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Abstract

Modern X-ray based imaging enables recording of phase-contrast (refraction) and dark-field
(Small Angle X-ray Scattering) information using Talbot-Lau interferometry. These X-ray
imaging modalities provide improved contrast where standard absorption based imaging
only provides poor to none. The task of Computed Tomography (CT) amounts to recon-
struction of the physical quantities within the imaged object which caused a specific obser-
vation/measurement. A major prerequisite for tomographic reconstruction is first a model
of the physical properties, e.g. using scalars, vectors or tensors. Second, a forward model is
required which enables simulation of measurements from a given 3D representation of the
physical properties. For X-ray based absorption CT, this describes the task of computing the
accumulative effect on the X-ray beam traversing through the object. The combination of a
forward model and corresponding measurements form an inverse problem. Mathematically,
the task of CT corresponds to the inversion of the forward model which can be computed
using according numerical methods.

While tomographic reconstruction for modalities different than X-ray CT often employs very
similar mathematical concepts, software frameworks are often strictly focused on a specific
modality. The first contribution presented in this thesis is the development of an abstract
software framework for tomographic reconstruction. Within this framework the numerical
methods are implemented independently from the specific forward model which enables
adaptation and application of methods for multiple modalities. Additionally, the framework
supports the composition of various common approaches such as regularization methods which
allows for intensive comparison and evaluation of specific methods for multiple modalities.
Within the scope of this work, this framework will be applied to tomographic reconstruction
of the dark-field signal.

Reconstruction of the dark-field signal poses a particularly challenging problem, as the
scattering within an object depends on the X-ray beam’s direction as well as the grating
orientation in contrast to absorption and phase-contrast imaging. Thus, the physical quantity
at each position cannot be modeled by a scalar entity, but requires a more complex model
instead. A first method has been presented previously in form of X-ray Tensor Tomography
(XTT) where a rank-2 tensor is used to describe the scattering happening in each location of
the measured object. This tensor combines information on the scattering strength as well as
its directional distribution which provides an insight into orientation of microstructures within
the object.

A major limitation of the XTT approach is that a tensor is restricted to a single microstructure
direction. In order to cope with this problem within this thesis a general closed-form, continu-
ous forward model of the Anisotropic X-ray Dark-field Tomography will be presented. This
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model contains the XTT model under specific assumptions and in addition enables the tomo-
graphic reconstruction of a spherical function representing the whole scattering profile in each
location of the object. This novel approach provides strongly improved reconstructions using
spherical harmonics. All this is achieved at a computational complexity comparable to that
required by XTT. Additionally, an approach to extract the orientation of the microstructures
causing the scattering will be presented. Experiments show that the method of AXDT is capa-
ble of reconstructing multiple scattering orientations and the corresponding microstructure
orientations.

Finally, a first biomedical experiment on a sample of a human cerebellum indicates that AXDT
could provide a complementary imaging modality for imaging nerve fibers within the Central
Nervous System (CNS).
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Zusammenfassung

Moderne Röntgen-Bildgebung ermöglicht Aufnahmen von Phasenkontrast- (Brechung) und
Dunkelfeld-Informationen (Kleinwinkel-Röntgenstreuung) mittels Talbot-Lau Interferome-
trie. Diese Röntgen-Modalitäten bieten einen verbesserten Kontrast in Fällen, in denen die
standardmäßig auf Absorption basierende Röntgen-Bildgebung nur schlechten bis keinen
Kontrast liefert. Die Aufgabe der Computertomographie (CT) besteht in der Rekonstruktion
der physikalischen Größen innerhalb des abgebildeten Objekts, welche eine spezifischen Beob-
achtung/Messung verursacht haben. Eine wesentliche Voraussetzung für die tomographische
Rekonstruktion ist zunächst ein Modell der physikalischen Eigenschaften, z.B. mit Hilfe von
Skalaren, Vektoren oder Tensoren. Darüber hinaus ist ein Vorwärtsmodell erforderlich, wel-
ches die Simulation von Messungen aus einer gegebenen 3D-Darstellung der physikalischen
Eigenschaften ermöglicht. Für Röntgen-basiertes Absorptions-CT stellt sich die Aufgabe, die
akkumulierte Auswirkung auf Röntgenstrahlenbündel, welche das Objekt durchqueren, zu
berechnen. Die Kombination aus Vorwärtsmodell und zugehörigen Messungen bildet ein inver-
ses Problem. Mathematisch entspricht die Aufgabe der Computertomographie der Inversion
des Vorwärtsmodells, die mit Hilfe numerischer Methoden berechnet werden kann.

Während die tomographische Rekonstruktion für andere Modalitäten als Röntgen-CT häufig
sehr ähnliche mathematische Konzepte einsetzt, sind Software-Frameworks oft streng auf
eine bestimmte Modalität beschränkt. Der erste Beitrag, der in dieser Arbeit vorgestellt wird,
ist die Entwicklung eines abstrakten Software-Frameworks für tomographische Rekonstruk-
tion. Innerhalb dieses Frameworks werden die numerischen Methoden unabhängig eines
spezifischen Vorwärtsmodells implementiert, welches die Anpassung und Anwendung von
Methoden auf weitere Modalitäten ermöglicht. Darüber hinaus unterstützt dieses Framework
die Zusammenstellung verschiedener gängiger Ansätze, darunter Regularisierungsmethoden.
Dies ermöglicht umfassende Vergleiche und Auswertungen spezifischer Methoden für ver-
schiedene Modalitäten. Im Rahmen dieser Arbeit wird das entwickelte Framework auf die
tomographische Rekonstruktion des Dunkelfeldsignals angewendet.

Die Rekonstruktion des Dunkelfeldsignals stellt ein besonders anspruchsvolles Problem dar, da,
im Gegensatz zur Absorptions- und Phasenkontrast-Bildgebung, die Streuung innerhalb eines
Objektes von der Strahlrichtung und der Gitterorientierung abhängt. So kann die physikalische
Größe, an jeder Position, nicht durch eine skalare Entität modelliert werden, sondern erfordert
ein komplexeres Modell. Eine erste Methode stellt die „X-ray Tensor Tomography (XTT)“ dar.
Innerhalb dieser Methode wird ein Rang-2-Tensor verwendet, um die Streuung in jeder Position
des Messobjekts zu beschreiben. Dieser Tensor vereint Informationen über die Streustärke
sowie die Richtungsverteilung, welche einen Einblick in die Orientierung der Mikrostrukturen
innerhalb des Objekts liefern.
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Jedoch besteht eine wesentliche Einschränkung des Ansatzes von darin, dass ein Tensor auf
eine einzige Mikrostrukturrichtung beschränkt ist. Um diesem Problem zu begegnen wird
innerhalb dieser Arbeit ein neuartiges, allgemeines, geschlossenes und kontinuierliches Vor-
wärtsmodell für „Anisotropic X-ray Dark-field Tomography (AXDT)“ vorgestellt. Es zeigt sich,
dass dieses Modell das XTT Modell unter bestimmten Annahmen enthält und darüber hinaus
die tomographische Rekonstruktion einer sphärischen Funktion, welche das Streuungsprofil
an jeder Position des Objekts ermöglicht. Dieser neuartige Ansatz ermöglicht mittels Kugel-
flächenfunktionen deutlich verbesserte Rekonstruktionen. All dies wird bei einer zu XTT
vergleichbaren Berechnungsdauer erreicht. Zusätzlich wird ein Ansatz zur Extraktion der
Orientierung der Mikrostrukturen, welche die Streuung verursachen, präsentiert. Experimente
deuten darauf hin, dass die Methode der AXDT in der Lage ist, mehrere Streuungsorientierun-
gen und die entsprechenden Mikrostrukturorientierungen zu rekonstruieren.

Abschliessend weist ein erstes biomedizinisches Experiment an einer Probe eines menschlichen
Cerebellum (Kleinhirn) daraufhin, dass AXDT eine komplementäre bildgebende Methode zur
Abbildung von Nervenfasern innerhalb des Zentralnervensystems liefern könnte.
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Part I

Introduction





1Introduction

„. . . where no man has gone before

— opening credits
Star Trek: The Original Series

To me, one of the most impressive visions for non-invasive medical diagnostics and non-
destructive material analyzing, is presented in Star Trek: The Original Series (1966–1969).
During several occasions throughout the series so-called tricorders are used in order to scan,
analyze, and record data. All of these three purposes are achieved in a non-destructive manner
and the device is used for inorganic and organic matter as well as medical purposes.

At the very beginning of the aforementioned scanning and analyzing, an object needs to be
observed/sensed. Among others, the ability to see, i.e. to sense and analyze the information of
the spectrum of visible light (compare fig. 1.1) and how it interacts with material, is a natural
example of the human ability to achieve exactly what is described above.

However, the ability to sense naturally is limited. E.g. as long as you are restricted to this
modality of sensing, gaining insight into objects which are opaque to the visible light spectrum
is only possible if the object is opened. Throughout history some of the major advancements
in sensing have been achieved by the discovery of means to sense additional parts of the
electromagnetic spectrum (an illustration is given in fig. 1.1). Due to the close relation to
"sight" the following methods are typically referred to as imaging methods.
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Figure 1.1 Electromagnetic spectrum

One of the most significant discoveries in order to overcome the borders of natural sight
was the discovery of X-rays by Wilhelm Conrad Röntgen (1845–1923) in 1895 [309] (engl.
translation [308]). Compared to visible light, the energy of X-rays is much higher, i.e. the
wavelength is much lower (in the magnitude of 0.01 to 10 nm). Therefore, this spectrum
of electromagnetic waves is capable of penetrating matter that is opaque to the spectrum
of visible light (see fig. 1.1 for an overview of the Electromagnetic spectrum). In his initial
publication Röntgen presented the very first radiography of his wife’s hand, showing the finger
bones and a ring. This finding marks the birth of modern non-invasive imaging methods and
represents an enormous breakthrough for scanning and analyzing materials. For his discovery
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of X-rays, Röntgen was rewarded with the very first Nobel Price in 1901 [on16]. While
Röntgen (c.f. [309]) tried to measure refraction and scattering using prisms and powdered
samples, the only effect which he was able to observe was the absorption of X-rays, i.e. the
intensity loss of an X-ray beam while traversing the object. X-ray absorption based radiography
soon became a standard tool for Non-Destructive Testing (NDT) and medical diagnostics up
until today.

This discovery provided a huge advancement in the field of sensing objects as it was now
possible to sense and analyze objects which are opaque to sight. This incredible improvement
aside radiography suffers from one major drawback1 – the projective nature of radiographic
images. After an X-ray beam passed through an object, the measured intensity of this beam
corresponds to the accumulated absorption information along the whole path through the
object. Consequently, essential depth information is lost and radiologists for example have to
rely on training and experience to correctly interpret X-ray radiographs.

For roughly 70 years there was an ongoing effort of refinement and improvement of systems.
Many of these advancements targeted the improvement of the subsequent analysis drawn
from this imaging modality. As a disquisition on these developments would go far beyond the
scope of this thesis we refer the interested reader to the book From the Watching of Shadows
by S. Webb [372].

We skip these years and move directly to 1963. In 1963 and 1964 Allan M. Cormack (1924–
1998) [106, 107] described a method to mathematically invert the imaging process happening
in X-ray imaging. This method enabled the observer to restore a function representing the
individual effects on the X-ray beam in each single position within the measured object. It
became clear later on that Cormack had partially reinvented mathematical principles which
had already been studied in 1917 in a pure mathematical context by Johann Radon (1887–
1956) [286, 287]. Based on the work of Cormack, Sir Godfried Hounsfield (1919–2004) [184]
developed the first scanner for Computed Tomography (CT) in the 70’s. For their contribution
both Cormack and Hounsfield were rewarded with the Nobel Price in Medicine 1979 [108,
185].

Meanwhile, in the visible light regime Frits Zernike (1888–1966) developed phase-contrast
microscopy in 1935 [389, 390, 391]. This imaging modality benefits from the fact that a beam
of electromagnetic waves, such as light, is not only changed with respect to its intensity but
also its phase when traversing through an object. This imaging technique provided contrast
especially for regions which showed poor to none visibility with the previously existing
methods. For this remarkable finding, Zernike was granted the Nobel Price in 1953 [392].

Due to the weak interaction of X-rays in comparison to visible light it took roughly 60 years
to adapt this concept for X-ray imaging (c.f. [279]). This was enabled by the development
of the first X-ray interferometer in the 1960s by Bonse and Hart [68]. Several methods
were developed to enrich X-ray imaging with the additional phase-contrast. However, these
methods were limited to highly brilliant synchrotron sources which provide monochromatic
and coherent radiation.

1Beside its ionizing nature, obviously.
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This changed dramatically with the work of Momose, Weitkamp, and Pfeiffer who proposed
a Grating Based Imaging (GBI) system based on Talbot-Lau interferometry [255, 256, 278,
279, 373]. For the very first time this system allowed for the imaging of the additional
phase-contrast and dark-field using X-ray sources and detectors as used for example in modern
clinical radiology.

Before we take a closer look at modern X-ray imaging and possible applications we want to
briefly summarize what exact effects cause the X-ray beam to change.

1.1 Inside X-ray Imaging

The key basics of X-ray based imaging is that the interaction of this highly energetic electro-
magnetic wave and matter is comparably weak, i.e. X-rays are able to traverse matter which
is opaque to e.g. visible light. Directly equivalent to photography, the key concept of X-ray
based imaging is that properties of the X-ray beam are modulated while traversing material.
The task of CT requires understanding of the effects caused by the observed modulations.

In the special case of X-ray imaging we therefore need to consider how the properties of the
X-ray beam are changed while traversing through an object. Consequently, we are going to
provide an overview on the microscopic and macroscopic interactions of X-ray photons/beams
with matter below. The following summary is based on [37, 78, 160, 271, 366, 370] and
many discussions within our X-ray Tensor Tomography (XTT)/Anisotropic X-ray Dark-field
Tomography (AXDT) group2. The interested reader therefore may refer to these works for a
more detailed view on these topics.

On the microscopic scale the interaction of X-rays with matter comes down to the interaction
of X-ray photons and the electrons of an atom. Depending on the kind of interaction one
typically distinguishes between photoelectric absorption, Thomson- (elastic) and Compton
(inelastic) scattering, and pair production. The significance of the single effects varies first of
all with the wavelength λ and thus the energy3 of the involved X-rays. Second, it also depends
on the matter with which the interaction takes place.4 For the wavelengths considered within
the scope of this thesis and especially for the experiments which were carried out in the
context of part IV, the two dominant effects are photoelectric absorption and Thomson
scattering (see fig. 1.2 for an illustration).

Photoelectric absorption (see fig. 1.2a) is caused if an incoming X-ray photon is absorbed by
an electron. The absorbed energy of the photon causes the electron to leave the orbit. The
atom is left behind ionized. Consequently, the total amount of absorption is linked to the
number of electrons within the object. Additionally, it depends on the energy of the X-ray
photons [78].

2Special thanks to F. Schaff for many valuable discussions.
3The energy of an electro-magnetic wave is given as E = hc/λ with c = 2.998× 108 m s−1 denoting the speed of

light, and h = 4.136× 10−15 eV s denoting Planck’s constant.
4See [78, p. 41ff] for plots of the relevance of these effects depending on the energy and several materials.
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(a) (b)

Figure 1.2 Illustration of the main X-ray interaction with matter for the energies considered within the scope of this
thesis. (a) shows the photoelectric absorption of an X-ray photon by an electron of the outer shell. In (b)
we display the case of elastic scattering, i.e. Thomson scattering.

On a macroscopic level the linear attenuation coefficients µ : R3 → R, which provide a scalar
map of the amount of absorption happening in each location x ∈ R3 within an object, are
introduced. The intensity of an X-ray beam after traversing a sample on path L is given
according to the Beer-Lambert law (c.f. [78, p. 32f]),

I = I0 exp
(
−
∫

L

µ (x) dx
)
, (1.1)

with I0 denoting the initial intensity of the X-ray beam5. In fig. 1.3 this law is illustrated for a
piece-wise constant linear attenuation.

−1 1 2 3 4 5

1
µ (x) = 0.5 µ (x) = 1

x

I (x)

Figure 1.3 Illustration of the Beer-Lambert law for a piece-wise constant linear attenuation µ, µ (x) = 0.5, for
x ∈ (0, 2) and µ (x) = 1 for x ∈ (2, 4). The initial intensity was fixed to I0 = 1.

Due to the weak interaction of X-rays with matter, absorption based imaging was for a long
time the only and still is the predominant X-ray based imaging method – e.g. for medical
applications. The relation to the number of electrons and therefore the atomic number of the
material effectively states that objects with a high density lead to stronger absorption than
objects with a lower density. Consequently, in medical diagnostics one obtains strong contrast
for strongly absorbing tissue, such as bones, while soft tissue provides low to no contrast.

Thomson scattering (see fig. 1.4) is the elastic scattering of X-rays by electrons. In this case
of X-ray matter interaction, an incoming X-ray photon causes the electron to oscillate. This

5To be precise, this formula neglects the polychromatic X-ray spectrum emitted by common tubes. While more
accurate models for polychromatic cases exist, this is still the commonly applied model.
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causes the oscillating electron to emit dipole radiation. There is no absorption, i.e. energy
loss, involved, and consequently the emitted radiation has the same energy as the incoming
X-ray. This also explains why this process is called elastic scattering.

Moving from a single X-ray photon to an X-ray beam a common simplification is the first Born
approximation – only a single-scattering is considered along an X-ray traversal. Scattering
of multiple X-rays of a beam at different locations by the same angle results in a phase-shift
between these X-rays. This phase-shift is linked to the momentum transfer vector q. Modeling
the incoming and the scattered X-ray beam by their wave-vectors kin, kout the vector q is
illustrated in fig. 1.4.

kin kin

kout

q

qSAXS

θ
e2

e0

e1

Figure 1.4 Illustration of elastic scattering of an X-ray beam by a small object. Additionally, the Small Angle X-ray
Scattering (SAXS) approximation is illustrated.

As the energy of the X-rays does not change, the following holds

|kin| = |kout| =
2π
λ
. (1.2)

Consequently, the magnitude of the momentum transfer vector q is given by simple trigonome-
try as

|q| = |kin| sin θ, (1.3)

with θ denoting the scattering angle.

In order to account for all possible scattering incidents one employs the concept of electron
density ρ : R3 → R giving the number of electrons per volume element [160, p. 19]. The
scattered intensity for the moment transfer vector q is given by (c.f. [160, p. 19]),

I (q) =
(∫

ρ (r) eiqrdx
)2

= F3 (ρ ∗ ρ) (q) . (1.4)

Please note that the inner part of the second term, i.e. the integral, assembles a Fourier
transform of ρ6.

Within the scope of this thesis we focus on Small Angle X-ray Scattering (SAXS), i.e. the
scattering angle θ is small such that |q| is much smaller than |kin|. With respect to fig. 1.4

6We use a slightly different form of the Fourier transform (see section 2.1) but nevertheless use the F symbol in this
context.
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this effectively means that q ≈ qSAXS . This enables several simplifications as for small angles
(sin θ ≈ tan θ ≈ sin θ) [271, p. 90]:

|q| ≈ |kin| θ (1.5)

q2 ≈ 0 (1.6)

According to Friedel’s law [37, p. 290] these intensities are symmetric, i.e.

I (q) = I (−q) . (1.7)

For completeness, Compton scattering can be considered as the case in-between the two
aforementioned effects. Here, the energy of an incoming X-ray photon is only partially
absorbed by an electron. This once again results in the electron leaving the orbit of the atom,
but in contrast to absorption, X-rays of lower energy are emitted. This also explains why this
is commonly considered to be the equivalent of inelastic scattering for X-rays.

We omit the discussion of X-ray generation, which would go beyond the scope of this thesis
and refer to e.g. [78].

1.2 Tomographic Reconstruction

From an abstract point of view tomographic reconstruction, also known as Computed Tomo-
graphy (CT) in the context of X-ray imaging, amounts to restoring the quantity that caused
an observation. This typically involves taking multiple measurements and an understanding
of how an observation is cause. This knowledge can be used to "invert" the imaging process.
Mathematically this falls in the scope of inverse problems and we will dedicate part II to this
topic.

Nevertheless, at this point we want to give a quick overview on the principle and the X-ray
absorption may serve as an example. Previously we have discussed that the physical model
(compare eq. (1.1)) for standard X-ray CT is based on the Beer-Lambert law, i.e. for an X-ray
beam along path L the attenuation is given as (c.f. [78, p. 32f]).

I = I0 exp
(
−
∫

L

µ (x) dx
)
, (1.8)

with µ : R2 → R denoting the linear attenuation coefficients7 and I0 denoting the initial
intensity of the beam.

A common scheme is to take the negative logarithm which leads to the following equation8

− ln I

I0
=
∫

L

µ (x) dx. (1.9)

7In this case modeled in two dimensions (2D).
8To use or not to use the negative logarithm is an ongoing discussion within the scientific community. Throughout

this thesis we will focus on the linearized form.
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The left side of this equation is commonly referred to as attenuation. According to this forward
model for a single X-ray measurement, the mathematically interesting question is how a
function is related to integral values along straight lines through the underlying domain. It
should be noted that the key achievement of Cormack in 1963 [106, 107] was to provide an
inversion formula for eq. (1.9), assuming multiple measurements from various viewpoints are
given. At this point Cormack was unaware that a similar problem was investigated in a purely
mathematical context by Radon in 1917 [286, 287]. In the field of radio astronomy Bracewell
[74] developed an inversion formula for a very similar problem in 1956.

Now, in order to restore µ at each location x = (x0, x1) = x0e0 + x1e1 multiple measurements
are required9. Thus, intensities I are recorded from different points of view, which then enable
the inversion of the forward model eq. (1.9). We illustrate the two-dimensional (2D) imaging
process in fig. 1.5.

e0

e1
µ (x)

Figure 1.5 Illustration of a CT scan. Multiple X-ray images are recorded from different positions which allows for
the inversion of the imaging process.

The concept carries over to other imaging modalities providing a suitable model that relates
the cause and the effect, also known as forward model. We will postpone a more detailed
explanation to part II. For now the key point is that tomographic reconstruction aims at the
restoration of quantities describing the cause of an observed/measured effect. The interested
reader may refer to e.g. [78, 179, 186, 204, 205, 261, 264]. With this in mind we proceed to
modern X-ray imaging methods.

1.3 X-ray Imaging

The methods to image X-ray absorption are as old as the discovery of X-rays. They became the
predominant X-ray based imaging method for decades. Diffraction, refraction, and scattering

9With ei, i ∈ {0, . . . , N − 1} denoting the standard basis in the Euclidean space of dimension N .
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based X-ray imaging took much longer to develop and have been limited to synchrotron setups
with coherent and monochromatic radiation at first. In the following a brief overview of
advanced X-ray imaging approaches will be presented.

The first and implicitly already mentioned method is SAXS, which can be imaged with X-ray
scanning microscopy. Here a pencil beam is used and the probe is scanned in a raster fashion
(c.f. [77, 141, 166, 259, 312, 318, 350]). For each single beam one records the full diffraction
profile, which provides an insight in distribution and orientation of nano-scale structures to
the imaged object [77, 141]. A review on SAXS for imaging biological macromolecules is
given in [351].

Tomographic reconstruction of integral SAXS intensities has been studied e.g. in [318] and
further discussed in [141]. Only recently Schaff et al. [325] proposed a CT approach that
preserves the orientation of the SAXS signal during reconstruction. A spherical harmonics
based approach has been presented by Liebi et al. [235].

Additionally to SAXS, phase-contrast and dark-field modalities emerged. The most common
ones are Diffraction-Enhanced Imaging (DEI) 10 [92, 114, 148, 189], crystal-interferometer
phase-contrast imaging [68, 257], propagation-based phase-contrast imaging imaging [294,
340], and phase-contrast using Grating Based Imaging (GBI) [255, 373]. The application
of these methods was limited though, as they required coherent and monochromatic X-ray
beams. The method of DEI has been generalized in order to extract scattering in addition to
the refraction information in [98, 302, 303].

There have been various experimental evaluations of SAXS diffraction as well as refraction and
scattering for medical purposes and material testing. As these studies highlight the potential of
such advanced imaging methods, we want to provide a brief overview. Several studies focused
on human breast tissue, and the SAXS signal has been shown to yield significantly different
contrast between tumorous and healthy tissues [138, 143, 144, 233, 338]. Improved image
contrast for micro calcifications in breast tissue has been demonstrated in [213]. In [115,
139] the authors present contrast improvements for imaging human cerebral myelin sheath.
Further studies related to cerebral structures of SAXS CT have been presented by Jensen et al.
[195, 196]. Improved contrast has additionally been found for tooth [210], bone [347] and
cartilage [87] samples. The novel SAXS CT approach of Schaff et al. [325] also considered
bone and teeth, while Liebi et al. [235] focused on collagen fibrils in a human trabecula bone.
Based on the contrast caused by scattering, Arfelli [44] proposed to use micro-bubbles filled
with highly scattering material as contrast-agents. In [232] possible applications to materials
testing have been demonstrated.

While providing additional information on the imaged object, the practical application was
limited due to the restriction to synchrotron setups. This changed dramatically by the work
performed by Momose, Weitkamp and Pfeiffer, who proposed a GBI system based on Talbot-
Lau interferometry [255, 256, 278, 279, 373]. This for the very first time enabled the imaging
of phase-contrast (refraction) [278] and dark-field (scattering) [279] with conventional X-ray
imaging setups. A first preclinical scanner has been demonstrated by Tapfer et al. [352].

10A recent review is given in [105].
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All experiments performed within the scope of part IV have been performed with a setup
as proposed by Pfeiffer et al. [278, 279]. Thus, we will give a brief introduction into GBI
below.

1.3.1 Grating Based Imaging

Modern GBI based on Talbot-Lau interferometry allows the extraction of X-ray refraction and
scattering information in addition to absorption. In order to do so, a standard X-ray imaging
setup consisting of a source and a detector is augmented with three gratings G0, G1 and
G2 (see fig. 1.6 for an illustration) [278, 279]. In the following we are going to provide a
summary of the GBI based system as proposed in [255, 256, 278, 279, 373]. For a general
overview on GBI setups we refer to [125].

(a)

detector

G2
G1

Euler cradle
G0 source

stepping

(b)

Figure 1.6 Talbot-Lau X-ray GBI setup. In (a) an image of a GBI setup is shown. Additionally, (b) shows an
illustration with several annotations.

The source grating G0 creates multiple sources with sufficiently high coherence to allow for a
periodic interference behind the phase grating G1. Finally the analyzer grating G2 allows to
measure the interference pattern with conventional X-ray detectors. During a measurement
process, multiple images are recorded while the relative lateral position of G2 is shifted
relatively to G111. This translates the interference pattern which is too small to be measured
directly with a conventional detector, to an intensity modulation of the detector read-out. The
key physical effects involved are the Talbot- and the Lau-effect. The relative placement of
the gratings depend on the period of the gratings as well as the wavelength of the X-rays (c.f.
[278]).

In fig. 1.7 we show resulting images for three different positions of G2 of a biomedical sample.
For each single detector pixel this stepping effectively results in sampling a periodic function
which can be described by [373]

I (xg) ≈ a0 + a1 cos
(
ϕ+ 2π

p2
xg

)
(1.10)

with p2 denoting the period of G2 and xg denoting the phase-stepping, respectively. Further-
more, ϕ denotes the phase of the intensity curve.

11Alternatively other parts of the setup can be stepped too.
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(a) (b) (c)

Figure 1.7 Three images obtained by a Talbot-Lau GBI imaging setup. The sample is a biomedical sample also used
in part IV.

From a scan Is with a sample placed within the setup and a reference scan Ir without, multiple
signals can be extracted (c.f. [59, p. 36]). The different signals and their relation to the
sample as well as the reference scan are illustrated in fig. 1.8.

p2
4

p2
2

3p2
4 p2

a0,r

a1,r

ϕr

a0,s

a1,s

ϕs xg

I (xg)

Ir
Is

Figure 1.8 Illustration of the intensity curve obtained by a single detector of a Talbot-Lau GBI system. We illustrate
two curves, one of a reference scan Ir without a sample and one of the measurement with a sample
placed within the beam Is. The circles mark the sampling points based on the stepping of the grating.

First, the absorption a is given by the ratio of the mean intensities. In addition to the
standard absorption, the differential phase-contrast 4ϕ and the dark-field signal d can be
extracted which yield additional information on the electromagnetic wave. These quantities
are computed as (c.f. [279])

a = a0,s
a0,r

, 4ϕ = ϕs − ϕr, d = a1,sa0,r
a0,sa1,r

, (1.11)

with a·,s, a·,r denoting the a· in eq. (1.10) of Is and Ir, respectively. The quotient of a1,s and
a0,s is referred to as visibility Vs, with the reference visibility Vr being defined accordingly.

In fig. 1.9 we display the signals extracted from the raw data shown in fig. 1.7.
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(a) (b) (c)

Figure 1.9 The three signals absorption (a), differential phase-contrast (b), and dark-field (c) for a biomedical
sample. The absorption has been windowed to values in the range of [0, 0.33]. In case of the differential
phase-contrast the interval

[
−π8 ,

π
8

]
was used. The dark-field images are displayed using a reverse

colormap window for the interval [0, 1] with 1 displayed as black and 0 as white, respectively.

The cause of the phase-contrast is the refraction of the X-ray beam (c.f. [278]) while the
dark-field contrast is linked to SAXS (c.f. [279])12. Within the scope of this thesis we focus on
the considerations of the dark-field signal and a very interesting characteristic unique to this
signal, namely anisotropy. The anisotropy of the dark-field signal is displayed in fig. 1.10 for a
sample of a cross made out of two wooden sticks.

The dark-field signal obtained using the interferometry-based setup resolves the part of the
SAXS that happens orthogonal to the grating orientation (c.f. [62, 63, 96, 104, 238, 253, 368,
384, 385])13. Thus the measured dark-field intensities vary if the measured object is rotated
in-plane to the gratings [192, 193, 194] as illustrated in fig. 1.10. In the following we will
provide a brief summary on the capabilities and developments related to dark-field imaging14.
For a review on dark-field imaging and its possible applications we refer to [383].

Similar to absorption, the dark-field signal follows an exponential decay [62, 368]. Based on
this finding, Bech et al. [62] proposed the first tomographic reconstruction of the dark-field for
isotropic scattering samples, i.e. the scattering within the object has no predominant direction
and can be modeled as a scalar entity.

Due to the connection to SAXS, the dark-field signal provides contrast related to structures
which are much smaller than the pixel resolution of the detectors. This signal therefore enables
the measurement of very small structures within larger objects. Again, we want to provide a
brief overview on some related studies. Improved contrast and discriminative statistics have
been evaluated for lung imaging [64, 321, 322, 344, 382]. Pulmonary emphysema has been
studied by Schleede et al. [321], Meinel et al. [249, 251], Yaroshenko et al. [382], Tapfer
et al. [352], pulmonary nodules by Meinel et al. [250]. Breast imaging has been studied
by Schleede et al. [320], Stampanoni et al. [344], Anton et al. [42], Michel et al. [252],
Hauser et al. [177], and Ando [39]. In [326] the authors proposed X-ray dark-field imaging

12Additionally, dark-field contrast can be related to beam-hardening [386] or strong refraction [378, 381] which will
not be considered within the scope of this thesis. Kaeppler et al. [202] proposed a method for isolating the pure
small-angle scattering in the dark-field signal.

13Recently Kagias et al. [203] proposed a special grating design to extract all directions with a single shot.
14Focusing on dark-field imaging, we omit the large body of literature on phase-contrast imaging.
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for differentiation of kidney stones. Wen et al. [376], Potdevin et al. [280], Schaff et al. [323],
and Thüring et al. [354] focused on musculoskeletal imaging. Thüring et al. [354] presented
dark-field radiography of an entire adult human hand. In [364] Velroyen et al. studied the
dark-field signal for the application of microbubbles as contrast-agents similar to the work
of Arfelli et al. [44]. Detection of sub-pixel fractures have been investigated in [224]. The
anisotropic information has been extracted to detect the orientation of collagen by Shimao
et al. [334, 335]. Revol et al. [297, 298, 300] used the dark-field signal for material testing.
They used prior information in order to separate isotropic and anisotropic parts of the signal.
Only recently Schaff et al. employed dark-field CT for the characterization of welds [328].

