoperation. As opposed to other
conventional approaches which use Dynamic Time Wrapping
(DTW) as a preprocessing step, our approach aligns and
encode the motion data simultaneously and incorporates the
temporal and spatial variance presented by using an EM
algorithm [14]. In our approach separate DMPs are learned



for each degree of freedom, while the forcing terms of the
DMPs are encoded with a GMM.

II. MOTIVATION

Comparison studies between interaction by kinesthetic
teaching and teleoperation have shown that users found
kinesthetic teaching easier to use, faster for providing the
demonstrations, and as a preferred way of demonstrating a
task [15], [16]. These studies also concluded that kinesthetic
teaching leads to more successful demonstrations in a shorter
time duration. By using the setup shown in the Figure 1, we
asked an operator to demonstrate four cycles of the peg-in-
hole task. Figures 2a and 2b illustrate the demonstrations
of the peg-in-hole task recorded via kinesthetic teaching and
teleoperation. It can be seen in Figures 2c and 2d that the
demonstrations obtained using kinesthetic teaching are much
more consistent as compared to the demonstrations recorded
via teleoperation. Also trajectories obtained via teleoperation
have high spatial-temporal variations.

Apart from the higher level of spatial-temporal variations,
demonstrations via teleoperation can pose additional chal-
lenges. For instance due to the symmetric nature of the peg-
in-hole task, a change in camera position can cause a user
to lose track of a single starting region while providing the
demonstrations. This can result in different initial and final
configurations for different demonstrations. Also an operator
might prematurely terminate his motion due to communi-
cation issues or a sensor failure, yielding an incomplete
demonstration. All these issues make it challenging to apply
existing LfD techniques directly for teleoperation.

Most of the existing LfD literature for teleoperation fo-
cuses on DTW [17] based motions alignment before encod-
ing the demonstrations. DTW is an algorithm which measure
the similarities between two temporal signals executed at
different speeds. DTW does not provide a good solution
to the aforementioned problems because it assumes same
initial and final state of a signal, executed at different
speeds. However, DTW cannot be used if this constraint
is not fulfilled. Another limitation of GMM/HMM based
LfD approaches for teleoperation is that unlike nonlinear
dynamical system based approaches, such as DMP [18], the
HMM/GMM based encoding with GMR based trajectory
generation does not consider the current position of the
end-effector when generating the trajectories [19], [20]. The
above mentioned reasons raise a scalability issue, when
applying LfD approaches developed for kinesthetic teaching
to teleoperation. Hence there is a need to develop LfD
approaches for handling inconsistencies encountered during
demonstrations via teleoperation.

III. TELEOPERATION SKILLS LEARNING
A. Dynamic Movement Primitive

DMP is a way to learn motor actions. It can encode
discrete as well as rhythmic movements. A separate DMP
is learned for each considered degree of freedom. In DMP
framework a canonical system acts as a clock. For syn-
chronized motion of multiple DOFs, each DMP is driven
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Fig. 2: Four demonstrations recorded via kinesthetic teaching
and teleoperation for the peg-in-hole task (a) Recorded
trajectories via kinesthetic teaching (b) Recorded trajectories
via teleoperation (c) Motion in y-axis using kinesthetic
teaching (d) Motion in y-axis using teleoperation.

by a common clock signal. The canonical system for a
discrete DMP is s = —7ags, where the parameter s is
initialized to one and it monotonically decays to zero, 7 is
the temporal scaling factor while «; determines the duration
of the movement. For a rhythmic DMP, § = 7tw with the
parameter s initialized to zero and increases to 27 at the
end of a cycle, and w determines the phase rate of change.
The canonical system drives the second order transformed
system:

Ta(B:(9 —x) —v) + TaF(s)

T = TV

where ¢ is either a goal position for discrete DMPs or a mean
position for thythmic DMPs, a is an amplitude modifier term
which is usually set as g — x¢ with x( being the starting
position, while the parameters o, and [, are set such that
the second order system is critically damped. The learning
of forcing term F(s) allows arbitrarily complex movements.

B. DMP learning with GMM/GMR

In the original DMP, locally weighted regression technique
is applied in order to learn the nonlinear forcing term F(s).
In this work, we encode the forcing term with GMM and
after learning the forcing term will be synthesized using
GMR. When human demonstrations are collected, each
demonstration trajectory is linearly re-sampled to have n
number of samples. For each trajectory, the required forcing
terms are calculated by rearranging the terms in the DMP
equation:
F(s) = v/(ra) — (az(Bz(g — ) — v))/a. Then, we have
a sequence of a pair, consisting of position z and forcing
terms JF(s). Assuming that we know the corresponding phase
variable s, now we encode the joint distribution of these



variables by using a GMM. During the reproduction phase,
GMR is used for predicting the forcing term for a given
phase signal s, which is plugged into the DMP equation to
get the acceleration command. A separate controller is used
for executing the motion.

C. EM algorithm for learning from asynchronous data

As discussed earlier, the demonstrations can have temporal
variations and thus we cannot attach a phase signal with
each trajectory. In order to handle such inconsistent and
asynchronized teleoperated demonstration trajectories, we
first separate the demonstrations into two parts: one reference
trajectory and the rest. The reference trajectory should be a
full execution of the motion and it is recommend to be the
minimum jerk trajectory.

