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Abstract 

Optoacoustic tomography can generate high-resolution optical images of biological samples in 

vivo at depths of several millimeters to centimeters. The technique is based on illuminating the 

sample with nanosecond laser pulses, detecting the resulting acoustic signals and converting 

these signals into an image using reconstruction algorithms. A good reconstruction algorithm can 

allow accurate visualization of complex anatomical features, and also facilitate further 

multispectral analysis. This dissertation describes various model-based reconstruction algorithms 

for optoacoustic tomography. 

Model-based reconstruction is generally more accurate than reconstruction based on analytical 

inversion, but it requires more computational and memory resources. Here, a much faster 

optoacoustic reconstruction method is proposed, in which the model matrix and the optoacoustic 

signal are transformed into the wavelet domain. Pseudoinverse of model matrices can be 

calculated on a much smaller scale, and then multiplied with the corresponding signals to form 

the final optoacoustic image. Using this methodology over an order of magnitude reduction in 

inversion time is demonstrated for simulated and experimental data.  

Second, sparsity-based reconstruction is developed for a two-dimensional optoacoustic imaging 

system. Specifically, a cost function is used that includes the L1 norm of the image in sparse 

representation along with a total variation term. The minimization process is implemented using 

gradient descent with backtracking line search. This algorithm was evaluated with simulated and 

experimental datasets, and found that proposed scheme leads to sharper reconstructed images 

with weaker streak artifacts than both conventional L2-norm regularized reconstruction and 

back-projection reconstruction.  

Next, the sparsity-based reconstruction is adapted to three-dimensional geometries, thereby 

exploiting more of the potential of tomography because the ultrasound waves generated after 
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sample illumination propagate in all directions. To accelerate the reconstruction, Barzilai-

Borwein line search is used to analytically determine the step size during gradient descent 

optimization. The proposed method offers 4-fold faster reconstruction than the previously 

reported L1-norm regularized reconstruction based on gradient descent with backtracking line 

search. The new algorithm also provides higher-quality images with fewer artifacts than L2-

norm regularized reconstruction or back-projection reconstruction. 

Finally, this dissertation develops frequency domain methods for reconstructing optoacoustic 

images when the sample is illuminated with an amplitude-modulated continuous-wave laser. 

Formulas are found to guide the minimum demand of the projections and frequencies. The 

numerical method can be used to guide the design of experimental set-ups for optoacoustic 

tomography in the frequency domain, as well as the selection of measurement parameters.  

The methods developed in this dissertation enable robust processing and inversion during 

optoacoustic reconstructions, which may enhance the performance of optoacoustic imaging and 

tomography in preclinical and clinical environments, as well as open up avenues for further 

theoretical and experimental developments. 
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1 Introduction 

1.1 Optoacoustic imaging 

Optoacoustic imaging, also termed photoacoustic imaging, is a noninvasive imaging technique 

that holds great promise for clinical or preclinical applications [1]–[5]. Optoacoustic imaging is a 

hybrid imaging modality that is capable of visualizing optical contrast at imaging depths and 

resolutions often found in medical ultrasonography [6]. Optoacoustic imaging can be regarded as 

an ultrasound modality that exploits optical-absorption image contrast, which can give deeper 

information than pure optical imaging [1]. With this advantage, numerous fundamental studies of 

optoacoustic imaging on theory, instruments and applications have been investigated in recent 

years [1]–[5]. 

A typical optoacoustic imaging system employs a laser to illuminate the object, and the acoustic 

signals generated by the optoacoustic effect then propagate from the inside of the object and can 

be measured by ultrasonic transducers outside of the object [7]–[9]. The optoacoustic image of 

the object corresponds to the optical energy deposition (light absorption) in the object [10]. 

Optoacoustic imaging can also be classified into two categories: optoacoustic 

microscopy/mesoscopy [11], [12] and optoacoustic tomography [13], [14]. Optoacoustic 

microscopy usually employs mechanical raster scanning of a high-frequency focused transducer 

(in the case of acoustic resolution optoacoustic microscopy) or a focused laser beam (in the case 

of optical resolution optoacoustic microscopy) in order to acquire the acoustic signals. In these 

cases, the optoacoustic image is obtained from the set of A-lines and requires no reconstruction 

algorithms. Optoacoustic mesoscopic imaging also is performed in similar lines, just that the 

ultrasound will be operating at frequency range of tens of MHz. Optoacoustic tomography, in 

contrast, generally illuminates the object over a broad range, and the acoustic signals are 
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acquired by mechanically scanning with a low-frequency transducer or an array of detectors. 

Then this acoustic data is provided to a reconstruction algorithm to generate the optoacoustic 

image. There are three commonly used detection geometries in optoacoustic tomography: 

spherical, cylindrical and planar. The cylindrical and spherical detection geometries require 

collecting all the measurements around the target, while the planar detection geometry allows 

more flexibility about where measurements can be acquired.  

Optoacoustic imaging can be presented using the time domain methodology [15] or frequency 

domain methodology [16], [17] depending on the laser employed. The classic time domain 

optoacoustic imaging methodology employs a short-pulse (nanosecond range), high peak-power 

laser for illumination, while frequency domain optoacoustic imaging uses a periodic, intensity-

modulated, continuous-wave (CW) laser. 

1.2 Reconstructions in optoacoustic imaging 

Most optoacoustic tomography reconstruction algorithms are based only on the acoustic wave 

equation, modeling the propagation of optoacoustically generated acoustic waves [10], [18]. The 

“forward problem” in optoacoustic tomography refers to the process in which light energy 

deposited at optical absorbers is converted to ultrasonic pressure waves. Image reconstruction in 

optoacoustic tomography can then be considered the “inverse” of the forward problem: 

calculating the optoacoustic images from the recorded pressure signals [19]–[25].  

For an optoacoustic tomography system with specific transducer and detection trajectory, image 

reconstruction can be performed either analytically or numerically. Various analytic optoacoustic 

tomography reconstruction algorithms such as back-projection methods and time reversal 

methods have been developed for optoacoustic tomography under the assumption of point-like 

ultrasound transducers [19]–[21], [23]. This may lead to reconstruction inaccuracies and artifacts, 

e.g. in systems with large-area acoustic detectors [26]–[29]. In addition, analytic optoacoustic 

tomography reconstruction algorithms have a closed-form solution and are numerically stable 

only when the measurement aperture encloses the entire object, which is not feasible in many 

clinical or pre-clinical optoacoustic tomography applications with limited-view geometries [30], 

[31]. Numerical model-based optoacoustic tomography reconstruction algorithms represent a 
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potent alternative to the analytic approaches because they can more generally account for 

system- and geometry-related parameters [20], [24], [26] , [29]–[35]. Optoacoustic tomography 

reconstructions based on models in the time domain [24], [27], [32]–[35] or frequency domain 

[36], [37] can model any additional physical effects, such as acoustic heterogeneities and 

attenuation, light propagation or geometric detector properties. Despite the accurate performance 

achieved by model-based reconstructions algorithms, one of the main disadvantages is their 

computational complexity and need for computer memory, especially in the case of finite-size 

detectors or with more pixels [26]. Normally a more complex model leads to a more accurate 

reconstruction, but a large optoacoustic tomography model matrix will lead to excessive 

reconstruction times. 

1.3 Goals and objectives 

The goals of this dissertation are to develop and implement various fast and accurate model-

based reconstruction methods for different optoacoustic tomography (OAT) systems: a 2D OAT 

system with a finite-size single element transducer; a 2D OAT system with cylindrically focused 

curved arrays; and a 3D OAT system with spherically focused, curved arrays. Accurate image 

reconstruction improves not only the visualization of anatomical results, but it also facilitates 

subsequent multispectral analysis for oxygen saturation, molecular targeting, and other 

applications. A key consideration in developing these reconstruction methods is the way to build 

the optoacoustic forward model matrix, and the manner to achieve fast and accurate results with 

acoustic inversion. This dissertation also examines the relationship among spatial resolution, 

frequency and projection number in order to guide the set-up of a frequency domain OAT; this 

approach can also be applied to time domain OAT.  

1.4 Outline of the Thesis 

The dissertation is structured as follows. Chapter 2 provides the reader with theoretical 

background on optoacoustic imaging in the time and frequency domains; key concepts include 

optoacoustic signal generation, the optoacoustic wave equation, the forward solution of the 

optoacoustic wave equation and the forward matrix. Common inversion methods such as 

transacted singular value decomposition and Tikhonov regularization are also introduced. In 
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chapter 3, a framework of model-based reconstruction in the wavelet packet domain is 

demonstrated for a 2D OAT system with a single-element, finite-size detector. The wavelet 

packet reconstruction method is evaluated with simulations and experiments and provides a 

significant reduction in reconstruction time compared to a least-squares-based inversion method. 

Chapter 4 introduces a sparsity-based acoustic inversion for cross-sectional optoacoustic imaging 

on a multispectral optoacoustic tomography (MSOT) system with an ultrasound detector array. 

The proposed sparsity-based reconstruction method shows good performance in both the full- 

and limited-view geometries. Chapter 5 further develops the sparsity-based reconstruction for 

adaptation to a 3D OAT system. Chapter 6 shows how the frequency affects reconstructions in 

the time and frequency domains, which can help for measurements selection without 

compromising the image quality. The thesis ends with chapter 7, in which the results of the entire 

thesis are summarized and synthesized, leading into an outlook on open questions and next 

research steps in the field of optoacoustic image reconstruction. 

 



 

5 

 

 

2 Theoretical Background 

This chapter first presents a short introduction to the fundamental principles of optoacoustic 

imaging. Furthermore, key concepts about optoacoustic signal generation, the forward solution 

and modeling the optoacoustic effect are given in the time domain (section 2.2) and frequency 

domain (section 2.3). The concepts in this chapter provide a theoretical background for 

understanding the technical details, simulations, experiments and discussions in subsequent 

chapters.  

2.1 Optoacoustic principles 

 

Figure 2.1 A sketch of an optoacoustic imaging geometry. 

A schematic of an optoacoustic imaging setup is shown in Figure 2.1. The object to be imaged is 

irradiated with a laser at visible to near-infrared wavelengths (650-1000 nm is the near-infrared 

window for biological tissue), and the thermoacoustic effect results in transient localized heating 

followed by a pressure wavefield. The pressure wavefield propagates out of the object and is 

measured by ultrasonic transducers located at different positions outside the object. Afterwards, 
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image reconstruction algorithms can recover the initial distribution of optical energy deposited 

within the object, which is dependent on the illumination and the optical properties of the object. 

Two types of laser illumination can be used to generate optoacoustic signals: short (nanosecond) 

optical pulses with high peak power, or modulated CW lasers with relatively low mean power 

and high modulation frequency. These two categories will be described in detail in the next two 

sections.  

2.2 Time domain optoacoustic imaging 

2.2.1 Optoacoustic signal generation and wave equation in time domain 

In order to achieve good spatial resolution for time domain optoacoustic imaging, two 

confinements should be fulfilled [3], [5]. One confinement is thermal confinement, which means 

the laser pulse width p  needs to be much shorter than thermal confinement th
  in order to avoid 

thermal diffusion:  

 

2

4

c
p th

T

d

D
    ,  (2.1) 

where c
d  is the characteristic dimension (targeted spatial resolution) and T

D  is the thermal 

diffusivity (a typical value for most soft tissues is 
5 21.4 10 /mm s ) [39]. With a 10-

nanosecond pulse laser, the best spatial resolution guided by thermal confinement is ~0.06 m , 

which is much less than the spatial resolution of optoacoustic imaging. Another confinement is 

acoustic stress confinement, which means that optoacoustic propagation of the absorber during 

laser illumination is negligible: 

 c
p s

d

c
    , (2.2) 

where c  is the speed of sound. With a 10-nanosecond pulse laser and c  of 1500 /m s  (typical 

for biological tissue) [40], the best spatial resolution guided by acoustic stress confinement is 

~15 m .  
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Under these two confinements, the initially induced in optoacoustic wave pressure  0
p r  within 

the tissue is [5]  

          2

0 p a
p c C H    r / r r r   (2.3) 

where   is the thermal expansion coefficient ( 1K ), pC  is the heat capacity ( / (kg K)J • ),r  is 

the position,  a
 r  is the optical absorption coefficient (

1cm
),   r  is the optical fluence 

(
2/J cm ),   is the Grueneisen parameter, which equals 2

p
c C /  and represents the amount of 

temperature converted to optoacoustic pressure and  H r  is the absorbed optical energy, which 

equals    a
 r r . 

Optoacoustic wave generation and propagation in an acoustically homogeneous medium is 

described by the following optoacoustic equation [41] 

 
2

2 2

2

( , ) ( , )
- ( , )

p t H t
c p t

t t

 
  

 

r r
r    (2.4) 

where t  is time, r  is the position in 3D space, ( , )p tr  is the generated pressure,   is the 

Grueneisen parameter, and ( , )H tr  is the amount of energy absorbed in the tissue per unit 

volume and per unit time. If ( , )H tr  can be separated into spatial and temporal components, then 

Eq. (2.4) can be simplified as: 

 

2
2 2

2

( )( , )
- ( , ) ( ) t

r

H tp t
c p t H

t t


  

 

r
r r   (2.5) 

where ( )rH r  and ( )tH t  are, respectively, the energy per unit volume and energy per unit time. 