(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 1.10 Illustration of the anisotropy of the dark-field signal (lower row) in comparison to the absorption signal
(center row) according to the grating orientation (upper row). If a sample is rotated orthogonally to
the beam direction, the dark-field signal changes, while the absorption stays constant. Again a reverse
colormap was used for the dark-field signal. The images of each signal have been windowed to the same
intensity regions.

In directional dark-field imaging, also known as X-ray Vector Radiography (XVR), the sample
is rotated (e.g. using an Euler cradle as illustrated in fig. 1.6b) around the central beam
direction [55, 193, 194, 280]. This imaging method yields information on local orientation of
a sample due to the anisotropic part of the signal [238, 243, 299, 376, 384]. A corresponding
model has been presented in [57, 243, 299]. A numerical simulation framework has been
presented by Malecki et al. [241]. This method has been proposed to predict mechanical
properties of a sample by Malecki et al. [245]. In [323] Schaff et al. used this method of
directional dark-field radiography to analyze the bone-micro-architecture of a femur cube
imaged using a Micro-CT (µCT) scanner. They showed that this yields information correlating
with the trabecular microstructure. A highly complete model for dark-field signal has recently
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been discussed by Strobl [349] and experimentally validated by Prade et al. [282]. This
model is based on methods originating from another imaging modality, namely Spin-Echo
Small-Angle Neutron Scattering (SESANS) (c.f. [40]).

The anisotropy of the dark-field signal makes the dark-field CT, which accounts for anisotropy,
particularly challenging. In contrast to a scalar field, one needs to consider the anisotropic
nature in each location within the sample. The first CT approach using a more sophisticated
scattering model was proposed by Malecki et al. [244]. This method employes rank-2 tensors
and is called X-ray Tensor Tomography (XTT). The measurement process becomes more
complicated and the rotation around a single axis is not sufficient. Malecki et al. [244]
therefore proposed to use an Euler cradle (compare fig. 1.6b) in order to rotate the sample
freely in a three-dimensional (3D) fashion. Sharma et al. [10, 3, 15, 5] evaluated acquisition
schemes and their effects on tomographic reconstructions. The XTT approach is based on the
forward model for directional dark-field imaging [299, 300] and the superposition principle
formulated in [243]. Instead of directly reconstructing the tensors, Malecki proposed to choose
K scattering directions which are supposed to be uniformly distributed on a sphere. Further,
scattering is only modeled in these directions. The total amount of scattering is approximated
by a weighted sum of the scattering happening in these directions. The weighting is related
to the scattering direction, the relative orientation of the grating orientation as well as the
beam direction [243]. For each of these scattering directions the scattering strength is then
reconstructed using a specially crafted variant of the Simultaneous Algebraic Reconstruction
Technique (SART) [41]. Schaff et al. [329] recently proposed to employ a non-iterative
approach to reconstruct these scattering strengths. Within the final reconstruction step, a rank-
2 tensor is fitted to the pairs consisting of directions and corresponding scattering magnitudes.
As scattering is strongest orthogonal to microstructures, the direction of such is given by the
smallest half-axis of the tensor. Only recently Jud et al. [200] showed that the reconstructed
orientations correlate with the orientation of dentinal tubules within a tooth sample. In
contrast to XTT, these tubules where not visible in a µCT and the tooth had to be irreversible
cut in order to be investigates under a microscope.

A different reconstruction approach has been proposed by Bayer et al. [58]. Here the authors
reconstruct the isotropic part as scalar value and the anisotropic part as vectorial entity
while using only the standard tomographic axis. This leads to a projection of the anisotropic
scattering onto the plane perpendicular to the tomographic axis. In order to achieve 3D
vectorial information this work has been extended in [187] flipping the probe for a second
scan, which yields a complementary projection onto one of the remaining two planes.

Recently, Vogel et al. [7] presented multiple improvements to XTT. First, a reformulation
of the formulas stated by Malecki et al. [244] to a linear problem. Second, constrained
reconstruction was proposed. Here after each iteration either a soft pushing to or a hard
enforcing of the tensor structure were applied. For both, a tensor is fitted to the reconstructed
scattering strengths. In case of the soft pushing, these strengths are partially scaled towards
the corresponding tensor value, while in case of the hard enforcing the values are reset with
those of the fitted tensor. Both approaches provided a strongly improved reconstruction result
from a visual perspective. Last but not least a visualization method based on fiber tracking
along the least scattering direction was presented.
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1.4 Excursus: Other Modalities

While the presented thesis focuses on X-ray based CT, the general idea of tomographic re-
construction is shared with many other modalities, including but not limited to Magnetic
Resonance Imaging (MRI) [225], photo-acoustic imaging [379], Positron Emission Tomo-
graphy (PET) [353], Single-Photon Emission Computed Tomography (SPECT) [217], Magnetic
Particle Imaging (MPI) [161] and optical tomography [222].

Special attention is drawn to MRI, which enables another anisotropic imaging method. For
their pioneering work on MRI, Paul C. Lauterbur and Peter Mansfield received the Nobel Price
in medicine in 2003 [223, 247]. The corresponding anisotropic imaging modality is called
Diffusion Magnetic Resonance Imaging (D-MRI). The interested reader may refer to e.g. [48,
198] for further readings. In this case, MRI is used in order to image the diffusion of water
within the human body [54, 227]. This proved especially valuable for imaging structures
belonging to the Central Nervous System (CNS). The first approach, termed Diffusion Tensor
Imaging (DTI), uses rank-2 tensors to model the diffusion. In contrast to XTT, the main axis
represents the orientation of the structure. For tensor fitting, which is the reconstruction
in case of DTI, two major approaches are used in the scope of DTI, both derived from the
Stejskal-Tanner equation [346]. The first approach is given by least-squares tensor fitting
(c.f. [214]). The second one is based on a maximum a posteriori approach [146]. While the
least-squares approach is based on the assumption of Gaussian noise, the second one copes
with Rician noise [53, 146]. Basu et al. [53] showed that the Rician noise model is more
suitable for DTI imaging. This noise model is shared partially with dark-field imaging as shown
by Chabior et al. [88]. As tensors do not live in the Euclidean space, Pennec et al. [276, 277]
established a Riemannian manifold for the space of tensors (Pos3). This framework enables
for instance interpolation and measuring of distances between tensors in a more meaningful
way than the space of matrices.

DTI has strongly improved the scientific investigation of the CNS. Research of embryonic
development of morphological connection and resulting communication have been studied e.g.
in [130, 371, 387]. Additionally, the information on neurological connectivity is crucial for
surgical planning [269]. For resection of tumors which are closely located to functional areas
the insight gained from DTI provides a great benefit [65]. Further, D-MRI has been applied
for investigation of autism [36], detection of brain ischemia [226] and neurodegenerative
pathologies such as schizophrenia [147, 216] or Huntington’s disease [310]. Assaf et al. [47]
provides a great review on this subject.

In DTI especially for junctions the simple tensor model is insufficient as it is only capable
of representing a single orientation (c.f. [34]). Pasternak et al. [274] use a multi-tensor
approach instead. Alternative approaches use more general formulations based on spherical
functions e.g. q-ball imaging [360, 361].

Due to its similarity, it is reasonable to investigate related approaches and their applicability
to the tomographic reconstruction of the anisotropic dark-field component.
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1.5 Structure of this Thesis

Subject of this thesis is the tomographic reconstruction of the anisotropic dark-field signal.
One major field of research during the preparation of this thesis was the development of
an abstract software framework for inverse problems, such as tomographic reconstruction.
The first part of this thesis is therefore dedicated to the mathematics of inverse problems
(part II). Targeting the specific tomographic problem related to X-ray imaging in particular, we
discuss inverse problems, their discretization and approaches to actually compute a solution.
Additionally, a detailed discussion of the SAXS and the dark-field signal will be provided.

Tomographic reconstruction for modalities different than X-ray CT often employs very similar
mathematical concepts. The first contribution presented within this thesis is the development
of an abstract software framework for tomographic reconstruction. Within this framework the
numerical methods are implemented independently from the specific forward model which
enables adaptation and application of methods for multiple modalities. Additionally, the
framework supports the composition of various common approaches such as regularization
methods which allows for intensive comparison and evaluation of specific methods for multiple
modalities. This framework is presented in part III.

In the final part (part IV) we will focus on the tomographic reconstruction of anisotropic
dark-field signal. Starting with the original work of Malecki et al. [244] we will provide a
review of XTT in chapter 18. The resulting tensor field combines information on the scattering
strength as well as its directional distribution, which provides an insight into orientation
of the microstructure within the object. We will discuss weaknesses and strengths of this
approach as well as a method of denoising based on the manifold on rank-2 tensors developed
by Pennec et al. [277]. A major limitation of the XTT approach is that a tensor is restricted to
a single orientation. Within this thesis we will present a novel general closed-form continuous
forward model of the AXDT. We will show that this model contains the XTT model under
specific assumptions, but also enables an additional highly improved approach based on
spherical harmonics. Additionally, we will present a method to extract the orientation of the
microstructures from their scattering profiles. A first preclinical experiment based on a dried
sample of a part of a human brain indicates that this method could in the future provide
complementary information for imaging the CNS to state of the art methods such as D-MRI.
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Part II

Mathematical Basics





2Disclaimer and Notations

„The only thing better than a cow is a human! Unless
you need milk. Then you really need a cow.

— Dr. Walter Bishop
Fringe

The following part is dedicated to providing an overview and a summary of the mathematical
concepts needed for the numerical computation of solutions to inverse problems, such as
tomographic reconstruction. We will start in the continuous domain and discuss mathematical
tools that enable description of the imaging process in form of integral transforms. Following
this continuous description we will discuss a mathematical framework which enables the
discretization of such problems in order to actually compute tomographic reconstructions
using computers. The presented mathematical tools will be mapped into a flexible software
framework in part III. Further on, as this thesis mainly focuses on Anisotropic X-ray Dark-field
Tomography we will discuss the physical concepts behind dark-field imaging and how they
are modeled mathematically.

Disclaimer: With the kind of broad summary given below it is nearly impossible to provide
a deep insight into each topic. Consequently, a common rule is to keep one’s discussion as
narrow as possible. Nevertheless, this rule unfortunately does not apply in this case as one of
the main work packages was the development of the already mentioned software framework
of part III for linear inverse problems. We therefore need to provide a broad introduction
summarizing the key concepts related to inverse problems and attempts to solve them.

Before we dig into the theory of inverse problems and especially the problem of tomographic
reconstruction, we will provide an overview on common notations used in the following.

2.1 Notations

Consider two vectors x = (x0, . . . , xN−1), y = (y0, . . . , yN−1) of the Euclidean space RN of
dimension dim

(
RN
)

= N . We denote the standard basis as en, 0 ≤ n ≤ N − 1. For the inner
product of x and y the following notations are used synonymously:

〈x, y〉 = xy = x · y :=
N−1∑

n=0
xnyn. (2.1)

21



The complex conjugate of a number z ∈ C is written as z∗. For a matrix A ∈ KN×M , with
K ∈ {R,C}, we denote the adjoint as A∗ with the special notation for the adjoint in R, i.e. the
transpose A>. Further we denote the subspace of R3×3 of symmetric matrices by Sym3 and
the further subset of symmetric and positive definite matrices by Pos3.

In addition to the standard Euclidean space we are going to use the following notations of
special sets:

u⊥ :=
{
w ∈ RN : 〈u,w〉 = 0

}
(u ∈ RN)

SN−1 :=
{
x ∈ RN : ‖x‖2 = 1

}
(unit sphere in RN)

HN−1 (s, u) :=
{
v ∈ RN : ∃w ∈ u⊥, v = su+ w

}
(u ∈ SN−1, s ∈ R)

TN :=
{

(x, u) ∈ RN × SN−1 : x ∈ HN−1 (u)
}

(tangent bundle of SN−1)

L (x, u) :=
{
v ∈ RN : ∃t ∈ R, v = x+ tu

}
((x, u) ∈ T)

C (u) :=
{
w ∈ SN−1 : 〈u,w〉 = 0

}
(great circles on SN−1)

Note: We further use the short notation HN−1 (u) = HN−1 (0, u)
(
= u⊥

)
for the standard

hyperplanes and L (u) = L (0, u) for lines through the origin. We omit the dimension subscript
of the sets above if it is clear or implicitly given by the arguments.

At some points we require a subdivision of a given set into multiple smaller sets. For this
purpose we will use the following definition of a partition.

Definition 2.1 (Partition) A partition of a set X is a collection of sets {An}N−1
n=0 , An ⊂ X with the following

properties:

An ∩Am = ∅, n 6= m, (2.2)

X =
N−1⋃

n=0
An, (2.3)

with An denoting the closure of An.

For a subset A ⊂ X we denote the indicator function by

χA : X → [0, 1] , x 7→





1 x ∈ A
0 x /∈ A.

(2.4)

Throughout the following chapters we will consider multiple function spaces. The space of
all functions f : X → Y mapping from the domain dom (f) = X to the range ran (f) = Y

is denoted as XY . The image of f is denoted as im (f) = f (X) and the support is denoted
as supp (f) := {x ∈ X : f (x) 6= 0}. Furthermore, the space of continuous functions on a
domain Ω is written as C (Ω), while the space of k-times continuous differentiable functions
is denoted as Ck (Ω). The special case of k-times continuous differentiable functions with
compact support, i.e. supp (f) is a compact subset of X, is written as Ckc (Ω). For the space
of continuous linear mappings we write L (X,Y ). The space of infinitely differentiable and
rapidly decreasing functions on RN is written as S

(
RN
)

[330] (c.f. [167, Definition 2.2.1]).
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For the class of Lp spaces we use the following common definition (c.f. [315]).

Definition 2.2 (Lp-spaces) Let (Ω,A, µ) be a measure space, K ∈ {R,C}, 1 ≤ p <∞. The Banach space of
Lp-functions over K is defined as,

Lp (Ω,A, µ) = Lp(Ω,A, µ)/N , (2.5)

with

‖f‖Lp :=
(∫

Ω
|f (x)|p dµ (x)

) 1
p

, (2.6)

Lp (Ω,A, µ) := {f : Ω→ K : f measurable, ‖f‖Lp <∞} , (2.7)

N := {f ∈ Lp : ‖f‖Lp = 0} . (2.8)

Note: In cases where the choices of A and µ are obvious, such as in case of the Euclidean
space, they will be omitted.

For any element of the equivalence class [f ] ∈ Lp, we use the norm definition ‖[f ]‖Lp := ‖f‖Lp

and omit the [·] subsequently. The special class of L2 (Ω), which constitutes a Hilbert space,
possesses the following inner product for f, g ∈ L2 (Ω):

〈f, g〉L2(Ω) :=
∫

Ω
f (x) g (x)∗dµ (x) . (2.9)

Furthermore we denote the corresponding sequence counterparts by `p (c.f. [167, p. 2]).
Analogous to the continuous case, norms are given by

‖x‖`p :=
(∑

n∈N
|xn|p

) 1
p

. (2.10)

We will use the short-hand notations ‖·‖p for ‖·‖Lp and ‖·‖`p if it is obvious which space is
considered. Finally we use the notation ‖·‖p,w for the weighted Lpw- and `pw-norms, which are
defined as:

‖·‖Lp
w(Ω) :=

(∫

Ω
w (x) |f (x)|p dµ (x)

) 1
p

, (w : Ω→ R+) , (2.11)

‖·‖`p
w(Ω) :=

(∑

n∈N
wn |xn|p

) 1
p

,
(
w = (wn)n∈N , wn ∈ R+

)
. (2.12)

For two integrable functions f, g ∈ L1 (RN
)

we denote the convolution by

(f ∗ g) (x) :=
∫

RN

f (y) g (y − x) dy. (2.13)

One of the most powerful tools for analyzing functions is given by the Fourier transform.
Throughout this thesis we will use the following definition of the Fourier transform.
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Definition 2.3 (Fourier transform (N -dimensional)) (c.f. [167, pp. 99ff]) Let f ∈ S
(
RN
)
, we define the

Fourier transform FNf of f as

FNf (ξ) :=
∫

RN

f (x) e−2πixξdx. (2.14)

The inverse transformation is given as

F−1
N f (x) := FNf (−x) . (2.15)

Note: For L1 (RN
)

and L2 (RN
)

we use the usual extension (c.f. [167]). If the dimension of f
is clearly stated we use the abbreviations Ff = FNf and F−1f = F−1

N f .

For convolution and Fourier transform an interesting relationship dramatically simplifying
convolution exists, i.e. the convolution theorem.

Theorem 2.4 (Convolution theorem) (c.f. [167, Proposition 2.3.22.]) Let f, g ∈ L1 (RN
)

then the follow-
ing equality holds:

F (f ∗ g) = (Ff) (Fg) . (2.16)

This theorem states that convolution is reduced to a pure multiplication within the Fourier
domain.

This closes all notations needed within this thesis and we proceed with the consideration of
the mathematical model of X-ray tomography.
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3Forward Model for X-ray Imaging

During the introduction, we have already mentioned that the forward model for absorption of
a single X-ray beam can be expressed in terms of the linear attenuation coefficients as

− ln I

I0
=
∫

L

f (x) dx, (3.1)

with I denoting the measured and I0 denoting the initial beam intensity (compare eq. (1.9)).
Therefore, the question how a function is related to its integral values and what is required to
perform an inversion of this process arises. This is of special interest, as the problem of AXDT
shares this key elements with attenuation CT. For discussion beyond the scope of this thesis
we refer to [78, 116, 178, 179, 186, 204, 261, 264, 284] on which this summary is based.

We start with the definition of two X-ray related transforms. These transforms state the
forward models for eq. (3.1). These models are the prerequisite to formulating an inverse
problem as described in chapter 4. We start with the original Radon transform which is defined
as follows.

Definition 3.1 (Radon transform (N -dimensional)) (c.f. [264, 286]) Let f : RN → R be sufficiently nice.
The mapping Rf :

(
f : RN → R

)
→
(
Rf : R× SN−1 → R

)
of f to integral values over affine

hyperplanes HN−1 (s, u) with normal u ∈ SN−1 and offset s ∈ R to the origin,

Rf (s, u) =
∫

HN−1(s,u)
f (v) dv, (3.2)

is called Radon transform.

Note: For N = 2 the hyperplanes are lines which match the model for X-ray imaging. The
result in this case is commonly referred to as sinogram.

As the note already states, this transform provides a forward model for X-ray imaging in 2D
with parallel X-ray beams (see fig. 3.1a). For non-parallel geometries (compare figs. 3.1c
and 3.2b) a re-parametrization, also known as rebinning, is needed (c.f. [186]). In 3D this
transform no longer suits the tomographic problem, as the hyperplanes no longer represents
lines but planes instead. Therefore, the Radon transform is not suitable to model the X-ray
imaging process in 3D.

This led to the definition of the so called X-ray transform, which instead of integral values
over hyperplanes considers integrals along straight lines.

Definition 3.2 (X-ray transform (N -dimensional)) (c.f. [264]) Let f : RN → R be sufficiently nice. The
mapping Xf :

(
f : RN → R

)
→
(
Xf : RN × SN−1 → R

)
of f to integral values along lines

L (x, u), u ∈ SN−1, x ∈ RN

Xf (x, u) =
∫

L(x,u)
f (v) dv (3.3)
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Figure 3.1 Illustration of the X-ray/Radon transform in 2D for different setup geometries. In (a) we show a parallel
beam geometry which is the common scheme for the Radon transform. Further we show two point
source based geometries with a flat detector in (b) and a curved one in (c). Both situations can be
modeled using the X-ray transform (def. 3.2) and with a suitable parametrization also with the Radon
transform (def. 3.1).

e0

e2

e1

(a) 3D Parallel

e0

e2

e1

(b) 2D Cone beam

Figure 3.2 Illustration of the X-ray transform in 3D for different setup geometries. In (a) we show a parallel beam
geometry while (b) shows a cone-beam setup. Both situations can be modeled using the X-ray transform
def. 3.2.

is called X-ray transform.

Note: For N = 2 the following equality holds: Rf (s, u) = Xf
(
su, u⊥

)
. Furthermore, the

domain of the transformed function Xf can be restricted to the tangent bundle TN as the
line definition is unique on this subset of RN × SN−1. However, as we often deal with setups
similar to cameras it is often advantageous to use the camera center, i.e. the X-ray source, for
x. It should be mentioned that the so-called divergent beam transform is defined in [264]
as well, which is similar to the X-ray transform above but operates on half-lines instead. We
omit this transform as in the following we will predominantly consider functions f of compact
support, for which the two transforms are equal for all x /∈ supp (f), i.e. a source outside of
the object.

Please note that both transforms Rf and Xf are linear with respect to f due to the linearity
of the integral. This is essential, as the tomographic reconstruction thus falls into the class of
linear inverse problems which we will discuss in chapter 4.

Of special interest is the evaluation of these functions for specific ray directions. For parallel
beam geometry setups these reflect one detector image/scan (compare figs. 3.1 and 3.2).
Therefore we use the shorthand notation Ruf (s) = Rf (s, u) and Xuf (x) = Xf (x, u). These
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single orientation scans are typically referred to as X-ray projection images within the X-ray
imaging community. Further, the computation of this forward model is commonly referred to
as forward projection.

However, many modern CT machines typically do not operate with parallel geometries but
with geometries defined by a point source instead (compare figs. 3.1b, 3.1c and 3.2b ). This is
known as fan beam geometry in 2D and cone-beam geometry in 3D. In these cases the X-ray
projection is typically identified with the direction of the central beam while the relation of the
directions for non-central X-rays is defined by the opening angle of the fan/cone. As discussed
above, for fan/cone geometries the position of the point source provides a natural choice for
the parameter x of Xf . The interested reader may consider [78, 205] for further insights into
common geometries.

An actual measurement using a CT machine naturally reduces the domain of the transformed
function. With respect to the X-ray transform this reduction happens for example for x as the
possible poses for the source are limited due to the physical arrangement of the CT system.
The same is true for the parameter u as the finite size of the detector in combination with
similar physical restrictions to those of x imposes a similar reduction. Additionally, due to the
finite amount of pixels on a detector this set is further discretized. We will discuss tools to
model this in section 4.1 and will consider the continuous formulation for now.

A very interesting relation exists between the X-ray transform and the Fourier transform which
is known as Fourier slice theorem1. It basically states that the Fourier transform of a single
X-ray projection of f equals the cut through the Fourier transform of the function itself.

Theorem 3.3 (Fourier slice theorem (N -dimensional)) (c.f. [264]) Let f ∈ S
(
RN
)

and u ∈ SN−1, the
following equality holds:

FN−1Xuf (ξ) = FNf(ξ) ∀ξ ∈ u⊥ (3.4)

Note: Natterer uses a different definition of F which leads to an additional normalization
factor.

A key consequence from theorem 3.3 is that it provides a straightforward inversion formula,
known as Fourier reconstruction [263]. This formula is inherently given by the invertibility of
the Fourier transform. Additionally, theorem 3.3 gives important information on what can be
reconstructed in the case of limited-angle CT, i.e. a restriction of u to a wedge of SN−1. Quinto
[285] showed that only information on singularities which are hit tangentially is collected by
an X-ray projection. Frikel and Quinto further studied the theoretical properties of artifacts
caused by this insufficient sampling [152].

A detailed mathematical discussion of these transforms would go far beyond the scope of this
thesis and we are therefore going to focus on the essential properties used within this thesis.
These will be discussed exemplarily in the following regarding the 2D Radon transform as this
provides the clearest picture. However, we point out that similar concepts apply to the other
transforms and the 3D case as well. For a more in-depth discussion on these transformations,
especially the requirements on f etc., we refer to [116, 178, 204, 264, 284].

1A similar theorem holds for the Radon transform [264, p. 11].
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We start with the dual of the (2D) Radon transform. The dual is of special interest as in the
case of the Hilbert space L2 it represents the Hilbert-adjoint of the Radon transform.

Definition 3.4 (Dual Radon transform (2D)) ([263, p. 13]) The dual operator to R is defined as:

R∗g (x) :=
∫

S1
g (〈x, u〉 , u) dσ (u) (3.5)

with g : R× S1 → R being sufficiently nice.

This operator is commonly referred to as (unfiltered2) back-projection. This name is based on
the fact that an alternative way of interpreting def. 3.4 is that the value at a position (s, u) in
the Radon space is back-projected along the ray corresponding to (s, u). In order to illustrate
this relation in fig. 3.3 the sinogram of a simple function together with a back-projection of a
single X-ray projection as well as a full back-projection is shown3.

(a) (b) (c) (d)

Figure 3.3 Illustration of the Radon transform of three single pixels (a) and the resulting sinogram (b). Further a
back-projection of a single X-ray projection is shown in (c) while the result of the full back-projection of
all X-ray projections are displayed in (d).

In order to perform tomographic reconstruction we are interested in inverting eq. (3.1), i.e.
in 2D the inversion of the Radon transform Rf . Both Radon [286] and Cormack [106, 107]
presented inversion formulas for this type of integral transforms. However, in practice these
are expensive to compute and a much more elegant method exists today – namely the Filtered
Back-Projection (FBP).

As prerequisite we recall the definition of the Riesz potential which states a kind of "integrating"
(c.f. [167]) convolution operator.

Definition 3.5 (Riesz potential) (c.f. [167, Definition 6.1.1.]) Let 0 < r < N . The Riesz potential of order r
is defined as the operator:

Ir := (−4)−
r
2 , (3.6)

with the fractional Laplacian operator defined as:

(−4)−
r
2 f := F−1

(
(2π |ξ|)−r Ff

)
(3.7)

for f ∈ S
(
RN
)
.

Note: While the Riesz potential is well-defined for r being in the range given above, the concept
carries over to other r as well (see [167, pp. 414ff]). However, it is not necessarily guaranteed

2Opposed to the Filtered Back-Projection (FBP)
3Created with Matlab [on2] radon(), iradon() procedures.
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that the potential is well-defined as the function may not be locally integrable any longer.
Additionally, please note that due to the convolution theorem (theorem 2.4) this states a
convolution.

The relation of the Radon transform and the Fourier transform now results in a very interesting
relation between the Riesz potential, the Radon transform, and its dual. This relation is given
in the following theorem.

Theorem 3.6 (Radon transform and Riesz potential) (c.f. [263, Theorem 2.1]) (2D) Let f ∈ S
(
R2). The

following equality holds,

Irf = 1
σ (S2)R

∗ (Ir−1 ⊗ id)Rf (3.8)

for all 0 ≤ r < n. With ⊗ denoting the tensor product.

Note: For clarification, in theorem 3.6 the tensor product is used to highlight that the second
Riesz potential acts only on the variable s in the Radon space.

As a direct result, this theorem provides two major implications (c.f. [264, pp. 18ff]). First,
for r = 1 one finds that the concatenation of forward and back-projection acts on f like the
Riesz potential of order 1 which due to the integrating nature leads to a blurred version of f
(see fig. 3.3d). Secondly, for s = 0 one obtains the inversion formula of FBP:

f = 1
σ (S2)R

∗ (I−1 ⊗ id)Rf (3.9)

Thus the inversion of a given sinogram g = Rf can be computed by performing a filtering in
the Radon space according to the Riesz potential I−1 and a subsequent back-projection.

This closes our discussion of the mathematical model for X-ray imaging. While the method of
FBP already provides a first reconstruction method, we want to consider inverse problems from
a more general point of view. This allows for an advanced method to deal with restrictions,
noise, and other perturbations of measurements. Therefore, we continue with the definition
and discussion of inverse problems.
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4Inverse Problems

As discussed above tomographic reconstruction, i.e the computation/reconstruction of a cause
from an observed/measured effect, belongs to the problem class of linear inverse problems. In
the following we will discuss the mathematical tools used to model, discretize, and solve this
specific type of inverse problem. We will strictly focus on linear inverse problems due to the
linear forward model. Thus, in the following whenever we write inverse problem we implicitly
assume a linear relation between cause and effect (except when stated otherwise).

From an abstract level we can define a linear inverse problem as follows:

Definition 4.1 (Linear inverse problem) Let X, Y denote two spaces (e.g. Hilbert or Banach spaces),
modeling the space of cause and effect, respectively. Further let A : X → Y be a linear
operator modeling the relation between cause and effect and finally let y ∈ Y be a given effect.
The (linear) inverse problem consisting of the tuple (A, y) is to find a x ∈ X such that

Ax = y, (4.1)

holds.

Note: If A is invertible the solution is given by x = A−1y.

The problem of tomographic reconstruction falls into this class as the corresponding forward
model, i.e. the Radon/X-ray transform, is linear. For a further reading on inverse problems we
refer to [212, 260, 301] on which the following summary is based.

One part project of this thesis was the development of a software framework previously called
CampRecon [28] which is currently being refactored into an open-source framework called
elsa. In order to map the functionality to model and solve inverse problems into a software
framework it is essential to understand how these problems are modeled mathematically. In
the following we will provide all necessary mathematical concepts which enabled us to do
exactly that.

4.1 Continuous vs. Discrete Problems

In def. 4.1 we have defined inverse problems in an abstract and continuous fashion. However,
in order to be able to make use of modern computer equipments such continuous problems
need to be discretized. The most simple way of discretization is sampling on discrete sampling
points. While the simplicity is appealing the relation between the continuous and the discrete
problem/model is not straightforward. Instead, we want to consider a more general framework
of discretization, namely the framework of projection methods.
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Within this framework, the process of discretization is understood as projection onto finite
subspaces. Therefore a substantial connection between discrete and continuous problem
formulation is introduced. For readings which go beyond the following summary we refer to
[212, 301] on which this summary is based. The first ingredients which we need are projection
operators1 which are defined as follows.

Definition 4.2 (Projection) Let V ⊂ X of a normed space X. A linear continuous mapping P : X → V is a
projection operator if

Px ∈ V, ∀x ∈ X, (4.2)

Px = x, ∀x ∈ V. (4.3)

Among others the two most famous representatives of projection operators are the orthogonal
projection and the interpolation operators. The orthogonal projection is, as the name already
indicates, based on the concept of orthogonality within a Hilbert space.

Definition 4.3 (Orthogonal projection) (c.f. [212, example 3.3. a]) Let V ⊂ X be a complete subspace of a
Hilbert space X. The orthogonal projection of x ∈ X is defined as:

Px = arg min
v∈V

‖v − x‖X . (4.4)

The solution to eq. (4.4) is characterized by the equation

〈x− Px, u〉X = 0, ∀u ∈ V, (4.5)

i.e. the vector connecting Px and x stands orthogonally on the subspace V .

The second projection operator which will be used throughout this thesis is the interpolation
operator. We will later discuss that many discretized versions of the forward model (see
chapter 3) which are applied in the context of tomographic reconstruction intrinsically use
this operator for discretization.

Definition 4.4 (Interpolation operator) (c.f. [212, example 3.3. b]) Let V ⊂ C (Ω) with a compact
domain Ω. Let further V = span {v0, . . . , vN−1} N -dimensional such that for pair-wise distinct
sampling points t0, . . . , tN−1 ∈ Ω the corresponding Vandermonde matrix is invertible, i.e. the
interpolation problem is uniquely solvable. The interpolation operator P : C (Ω)→ V, x 7→ v

is defined by the mapping of x ∈ C (Ω) to its interpolant in v ∈ V , i.e. v(tj) = x(tj),
∀j = 0, . . . , N − 1.

Note: We have already discussed in case of the forward model (see chapter 3) for CT that
the function we want to reconstruct is assumed to be of compact support. This means that
one assumes that the function is assumed zero for any position that is not located within a
bounding box of the measured object.