Assume that there are k demonstration trajectories and
the first demonstration is the reference trajectory. From
the demonstrations, we have two data sets. The first data
set contains only the reference trajectory, its forcing terms
and the concatenated phase signals. We call it a complete
data (X©°™). The second data set contains the remaining
trajectories and their forcing terms. However their phase
variables s are unknown. Thus, it is termed as incomplete
data (X/™“°™) The missing phase signals in the second data
set will be estimated by synchronizing this data set with the
first data set 1terat1vely durlng EM We will use the notation

C"m and XI nCom (g denote i column in complete (X Com)
and 1ncomplete data sets (X/™C°™) respectively.
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Now we fit a GMM to the data sets by using an EM algo-
rithm. The GMM parameters and the missing phase signals
in each trajectory should be estimated. These parameters are
initialized and are then iteratively updated during EM. The
values of phase signals are initialized as a linearly increasing
value from 0 to 27 in each trajectory for a rhythmic DMP
and an exponentially decreasing value from 1 to O in each
trajectory for a discrete DMP. Now we have n data-points
in complete data set and ny = n * (k — 1) data-points in
incomplete data set.

1) E-step: First we separate the variables into two types,
missing (miss) denoting the phase variable and observable
(Obs) denoting all variables other than the phase variable.
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n Hm > = 23m ob Z:m
m miss | m — miss, S miss
Hm E'm Z'm

In case of a rhythmic DMP, first map all the phase variable
within the interval [ — 7, ™45 4 1], for calculating the
valid probabilities for the m'® GMM component.
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where the initialized (or updated during M-step) phase
variables are used for probabilities calculation in incomplete
data set. The responsibility terms for the " and j'* data
points in complete and incomplete data sets are calculated

as:
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In incomplete data set, the prediction of the ;' missing

value with respect to the m*" GMM component is done as:
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Wlth this predicted value two additional expectations are

calculated for the incomplete data set:
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2) M-step: The mixing weights are updated as:
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while the GMM means are updated as:
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In case of a rhythmic DMP, the phase signal lies on a circular
plane for whcih mean of cos and sin terms is needed:
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Afterwards the phase variable for a rhythmic DMP is
updated in the GMM means with these conditions and
wrapped in the interval [0, 27]:
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As before, for a thythmic DMP map phase variable within
the interval [pm%® — 7, s 4 7). Afterwards the covari-
ances are updated as:
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After updating the GMM parameters the next step is to
maximize the phase signal values in the incomplete data set.
This is done by using Gaussian Mixture Regression but with
responsibilities calculated using all of the dimensions ( phase

values from initialization or from last M-step). For a given
. . InCom,obs . . .. .
input variable x; and a given Gaussian distribution

m, the expected value of z!"“°™ ™% is defined by:
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By considering the complete GMM
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where E(z; ; ) is the updated phase
value of the 7*" data point in incomplete data set.
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IV. EXPERIMENTAL RESULTS

The proposed approach is evaluated using a peg-in-hole
task with a master-slave teleoperation system. The setup
consists of SensAble PHANToM Omni as a master device
and PHANToM Premium 1.5A as a slave. An aluminum
plate with 4 holes as shown in Figure 3 is used for the
peg-in-hole task. The operator observed the visual feedback
through video displayed on the monitor and controlled the
slave with the same orientation as the view from the camera.
One execution cycle constitutes of inserting the robot end-
effector into the four holes in counter-clockwise direction,

Slave

Camera
X
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Fig. 3: (a) Visual feedback, (b) Slave with peg-in-hole task,
(c) Haptic device, (d) Peg-in-hole task.

while starting and ending above the same hole. During the
data collection phase, slave records the Cartesian positions,
which are being used for calculating the velocities and ac-
celerations through numerical differentiation. Separate DMPs
are learned for each considered degree of freedom i.e. the
z,y and z-axis. All the models used phase signal as input
and 20 Gaussian in the GMMs. The number of Gaussian in
the GMMs can also be optimized [21]. Since the amplitude
modification is not required, we set the amplitude modifier
term a in the DMP equation to be 1.

A. Experiment One: Temporal and spatial variations

An operator demonstrated four counter-clockwise cycles
of the peg-in-hole task. The operator started and ended
above the same hole. An operator needs some time to reach
an adequate level of performance in teleopeartion and thus
first few demonstrations can have large temporal and spatial
variations [22], as visible in Figure 2d.

Figure 5b contains the result of LfD method presented
in [8], [23] where the trajectories are first aligned by using
DTW. Afterwards the phase signal and the spatial data are
encoded by using a GMM. Finally GMR is used for motion
retrieval. When applying GMR for a rhythmic task, the
data for the circular dimension (phase signal) is always
mapped in the interval p — X; and p + X; for calculating
the valid responsibilities. The downsides of this approach are
that firstly the value of phase signal cannot be inferred for
arbitrary starting point of the end-effector using GMR. This
is because the mapping from an output to input of a function
is not guaranteed to be one to one. Secondly with phase
signal as the only input, the GMM-GMR based encoding
does not consider the current position of the end-effector
when generating the motion. The learned trajectory partially
completes the task by inserting peg in three out of four holes,
as shown in Figure 5b.