When the laser pulse is short enough to satisfy the acoustic stress confinement, ( )tH t  can be 

approximated by a delta function. 
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2.2.2 Forward solution of optoacoustic wave equation in time domain 

The optoacoustic equation in Eq. (2.5) can be solved using Green’s function [42], which 

describes the profile of generated optoacoustic signal, when spatial and temporal impulse source 

is used: 

      
2

2

2 2

1
G t t t t

c t
 

 
         

 
r, ;r , r r ,  (2.6) 

where r  is the source location and t  is the time. Green’s function can be solved as  

  
 

4

t t c
G t t





   
  



r r /
r, ;r ,

r r
.  (2.7) 

With the Green’s function in Eq. (2.7) and the optoacoustic wave equation in Eq. (2.4), we can 

obtain the pressure due to an arbitrary source in an infinite medium: 

 /2

( )
( , ) ( )

4

r
t t c

H
p t H t d

c t
 

 


  r r

r
r r

r r
  (2.8) 

A widely used optoacoustic time domain inversion formula is the universal back-projection (BP) 

algorithm [19], which has been analytically inverted from Eq. (2.8) for different detection 

geometries. The approximate analytical solution is given by [19] 

    
 

2 2
r t c

p t
H r p t t dr

t  

 
  

  
 '

'

' '

r r /

r ,
r ,   (2.9) 

The back-projection algorithm is successful in detecting the position and shape of absorbing 

objects, even though Eq. (2.9) is not the exact solution [24]. However, this algorithm has several 

drawbacks. First,    t p t t p t ' '
r , / r ,  exists in most cases (far-field acoustic detection) and 

the derivative part implies a ramp filter, which will enhance the boundaries and impair the low-

frequency information in back-projection reconstruction. Second, negative values without 

physical meaning often appear in the reconstruction. Third, the algorithm cannot take detector 
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response into account. This highlights the need for model-based reconstructions for quantitative 

image reconstruction, which will be discussed in the following sections. 

2.2.3 Time domain 2D forward modeling 

The 2D time domain forward modeling used in this dissertation is based on discretization of Eq. 

(2.8) as described previously [35]. First, Eq. (2.8) is approximated as 

  
   

2

I t t I t t
p t

t

  



r,   (2.10) 

where  

   r

t cl

H
I t dl

 




 r r' /

(r )

r r
  (2.11) 

Eq. (2.11) is discretized by approximating the curve at a distance of l ct  from the transducer’s 

position and with N  straight lines (Figure 2.2(a)). This set of straight lines covers an angle of 

   2arcsin 2 1 / 2n xy R    , where n  is the pixel number in the x  and y  directions, 

xy  is the pixel size and R  is the distance from the transducer to the center of the region of 

interest (ROI).  

The integral  I t  is then calculated from N  discrete points of the curve l  with positions l
r  

(solid dots in Figure 2.2(a)) as 

  1, , 1

1

( )1
( )

2

N
l

l l l l

l l

H
I t d d 




 




r

r r
  (2.12) 

where 0,1 , 1 0N Nd d   . ( )lH r  is estimated by interpolating ( )H r  at pixel positions in the ROI. 

Combining Eq. (2.10) and Eq. (2.12), the pressure ( , )i jp tr  measured at position ir  and time jt  

can be expressed as a linear combination of the absorbed energy at pixel position k
r  in the ROI: 
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  ,

1

( , )
nn

i j

i j k k

k

p r t a H r


   (2.13) 

where nn  is the total number of pixels in the ROI. The coefficients 
,i j

ka  can be calculated by 

interpolation methods in Figure 2.2(b). One typical method is bilinear interpolation, in which 

H r( )  is given by 

 1 1 1 1
a a a a a b a a c a a d

H x y x y H x y H x y H x y H                  ( , ) ( )( ) ( ) ( ) .   (2.14) 

where a a
x x x xy     ( ) / , a a a

y y y xy     ( ) /  and k k k
H H x y  ( , ) . 

Another typical method is right-angle triangles, in which H r( )  is given by 

 
1

1

a a a c a a b a a

a a a c a a d a a

x H y H x y H if x y
H x y

y H x H y x H if x y

             
   

             

( ) ( )
( , )

( ) ( )
  (2.15) 

 

Figure 2.2 Discretization of the 2D forward model. (a) 2D discretization of the Poisson type 

integral. The curve l  is approximated by N  points, indicated as solid dot points. (b) 

Interpolation of points along the discretized curve based on neighboring points on the grid. 
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When the pressure in Eq. (2.13) is computed for P  transducer positions and for I  time points, a 

linear equation can be formulated to express the transform from the image z  (optical absorption) 

to the acoustic signals p  by a model matrix 2D
M , which represents a 2D OAT system  

 2D
p M z  (2.16) 

2.2.4 Time domain 3D forward modeling 

The 3D time domain forward modeling used in this dissertation is based on discretization of Eq. 

(2.8) as described previously [34]. Similar to the 2D modeling in section 2.2.3, Eq. (2.8) is also 

approximated as 

  
   

2

I t t I t t
p t

t

  




r, r,
r,   (2.17) 

where  

   r

t c

H
I t dS

 




 r r' /

(r )
r,

r r
 . (2.18) 

Considering a spherical coordinate system centered at the transducer position r , the surface 

element dS  at a distance ct  from the transducer can be defined as 

 
2

dS d d    r r sin   (2.19) 

where   is the polar angle, and   is the azimuthal angle. By combining Eq. (2.19) and Eq. 

(2.18), we get 

   r
I t H d d       r, (r ) r r sin  . (2.20) 

Eq. (2.20) can then be discretized with equal spacing of   and   on the surface S   at a distance 

of 
l
r : 

   l l l

l

I t H      r, (r ) r r sin   (2.21) 
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    can be discarded since it is a constant. 

The solid spheres mesh in Figure 2.3(a) show a discrete reconstruction ROI located at positions 

k
r , covered by a grid of xy xy zn n n   with pixel size xy xy z   . l

H (r )  in Eq. (2.21) is 

discretized as a mesh of hollow spheres in Figure 2.3(a), and the value of l
H (r )  can be 

expressed as a function of the values at the eight neighboring points in the ROI mesh with 

trilinear interpolation as shown in Figure 2.3(b): 

 

( ) (1 )(1 )(1 ) (1 )(1 )

(1 ) (1 ) (1 )(1 )

(1 ) (1 )

(1 )

l a a a a a a a b

a a a c a a a e

a a a f a a a g

a a a d a a a h

H x y z H x y z H

x y z H x y z H

x y z H x y z H

x y z H x y z H

            

            

           

           

r

  (2.22) 

where a a
x x x xy     ( ) / , a a

y y y xy     ( ) / , a a
z z z z     ( ) / and k k k k

H H x y z   ( , , ) . 

Combining Eq. (2.17), Eq. (2.21) and Eq. (2.22), the pressure at the position ir  and the time 

point jt  can be expressed as a linear combination of the value at the points of the grid, i.e. 

  ,

1

( , )
N

i j

i j k k

k

p t a H


r r  . (2.23) 

This corresponds to the discrete forward model that establishes the pressure as a function of the 

absorbed energy in the 3D discrete ROI. The acoustic signal p  for different transducer positions 

and time points can be computed by multiplying a 3D OAT system model matrix 3D
M  with a 

vector z representing the optical absorption grid, which is expressed in a matrix form similar to 

Eq. (2.16) 

 3Dp M z   (2.24) 
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Figure 2.3 Discretization of the 3D forward model. (a) 3D discretization of the Poisson type 

integral. The ROI mesh is shown as solid spheres; the discretized integral mesh, as hollow 

spheres. (b) Trilinear interpolation with the eight neighboring points. 

2.2.5 Finite-aperture detector modeling/Spatial impulse response 

The signal detected by a finite-aperture detector with center position cx  is obtained by 

integrating the acoustic signal of a point detector ( , )p tr  over the surface of the detector [43] 

 
det ( , ) ( , ) ( , )c cp x t p t D x dr  r r   (2.25) 

where  

 
1

( , )
0

c

detector area
D x

else


 


r
r   (2.26) 

There are two ways to model the shape of the transducer. The first approach approximates the 

surface of the transducer by a set of points Sx S , so that the integral in Eq. (2.25) can be 

expressed as the summation of Sx  

 det ( , ) ( , )
S

c S

x S

p x t p x t


    (2.27) 
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The pressure ( , )Sp x t  for a point detector has been studied in Eq. (2.16), and assuming linearity, 

the model matrix sumM , which takes into account the effects of the finite-size transducer, can 

also be summed with the model matrices of individual points Sx S : 

 
S

S

sum x

x S

 M M  (2.28) 

such that the signal acquired by the transducer for a set of time points and transducer locations 

can be expressed as 

 det sump M z   (2.29) 

The accuracy of this procedure depends on the number of points used to discretize the detector 

shape, and this method has the flexibility to model any detector shape. Its only drawback is that 

it is slow for large detectors. 

An alternative way to calculate det ( , )cp x t  is the convolution the spatial impulse response (SIR) 

of a finite length line transducer with the optoacoustic wave ( , )p tr  in Eq. (2.8) [27]: 

 det /2

( , ) ( )
( , )

4

c r
c t c

D x H
p x t dr

c t
 

 


  r r

r r

r r
 (2.30) 

where c  is the speed of sound in the medium,   is the Grueneisen parameter, ( )rH r  is the 

amount of energy absorbed in the tissue per unit volume, and * denotes the spatial convolution 

operator. The discretization of Eq. (2.30) can be expressed as the following linear relation:  

 det detp M z   (2.31) 

In the case of a long line transducer where a lot of points would be needed to approximate the 

line for calculating the sumM , then model matrix detM  is preferable since it can be calculated 

much quicker.
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2.3 Frequency domain optoacoustic imaging 

2.3.1 Optoacoustic signal generation and wave equation in frequency domain 

Analogous to the situation in time domain optoacoustic imaging, thermal and acoustic stress 

confinement in frequency domain optoacoustic imaging are governed by two characteristic 

frequencies, th  and s , which are the inverses of the corresponding characteristic times th  and 

s  in Eqs. (2.1) and (2.2): 

 
2

41 T
t

th c

D

d
 


    (2.32)

 
1

s
s c

c

d
 


    (2.33) 

where c
d  is the characteristic dimension (targeted spatial resolution) and T

D  is the thermal 

diffusivity and c  is the speed of sound. 

Under conditions of heat and acoustic stress confinement, the generation and propagation of 

frequency domain acoustic waves can be described by the following Helmholtz equation [37] 

      2 2

p

i
p k p H

C


     r, r, r,   (2.34) 

where r  is the position,   is the angular frequency,  p r,  is the Fourier transform of the 

acoustic pressure wave, /k c  is the acoustic wave number, 1i   ,   is the thermal 

expansion coefficient, p
C  is the specific heat capacity, and  H r,  is the Fourier transform of 

the absorbing source.  

2.3.2 Forward solution of optoacoustic wave equation in frequency domain 

Green’s function for a source in an unbounded medium has the solution [16]  

    
4

ik

p

i e
p H dr

C


 





  


r r

r, r ,
r r

  (2.35) 
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where r  is the source location.  

2.3.3 Frequency domain 2D forward modeling 

A schematic of frequency domain optoacoustic tomography is shown in Figure 2.4. The 

transducer scans 360° around the sample with P  projections located at dr . The sample area is 

discretized as a square grid with pixel size d  and N  pixel nodes. Assuming an infinite and 

homogeneous medium, the pressure wave located at position r  is given by the Green’s function 

solution in Eq. (2.35). Accordingly, the pressure ( , )dp r  at position dr  and modulation 

frequency   can be given by the linear expression 

 ( ) ( ) p M z   (2.36) 

where ( )p  is a complex column vector denoting the measured complex signals (amplitude and 

phase of the pressure wave) at P  projection positions, and z  is a real vector representing the 

unknown absorption. ( )M  is a complex matrix of dimensions P N : 

 

11 1

1

( ) a

n

i

P PN

m m

iAe

m m



 
 

   
 
 

M   (2.37) 

where  

 
( ( ( ) ( ) / ))

( ) ( )

di n p c

pn

d

e
m

n p









r r

r r
  (2.38) 

and where ( )d pr  denotes the p th detector position, ( )nr  is the position of voxel n  and A  is a 

constant.
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Figure 2.4 Schematic diagram of frequency domain optoacoustic tomography. The object is 

illuminated using an amplitude-modulated CW laser at a set of frequencies  . The absorbing 

object located at r  emits acoustic waves, which are detected by the transducer at dr . The 

detected acoustic signal is then converted to phase and amplitude information using narrowband 

detection.  