Following these definitions, we now discuss projection methods which enable the use of
projection operators in order to discretize an inverse problem. The great advantage of

1This is not to be confused with the forward projection operator discussed previously.
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this approach is that it establishes a direct, linear and continuous connection between the
continuous problem and its discretization. The key idea is to use projection operators to project
onto finite sub-spaces of both, the domain and the range of the operator A in def. 4.1.

Definition 4.5 (Projection method) (c.f. [212, Def. 3.4.],[301, Sec. 6.1.1]) Let A : X → Y be a bounded,
linear operator. Further, let XN ⊂ X and YM ⊂ Y be finite-dimensional subspaces with
dim

(
XN

)
= N , dim

(
YM

)
= M and the projection operator QM : Y → YM . The projection

method for a linear inverse problem (A, y) with y ∈ Y is to solve

QMAxN = QMy, (4.6)

for xN ∈ XN .

If one further considers two bases {x̃n}N−1
n=0 and {ỹm}M−1

m=0 of XN and YM it is possible to
express QMy and QMAx̃n, n = 0, . . . , N − 1:

QMy =
M−1∑

m=0
ymỹm and QMAx̃n =

M−1∑

m=0
amnỹm, n = 0, . . . , N − 1. (4.7)

For this discretized formulations, xN =
∑N−1
n=0 xnx̃n solves eq. (4.6) if and only if Ax = y,

with system matrix A = (amn) ∈ RM×N and x = (xn) ∈ RN , y = (ym) ∈ RM as:

QMAxn = QMA
N−1∑

n=0
xnx̃n (4.8)

=
N−1∑

n=0
xnQMAx̃n (4.9)

=
N−1∑

n=0
xn

M−1∑

m=0
amnỹm (4.10)

=
M−1∑

m=0

N−1∑

n=0
amnxn

︸ ︷︷ ︸
ym

ỹm (4.11)

= QMy. (4.12)

Thus, by using projection methods we are able to discretize both, the domain and the range
of a continuous operator and obtain a finite linear system of equations. The task to solve
eq. (4.6) is transformed to solve a system of linear equations Ax = y. Additionally, the choice
of XN and YM enables the modeling of properties of the measurement equipment. In case
of CT this could e.g. be used to model detector properties such as the point spread function
of a detector pixel2. In addition, this method enables the use of specific basis function in the
domain to enforce/support special characteristics of the solution.

It should be mentioned that both Kirsch [212, Def. 3.4.] and Rieder [301, Sec. 6.1.1]
use slightly different definitions of projection methods as they further study properties of

2For more on this topic we refer to [78, pp. 410ff]
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these methods which require some additional restrictions on A, XN , and YM . Among other
properties they e.g. investigate in the regularizing properties of projection methods in the
sense of section 4.1. Further stability and convergence towards the continuous problem for
increased N,M are investigated and discussed. However, in this work we strictly use this
toolset as mathematical framework for discretization. For any discussion beyond this we
highly recommend [212, 301] on which the afore given summary is based.

Up until now we did not explicitly formulate the entries amn of A, but we have discussed that
such entries exist. This representation depends on the choice of XN , YM as well as the choice
of the projection operators. We are now going to discuss some popular choices.

If X and Y are Hilbert spaces and one chooses QM : Y → YM to be the orthogonal projection
(def. 4.3) one obtains the Galerkin method (c.f. [212, Chap. 3.2]). The explicit formulation
of the system matrix A is given by amn = 〈Ax̃n, ỹm〉Y . A sub-class of the Galerkin method is
the method of least-squares where YM := AXN (c.f. [212, Sec. 3.2.1]). The matrix becomes
amn = 〈Ax̃m,Ax̃n〉Y and its solution solves

arg min
xn∈XN

‖Axn − y‖Y . (4.13)

Please note that this least-squares problem is formulated with respect to the inner product
in Y . We will later also consider discrete least-squares methods where the sequence norm
`2 and therefore the inner product 〈·, ·〉`2 is considered instead. While at this point we did
not consider perturbations/statistics of the measurements yet it is worth mentioning that the
least-squares approach corresponds to the assumption of a Gaussian noise model. We provide
a short discussion in section 4.5.

A second class is given by the Collocation Method (c.f. [212, Chap. 3.4]) where Y = C (Ω) on
a compact domain Ω. For the Collocation Method the YM is chosen to be the space of linear
splines according to the sampling points t0, . . . , tM−1 ∈ Ω. Using the interpolation operator
for QM the system matrix becomes amn = (Ax̃n) (tm). This method is predominantly used for
tomographic reconstruction, often implicitly.

We are now able to formulate a discrete version of an inverse problem by using the presented
methods while maintaining a linear relation to the original/continuous inverse problem.

4.2 Ill-posedness

We have already stated that a solution to an inverse problem (A, y) is given by A−1y if the
operator is invertible. However, if the operator A is e.g. only surjective and not bijective a
solution may not be unique. If on the other hand A is purely injective a solution may not even
exist. Additionally, it is important to consider how the solution varies with small perturbations
of y, as measurements typically contain noise. These three conditions have been postulated by
Hadamard [173] and are known as Hadamard conditions on well-posed problems:

Definition 4.6 (Well-posed problem) An inverse problem (A, y) is called well-posed if and only if all of the
following requirements hold.
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• ∀y ∈ Y , ∃x ∈ X such that Ax = y. (Existence/Surjectivity)

• ∀y ∈ Y , there exists at most one x ∈ X such that Ax = y. (uniqueness/Injectivity)

• The solution x depends continuously on y. (Stability)

Otherwise the problem is called ill-posed.

Unfortunately, the problems which are considered within this thesis fall into the category of ill-
posed linear inverse problems (c.f. [264, chapter. IV]). Due to the Riesz potential the inverse
operator to the Radon transform is an unbounded and therefore not continuous operator.
Consequently, the stability condition in particular does not hold for our reconstruction problem.
This is crucial as we are typically dealing with noisy measurements, i.e. we do not measure
the perfect y but a perturbed version yδ. Thus, from this on if we write inverse problem we
implicitly expect this problem to be ill-posed.

4.3 Minimum-norm Solution

A common approach to deal with the first issue of def. 4.6 is to replace the direct problem
with an optimization problem solving for a minimum-norm solution. In this context one aims
at finding the x ∈ dom (A), such that Ax is the "closest" element y ∈ ran (A). Consequently,
for an inverse problem

(
A, yδ

)
with yδ ∈ Y being a Banach space we solve:

arg min
x∈X

∥∥Ax− yδ
∥∥
Y
. (4.14)

Depending on the task there are various possible choices for Y . This choice however is
commonly motivated by the underlying physics. However, as we are mainly interested in
function spaces and their discrete counterparts common choices are the Lp- and the `p-
spaces.

As we are investigating linear inverse problems for
(
A, yδ

)
we can combine the minimum-norm

approach with the previously discussed projection methods (see section 4.1). Consequently
the problem is discretized in terms of range and domain of the operator A. This yields the
discrete problem

(
A,yδ

)
with A ∈ RM×N and yδ ∈ RM using any of the methods described

in section 4.1. A minimum-norm approach can now be stated with respect to the sequence
`p-spaces, i.e.

arg min
x∈RN

∥∥Ax− yδ
∥∥
`p , (4.15)

with p ≥ 1.

4.4 Regularization

A common approach to control the influence of noise and/or other perturbations which effect
measurements is regularization. For a general overview we refer to [134]. Assume the
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perfect measurements to be given as y ∈ Y in a Banach space Y . Further, let yδ ∈ Y be the
perturbed measurements with δ > 0 such that

∥∥y − yδ
∥∥
Y
< δ. (4.16)

Instead of solving (A, y) we have to stick with what we measured and solve
(
A, yδ

)
instead.

Nevertheless we are interested in the solution of (A, y). Due to the ill-posed nature of the
inverse problems considered in this thesis we may face several problems here. First of all, yδ

does not have to be in ran (A), i.e. even though (A, y) may posses a solution,
(
A, yδ

)
may not.

Secondly, a solution to
(
A, yδ

)
may again not be unique. Finally, even if one has an idea about

the error caused by the perturbation in the measurements (eq. (4.15)), one has no idea how
strongly the perturbation influences the solution if the solution does not depend continuously
on the data.

Again for the first issue we may apply minimum-norm approaches as discussed in section 4.3.
This leaves us with the two remaining issues, those of uniqueness and stability. Fortunately,
in many cases we have an idea about how our solution should look like. This information
could e.g. be given by physical facts such as positivity of the physical quantity, tangible models
such as anatomic models, or by more abstract assumptions such as smoothness etc. One
consequently wants to use this prior knowledge to cope with the remaining two issues of
ill-posedness, i.e. the uniqueness and the stability.

Recalling the definition of projection methods def. 4.5 one possibility is to choose XN such
that elements of this space are "favorable". However, this is very restrictive and it is quite
complicated to incorporate multiple restrictions. This is where the much more flexible
framework of regularization comes into play3. Mathematically, regularization is defined as
follows.

Definition 4.7 (Regularization) (c.f. [212, Def. 2.1.],[301, Def. 3.1.1]) For a perturbed inverse problem(
A, yδ

)
, a family {Hλ}λ>0 of continuous operators Hλ : Y → X is called a regularization

strategy with parameter λ, if

lim
λ→0
HλAx = x, ∀x ∈ X. (4.17)

The key ingredients in this definition are the continuity and the point-wise convergence of
HλA to the identity. Again we restrict the provided summary to the concepts that are needed
within the scope of this thesis, especially with respect to the development of the software
framework presented in part III. For further reading we once again refer to [212, 260, 301].

Based on the abstract def. 4.7 we will now provide an overview on frameworks and common
concepts of regularization strategies.

3To be precise, the choice of XN can impose a regularization in the sense of def. 4.7. For further readings on this
topic we refer to [212, 262, 301]
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4.4.1 Variational Methods

The most prominent regularization methods are based on variational methods (c.f [112, p.
375ff] [319, p. 53ff]). These methods develop from optimizing a Tikhonov type of functional
composed of a data term and possibly multiple regularization terms whose influences are
controlled via a corresponding regularization parameters. Throughout this thesis we will
consider the following definition of variational methods.

Definition 4.8 (Variational method) (c.f. [319, chap. 3]) For a perturbed inverse problem
(
A, yδ

)
a

variational method is given as an energy functional

E (x) := F0 (A0x, y0) +
K∑

k=1
λkFk (Akx, yk) , (4.18)

with linear operators Ak, corresponding reference data yk for 0 ≤ k ≤ K, and mappings
Fk : ran (Ak) × ran (Ak) → R. The F0 (A0x, y0) is called data term while the Fk (Akx, yk),
k ≥ 1 are called regularization terms with regularization parameters λk4.

Note: An obvious choice for the Fk : ran (Ak)× ran (Ak)→ R, 0 ≤ k ≤ K are metrics, if such
exist on ran (Ak), as they quantify the "distance" of Akx to yk. In the special case of Banach
spaces a natural choice therefore is given by the metric induced by the corresponding norm.
In this case the function is composed of a functional F̃k : ran (Ak)→ R wrapping the linear
residual Rk (Ak, x, yk) := Akx− yk, 0 ≤ k ≤ K. In this special case eq. (4.18) becomes

E (x) := F̃0 (R0 (A0, x, y0)) +
K∑

k=1
λkF̃k (Rk (Ak, x, yk)) . (4.19)

In order to compute a solution to the inverse problem
(
A, yδ

)
one w.l.o.g aims at finding a

minimum of E (x):
arg min
x∈X

E (x) . (4.20)

While the aforementioned definition is very generic and universally applicable, we want to
highlight some examples using such type of formulations which are of special interest. Of
special interest are those functionals E (x) which are convex and lower semi-continuous
functions. These choices ensure that a solution to eq. (4.20) exists (c.f. [103]). This optimum
does not need to be unique though. Beside the examples already given in section 4.6.2 we
now want to discuss some more advanced methods.

In the note of def. 4.8 we discussed the special form for Banach spaces which uses linear
residuals Rk (Ak, x, yk) = Akx − yk, where the Ak are linear mappings which "investigate"
a specific property of x and compare it to a reference yk. The F̃k measures this residual.
Therefore common choices are the p-th power of the Lp-norms and their sequence counter-part,
the `p-norms.

4An important question which will not be considered as part of this thesis is how this parameter should be chosen.
We refer to e.g. [174, 289, 291, 394].
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Figure 4.1 Illustration of the ‖·‖p for p = 1, 1.5, 2, 5 and the Huber-norm for x ∈ R.

Another prominent example is the Huber-norm [188], which is a combination of ‖·‖1 and ‖·‖22
such that it becomes continuously differentiable. These choices have in common that they are
non-negative and convex which is of special interest as we are aiming at finding an optimum
of E (x).

Among the various possibilities given by the framework of variational methods there are some
commonly used examples for these type of approaches. Some of these will be described and
discussed in the following to showcase the broad applicability which also motivates the design
of our framework in part III.

Example 4.9 (Tikhonov regularization) The arguably most famous variant of regularization is the (gener-
alized) Tikhonov regularization introduced by Tikhonov [355] (c.f. [319, sec. 3.1]). Here a
least-squares approach is chosen for the data term and a L2-norm regularization is added:

Etikhonov (x) := 1
2
∥∥Ax− yδ

∥∥2
2 + λ

2 ‖A1x‖22 . (4.21)

For the classical Tikhonov regularization the operator in the regularization term is set to the
identity, i.e. A1 = id. Thus it penalizes large x in terms of the L2-norm.

Example 4.10 (Total variation regularization) Another commonly used feature for regularization is varia-
tion. Within the method of Total Variation (TV), as introduced by Rudin et al. [313], one aims
at finding a balance between the data term and the total amount of variation which is given by
the derivation/gradient if one assumes X = C1 (Ω). The corresponding objective function is

ETV,iso (x) := 1
2
∥∥Ax− yδ

∥∥2
2 + λ

∫

Ω
‖∇x (x)‖2 dx. (4.22)

Effectively this is the L1-norm of the Euclidean norm of the gradient in each position. This is
also referred to as isotropic Total Variation as the Euclidean norm and therefore the `2-ball of
the gradient is considered.

38 Chapter 4 Inverse Problems



In order to get rid of the combination of the two norms a minor modification leads to the
anisotropic Total Variation (c.f. [60]). Here one uses a pure L1-norm

ETV,aniso (x) := 1
2
∥∥Ax− yδ

∥∥2
2 + λ ‖∇x‖1 . (4.23)

TV has been used in the context of X-ray CT for example in [97, 336, 337, 341, 388]. The
anisotropic version has been used in e.g. [117, 197]. However, a known side effect of this
method is staircasing and loss of fine structures (c.f. [66, 76, 90, 123, 304]).

Example 4.11 (Sparse regularization) A method which became increasingly popular in recent years is
sparse regularization. Here, the key idea is to express the domain of the inverse problem
using special basis functions or over-complete frames (in terms of XN ). A preferable solution
can then be assumed to be sparse, i.e. only few coefficients are non-zero with respect to this
representation (c.f. [260, Ch. 7]).

Donoho [124] proposed the `0-"norm"5 for this purpose which effectively counts the non-zero
entries of a coefficient vector. However, this penalty term is hard to optimize and non convex,
i.e. uniqueness may not be guaranteed, which is why alternative ways have been investigated.
Most common is the substitution with a `1-penalty term which provides a regularization
strategy as shown by Daubechies et al. [111], favors sparse solutions [84, 124, 126, 127], and
is the smallest p such that the `p-norm is still a proper norm.

Let a basis or frame (c.f. [99]) transform be given by the analysis operator C and corresponding
synthesis operator operator C∗. This leads to the following two approaches.

The synthesis approach aims at recovering a sparse coefficient vector with respect to the given
transform C∗. The corresponding objective function is given as:

Esyn (c) := 1
2
∥∥AC∗c− yδ

∥∥2
2 + λ ‖c‖1 (4.24)

and the solution is then given as x∗ = C∗ arg mincEsyn (c).

In contrast, the analysis approach recovers a x in the original space which is sparse under
transformation. This leads to the following formulation:

Eana (x) := 1
2
∥∥Ax− yδ

∥∥2
2 + λ ‖Cx‖1 . (4.25)

Elad et al. [132] found that these two approaches differ in their solution if an over-complete
representation is used. The basis/frames that are used for these kinds of methods are
predominantly based on the theory of wavelets. For a further reading on wavelets see e.g.
[113, 246]. Common variants are Haar- [172] and Daubechies-wavelets [113] and wavelet-
frames [110]. These are defined in the one-dimensional (1D) case and brought to higher
dimensions by using the tensor product. Sparse regularization using Haar wavelets for CT
has been considered in [157]. The relation between sparse wavelet regularization and TV
is studied in [345]. Additionally for the 2D case, dictionaries were proposed which offer

5We use the quotation marks to indicate that this is not a true norm as the function is not homogeneous.
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special properties for e.g. edge preservation. Ridgelets as proposed by Candes [85] offer an
optimal representation for signals with singularities along straight lines. These have been
used in [51] for adaptive sampling in the case of CT as X-rays are modeled as straight lines.
For optimally sparse representations of C2-functions with edges, i.e. singularities, along
C2-curves, curvelets6 [80, 81, 82, 83], and shearlets [169, 219] have been proposed. An
alternative approach is given by contourlets [122]. Frikel [149, 151] used curvelet sparse
regularization for limited-angle CT. A comparison of TV to shearlets [363] and curvelets [8]
has been discussed for CT as well and both proved to recover small line-like structures more
reliably when compared to TV. For three and four dimensions tensor framelets have been
investigated [121, 155, 156, 393]. The interested reader may refer to [343] for a further
insight into sparse signal processing.

Example 4.12 (Proximity problem) (c.f. [103, Def. 10.1]) Another very prominent example which gains
special attention in the context of splitting methods are proximity problems:

Eprox (x) := 1
2 ‖x− y‖

2
2 + f (x) . (4.26)

Let f be convex and lower semicontinuous, then y 7→ arg minxEprox (x) has a unique solution.
The operator, mapping y 7→ arg minxEprox (x) is called proximity operator and is written as
proxf [103, Def. 10.1].

We refer to [71, 103, 272] for exceptionally comprehensive discussions of related methods.
Tables 10.1 and 10.2 in [103] provide a great overview on common proximity problems and
their corresponding operators in particular.

In addition to the aforementioned examples there are many more variants of variational
methods which mainly differ in the used functionals.

4.5 Excursus: Statistical Reconstruction

In the context of CT, in contrast to the linearized model given in eq. (3.1) an alternative
approach is statistical reconstruction (c.f. [145]). Here, the original measurements (see
eq. (1.1)), i.e. before applying the logarithm, of the detector are considered to represent
realizations of a random variable. This enables incorporation of nonlinear physical effects. The
reconstruction becomes another optimization problem similar to def. 4.8 with the "distance"
being formulated in terms of the log-likelihood. In contrast to the functions we considered
above one aims at maximizing the log-likelihood. However, this is equivalent to the form of
variational methods as maximization is equivalent to minimization of the negative function.
Therefore, most of the concepts discussed here and especially the framework presented in
part III are applicable to this kind of reconstruction as well.

Common approaches for CT assume Poisson noise on the measurements [307][221]. If one
considers the problem after taking the logarithm, the `2-norm based approach corresponds
to the assumption of white noise. If strictly Poisson effects are considered the problem can

6Also see [239] for a great review.
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be expressed in terms of a weighted `2w-norm [69]. Taking the logarithm has two major
issues, firstly it is not defined for negative readouts and the estimation is biased due to
Jensen’s inequality (c.f. [145]). Nevertheless, taking the logarithm is very attractive as linear
inverse problems are very well understood and we will therefore stick with the linearized
problem within this thesis. Beside noting that these more advanced statistical approaches are
easily incorporated into the discussed framework part III, we therefore stick to the linearized
version7.

4.6 Solving the Inverse Problem

So far we have focused on the formulation of inverse problems (def. 4.1), their discretization
(def. 4.5), the complications we face if this problem is ill-posed (def. 4.6), and regularization
(def. 4.7). This has been discussed with respect to the problem formulation so far. Now it is
time to face the computational part of our work and discuss methods to actually compute a
solution to our inverse problem.

Typically one distinguishes between analytic and iterative8 methods. For the first kind of
methods one considers an analytic inversion A−1 for the forward model A. This analytic
inversion formula gets discretized in whole or in parts e.g. using the idea of discretizing
ran

(
A−1) and dom

(
A−1) as introduced in the context of projection methods. In case of

the second class the inverse problem
(
A, yδ

)
is typically discretized using e.g. the method

from section 4.1 and the resulting system of linear equations
(
A,yδ

)
is solved in an iterative

fashion.

4.6.1 Analytic Inversion for Tomographic Reconstruction

For standard CT multiple analytic methods have been proposed throughout the years. While
we focus on iterative methods within this thesis, we want to give a brief overview on analytic
methods as well.

The predominant method for analytic inversion is the FBP (c.f. [78, Ch. 5.7]). Recalling the
FBP inversion formula for the 2D Radon transform (eq. (3.9)). The inversion formula can be
separated into two linear operators which are typically discretized separately. First of all a
convolution/filtering operator (I−1 ⊗ id) acting on the sinogram g (s, u) in the Fourier domain
is required. This Fourier convolution operator can be implemented in a discrete fashion using
the Fast (discrete) Fourier Transform (FFT)9. Secondly, the back-projection is computed by
discretizing the adjoint Radon operator R∗ as R> and applying it to the filtered version of the
sinogram. Thus the analytic inversion formula gets discretized by discretization of its parts.

7We have recently presented a statistical approach for AXDT (compare part IV) in [9] based on the work of Chabior
[88].

8In the context of tomographic reconstruction this is sometimes also referred to as algebraic reconstruction technique.
This is easily confused with the algorithm Algebraic Reconstruction Technique (ART) of the same name, therefore
we stick to the label iterative.

9For implementation of FFT based convolution we refer to [283, p. 641ff]
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While the direct form of this method is appealing, the incorporation of regularization is less
straightforward and mainly evolves around preprocessing and variation of the used filter.
The most famous is the Ram-Lak filter proposed in [293]. Here the Riesz potential I−1 gets
modified by an additional cut-off filter

Θ(ζ) :=





1 |ζ| < T

0 else
, (4.27)

with cut-off frequency T .

Beside the Ram-Lak filter e.g. the Shepp-Logan filter [332], the Cosine [261], or the Hamming
filter [211] have also been proposed. While the original method of FBP is built for 2D
and parallel beam geometry, similar filter-based methods for cone-beam setups [142] exist.
Additionally, analytic methods based on decompositions have been proposed. E.g. this has
been proposed for wavelets [128, 228], curvelets [79], and shearlets [102].

Within the scope of this thesis and especially targeting at Anisotropic X-ray Dark-field Tomo-
graphy (AXDT) we predominately focus on the much more flexible framework of iterative
reconstruction10.

4.6.2 Iterative Approaches

The second class of solvers is the class of iterative approaches. In contrast to analytic methods,
here one aims at the iterative improvement of an initial guess. For this kind of algorithm the
discretization is performed with respect to the forward model A of an inverse problem

(
A, yδ

)

with e.g. one of the techniques described in section 4.1. A given problem
(
A, yδ

)
is discretized

and one obtains a discrete representation
(
A,yδ

)
. Let w.l.o.g the system matrix be denoted as

A ∈ RM×N and the discretized measurements as yδ ∈ RM .

In order to cope with ill-posedness, common methods based on the least-squares formulation
(see section 4.3) are employed. In the context of tomographic reconstruction the most famous
representatives are the ART [165], Simultaneous Iterative Reconstruction Technique (SIRT)
[159], and SART [41], which effectively represent reinventions of the Kaczmarz method [201],
and the Landweber method [220].

Equivalent Problems

Sometimes a specific solver is built for a special problem formulation but nevertheless other
problems might be brought to the required form by equivalence.

As an example, consider the finite linear least-squares problem with objective function

Els (x) := 1
2 ‖Ax− y‖22 , (4.28)

10A comparison of alternating minimization and FBP in the context of CT can be found in [137]
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for some linear operator A and a right-hand side y. This objective function is convex and a
minimum is characterized as a critical point, i.e. ∇Els = 0. Evidently, the gradient is given as

∇Els (x) = A>Ax−A>y. (4.29)

Equation (4.29) is commonly referred to as normal equation (c.f. [333]). Consequently the
linear least-squares problem is equivalent to the linear problem implicitly stated by setting the
gradient to zero. Furthermore, as

Els (x) = 1
2x>A>Ax− xA>y
︸ ︷︷ ︸

Equad

+ 1
2y>y
︸ ︷︷ ︸

const

, (4.30)

by simply computing the squared norm explicitly, the linear least-squares problem is moreover
equivalent to a quadric problem given by the objective function

Equad = 1
2x>A>Ax− xA>y. (4.31)

The latter equivalence is e.g. used to apply the Method of Conjugate Gradients (CG), which is
meant to solve a quadric objective function with a Symmetric Positive-Definite (SPD) model
A [333]. Following the equivalence and the fact that A>A is SPD for any given matrix A
eq. (4.31) is in fact a quadric function.

Regularization

In order to use the framework of variational methods (def. 4.8) which enables the broad
application of regularization methods as discussed before, one considers optimization problems
based on

(
A,yδ

)
as

arg min
x∈RN

E (x) , (4.32)

with E : RN → R. Examples are presented in section 4.4.

Some of the most famous methods evolve around gradient descent methods. In this case the
algorithm computes an iterative sequence of the following form

xk+1 = xk − αk∇E
(
xk
)
, (4.33)

with αk denoting the step size11. Great introductions to this topic are given in [70, 270, 362].
The main question here is how the step-length is chosen and whether momentum/relaxation
terms are employed in addition. Examples for such methods are the Landweber methods [220].
Nesterov [266] presented an improved gradient method by adding an adaptive relaxation to
the Landweber method, i.e. the computation of a new iterate based on two previous gradients.
In contrast to the Landweber method this leads to a quadratic convergence rate.

Only recently, Kim et al. [209][207] have even improved this rate of convergence by adding
additional momentum terms. In order to choose the step-length within the Separable Quadratic
Surrogate (SQS) as developed by Erdogan et al. [136], the step-length is chosen according to

11Among others, the Barzilai-Borwein step size is a famous method [52].
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a quadratic surrogate such that the matrix D majorizes the Hessian matrix of E. One choice is
D = diag {HE (x) 1} which leads to the update

xk+1 = xk −D−1∇E
(
xk
)
. (4.34)

A further discussion would go beyond the scope of this thesis. In particular, we have to omit
Ordered Subsets (OS) methods and would like to refer the interested reader to [136]. The
important message from this brief summary is that they fit into the framework of variational
methods. This motivated the design of the software framework which will be discussed in
part III.

One of the probably most famous methods for quadric problems (eq. (4.31)) is the method
of CG [182]. Due to its fast convergence and the discussed equivalence of problems (see
section 4.6.2) it is one of the most commonly applied methods for quadric, least-squares,
and linear problems. We will use the CG for tomographic reconstruction of AXDT in part IV.
Therefore, we provide the pseudocode for this method in code 4.1.

Input: B ∈ RN×N a SPD matrix and y ∈ RN , initial guess x0 ∈ RN , I ∈ N and ε ∈ R.
Output: Minimizer x ∈ RN of the quadric problem

Equad (x) = 1
2x>Bx− x>y (4.35)

with a relative gradient tolerance of ε.
r← y−By
d← r
δnew ← r>r
δ0 ← δnew

while it← 0, 1, 2, . . . and δnew/δ0 > ε2 do
q← Bd
α← δnew

d>q
x← x + αd
if it mod I == 0 then . The gradient gets reset each I iterations.

r← b−Bx
else

r← r− αq
end if
δold ← δnew

δnew ← r>r
β ← δnew

δold
d← r + βd

end while

Code 4.1 Pseudocode of the CG for quadric problems (c.f. [333, B2])

A special sub-class of methods based on optimization problems are splitting-based methods.
Such methods are studied in the framework of proximity operators associated with monotone
operators (c.f. [306]). An excellent overview is provided by Combettes and Pesquet [103].
Primal dual splitting for inverse problems is considered in e.g. [89, 91]. Examples are
the Iterative Soft-Thresholding Algorithm (ISTA), Fast Iterative Soft-Thresholding Algorithm
(FISTA) for sparse regularization, and more general methods such as the split-Bregman [164]
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and the Alternating Direction Method of Multipliers (ADMM) [71, 131]. Gabay [154] has
shown that the ADMM can be interpreted as a splitting method applied to a dual functional
while Eckstein and Bertsekas [131] have established that ADMM is a particular instance of a
proximal method. Within the context of CT the ADMM has been applied e.g. in [8, 267, 292,
290]. As an example, we will provide a brief summary of the ADMM as this again will provide
an improved insight into the needs of a general software framework for inverse problems.

Case Study: ADMM

The method of ADMM provides a framework to solve a linear combination of two convex func-
tionals via variable splitting. For an excellent overview we refer to [71] and the corresponding
website [on5] which provides an extensive collection of example code for various problems.

However, if we investigate this we actually find that a lot of code duplicates are created while
the basic procedure is shared. As an illustration consider the following optimization problem
with both the data and the regularization term being convex,

arg min
x

F0 (R0 (A0,x,y0)) + λ1F1 (R1 (A1,x,y1)) . (4.36)

Within the ADMM this problem is transformed into an equivalent constrained optimization
problem by decoupling data and regularization term as [71, pp. 13ff]

arg min
x

F0 (R0 (A0,x,y0)) + λ1F1 (z) s.t. R1 (A1,x,y1) = z. (4.37)

Formulating the augmented Lagrangian Lρ in scaled form yields

Lρ (x, z, u) = F0 (R0 (A0,x,y0)) + λ1F1 (z) (4.38)

+ ρ

2 ‖R1 (A1,x,y1)− z + u‖22 −
ρ

2 ‖u‖
2
2 , (4.39)

with the scaled dual variable u = (1/ρ)µ, µ denoting the Lagrange multiplier. The parameter
ρ couples R1 and z. Within each iteration of ADMM one computes updates for x, z and u via
three steps, which involves two optimization problems and one pure update:

xk+1 = arg min
x

Lρ
(
x, zk,uk

)
(4.40)

= arg min
x

{
F0 (R0 (A0,x,y0)) + ρ

2
∥∥R1 (A1,x,y1)− zk + uk

∥∥2
2

}
, (4.41)

zk+1 = arg min
z

Lρ
(
xk+1, z,uk

)
(4.42)

= arg min
z

{
1
2
∥∥R1

(
A1,xk+1,y1

)
− z + uk

∥∥2
2 + λ1

ρ
F1 (z)

}
, (4.43)

uk+1 = R1
(
A1,xk+1,y1

)
− zk+1 + uk. (4.44)

The beauty of this method is that by decoupling the two terms the ADMM provides a framework
to solve the initial problem via solving a Tikhonov regularized problem (x update) and a
proximity problem (z update). Both these problems are very well understood and are typically
easier to solve than the initial problem.
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With this we conclude the chapter on inverse problems. This chapter serves as motivation for
the design of the software framework in part III. Before we move on to this framework, we
first want to provide a detailed discussion on the dark-field signal from a mathematical point
of view and mathematical tools to model the scattering within an object.