The next model that we have considered is the DMP
based encoding of the demonstrations, with phase signal and
forcing terms encoded by using a GMM [24]. Again the
forcing terms of different trajectories are first aligned with
DTW. This approach fails to reproduce the task, as shown in
Figure 5c. Because of dissimilarity in the forcing terms of
different trajectories, the DTW fails to align them properly.
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Fig. 4: Experiment 1: (a) Demonstrated motions and (b)
learned trajectory for y-axis plotted against phase signal.
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Fig. 5: All axis are in millimeters. (a) Recorded motions for experiment 1, with starting and ending points in each trajectory
indicated by a circle and a square respectively. Same starting point and ending point representation is also used in the other
two experiments. (b-d) Motion reproductions with different models (b) DTW+GMM based encoding of spatial data with
GMR based motion reproduction, (c) DMP model with DTW+GMM based encoding of forcing terms, (d) Our approach.
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Fig. 6: (a) All axis are in millimeters. Recorded motions for experiment 2. The motions start and end above different holes in
each demonstration. (b-d) Motion reproductions with different models (b) DTW+GMM based encoding of spatial data with
GMR based motion reproduction, (c) DMP model with DTW+GMM based encoding of forcing terms, (d) Our approach.

Figure 5d shows the result of our approach which suc-
cessfully reproduces the task due to the temporal alignment
performed during EM. The asynchronous nature of the mo-
tions and the learned motion along y-axis can be visualized in
Figure 4. Another benefit of using our DMP based encoding
is that it also considers the current position along with the
phase signal when doing motion reproduction. The starting
value of phase signal can easily be inferred by linearly
generating samples of phase signal in between 0 and 27 and
then calculating the acceleration value © for each of them by
using the DMP equation. The sample which yields the lowest
value of sum of absolute accelerations of all DMPs is used
as the starting point for integrating the canonical system.

B. Experiment Two: Different initial and final conditions

In the second experiment, an operator was asked to
complete four counter-clockwise cycles of the peg-in-hole
task, each time starting and ending above a different hole, as
illustrated in Figure 6a. A major constraint when applying
DTW is that it assumes similar starting and ending positions
for a signal, with temporal variations in between. If this
condition is violated, its performance degrades. The major
advantage with our approach is that it does not need to fulfill
any such constraints. Since the holes are symmetric, a user
can easily lose track of a single hole while demonstrating
the peg-in-hole task in case of the change in camera view.

Figure 6b shows the result of DTW and GMM-GMR
approach. The learned trajectory was only able to reach
two holes due to the extreme misalignment of phase signal.
Figure 6¢ shows the result of DMP encoding with DTW
based alignment of forcing terms. This approach only reaches
one hole and fails to learn the complete task due to the
aforementioned reasons. Our approach successfully executes
the task as shown in Figure 6d, because in our approach the
trajectories alignment is performed during the EM.

C. Experiment Three: Incomplete demonstrations

This experiment utilizes data from the first experiment.
One full trajectory is used while the others are clipped to
simulate the partial executions. This experiment depicts the
situation where a human operator may fail to provide a
full execution of the motion and abort the execution before
completing the full cycle. As shown in Figure 7b DTW
aligned GMM-GMR based reproduction generates reaching
motion for two out of four holes but did not go deep
enough to insert the peg. DMP-GMM based encoding with
DTW based alignment of forcing terms completely fails to
execute the task as is depicted in Figure 7c. Again our
approach successfully reproduces the learned task as shown
in Figure 7d. The success rates of the three experiments are
summarized in Table I.
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Fig. 7: All axis are in millimeters. (a) Demonstrations for experiment 3. (b-d) Motion reproductions with different models
(b) DTW+GMM based encoding of spatial data with GMR based motion reproduction, (¢c) DMP model with DTW+GMM

based encoding of forcing terms, (d) Our approach.

TABLE I: Success rate of different approaches shown as the
number of holes reached.

DTW DTW Our
GMM-+GMR DMP+GMM approach
Experiment 1 3 0 4
Experiment 2 2 1 4
Experiment 3 0 0 4

V. CONCLUSION

In this paper we have shown the typical problems en-
countered while applying existing LfD approaches for tele-
operation applications. We proposed an EM based approach
for estimating GMM parameters and phase variables. The
proposed approach showed how to align and encode the tra-
jectories simultaneously. Although we have shown results for
a rhythmic peg-in-hole task, the proposed approach possess
all the desirable properties associated with a DMP model and
can encode discrete as well as rhythmic motions. Through
multiple peg-in-hole experiments we have demonstrated that
our proposed approach can handle large variabilities in the
teleoperation demonstrations (e.g., large spatial and temporal
variabilities, demonstrations with different starting/ending
phases, partial task executions). Our proposed method out-
performed existing approaches based on combining DTW
based time alignments and trajectories encoding algorithms.
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