2.4 Traditional inversion methods 

2.4.1 Least-squares inversion 

The inversion of Eq. (2.16), Eq. (2.24), Eq. (2.31) and Eq. (2.36) can be seen as a least-squares 

minimization problem. Here M  ( P N ) is used as a general model matrix to represent the 

optoacoustic system and the optoacoustic images can be generated by solving the least-squares 

problem as follows:  

 
2

2
arg min 

z

p Mz  . (2.39) 

A common iterative algorithm to solve the least-squares minimization problem is Least squares 

QR (LSQR), which is described in Algorithm 2.1. 
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Algorithm 2.1 LSQR implementation 

 

2.4.2 L2-norm/Tikhonov regularized least-squares inversion 

A L2-norm/Tikhonov regularization term can be included in the least-squares minimization in Eq. 

(2.39) in order to solve the ill-posed problems [44] 

  2 2

2 2
arg min  

z

p Mz Lz   (2.40) 

where 0   is the regularization parameter and L  is the Tikhonov regularization matrix. L  

can be an identity matrix or other operators. Eq. (2.40) can be turned into a least-squares 

minimization problem and solved by the LSQR algorithm in Algorithm 2.1: 

 

2

2

arg min


   
   

   z

M p
z

L 0
  (2.41) 

Inputs:p , M ,  , maxIter  

Output: z  

Step 1: Initialize a starting point 0 0z ,  1 norm  p , 1 1/ u p  , 

 T

1 1norm  M u ,  T

1 1 1/v M u , 1 1w v  1 1  , 1 1  , 1i  . 

Step 2: Continue the bidiagonalization:  1i i i inorm   Mv u , 

 1 1/i i i i i   u Mv u ,  T

1i i i inorm   M u v ,  T

1 1/i i i i i   v M u v . 

Step 3: Construct and apply the next orthogonal transformation: 
2 2

1i i i     , 

/i i ic   , 1 /i i is   , 1i i is   , 1 1i i ic    , i i ic  , 1i i is   . 

Step 4: Update z and w .  1 /i i i i i  z z w ,  1 1 /i i i i i   w v w . 

Step 5: Check the stopping criterion. If   1 2 2 2
/i i p    p Mz p Mz  or 

maxi Iter , finish; otherwise, 1i i   and go to Step 2. 
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2.4.3 Moore-Penrose pseudo-inversion with truncated singular value decomposition 

Singular value decomposition (SVD) is a factorization of a real or complex matrix. SVD of a 

matrix M  can be formed as 

 
T

M = UΣV   (2.42) 

where U  is a m m  unitary matrix,   is a diagonal m n  matrix with non-negative real 

numbers on the diagonal representing singular values, T  denotes the transpose operation, and 

T
V  is an n n  unitary matrix. 

 1 2( , ,..., )ndiag       (2.43) 

where 1 2 1... ... 0r r n            and ( )r rank M . 

The goal of truncated singular value decomposition (TSVD) and Tikhonov regularization is to 

dampen the contributions from errors in measurement p  (noise). TSVD is achieved by 

neglecting the components of the solution corresponding to the partial smallest singular values, 

since these are likely to contribute heavily to the solution. Thus, the TSVD of M  is defined as 

the rank- k  matrix. 

  T T

1
1

, ,..., ,0,...,0
k

m n

k k i i i k k
i

u v diag R   


   M UΣ V Σ   (2.44) 

where k r , iu  and iv  are the columns of the matrices U  and V , respectively. When k  is 

chosen properly, the condition number of kM  ( 1 / k  ) will be small. The TSVD solution to Eq. 

(2.39) is defined by: 

 k

z M p  . (2.45) 

The pseudo-inverse matrix k


M  is: 

  T 1 1

1, ,..., ,0,...,0 n m

k k k kdiag R        M VΣ U Σ  . (2.46) 

The advantage of this approach is that the pseudo-inverse matrix may be pre-calculated for a 

given system and then simply reapplied to each new dataset, thus reducing the image 

reconstruction problem to a matrix-vector multiplication operation. The drawback of this 

approach is that it is impartial to apply SVD decomposition when the matrix is too big. 
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2.4.4 L-curve method for selection of the regularization parameter  

The L-curve is a log-log plot of the norm of a regularized component versus the norm of the 

corresponding residual norm, since the regularization parameter varies [44]. The L-curve can 

give insight into the regularizing properties of the underlying regularization method, and it is an 

aid to choose an appropriate regularization parameter for the given data and regularization 

method. 

If too much regularization is imposed on the solution, it will not fit the given data p  properly 

and the residual norm 
2 Mz p  will be too large (where z  is the regularized solution with 

regularization parameter   ). On the other hand, if too little regularization is imposed, then 

2 Mz p  will be good but the regularization part will be too large. Here we use Tikhonov 

regularization as an example to explain the L-curve. 

The ‘best’ regularization parameter λ lies in a more or less distinct corner of the L-curve 

 2 2
log , log Mz p Lz . This corner separates the flat part of the curve where regularization 

errors dominate, from the vertical part of the curve where noise dominates. At this corner the 

curvature   of the L-curve is maximal. 
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3 System analysis and fast reconstruction for 

finite-aperture detectors with wavelet 

packet 

Optoacoustic tomography employs relatively large detectors to achieve high detection sensitivity. 

Spatial-averaging effects over large detector areas may lead to attenuation of high acoustic 

frequencies and, subsequently, loss of fine features in the reconstructed image. Model-based 

reconstruction algorithms improve image resolution in such cases by correcting for the effect of 

the detector’s aperture on the detected signals. However, the incorporation of the detector’s 

geometry in the optoacoustic model significantly increases the amount of memory needed for 

model matrix, which hinders the application of inversion and analysis tools such as singular 

value decomposition. In this chapter we demonstrate the use of the wavelet-packet framework 

for optoacoustic systems with finite-aperture detectors. The decomposition of the model matrix 

in the wavelet-packet domain leads to model matrices sufficiently small to apply SVD. This 

methodology is demonstrated to reduce inversion time more than 10-fold for simulated and 

experimental data. In addition, the proposed framework for assessing inversion stability is 

demonstrated, which reveals a non-monotonic dependency of the system condition number on 

detector size, which has not been reported before. Thus, the proposed framework may assist in 

choosing the optimal detector size in future optoacoustic systems. 

Some of the material in this chapter has been presented in the following publication in a very 

similar or identical form to the text in this chapter: 
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“Optoacoustic imaging reconstruction and system analysis method for finite-aperture detectors 

under the wavelet-packet framework” by Yiyong Han, Vasilis Ntziachristos and Amir Rosenthal, 

Journal of Biomedical Optics, 21(1), 016002, 2016. 

3.1 Introduction 

One of the commonly used classes of algorithms for optoacoustic image formation is the back-

projection (BP) reconstruction [19]. Despite their ubiquity, BP algorithms reflect an ideal 

representation of the optoacoustic problem and are exact only in a few imaging geometries that 

involve point-like detectors, which will generate reconstruction inaccuracies and artifacts in 

systems with finite-aperture detectors. Model-based reconstruction algorithms represent a potent 

alternative to the BP approaches owing to their generality in accounting for system- and 

geometry-related parameters [24], [29], [45]–[47]. For instance, model-based algorithms have 

succeeded in accounting for the effects of a detectors’ aperture and limited projection geometry 

[27], [30], [38]. In the model-based approach implemented in this dissertation, termed 

interpolated-model-matrix-inversion (IMMI), the model matrix that describes the optoacoustic 

imaging system can be pre-calculated in advance for analysis and can easily undergo algebraic 

inversion to accelerate the reconstruction [27], [46].  

The main disadvantage of model-based reconstruction algorithms is their high computational 

cost in terms of complexity and memory; this cost scales nonlinearly with the number of 

reconstructed image pixels. The use of computationally expensive inversion algorithms such as 

SVD therefore often limits the reconstruction grid to low resolution. Although IMMI is now 

commonly employed in 2D OAT inversions [48], [49], the lengthy computational times have 

restricted the widespread use of model-based approaches and make them unsuitable, for example, 

in real-time MSOT applications [50] or 3D problems [38], [51]. 

Recently, a wavelet-packet (WP) framework was introduced to reduce the computational 

demands of model-based reconstruction algorithms [52]. The use of wavelet packets enables the 

decomposition of the model matrix into significantly smaller matrices, each corresponding to a 

different spatial frequency band in the image. Inversion is thus performed on a set of reduced 

matrices rather than on a single large matrix. This approach (WP-IMMI) substantially reduces 
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the memory requirement for image reconstruction. However, WP-IMMI assumes ideal point 

detectors and so does not consider the distortion in detected signal in the case of finite-aperture 

detectors. Currently, the WP framework has been validated only for optoacoustic designs that 

employ point detectors. 

In this chapter we adapt the WP framework for imaging scenarios in which finite-aperture 

detectors are used, namely detectors that are flat along one of their lateral axes and that can be 

modeled in 2D using line segments. The proposed generalized WP-IMMI for finite-aperture 

detectors (GWP-IMMI-FAD) method is demonstrated as a tool for both image reconstruction 

and analysis of how detector characteristics influence reconstruction quality. For example, we 

analyze the reconstruction stability of the different spatial frequency bands for several detector 

lengths using SVD. This analysis allows comparison of reconstructions characteristics obtained 

with detectors of varying lengths, and it identifies which patterns in the image are most difficult 

to reconstruct. Image reconstruction by GWP-IMMI-FAD involves inversion of the reduced 

model matrices using TSVD with global thresholding, which contrasts with the local 

thresholding used elsewhere [52]. Global thresholding means that the algorithm can be applied 

even in cases where some spatial frequency bands in the imaged object are impossible to 

reconstruct. 

In the examples presented below, we demonstrate GWP-IMMI-FAD for image reconstruction for 

a detector length of 13 mm for simulated and experimental data in both full- and limited-view 

imaging scenarios. We discuss the potential of GWP-IMMI-FAD as a design tool for 

optoacoustic systems and as an acceleration that can complete reconstructions faster than IMMI 

with finite-aperture detector (IMMI-FAD) and generate higher-quality images than BP 

approaches. 

The rest of the chapter is organized as follows. In section 3.2, we introduce 2D optoacoustic 

imaging system with single element transducer used for this chapter. In section 3.3, we state the 

motivation of the work. Section 3.4 presents 2D wavelet packet decomposition framework. 

Section 3.5 describes the details of the proposed GWP-IMMI-FAD method. The results of 

simulations and experiments are presented in section 3.6 and 3.7, and the discussion and 

conclusions are given in section 3.8. 
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3.2 2D optoacoustic imaging system with single element transducer 

The experimental optoacoustic results in this chapter were imaged with the 2D optoacoustic 

tomography system previously described [53] in Figure 3.1. Briefly, a tunable optical parametric 

oscillator (OPO) (MOPO-700 series, Newport Corp., Mountain View, CA) pumped by a Q-

switched Nd:YAG laser (Quanta-Ray Lab-Series 190-30 Newport), provided 650-nm pulses 

lasting <10 ns at a 30 Hz repetition frequency. The laser beam was expanded to about 2 cm and 

split into two beams, allowing uniform illumination around the imaged object. The laser pulse 

fluence on the surface of imaged objects was kept under 20 mJ/cm2 in order to meet laser safety 

standards [13]. A 15-MHz cylindrically focused transducer (V319, Panametrics-NDT, Waltham, 

MA) was used to image a microspheres phantom with a detection radius of 19.05 mm and an 

element diameter of 13 mm, while a 7.5-MHz cylindrically focused transducer (V320, 

Panametrics-NDT, Waltham, MA) with a detection radius of 25.9 mm and an element diameter 

of 13 mm was used to image mouse brain. Figure 3.1(b) is a photography of the above 

mentioned cylindrically focused transducer. In order to improve the signal-to-noise ratio of the 

signals, each projection was obtained by averaging 32 independent measurements. The 

microspheres phantom was transparent agar containing a thin layer with numerous dark polymer 

microspheres (Cospheric LLC, Santa Barbara, CA) with a diameter of ~100. For small-animal 

imaging, the ex vivo brain of a six-day-old mouse was measured using the experimental setup 

described above. 

 

Figure 3.1 Diagram of the optoacoustic tomography setup (a) Diagram of the optoacoustic 

tomography setup. (b) Photograph of a single element transducer. 
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3.3 Problem statement 

The model-based reconstruction for a finite-aperture size transducer is described in section 2.2.5 

and involves the following matrix relation: 

 
det det

p = M z   (3.1) 

where detp  is a column vector representing the measured acoustic waves at various detector 

positions and times; z  is a column vector representing the object values; and detM  is the 

forward model matrix. 

The following discussion assumes a 360º projection circular-detection geometry with a radius of 

4 cm and line-segment detectors of various lengths up to 20 mm. The image grid is 150 150 (2 

cm 2 cm). A total of 360 projections/measurements are taken at uniform intervals over 360º; 

each projection has 489 time points. The size of the model matrix detM  is 17604022500. To 

store all the elements of the model matrix detM as double class, 39 GB of memory are needed. 

However, when only nonzero matrix elements are saved (matrix sparsity), the memory required 

to store the matrix falls to 0.7-2.7 GB, depending on the length of the detector (Figure 3.2). Thus, 

the high memory requirements make pseudo-inversion unsuitable for calculating 
†

detM  in high-

resolution imaging. 