46 Chapter 4 Inverse Problems



5Mathematics of Dark-field

Before we move on to the mathematical concepts which will be used to model the scattering in
order to reconstruct the scattering information from anisotropic dark-field imaging, we want
to take a closer look at the dark-field imaging model. Throughout the recent years multiple
explanations for the dark-field contrast have been proposed [238, 384, 385]. The change of
the intensity of the dark-field signal when a sample is rotated around the beam direction is
commonly modeled by a cosine. This idea was used in directional X-ray dark-field imaging
[193, 194], which further led to XVR [55, 280]. Jensen et al. [193] discussed that this
cosine approximation is valid if Gaussian as well as comparably weak scattering is assumed.
Based on the cosine relation, both Malecki et al. [243] and Revol et al. [299] developed a
model for the accumulation of anisotropic scattering along the X-ray beam direction. Please
note that the assumption of a Gaussian scattering function has a big advantage, namely the
existence of an intrinsic relation of the scattering observed under rotation as above. For this
reason we will stick with the principle proposed by Malecki et al. [243] throughout part IV.
However, only recently Strobl [349] provided a much more complete explanation for the
dark-field contrast. Interestingly, these explanations originate from a different scattering
imaging modality SESANS (c.f. [295]). For an extensive analysis on SESANS we refer to
[40]. The model presented by Strobl [349] has been experimentally validated by Prade et al.
[282]. However, the direct relation between measurements is partially lost. This, at least
with the current setup configuration, poses a nearly unsolvable problem. Nevertheless, for
completeness we want to provide this model together with a brief summary, as this is one
of the most promising starting points for further improvements to the methods proposed in
part IV. For any insight which goes beyond this summary we refer to [40, 160, 282, 349] on
which this summary is based.

Recalling eq. (1.4), the scattering intensity of the diffraction pattern is given as (c.f. [160, pp.
19ff])

ISAXS (q) =
∣∣∣∣
∫
ρ (x) eiqxdx

∣∣∣∣
2

= F3 (ρ ∗ ρ) (q) , (5.1)

with ρ : R3 → R denoting the electron density. The last equality follows from the convolution
theorem (theorem 2.4). To simplify this equation further the autocorrelation function γ = ρ∗ρ
is introduced.1

Following the approximation for SAXS in eq. (1.5), we recall that the following approximation
holds

θ ≈ λ

2π |q| , (5.2)

with θ denoting the scattering angle, λ the wavelength of the X-ray and q the scattering vector.
Further, the offset on the detector that is caused by a scattering with angle θ leads to a shift

1As mentioned before we use a slightly different form of the Fourier transform (see section 2.1) but nevertheless use
the F symbol in this context.

47



4xg of the interference pattern. This shift relates to θ and the distance between sample and
detector ds, i.e.

θ ≈ 4xg
ds

. (5.3)

Recall the intensity approximation eq. (1.10)

I (xg) = a0 + a1 cos
(
ϕ+ 2π

p2
xg

)
, (5.4)

with p2 denoting the period of the grating G2. The shift 4xg relates to a phase-shift 4ϕ

4ϕ = 2π
p2
4xg ≈

λds
p2︸︷︷︸
ξGI

|q| , (5.5)

with ξGI denoting the autocorrelation length [238]. This effectively establishes a connection
between scattering vector and introduced phase-shift using eq. (5.2) and eq. (5.3).

According to Friedel’s law, scattering results in an equal amount of scattering in positive and
negative direction, i.e. xg and −xg , effectively resulting in a reduction of the amplitude.
Considering the accumulation for all scattering vectors q2 and taking multiple scattering into
account leads to a dark-field signal for autocorrelation length ξGI of [349],

d (ξGI) = exp
(
σtz
(
Xlγ (ξGI · t)− 1

))
, (5.6)

with z giving the sample thickness, l denoting the X-ray beam direction, and t denoting the
grating direction. For clarification we break down the term Xlγ (ξGI · t). First, this takes
the X-ray projection of the autocorrelation function in beam direction l. Second, it maps to
the explicit evaluation at the point given by ξGI · t. The constant σt is the total scattering
probability [282, A.4],

σt =
∫

L(t)
ISAXS (q) dq. (5.7)

While this provides a highly complete description of the dark-field signal, this formula has
been derived with isotropic scattering in mind thus far. Consequently, throughout these
isotropic considerations Xlγ (ξGI · t) and σt are constant within the sample and under rotation,
i.e. rotation of l, t. Nevertheless, it gives some great insight into the imaging process. An
overview of the mathematical relationships between SAXS and dark-field imaging in this
case are given in fig. 5.1. As the model in [349] is stated with pure imaging in mind we
will provide the relation with respect to the tomographic setup. While the relationships on
the left side correspond to SAXS imaging, the right side represents the image formation
of dark-field using GBI. For convenience we quickly walk through fig. 5.1. The intensity
observed for a scattering vector q is given by the Fourier transform of the autocorrelation
function γ (see reciprocal space). The splitting-based method effectively leads to a slicing
through the reciprocal space as one assumes that the observed q vectors are orthogonal to
the ray direction l (see SAXS). According to the Fourier slice theorem (see theorem 3.3) this
is equivalent to an X-ray projection (see def. 3.2) of the autocorrelation function (see X-ray
projection) and a subsequent Fourier transform. The sensitivity of the grating leads to a
projection of the scattering function ISAXS along the axis orthogonal to X-ray beam direction

2According to the SAXS approximation.

48 Chapter 5 Mathematics of Dark-field



l and grating direction t (see grating projection). Furthermore, the most interesting effect
is that the analyzer grating inverts the Fourier relation between autocorrelation γ and ISAXS

relation (see correlation function). Alternatively, once more due to the Fourier slice theorem
this is equivalent to the Fourier transform of the slice of the reciprocal space and restricting
the evaluation to the line defined by the direction t of the grating (see Fourier SAXS). The
resulting function is sampled at the setup specific quantity ξGI . Thus the measured dark-field
signal relates to the explicit evaluation of the projection (in the sense of the X-ray transform –
compare def. 3.2) evaluated at ξGI · t.

ρ ∗ ρ

F3γ Xlγ

ISAXS
∣∣
H2(l)

F2G

F2

(
ISAXS

∣∣
H2(l)

)
Xt×l

(
ISAXS

∣∣
H2(l)

)

(
F2

(
ISAXS

∣∣
H2(l)

)) ∣∣∣
L(t)

F1

(
Xt×l

(
ISAXS

∣∣
H2(l)

))

G (ξGI · t)

Xlγ (ξGI · t)

Electron density

ρ : R3 → R

autocorrelation

γ : R3 → R

X-Ray projection

G : H2(l)→ R

reciprocal space

ISAXS : R3 → R

SAXS

ISAXS
∣∣
H2(l)

: H2 (l)→ R

grating projection

Xt×l

(
ISAXS

∣∣
H2(l)

)
: L (t)→ R

Fourier SAXS

F2

(
ISAXS

∣∣
H2(l)

)

correlation function

G
∣∣
L(t)

: L (t)→ R

darkfield measurement

G (ξGI · t)

Figure 5.1 Relation between the dark-field signal and SAXS. With l, t ∈ S2 denoting the beam direction and the
grating orientation.3

We want to conclude with the summary of further ideas and starting points for future work and
possible applications to AXDT4. The formula derived by Strobl [349] states that for a single
X-ray projection we actually sample the projection of the autocorrelation function only at one
single point. This single point is defined by the grating orientation t and the autocorrelation
length ξGI . If the sample can be rotated freely in 3D, as is the case for the Euler cradle, this
means that we only collect integral values along lines which are tangential to the sphere with
radius ξGI . By moving the sample on the connection between the gratings one effectively
samples the projection space by increasing/decreasing this radius (c.f. [282]). Alternatively,
the grating period p2 or the wavelength could be varied. For the latter, one could build upon
the idea of spectroscopic dark-field imaging [56]. This, however, results in an additional

3Credits for this illustration go to F. Schaff. The only change that has been performed within the scope of this thesis
is the addition of the tomography parameter l and t.

4This summary is the result of many discussions within our XTT/AXDT group.
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and more complicated imaging process. Further, in order to apply this model to anisotropic
dark-field tomography, the autocorrelation function becomes position dependent, which also
affects the σt. For this purpose one could replace the autocorrelation function in eq. (5.6)
by a position dependent equivalent η : R3 →

(
R3 → R

)
, x 7→ γx, with γx denoting the

autocorrelation at position x. With this definition eq. (5.6) becomes

d (ξGI) = exp
(
Xl
(
σt,aniso (x)

(
Xl
(
η(x)

)
(ξGI · t)− 1

)))
, (5.8)

with σt,aniso (x) = σt,x denoting the total scattering probability at the location x corresponding
to η (x).

At present we are not aware of a reconstruction based on this model. Nevertheless, as this
model offers a possible link between the theory of SAXS and the method of AXDT, which will
be discussed in part IV, we consider this one of the most interesting starting points for further
improvements to AXDT.

We are going to continue with the elements and related mathematical concepts which are
used to model the scattering within the object within part IV.
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6Tensors and Spherical Functions

In this chapter we will consider a special kind of function, namely spherical functions in R3,
i.e. functions defined on S2. As the quantity to be reconstructed in part IV is anisotropic in
contrast to X-ray attenuation and phase-contrast, a scalar function is not sufficient to describe
the physical process influencing the X-ray beam at a specific position within the measured
object. Instead, in part IV we will see that the scattering process in each position can be
modeled as spherical function f : S2 → R with f mapping a scattering direction u ∈ S2 to a
corresponding scattering strength f (u).

With this motivation in mind we will first discuss a special class of spherical functions based
on rank-2 tensors. This forms the basis for XTT. Furthermore, generic spherical functions, a
basis for L2 (S2), as well as useful theorems for such functions will be discussed. This will
lead to the development of AXDT in part IV.

The first class which is based on rank-2 tensors is well-known from its application for DTI (c.f.
[54, 277, 374, 375]). For a symmetric rank-2 tensor, i.e. A ∈ Pos3, we define the spherical
function f : S2 → R+

fA (u) := 1√
u>Au

. (6.1)

This kind of function is of special interest, as the radial projection of a 3D Gaussian distribution
results in eq. (6.1) (up to a factor). This is the motivation behind using tensors to model the
diffusivity in DTI [54]. This relation is presented in the following lemma.

Lemma 6.1 (Radial projection of a Gaussian distribution) Let f : R3 → R, x 7→ e−
1
2x
>Ax denote a

Gaussian distribution and with A denoting the inverse of the covariance matrix, then the
radial projection for u ∈ S2 is:

∫ ∞

0
e−

1
2 ru
>Arudr =

∫ ∞

0
e−

1
2 r

2u>Audr, (6.2)

= lim
x→∞

√
π

2
1√
u>Au

erf
(√

1
2u
>Aux

)
, (6.3)

=
√
π

2
1√
u>Au

. (6.4)

In the equation above erf denotes the error function and the final step results from A being
SPD and limx→∞ erf (cx) = 1,∀c > 0.
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The graph of a function as given in eq. (6.1) is an ellipsoid which can be naturally analyzed
using an eigenvalue decomposition of A, i.e.

A =




...

v0 v1 v2
...







λ0

λ1

λ2







...

v0 v1 v2
...



,

>

(6.5)

with v0, v1, v2 ∈ R3 denoting the eigenvectors and λ0, λ1, λ2 ∈ R the corresponding eigen-
values of A, which describe the half-axis and their corresponding reciprocal squared lengths

1√
λ0
, 1√

λ1
, 1√

λ2
respectively.

v0√
λ0

v1√
λ1

v2√
λ2

Figure 6.1 Ellipsoid given by a tensor with eigenvectors v0, v1, v2 and eigenvalues λ0, λ1, λ2. The chosen values are
λ0 = 1−2, λ1 = 0.7−2 and λ2 = 0.5−2.

Consequently, eq. (6.1) gives a parametric version of the ellipsoid:

{
x ∈ R3 : x>Ax = 1

}
(6.6)

The space of tensors is referred to as Pos3 and in chapter 7 we are going to discuss that this
space provides a Riemannian manifold. Modeling the scattering process in each position using
a rank-2 tensor has lead to the method of XTT. We are going to provide an overview/review of
this method together with a discussion of its advantages and disadvantages in chapter 16.

Minor spoiler: We will see that the simplicity of the tensor model turns out to be too basic
and general spherical functions enable improved reconstructions. For this purpose we will
consider the space L2 (S2) and one of its bases, the spherical harmonics.

The set of spherical harmonics {V mk }k≥0,−k≤m≤k provides an orthonormal basis for L2 (S2).
Similar to the Fourier transform, multiple definitions using different scalings exist. Within this
thesis we are going to use the orthonormal version which also conforms to the support provided
by boost [on4] and the Matlab [on2] toolbox by Politis [on15]. For u = (u0, u1, u2) ∈ S2 let
θ, ϕ denote the corresponding spherical coordinates1, then the basis functions are defined as

V mk (u) =

√
(2k + 1)

4π
(k −m)!
(k +m)!P

m
k (cos (θ)) eimϕ, (6.7)

with Pmk denoting the associated Legendre polynomials.

1With the convention θ = π
2 + atan2

(
u2,
√
u2

0 + u2
1

)
, ϕ = atan2 (u1, u0).
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For a detailed discussion we refer the interested reader to [49]. Mohlenkamp provides an
overview in [on14] as well. He also introduced a fast spherical harmonics transform in [254]
which uses similar techniques to the ones used for the FFT.

As this set provides a basis, for any f ∈ L2 (S2) there exists an expansion with respect to the
V mk , i.e.

f =
∞∑

k=0

k∑

m=−k
fmk V

m
k , (6.8)

with fmk denoting the coefficients corresponding to V mk . Due to the orthonormality the
coefficients are computed as

fmk = 〈f, V mk 〉L2(S2) =
∫

S2
f (u)V mk (u) dσ (u) . (6.9)

In the equation above the σ denotes the standard Lebesque measure on the sphere.

With respect to this expansion there exists a similar theorem to Parseval’s theorem [49], i.e.
for f, g ∈ L2 (S2) the following equality holds,

〈f, g〉L2(S2) =
〈

(fmk )k≥0,−k≤m≤k , (g
m
k )k≥0,−k≤m≤k

〉
`2
. (6.10)

According to eq. (6.9), computing the transformation in the discrete case is reduced to the
task of numerical integration on the sphere. Within the scope of this thesis, we will omit
the discussion of methods to numerically compute the spherical harmonics transform and
refer to Mohlenkamp [254] for an efficient transform. Nevertheless we will rely on concepts
to compute surface integrals on the sphere. A common scheme to numerically approximate
integrals is quadrature. Here, an integral is replaced by a finite sum over weighted function
evaluations. Quadrature in the context of surface integrals on the sphere S2 is also referred to
as cubature (c.f. [181]) and we will provide a corresponding definition in the following.

Definition 6.2 (Quadrature/Cubature on sphere) (c.f. [49][181]) Let f : S2 → R be a spherical function.
A cubature rule is defined by a set of K tuples U = {(u0, w0) , . . . , (uK−1, wK−1)} with
uk ∈ S2 denoting sampling points and wk ∈ R denoting corresponding quadrature weights
with

∑K−1
k=0 wk = σ(S2), such that the integral over f is approximated by:

∫

S2
f (u) dσ (u) ≈

K−1∑

k=0
wkf (uk) (6.11)

Note: For a discussion of approximation bounds we refer to [181].

While there are various techniques to choose the sampling/weighting pairs in case of a
cubature rule, we will focus on two specific ones – partition and t-design based cubature. For
an in depth overview we refer to [49, 181], on which the following summary is based.

For partition based cubature, one chooses a partition {T0, . . . , TK−1} (see def. 2.1) of S2. The
corresponding cubature rule is given as (uk, wk) with uk ∈ Tk and wk = σ(Tk) according to
def. 6.2. The remaining task is to compute an according partition of S2. Possible methods are
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spherical Delauney triangulation/Voronoi diagrams [296], which compute a partitioning based
on given sampling points uk 2. Centroidal Voronoi tesselation [129] in contrast is an iterative
process based on Voronoi diagrams, which aims at finding K pairs (uk, wk), 0 ≤ k ≤ K − 1
such that the uk are the center of mass of the corresponding Voronoi cell3. Finally, in case of

equal-area partitions [288] the partitions are chosen such that σ(Tk) = σ(S2)
K , 0 ≤ k ≤ K − 1

holds.

Another class of special sampling schemes are spherical t-designs [119]. A t-design consist
of sampling directions {uk, . . . , uK−1} which provide accurate integration, i.e. equality holds

in eq. (6.11), with wk := σ(S2)
K , ∀0 ≤ i ≤ K − 1 for any polynomial function p ∈ Pk

(
S2) of

degree k ≤ t, i.e.
∫

S2
f (u) dσ (u) =

K−1∑

k=0

σ
(
S2)

K︸ ︷︷ ︸
wk

f (uk) . (6.12)

In [176] t-designs up to t = 21 are provided.

Finally we want to discuss a special transform similar to the aforementioned Radon transform
on spherical functions. This transform is the Funk-Radon transform [153]. While the Radon
transform maps functions to integral values over hyperplanes, the Funk-Radon transform
performs something similar on functions on SN−1, i.e. mapping a function f : SN−1 → R to
integral values along great circles. The definition for N dimensions is as follows.

Definition 6.3 (Funk-Radon transform (N -dimensional)) (c.f. [153]) Let f : SN−1 → R be sufficiently
nice. The mapping Pf :

(
f : SN−1 → R

)
→
(
Pf : SN−1 → R

)
of f to integrals over great

circles C (u) :=
{
u′ ∈ SN−1 : 〈u, u′〉 = 0

}
:

Pf (u) =
∫

C(u)
f (u′) ds (u′) (6.13)

is called Funk-Radon transform, with s denoting the Lebesque measure on SN−2.

Note: Due to the accumulation along great circles, this, in the case of positive functions, maps
extrema located along great circles to extrema orthogonal to the great circle. We will make
special use of this property in chapter 19.

With respect to the afore-discussed basis for spherical functions f ∈ L2 (S2), the Funk-Radon
transform can be computed in a very convenient way. This has already been proposed in the
original publication by Funk [153] and the relation is summarized in the following theorem.

Theorem 6.4 (Funk-Radon transform (3D) the spherical harmonics way) (c.f. [153]) Let f ∈ L2 (S2) be
expanded via spherical harmonics, such that f =

∑∞
k=0

∑k
m=−k f

m
k V

m
k . Then the Funk-Radon

transform (def. 6.3) of f is given as [153]:

Pf =
∞∑

k=0

k∑

m=−k
Pk (0) fmk︸ ︷︷ ︸

(Pf)m
k

V mk (6.14)

2Matlab [on2] code is available from Burkardt et al. [on7, on8].
3Matlab [on2] code is available from Burkardt et al. [on6].
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with Pk denoting the Legendre polynomial. Explicitly the factors are given as:

P2n+1(0) = 0 (6.15)

P2n(0) = (−1)n 1 · 3 · 5 · · · 2n− 1
2 · 4 · 6 · · · 2n (6.16)

This concludes our discussion of spherical functions. In the following chapter, we are going
to discuss the special case of Pos3, as already mentioned above, in the context of spherical
functions based on symmetric rank-2 tensors. While the Euclidean space provides an intrinsic
concept of distance, this is not as straightforward for Pos3. The reason why we are nevertheless
interested in quantifying distances is that we again use this space to model the domain of an
inverse problem (see chapter 4) in part IV. We are therefore interested in how the concept of
variational methods translates to Pos3.
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7Manifolds

In the previous chapter (chapter 6) we have already mentioned the space of Pos3. This space,
in contrast to the Euclidean space which is used for CT, does not provide a straightforward
concept of "distance". In order to establish a similar concept nonetheless, we need to consider
another mathematical concept, i.e. manifolds. This chapter will provide a brief discussion
of manifolds in general and the manifold Pos3 in particular. For an overview on the topic of
manifolds we refer to the books of Lee [229, 230, 231] and to Pennec et al. for Pos3 [277], on
which this summary is based.

An N -dimensional manifold M is a topological space which locally, i.e. in the neighborhood
of each point p ∈M , provides similar features as the Euclidean space RN . Thus, a manifold
is defined as a topological space M , which ∀p ∈ M possesses a neighborhood which is
homeomorphic to RN (c.f. [229, p. 38]). If in addition the manifold is smooth, one can
define a tangential space at each p ∈ M denoted by Tp (M). This brings the concept of
direction to the manifold. Further, a Riemannian manifold additionally enables the concept
of distances in form of a Riemannian metric, i.e. an inner product on the tangent space
dp : Tp (M) × Tp (M) → R. With this bilinear form it is possible to introduce concepts of
distances and angles to the manifold. This enables the concept of geodesics, i.e. informally
spoken, the shortest connection between two elements of the manifold. For this purpose
one introduces the exponential map expp : Tp (M) → M . The result of q = expp (v) with
v ∈ Tp (v) is the element q ∈ M if one moves along the geodesic starting from point p in
direction v1. Accordingly one defines its inverse, sometimes also referred to as logarithmic
map, exp−1

p : M → Tp (M). Thus the mapping v = exp−1
p (q) provides the tangent element

v ∈ Tp (M) pointing from p in direction of q2. With these two mappings, the geodesic between
two elements p, q ∈M is given as [277] (c.f. [374]):

[p, q]t = exp−1
p

(
t exp−1

p (q)
)

(7.1)

for t ∈ [0, 1]. This further enables the concept of distance between two elements p, q ∈M by
using the Riemannian metric:

d (p, q) = dp
(
exp−1

p (q) , exp−1
p (q)

)
. (7.2)

One of the most famous Riemannian manifolds is S2, for which the concepts above are
illustrated in fig. 7.1.

A discussion of the mathematical requirements would go far beyond the scope of this thesis
but the important information here is that the concept of tangents, directions, distances, and
angles can be introduced for Riemannian manifolds.

1The Euclidean equivalent is q = p+ v.
2The Euclidean equivalent is v = q − p.
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Figure 7.1 Illustration of the manifold on S2, the tangent space at the point p ∈ S2 and the element of the tangent
space v = exp−1

p (q) as well as the geodesic connecting p and q.

The manifold of Pos3 has been introduced by Pennec et al. [277] mainly with DTI in mind,
who imposes a Riemannian manifold on the space of SPD matrices3. In contrast to alternative
approaches, such as those based on the space of matrices R3×3, this manifold allows for a more
meaningful form of interpolation. Pennec et al. [277] presented an example of interpolation
between two tensors using both the matrix space as well as the manifold. Using this example,
they illustrated that the matrix interpretation leads to e.g. non-convex transitions in terms
of the volume of the corresponding ellipsoid. The definitions of the Riemannian metric
dD : TD (Pos3) × TD (Pos3) → R,4, the exponential map expD : TD (Pos3) → Pos3, and its
inverse5 exp−1

D : Pos3 → TD (Pos3) are as follows:

dD (W,V ) = trace
(
D−

1
2WD−1V D−

1
2

)
,

expD (W ) = D
1
2 exp

(
D−

1
2WD

1
2

)
D−

1
2 ,

exp−1
D (E) = D

1
2 exp−1

(
D−

1
2ED−

1
2

)
D

1
2 ,

with D,E ∈ Pos3 denoting elements of the manifold, and W,V ∈ TD (Pos3) denoting elements
of the tangent space at the point D. The distance can be reduced to (c.f. [277, 374])

d (D,E) = dD
(
exp−1

D (E) , exp−1
D (E)

)
=

2∑

i=0

(
exp−1 (κi)

)2
, (7.3)

with κi denoting the i-th eigenvalue of D−
1
2ED−

1
2 .

3This is a subspace of the Euclidean space R3×3.
4The tangent space of Pos3, i.e. TD (Pos3) is the space of symmetric matrices.
5Sometimes also referred to as logarithmic map.

58 Chapter 7 Manifolds







Part III

Reconstruction Software Framework





8Motivation

„Endless wonder

— Mrs. Irene Frederic
Warehouse 13

Throughout our projects we require a flexible and adaptive software framework for large-scale,
ill-posed, linear inverse problems1

(
A, yδ

)
, called CampRecon2 [28]. For a great overview

on the theory of optimization and numerical optimization we refer to [70, 362], and [270].
While other frameworks such as CONRAD [240] and ASTRA [31, 109] exist, these frameworks
are typically strictly targeted towards a special application (e.g. tomographic reconstruction).
However, as we discussed previously within the mathematical part (part II), we found that the
problem formulation is commonly independent of the modeling operator itself. The same holds
true for multiple methods of regularization. We have therefore aimed at the development of a
software framework which revolves around the problem formulation instead of the approach
used to compute a solution. By doing so we have created a framework that enables the
user to flexibly apply methods, regularization strategies, and solvers to his specific problem.
The only thing that has to be provided is the linear3 forward model for the specific imaging
modality. Examples reach from tomographic reconstruction to image denoising [313, 348],
superresolution reconstruction [133] and of course regularized tomographic reconstruction
such as total variation regularization or sparse regularization [363, 8].

With this goal in mind, we have followed the mathematical modeling of such problems as
discussed previously in sections 4.1, 4.4 and 4.6.

Recalling section 4.1 we have discussed that discretization of a linear inverse problem
(
A, yδ

)

can be achieved in form of projection methods def. 4.5. These methods establish a direct
connection of the continuous and the discrete problem via projection onto finite dimensional
subsets of the range and the domain of the operator A (compare def. 4.2).

In fig. 8.1 we illustrate the pipeline of modeling a Tikhonov regularized linear least-squares
problem (compare example 4.9), i.e.

arg min
x

1
2
∥∥Ax− yδ

∥∥2
2 + λ

2 ‖x‖
2
2 , (8.1)

for a given discretized forward model A and a given discrete measurement yδ.

1According to defs. 4.1 and 4.6.
2At current, the project is refactored into the elsa project which we plan to make publicly available as an Open

Source project.
3Within the scope of this thesis we stick to the linearity of the forward model. However, as we support non-linearity

in terms of functionals, non-linear optimization problems could be mapped as well.
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In this part we are going to discuss the way our framework maps the mathematical properties
of an inverse problem, regularization, and the numerical computation of a solution into the
framework. With this in mind, in the following we will present both the idea as well as the
abstract formulations of base classes for the most important components of this framework.

Solver

LinearResidual
x 7→ Ax− y

A

y

LinearOperator
Forward model A

DataContainer
Measurements y

Scalar
λ

DataContainer
Initial solution x0

L2NormPow2 (Functional)
x 7→ 0.5 ‖_residual (x)‖2

2

_residual

L2NormPow2 (Functional)
x 7→ 0.5 ‖x‖2

2

_residual

OptimizationProblem

_dataTerm
_regTerms
_regParams
_currentSolution

Figure 8.1 Illustration of the pipeline of modeling an inverse problem within our CampRecon framework. Addi-
tionally we illustrate how a Solver acts on the OptimizationProblem. In this case a Tikhonov regularized
linear least-squares problem is modeled.
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9DataContainer and DataDescriptor

The first and foremost task for a framework of the type that we are about to present is the
handling of data representation. Therefore, we first have a look at a specific example on how
discretization in terms of projection methods is performed in a practical case.

Case Study: Pixel/Voxel Basis

Let us consider the mathematical representation of an image in 2D. An image is typically
represented as a function f ∈ L2 (V ) with compact support supp (f) = V ⊂ R2 and it is
evident that the dimensionality used in natural language is the dimensionality of the domain
of f . Next one needs to choose a finite dimensional basis for V . As modern digital camera
detectors are commonly partitioned into a regular grid, it is a natural choice to follow this
idea. W.l.o.g.1 let the support be the rectangle with edge size s, i.e. V = [0, s]2.

Based on the intuition of a regular grid, we consider the space of piece-wise constant functions
on a regular grid as a finite dimensional2 subset of L2 (V ). For this purpose, a partition
(compare def. 2.1) of V is created via subdividing both dimensions of V as

Am,n =
(
m
s

N
, (m+ 1) s

N

)
×
(
n
s

N
, (n+ 1) s

N

)
, (9.1)

for 0 ≤ m,n ≤ N − 1 (see fig. 9.1). Obviously, this partition results in N2 regular grid cells3.
With this partition, an orthonormal basis4 for the space of piece-wise constant functions on it
is given by

x̃k=m+N ·n = x̃m,n := N2

s2 χAm,n
. (9.2)

Please note the implicit serialization via the index k. It is important to notice that this is a
convention and this choice is not unique. In the 2D case one obvious alternative exists, i.e.
k = n+N ·m.5 However, the number of possibilities strongly increases with the number of
dimensions of V , i.e. by the factorial of dim (V ).

Now, for any f ∈ L2 (V ) the orthogonal projection can be computed as

xk=m+N ·n = 〈f, x̃k=m+N ·n〉L2(V ) , (9.3)

1If f is of compact support there is always a containing rectangle fulfilling the necessary characteristics.
2Careful: This dimension refers to the dimension of the function space. This should not be confused with the

dimension of the domain of f .
3Referred to as pixel (2D) or voxel (3D) in analogy to the camera metaphor.
4Typically referred to as pixel (2D) or voxel (3D) basis.
5It is worth mentioning that beside linear indexing also memory optimized approaches have been considered.
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Figure 9.1 Illustration of the partitioning of a 2D image (a) with N = 4. (b), (c) illustration of the graph of two
basis functions of the corresponding discrete subspace.

resulting in the coefficient vector6 x := {xk}N
2−1

k=0 . We therefore conclude with a complete
description of the discretization of f using the piece-wise constant functions on V paired with
the orthogonal projection.

In order to map this idea onto our software framework, we implemented two classes DataDe-
scriptor (see code 9.2) and DataContainer (see code 9.1). The former describes the underlying
structure, e.g. the original function space, the dimension of its domain, the finite dimensional
subset and its basis as well as the projection operator used for discretization. The latter exclu-
sively contains the coefficient vector x accompanied by an object of DataDescriptor describing
how the coefficients are to be interpreted. In addition, this class overloads arithmetic operators
based on the arithmetics of vectors.

The decoupling of data and its interpretation also serves an additional purpose: the im-
plementation of specializations of DataContainer for e.g. Open Graphics Library (OpenGL)
[on13] textures, Compute Unified Device Architecture (CUDA) [on1], and Open Computing
Language (OpenCL) [on3] in order to enable computation on modern Graphics Processing
Units (GPUs). As the DataContainer class also defines the implementation of the arithmetic
operations, these can be overwritten for the according architecture. This enabled us to re-
duce the synchronization operations between host and device memory, which are typically
a bottleneck for high-performance computing. For our implementation of DataContainer
for the Central Processing Unit (CPU), and therefore the memory storage on the standard
Random Access Memory (RAM), we use the Eigen37 library [168] which offers a large and
flexible implementation for linear algebra operations. On the other hand, the interpretation
is independent of the location where the data is stored on the computer. Specializations of
DataDescriptor furthermore enable the support of various discretization and basis functions.
E.g we used this flexibility in the past to use curvelets [8], tensor fields [7] and fields of
spherical functions [6]. In addition to the aforementioned, many different basis functions
have been proposed for tomographic reconstruction. Among others: B-splines [135, 267,
268], triangulation [27, 72], blobs [215, 234], Shearlets [363] and curvelets [8, 151, 150, 29,
149] as well as tensor framelets [155, 156, 393]. As this purely covers research for the field
of tomographic reconstruction, one gets a clear impression that wide variety of possibilities
exists.

6Additionally we use the notation xi,j for the coefficients corresponding to x̃m,n if we want to refer to the underlying
2D structure. Nevertheless the coefficients are treated as vectors.

7For the sake of simplicity we use the Standard Template Library (STL) vector in the example code 9.1 instead of the
Eigen3 vector.
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Again we want to consider an explicit example based on the example of 2D images and the
approximation via piece-wise constant functions used above.

/**

* \brief Container class for data paired with a descriptor.

*/

class DataContainer {

public:

DataContainer(const DataDescriptor& dataDescriptor)

: _dataDescriptor(dataDescriptor.clone())

: _data(dataDescriptor.getNumberOfCoefficients())

{}

// In this example we omit addtional constructors as well as in-place operators.

. . .

// getter for_dataDescriptor

const DataDescriptor& getDataDescriptor() const { return *_dataDescriptor; }

// getter for _data

std::vector<float>& getData() { return _data; }

// reinterpete the DataContainer with a different DataDescriptor

void reinterpret(const DataDescriptor& dataDescriptor);

// We omit e.g. the const getters to keep things clean.

