ACQUISITION, VALIDATION AND PREPROCESSING OF WRIST-WORN SENSOR DATA IN PATIENTS WITH PARKINSON’S DISEASE AND HEALTHY CONTROLS

Pichler DC1,8, Lang M2, Kulić D3, Pfister FMJ4, König GCS4, Um TT3, Ahmadi SA5,6, Endo S7, Achilles F6,7, Abedinpour KP, Bötzel K8, Ceballos-Baumann A1,8, Hirsch S2, Fietzek UM1

1 Schön Klinik München Schwabing, Dept. Neurology and Clinical Neurophysiology, Munich
2 Technical University of Munich, Chair of Information-oriented Control, Munich
3 University of Waterloo, Dept. Electrical and Computer Engineering, Waterloo, Canada
4 Ludwig-Maximilians-Universität, Faculty of Mathematics, Computer Science and Statistics, Munich
5 Ludwig-Maximilians-Universität, Dept. Neurology, Munich
6 Technical University of Munich, Computer Aided Medical Procedures, Munich
7 Technical University of Munich, Dept. of Surgery, Munich
8 Technical University of Munich, Dept. Neurology, Munich, Germany

Objective
• Proof-of-concept study to describe the relevant methodological and data processing steps for accelerometry and gyroscopic recordings from a wrist-worn sensor band
• To characterize and understand the processing complexity when handling large amounts of sensor data captured from Parkinson’s patients in daily-life activities

Methods
• We obtained approval from the ethics committee of the TU Munich (Az. 234/16 S)
• We recorded data from 30 patients with PD and from 8 healthy controls (HC)

PD patients
• Age [years] 67 ± 10
• Hoehn & Yahr stage 2 (2.2)
• Disease duration [yrs] 11 ± 5
• MoCA [points] 26 ± 3

• Patients were continuously clinically evaluated during the time they wore the band by a certified rater
• Clinical raters included severity of brady-hypokinesia (MDS-UPDRS) and dyskinesia (AIMS)
• The rater co-registered any activity the patients were performing
• Sensor raw sensor data was recorded using a Microsoft band 2 (MS, Redmont, WA, USA) with a sampling frequency of an approx. 62.5 Hz that records a 3D-accelerometry and a 3D-gyroscopic signal. Other sensor data from the band were not investigated.
• Sensor orientation of the band as detailed in the Microsoft Band SDK documentation

Medical Background
• Brady-hypokinesia and dyskinesia characterize the motor syndrome of Parkinson’s disease (PD)
• Motor fluctuations with alterations of the motor state are the hallmark of the later disease stages of patients with PD
• Currently, the motor state is evaluated by a rater or the patient, which regularly leads to biased assessments
• Ideally, the motor state should be detected by an objective assessment in free-living situations with high temporal resolution
• To date, such an objective detection of the motor state has been validated

Technical Background
• Many commercial mobile devices, such as smartphones or wristbands, carry motion sensors for accelerometric, gyroscopic, or magnetometric recordings
• These sensors are worn imperceptibly over long time periods
• The data from the sensors can be used to assess physiological and disordered movement
• The large set of data and the complexity of the data processing pose numerous challenges to data validity, among which are noisy data, technical artefacts, variations of sensor position, or interference by voluntary activity

Results
Obstacles related to technical issues
1. Sampling artifacts
2. Gyroscope integration drift & Acc noise
3. Position variation of the band placement

Obstacles related to clinical issues
1. Generation of clinical labels
2. High inter-subject variability of activity labels

• Obstacle 1 – Sampling artifact
We found gaps in the raw data that probably resulted from lapses in the Bluetooth connection. We solved this issue by resampling the data at a frequency of 100 Hz.

• Obstacle 2 – Gyroscope integration drift & Acc noise
The gyrosopic data were smoothed with a band-pass filter (1 - 12 Hz) to remove the drift following integration as well as high frequency noise

• Obstacle 3 – Band position variation
Depending on the mounting orientation of the wristband device, i.e. lateral or medial and bottom up or down, the captured signals are different. This is caused by the two sensors’ functioning, which is to measure the gravity vector motion and acceleration, respectively. As in the internal device coordinate frame the gravity points in different directions (depending on the mounting orientation), the signals consequently appear different, even when describing the same movement.

• Obstacle 4 – Generation of clinical labels
Labelling clinical data is time consuming and prone to bias and individual error. New large-scale labelling approaches are required and need to be invented to answer to this need.

Figure 2 A 1-min recording of forearm acceleration during changing environment.

Discussion
• We demonstrate the feasibility of using a low-cost sensor device for the detection of motor signals from the wrist of healthy controls and patients with Parkinson’s disease
• A significant number of relevant technical issues needed to be addressed before the data could be meaningfully interpreted, and generalized to larger patient populations
• These preprocessing steps include re-sampling of data in case of sampling errors, and filtering of the data
• The position of the band, and thus the sensors, creates further variation of the data, and increases both intra- and inter-subject variability
• Involuntary motor activity integrates with voluntary motor activity. To validate the sensor data with clinical labels both motor activities have to be recorded with meaningful labels

Conclusions
• Specific steps of data processing are required for the meaningful interpretation of sensor data from e-health devices
• 3D sensor data depend of the mounting position of the band, so variant positions systematically influence the data
• Despite of the reported obstacles, analysis of body worn sensor data opens a realistic pathway to objectively describe the motor symptoms of people with Parkinson’s disease

References
1 Pichler et al. (2016) Time for change – doing the loop in Parkinson’s Disease. Basel: Gengig
2 Robata et al. (2016) Machine learning for large scale wearable sensor data in PD. MDI
3 Shodab et al. (2016) Complex human activity recognition using smartphone and wrist-worn motion sensors. SENSOIDS
4 Sanchez-Fernandez et al. (2016) New technologies for the assessment of Parkinson’s. MDI
5 Del Din et al. (2016) Free-living monitoring of Parkinson’s disease: lessons from the Essl. MDI
6 Del Rosario et al. (2016) Quaternion-based complementary filter. IEEE Sensors
7 https://support.microsoft.com/en-us/help/1001010/band-hardware-specifications