Tikhonov regularization-based inversion (section 2.4.2) may be applied to matrices that are 

significantly larger than those on which TSVD may be practically applied, facilitating the 

reconstruction of high-resolution images. For example, in limited-view scenarios [30], [38], [54], 

the tomographic data may not be sufficient to accurately reconstruct all the features in the images. 

In such cases, the model matrix detM  is ill-conditioned and its inversion requires regularization, 

which can suppress the effects of noise and artifacts in the image, e.g. stripe artifacts that appear 

with limited tomographic views [30].  
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Figure 3.2 Amount of memory required to store the model matrix described in Sec. 2.2.5 when 

sparsity is exploited (only non-zero entries are saved). The longer the detector is, the more 

memory is required. Without sparsity, the matrix occupies 39 GB of memory. (taken from [26]) 

3.4 2D Wavelet packets 

All wavelet packets/wavelet in this thesis are presented in the discrete form as conjugate mirror 

filter banks [55], so only orthogonal wavelets, such as the Daubechies wavelets, are considered. 

The Daubechies wavelets are not defined in terms of the resulting scaling and wavelet functions; 

instead they are generated numerically using the cascade algorithm [55]. Both the scaling 

sequence [ ]h n  (Low-pass filter) and the wavelet sequence [ ]g n  (high-pass Filter) will here be 

normalized to have sum equal 2 , and both sequences (Assume have a length of 2L  ) and all 

shifts of them by an even number of coefficients are orthonormal to each other. 

 
[2 1 ]

[ ]
[2 1 ]

h L n n odd
g n

h L n n even

  
 

   
  (3.2) 

A first level discrete wavelet decomposition of a 2D signal [ , ]U x y ( 1... ; 1...x X y Y  ) is shown 

in Figure 3.3 and defined as 

 
,

[ , ] [ , ] [ 2 ] [ 2 ] [ , ]
i j

a x y U i j h i x h j y U i j




   A   (3.3) 
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 1

,

[ , ] [ , ] [ 2 ] [ 2 ] [ , ]
i j

d x y U i j h i x g j y U i j




   1
D   (3.4) 

 2 2

,

[ , ] [ , ] g[ 2 ]h[ 2 ] [ , ]
i j

d x y U i j i x j y U i j




   D   (3.5) 

 3 3

,

[ , ] [ , ] g[ 2 ] [ 2 ] [ , ]
i j

d x y U i j i x g j y U i j




   D   (3.6) 

 

 

Figure 3.3 First level of 2D wavelet packet decomposition with scaling sequence and wavelet 

sequence. 

The wavelet reconstruction formula is given as 

 

,

1

,

2

,

3

,

[ , ] [ 2 ] [ 2 ] [ , ]

[ 2 ] [ 2 ] [ , ]

[ 2 ] [ 2 ] [ , ]

[ 2 ] [ 2 ] [ , ]

i j

i j

i j

i j
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h x i g y j d i j

g x i h y j d i j

g x i g y j d i j

















  

  

  

  









  (3.7) 



3 System analysis and fast reconstruction for finite-aperture detectors with wavelet packet 

28 

A  represents the low-passing operation to get the approximation coefficients [ , ]a x y  , whereas 

1D , 2D  and 3D  represent high-passing operation to get the three detail coefficients 
1[ , ]d x y , 

2[ , ]d x y ,and 
3[ , ]d x y  over horizontal, vertical and diagonal axes [55]. Only the approximation 

coefficients are further decomposed in wavelet decomposition, whereas both approximation and 

detail coefficients will be further decomposed wavelet-packet decomposition. A full-tree 

decomposition of level/depth I  is defined as decomposition where all coefficients were 

decomposed I  time. A schematic description of a decomposition of level 2 is shown in Figure 

3.4. Each leaf corresponds to a distinct spectral band, where all the spectral bands have 

approximately the same bandwidth.  

 

Figure 3.4 Full-tree 2D wavelet packet decomposition of level 2. 

3.5 Methods 

The proposed reconstruction method, GWP-IMMI-FAD, is described as follows. First, we define 

wz  as the WP-coefficient vector of the object, where the reconstruction of z  from wz is given 

by 

 wz = Rz   (3.8) 
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where R  is the reconstruction matrix of the WP transform [52]. Similarly, we define wp  as the 

WP-coefficient vector of the projection data by using the decomposition matrix D  of the WP 

transform [52]: 

 w p Dp  . (3.9) 

Substituting Eq. (2.31) and Eq. (3.8) in Eq. (3.9) , we obtain 

 detw wp = DM Rz   (3.10) 

For a given leaf i  or spatial frequency band in object decomposition space, the corresponding 

model matrix is 

 det

i i

w M DM R   (3.11) 

The approximate matrix 
i

wM  and the approximate vector 
i

wp  are calculated out of 
i

wM  and 
i

wp  

for each leaf by keeping only the significant rows [52], yielding the following relation: 

 det

i i

w M DM R   (3.12) 

Eq. (3.12) may be inverted separately for each i , e.g. by using TSVD. For each frequency band, 

SVD is performed on the corresponding approximate matrix 
i

wM : 

 
,T

M U Σ V
i i i i

w    (3.13) 

where T denotes the transpose operation; i
U and i

V  are unitary matrices; and Σi  is a diagonal 

matrix containing the singular values of the decomposition:  
1...

i

j
j J




. 

The condition number of each approximate matrix 
i

wM  is calculated locally [52], based on its 

corresponding singular values [56]: 

  
 
 

loc

i

j ji i

w i

j j







max
M

min

 (3.14) 
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Based on this definition,  loc

i i

w M  can reveal only whether in a specific spatial frequency band 

some components’ reconstruction is more unstable than others.  loc

i i

w M  does not, however, 

enable a comparison between different spatial frequency bands in terms of reconstruction 

robustness. We therefore introduce for each approximate matrix 
i

wM  a condition number that is 

calculated globally: 

  
 
 

,

glob

i

i j ji i

w i

j j







max
M

min

 (3.15) 

The use of  glob

i i

w M  enables classifying the different spatial frequency bands based on their 

reconstruction robustness. The maximum of  glob

i i

w M , i.e.  globmax i i

i w M , is therefore an 

approximation to the condition number of the model matrix detM  used in Eq. (2.31).  

The inversion of 
i

wM using TSVD requires excluding all the singular values below a certain 

threshold. An individual threshold is determined locally for each matrix 
i

wM  [52] and is 

proportional to its corresponding maximum singular value: 

  locth max
i i

j j   (3.16) 

This choice of local thresholds enables regularization only when the image component that 

corresponds to the maximum singular value in each frequency band can be stably reconstructed. 

In other words, local thresholds cannot be used when one or more image components in a certain 

image band cannot be reconstructed. In this case, the algorithm would fail to reject the entire 

frequency band. Therefore, we introduce a single global threshold in this work, defined as  

  glob ,th max
i

i j j   (3.17)
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Once the TSVD has been performed for all i  in Eq. (3.13), the recovered image coefficients in 

the WP domain 
i

wz  may be used to calculate the image via Eq. (3.8). Mathematically, the entire 

reconstruction procedure may be described by the equation: 

 
†

0 z M p  , (3.18) 

where †
M  is the approximated inverse matrix of M , which can be determined by TSVD, and 

0z  is the approximate solution. The initial approximation may be improved recursively by using 

[52] 

 
†

1 det 1( )n n n   z z M p M z   (3.19) 

where nz  is the solution at the thn  iteration and   is a constant.  

3.6 Simulation results 

3.6.1 Analysis of image reconstruction stability 

The ability to perform SVD on the reduced approximate matrices 
i

wM  enables us to analyze the 

reconstruction stability for the different spatial frequency bands in the image. In the following 

discussion, we analyze the reconstruction stability of a 2D image based on data collected with a 

360º projection circular-detection geometry with a radius of 4 cm and line detectors of various 

lengths. We consider an image grid with 150 150 pixels (2 cm 2 cm). The size of the model 

matrix detM  is 176040 22500. Two-level WP decomposition is performed with the Daubechie 

6 wavelet, leading to 16 distinct spatial frequency bands [Figure 3.5(a)]. Figure 3.5(b-d) show 

the value of  glob

i i

w M  for the various frequency bands for a point detector, line detector 6 mm 

long, or line detector 13 mm long. As expected, the effect of spatial averaging reduces the 

reconstruction stability in the higher spatial frequencies. Figure 3.5(e) shows the value of the 

maximum global condition number of the reduced modal matrices  globmax M
i i

i w 
 

 for 

various detector lengths. Interestingly,  globmax M
i i

i w 
 

 does not monotonically increase with 

detector length, but rather reaches a maximum value at a length of 6 mm.  
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Figure 3.5 Condition Number of the Model Matrix. (a) Map of decomposition components with 

two-level wavelet packets. (b-d) Condition number map of the decomposed model matrix for a 

point detector, line detector 6 mm long, and line detector 13 mm long. (e) Maximum condition 

number of all decomposition matrices with different detector lengths. (f) Condition number of 

the model matrix with different detector lengths. (taken from [26]) 
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To verify the non-monotonic dependency of the condition number on detector length, the 

condition number of the model matrix detM  was calculated directly for various detector lengths. 

The result [Figure 3.5(f)] reveals the same behavior as that observed in WP-based analysis. For 

calculation of the condition number, the function ‘condest’ in Matlab was used, which is based 

on the 1-norm condition estimator of Hager [57]. This algorithm gives an estimate for the 

condition number without performing SVD, enabling easy implementation despite the size of the 

model matrix. Nevertheless, the condition-number calculations in Figure 3.5(f) required the use 

of a PC workstation with 160 GB of RAM, whereas the SVD performed on the reduced matrices 

i

wM  for Figure 3.5(b-e) were executed on a standard desktop computer with only 16 GB of 

Random access memory (RAM). 

 

Figure 3.6 Optoacoustic signals detected from the sphere by detectors of various lengths. (a) The 

image generated by the row in i
V , which corresponds to the minimum singular value in all the 

matrices 
i

wM  calculated with a detector length of 6 mm. The result corresponds to the image for 

which reconstruction is expected to show the greatest instability. (b) An illustration of a spherical 

source with a radius of 200 µm positioned at the location identified in panel (a). (c) The signals 

detected from the sphere by detectors of various lengths and (d) their corresponding frequency 

content. (taken from [26]) 
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Table 3.1 Parameters of 9 spheres to generate 100 random numerical phantoms. (taken from [26]) 

Index ( ,i i
x y ) 

iR  iA  

mean [mm] STD [mm] mean [mm] STD [mm] Mean [a.u.] STD [a.u.] 

1 (0.001,-0.001) (0.028,0.028) 0.915 0.031 0.301 0.113 

2 (0.002,-0.005) (0.028,0.029) 0.752 0.028 0.134 0.115 

3 (-0.243,-0.396) (0.028,0.031) 0.119 0.028 0.472 0.117 

4 (0.152,-0.499) (0.029,0.031) 0.121 0.029 0.478 0.114 

5 (-0.395,-0.005) (0.029,0.028) 0.251 0.026 0.252 0.111 

6 (0.197,0.055) (0.029,0.030) 0.247 0.032 0.269 0.116 

7 (-0.892, -0.898) (0.026,0.033) 0.097 0.034 0.962 0.113 

8 (-0.858,0.902) (0.031,0.028) 0.079 0.022 0.971 0.105 

9 (0.817,0.807) (0.023,0.028) 0.079 0.024 0.980 0.123 

 

The advantage of GWP-IMMI-FAD is that it enables not only the identification of frequency 

bands most susceptible to noise in the reconstruction, but also the identification of their spatial 

patterns. This may be achieved by visualizing the rows in i
V  corresponding to the minimum 

singular values in each frequency band. Figure 3.6(a) shows the image generated from the row of 

i
V  that corresponds to the smallest singular value in the frequency band for which the highest 

condition number was obtained in the case of a 6 mm detector. The figure shows that the highest 

susceptibility to noise occurs at the periphery of the image. To verify this result, we simulated the 

signal of a spherical source with a diameter of 200 µm at the top-left corner of the image 

[(Figure 3.6(b)]. Figure 3.6(c) shows the signals detected by a point detector, a line detector 6 

mm long and a line detector 20 mm long; Figure 3.6(d) shows their frequency content. The 
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signals presented in Figure 3.6(c) were calculated using previously described analytical solutions 

[43], not based on the model matrices. The figures reveal more substantial loss of high-frequency 

data using the 6-mm detector than the 20-mm detector. 

 

Figure 3.7 Evaluation of the reconstructions for numerical spheres phantoms in Table 3.1. (a) 

Schematic illustration of a random object function. (b) Mean SSIM of random objects with 

different detector lengths and regularization parameters. (c) Mean RMSD of random objects with 

different detector lengths and regularization parameters. (d) Bias-variance curve of the 

reconstructions for a point detector and for flat detectors with lengths of 1, 2, 3, 4, 5, 6, 8, 13, and 

20 mm. Three values of α were considered (0, 0.05, and 0.1). For all detector lengths, bias and 

variance were higher at α = 0 (no regularization) than at the other α values. The worst bias and 

variance were obtained with a flat detector 4 mm long. (taken from [26]) 

In order to further demonstrate the validity of the results obtained by GWP-IMMI-FAD, object 

images were generated by a random process similar to one previously described [45]. The 

images were reconstructed via TSVD with GWP-IMMI-FAD and several values of   in Eq. 