. . .

private:

std::vector<float> _data;

std::unique_ptr<DataDescriptor> _dataDescriptor;

};

DataContainer operator+(const DataContainer& lhs, const DataContainer& rhs) {

// perform elementwise addition of lhs._data and rhs._data

}

DataContainer operator-(const DataContainer& lhs, const DataContainer& rhs) {

// perform elementwise substraction of rhs._data from lhs._data

}

DataContainer operator*(float lhs, const DataContainer& rhs) {

// perform scalar multiplication of lhs and rhs._data

}

Code 9.1 Lightweight version of our DataContainer class. This class wraps a pair of _data and an according
_dataDescriptor. As the wrapped data is interpreted as coefficient vector, the binary arithmetic operators
have been overloaded accordingly. We omit anything that goes beyond this illustration to focus on the
key features. Additionally, the version we present has been restricted to float to omit any template
parameters.

In order to map the discretization based on the pixel basis onto our framework, we summarize
the necessary parts to achieve a full representation in our software. We start with the original
function space, i.e. in the example above L2 (V ). The important part here is the dimension
of V as this describes the underlying dimension of the object. For example in the case of an
image this dimension is 2. Next, we consider the finite-dimensional subspace. We subdivide V
along each dimension resulting in a specific number of coefficients in each dimension. Trivially,
the total number of coefficients in x is given as the product of the amount of coefficients in
each dimension. Additionally, the resulting basis functions have a specific expansion, i.e. the
distance between the center of one pixel and the next one. This is commonly referred to as
spacing. In our example we choose an isotropic spacing as well as an isotropic number of
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coefficients in each dimension. Finally, we need to provide an interpretation of the serialization
convention and the projection operator we used.

/**

* \brief Descriptor providing all information on the discretization

* and the original spaces.

*/

class DataDescriptor {

public:

DataDescriptor(const std::vector<std::size_t>& numberOfCoefficientsPerDimension)

: _numDim(numberOfCoefficientsPerDimension.size())

, _numberOfCoefficients(std::accumulate(v.begin(), v.end(), 1,

std::multiplies<std::size_t>()))

, _numberOfCoefficientsPerDimension(numberOfCoefficientsPerDimension)

{}

// In this example we omit addtional constructors as well as in-place operators.

. . .

// factory method

virtual std::unique_ptr<DataDescriptor> clone() const

{ return std::make_unique<DataDescriptor>(_numberOfCoefficientsPerDimension) };

// getter for the dimension of the domain of the original function

// e.g. 2D for an image

int getNumDim() const { return _numDim; }

// getter for the total number of coefficients

std::size_t getNumberOfCoefficients() const { return _numberOfCoefficients; }

// getter for the number of coefficients per dimension

const std::vector<std::size_t>& getNumberOfCoefficientsPerDimension() const

{ return _numberOfCoefficientsPerDimension; }

. . .

private:

int _numDim;

std::size_t _numberOfCoefficients;

std::vector<std::size_t> _numberOfCoefficientsPerDimension;

// Additional members containing information on the discretization process

// as well as the basis functions.

. . .

};

Code 9.2 Lightweight version of our DataDescriptor class. The DataDescriptor contains all information on the
underlying function space, the dimensionality and the discretization that was used. In this example we
only consider the number of dimensions and the individual number of coefficients as well as the total
amount.

Obviously this concept carries over to N -dimensional fields. As a side note we want to
mention several cases where one is interested in exchanging the way data is interpreted exist.
A straightforward example from image processing is interpolation. Here, given a specific
coefficient vector x, we are interested in the function values in between the chosen grid.
Evidently, the result varies depending on the chosen basis functions. Thus, if we want to move
from a nearest neighbor interpolation, which would be the result using the piece-wise constant
basis from above, we easily incorporate linear interpolation by reinterpret() the coefficient
vector with the according DataDescriptor.

Now that we have a proper description of the data itself (DataContainer) paired with a suitable
interpretation of the underlying function space, the dimensionality of the field as well as the
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discretization process (DataDescriptor), we move on to the next part of an inverse problem:
the linear operator mapping from model to measurement space.
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10LinearOperator

Above we have already stated that this software framework is especially developed with large-
scale inverse problems

(
A, yδ

)
in mind. However, so far we have not specified what large-scale

means in this context. Large-scale refers to a linear operator A which matrix representation A
is too large to be stored in memory. Again, we will use the case of tomographic reconstruction
as an example. If we use the Collocation Method (compare section 4.1) we find that the
corresponding matrix A has one entry per voxel and measurement pair each. Further, consider
single floating point precision (i.e. 32Bit), an isotropic number of detector pixels N , an
isotropic number of voxels of N as well, and a total number of 360 detector positions/X-
ray projection. In this case we find the size of the matrix in the 3D case to accumulate to
360 · N5 · 32Bit. With e.g. N = 256 this already results in a matrix size of approximately
1.4PiB. In conclusion, it is typically impractical to fully pose and store the matrix. Instead, one
considers on-the-fly executions of the matrix. For this purpose two methods are implemented,
apply() which computes the matrix-vector product Ax for a given vector x and applyAdjoint()
which computes the matrix-vector product A∗x of the Hilbert-adjoint of A and a vector x. In
the case of the real-valued Euclidean space the Hilbert-adjoint is the transposed matrix A>.

Again, we consider the discretization of the operator A using the idea of projection methods.
Thus we need the information on how the range and the domain of A are supposed to be
discretized and which projection operators are used. This is exactly the information that is
contained in the DataDescriptor. Thus, we figured that a LinearOperator (see code 10.1) within
our software framework is defined by two DataDescriptors – one for the range of A and one
for the domain of A.

/**

* \brief Class providing large scale linear operators with in-place apply/applyAdjoint.

*/

class LinearOperator {

public:

LinearOperator(const DataDescriptor& domainDescriptor,

const DataDescriptor& rangeDescriptor)

: _domainDescriptor(domainDescriptor.clone())

, _rangeDescriptor(rangeDescriptor.clone())

{}

// In this example we omit addtional constructors.

. . .

// abstract method to apply the operator to x

virtual DataContainer apply(const DataContainer& x) const = 0;

// abstract method to apply the adjoint operator to x

virtual DataContainer applyAdjoint(const DataContainer& x) const = 0;

// factory method

virtual std::unique_ptr<LinearOperator> clone() const = 0;

// get transposed operator

std::unique_ptr<LinearOperator> adjoint() const {

/* return an adjoint version of this operator */
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}

// getter for _domainDescriptor

const DataDescriptor& getDomainDescriptor() const { return *_domainDescriptor; }

// getter for _rangeDescriptor

const DataDescriptor& getRangeDescriptor() const { return *_rangeDescriptor; }

. . .

private:

std::unique_ptr<DataDescriptor> _domainDescriptor;

std::unique_ptr<DataDescriptor> _rangeDescriptor;

};

Code 10.1 Lightweight version of our LinearOperator class. A LinearOperator receives a _rangeDescriptor and a
_domainDescriptor providing the essential information on these two spaces and their discretization. The
LinearOperator only requires the implementation of two methods apply() and applyAdjoint(). Please
note that this class is purely abstract.

With respect to CT we find many methods which share this intuition. As mentioned in
section 4.1 the most common approach is the Collocation Method. Siddon et al. [339]
proposed a method which is a Collocation Method that uses a voxel basis for the domain.
This method is also known as intersection weighted. If instead one considers piece-wise
linear functions, this leads to a method similar to those proposed in [140, 199, 236, 248].
Collocation Methods with respect to more complicated basis functions are considered e.g. in
[149, 151, 155, 156, 215, 234, 267, 268, 363, 27, 8, 393]. Galerkin type methods again
with voxel basis in both, the range and the domain, are considered in [171, 236, 248] and
are typically referred to as area weighted. The group of Brankov et al. studied adaptive
triangulation of the domain and Collocation Methods for SPECT in [72, 73, 380].

Since the computation of this operation is very expensive the exact formulation is sometimes
replaced by a faster but less precise formulation. Also, while sharing the intuition most of
these methods were not developed with projection methods in mind and therefore differ
slightly.

Most of the aforementioned methods evolve around ray oriented voxel traversal. In fig. 10.1
we illustrate the Collocation Method for the Radon transform R for the case of a pixel basis
used in the domain. For each detector pixel a ray is computed and the intersections (blue
circles) of this ray and the voxel along the ray are computed. For efficient algorithms related
to voxel traversal and box intersection we refer the interested reader to [38, 377].

10.1 EvalTreeNode – a Composite Pattern

If we think about the matrix analogy we figure that we miss a key part in flexibility. The
feature we lack is the composition of linear operators in form of forming sums and products
with matrices as well as scalars. As we well know from linear algebra, the results of these
operations again form linear operations/matrices.
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Figure 10.1 Illustration of the Collocation Method of the Radon transform R. From the discrete number of rays
illustrated in (a) one computes the intersection of the rays with the pixel boundaries. The entries of the
system matrix are now given by the length of the intersection with the basis function.

As an example we consider three matrices A ∈ RN×M , B ∈ RM×N , C ∈ RN×K and a scalar
a ∈ R. Further we want to formulate a LinearOperator D ∈ RN×N that is composed of these
elements as:

D = A ·B + a ·
(
C · C>

)
(10.1)

+

·

A B

·

a ·

C C>

(a) apply()

+

·

A B

·

a ·

C C>

(b) applyAdjoint()

Figure 10.2 Illustration of one EvalTreeNode for eq. (10.1). (a) shows the tree traversal for apply() while in (b) the
traversal for applyAdjoint() is shown.

Aiming at a large scale representation in the form as we defined LinearOperator, we want
to implement the two methods apply() and applyAdjoint(). Starting from a formula as
given in eq. (10.1), we built a corresponding evaluation tree as illustrated in fig. 10.2. This
is represented within our framework by the EvalTreeNode class (see code 10.2) and the
overloaded operators of LinearOperator (see code 10.3). Now the implementation of the
apply() method is straightforward via a depth-first pre-order traversal with a right to left rule
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and consequent calls of the apply() method of the components (compare fig. 10.2a). While
the applyAdjoint() might seem more complicated at first, it actually is not. Due to the linearity
of the Hilbert-adjoint and the fact that

(A ·B)> = B> ·A> (10.2)

holds, we can implement this method by simply performing a depth-first pre-order traversal,
but this time with a left to right rule, while calling applyAdjoint() of each operator (compare
fig. 10.2b).

/**

* \brief Class providing arithmetic composition of LinearOperator.

*/

class EvalTreeNode : public LinearOperator {

public:

enum CompositionMode {

PLUS,

MULT

};

EvalTreeNode(const LinearOperator& lhs,

const LinearOperator& rhs,

CompositionMode mode)

: LinearOperator(rhs.getDomainDescriptor(), lhs.getRangeDescriptor())

, _lhs(lhs.clone())

, _rhs(rhs.clone())

, _mode(mode)

{}

// In this example we omit addtional constructors.

. . .

// apply operator to x via tree traversal

DataContainer apply(const DataContainer& x) const override final {

switch(_mode) {

case PLUS:

return _lhs->apply(x) + _rhs->apply(x);

break;

case MULT:

return _lhs->apply(_rhs->apply(x));

break;

}

}

// apply adjoint operator to x via tree traversal

DataContainer applyAdjoint(const DataContainer& x) const override final {

switch(_mode) {

case PLUS:

return _rhs->applyAdjoint(x) + _lhs->applyAdjoint(x);

break;

case MULT:

return _rhs->applyAdjoint(_lhs->applyAdjoint(x));

break;

}

}

// We omit e.g. getters to keep things clean.

. . .

private:

// We omit members inherited from LinearOperator

. . .
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std::unique_ptr<LinearOperator> _lhs;

std::unique_ptr<LinearOperator> _rhs;

CompositionMode _mode;

};

Code 10.2 Lightweight version of our EvalTreeNode class. As described, the methods apply() and applyAdjoint() are
implicitly defined by an according depth-first tree traversal.

// Binary addition of two LinearOperators

std::unique_ptr<LinearOperator> operator+(const LinearOperator& lhs,

const LinearOperator& rhs) {

return std::make_unique<EvalTreeNode>(lhs, rhs, EvalTreeNode::PLUS);

}

// Binary multiplication of two LinearOperators

std::unique_ptr<LinearOperator> operator*(const LinearOperator& lhs,

const LinearOperator& rhs) {

return std::make_unique<EvalTreeNode>(lhs, rhs, EvalTreeNode::MULT);

}

// Scalar multiplication with a LinearOperator

std::unique_ptr<LinearOperator> operator*(float lhs,

const LinearOperator& rhs) {

// create a diag operator from lhs, i.e. an implementation of LinearOperator

// this creates the equivalent of a diagonal matrix with lhs on the diagonal.

auto scalingOp = DiagOperator(rhs.getRangeDescriptor(), lhs);

return std::make_unique<EvalTreeNode>(scalingOp, rhs, EvalTreeNode::MULT);

}

Code 10.3 Overloaded addition and multiplication operators for LinearOperator. For large-scale operators this is
achieved via the EvalTreeNode.

In conclusion, the composite is fully described by its parts as well as the formula with no
additional information needed. This composition of linear operators has been used especially
for the following publications [6, 7, 8].

10.2 BlockOperator – another Composite Pattern

An additional way of forming compositions of linear operators is forming BlockOperators.
Again this is something we are completely used to when working with Matlab [on2] or NumPy
[on11], but to our knowledge is not covered in any framework. E.g. in the context of AXDT
we present a tomographic problem which is composed as a column block operator. In order
to cover the composition of block operators we implemented the class BlockOperator (see
code 10.4). For multiple LinearOperators A1, A2, A3 consider the column block C, the row
block D and the diagonal composition E,

C =
(
A0 A1 A2

)
, D =




A0

A1

A1



, E =




A0

A1

A2



. (10.3)
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Again we find the composition to be completely described by its parts. This reaches from
_domainDescriptor and _rangeDescriptor to apply() as well as applyAdjoint(). For completeness,
we here explicitly give the formulation for the applyAdjoint() form, i.e

C> =




A0
>

A1
>

A2
>



, D> =

(
A0
> A1

> A2
>
)
, E> =




A0
>

A1
>

A2
>



. (10.4)

In the next chapter we will consider how we map a linear inverse problem onto our frame-
work.

/**

* \brief Class providing block-wise composition of LinearOperator.

*/

class BlockOperator : public LinearOperator {

public:

enum CompositionMode {

COL,

ROW,

DIAG

};

BlockOperator(const std::list<const LinearOperator&>& oplist,

CompositionMode mode)

: LinearOperator(/*We omit the computation of the descriptors here*/)

, _mode(mode)

{

for(const auto& op : oplist)

_oplist.push_back(op.clone());

}

// In this example we omit addtional constructors.

. . .

// apply the operator block-wise to x

DataContainer apply(const DataContainer& x) const override final {

DataContainer ret(_rangeDescriptor);

switch(_mode){

case COL: {

std::size_t offset = 0;

for(const auto& op : _oplist) {

ret += op->apply(x.getBlock(offset,op->getDomainDescriptor()));

offset += op->getDomainDescriptor().getNumberOfCoefficients();

}

break;

} case ROW: {

std::size_t offset = 0;

for(const auto& op : _oplist) {

ret.getBlock(offset,op->getRangeDescriptor()) = op.apply(x);

offset += op->getRangeDescriptor().getNumberOfCoefficients();

}

break;

} case DIAG: {

std::size_t offsetdomain = 0;
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std::size_t offsetrange = 0;

for(const auto& op : _oplist) {

ret.getBlock(offsetrange,op->getRangeDescriptor())

= op->apply(x.getBlock(offsetdomain,op->getDomainDescriptor()));

offsetdomain += op->getDomainDescriptor().getNumberOfCoefficients();

offsetrange += op->getRangeDescriptor().getNumberOfCoefficients();

}

break;

}

}

return ret;

}

// apply the adjoint operator block-wise to x

DataContainer applyAdjoint(const DataContainer& x) const override final {

// just like apply but applyAdjoint() is called and COL, ROW are switched

}

// We omit e.g. getters to keep things clean.

. . .

private:

// We omit members inherited from LinearOperator

. . .

std::list<std::unique_ptr<LinearOperator>> _oplist;

CompositionMode _mode;

};

Code 10.4 Lightweight version of our BlockOperator class. As described, the methods apply() and applyAdjoint()
are implicitly defined by linearity. Please note the method getBlock() which we did not describe in the
text. Its purpose is to extract the according block from the DataContainer corresponding to a specific op.
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11LinearResidual

In the previous two chapters we have described the classes DataDescriptor, DataContainer and
LinearOperator. These are sufficient to fully describe a linear inverse problem

(
A, yδ

)
and

its discretized version
(
A,yδ

)
. All information on how the continuous problem is translated

into its discrete version is contained in the two DataDescriptors of the LinearOperator A, i.e.
the _rangeDescriptor and the _domainDescriptor. Obviously, the DataDescriptor of yδ needs to
match the _rangeDescriptor. In order to create a representation of the discrete linear inverse
problem

(
A,yδ

)
we implemented the class LinearResidual (see code 11.1).

/**

* \brief Container class for the residual of an inverse problem,

* i.e measurements paired with a forward model.

*/

class LinearResidual : public Problem {

public:

LinearResidual(const LinearOperator& A, const DataContainer& y)

: Problem(A.getDomainDescriptor())

, _A(A.clone())

, _y(y)

{}

// In this example we omit addtional constructors

// as well as simplifications for identity operator A and zero y.
. . .

// evaluate residual

DataContainer eval(const DataContainer& x) const {

return _A->apply(x) - _y;

}

// getter for the domainDescriptor of _A

const DataContainer& getDomainDescriptor() const { return _A->getDomainDescriptor(); }

// getter for the rangeDescriptor of _A

const DataContainer& getRangeDescriptor() const { return _A->getRangeDescriptor(); }

// get the Jacobian matrix

LinearOperator& getJacobian() { return *_A; }

// getter for _y

const DataContainer& getValues() { return _y; }

// We omit e.g. inherited parts to keep things clean.

. . .

private:

std::unique_ptr<LinearOperator> _A;

const DataContainer& _y;

};

Code 11.1 Lightweight version of our LinearResidual class. This class wraps a linear inverse problem in terms of its
residual. The most important methods are eval() and getJacobian() which we will use in the following
implementation of Functional code 12.1. Please note that the range and the domain of the residual are
implicitly defined by the LinearOperator.
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This class first and foremost holds the tuple A and yδ and further expresses the residual of
the problem, i.e. the error vector Ax− yδ for a given x. The linear problem is equivalent to
finding an x such that the residual becomes zero. Additionally to the pure representation, we
implemented two additional methods. First, eval() returns the results Ax− yδ for a provided
x. Second, the method getJacobian() returns the first order derivative, i.e. the Jacobian matrix,
which for a linear function is trivially given by the operator A.

At this point we have everything we need to map the linear inverse problem onto our software
framework. Next we consider how to cope with the ill-posedness.
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12Functional

We have discussed that the inverse problem does not need to possess a solution due to its
ill-posedness during chapter 4 and section 4.4. A common approach is to replace the problem
with an optimization problem. Such an optimization problem is given in form of a functional
wrapping around the residual that quantifies the error. This goes hand in hand with the
framework of variational methods described in section 4.4.1. Within these methods, prior
knowledge/assumptions of a solution are incorporated via regularization terms (compare
def. 4.8). In each of these regularization terms, a specific characteristic of a current estimate to
the solution x is analysed (e.g. in the form of a linear residual Rk (Ak,x,yk)) and quantified
via a wrapping functional Fk.

The only component we are missing at this point is the software representation of the
functionals. Consequently, we implemented a class called Functional (see code 12.1). This
class wraps a LinearResidual and quantifies the residual. Specific implementations are e.g. the
`p-norms and their weighted versions `pw as well as the Huber-norm [188]. In the example in
fig. 8.1 we already used the L2NormPow2 which represents the squared Euclidean norm, i.e.

1
2 ‖·‖

2
2 . (12.1)

With optimization, i.e. the search for a local/global optimum in mind, we implemented the
methods eval(), evalGradient() and evalHessian(). These methods evaluate the functional as
a whole, meaning the composition of Functional and LinearResidual. For computation of the
gradient as well as the Hessian matrix we use the fact, that the residuals are purely linear.
This allows us to use the multi-dimensional chain rule, i.e. for

Ei (x) = Fk (Rk (Ak,x,yk)) (12.2)

the gradient evaluates to

∇Ei (x) = J>Rk
(x) · ∇Fk (Akx− yk) , (12.3)

and the Hessian matrix becomes

HEk
(x) = J>Rk

(x) ·HFk
(Akx− yk) · JRk

(x) , (12.4)

respectively. In fact, the Hessian matrix again represents a LinearOperator, and as we over-
loaded the arithmetic operations, we are able to directly compose the operator according to
the formula above. This turns out to be especially useful if one considers Newton’s method
or Quasi-Newton methods. Here, the search direction for a descent is computed via solving
a linear equation system composed of the Hessian matrix. Evidently this turns out to be a
large-scale problem in our case again, as the original large-scale operator Ak is contained
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in the formulation of the Hessian matrix. For a great overview on optimization we refer to
[270].

/**

* \brief Container class for the residual of an inverse problem,

* i.e measurements paired with a forward model.

*/

class Functional {

public:

Functional(const LinearResidual& residual)

: _residual(residual)

{}

// In this example we omit addtional constructors

// as well as simplifications for identity residuals.

. . .

// evalute the functional at position x

float eval(const DataContainer& x) const {

return evalImpl(_residual.eval(x));

}

virtual float evalImpl(const DataContainer& x) const = 0;

// evalute gradient at position x

DatanContainer evalGradient(const DataContainer& x) const {

return _residual.getJacobian().applyAdjoint(evalGradientImpl(_residual.eval(x)));

}

virtual DatanContainer evalGradientImpl(const DataContainer& x) const = 0;

// evalute Hessian matrix at position x

std:unique_ptr<LinearOperator> evalHessian(const DataContainer& x) const {

auto hessian = *(_residual.getJacobian().transposed()) *

*(evalHessianImpl(_residual.eval(x))) *

*(_residual.getJacobian());

return std::move(hessian);

}

virtual std:unique_ptr<LinearOperator>

evalHessianImpl(const DataContainer& x) const = 0;

// get domain descriptor

const DataDescriptor& getDomainDescriptor() const {

return _residual.getDomainDescriptor();

}

// We omit e.g. the getters to keep things clean.

. . .

private:

LinearResidual _residual;

};

Code 12.1 Lightweight version of our Functional class. This class wraps a functional around a LinearResidual
providing access to the first and second order derivatives using the multi-dimensional chain rule.
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13Problem

Next in line is the modeling of the Problem (see code 13.1) to be solved, i.e. in this context
a linear inverse problem. Following our previous discussion we distinguish between a pure
LinearProblem, which is already represented by a LinearResidual (see code 11.1), and an
OptimizationProblem (see code 13.2), which provides an interface to an objective function
as presented in the scope of variational methods (compare def. 4.8). The abstract Problem
class only contains one member, i.e. the _currentSolution providing the current estimate to a
solution.

/**

* \brief Abstract class for inverse problems

*/

class Problem {

public:

Problem(const DataDescriptor& domainDescriptor)

: _currentSolution(domainDescriptor)

{}

// In this example we omit addtional constructors

. . .

// The class is abstract

virtual ~Problem() = 0;

// getter for _currentSolution

DataContainer& getCurrentSolution() { return _currentSolution; }

// We omit e.g. the const getters to keep things clean.

. . .

private:

DataContainer _currentSolution;

};

Code 13.1 Lightweight version of our Problem class. This class provides an abstract representation of an inverse
problem.

13.1 LinearProblem

For the LinearProblem we already have everything in place, i.e. the LinearResidual. This is why
in code 11.1 we derived from Problem. We therefore directly move on to the optimization
based approach.
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13.2 OptimizationProblem

Recalling the definition of variational methods (compare def. 4.8) we further introduce a class
wrapping optimization problems. These problems consist of a data term F0 (R0 (A0,x,y0))
and multiple weighted regularization terms Fk (Rk (Ak,x,yk)) with regularization parameter
λk, for k ≥ 1. These terms are linearly combined to an objective function E : RN → R stating
an OptimizationProblem (see code 13.2) with K being the number of regularization terms,
and

E (x) := F0 (R0 (A0,x,y0)) +
K∑

k=1
λkFk (Rk (Ak,x,yk)) . (13.1)

Due to the linearity and our definition of Functional and LinearResidual the gradient and
the Hessian matrix of E are directly provided by the parts of the OptimizationProblem. The
OptimizationProblem therefore describes an objective function,

arg min
x

E (x) . (13.2)

/**

* \brief Wraps an optimization problem

*/

class OptimizationProblem : public Problem {

public:

OptimizationProblem(const Functional& dataTerm,

const std::list<std::pair<float, const Functional&>>& regTerms)

: Problem(dataTerm.getDomainDescriptor())

, _dataTerm(dataTerm.clone())

{

for(const auto& regTerm : regTerms)

_regTerms.emplace_back({regTerm.first, regTerm.second.clone()});

}

// In this example we omit addtional constructors

// as well as inherited methods

. . .

// evaluate the objective function

float eval(const DataContainer& x) const {

float ret = _dataTerm->eval(x);

for( const auto& regTerm : _regTerms )

ret += regTerm.first * regTerm.second->eval(x);

return ret;

}

float eval() const { return eval(_currentSolution); }

// evaluate the gradient of the objective function

DataContainer evalGradient(const DataContainer& x) const {

DataContainer ret = _dataTerm->evalGradient(x);

for( const auto& regTerm : _regTerms )

ret += regTerm.first * regTerm.second->evalGradient(x);

return ret;

}

DataContainer evalGradient() const { return evalGradient(_currentSolution); }

// formulate the Hessian of the objective function

std:unique_ptr<LinearOperator> evalHessian(const DataContainer& x) const {
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auto ret = dataTerm->evalHessian(x);

for( const auto& regTerm : _regTerms )

ret = *ret + regTerm.first * *(regTerm.second->evalHessian(x));

return std::move(ret);

}

std:unique_ptr<LinearOperator> evalHessian() const

{ return std::move(evalHessian(_currentSolution)); }

// We omit additional methods e.g. to partially evaluate the involved terms.

. . .

private:

std::unique_ptr<Functional> _dataTerm;

std::list<std::pair<float,std::unique_ptr<Functional>>> _regTerms;

};

Code 13.2 Lightweight version of our OptimizationProblem class. This class provides a representation of an objective
function as given in eq. (13.1). The class also provides means to evaluate the derivatives.

Case Study: Equivalent Problems
At this point we have realized that we had actually created a framework that was able to pose
an equivalent problem (compare section 4.6.2) from a given one (providing such exists) by
using the composition feature of LinearOperator.

Recalling the equivalent quadric formulation from a given linear least-squares problem, i.e.

Els (x) := 1
2 ‖Ax− y‖22 , (13.3)

is equivalent to the quadric problem

Equad (x) = 1
2x>A>Ax− xA>y (13.4)

for a linear operator A and a right-hand side y. We see that the original least-squares problem
already contains all information that is needed to formulate the equivalent quadric problem.
Thus, the aforementioned composite pattern allows our framework to do exactly this without
the need to do so by the user.

This is especially useful if algorithms crafted to solve a specific type of problem are considered.
We have already mentioned the CG as being one of those. This brings us to the final part of
our framework – Solver.
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14Solver

From an abstract point of view, the task of a Solver is reduced to updating the _currentSolution
of a given Problem in order to improve the estimate. Following the distinction between
LinearProblem and OptimizationProblem we again distinguish in LinearSolver and Optimization-
Solver. Additionally, a Solver is able to decide if it is suitable to solve a specific Problem. Again,
this aims at the model-oriented approach as we have stated initially, for a specific modeled
problem the framework is able to create a list of suitable solvers. As we mentioned previously
this also extends to equivalent problem formulations.

/**

* \brief Interface class for solver

*/

class Solver {

public:

// In this example we omit the constructors

// as this is a pure interface

. . .

// returns true if a Solver is able to solve problem

virtual bool isSolvable(const Problem& problem) const = 0;

// solve the Problem by updating _currentSolution

virtual void solve(Problem& problem) const = 0;

};

Code 14.1 Lightweight version of our Solver class. This is a pure interface class. Implementations are only required
to implement the solve() and the isSuitable() method. The solve() method solves a Problem and updates
its _currentSolution.

Examples for implementations for pure linear problems are e.g. general methods like Gaussian
elimination (c.f. [270, Algorithm A.1]) and the Singular Value Decomposition (SVD) (c.f.
[260, Chapter 4]) as well as specific methods such as the FBP (compare chapter 3). However,
in most cases the general methods are not applicable as they require a complete representation
of the system matrix, and the problem might not possess a solution at all. Therefore, the
portion of iterative methods which considers an optimization type of problem is much larger
in our framework.

Examples reach from methods which solve the linear least-squares problem, such as Kaczmarz
method [201] and the Landweber method [220]. These methods or specializations have also
been considered for tomographic reconstruction, i.e. ART [165], SIRT [159] and SART [41].
Furthermore this includes Nesterov’s method [266] as well as the improved version developed
by Kim et al. [207, 209]. Additionally, the method of SQS is included as proposed in [136] (c.f.
[145]). Please note that ordered subset methods (c.f. [136, 208]) can be easily incorporated
via the BlockOperator.
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For proximity problems as discussed in example 4.12 corresponding solvers are given by the
according proximity operators. A great overview is given in [103].

For non-linear optimization problems we feature gradient methods and the Non-Linear CG
(NLCG) (c.f. [333]).

For a further discussion on solvers see section 4.6.

Case Study: ADMM

As another showpiece we will consider the method of ADMM. Recalling section 4.6.2, consider
the following optimization problem with both, the data and the regularization term to be
convex,

arg min
x

F0 (R0 (A0,x,y0)) + λ1F1 (R1 (A1,x,y1)) . (14.1)

We have discussed that this method translates eq. (14.1) problem into three much simpler
optimization problems. Thus, within each iteration of ADMM one computes updates for x, z
and u via three steps which involve two optimization problems and one pure update:

xk+1 = arg min
x

{
F0 (R0 (A0,x,y0)) + ρ

2
∥∥R1 (A1,x,y1)− zk + uk

∥∥2
2

}
, (14.2)

zk+1 = arg min
z

{
1
2
∥∥R1

(
A1,xk+1,y1

)
− z + uk

∥∥2
2 + λ1

ρ
F1 (z)

}
, (14.3)

uk+1 = R1
(
A1,xk+1,y1

)
− zk+1 + uk. (14.4)

We again find that a given suitable problem (compare eq. (14.1)) already contains all informa-
tion needed to formulate the subproblems. Consequently, we were able to implement a version
of the ADMM using the structure above to automatically perform the necessary splitting. This
functionality proved to be highly useful and was used in [1, 12, 13, 8] Additionally, as we are
able to detect if a Solver is suitable we can even provide suggestions which Solvers are suitable
for the subproblems.

While this case study considered ADMM it is worth mentioning that similar model independent
implementations have been added for other splitting-based methods, e.g. ISTA [111], FISTA
[61] and Parallel ProXimal Algorithm (PPXA) [103]. For a great overview on these type of
methods we refer to [103].

Case Study: Line Search

A final case study considers LineSearch1. Searching along a line is of particular interest in
non-linear optimization. Here one chooses a direction of descent, e.g. the gradient, and one
aims at moving in this direction to maximally decrease the objective function. Mathematically
this is described by the following optimization problem:

arg min
α

E (x + αd) , (14.5)

1As we focused on linear optimization within this summary, we omit code for LineSearch.
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where x is the current position and d is the search direction. Evidently, the required informa-
tion on the function E is already fully provided by an object of OptimizationProblem. The only
missing part to perform a line search is the direction vector d. Thus, we added LineSearch by
inheriting from Solver and passing the search direction as a parameter on construction.
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15Conclusion

In this part we presented a flexible software framework for inverse problems. Within this
implementation we have paid special attention to a model oriented implementation, i.e. we
wanted to enable prospective users to be able to quickly apply different methods, e.g. in terms
of regularization, to their specific inverse problem. This should ideally be realized with as
little overhead and code duplication as possible, such that researchers are able to apply and
compare various methods even among the borders of specific modalities. The composition
functionality proved to be of high value in particular. This mechanism, for example, enabled us
to provide a problem-independent implementation of the ADMM, which has been used in [1,
12, 13, 8], and the incorporation of the XTT and the AXDT model [6, 7], which is integrated
as BlockOperator. As mentioned initially, we currently perform a refactoring combined with
streamlining and plan to provide open source access to this framework in the future. We
are positive that the presented concepts can be of high value for any framework targetting
tomographic reconstruction.
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Part IV

Anisotropic X-ray Dark-field Tomography





16X-ray Tensor Tomography

„Science is so amazing

— Ash Ketchum
(c.f. Pokémon XY, episode 32)

For the final part of this thesis we return to the problem of Anisotropic X-ray Dark-field
Tomography.