(3.17). Each image consisted of nine smooth spheres (indexed by i  for 1,...,9i  ) with random 
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origins [denoted by ( ,i i
x y )], radii ( iR ), and absorbed optical energy densities ( iA ). A 

representative image is provided in Figure 3.7(a). We generated 100 random images, whose 

statistics are listed in Table 3.1. The model matrix was built using IMMI-FAD [27], then this 

matrix was used to generate all synthetic projection data. The mean of the Gaussian white noise 

set in the projection data was 0, while the standard deviation (STD) was 2% of the maximum 

magnitude of the projection data. Statistical assessment of reconstruction performance with 

different regularization parameters is shown in Figure 3.7(b-d). The quality of the reconstructed 

images was quantified by calculating the structural similarity (SSIM) and root-mean-square-

deviation (RMSD) between the reconstructed and original images, as well as by performing bias-

variance analysis [58]:  

 
1 2

2 2 2 2

1 2

(2 )(2 )
SSIM( , ) ,

( )( )

x y xy

x y x y

C C
x y

C C

  

   

 


   
  (3.20) 

where x  and y  represent the original and reconstructed image; x  and y  are the 

corresponding means; 
2

x  and 
2

y  are the corresponding variances; 1C  and 2C  are small positive 

constants; and xy  is the covariance between the images. SSIM can range from 0 to 1, with 

higher values corresponding to greater similarity between the images. RMSD is expressed by 

  
2

1

1
RMSD=

N

i i

i

x y
N 


,

 (3.21) 

where ix  and iy  are the pixel values of the original and reconstructed images, and N  is the 

number of pixels.  

To calculate variance and bias for each of the random phantoms, reconstruction was performed 

for 100M  different additive noise signals generated from a Gaussian distribution with a zero 

mean and STD of 2% of the maximum projection data. For each pixel, the variance and bias 

were calculated using the equations  
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   (3.23) 

where ix  and iy  represent the values of the ith pixel in the original and reconstructed images, 

respectively; i  is the pixel index; and j=1…M is the index of the added noise signal. The results 

for the variance and bias were averaged over all pixels and are presented in Figure 3.4(d) for a 

point detector and for flat detectors with lengths of 1, 2, 3, 4, 5, 6, 8, 13 and 20 mm. Three values 

of   were considered (0, 0.05 and 0.1). 

3.6.2 Image reconstruction for simulated data 

 

Figure 3.8 The numerical phantom used in the simulations. (taken from [26]) 

A numerical study was performed for full- and limited-view scenarios in order to analyze 

imaging performance based on the following reconstruction schemes: BP (section 2.2.2), IMMI 

(section 2.2.3) with 20 L2-LSQR iterations, IMMI-FAD (section 2.2.5) with 20 L2-LSQR 

iterations and the proposed GWP-IMMI-FAD. All reconstructed images were normalized. A 

mouse cross-section (Figure 3.8) was used as the original image (150 150 pixels, 2 cm 2 cm), 

and detection was performed over a circle surrounding the image using a line-segment detector 

13 mm long located 4 cm from the origin. The model matrix was built by IMMI-FAD and used 

to generate all the synthetic projection data, and all reconstructions were performed in the 

presence of added noise, which was generated from a Gaussian distribution with a zero mean and 
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STD of 2% of the maximum projection data. In all cases, the detector was moved in 1° 

increments. Reconstructions were performed in Matlab on a personal computer with an Intel 

Core i7 2.1 GHz processor and 16 GB of RAM. 

In the reconstructions performed with IMMI and IMMI-FAD, the model matrix was invertedd 

using Tikhonov regularization. The L-curve method in section 2.4.4 was used to find the 

Tikhonov regularization parameter  [59]. In the case of GWP-IMMI-FAD, the WP 

decomposition was performed using the Daubechies 6 mother wavelet with two-level full-tree 

decomposition for both the model matrix and projection data, and inversion was performed using 

TSVD. The L-curve method in section 2.4.4 was also used to find the regularization parameter 

  [59]. Figure 3.9 shows the simulation reconstruction results in a full-view scenario. Figure 

3.9(a-d) show the reconstructions using BP, IMMI, IMMI-FAD and GWP-IMMI-FAD. Figure 

3.9(e) shows a 1D slice of the reconstructed image taken along the yellow dashed line in Figure 

3.9(c). The IMMI reconstruction without accounting for the detector geometry gives a blurry 

reconstructed image, as predicted [43], while reconstructions with IMMI-FAD and GWP-IMMI-

FAD are not blurry. The respective SSIMs between the original image and Figure 3.9(a-d) are 

0.0753, 0.7023, 0.7748 and 0.7780; the corresponding RMSDs are 0.3860, 0.0961, 0.0357 and 

0.0367. The total processingtime needed to build the wavelet-packet decomposition matrices in 

advance was approximately 1.2 hours. TSVD was used in GWP-IMMI-FAD, where truncation 

was performed by setting 0.02   in Eq. (3.17). Nine iterations of Eq. (3.19) were performed in 

GWP-IMMI-FAD, with each iteration lasting 1 s. In this way, after pre-calculation of the 

matrices, GWP-IMMI-FAD required only 10 s, whereas Tikhonov regularized IMMI-FAD 

required 215 s. 

Figure 3.10 shows the images reconstructed from the noisy simulation data for the limited-view 

scenario in which only the projections on the left side of the images were used (180-degree 

angular coverage). Figure 3.10(a-d) show the reconstructions made using BP, IMMI, IMMI-FAD 

and GWP-IMMI-FAD. For comparison, Figure 3.10(e) shows the reconstruction obtained via 

WP-IMMI-FAD involving local thresholding [Eq. (3.14)] and the same   value as the one used 

in Figure 3.10(d). Figure 3.10(f) compares the profiles of absorbed energy density at the same 

position in Figure 3.10(c) for the original image and reconstructions made using IMMI-FAD and 

GWP-IMMI-FAD. The respective SSIMs between the original image and Figure 3.10(a-e) are 
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0.0552, 0.4504, 0.6266, 0.6212 and 0.6090; the corresponding RMSDs are 0.4114, 0.1858, 

0.0833, 0.0792 and 0.0890. In GWP-IMMI-FAD, TSVD was used in GWP-IMMI-FAD, where 

truncation was performed using 0.1   in Eq. (3.17). The total processing time needed to build 

the WP decomposition matrices in advance was approximately 40 minutes. Six iterations of Eq. 

(3.19)  were used for the proposed method, and each iteration required 1 s. As a result, the 

reconstruction time of GWP-IMMI-FAD was only 7 s, whereas IMMI-FAD required 104 s. 

3.7 Experimental results 

We applied GWP-IMMI-FAD to experimental optoacoustic data obtained from a microspheres 

phantom and a mouse brain. The microspheres reconstruction was set to a size of 2 cm 2 cm 

and 200×200 pixels, while the mouse brain reconstruction was set to 1.3 cm 1.3 cm and 

130×130 pixels. All reconstructed images were normalized to their maximum, and negative 

values in the images were set to zero.  

3.7.1 Microsphere phantom experiment 

Figure 3.11(a-d) show the full-view microsphere reconstructions obtained with BP, IMMI, 

IMMI-FAD and GWP-IMMI-FAD. In GWP-IMMI-FAD, TSVD was used and truncation was 

performed using 0.16   in Eq. (3.17). The reconstruction by GWP-IMMI-FAD is considerably 

sharper than those by BP and IMMI, and similar to the one by IMMI-FAD. After pre-calculation 

of all matrices, the GWP-IMMI-FAD reconstruction (10 iterations) took only 80 s, whereas the 

IMMI-FAD reconstruction required 1646 s. 
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Figure 3.9 Reconstructions of the numerical mouse phantom for the case of full-view, noisy data 

using (a) BP, (b) IMMI, (c) IMMI-FAD, (d) GWP-IMMI-FAD. (e) Profiles of absorbed energy 

density along the yellow dashed line in panel (c) for the original image and for reconstructions 

prepared using IMMI-FAD or GWP-IMMI-FAD. (taken from [26]) 
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Figure 3.10 Reconstructions of the numerical mouse phantom for the case of noisy, limited-view 

data (projections spanning 180º on the left plane only) using (a) BP, (b) IMMI, (c) IMMI-FAD, 

(d) GWP-IMMI-FAD and (e) WP-IMMI-FAD. (f) Profiles of absorbed energy density along the 

yellow dashed line in panel (c) for the original image and for reconstructions using IMMI-FAD 

or GWP-IMMI-FAD. (taken from [26]) 
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Figure 3.11 Optoacoustic reconstructions of microspheres from experimental data using (a) BP, 

(b) IMMI, (c) IMMI-FAD and (d) GWP-IMMI-FAD. (taken from [26]) 

3.7.2 Mouse brain experiment 

Figure 3.12(a-d) show full-view reconstructions of mouse brain obtained by BP, IMMI, IMMI-

FAD and GWP-IMMI-FAD. TSVD was used in GWP-IMMI-FAD and truncation was 

performed using 0.08   in Eq. (3.17). The reconstruction based on model matrices that took 

into account the effects of line-segment detectors is sharper than the reconstruction based on a 

point detector. The differences between Figure 3.12(c) and Figure 3.12(d) are small and difficult 

to see by visual inspection. After pre-calculation of all matrices, the GWP-IMMI-FAD 

reconstruction (10 iterations) took only 11 s, whereas the IMMI-FAD reconstruction required 

197 s. 
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Figure 3.12 Optoacoustic reconstructions of a mouse brain from experimental data using (a) BP, 

(b) IMMI, (c) IMMI-FAD and (d) GWP-IMMI-FAD. (taken from [26]) 

GWP-IMMI-FAD was experimentally demonstrated for limited-view projection data of the 

mouse brain, in which the angular coverage of the projection data was reduced to 180 degrees. 

Figure 3.13(a-c) show the reconstructions using BP, IMMI and IMMI-FAD, and Figure 3.13(d) 

presents the reconstruction using GWP-IMMI-FAD with 7 iterations. For TSVD of each matrix, 

the truncation was performed using 0.1   in Eq. (3.17). Use of GWP-IMMI-FAD with TSVD 

suppresses the stripe artifact better than IMMI-FAD (Figure 3.13). After pre-calculation of the 

model matrix and reduced matrices, GWP-IMMI-FAD reconstruction took only 8 s, whereas 

IMMI-FAD reconstruction required 90 s. 
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Figure 3.13 Optoacoustic reconstructions of a mouse brain from limited-view (180º) 

experimental data using (a) BP, (b) IMMI, (c) IMMI-FAD and (d) GWP-IMMI-FAD. (taken 

from [26]) 

3.8 Discussion 

Model-based optoacoustic reconstruction algorithms offer a promising alternative to 

conventional back-projection formulae because they can be adapted to arbitrary tomographic 

geometries. In the case of large-area detectors that are flat along one of their lateral axes, 

accurate modeling of the detector geometry can improve image fidelity and resolution. However, 

this involves computationally costly model-based inversion, making it unsuitable for high-

throughput imaging. This limitation is particularly severe when detector area is large because 

modeling such a detector requires a substantially larger matrix. 
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In this chapter we develop GWP-IMMI-FAD, which is the generalization of the WP framework 

to finite-aperture detectors. Under the WP framework, the image is divided into a set of spatial 

frequency bands that are individually reconstructed from only a fraction of the projection data, 

leading to a set of reduced model-matrices. This approach enables the use of TSVD to obtain a 

regularized inverse matrix to the tomographic problem. The original matrix, in the case of high-

resolution images, is too large to be inverted using TSVD. Therefore, regularization requires 

iterative optimization algorithms, which significantly prolong processing time. One notable 

improvement in GWP-IMMI-FAD over the original WP framework is the introduction of a 

global threshold for TSVD, which allows GWP-IMMI-FAD to be applied to cases in which 

entire spatial frequency bands in the imaged object are difficult to reconstruct, such as in Figure 

3.10(d-e). 

We show that GWP-IMMI-FAD may be used not only for image reconstruction but also for 

system analysis. GWP-IMMI-FAD enables one to calculate the global condition number of each 

spatial frequency band, and thus determine the stability of its reconstruction. The use of WPs and 

SVD enables one to identify which spatial patterns are most difficult to reconstruct and to 

categorize them based on their spatial frequency. We used GWP-IMMI-FAD to analyze the 

dependence of reconstruction stability on detector length; we found a non-monotonic 

relationship in which the global condition number achieves its maximum with a detector 6 mm 

long. This relationship matches well with the variation in condition number of model matrix 
det

M  

with detector length. We show that with SVD, reconstruction instability with a 6-mm detector is 

most severe at the periphery of the image (Figure 3.5). We also found that when a small 

spherical source is positioned at the corner of the image, the signal detected by a 6-mm detector 

is more low-passed than the one detected by a 20-mm detector. 

Our results with GWP-IMMI-FAD show inconsistencies with previous work [60] in which the 

amount of smearing created by flat detectors was reported to be proportional to the aperture 

dimensions. The analysis in that work [60] suggests that longer detectors attenuate high 

frequencies in the projection data more strongly than shorter detectors, and that therefore the 

global condition number should scale with detector length. However, our analysis shows that a 6-

mm detector attenuates high frequencies more strongly than a 20-mm detector [Figure 3.6(d)]. 

This apparent contradiction may be resolved by considering that the analysis in the previous 
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work [60] was performed for the filtered BP reconstruction algorithm, which assumes an ideal 

point detector. In this case, any discrepancy between the forward and inverse models leads to 

image distortion and possibly smearing. Indeed, although the signal generated by a 20-mm 

detector is sharper than the one generated by a 6-mm detector, it involves a significantly larger 

delay when compared to the signal detected by the point detector, as can be seen in Figure 3.6(c). 

Reconstruction formulae derived for the case of infinitely long line detectors [61] are also 

inconsistent with the previous work based on point detectors [60].  

To further validate our conclusions, we compared the reconstructions of randomly generated 

images obtained with several detector lengths. The reconstruction results revealed a similar 

behavior to those obtained by the SVD analysis of GWP-IMMI-FAD. The highest reconstruction 

error was obtained for a 4-mm detector. This differs from the results obtained from SVD analysis, 

reflecting the fact that SVD considers all possible images, whereas the randomly generated 

images represent only a small portion of all possible images. The similar trends obtained in 

Figure 3.5(e-f) and Figure 3.7(b-c) suggest that the analysis described here is valid. Further 

validation comes from the bias-variance curves in Figure 3.7(d), which show that the variance 

associated with stability and noise amplification exhibits similar non-monotonic behavior as the 

condition number prediction in Figure 3.5(e-f) and the results in Figure 3.7(b-c). The condition 

numbers and reconstruction errors depend on the resolution specified by the grid on which the 

image is represented: increasing the grid resolution should strengthen the effect of detector 

length on the condition number of the matrices describing the system. 

We showcased the potential of GWP-IMMI-FAD for image reconstruction using simulated and 

experimental optoacoustic data under conditions of full- and limited-view tomography. In all 

examples, the model matrix was too large for TSVD, so Tikhonov regularization was used 

instead. In contrast, the reduced matrices in the wavelet packet decomposition were small 

enough to perform TSVD. In the case of full-view simulated and experimental data, GWP-

IMMI-FAD reconstruction quality was similar to the quality of Tikhonov regularization IMMI-

FAD reconstruction. In the case of limited-view simulated data, GWP-IMMI-FAD performed 

slightly worse than Tikhonov regularization IMMI-FAD. However, in the case of limited-view 

experimental data, GWP-IMMI-FAD reconstruction suppressed stripe artifacts better. In all the 
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examples studied, GWP-IMMI-FAD completed the reconstruction more than 10-fold faster than 

IMMI-FAD. 

The performance demonstrated in this chapter may prove useful for high-throughput 

optoacoustic imaging studies, which can require the reconstruction of thousands of cross-

sectional images. Moreover, the results suggest that the WP framework is not restricted to ideal 

imaging scenarios, but that it can be generalized to manage the effects of finite-size aperture and 

limited-view tomography. Further generalization may be achieved by applying this framework to 

geometries employing focused detectors as well as to 3D reconstruction problems, where the 

need for faster model-based reconstructions is even greater. GWP-IMMI-FAD may be useful for 

designing optoacoustic systems; for example, it has already demonstrated, for the first time, that 

beyond a certain length of finite-aperture detector, further increases in length may lead not only 

to stronger optoacoustic signals, but also to stabler reconstructions.  
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4 Sparsity-based acoustic inversion in cross-

sectional multi-scale optoacoustic imaging 

With recent advancements in hardware of optoacoustic imaging systems, highly detailed cross-

sectional images may be acquired with a single laser pulse, thus eliminating motion artifacts. 

Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. 

The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, 

distorted projection data. In this chapter, we use the model-based approach for acoustic inversion, 

combined with a sparsity-based inversion procedure. Specifically, a cost function is used that 

includes the L1 norm of the image in sparse representation and a total variation (TV) term. The 

optimization problem is solved by a numerically efficient implementation of a non-linear 

gradient descent algorithm. TV-L1 model-based inversion is tested in the cross-sectional 

geometry for simulated data as well as for in vivo experimental data from an adult mouse. In all 

cases, model-based TV-L1 inversion showed better performance over the conventional Tikhonov 

regularization, TV and L1 inversion. In the numerical examples, the images reconstructed with 

TV-L1 inversion were quantitatively more similar to the original images. In the experimental 

examples, TV-L1 inversion yielded sharper images and weaker streak artifacts. The results 

herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multi-

scale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of 

its high fidelity, model-based TV-L1 inversion may be considered the new standard for image 

reconstruction in cross-sectional imaging. 

Some of the material in this chapter has been presented in the following publication in a very 

similar or identical form to the text in this chapter:  
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“Sparsity-based acoustic inversion in cross-sectional multi-scale optoacoustic imaging” by 

Yiyong Han, Stratis Tzoumas, Antonio Nunes, Vasilis Ntziachristos, Amir Rosenthal, Medical 

Physics, 42(9), 5444-5452, 2015. 

4.1 Introduction 

In OAT, excitation usually involves short, high-power laser pulses that lead to the generation of 

outward propagating acoustic waves, measured over a surface that encompasses the imaged 

object [10]. Ideally, the detection surface should completely surround the illuminated region. In 

practice, this requirement necessitates scanning an ultrasound array around the specimen, leading 

to long imaging durations [29], [62]. An alternative approach is the use of circular detection 

arrays cylindrically focused to the plane of interest. By simultaneously reading out all the 

detection channels, a 2D cross-sectional optoacoustic image may be formed from a single laser 

pulse. This characteristic enables video-rate imaging free of motion artifacts. Recent 

improvements in cross-sectional OAT hardware now enables the capture of highly detailed 2D 

images, which exhibit features at several scales.  

Optoacoustic images are formed from the detected acoustic waves or projection data by using 

tomographic reconstruction algorithms [10]. Such algorithms are usually based on either closed-

form solutions in the time or frequency domain or on a model-based approach in which the 

relation between the optoacoustic image and measured data is discretized in the form of a matrix 

relation. Model-based image reconstruction is performed by inverting the matrix relation. The 

advantage of the model-based approach is that it can incorporate arbitrary detection geometries 

for which no exact closed-form solution exists. In particular, model-based image reconstruction 

has been demonstrated for reducing image distortion and artifacts due to finite detector aperture 

or incomplete projection data. 

Quite often, regularization is required in model-based inversion to suppress noise and artifacts in 

the reconstructed images by making assumptions on the nature of the expected optoacoustic 

image. Usually the regularization approaches used, e.g. Tikhonov regularization, penalize the 

energy of the reconstructed image. These approaches suppress noise and artifacts, but sometimes 

at the cost of image blurring. More recent regularization approaches are based on either 
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penalizing the TV term in the image or enforcing sparsity via an alternative representation, e.g. a 

wavelet basis. Both regularization approaches have been shown to produce sharper, cleaner 

images than energy-minimization regularization in several imaging scenarios, and their 

combination has been used in image denoising. Nonetheless, demonstration on experimental data 

has been limited to tissue-mimicking phantoms or experiments in mice that focused on imaging 

vascularization. In both cases, the structures visualized were relatively simple and were mostly 

dominated by a few small-scale features, which are inherently favored by sparsity and TV 

constraints. In many applications, cross-sectional optoacoustic images exhibit a rich structure 

that cannot be reconstructed so well under such constraints.  

In this chapter, we study the performance of the combination of TV- and sparsity-based 

regularization strategies in cross-sectional multi-scale optoacoustic imaging. Image 

reconstruction is performed for both highly detailed numerical phantoms and cross-sectional 

images of an adult mouse obtained in vivo. In both cases, the reconstruction algorithm is tested in 

the full- and limited-view scenarios and compared to model-based reconstructions obtained using 

Tikhonov regularization, TV and L1 inversion.  

The rest of the chapter is organized as follows. In section 4.2, we introduce the cross-sectional 

optoacoustic imaging system used in this chapter. Section 4.3 reviews the model-based 

reconstruction framework with the various regularization methods. Section 4.4 discusses the 

regularization strategies used in our work and the details of the experimental and simulation 

studies. The results of simulations and experiments are presented in section 4.5 and section 4.6, 

and are evaluated in section 4.7. Finally the discussion and conclusions are given in section 4.8. 

4.2 2D optoacoustic imaging system with curved focused array 

The 2D sparsity-based reconstruction in this chapter is proposed for the cross-sectional system 

previously described [63] (Figure 4.1). Briefly, a tunable OPO pumped by a ND:YAG laser 

(Opotek Inc., Carlsbad, CA) was employed with energy of up to 20 mJ/cm2, wavelengths from 

680 nm to 980 nm, pulse duration of 8 ns, and a pulse repetition rate of 10 Hz. All data were 

acquired after excitation at the single wavelength of 900 nm. A 10-arm fiber bundle was used to 

provide uniform light-sheet illumination in the imaged plane with a width of 8 mm. A custom-
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made, 256-element, cylindrically focused array of immersion PZT transducers (Imasonic S.A., 

France) with a central frequency of 5 MHz and a focal length of 40.5 mm was employed to 

collect the optoacoustic signals, which were amplified and digitalized with a custom-made data-

acquisition system at a sampling rate of 40 mega samples/s. The detector array offers a 270-

degree angular coverage in a given slice of focus. The imaged object was submerged in a water 

tank in a horizontal position in a holder. The transducer ring was translated using a linear stage 

(IAI Industrieroboter, Schwalbach, Germany) to enable imaging of multiple transverse slices. 

Each of the signals was averaged 20 times and band-pass filtered with the cut-off frequencies of 

0.05 MHz and 7 MHz, which cover the frequency band of the transducer. 

 

Figure 4.1 2D optoacoustic imaging system setup. (a) The schematic of the optoacoustic imaging 

system setup. (b) Illumination and detection geometry in the imaging chamber. The transducer 

can be translated along the z-axis in order to acquire multiple transverse cross sections in the x–y 

plane. (taken from [64]) 

4.3 Theoretical background 

The 2D model-based algorithm in section 2.2.3 leads to the following matrix relation [24]: 

 2D
p M z ,  (4.1)



4.3 Theoretical background 

53 

where p  is a column vector representing the measurement data, z  is a column vector 

representing the unknown reconstruction image and 2DM  is the forward model matrix. For a 

given optoacoustic imaging system, the model matrix 2DM  depends solely on the image grid 

and the measurement geometry. 

4.3.1 Tikhonov regularization with Laplacian operation 

When regularization is required, e.g. in the case of insufficient projection data, Tikhonov 

regularization in section 2.4.2 is often used [59]: 

  2 2

2 2 2
argmin

D
 

z

p M z Lz  , (4.2) 

where 0   is the regularization parameter and L  is the regularization operator. In this chapter, 

a quadratic smoothness Laplacian penalty term is used [38]: 
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where N  is the total pixel number of the image z  and 
n

x y( , )
z  is the intensity of the thn  pixel at 

the position of ( , )x y . Tikhonov regularization with a Laplacian penalty (Tik-Lap) may be 

efficiently performed using the LSQR algorithm.  

4.3.2 L1 regularization 

The application of L1 regularization for inverting Eq. (4.1) is based on the common assumption 

that the reconstructed image may be sparsely represented in an alternative basis [36], [65]–[68]. 

To perform the inversion, the following procedure is applied. First, the image to be recovered u  

is transferred into a basis in which it is expected to be sparse: x Φz , where x  is the 

representation of z  in the new domain and Φ  is the transform matrix. Generally, a unitary Φ  

would be preferable, which represents a transformation to an orthonormal basis.  In this chapter, 

Φ  was chosen to represent a three-level Daubechies 4 wavelet transform. L1 regularization can 

then be described by solving the following problem: 
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  2

2 2 1
argmin

D
 

z

p M z Φz  , (4.4) 

where 0   is the regularization parameter. 

We calculate the L1 norm and its derivative as following. The L1 norm is the sum of absolute 

values. Let u Φz  and we can approximate the absolute value of u  as T
u u , where   is 

a small positive constant. And we can get the derivative 1
d

d 


T

u u

u u u
 [69]. 

4.3.3 TV regularization 

TV regularization is used for the suppression of noise [70] as well as streak artifacts [71][38], 

[72]–[74]. The scheme has the following expression: 

  2

2 2 TV
argmin

D
 

z

p M z z , (4.5) 

where 0   is the regularization parameter. And the TV norm is defined as  

 
22

TV x y

i j

i j i j   
,

z z( , ) z( , ) ,  (4.6) 

where x
  and 

y
  represent the finite differences of the image along x  and y  directions.  