The very first attempt at tomographic reconstruction of the anisotropic dark-field signal has
been presented by Malecki et al. [242, 244] – namely X-ray Tensor Tomography (XTT). This
method was further improved by Vogel et al. [20, 366, 7]. In this chapter we will provide
a summary and a discussion, especially of the limitations of this method which lead to the
development of Anisotropic X-ray Dark-field Tomography (AXDT).

Figure 16.1 Illustration of the reconstruction of the directional dark-field signal. The sample is measured from many
different orientations. Multiple parts of the scattering profile are reconstructed simultaneously and
are finally merged into the full representation of the scattering in each location. From M. Wieczorek,
F. Schaff, F. Pfeiffer, and T. Lasser. “Anisotropic X-Ray Dark-Field Tomography: A Continuous Model and
its Discretization”. English. In: Physical Review Letters 117.15 (Oct. 2016), p. 158101
DOI: 10.1103/PhysRevLett.117.158101
URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.158101, with the permission of APS
(©2016 American Physical Society)

As discussed in chapter 4 one requires a forward model in order to perform tomographic
reconstruction for the directional dark-field component. This forward model provides a tool
to simulate measurements. In order to formulate such, Malecki et al. [243] derived a model
for thick samples with multiple microstructures and therefore multiple dominant scattering
directions based on simulations, which have been supported by follow-up experiments. The
key result of this work is that if K ∈ N dominant scattering directions uk ∈ S2 are present
in a sample, the dark-field measurement can be modeled by a line integral over the sums
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of the scattering ηk occurring in the direction of uk weighted by their relative orientation to
the grating. Based on this finding, Malecki et al. [244] further refined this forward model
and provided an approximative formula for the detectability in form of a function of uk, the
grating orientation t ∈ S2, and the beam direction l ∈ S2 (see fig. 16.2). This resulted in the
following forward model of the dark-field signal d for a single X-ray beam L with direction l
and a relative1 grating orientation t:

d = exp
(
−
∫

L

K−1∑

k=0
(|l × uk| 〈uk, t〉)2

ηk (x) dx
)
, (16.1)

with ηk : R3 → R denoting the scattering strength2 at each position in the direction uk.

l

t

Figure 16.2 Illustration of the direction of the beam l and the grating orientation t.

This, for the first time, enabled the tomographic reconstruction of the local scattering profiles
and subsequently the local microstructure orientation within the measured sample.

For an unknown object the dominant scattering directions are unknown. Thus, the first step
for XTT is to choose a well-distributed sampling scheme on the unit sphere for the uk. Malecki
et al. [244] decided to use the three main axes as well as the cubic diagonals, resulting in a
total of K = 7 (see fig. 16.3b) sampling direction which have later been extended to K = 13
(see fig. 16.3a) directions by Vogel et al. [7]. For the computation of the reconstruction
Malecki modified the SART method to fit eq. (16.1). The reconstruction process is illustrated
in fig. 16.1. However, a formulation of the problem such that other solvers could be applied
had not been derived at this point.

In a second step, in order to retrieve a close representation of the scattering a rank-2 tensor
field T : R3 → Pos3 (see chapter 6) has been fitted to the scattering data (ηk, uk) at each
volume element x ∈ R3. The corresponding inverse problem is implicitly given by eq. (6.1),
i.e.

fT (x) (uk) = 1√
u>k T (x)uk

:= ηk (x) , (16.2)

1In-plane and orthogonal to the grating bars.
2To be precise, the ηk correspond to the squared scattering strength according to Malecki et al. [244].
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(b) K = 13

Figure 16.3 Illustration of the sampling direction uk as used by Malecki et al. [244] (a) and Vogel et al. [7] (b).

for all x ∈ R3. Malecki et al. [244] initially used a least-squares fit to fit the tensors, which
was replaced by a Principal Component Analysis (PCA) (c.f. [183, 275]) by Vogel et al. [7].

Further, based on the observation that scattering is strongest when orthogonal to a microstruc-
ture, the direction of the microstructure within one voxel can be extracted in a third and
final step by computing the direction of the smallest half-axis of the tensor. Vogel et al. [7]
proposed to perform a streamline algorithm, similar to what is done for DTI (c.f. [365]), on
these directions in order to visualize these directions. The result of each phase is illustrated in
fig. 16.4 for a carbon fiber sample.

(a) (b) (c)

Figure 16.4 Illustration of XTT as developed by Malecki et al. [244] and the refinements from Vogel et al. [7] for a
carbon fiber sample. (a) shows a Volume Rendering (VR), (b) shows the reconstructed tensors and in (c)
the streamline visualization is shown. Visualizations (a),(c) were created with CampVis [324, 327].

Vogel et al. [7] pointed out that due to the linearity of the integral and the fact that the
weighting is independent of the position within the sample, the order of integral and sum can
be swapped. This led to the following improved formulation of the forward model given by
Malecki.

Definition 16.1 (XTT forward model) (c.f. [7, 244]) Let t ∈ S2 denote the grating direction and l ∈ S2 the
direction of an X-ray beam L. Further let a finite set of K scattering directions uk ∈ S2 and
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the corresponding squared scattering strengths ηk : R3 → R be given. Then the relation of ηk
and the dark-field measurement is modeled by

d = exp
(
−
K−1∑

k=0
h (uk, t, l)

∫

L

ηk (x) dx
)
, (16.3)

with h : S2 × S2 × S2 → R denoting the detectability weighting.

Note: Effectively eq. (16.3) assembles a weighted sum of the standard CT model (compare
chapter 3) applied individually to each component. The weighting can be formulated as
function h : (u, t, l) 7→ (|l × u| 〈u, t〉)2.

These considerations led to the formulation of the corresponding inverse problem in a whole-
system fashion, i.e. the formulation of it as one large linear inverse problem [7]. Consider a
specific number of J measurements dj with corresponding pairs of beam and beam direction
Lj , lj and the relative grating orientation tj . Further, let P ∈ RJ×I denote the projection
matrix, i.e. the discretization of the projection operator mapping from I voxel to the J

measurements (see for example [199, 339]). Additionally, by taking the negative logarithm of
the discrete measurements p = (− ln dj) a linearization and discretization3 is given by

p =
(
W0P . . . WK−1P

)

︸ ︷︷ ︸
A




η0
...

ηK−1




︸ ︷︷ ︸
η

, (16.4)

with ηk denoting the discretization of the field ηk : R3 → R. The weighting matrices are given
by Wk = diag (h (uk, t0, l0) , . . . , h (uk, tJ , lJ)) ∈ RJ×J . In contrast to the model provided
by Malecki, this whole-system approach can be solved using any of the methods we have
discussed in section 4.6, including the application of regularization.

By simply using this whole-system with a CG instead of the previously used SART-type [244]
or SIRT-type algorithm [7] we were able to achieve a strong improvement in computation
time on our hardware. From the initial hours of computation we are now down to a scale of
minutes for the carbon knot dataset (2013 voxel) [16, 17] while achieving the same residual
error.

Except for the speedup in form of the more efficient PCA, the tensor fitting and the extraction of
the microstructure direction in form of the smallest half-axis remained the same in principle.

XTT provided the very first method to perform tomographic reconstruction of the anisotropic
dark-field signal. This marks a significant impact for modern X-ray imaging. In the following
we want to provide a discussion/review of the XTT method and especially its shortcomings,
which led to the development of AXDT which we are going to present in chapter 18.

3This assembles a composition of a discretization of the weighting operator using the Collocation Method and the
discretization of the projection operator using one of the common methods.
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Discussion: Before we go into the depths of the forward model itself, we first stick with
the tensor approach. The main issue is that the tensor fit is performed after the actual
reconstruction took place, meaning that the tensor information, especially the information
on the orientation, is inaccessible during the reconstruction and in consequence can not be
incorporated within a regularization term. However, as one of the most interesting pieces
of information gained from this approach is the orientation, a regularization taking this into
account would be highly interesting. On the other hand, as the tensors live on the manifold
(compare chapter 7) Pos3, reconstruction within the manifold was unavailable prior to our
work in 2016 [4]. The same holds for the direction, as S2 is a manifold as well. Due to
this limitation, Vogel et al. [7] decided to use soft/hard constraints which push/force the
reconstructed quantities to form a tensor. While both methods provided visual improvements,
we were not able to prove that these operations are linear and therefore projections. As an
alternative, Seyyedi et al. [1, 12, 13] considered component-wise total variation regularization
treating the components individually. Still, a focus on the orientation rather than the scattering
magnitude seems favorable and we will discuss a manifold oriented denoising approach in
chapter 17.

Now we want to provide a closer look at the forward model. Returning to eq. (16.3) we realize
that the reconstructed quantities are not invariant with the number of sampling direction,
meaning that the reconstructed scattering strengths ηk get smaller the more sampling direction
are chosen. This is something one wants to avoid. An increased number of directions should
only lead to a more dense representation of the scattering profile but not to a change of the
quantity itself. The important part that is missing is a form of normalization with the number
of scattering directions K. Recalling the discussion on cubature (see def. 6.2) we realize
that the inner sum of eq. (16.1) is already very similar to a cubature rule, but lacking the
weightings. We will come back to this in section 18.1.

x

z

y

(a) K = 147

x

z

y

(b) K = 148

x

z

y

(c) K = 148

Figure 16.5 Illustration of a well-distributed sampling scheme (a) and two less well-distributed sampling schemes
(b),(c) with nearly the same amount of directions.

The second issue is directly linked to this observation as well. In the previous discussion we
have mentioned that the uk should provide a good sampling of the sphere. However, we did
not further describe what this is supposed to mean. In fig. 16.5 we show4 a well-distributed
sampling (fig. 16.5a) for K = 147 and two less well-distributed ones (figs. 16.5b and 16.5c)
with K = 148 each. While using nearly the same amount of directions, the first sampling
provides a roughly uniform sampling of the sphere while the other two samplings show a

4Credits for these examples go to Florian Schaff.
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more dense sampling along the z axis (fig. 16.5b) and the y axis (fig. 16.5c), respectively. The
main issue is that in the formula eq. (16.3) the contributions from each sampling direction are
counted the same. In the examples presented, this means that we obtain a stronger influence
from the regions that are sampled more densely. Again, these are effects we have already
discussed in the context of the cubature rules, and as the uk live on S2 we were motivated to
replace def. 16.1 by a surface integral based version. This will be discussed in chapter 18.

The final limitation is due to the rank-2 tensors. A tensor can only represent one single
direction, which is easy to see if one considers the ellipsoid analogy. A minimum is either a
single point, a great circle or the whole sphere. This would be of no harm if we could assume
that we only have one single microstructure crossing a voxel. However, as discussed earlier the
microstructures that cause the SAXS, which results in the dark-field signal, are much smaller
than the detector resolution, which is why this seems to be a troubling assumption. For more
complex samples, we expected multiple directions crossing a single voxel, which can not be
retrieved with this method. These considerations led to the development of AXDT, which
proved to be capable to overcome these limitations of XTT. Interestingly, we were able to show
that the presented method enables optimal reconstruction for the currently used weighting
function while achieving a complexity that is equal to the XTT reconstruction with a sampling
of K = 15.

In the following, we firstly present a method to perform total variation denoising of the tensor
field. This is linked to the idea of joint regularization of the components. Afterwards, we will
focus on the main limitations of XTT, discussed above, and we will introduce the improved
method called AXDT. As this method will enable retrieving multiple directions in each location,
we will further present means to extract the microstructure directions in each location, i.e.
those directions which have the highest accumulated scattering orthogonal to them.
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17Denoising of XTT

As mentioned above, we have started our investigation while preserving the tensor model. The
method in the following chapter has been partially presented in [21]. Simultaneously to the
work of Vogel et al. [7], we have investigated methods to denoise/regularize the reconstructed
tensors. The key challenge here is that either one performs the regularized fitting/denoising
in the space of matrices, for which it is not guaranteed that one stays in the subspace Pos3, or
one has to deal with the manifold structure.

Due to the similarity to DTI, i.e. the rank-2 tensor model, we investigated which methods have
been developed for denoising/regularization for this imaging model. In fact, if we identify the
uk in def. 16.1 with the gradient directions from DTI and the ηk with the Diffusion Weighted
Images (DWIs), we are able to utilize many of the methods developed in the context of DTI to
the XTT problem.

Consequently, we have investigated related methods for DTI1. Throughout this investigation
we identified four types of methods for regularized/denoised tensor fitting2:

• Denoising of the DWIs, i.e. the input data, prior to the fitting (c.f. [50, 53, 237]),

• Constrained tensor fitting, i.e. enforcing the positive definiteness (c.f. [214, 367]),

• Regularized fitting (c.f. [4, 146, 265, 46, 273, 359, 93]) and

• Denoising of the fitted tensors/directions posterior to the fitting (c.f. [45, 86, 94, 170,
258, 277, 358]).

At the time we investigated this field, Weinmann et al. [374] had only recently proposed their
proximal point algorithm for total variation denoising manifold data. This algorithm showed
very promising results for DTI data in only few iterations, which motivated us to apply this
method to XTT. We therefore decided to apply this algorithm paired with the manifold Pos3 as
proposed by Pennec et al. [277] (see chapter 7 for a detailed discussion) to XTT data.

In order to apply the aforementioned method, let us assume η0, . . . ,ηK−1, with ηk ∈ Rn×n×n

denotes a solution to eq. (16.4). We further assume an a-priori performed tensor fit to be
given, i.e. a field of tensors T ∈ Posn×n×n3 , such that the tensor Tx,y,z fits the value pairs(
uk, (ηk)x,y,z

)
.

1This literature research was performed in the scope of [4]
2 As a side note, it is important to mention that the term "reconstruction" in the scope of this thesis is predominantly

used in the sense of "tomographic reconstruction" while the community of DTI typically refers to the tensor fit as
"reconstruction".
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Recalling the definition (compare chapter 7) of the Riemannian metric dD : TD (Pos3) ×
TD (Pos3) → R, the exponential map expD : TD (Pos3) → Pos3 and its inverse3 exp−1

D :
Pos3 → TD (Pos3) are

dD (W,V ) = trace
(
D−

1
2WD−1V D−

1
2

)
,

expD (W ) = D
1
2 exp

(
D−

1
2WD

1
2

)
D−

1
2 ,

exp−1
D (E) = D

1
2 exp−1

(
D−

1
2ED−

1
2

)
D

1
2 ,

with D,E ∈ Pos3 denoting two elements of the manifold, and W,V ∈ TD (Pos3) denoting
elements of the tangent space at the point D. The distance between two points D,E ∈ Pos3 is
given as

d (D,E) =
2∑

i=0
exp−1 (κi)2

, (17.1)

with κi denoting the i-th eigenvalue of D−
1
2ED−

1
2 . This definition of distances further allows

for a discrete formulation of the `2-total variation problem using finite differences, as we have
discussed for the Euclidean case in example 4.10. The corresponding optimization problem,
i.e. the manifold version of a TV regularized least-squares problem, is given as:

arg min
T̂

1
2
∑

d2
(
T̂x,y,z, Tx,y,z

)

+ λ
∑

d
(
T̂x,y,z, T̂x+1,y,z

)

+ λ
∑

d
(
T̂x,y,z, T̂x,y+1,z

)

+ λ
∑

d
(
T̂x,y,z, T̂x,y,z+1

)
.

(17.2)

This problem can be iteratively solved by the cyclic proximal point algorithm proposed by
Weinmann et al. [374] (see code 17.1). Additionally, they have proved global convergence for
particular manifolds, including Pos3.

17.1 Experiments and Results

For our experiments, we used a sample of carbon fibers which were inter-looped to form a
knot, fixated by hot glue and mounted to a sample holder via adhesive tape (see fig. 17.1).
This dataset is referred to as carbon knot or knot in the following. As stated previously, as we
consider post-reconstruction denoising we require a reconstruction to be performed a-priori.
We therefore used the reconstruction of the carbon knot computed by Vogel et al. [7].

The dark-field signal has been recorded via a setup as illustrated in fig. 16.2 as proposed in
[244, 279]. The acceleration voltage was set to 60 kV p. Images/X-ray projections have been
recorded with a (Varian) flat panel detector with isotropic pixel size of 127 µm and a total of
800× 800 pixels. In total 732 X-ray projections were recorded and for each X-ray projections
eight phase steps with 1 s exposure time each were recorded. The π/2 phase grating (G1)

3Sometimes also referred to as logarithmic map.
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Input: The manifold data T ∈ Posn×n×n3 , regularization parameter λ > 0, parameter sequence
α = (α0, . . .) ∈ `2 \ `1.

Output: Minimizer T̂ of `2-total variation problem eq. (17.2)
T̂ ← T
for it← 0, 1, 2, . . . do

. proximal mapping of the data term
for x← 0, . . . , n− 1; y ← 0, . . . , n− 1; z ← 0, . . . , n− 1 do

t← αit

1+αit
d
(
T̂x,y,z, Tx,y,z

)

T̂x,y,z ←
[
T̂x,y,z, Tx,y,z

]
t

end for
. proximal mapping of the regularization term
for x← 0, . . . , n− 2; y ← 0, . . . , n− 1; z ← 0, . . . , n− 1 do

t← min
(
αitλ,

1
2d
(
T̂x,y,z, T̂x+1,y,z

))

T̂ ′x,y,z ←
[
T̂x,y,z, T̂x+1,y,z

]
t

T̂ ′x+1,y,z ←
[
T̂x+1,y,z, T̂x,y,z

]
t

T̂x,y,z ← T̂ ′x,y,z; T̂x+1,y,z ← T̂ ′x+1,y,z
end for
for x← 0, . . . , n− 1; y ← 0, . . . , n− 2; z ← 0, . . . , n− 1 do

t← min
(
αitλ,

1
2d
(
T̂x,y,z, T̂x,y+1,z

))

T̂ ′x,y,z ←
[
T̂x,y,z, T̂x,y+1,z

]
t

T̂ ′x,y+1,z ←
[
T̂x,y+1,z, T̂x,y,z

]
t

T̂x,y,z ← T̂ ′x,y,z; T̂x,y+1,z ← T̂ ′x,y+1,z
end for
for x← 0, . . . , n− 1; y ← 0, . . . , n− 1; z ← 0, . . . , n− 2 do

t← min
(
αitλ,

1
2d
(
T̂x,y,z, T̂x,y,z+1

))

T̂ ′x,y,z ←
[
T̂x,y,z, T̂x,y,z+1

]
t

T̂ ′x,y,z+1 ←
[
T̂x,y,z+1, T̂x,y,z

]
t

T̂x,y,z ← T̂ ′x,y,z; T̂x,y,z+1 ← T̂ ′x,y,z+1
end for

end for

Code 17.1 Cyclic proximal point algorithm ([374, Algorithm 1]). We recall eq. (7.1) for the definition of [·, ·]t.

had a period of 5 µm while the two absorption gratings (G0, G2) had a period of 10 µm. The
distance between the gratings was chosen symmetrically and set to 92.7 cm.

The reconstruction has been computed using our CampRecon framework [28] (see chapter 8).
For the forward and the back-projection, i.e. P in eq. (16.4), we are using the OpenCL based
projectors proposed by Fehringer et al. [140]. The scattering sampling direction uk where
chosen according to the scheme illustrated in fig. 16.3b with K = 13. The tomographic
reconstruction was computed via 50 iterations of the SIRT-type algorithm (see [7, Alg. 1]). In
total, the reconstruction of the carbon knot with 2013 voxels took approximately 2 h. Following
the reconstruction, a tensor has been fitted to each voxel (compare eq. (16.2)).
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(a) (b)

Figure 17.1 A picture of the carbon knot (a). The illustration (b) shows a rendering of the surface of the segmentation
as well as two Regions Of Interest (ROIs) with the extracted centerlines. The left arm is referred to as
ROI 1 while the right arm is referred to as ROI 2.

The denoising algorithm (code 17.1) has been implemented in a C++ toolbox developed
by Maximilian Baust4. This toolbox offers an abstract formulation of the algorithm given
above, and we only needed to add the support for Pos3, i.e. the implementation of the
metric/distance, the exponential map, and its inverse. As all these implementations require
eigenvalue decompositions of the matrices (i.e. the tensors as well as the elements of the
tangent space) we decided to use Eigen [168].

We ran 10 iterations of code 17.1 with λ = 1 and αit = 3 (it+ 1)−0.95 (∈ `2 \ `1 as proposed
in [374]). The denoising took ≈ 20 min5.

In fig. 17.2 we present the original data (figs. 17.2a and 17.2c) and the results of the denoising
(figs. 17.2b and 17.2d) for the center slice of the dataset. For the visualization we chose to
display every fifth tensor/direction within this plane in both directions. Additionally, the data
has been scaled by a factor of 100. The upper row (figs. 17.2a and 17.2b) shows the tensors,
while the lower row (figs. 17.2c and 17.2d) shows the smallest half-axis projected onto the
plane. In both cases, the coloring has been chosen by the projection of the smallest half-axis
onto the plane according to the color-wheel depicted at the right side of each row.

Further, in fig. 17.3 we present a 3D visualization of streamlines along the extracted smallest
half-axis of the tensors. This visualization is computed using a Runge-Kutta [218, 314]
(RK4) method to track streamlines along a vector field as proposed in [7]. This visualization
paradigm is also well known from the DTI context.

Aiming at a quantitative evaluation one requires a directional reference. As the carbon fibers in
this dataset (see fig. 17.1a) point mostly into the same direction, we considered the centerline

4This toolbox was used for several contributions, including [4, 21].
5In [21] we originally only performed a 2D version of this algorithm, which was applied slice-wise. The 2D version

of the algorithm took ≈ 4 s for a single slice using the same parameters.
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(a) (b)

(c) (d)

Figure 17.2 Results for the denoising algorithm applied to the carbon knot dataset. In order to increase the visibility
we chose to display every fifth voxel in each direction and to scale the data isotropically by a factor of
100. The upper row shows the original tensors (a) and the denoised tensors (b) after the algorithm
was applied. In the lower row we extracted the smallest half-axis of the tensors above and display the
original data in (c) and their denoised counterparts in (d). For all images, the direction of the smallest
half-axis has been encoded in the visualization by choosing the color according to the color-wheel on the
right.

of the arms of the carbon knot as a ground-truth for the surrounding directions. This is
motivated by the fact that carbon fibers bend very smoothly. With this in mind, we segmented
the carbon knot from the reconstruction via simple thresholding. The resulting segmentation
is shown in fig. 17.1b. This segmentation is processed slice by slice from bottom to top (we
illustrate the limits of the chosen slices with rings in fig. 17.1b). For each slice we computed
the center of the circle-like cross-section through the segmentation. The direction between
two slices was computed via finite differences. The similarity of the resulting direction vector
and every element of the corresponding ROI within this slice has been evaluated in terms of
the angle between these two vectors.
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In fig. 17.4 we present the quantitative results for both the original dataset and the denoised
dataset. The plots show the normalized histogram and corresponding box-plots for the angle
between the reference direction from the centerline and each corresponding tensor direction
located in the same slice and ROI.

(a) (b)

Figure 17.3 3D results of the denoising algorithm displayed via streamlines along the vector field defined by the
smallest half-axis of the tensor field. The coloring again displays the direction using the symmetric
color-ball depicted on the right side. In (a) we show the streamlines computed on the original data, while
(b) shows the streamlines of the denoised data. Seeding and stopping criterias for the RK4 algorithm
have been chosen the same in both cases.

Both the 2D as well as the 3D visual results presented in figs. 17.2 and 17.3 clearly show much
smoother directional information. Additionally, we find the streamline visualization to trace
more, longer, and smoother streamlines. These visual results are supported by the natural
behavior of carbon fibers themselves, which due to their composition bend very smoothly.

Considering the quantitative evaluation using the centerline as reference, we can quantify the
improvement in terms of a shift of the median toward 0°. For ROI 1 the median was ≈ 24.5°
in case of the original data which improved to ≈ 16.48°. In the case of ROI 2 the improvement
was from ≈ 25.31° to ≈ 17.05°.

17.2 Conclusion

In this chapter we presented a manifold-based method for a-posteriori denoising of XTT
reconstructions. Both the visual as well as the quantitative evaluation paired with the physical
nature of carbon fibers support the claim that we successfully denoised the tensor valued data
set and increased the information quality.
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Figure 17.4 Evaluation of the denoising algorithm of the original data compared to the denoised data for the ROIs
1 (a),(b) and 2 (c),(d). The plots (a),(c) show the normalized histograms of the angle between the
direction of the smallest half-axis and the reference given by the centerline direction in the same slice.
Additionally in (b),(d) we present the corresponding box plots.

This method considered the denoising after an actual reconstruction including the tensor fit
is performed. The natural question that arises is if it is possible to compute a regularized
reconstruction of the tensors directly within the manifold. As a follow-up to this work we
have therefore investigated the regularized tensor fit in the context of DTI in [4]. In this work
Baust et al. [4] presented a forward-backward splitting algorithm to compute a TV-regularized
tensor fit. The algorithm has been validated for DTI data and shows promising improvements
in terms of Signal-to-Noise Ratios (SNRs).

However, while this algorithm in general can be applied to the XTT problem as a whole, it
turned out that the least-squares data term is not convex within the manifold Pos3. Conse-
quently the optimization involves a line-search along the gradient direction. As the computa-
tion of the gradient would involve the large-scale forward model from eq. (16.4) and as the
pure denoising results already proved very promising, we did not follow this path for XTT.

Beside this manifold-based approach, Seyyedi et al. [1, 12, 13] have investigated multiple
alternative regularization methods based on regularization of the single components ηk.
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On a final note we want to mention that Weinmann et al. [375] have additionally presented
algorithms for different problems such as Mumford-Shah and Potts regularization.

While the previously presented method provides strong improvements, we did not take the
actual reconstruction into account at this point. Thus, the following chapter is dedicated to the
remaining restriction imposed by the tensor model as well as the forward model for XTT.
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18Anisotropic X-ray Dark-field
Tomography

Now we want to investigate the limitations linked to the tensor model as well as the XTT
model as discussed in chapter 16. In the following, we will develop a fully continuous forward
model. We will see that this continuous formulation enables us to apply all methods we
have discussed in the scope of cubature (compare chapter 6). Additionally, we will present a
special version of discretization using spherical harmonics, which provides strongly improved
reconstruction results. This spherical harmonics-based approach has been presented in [6]
and is termed Anisotropic X-ray Dark-field Tomography (AXDT), as opposed to X-ray Tensor
Tomography (XTT).

Let’s recall the remaining two issues. First is a missing weighting/normalization depending on
the number of sampling direction uk, as well as the actual sampling scheme. Second the fact
that the tensor model is limited to a single microstructure direction. As mentioned before, the
assumption of a single direction is assumed to be restrictive for more complicated samples, as
the dark-field signal relates to structures with a size far below the detector resolution. Thus,
the case of multiple structures crossing the same voxel is likely.

For a detailed analysis, we recall the form of the original forward model developed by Malecki
et al. [244] given in eq. (16.1), i.e.

d = exp
(
−
∫

L

K−1∑

k=0
h (uk, t, l) ηk (x) dx

)
, (18.1)

with the weighting function h : S2 × S2 × S2 → R as given in eq. (16.1) and the K fields
ηk : R3 → R denoting the scattering strength in the direction uk. We observe that the finite
sum can already be interpreted as a form of discretization. Both the weighting function as well
as the scattering profile are discretely sampled at the uk. While for the weighting function this
is obvious, for the ηk it can be seen by identifying the ηk with discrete samplings of a scattering
function η : S2 × R3 → R. The mapping η therefore can be seen as the function mapping a
sampling direction uk ∈ S2 and a position in 3D space x ∈ R3 to the corresponding scattering
strength ηk (x) := η (uk, x). As mentioned previously, this is exactly what we discussed in
the scope of cubature methods in chapter 6 with one major difference – namely the missing
weighting used for cubature rules. This, however, is exactly what prevents the XTT model from
providing invariant reconstruction quantities and also leads to major issues if the sampling
scheme is not well-distributed on the sphere1.

1Beside the pure domination of more densely sampled regions, which can be adjusted by using an appropriate
weighting, the sampling also effects the approximation quality of the cubature rule. Effects related to this are not
subject of this thesis but might pose an interesting question for further research.
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Based on these observations, we have proposed a fully continuous model for AXDT in [6] by
replacing the sum with a surface integral on S2 as follows.

Definition 18.1 (AXDT continuous forward model) (c.f. [6, Definition 2]) Let t ∈ S2 denote the grating
direction and l ∈ S2 the direction of an X-ray beam L. Further let the spherical scattering
profile η : S2×R3 → R be given. The forward model relating η and the dark-field measurement
is defined as

d = exp
(
−
∫

L

∫

S2
h (u, t, l) η (u, x) dσ (u)

σ (S2) dx
)
, (18.2)

with h : S2 × S2 × S2 → R denoting the detectability weighting.

Note: Please note the normalization of the surface integral with the Lebesque measure σ of
the unit sphere, i.e. 4π in case of the standard measure on S2.

With this definition in place, we are once again faced with the task of discretization. However,
in contrast to the original XTT model, we are now able to build upon a fully continuous
formulation. We will focus on the discretization of the inner, i.e. the surface integral on S2, as
the outer integral can be discretized in exactly the same fashion as is done for standard CT. In
fact, we will find that the resulting discrete models can be rewritten in a similar fashion as
proposed by Vogel et al. [7] for the XTT model (compare eq. (16.4)).

18.1 Discretization using cubature

Previously we observed that the XTT model (see def. 16.1) is very similar to what one would
expect in case of a cubature rule. Consequently, a straightforward approach to discretize the
inner integral is to use a cubature rule (see def. 6.2).

Theorem 18.2 (AXDT discrete cubature based forward model) Let U = {(u0, w0) , . . . , (uK−1, wK−1)},
with uk ∈ S2, wk ∈ R, denote a cubature rule according to def. 6.2. Then a discretization of
eq. (18.2) is given by

d ≈ exp
(
− 1
σ (S2)

K−1∑

k=0
wkh (uk, t, l)

∫

L

η (uk, x) dx
)
, (18.3)

with h, t, l, η as defined in def. 18.1.

Proof: Consider the inner integral in eq. (18.2). By applying the cubature rule U to the
product of h (u, t, l) and η (u, x) we obtain the approximation

∫

S2
h (u, t, l) η (u, x) dσ (u)

σ (S2) ≈
1

σ (S2)

K−1∑

k=0
wkh (uk, t, l) η (uk, x) . (18.4)

As neither the wk nor h (uk, t, l) depend on the position within the volume, i.e. x, eq. (18.3)
follows directly from eq. (18.4) by using the linearity of the integral. We therefore exchange
sum and integral just as Vogel et al. [7] proposed for the original XTT model (compare
def. 16.1).

110 Chapter 18 Anisotropic X-ray Dark-field Tomography



Interestingly, we find the model to become a weighted sum of the standard CT problem once
again. Further, if we consider a cubature rule with equal weights for all sampling directions2,
e.g. spherical t-designs (see eq. (6.12)), we can make a very interesting discovery. Consider
U =

{(
u0,

1
K

)
, . . . ,

(
uK−1,

1
K

)}
, then eq. (18.3) becomes

d ≈ exp
(
− 1
K

K−1∑

k=0
h (uk, t, l)

∫

L

η (uk, x) dx
)
. (18.5)

This model is equal to eq. (16.3) up to the factor 1
K . The factor is exactly what is needed to

yield a normalization, leading to reconstructed scattering strengths invariant to the number of
sampling direction.