4.4 Combined TV-L1 sparsity-based reconstruction 

Here we demonstrate the use of combined TV-L1 regularization for image reconstruction in 

cross-sectional optoacoustic imaging. Image reconstruction is performed by solving the 

following problem: 

  2

2 1 22 TV 1
argmin argmin

D
    

z z

(z) p M z z Φzf .  (4.7)
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The two regularization parameters 1
0   and 2

0   determine the respective influence of the 

TV and L1 regularization terms. To solve the unconstrained convex minimization problem in Eq. 

(4.7), Algorithm 4.1 is used with a gradient descent algorithm via backtracking line search [75].  

Algorithm 4.1 Model-based TV-L1 reconstruction using gradient descent  

 

4.5 Simulations  

All inversions were implemented in Matlab (Mathworks, Natick, MA) and executed on a desktop 

computer with an Intel Core2 Quad Processor CPU operating at 2.67 GHz with 16 GB of RAM. 

The results of TV-L1 method were compared with reconstructions obtained using Tik-Lap 

method in section 4.3.1, L1 method in section 4.3.2 and TV method in section 4.3.3. Consistent 

with the experimental system, a circular detection geometry with a radius of 40.5 mm was 

assumed, for which 256 projections were calculated over a coverage angle of 270 degrees or 128 

projections were calculated over 135 degrees (Figure 4.2). A numerical 2D phantom of a mouse 

cross-section (Figure 3.8) served as the original image with a size of 2.5 cm 2.5 cm and 512

512 pixels. Projection data were calculated using a 600 600 mesh. In all reconstructions, white 

Inputs: p , 2D
M , Φ , 1

 , 2
 ,  , maxIter   

Output: z  

Step 1: Initialize a starting point 0z , iteration variable 1i  . 

Step 2: Calculate the gradient of the cost function ( ) zf  and the update part of 

solution ( )  z zf . 

Step 3: Choose step size t  via backtracking line search. 

Step 4: Update the solution with 1i i t   z z z . 

Step 5: Check the stopping criterion. If   2 1 22 2 2
/D i D i    p M z p M z p  

or maxi Iter , finish; otherwise, 1i i   and go to Step2. 
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Gaussian noise was added to the projection data with a signal-to-noise ratio (SNR) of 10 dB. In 

all reconstruction algorithms, the stopping criterion was  = 41 10  and max Iter = 200. 

Image reconstructions were performed based on the above simulation settings for the two 

detection geometries in Figure 4.2. Figure 4.3 shows the reconstruction results in the nearly full-

view scenario. Four reconstructions in Figure 4.3(a-d) were obtained, respectively, using Tik-

Lap, TV, L1 and TV-L1. All four reconstructions show good quality with marginal variation 

from the original image. Figure 4.4(a-d) shows the corresponding reconstructions in the limited-

view scenario. Qualitative differences among the images are more readily observed; for example, 

TV-L1 produces weaker negative artifacts and less spurious noise-like texture than the other 

reconstruction approaches. The reconstructions are compared quantitatively in section 4.7. 

 

Figure 4.2 Detection geometries in the simulation and experiment in (a) nearly full-view and (b) 

limited-view. (taken from [64]) 

4.6 Experiments  

An experimental dataset acquired from a mouse in the hind-limb area in vivo using the system 

described in section 4.2 was reconstructed using the various algorithms. The dimensions of all 

reconstruction images were 2.5 cm 2.5 cm on a grid of 512 512 pixels.  
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In the first example, we present the results obtained for the nearly full-view imaging geometry 

(Figure 4.2(a)). Four reconstructions in Figure 4.5(a-d) were obtained using Tik-Lap, TV, L1 and 

TV-L1, respectively. Figure 4.5(e)-(h) show a magnification of the image in the yellow region of 

Figure 4.5(a)-(d). The reconstruction obtained using TV-L1 is sharper and has weaker streak 

artifacts and less noise than the other three reconstructions. Figure 4.5(i) shows the full-width-at-

half-maximum (FWHM) of the blood vessel taken over the dashed lines in Figure 4.5(e)-(h): 361 

µm for Tik-Lap, 300 µm for TV, 295 µm for L1 and 308 µm for TV-L1. Applying L1 sharpens 

the blood vessel, while the additional application of TV suppresses spurious noise-like texture.  

 

Figure 4.3 Simulation reconstructions in nearly full-view performed using (a) Tik-Lap, (b) TV, 

(c) L1 and (d) TV-L1. (taken from [64]) 
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Figure 4.4 Simulation reconstructions in limited-view performed using (a) Tik-Lap, (b) TV, (c) 

L1 and (d) TV-L1. (taken from [64]) 

Next we analyzed the case of limited-view imaging geometry (Figure 4.2(b)), for which we 

generated the dataset by discarding half the projection data. Comparison of the four 

reconstructions [Figure 4.6(a-d)] shows that, as in the nearly full-view case, TV-L1 gives a 

sharper image with weaker streak artifacts. The reconstructions are compared quantitatively in 

section 4.7. 
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Figure 4.5 Reconstructed cross-sectional mouse images obtained from nearly full-view 

projection data using (a) Tik-Lap, (b) TV, (c) L1 and (d) TV-L1. Yellow regions in panels (a)-(d) 

are shown as zoomed images in panels (e)-(h). The FWHM values of the vessel along the dashed 

line in panels (e)-(h) are compared in panel (i). (taken from [64]) 
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Figure 4.6 Reconstructed cross-sectional mouse images obtained from limited-view projection 

data using (a) Tik-Lap, (b) TV, (c) L1 and (d) TV-L1. (taken from [64]) 

4.7 Evaluation 

The regularization parameters used for the simulations and experiments are listed in Table 4.1. 

To obtain a fair comparison, the same stopping criterion was used in all reconstructions, 

including Tik-Lap. The iteration number and the reconstruction time for each case are shown in 

Table 4.2. 
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Table 4.1 Regularization parameters used during reconstructions. (taken from [64]) 

  

Tik-Lap TV L1 TV-L1 

      1
  2

  

Simulation 

Full view 61 10  54 10  52 10  54 10  52 10  

Limited view 63 10  56 10  61 10  56 10  61 10  

Experimental 

Full view 69 10  51 10  55 10  51 10  55 10  

Limited view 71 10  51 10  56 10  51 10  56 10  

Table 4.2 Iteration number and processing time for reconstructions. (taken from [64]) 

Dataset Geometry 

Iteration number Reconstruction time [s] 

Tik-Lap TV L1 TV-L1 Tik-Lap TV L1 TV-L1 

Simulation 

Full view 51 98 101 100 130 467 479 487 

Limited view 80 132 129 131 100 398 401 406 

Experimental 

Full view 49 80 82 81 105 379 392 400 

Limited view 76 122 119 120 86 359 360 367 
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Table 4.3 Quantitative evaluation of reconstructions. (taken from [64]) 

Dataset Geometry Quality parameter Tik-Lap TV L1 TV-L1 

Simulation 

Full view 

RMSD 0.0528 0.0463 0.0672 0.0393 

SNR 23.46 24.40 23.52 26.41 

CNR 16.73 17.31 13.44 20.49 

Limited view 

RMSD 0.2452 0.2281 0.2626 0.2218 

SNR 7.01 9.26 7.91 9.74 

CNR 2.90 3.31 2.66 3.80 

Experiment 

Full view 

SNR 7.37 8.44 8.68 8.82 

CNR 2.94 4.55 4.36 4.89 

Limited view 

SNR 5.30 5.20 5.34 5.77 

CNR 2.35 3.00 2.62 3.16 

 

Quantitative analysis comparing the reconstructions involved three metrics (Table 4.3). RMSD 

calculates the difference between the reconstructed images and the original image in the 

simulations. The other two metrics, SNR and contrast-to-noise ratio (CNR), were analyzed 

because the original image in the experimental data was unknown. In all cases, the target region 

was the entire mouse body part, and the surrounding area was defined as background. RMSD is 

defined as 
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where 1

nu  and 2

nu  are the thn  pixel value of the two images 1
u  and 2

u , and N  is the total pixel 

number of the image. SNR is defined as 
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where ( )tA  and ( )bA  are the root-mean-square amplitudes of the target and background regions. 

CNR is defined as 
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where 
( )t

u  and 
( )b

u  are the mean values for the target and background regions, and ( )b  is the 

variance in the background region. 

4.8 Discussion and conclusion 

In this chapter we show that a model-based approach combined with a sparsity-based inversion 

scheme can significantly enhance multi-scale cross-sectional optoacoustic images. The inversion 

algorithm combines TV and L1 cost functions, and relies on a sparse representation of the 

reconstructed images in an alternative basis (e.g wavelets). Previous work has shown that this 

approach can reduce projection density while preserving image quality in the case of vasculature 

imaging. Such images contain relatively simple structures on a single scale. The current work 

demonstrates the usefulness of sparsity-based inversion for highly detailed, multi-scale images.  

Here, a few points are worth noticing during the reconstruction process to achieve good results. 

First, in the optimization process of the TV-L1 method with gradient descent, two regularization 

parameters 1
0   and 2

0  —representing the weight of TV term and L1 term regularization 

item, respectively—need to be determined appropriately. Over-regularization in the TV term 

may lead to cartoon-like images lacking texture; over-regularization in the L1 term may lead to 

image distortions common in lossy image compression (compression artifacts). On the other 

hand, if their proportions to the objective function are too small, their support would become 



4 Sparsity-based acoustic inversion in cross-sectional multi-scale optoacoustic imaging 

64 

weak. Unfortunately, until now, there is no general method to effectively compute the optimal 

values of two regularization parameters. In our simulations and experiments in this chapter, the 

regularization parameters of TV-L1 in Table 4.1 are determined by manually trying with 

different combinations and choosing the best one. The regularization parameters of TV method 

or L1 method are the same as the same as the corresponding term of TV-L1 method. This 

comparison way is only to show the advantage of TV-L1 framework can combine TV method 

and L1 method. Setting one of the regularization parameters in TV-L1 method as zero will turn 

TV-L1 method as TV method or L1 method. Secondly, several other issues may also affect the 

reconstructed image quality, including the line search method determining the step size to update 

the reconstruction in each iteration, the sparsity of the true reconstruction, and the choice of the 

sparse transform method. 

TV-L1 inversion was tested for numerically simulated as well as experimental data in cross-

sectional imaging geometries with 270º and 135º angular coverage. The results were compared to 

Tik-Lap inversion, TV inversion and L1 inversion with quantitative metrics shown in Table 4.3. 

In the numerical simulations, TV-L1 yielded images with lower RMSD and higher SNR and 

CNR with respect to the original image than did Tik-Lap methods. In the reconstructions from 

experimental data, TV-L1 led to sharper images with weaker streak artifacts than the other three 

methods. At the same time, TV-L1 took 3- to 4-fold longer than Tik-Lap with all simulated and 

experimental datasets as shown in Table 4.2.  

In summary, the results obtained in this chapter indicate that TV-L1 is a useful tool for 

enhancing detailed, multi-scale cross-sectional images. TV-L1 does take longer than Tik-Lap, 

but the reconstruction time remains acceptable, especially in light of the high resolution of the 

reconstructed 2D images. Reconstruction times may be improved by relaxing the stopping 

criterion, or preferably by executing the algorithm on a graphics processing unit.  
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5 Three-dimensional optoacoustic 

reconstruction using fast sparse 

representation 

Optoacoustic tomography based on insufficient spatial sampling of ultrasound waves leads to loss of 

contrast and artifacts on the reconstructed images. Compared to reconstructions based on L2-norm 

regularization, sparsity-based reconstructions may improve contrast and reduce image artifacts but at a 

high computational cost, which has so far limited their use to 2D optoacoustic tomography as shown in 

chapter 4. In this chapter, a fast sparsity-based reconstruction algorithm is proposed for 3D optoacoustic 

tomography, based on gradient descent with Barzilai-Borwein line search (L1-GDBB). Using simulations 

and experiments, we show that L1-GDBB offers 4-fold faster reconstruction than previously reported L1-

norm regularized reconstruction based on gradient descent with backtracking line search. Moreover, the 

new algorithm provides higher-quality images with fewer artifacts than non-sparsity-based L2-norm 

regularized reconstruction and back-projection reconstruction. 

Some of the material in this chapter has been presented in the following publication in a very 

similar or identical form to the text in this chapter:  

 “Three-dimensional Optoacoustic reconstruction using fast sparse representation” by Yiyong 

Han, Lu Ding, Xose Luis Dean Ben, Daniel Razansky, Jaya Prakash, Vasilis Ntziachristos, 

Optics letters, Vol. 42, Issue 5, pp. 979-982 (2017)  
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5.1 Motivation 

Tomographic reconstruction is often hampered by incomplete or insufficient data, and the selection of 

reconstruction algorithm can make a substantial difference in final image quality. In optoacoustic 

tomography, ultrasound waves are generated in a three-dimensional (3D) region and further propagate in 

all directions [4]. Thereby, the optoacoustic detector(s) should ideally collect sufficient pressure signals to 

accurately map the entire ultrasound wavefront surrounding the imaged sample [10]. However, spatial 

constraints in currently available optoacoustic systems usually limit the range of accessible projection 

angles, consequently leading to artifacts and loss of resolution and contrast in the reconstructed images. 