However, the key strength of this approach can be seen if a non-uniform scheme is applied
and consequently the weights of the sampling points differ. This could e.g. be used to use
adaptive sampling schemes to refine regions on the sphere, which show more variation than
regions which are mostly homogeneous. The incorporated weights enable the prevention of
domination of the problem by more densely sampled regions, which was one key issue with
the XTT model (def. 16.1).

Following the whole-system approach discussed previously (compare eq. (16.4)) and in
[16, 17, 7], we consider J measurements dj . Further let Lj , lj denote the corresponding
X-ray beams and the relative grating orientation tj . Given a discretization of the standard
modeling operator for CT by a projection matrix P ∈ RJ×I , we obtain a large scale linear
inverse problem by taking the negative logarithm of the measurements p = (− ln dj). The
discretization of theorem 18.2 is now given as

p =
(
W0P . . . WK−1P

)

︸ ︷︷ ︸
A




η0
...

ηK−1




︸ ︷︷ ︸
η

, (18.6)

with ηk denoting the discretization of the field ηk := η (uk, ·) : R3 → R. The only change in
comparison to the whole-system approach for the XTT model is within the weighting matrices,
i.e. Wk = wk

σ(S2) diag (h (uk, t0, l0) , . . . , h (uk, tJ−1, lJ−1)) ∈ RJ×J .

In summary, the proposed continuous forward model def. 18.1 first enables the detailed,
mathematical investigation of the model. Further, we find that the discretization of this
forward model coincides with the original XTT model def. 16.1 up to a normalization constant
if an appropriate cubature rule is chosen. Additionally, this in principle enables the use of any
cubature rule3, which especially in the scope of adaptive sampling might be a very interesting
topic for further investigations. Altogether, we therefore subsumed all previous findings
related to XTT under this new model.

2As discussed in chapter 6 a suitable choice is based on the Voronoi tesselation.
3For an excellent overview on this topic we refer to [181].
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18.2 Discretization using Spherical Harmonics

While discretization based on cubature already provides a strong improvement over the
original XTT model, the continuous model enables an even more versatile approach. This
approach uses the set of spherical harmonics and was presented in [6]. A closer look at the
inner integral of eq. (18.2) reveals that this integral actually constitutes an inner product in
L2 (S2), i.e. ∫

S2
h (u, t, l) η (u, x) dσ (u) = 〈h (·, t, l) , η (·, x)〉L2(S2) , (18.7)

for fixed t, l ∈ S2 and x ∈ R3. Thus, the integral of the inner product can be replaced by a
countable sum by using Parseval’s theorem eq. (6.10) for spherical harmonics. This leads to
the following discrete forward model.

Theorem 18.3 (AXDT discrete spherical harmonics based forward model) (c.f. [6, Theorem 1]) Assum-
ing η (·, x) , h (·, t, l) ∈ L2 (S2), let {hmk (t, l)} and {ηmk (x)} denote the spherical harmonics
coefficients of η, h with respect to the variable u (compare chapter 6). Further consider a
truncation degree K ∈ N. Then a discrete approximation of eq. (18.2) in terms of the spherical
harmonics coefficients of η (·, x) is given by

d ≈ exp
(
− 1
σ (S2)

K∑

k=0

k∑

m=−k
hmk (t, l)

∫

L

ηmk (x) dx
)
. (18.8)

Proof: Again consider the inner integral and use Parseval’s theorem (eq. (6.10)):

∫

S2
h (u, t, l) η (u, x) dσ (u)

σ (S2) = 1
σ (S2) 〈h (·, t, l) , η (·, x)〉L2(S2) (18.9)

= 1
σ (S2) 〈h

m
k (t, l) , ηmk (x)〉`2 (18.10)

= 1
σ (S2)

∑

k≥0

k∑

m=−k
hmk (t, l) ηmk (x) (18.11)

≈ 1
σ (S2)

K∑

k=0

k∑

m=−k
hmk (t, l) ηmk (x) (18.12)

As due to the truncating and the fact that the hmk (t, l) are independent from the position
within the volume, i.e. x, eq. (18.8) follows directly from eq. (18.9) by using the linearity of
the integral. We therefore again exchange sum and integral just as Vogel et al. [7] proposed
for the original XTT model (compare def. 16.1).

Note: It is worth mentioning that the approximation imposed by the truncation is actually
exact for K = 4 in the case of the weighting function proposed by Malecki et al. [244],
i.e. h : (u, t, l) 7→ (|l × u| 〈u, t〉)2. The reason is that this function represents a product of
four functions that can be expressed with spherical harmonics of degree one. Consequently
hmk = 0,∀k > 4 holds4.

Besides the fact that this method used for the discretization is essentially different, we again
find the resulting model (theorem 18.3) to constitute a weighted sum of the standard CT

4Thanks to Referee A of [6] for pointing this out.
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model. This time the standard CT model is applied to the 3D scalar fields of spherical
harmonics coefficients. The similarity in the forward model further allows us to once again
formulate a large scale inverse problem in a similar fashion as performed for both the XTT
model eq. (16.4) as well as the AXDT model using cubature eq. (18.6):

Once again, we consider J measurements dj corresponding to X-ray beams with Lj , lj and a
relative grating orientation tj . Further denote the projection matrix as P ∈ RJ×I and take the
negative logarithm of the measurements p = (− ln dj). This leads to the following large scale
inverse problem

p =
(
W 0

0P . . . W−KK P . . . WK
K

)

︸ ︷︷ ︸
A




η0
0
...

η−KK
...

ηKK




︸ ︷︷ ︸
η

, (18.13)

with ηmk denoting the discretization of the coefficient field ηmk : R3 → R corresponding to the
spherical harmonic V mk . The entries of the weighting matrices are given by the spherical har-
monics coefficients of the function h, i.e. Wm

k = 1
σ(S2) diag (hmk (t0, l0) , . . . , hmk (tJ−1, lJ−1)) ∈

RJ×J .

As the process of scattering is symmetric, we actually benefit from an additional property of
spherical harmonics. The symmetry directly affects the function h and is reflected in a point
symmetry with respect to the origin, i.e. h (u, t, l) = h (−u, t, l), ∀u, t, l ∈ S2. This symmetry
leads to the elimination of all coefficients with odd degree, meaning that hmk (tj , lj) = 0 for
k = 1, 3, . . .. Consequently, we limit the computation to even degrees. As the forward model
links the weighting and the coefficients of the scattering profile ηmk (x) in a multiplicative way,
this implicitly imposes a symmetry constraint on the reconstructed scattering function.
Note: In combination with the fact that a truncation with K = 4 is exact for the currently
employed weighting function, this results in a total of 15 relevant ηmk . The complexity of
the whole-system approach depends linearly on the number of volumes to be reconstructed.
This means that we are in a similar complexity domain as the XTT approach with K = 13
directions from Vogel et al. [7].

In summary, the continuous forward model (def. 18.1) enabled us to massively enlarge
the body of applicable methods which can be used for discretization. Most notably, the
spherical harmonics based approach (theorem 18.3) proved to be of high value as it provides
accurate discretization for the currently applied weighting function while requiring similar
computational complexity as the XTT approach. We will later see (in chapter 19) that the
spherical harmonics based approach has yet another advantage when it comes to the extraction
of the microstructure orientations. In addition, we have also eliminated the rank-2 tensor
model. In the following we will focus on the evaluation of the spherical harmonics approach.
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18.3 Experiments and Results

In order to evaluate the methods discussed above, we were explicitly interested in a sample
consisting of well-defined microstructure orientations which at some points are likely to cross
the same voxel in the final reconstruction. With this in mind, we considered a dataset of
two wooden sticks forming a cross (see fig. 18.1 for an overview on the dataset). The key
property with natural wood is that similar to the carbon fiber dataset used in chapter 17, the
orientation of the microstructures can be very well predicted. In the case of wood, one finds
microstructures in the direction of growth (compare fig. 18.1c for a µCT of the dataset5).
Please note that the microstructures are not visible in the isotropic dark-field reconstruction
of lesser resolution (fig. 18.1b), as opposed to the high-resolution µCT (fig. 18.1c). Also,
the sample holder is rendered invisible in the dark-field reconstruction as is does not scatter.
Further, these two wooden sticks touch each other in the center of the cross and we expect
to find voxels containing directional information from both wooden sticks in this center
region. As mentioned before, we assume to find the strongest scattering orthogonal to the
microstructures shown in fig. 18.1c. We will refer to this dataset by the term crossed sticks in
the following.

(a) (b) (c)

Figure 18.1 Overview of the crossed sticks dataset. (a) shows an actual photography, (b) shows the center slice of
the isotropic part of the dark-field reconstruction (320× 320 pixel) and (c) shows a µCT of the dataset
(1280× 1280 pixel).

In fig. 18.2 we show a VR of the dataset along with two ROIs A and B each consisting of a
single voxel. The point A is chosen such that we expect the voxel to consist of one single
orientation. The point B is chosen exactly in the region where the two wooden sticks touch
each other.

The sample was again measured with a setup as illustrated in fig. 16.2, as proposed in [244,
279]. The inter-grating distance was chosen symmetrically and set to 91 cm. Generation of
X-rays was performed with a tungsten-target X-ray tube operated at 60 kV p with a current of
13.3 mA. Three gratings (G0, G1, G2) were used, with a period of 5 µm in case of the phase
grating (G1) and 10 µm in case of the two absorption gratings (G0, G2). The spectrum was

5Credits for providing the µCT go to Christoph Jud. The dataset was measured with a GE phoenix|X-ray v|tome|x
using a tube voltage of 60 kV with a current of 200 µA. In total the scan consists of 1000 X-ray projections recorded
with an exposure time of 2 s each. The reconstruction was computed using the built-in tool datos|x 2.0. The final
reconstruction provides a voxel size of isotropic 17.5 µm and a total of 12803 voxel.
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Figure 18.2 VR of the crossed sticks dataset. The point A is located in the front stick, while the point B is located in
the center region where the wooden sticks touch. The cube on the right shows the sample orientation
(T=Top, F=Front and R=Right). From M. Wieczorek, F. Schaff, F. Pfeiffer, and T. Lasser. “Anisotropic
X-Ray Dark-Field Tomography: A Continuous Model and its Discretization”. English. In: Physical Review
Letters 117.15 (Oct. 2016), p. 158101
DOI: 10.1103/PhysRevLett.117.158101
URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.158101, with the permission of APS
(©2016 American Physical Society)

filtered with 2 mm aluminum. We recorded a total of 1200 X-ray projections from various
viewpoints sampling the unit sphere using the Euler cradle. For each viewpoint we recorded
eight phase-stepping images with an exposure time of 1 s each. Images were recorded with a
Varian PaxScan 2520D flat-panel detector equipped with a CsI scintillator. Each image consists
of 800 × 800 pixels with an isotropic pixel size of 127 µm. Prior to any processing, the raw
data has been rebinned by a factor of 2 in order to reduce the computational requirements. In
total, the measurement took 345 min.

All reconstructions have been computed using our CampRecon framework [28] (see chapter 8).
As projector, i.e. the standard CT model, we used the ray-driven multi-GPU projector of
Fehringer et al. [140] which is written in OpenCL. For each reconstruction we performed
20 iterations of CG using the according whole-system formulation. Any computations were
performed using a compute server with a dual Intel Xeon E5-2687W v2 CPU equipped with
128 GB RAM and dual Nvidia GeForce GTX 980Ti GPUs. The weighting function h was chosen
according to the formulation of Malecki et al. [244], i.e. h : (u, t, l) 7→ (|l × u| 〈u, t〉)2. Due
to the rebinning and a nearly parallel beam geometry, the resulting reconstructions offer an
isotropic voxel size of 254 µm with a total number of 3203 voxels.

For the spherical harmonics transform and visualization of spherical harmonics we used the
excellent Matlab [on2] toolbox provided in [on15]6. The entries of the weighting matrices
Wm
k were precomputed using this toolbox. Exploiting both the symmetry of the scattering and

the aforementioned fact that a truncation of degree 4 is optimal, the whole system eq. (18.13)
was formulated using K = 4 and k = 0, 2, 4. Thus the reconstruction effectively constitutes of
15 volumes ηmk . In total, the computation took 50 min.

6Since [6] we incorporated the support for spherical harmonics directly into our CampRecon framework. However
we still use the excellent toolbox of [on15] for visualization purposes.

18.3 Experiments and Results 115

https://dx.doi.org/10.1103/PhysRevLett.117.158101
http://link.aps.org/doi/10.1103/PhysRevLett.117.158101


For comparison, the same data was reconstructed using eq. (16.4) with the sampling scheme
K = 13 (see fig. 18.3a). The corresponding tomographic reconstruction took 45 min. The
resulting reconstruction was scaled by a factor of K in order to obtain comparable scattering
strengths as discussed above. To the resulting 13 ηk we fitted rank-2 tensors using the PCA
based method as proposed in [7].

Additionally, we performed a reconstruction using the cubature based method eq. (18.6) with
K = 50 directions (see fig. 18.3b) generated with a Voronoi tesselation (c.f. [129])7. This
reconstruction took 192 min.

x

z

y

(a) K = 13

x

z

y

(b) K = 50

Figure 18.3 Illustration of the sampling direction used for the reconstruction. (a) shows the sampling scheme with
K = 13 used for the XTT approach as proposed by Vogel et al. [7]. (b) shows the scheme with K = 50
directions created with Voronoi tesselation (c.f. [129]).

Figure 18.4 shows plots of the residual norm δnew and its normalization δnew/δ0 (compare
code 4.1). Especially the latter is commonly used as convergence measure. In fig. 18.4a
we see that the residual norm is much higher for the original XTT method, which is mainly
linked to the missing normalization. The normalized residual norm fig. 18.4b shows that all
algorithms reached a similar value after 20 iterations and it is therefore reasonable to consider
these results to be comparable. We also see that the update already flattened out, which also
indicates that the results are not expected to change essentially in further iterations.

The reconstructed scattering profiles for the two voxels A and B (see fig. 18.2) are displayed8

in fig. 18.5 for voxel A and in fig. 18.6 for B. Positive function values are colored blue while
red color was chosen for negative entries.

Additionally, in fig. 18.7 we present slice views for the slices containing the voxel A and B.
We focus on comparing the XTT results with those obtained by using the spherical harmonics
based AXDT method.

For the voxel A, which is located in the front stick, we expect only one single microstructure
orientation. This orientation aligns with the direction of growth, i.e. the main direction of
the stick itself. Consequently, for all methods we find similar orientations. We also see that
while the XTT method using the scheme with K = 13 provides a very coarsely sampled result

7Matlab [on2] code is available from Burkardt et al. [on6].
8In case of the scattering profiles using discrete sampling direction we utilized a Delauney triangulation in order to

display the corresponding graph of the spherical function. For the spherical harmonics we employed the tools
provided in [on15].
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Figure 18.4 (a) shows the absolute norm of δnew while (b) shows the normalized residual norm δnew
δ0

.

(a) (b) XTT (c) (d) AXDT

(e) (f) XTT (g) (h) AXDT

Figure 18.5 Scattering profiles of the results for the voxel A in fig. 18.2. Positive function values are rendered
in blue while red color is chosen for negative values. The images show the results obtained by the
XTT reconstruction with K = 13 (a), (e), the fitted rank-2 tensors to this reconstruction (b), (f), the
cubature based AXDT reconstruction with K = 50 (c), (g) and finally the spherical harmonics based
AXDT reconstruction (d), (h). The upper row shows the profiles from a front (F) view, while the lower
row shows the same profiles but from a bottom (B) view as illustrated by the corresponding viewpoint
cube on the left side. (b), (d), (f), (h) are from M. Wieczorek, F. Schaff, F. Pfeiffer, and T. Lasser.
“Anisotropic X-Ray Dark-Field Tomography: A Continuous Model and its Discretization”. English. In:
Physical Review Letters 117.15 (Oct. 2016), p. 158101
DOI: 10.1103/PhysRevLett.117.158101
URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.158101, with the permission of APS
(©2016 American Physical Society)

the orientation represented by the tensor aligns very well with the one obtained by the other
methods. Further, the cubature method with K = 50 provides much more densely sampled
results. Consequently, the computational effort is roughly five times higher. Finally, the
spherical harmonic based result shows a similar profile as obtained by the cubature method.
This method however only slightly differs in terms of computational effort from the XTT
method.

The situation, however, changes drastically for the voxel B where the two wooden sticks touch.
Directly considering the spherical harmonics AXDT results we actually find that two structure
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(a) (b) XTT (c) (d) AXDT

(e) (f) XTT (g) (h) AXDT

Figure 18.6 Scattering profiles of the results for the voxel B in fig. 18.2. Positive function values are rendered
in blue while red color is chosen for negative values. The images show the results obtained by the
XTT reconstruction with K = 13 (a), (e), the fitted rank-2 tensors to this reconstruction (b), (f), the
cubature based AXDT reconstruction with K = 50 (c), (g) and finally the spherical harmonics based
AXDT reconstruction (d), (h). The upper row shows the profiles from a front (F) view, while the lower
row shows the same profiles but from a bottom (B) view as illustrated by the corresponding viewpoint
cube on the left side. (b), (d), (f), (h) are from M. Wieczorek, F. Schaff, F. Pfeiffer, and T. Lasser.
“Anisotropic X-Ray Dark-Field Tomography: A Continuous Model and its Discretization”. English. In:
Physical Review Letters 117.15 (Oct. 2016), p. 158101
DOI: 10.1103/PhysRevLett.117.158101
URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.158101, with the permission of APS
(©2016 American Physical Society)

orientations are reconstructed within the scattering profile. These two directions can be clearly
distinguished from the visual results of the spherical harmonics reconstruction. However, this
is neither the case for the XTT reconstruction nor for the cubature based AXDT reconstruction.
While the cubature method with K = 50 already tends towards the spherical harmonics based
result, the orientations are not visually distinguishable. This again may be explained by the
optimality of the spherical harmonics discretization. Finally, considering the fitted XTT tensors
we find the tensors to suffer from the two existing directions and falsely orient orthogonally
to these two orientations.

All raw reconstructions show "negative" function values, especially along the direction of
the expected microstructures. Currently we hypothesize that this is linked to the weighting
function h which does not perfectly model the measurement in case of a microstructure
pointing in a similar direction as the X-ray (see chapter 5 for a detailed discussion).

18.4 Conclusion

In summary, we have presented a fully continuous forward model for Anisotropic X-ray
Dark-field Tomography (AXDT).

It is worth mentioning that due to the similarity of dark-field imaging and SESANS (compare
chapter 5), the presented methods might be applicable to this imaging modality in a similar
fashion. Unfortunately, a corresponding investigation goes beyond the scope of this thesis.
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(a) XTT (b) AXDT

(c) XTT (d) AXDT

Figure 18.7 Slice visualization of every fifth tensor/scattering profile. The XTT tensors are displayed in (a), (c)
while the spherical harmonics based AXDT results are shown in (b), (d). The upper row shows the slice
containing the voxel A, while the bottom row shows the one containing voxel B (see fig. 18.2). Positive
function values are rendered in blue while red color is chosen for negative values. From M. Wieczorek,
F. Schaff, F. Pfeiffer, and T. Lasser. “Anisotropic X-Ray Dark-Field Tomography: A Continuous Model and
its Discretization”. English. In: Physical Review Letters 117.15 (Oct. 2016), p. 158101
DOI: 10.1103/PhysRevLett.117.158101
URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.158101, with the permission of APS
(©2016 American Physical Society)

The presented model has been crafted independently of the explicit formulation of the
weighting function h, which enables further adjustments in this domain in the future. Due
to its fully continuous fashion, this model can in future be used to analyze its mathematical
properties, such as its null space or error estimates which can be used to create simplified
acquisition protocols. A first investigation in this scope has been performed by Sharma
et al. [3]. We additionally presented two ways to discretize this forward model, i.e. the
cubature based approach (see section 18.1) and the spherical harmonics based approach (see
section 18.2). The cubature base approach turned out to provide a formula very similar to
the original XTT model, which enabled us to subsume the former XTT method as a special
case of the novel AXDT approach. In case of the current weighting function h, we found the
discretization using the spherical harmonics to be exact for K = 4.
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For both discretization approaches, we were able to derive a large scale inverse problem
eqs. (18.6) and (18.13), enabling us to actually reconstruct the scattering profiles at each
position within the sample from a given dark-field measurement.

Finally, the experimental results show that for single microstructure orientations these novel
methods yield comparable orientations. For multiple microstructures crossing the same voxel,
however, we find the previous method to fail in successfully retrieving both directions. In
contrast, the spherical harmonics AXDT method successfully retrieved both directions in our
sample in these cases. This is again of particular interest with the considered microstructure
being far smaller than the detector resolution, which makes multiple orientations crossing
the same voxel very likely in more complicated samples. The experiments presented in this
chapter support these findings.

For future investigation, a highly interesting field of research is to further continue the work of
Sharma et al. [10, 3, 15, 5] and investigate the basic mathematical properties of eq. (18.2). In
addition, to the standard tomographic axis, AXDT requires the rotation in a fully 3D fashion.
It is therefore of high interest to investigate what really needs to be measured and how the
simplification of the acquisition protocol affects the reconstructed results.

Besides these theoretical fields of research in order to reduce the computational effort,
block based algorithms (c.f. [342]) or ordered subset approaches (c.f. [136]) might be
investigated.

We also observe a certain amount of noise in our reconstructions and the positive effect of
denoising on XTT in chapter 17 raises the interest to include regularization. A straightforward
method would be to independently regularize the coefficient fields corresponding to a specific
degree k and order m as done for XTT by Seyyedi et al. [1, 12, 13].

However, as we are mainly interested in the orientation of the scattering profiles, it is worth
to consider how the spherical harmonics coefficients change under rotation. A recursive
method was presented by Ivanic et al. [190] and an implementation is supported in [on15].
One important observation is that we are dealing with axisymmetric functions, i.e. the
reconstructed scattering profiles can be seen as a rotation of a function expressed by spherical
harmonics with ηmk = 0 for m 6= 0. This property has been e.g. used in the scope of SAXS to
obtain the orientations of collagen fibrils within bone tissue [235]. An additional interesting
fact about rotations is that the coefficients of degree k of the rotated function are only affected
by the coefficients of degree k of the original function. This means that there is no information
transfer between degrees, and the `2-norm of the coefficients of a degree k is invariant under
rotation. This has been used by Kazhdan et al. [206] to develop rotationally invariant
descriptors for 3D shapes. Consequently, this might be an interesting way of regularization,
as it enables imposing a constraint on the strength, while imposing no constraint on the
orientation.

Additionally, in order to regularize the orientations one might investigate a similar method to
what is presented in chapter 17. For the orientations of q-ball imaging, Cheng et al. [95] and
Goh et al. [162, 163] independently proposed to consider the normalized coefficient vector
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as element of S(K+1)2
. S(K+1)2

again forms a manifold, meaning that the manifold based
approach could directly be applied to denoise these normalized coefficients.

As physically positive values make sense only, it also is reasonable to employ a positivity
constraint in addition to regularization.

In addition to these considerations, within the scope of q-ball imaging as proposed by Tuch
et al. [361], many metrics and quality measures have been proposed (c.f. [101, 361]). Among
these one famous measure is Generalized Fractional Anisotropy (GFA) defined as (c.f. [100,
101]),

GFA =

√√√√√
(

1− (η0
0)2
)

∑
k≥0

∑k
m=−k (ηmk )2 . (18.14)

These can be directly transferred to AXDT.

Recently, we have also proposed a first attempt to statistical reconstruction based AXDT
in [9]. A detailed discussion would go beyond the scope of this thesis, but as a rough
summary we have presented a statistical model for AXDT which allows for a joint statistical
reconstruction of all three signals, attenuation, phase-contrast, and AXDT all at once. Statistical
joint reconstruction approaches with an isotropic scattering assumption have already been
presented in [75, 305].

Besides these predominantly reconstruction-oriented considerations, the actual application to
specific imaging tasks is of high interest for further research. Following the already presented
advantages of XTT in the past we are positive that this imaging modality will provide a great
complementary insight not available through other modalities.

Recalling the XTT tensor model, we again mention that the microstructure orientation is
related to the smallest half-axis of the corresponding tensor. While we found this method to
work well for a single microstructure, this approach failed in the case of multiple directions.
We are therefore interested in the extraction of microstructure orientation from a given AXDT
reconstruction. As a simple minimum extraction does not work in the presence of multiple
directions either, we have to come up with a more versatile approach. In the following chapter,
we are going to present a method to extract these directions using AXDT.
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19Microstructure Orientation
Extraction for AXDT

The original method of XTT provided an insight into microstructure orientation in form of the
smallest half-axis of the tensor. However, as discussed in chapter 18, this is only applicable if
the considered voxel is crossed by microstructures pointing in the same direction. A sort of
minima detection does not apply either in case one faces multiple directions crossing the same
voxel. Thus, a more versatile method has to be developed. Luckily, in q-ball imaging [120,
180, 361] one faces a similar setting. Consequently, we have investigated whether a similar
approach can be applied to the method of AXDT. The following has been partially presented
in [11].

For the following investigation we consider a tomographic reconstruction in terms of the
spherical harmonics based AXDT model theorem 18.3, to be given, i.e. η : S2 × R3 → R, with
ηmk : R3 → R denoting the corresponding spherical harmonics coefficients at each location
within the volume. Further, as only positive scattering is physically meaningful, we denote
the positivity constrained version as η+ (u, x) = max (η (u, x) , 0), for all x ∈ R3, u ∈ S2.
The corresponding spherical harmonics coefficients are denoted by (η+)mk . For a fiber-like
structure, one finds the scattering to be strongest in the plane orthogonal to the orientation
of the microstructure. Considering our reconstruction, we thus expect the peak scattering
to be located on the great circle orthogonal to this direction. The task is now to transform a
scattering profile such that a peak along a great circle is translated into a peak corresponding
to a single direction. If we consider the positivity constrained version, such a transform is
naturally given by the Funk-Radon transform [153] def. 6.3. This integral transform maps a
spherical function to integral values over all great circles. Following theorem 6.4, we find that
we additionally benefit from the spherical harmonics based AXDT approach, as the transform
Pη+ (·, x) for any x ∈ R3 is given in terms of the spherical harmonics coefficients by

(Pη+)mk = Pk (0) (η+)mk (19.1)

with Pk denoting the Legendre polynomials (compare theorem 6.4). The only remaining
task is to detect the peaks on the result of the transform. For this task, we choose a discrete
method based on a finite sampling of the unit sphere1. In order to detect local maxima/peaks
of Pη+ (·, x) at a specific location x ∈ R3, the function is sampled at N sampling direction
un ∈ S2, 0 ≤ n ≤ N −1. Further, we impose a neighborhood relation by computing a spherical
Delauney triangulation [118] D on these directions [296]2. The resulting triangulation im-
poses a neighborhood for a direction un in terms of each direction that is connected with un via

1Similar methods can be found in the dipy package [158].
2Matlab [on2] code is available from Burkardt et al. [on7].
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an edge in D. We denote the neighborhood of un byN (un) := {um : n 6= m, {un, um} ∈ D}.
With this neighborhood relation we can further characterize a local maximum un, i.e.

Pη+ (un, x) ≥ Pη+ (um, x) , ∀ul ∈ N (un) , (19.2)

holds for a specific position x ∈ R3.
Note: The explicit evaluation of the Funk-Radon transformed scattering profile at position
x ∈ R3 is given as

Pη+ (un, x) =
∑

k≥0

k∑

m=−k
(Pη+)mk (x)V mk (un) . (19.3)

These considerations lead to the pseudocode version of the microstructure orientation extrac-
tion in code 19.1. Subsequent to the actual detection, we sort the directions which have been
detected to be maxima by their corresponding accumulated scattering orthogonally to them,
i.e. Pη+ (un, x).

Input:
Output:

for all Voxel x ∈ R3 do
. Initialize set of peaks
M ← ∅
for k ← 0, . . . ,K do

for m← −k, . . . , k do
. Compute Funk-Radon transform
(Pη+)mk ← Pk (0) (η+)mk

end for
end for
for n← 0, . . . , N − 1 do

if Pη+ (un, x) ≥ Pη+ (um, x) , ∀um ∈ N (un) then
M ←M ∪ {un}

end if
end for
Sort M by Pη+ (un, x)

end for

Code 19.1 Pseudocode of the microstructure orientation extraction.

An efficient implementation written in C++ is presented in code 19.2. As the number of
edges increases linearly with the number of chosen directions (c.f. [331]), the dominant
element in this code is the evaluation of the Funk-Radon transformed scattering function at the
sampling direction. In our implementation the values of V mk (un) as well as the triangulation
are precomputed and thus the evaluation (delauney() and sphTransform.inverse()) happen in
constant time (with respect to N). Thus, the algorithm’s complexity depends linearly on the
number of chosen directions N .

/**

* \brief Computes local maxima of a function f : S2 → R given

* by its coefficients with respect to spherical harmonics fmk .

*

* \param[in] coeffs The fmk
* \param[in] sphere A sampling on the unit sphere given as a list of unit 3D vectors.
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*

* \return sorted index list such that for each entry i, sphere[i] is a local maxima

* of f and f [sphere[i]] ≤ f [sphere[j]], ∀sphere[j] ∈ N (sphere[i])
*

*/

std::list<int> computeLocalMaxima(DataContainer& coeffs,

SphericalFunctionDescriptor& sphere){

// local maxima index list

std::list<int> localMaxima;

// index list of the edges within the Delauney triangulation

std::list<std::pair<int,int>> edgeList;

// compute a spherical Delauney triangulation on the sampling sphere

delauney(sphere, edgeList);

// sample the spherical function f at the sampling points given by sphere

// this is an inverse discrete spherical harmonics transform

auto sphTransform = SphericalHarmonicsTransform(sphere, coeffs.getDataDescriptor());

DataContainer f = sphTransform.inverse(coeffs);

// initialize flag vector for all sampling points

// the flags are set to:

// - -1 if there is at least one neighbor (of all so far considered)

// with a higher function value

// - 0 if the function value equals the function value

// of all so far considered neighbors

// - 1 if not -1 and there is at least one neighbor with a lower

// function value of all so far considered neighbors

std::vector<int> flags(sphere.size(),0);

// process all edges and update the flags

for( auto edge : edgeList ){

// get edge indices

int index1 = edge.first;

int index2 = edge.second;

// obtain function values at the vertices of the edge

float val1 = f[index1];

float val2 = f[index2];

// update flags

if(val1 < val2){

// flag index1 to be no candidate any longer

flags[index1] = -1;

// if index2 is still a candidate, i.e. flags[index2] == 0,

// set the local maximaFlag

if(!flags[index2])

flags[index2] = 1;

}

else if(val1 > val2){

// flag index2 to be no candidate any longer

flags[index2] = -1;

// if index1 is still a candidate, i.e. flags[index1] == 0,

// set the local maximaFlag

if(!flags[index1])

flags[index1] = 1;

}

}

// all remaining vertices flagged with 1 are local maxima

for( int i = 0; i < sphere.size(); ++i)

if(flags[i] > 0)

localMaxima.push_back(sphere[i]);
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// finally sort localMaxima by the corresponding function value

std::sort(localMaxima.begin(), localMaxima.end(), [f](int i1, int i2) {

return f(i1) > f(i2);

});

return localMaxima;

}

Code 19.2 C++ style pseudocode for the maxima detection on spherical functions. A similar method can be found
in [158].

19.1 Experiments and Results

For evaluation we have once again employed the crossed sticks dataset. Furthermore we
have used the reconstruction results of the spherical harmonics AXDT approach discussed in
section 18.3. For the maxima detection we used a sampling scheme with N = 750 directions
un. These directions were computed via a Voronoi tesselation3. A neighborhood relation was
computed using a spherical Delauney triangulation4.

Figure 19.1 Rendering of the surface of the segmentation for the crossed sticks dataset. Additionally, the ROIs used
for the evaluation are illustrated. The stick from bottom left to top right is referred to as ROI 1 while the
stick from bottom right to top left is referred to as ROI 2. The segmented region in the center where the
two wooden sticks touch is referred to as ROI 3.

In fig. 19.2 we present the same two slices used in section 18.3 corresponding to the two
voxels of interest denoted in fig. 18.2. This figure shows the originally reconstructed scattering
profiles in figs. 19.2a and 19.2b. The corresponding Funk-Radon transforms are shown in
figs. 19.2c and 19.2d and the extracted peaks in figs. 19.2e and 19.2f.

Additionally, in order to provide a quantitative evaluation we follow the idea used for evalua-
tion in section 17.1. The µCT image in fig. 18.1c shows that the microstructures align with
the orientation of the wooden sticks. For comparison we have used the smallest half-axis
orientation of the XTT tensor results from section 18.3.

3Matlab [on2] code is available from Burkardt et al. [on6].
4Matlab [on2] code is available from Burkardt et al. [on7].
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First, a segmentation of both wooden sticks was computed by pure thresholding (see fig. 19.1).
From the segmentation we have extracted three ROIs, one ROI per stick and a special ROI
in the center region where the two wooden sticks touch. Again we processed the slices of
the dataset from bottom to top within a certain range. This range is illustrated in fig. 19.1 in
addition to the segmentation and the ROIs. For the slices where the two wooden sticks were
separable, i.e. do not touch, we again computed the centroids of the ROIs 1 and 2. For those
slices for which the wooden sticks were not separable, we linearly interpolated the diameters
as well as the centroids from the neighboring slices above and below. Within this slice region,
ROI 3 was then computed by the intersection of the two circles around the centroids with
a diameter enlarged by 3 voxels. Subtraction of the resulting region from the segmentation
again provides a well-separated segmentation for each stick providing ROIs 1 and 2 in this
region, too.

For each slice within the region marked by the circles in fig. 19.1 we compared the extracted
microstructure orientations to the direction of the corresponding centerline. For the special
case ROI 3, the minimum of the two angles to both centerlines corresponding to ROIs 1 and 2
is chosen. The results for each ROI are presented in fig. 19.3.

The results in fig. 19.2 indicate that the presented method is capable of retrieving the mi-
crostructure orientation even in the situations where multiple directions are present. However,
we also observe that we do not detect two directions for all voxels in fig. 19.2b which visually
indicate the presence of two directions. We assume that this is linked to the fact that similar to
other integral transforms the Funk-Radon transform leads to a certain amount of smoothing.
Consequently, the peaks are not clearly separated in the transformed version even if this is
visually indicated in the original scattering profile.

The quantitative evaluation in fig. 19.3 shows very similar results in case of the single
orientation regions, i.e. ROI 1, 2. Nevertheless, we see a certain variation. For ROI 1 the
presented method provides improved results, while for ROI 2 the XTT method shows higher
counts in the histogram for 1° and 2°. This could be explained if we recall that the proposed
method only considers the directions uk for possible peak candidates while the XTT method
enables a continuous representation of the orientation. A rough approximation based on equal
partition of the sphere and approximation of the Voronoi cells of each direction by a circle
yields an approximate tolerance T of:

T ≈ sin−1




√
4π
K

/
π

︸ ︷︷ ︸
radius


 ≈ 4.2° (19.4)

This approximation gives a rough estimate for the expected variation when this method is
applied. For ROI 3 we find strong improvements using the presented methods, which is shown
by a considerable increase of the counts for low angular variations in fig. 19.3e as well as a
strong shift of the median in the boxplot fig. 19.3f. However, we still find many voxels which
show a orientation very different from what is expected. We assume this to be linked to falsely
undetected multiple directions as discussed above.
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(a) AXDT (b) AXDT

(c) AXDT Funk-Radon (d) AXDT Funk-Radon

(e) AXDT directions (f) AXDT directions

Figure 19.2 Slice visualizations of the results for the crossed sticks dataset. (a), (b) show a visualization of every fifth
scattering profile, (c), (d) the corresponding Funk-Radon transform, and (e), (f) the extracted maxima
(i.e. the extracted microstructure orientation). (a), (b) are from M. Wieczorek, F. Schaff, F. Pfeiffer,
and T. Lasser. “Anisotropic X-Ray Dark-Field Tomography: A Continuous Model and its Discretization”.
English. In: Physical Review Letters 117.15 (Oct. 2016), p. 158101
DOI: 10.1103/PhysRevLett.117.158101
URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.158101, with the permission of APS
(©2016 American Physical Society)
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Figure 19.3 Evaluation of the microstructure orientation extraction algorithm. The results for the XTT approach in
comparison to the proposed AXDT method, (a), (b) ROI 1 and (c), (d) ROI 2, and finally the results for
the center region ROI 3 where the two wooden sticks touch each other in (e), (f). The plots (a), (c), (e)
show the normalized histograms of the angle between the direction of the smallest half-axis and the
reference given by the centerline direction in the same slice. Additionally in (b), (d), (f) we present the
corresponding box plots.
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19.2 Conclusion

In this chapter, we have presented a method to extract microstructure orientations based
on the spherical harmonics AXDT approach. We found that in addition to the advantages
discussed in chapter 18, we benefit from the representation of the scattering profiles using
spherical harmonics as the computation of the Funk-Radon transform is particularly efficient
with this representation. With this approach, we are now able to fully assimilate the former
method of XTT by the novel method of AXDT. Most prominently the capability of extracting
multiple directions as supported by our quantitative evaluation in this chapter is likely to
strongly improve future applications for more complex samples.

Beside the presented method, multiple alternative additional methods to extract peaks on
spherical functions exist. Many of these methods originate from the community of D-MRI.
Particularly with respect to the observed problem of smoothing, Descoteaux et al. [120] have
proposed an interesting approach based on deconvolution. Additionally, other approaches
from this domain might be considered – see e.g. [32, 33, 357]. A review is provided in
[35]. A great starting point for further advancements of AXDT are the methods developed for
D-MRI.

As a final remark we would like to draw the reader’s attention to an effect that is not covered
within the scope of this thesis but might be worth additional investigation as well: edge
scattering. We have focused on fiber-like structures that cause a horn torus type of scattering
profile. Scattering on edges, however, leads to a scattering profile that looks similar to a
dumbbell. Consequently, it could be interesting to compute a peak detection directly on the
scattering profile to detect edges in addition to fibers.

In the following and final chapter we will provide a first biomedical experiment for AXDT,
which illustrates possible fields of application of AXDT in the future.
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20AXDT for Human Cerebellum

The following chapter presents a first preclinical experiment on the applicability of AXDT for
tomographic imaging of the human CNS. Additionally, it will serve as a summary and closure
for this part and is therefore going to conclude this thesis. The combination of the spherical
harmonics based AXDT approach combined with the proposed microstructure orientation
extraction from chapter 19 as well as the methods of this chapter have been presented in
[2].

Connections within the human CNS are related to axons/nerve fibers connecting neurons.
These axons have a diameter on the µm scale (c.f. [191, 369]), which renders them invisible
in standard attenuation CT. Currently, the already established method for clinical application
is D-MRI [54]. The key concept of D-MRI based imaging is that for a nerve fiber, also known
as tract, diffusion predominantly happens in direction of the fiber. Since its introduction this
method led to a great improvement of the understanding of the CNS and related clinical
procedures. We have provided a brief overview on some of these applications in section 1.4.

However, the additional investigation in CT-based methods for the application to imaging
of the CNS is reasonable despite the existence of D-MRI for mainly two reasons. First, CT is
typically superior to MRI in terms of resolution. Second, and even more importantly, X-ray
based imaging provides a fundamentally different imaging modality which might provide
complementary information/insights in the future. For a SAXS based study we refer to [195].
In [311] a phase-contrast µCT study is presented. Further, in [317] a µCT with contrast agent
study is presented. While µCT can resolve these structures, the limitation of the Field Of View
(FOV) renders this method impossible for larger samples including an entire brain. This is
where AXDT could provide the missing link, as this method is capable of resolving structures
far below the voxel resolution, as discussed previously in chapter 18.

We have therefore investigated the application of AXDT in combination with the fiber extraction
as discussed in chapter 19 to a sample from a human brain. This sample was from a human
cerebellum1. In fig. 20.1 (B) (left) we illustrate the location of the cerebellum within the
human brain. Further, a zoom in form of a schematic histology slice showing the white matter
and the contained fiber tracts is displayed fig. 20.1 (B) (center). Finally, fig. 20.1 (B) (right)
shows an illustration of a further zoom to a single fiber (purple) along with the illustration
of diffusion (golden) and AXDT scattering (blue). In order to image this sample we used
the same GBI based system as used throughout the previous experiments (see fig. 20.1 (A)).
Finally, in fig. 20.1 (C) we show the expected outcome2. In addition to the attenuation CT

1The sample is part of the ethics applicant 319/13, which was approved by the ethics commission of the TUM School
of Medicine. Thanks to Dr. M. Willner, Dr. J. Herzen and L. Birnbacher, Dr. med. A. Fingerle, PD Dr. Peter Noël
and Dr. med. C. Braun for organization of the cerebellum and the corresponding ethics applicant.

2The used images are actual reconstructions computed AXDT.
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(left), which is not able to resolve for the fiber tracts, we assume to obtain the fiber tract
directions from the AXDT reconstruction.

5mm

5mm

A) Setup

B) Sample

C) Results

Attenuation Overlay structure orientation 

Euler
cradle

Source

G0 G1 Detector G2

t

l

Scattering

Fiber tractDiffusion

Figure 20.1 Illustration of the GBI setup (A), the sample3(B), and the expected results (C). The sample is of a
human cerebellum whose location is shown in (B) (left). The cerebellum consists (among others) of
fiber tracts located within the white matter (B) (center). Finally, the expected diffusion (golden) and
scattering (blue) for such a fiber (mangenta) is illustrated in (B) (right). From M. Wieczorek, F. Schaff,
C. Jud, D. Pfeiffer, F. Pfeiffer, and T. Lasser. “Brain connectivity exposed by Anisotropic X-ray Dark-field
Tomography”. In: Scientific reports 8.1 (2018), p. 14345
DOI: 10.1038/s41598-018-32023-y
URL: https://www.nature.com/articles/s41598-018-32023-y.
This image is licensed under a Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

3The brain image is created using the Brainder project with kind permission of A. Winkler [on17]. The data is
publicly available under the Creative Commons Attribution-ShareAlike 3.0 License (https://creativecommons.
org/licenses/by-sa/3.0/). For a great histology database we refer to [on9, on10, sample 77].
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A) Acquisition C) Visualization

Scattering Funk-Radon Structure orientationSpherical harmonics AXDT model

B) Reconstruction

5mm

Figure 20.2 Illustration of the whole procedure. Firstly, the sample is imaged from various positions using the Euler
cradle (A)4. The reconstruction (B) uses spherical harmonics to model the scattering in each location,
the reconstruction is performed with the AXDT method and finally the orientations are obtained by the
Funk-Radon based approach discussed in chapter 19. Finally, in (C) a visualization is presented, showing
the obtained directions overlaid on-top of the attenuation CT (C). From M. Wieczorek, F. Schaff, C.
Jud, D. Pfeiffer, F. Pfeiffer, and T. Lasser. “Brain connectivity exposed by Anisotropic X-ray Dark-field
Tomography”. In: Scientific reports 8.1 (2018), p. 14345
DOI: 10.1038/s41598-018-32023-y
URL: https://www.nature.com/articles/s41598-018-32023-y.
This image is licensed under a Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

Figure 20.2 shows an illustration of the entire procedure. Firstly, the acquisition (A), where the
Euler cradle is used to obtain dark-field measurements from various orientations. This step is
followed by the reconstruction (B) using the spherical harmonics based AXDT approach, where
the scattering is modeled using spherical harmonics. Subsequent to the reconstruction of the
scattering profiles the microstructure orientations in each location are extracted by computing
the Funk-Radon transform and a maxima detection on the result (compare chapter 19). Finally,
the attenuation CT result is visualized together with the directions obtained from AXDT (C).

4The brain image is created using the Brainder project with kind permission of A. Winkler [on17]. The data is
publicly available under the Creative Commons Attribution-ShareAlike 3.0 License (https://creativecommons.
org/licenses/by-sa/3.0/).
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20.1 Experiments and Results

The measurements and the reconstructions were performed with the same GBI setup and
parameters as given in chapter 18 and chapter 19 with few exceptions. Thus, we limit the
discussion of the experiments to those parameters that differ from the previous settings.

Firstly, the sample of the human cerebellum was dried with a critical point method. The drying
was performed to fix the probe and increase visibility as the sensitivity of the setup is fixed at
current5.

In total, we have recorded 1404 viewpoints from various orientations providing a well-
sampled unit sphere. The measurements took approximately 11 h. The attenuation CT
was reconstructed from the original absorption measurements, yielding an effective voxel
resolution of isotropic 0.127 mm. Due to the additional computational demands for the AXDT
reconstruction, the raw dark-field measurements were rebinned by a factor of 4 prior to any
processing. This leads to a voxel resolution of 0.508 mm for the AXDT reconstruction.

The reconstruction was performed on the very same machine and with the same parameters as
we have already used in chapters 18 and 19. The AXDT reconstruction took 18 min while the
linear attenuation CT took 85 min due to the higher resolution. While the other parameters
remained unchanged, we have used N = 1500 directions of a Voronoi tesselation for the
directions extraction.

In fig. 20.3 (A), (B) and (C) we show the results for the three central slices of the volume. The
reconstructed fiber orientations extracted from AXDT are overlaid on top of the attenuation
reconstruction and colored according to the given color-wheel. The vectors have been scaled
by the value of the Funk-Radon transformed scattering function in this direction. Figure 20.3
(D) shows a streamline visualization of the fiber tracts of the white matter between three slices
parallel to the main planes.

The white matter regions show strong scattering magnitudes as well as directionality. Closer
to the border of the sample, less of these effects are observed. The streamline visualization
in particular strongly supports the premise that the fiber tracts are aligned within the white
matter, which fits the knowledge e.g. from histology (compare the schematic image in fig. 20.2
(B)).

20.2 Conclusion

In this chapter, we have summarized the developed methods subsumed under the term
Anisotropic X-ray Dark-field Tomography (AXDT). Furthermore, we have presented a first,
preclinical application to tomographic imaging of the human CNS.

5Recent advancements by Birnbacher et al. [67] showed that GBI setups are able to reach sensitivity comparable to
synchrotrons. However, this requires multiple changes to the setup which at current is not applicable to the setup
with the Euler cradle.
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Figure 20.3 Visualization of the results. (A)-(C) show the three center slices of the results. The attenuation CT is
overlaid with the directions obtained from AXDT. (D) shows three slices, each parallel to one of the
main planes, and a fiber tract visualization of the directions within the white matter. The streamline
visualization was created with the ImFusion Suite [on12]. The yellow lines illustrate the intersections of
the slices. The directions are color-coded according to the color-wheel. From M. Wieczorek, F. Schaff,
C. Jud, D. Pfeiffer, F. Pfeiffer, and T. Lasser. “Brain connectivity exposed by Anisotropic X-ray Dark-field
Tomography”. In: Scientific reports 8.1 (2018), p. 14345
DOI: 10.1038/s41598-018-32023-y
URL: https://www.nature.com/articles/s41598-018-32023-y.
This image is licensed under a Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

While due to the lack of a ground truth, the evaluation is limited to interpretation of the
visual results, these results strongly indicate the successful reconstruction of fiber tracts
orientations using AXDT. This is supported by knowledge from histology as well as D-MRI.
This is particularly interesting as this method is capable of resolving these structures despite
being much smaller than the detector resolution. The complementary nature of X-ray imaging
to D-MRI imaging supports the assumption that this imaging modality will be capable to
provide additional information in the future. While the sample for this experiment was dried,
recent advances by Birnbacher et al. [67] render the imaging of raw brain material realistic in
the future.

This concludes this thesis and as the chapter itself already summarizes everything developed
in this part we will omit another summary.
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„We’re all stories, in the end. Just make it a good one,
eh?

— The Doctor
Doctor Who
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BAbstract of a Publication not
discussed in this Thesis

X-ray computed tomography using curvelet sparse
regularization.

Matthias Wieczorek, Jürgen Frikel, Jakob Vogel, Elena Eggl, Felix Kopp, Peter B. Noël,
Franz Pfeiffer, Laurent Demaret, and Tobias Lasser

Purpose. Reconstruction of x-ray computed tomography (CT) data remains a mathematically
challenging problem in medical imaging. Complementing the standard analytical reconstruc-
tion methods, sparse regularization is growing in importance, as it allows inclusion of prior
knowledge. The paper presents a method for sparse regularization based on the curvelet
frame for the application to iterative reconstruction in x-ray computed tomography. Methods.
In this work, the authors present an iterative reconstruction approach based on the alternating
direction method of multipliers using curvelet sparse regularization. Results. Evaluation of
the method is performed on a specifically crafted numerical phantom dataset to highlight the
method’s strengths. Additional evaluation is performed on two real datasets from commercial
scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT
and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet
sparse regularization has characteristic strengths. In particular, it improves the restoration
and resolution of highly directional, high contrast features with smooth contrast variations.
The authors also compare this approach to the popular technique of total variation and to
traditional filtered backprojection. Conclusion. The authors conclude that curvelet sparse
regularization is able to improve reconstruction quality by reducing noise while preserving
highly directional features.
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Phase-Shift 7, 48
Phase-Stepping 11, 115
Photoelectric Absorption 5, 6
Photography 5, 114
Photon 5
Piece-Wise Constant 6, 65–68
Pixel 11, 13, 14, 27, 28, 33, 65, 67, 71–73,

102, 114, 115
Planck’s Constant 5
Point Source 26, 27
Point Spread Function 33
Positron Emission Tomography see

acronym PET
Principal Component Analysis see acronym

PCA
Problem

Discrete – 31, 35, 63
Ill-Posed 35, 36, 41, 63
Interpolation – 32
Inverse – 8, 17, 21, 25, 26, 29, 31–37,

39, 41, 42, 44–46, 55, 63, 64, 69,
71, 76, 79–81, 83, 91, 96, 98, 111,
113, 120

Linear – 31, 33, 63, 76, 79, 80, 83,
98, 111

Least-Squares – 34, 42–44, 63, 64, 85,
87, 102

Linear – 15, 43, 44, 80, 87
Optimization – 35, 40, 43–45, 81, 84,

88, 102
Non-Linear – 63, 88

Proximity – 40, 45, 88
Quadric – 43, 44, 85
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Reconstruction – 35
Tomographic – 17, 25, 75
Total Variation – 102, 103
Well-Posed 34

Projection 15, 32, 48, 49, 63, 99, 104
Interpolation 16, 58, 68
Orthogonal – 32, 34, 65, 66
Radial – 51

Projection Method 31–36, 41, 63, 65, 71,
72

Collocation Method 34, 71–73, 98
Galerkin Method 34, 72

Projection Space 49
Propagation-Based Phase-Contrast Imag-

ing 10

Q-Ball Imaging 16, 120, 121, 123
Quadrature 53

Radiography 3, 4, 14
Radiology 5
Radon

– Space 28, 29
– Transform 25–29, 35, 41, 54, 72, 73,

171, 175
Random Access Memory see acronym

RAM
Random Variable 40
Range 22, 28, 33, 35, 63, 71, 72, 79
Reciprocal Space 48, 49
Reconstruction

Iterative – 42
Joint – 121
Statistical – 40, 121
Superresolution – 63
Tomographic – 8–10, 13, 15–17, 21, 26,

28, 31, 32, 34, 41, 42, 44, 63, 66,
71, 87, 91, 95, 96, 98, 101, 103, 116,
123

Refraction 4, 9–11, 13
Region Of Interest see acronym ROI
Regularization vii, 17, 35–39, 41–43, 63, 64,

91, 98–101, 107, 108, 120, 121
– Parameter 37, 84, 103
– Strategy 36, 39, 63
– Term 37, 38, 45, 81, 84, 88, 99, 103
Sparse – 39, 40, 44, 63
Tikhonov – 38, 45, 63, 64

Total Variation – 38, 63, 99, 102
Residual 37, 79–81, 98, 116, 117
Ridgelets 40
Riesz Potential 28, 29, 35, 42, 175
Runge-Kutta 104

Sampling
– Direction 54, 96, 97, 99, 103, 109,

111, 116, 123, 124, 171, 172
– Scheme 54, 96, 99, 109, 111, 116,

126
Scattering

– Angle 7, 47
– Direction 15, 51, 95–97, 99
– Imaging 47
– Magnitude 15, 99, 134
– Profile 17, 95, 96, 99, 109, 110, 113,

116–120, 123, 124, 126–128, 130,
133

– Strength 15, 17, 51, 96, 98, 99, 109,
111, 116

– Vector 47, 48
Compton – 5, 8
Edge – 130
Elastic – 5–7
Gaussian – 47
Inelastic – 5, 8
Isotropic – 13, 48
Thomson – 5

Segmentation 104, 105, 126, 127, 171,
172

Sensitivity 48, 134
Shearlets 40, 42, 66
Signal-to-Noise Ratio see acronym SNR
Single-Photon Emission Computed Tomo-

graphy see acronym SPECT
Singular Value Decomposition see acronym

SVD
Sinogram 25, 28, 29, 41
Small Angle X-ray Scattering see acronym

SAXS
Software Framework 17, 21, 31, 36, 44–46,

63, 66, 71, 80, 91
Spacing 67
Sparse 39, 40
Spectroscopic Dark-Field Imaging 49
Spherical

– Coordinates 52
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– Function 16, 51–55, 66, 116, 123, 126,
130

– Harmonics 10, 17, 52, 54, 109, 112,
113, 115–120, 123, 126, 130, 131,
133, 175

– Coefficients 112, 113, 120, 123
– Transform 53, 115

Spin-Echo Small-Angle Neutron Scattering
see acronym SESANS

Splitting Method 40, 45
Alternating Direction Method of Multi-

pliers see acronym ADMM
Parallel ProXimal Algorithm see

acronym PPXA
Primal Dual Splitting 44
Split-Bregman 44
Variable Splitting 45

Splitting-Based Method 44, 48, 88
Stability 34–36
Staircasing 39
Standard Template Library see acronym

STL
Stejskal-Tanner Equation 16
Streamline 97, 104, 106, 134, 135
Superposition 15
Support 22, 65

Compact – 22, 26, 32, 65
Surface Integral 53, 100, 110
Symmetric Positive-Definite see acronym

SPD
Synchrotron 4, 10, 134

T-Design 111
Talbot-Effect 11
Talbot-Lau Interferometry 5, 10, 11
Tangent

– Bundle 22, 26
– Space 57, 58, 102, 104

Tensor 15–17, 29, 39, 40, 51, 52, 55, 58, 96,
97, 99–101, 103–107, 116–119, 121,
123, 126

– Fit 16, 98, 99, 101, 107
– Model 16, 52, 101, 108, 109, 113,

121
Topological Space 57
Total Variation see acronym TV

Anisotropic – 39
Isotropic – 38

Transpose 22
Triangulation 66, 72, 123, 124

Delauney – 54, 116, 123, 126
Truncation Degree 112, 115

Uniqueness 35, 36, 39
Unit Sphere 96, 110, 115, 123, 134

Vandermonde Matrix 32
Variational Method 37, 38, 40, 43, 44, 55,

81, 83, 84
Visibility 12, 105, 134
Volume Rendering see acronym VR
Voronoi

– Cell 54, 127
– Diagram 54
– Tesselation 54, 111, 116, 126, 134

Voxel 65, 71, 72, 97, 98, 100, 103, 105, 109,
114–120, 123, 126, 127, 131, 134

Wave-Vector 7
Wavelength 3, 5, 11, 47, 49
Wavelet 39, 42
White Matter 131, 132, 134, 135

X-ray Vector Radiography see acronym
XVR

X-rays vii, 3–9, 11, 16, 17, 25–27, 39, 40, 47,
48, 114, 118, 131, 171, 181, 187,
190

– Absorption 4, 8, 9, see also absorp-
tion

– Attenuation 51, see also attenuation
– Beam 4–8, 10, 13, 25, 51, 96, 97, 110,

111, 113
– Dark-Field Imaging 13, 47, see also

dark-field imaging
– Detector 11, see also detector
– Imaging 4, 5, 8, 10, 11, 17, 25, 29, 98,

135
– Interferometer 4
– Measurement 9, see also measure-

ment
– Photon 5–8, see also photon
– Projection 27, 28, 48, 49, 71, 102,

114, 115, see also projection
– Radiograph 4, see also radiography
– Scanning Microscopy 10
– Source 5, 26
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– Tomography 24, see also Computed
Tomography

– Transform 25–27, 31, 49, 175

– Tensor Tomography see acronym
XTT
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Acronyms

µCT Micro-CT 14, 15, 114, 126, 131, 172, 180

1D one-dimensional 39

2D two-dimensional 8, 9, 25–28, 39, 41, 42, 66, 104,
106, 171, 172

3D three-dimensional 15, 25–27, 49, 51, 54, 71, 104,
106, 109, 113, 120, 171, 175

ADMM Alternating Direction Method of Multipliers 45, 88,
91, 182

ART Algebraic Reconstruction Technique 41, 42, 87, 179

AXDT Anisotropic X-ray Dark-field Tomography vii, viii, x,
xii, 5, 17, 21, 25, 41, 42, 44, 49–51, 75, 91, 93, 95,
98, 100, 109, 110, 112, 113, 116–121, 123, 126,
129–135, 172, 175, 177

CG Method of Conjugate Gradients 43, 44, 85, 98, 115,
172, 179

CNS Central Nervous System viii, 16, 17, 131, 134, 177

CPU Central Processing Unit 66, 115, 177

CT Computed Tomography vii, xii, 4, 5, 8–10, 14–17,
25, 27, 32, 33, 39–42, 45, 57, 72, 98, 110–113, 115,
131, 133–135, 171, 172, 177, 183

CUDA Compute Unified Device Architecture 66, 177

D-MRI Diffusion Magnetic Resonance Imaging 16, 17, 130,
131, 135, 178

DEI Diffraction-Enhanced Imaging 10, 178
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DTI Diffusion Tensor Imaging 16, 51, 58, 97, 101, 104,
107, 178

DWI Diffusion Weighted Image 101, 178

FBP Filtered Back-Projection 28, 29, 41, 42, 87, 177, 178

FDK Feldkamp, Davis and Kress algorithm 177

FFT Fast (discrete) Fourier Transform 41, 53, 178

FISTA Fast Iterative Soft-Thresholding Algorithm 44, 88,
179

FOV Field Of View 131, 178

GBI Grating Based Imaging 5, 10–12, 48, 131, 132, 134,
171, 179

GFA Generalized Fractional Anisotropy 121, 178

GPU Graphics Processing Unit 66, 115, 179

ISTA Iterative Soft-Thresholding Algorithm 44, 88, 179

MPI Magnetic Particle Imaging 16, 179

MRI Magnetic Resonance Imaging 16, 131, 178, 179, 185

NDT Non-Destructive Testing 4, 180

NLCG Non-Linear CG 88, 179

OpenCL Open Computing Language 66, 103, 115, 180

OpenGL Open Graphics Library 66, 180

OS Ordered Subsets 44, 179

PCA Principal Component Analysis 97, 98, 116, 180

PET Positron Emission Tomography 16, 180

PPXA Parallel ProXimal Algorithm 88, 182
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RAM Random Access Memory 66, 115, 181

ROI Region Of Interest 104–107, 114, 126, 127, 129,
172, 181

SART Simultaneous Algebraic Reconstruction Technique
15, 42, 87, 96, 98, 179

SAXS Small Angle X-ray Scattering vii, 7, 8, 10, 13, 17,
47–50, 100, 120, 131, 171, 181

SESANS Spin-Echo Small-Angle Neutron Scattering 15, 47,
118, 182

SIRT Simultaneous Iterative Reconstruction Technique 42,
87, 98, 103, 179

SNR Signal-to-Noise Ratio 107, 181

SPD Symmetric Positive-Definite 43, 44, 51, 58, 182

SPECT Single-Photon Emission Computed Tomography 16,
72, 181

SQS Separable Quadratic Surrogate 43, 87, 179

STL Standard Template Library 66, 182

SVD Singular Value Decomposition 87, 181

TV Total Variation 38–40, 102, 107, 182

VR Volume Rendering 97, 114, 115, 172, 182

XTT X-ray Tensor Tomography vii–x, xii, 5, 15–17, 49, 51,
52, 91, 95–98, 100, 101, 106–113, 116–121, 123,
126, 127, 129, 130, 171, 172, 175

XVR X-ray Vector Radiography 14, 47, 182
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Symbols

Ck (Ω) Banach space of k-times continuously derivable func-
tions on X equipped with the norm ‖·‖Ck(Ω) =
∑k
n=0 supx∈X

∣∣f (n)(x)
∣∣. We write C (Ω) for C0 (Ω).

22, 32,
34, 38,
40, 189

Ckc (Ω) :=
{
f ∈ Ck (Ω) : supp (f) is compact

}
. 22

Lpw (Ω) Banach space (1 ≤ p < ∞) of p-integrable func-
tions equipped with the norm ‖ · ‖Lp

w(Ω). We use the
standard short notation Lp (Ω) = Lp1 (Ω).

23, 24,
28, 35,
37–39,
51–54,
65, 67,
112, 189

XY := {f : X → Y }, the space of all mappings from X

to Y .
22, 190

`pw (Ω) Banach space (1 ≤ p < ∞) of sequences equipped
with the norm ‖ · ‖`p

w(Ω). We use the standard short
notation `p (Ω) = `p1 (Ω).

23, 34,
35, 37–
41, 53,
81, 102–
104,
112,
120, 189

χA Indicator function. For X ⊂ A we define the map-
ping as χA : x → {0, 1} with χA = 1, ∀x ∈ A and
χA = 0,∀x /∈ A.

22, 65

〈x, y〉X The inner product in a Hilbert space X of the two
elements x, y ∈ X.

21–23,
28, 32,
34, 53,
54, 65,
96, 98,
112, 115

FNf Fourier transform of f (N -dimentional). We omit the
subscript if the dimension of f is clearly stated. The
inverse transform is denoted as F−1

N .

7, 24,
27, 28,
47

189



L (X,Y ) := {f ∈ XY : f linear and bound}. 22

S(Rn) space of rapidly decreasing functions. 22, 24,
27–29

Pf Funk-Radon transform of f . 54, 123,
124

Rf Radon transform of f . 25–29,
41, 72,
73

Xf X-ray transform of f . 25–27,
48, 50

diag (v) The diagonal matrix D ∈ RN×N with the diagonal
v ∈ RN .

44, 98,
111, 113

dom(f) For a function f : X → Y we refer to X as domain,
i.e. dom(f) := X.

22, 35,
41, 190

ran(f) For a function f : X → Y we refer to Y as range, i.e.
ran(f) := Y .

22, 35–
37, 41,
190

Is Riesz potential of order s. 28, 29,
41, 42

σn Standard Lebesque measure on the sphere Sn and
the short notation s := σ1,σ := σ2, i.e

∫
S2 σ(u) = 4π.

28, 29,
53, 54,
110–
113

{ek}K−1
k=0 Standard basis for the Euclidean vector-space RK . 9, 21

Pos3 The space of symmetric rank-2 tensors (positive sym-
metric matrices) which is a subset of R3×3. Some-
times this space is also denoted as Sym+

3 .

16, 22,
51, 52,
55, 57,
58, 96,
99, 101–
104, 107

Sym3 The space of symmetric matrices which is a subset
of R3×3.

22, 190

f ∗ g Convolution of f and g. 7, 23,
24, 47
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