For example, it has been shown that streak-type artefacts associated with sparse acquisition are clearly 

visible in the cross-sections of the reconstructed 3D images when using back-projection algorithms or 

iterative inversion methods based on L2-norm regularization [34], [74]. 

Sparsity-based iterative image reconstruction algorithms using L1-norm regularization are known to 

mitigate artifacts and hence enhance the CNR of images [76]. In 2D optoacoustic imaging, sparsity-based 

reconstruction generates better images with fewer artifacts [36], [77] than reconstruction based on the 

LSQR algorithm with L2-norm regularization (L2-LSQR) [64], [67]. Typically, 2D sparsity-based 

reconstruction with L1-norm regularization is carried out based on gradient descent with backtracking 

line search (L1-GDBT) [64], [67], [77], in which the sparsity transformation is carried out using the Rice 

wavelet toolbox [6, 8-10]. These approaches are inadequate for 3D optoacoustic imaging. The Rice 

wavelet toolbox restricts the reconstructed image in 2D with a size of 2 2N N , where N  is a positive 

integer. However, the backtracking line search algorithm employed in L1-GDBT involves several matrix-

vector multiplications at each iteration, making the entire process computationally burdensome and 

therefore impractical for 3D optoacoustic imaging.  

As optoacoustic systems collecting 3D information become available [78], it is necessary to develop fast 

and accurate sparsity-based algorithms for 3D optoacoustic reconstructions. Although we have achieved 

real-time BP reconstruction with GPU implementation [79], a more accurate 3D model-based iterative 

reconstruction is still needed for better visualization and subsequent multispectral analysis [80]. With the 

benefit of a multi-level wavelet decomposition (and reconstruction) for 2D and 3D images of any size, we 

propose a fast 3D sparsity-based optoacoustic reconstruction method based on gradient descent with 

Barzilai-Borwein line search and L1-norm regularization (L1-GDBB). Much like L2-LSQR, L1-GDBB 
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requires only two matrix-vector multiplications at each iteration [81]. We hypothesized that computing 

the gradient step size analytically at each iteration would make L1-GDBB faster than L1-GDBT [64], 

[67], [77]. Here we compare the performance of BP, L1-GDBB, L2-LSQR and L1-GDBT in simulations 

and experiments, and we provide evidence of the advantages of L1-GDBB over the other three methods. 

5.2 3D optoacoustic imaging system with spherical focused array 

The 3D sparsity-based reconstruction is proposed for the 3D optoacoustic imaging system shown in 

Figure 5.1, which utilizes a hand-held probe design with a custom-made two-dimensional array 

(Imasonic SaS, Voray, France) [78]. The detecting array consists of a 256-element ultrasound transducer 

array (UTA) having a spherical surface with a radius of 40 mm and covering a 90°-span of projection 

angles. The individual transducer elements have a size of ca. 3 mm3 mm, a central frequency of 4 MHz 

and a -6 dB bandwidth of 100%. A tunable (690–900 nm) OPO laser (Phocus, Opotek Inc., Carlsbad, CA) 

is used for illumination with short laser pulses (<10 ns) and a repetition rate of 10 Hz. The pulsed laser is 

delivered to the object through a fiber bundle (CeramOptics GmbH, Bonn, Germany) into a hole at the 

center of the detection array. A transparent polyethylene membrane is used to enclose the detection 

surface while the volume between the membrane and the transducer surface is filled with water for 

acoustic coupling. Raw optoacoustic data are simultaneously sampled at 40 MHz with a custom-made 

data acquisition system (Falkenstein Mikrosysteme GmbH, Taufkirchen, Germany). 

 

Figure 5.1 Layout and color photograph of the hand-held MSOT probe for 3D imaging. (taken 

from [78]) 
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5.3 Method 

In optoacoustic imaging, the simplified discretized BP implementation takes the form [79] 
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ir
r r   (5.1) 

where ( )ju r  is the image to be reconstructed (initial increase in pressure) at position 
j
r , ( , )i ijp tr  

is the optoacoustic pressure detected at point 
ir  and time | | /ij i jt c r r , and c  is the speed of sound. 

In 3D model-based iterative reconstruction, the forward model leads to a discrete-to-discrete 

linear transformation from reconstructed image z  to the detected pressure signals p  [34], 

defined by 

 3D
p M z  , (5.2) 

where p  is the optoacoustic pressure at a set of points and times, 3DM  is the 3D forward model 

matrix and z  is the image to be reconstructed (initial increase in pressure). The reconstructed 

image can be obtained by solving the following minimization problem with the L2-LSQR 

method [82]: 

  2 2
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z

p M z z z   (5.3) 

where 0   is the regularization parameter. An alternative approach to solve the inversion of Eq. 

(5.2) by sparse representation is [64], [67], [77] 
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where 0   is the regularization parameter and Φ  is the sparsity transform operator. If v Φz  

represents the solution in a sparsity domain, then Eq. (5.4) can be rewritten as 
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where 1 -
Η MΦ . Eq. (5.5) can be solved efficiently using L1-GDBB (Algorithm 5.1). In the 

present study, Φ  was defined to be the two-level Daubechies-4 wavelet transform [36], [64]. 

Algorithm 5.1. Sparsity-based reconstruction using gradient descent with Barzilai-Borwein line 

search  

 

 

L1-GDBT is similar to the L1-GDBB described in Algorithm 5.1, except that Step 3 is replaced 

with the following: 

Set 1
i

t  , 

while (
T

i i i i i i i
f t f t     (v v ) (v ) v v ), 

i i
t t , 

end 

where  0 0 5 , .  and  0 1  ,  are backtracking line search parameters [75]. In each L1-GDBT 

iteration, the backtracking line search stops only when the objective function decreases. As a 

Step 1: Initialize iteration variables 1i   and 1 0v , set maximum iteration number max Iter  and 

stopping criterion  . 

Step 2: Calculate the gradient of the objective function ( )if v  and update part of the solution 

( ) ( )i if  v v . 

Step 3: If 1i  , set 1
1t  . Otherwise  choose step size 

it  via Barzilai-Borwein line search: 

    2

1 1 12

T

i i i i i i i
t

  
    v v / v v v v .  

Step 4: Update the solution with    1

1 ,0i i i it

   v Φ max Φ v v . 

Step 5: Check the stopping criterion. If   1 2 2 2
/i i p    p Hv p Hv  or maxi Iter , go 

to next step; otherwise, 1i i   and go to Step 2. 

Step 6: Transfer the final reconstruction back to the image domain. 1z Φ v . 
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result, “ i i
t t ” operation in backtracking line search might execute several times, at the cost of 

several time-consuming matrix-vector multiplications. Indeed, the step size in L1-GDBB is 

approximated by a formula reflecting the solutions from the previous and current iterations as 

well as the gradient of the objective function (Step 3 in Algorithm 5.1). Only two matrix-vector 

multiplications are needed for each L1-GDBB iteration or each L2-LSQR iteration, which should 

make them much faster than L1-GDBT.  

5.4 Simulation 

The numerical and experimental performance of L1-GDBB was compared with BP, L1-GDBT 

and L2-LSQR. In the simulations, synthetic signals were analytically generated for five spherical 

absorbers with an absorption distribution given by a truncated parabolic function [28] in a region 

of interest (ROI) measuring 8×8×8 mm3 (81×81×81 voxels), as shown in Figure 5.2(a-b). 

The radius of the absorbers was set to 300 m , and they were positioned at the following 

coordinates (in mm): (0, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1) and (0, 0, 1) (Figure 5.2(b)). The 

simulated pressure signals were sampled at 281 time points, and supplemented with white 

Gaussian noise at SNR levels (in dB) of 20, 10 and 0. The simulated data were then 

reconstructed in Matlab on a 2x Intel Xeon DP X5650 (6x 2.67 GHz) workstation with 144 GB 

of RAM. Regularization parameters were determined using the L-curve method [44], and a 

stopping criterion of 
51 10    served as the criterion of convergence for all three 

reconstruction methods. All reconstructions were normalized to the maximum value.  

Figure 5.2(c) shows the maximum intensity projection (MIP) of the original data as well as 

reconstructions using BP, L2-LSQR, L1-GDBT and L1-GDBB in the x-y plane (top view) and y-

z plane (side view) at a noise level of 0 dB. Figure 5.2(c) clearly shows that the CNR of the 

images is enhanced with sparsity-based reconstruction methods. RMSDs between the theoretical 

image and reconstructions at a noise level of SNR = 0 dB were calculated as 0.0414, 0.0203, 

0.0175 and 0.0174 for the BP, L2-LSQR, L1-GBDT and L1-GDBB, respectively. These RMSDs 

varied negligibly for different noise levels and for the noiseless case. Reconstruction times (in 

seconds) were 2.5, 27, 224, and 50 for BP, L2-LSQR, L1-GBDT and L1-GDBB, respectively. 
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Figure 5.2 Simulation results of the 3D optoacoustic imaging system. (a) 3D optoacoustic 

tomography geometry tested in simulations and experiments. (b) Sketch of five spherical 

absorbers with truncated parabolic absorption. (c) MIP results from the original data, and 

reconstructions using BP, L2-LSQR, L1-GDBT or L1-GDBB at a noise level of 0 dB. 

Reconstructions are shown in the x-y and y-z planes. (taken from [83]) 

Figure 5.3 illustrates the convergence performance of L2-LSQR, L1-GDBT and L1-GDBB in the 

simulation (at a noise level of 0 dB). Figure 5.3(a) and (b) show the variations in the RMSD and 

objective function ( )f v  over 20 iterations, while Figure 5.3(c) and (d) show the corresponding 

CPU times. The L2-LSQR method converged in 4 iterations over 27 s. The non-monotonic 

behavior of RMSD in the case of L2-LSQR illustrates the inability of this algorithm to deal with 

incomplete data. The L1-GDBB method converged in 10 iterations over 50 s, while the L1-

GDBT method converged in 20 iterations over 224 s. As expected, L1-GDBB converged much 

faster than L1-GDBT.  
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Figure 5.3 Comparison of convergence performance of simulated reconstructions at a noise level 

of 0 dB using L2-LSQR, L1-GDBT or L1-GDBB. Variations in RMSD and objective function 

are depicted as a function of (a-b) iteration number and (c-d) CPU time. (taken from [83]) 

Figure 5.4(a) shows two sets of slices (single plane) of the original data in planes of z=0 (top row) 

and y=0 (bottom row), as well as the corresponding reconstructions obtained using BP, L2-

LSQR, L1-GDBT or L1-GDBB. Comparison of the two trapezoidal regions within dashed lines 

in the reconstructions generated using L2-LSQR, L1-GDBT or L1-GDBB shows that L1-norm 

based regularization methods give far fewer artifacts than L2-LSQR. This corroborated the MIP 

results in Figure 5.2(c). Figure 5.4(b) shows the line profiles of the original data and three 

reconstructions along Lines 1 indicated in Figure 5.4(a). Comparison of the line profiles of Line 
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1 in Figure 5.4(b) indicates that L1-GDBT and L1-GDBB generate more accurate 

reconstructions than BP and L2-LSQR. 

 

Figure 5.4 Single slices of original data and reconstructions generated using BP, L2-LSQR, L1-

GDBT or L1-GDBB at a noise level of 0 dB. (a) z=0 plane (top row) and y=0 plane (bottom 

row). (b) Line profiles of the original data and four reconstructions along Line 1 in (a). (taken 

from [83]) 
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5.5 Experiments 

To verify and extend these simulations, we compared the performance of BP, L2-LSQR, L1-

GDBT and L1-GDBB when the setup [78] described above was used to image the superficial 

palmar arch vessels of a healthy volunteer at a wavelength of 820 nm. The reconstruction region 

was 10×10×6.7 mm3 with a voxel grid of 150×150×100. The acoustic signal was sampled at 251 

time points for subsequent reconstructions. Figure 5.5(a-b) show MIP results from the side and 

top views; the regions enclosed by dashed lines in Figure 5.5(b) are shown as zoomed-in views 

in Figure 5.5(c). Comparison of the three reconstructions clearly indicates that both L1-GDBT 

and L1-GDBB generate fewer artifacts and higher CNR than BP and L2-LSQR. To assess this 

quantitatively, we calculated the SNR and CNR for the target region in dashed boxes labeled “T” 

and the respective background region in solid-line boxes labeled “B” in Figure 5.5(a-b). SNR 

was calculated as the ratio of root-mean-square amplitude values of the target region and 

background region (in dB). CNR was calculated as the mean value difference between target 

region and background region, divided by the standard deviation of the background region. The 

SNR values were 10.7, 20.8, 22.2 and 25.6 for BP, L2-LSQR, L1-GBDT and L1-GDBB, 

respectively. The corresponding CNR values were 3.2, 12.2, 16.7 and 20.9. These ratios confirm 

that sparsity-based reconstructions methods are superior to L2-LSQR. The reconstruction times 

(in seconds) were 10, 158, 980, and 245 for BP, L2-LSQR, L1-GBDT and L1-GDBB, 

respectively. 

5.6 Discussion and conclusion 

Previous work has used the Barzilai-Borwein scheme in optoacoustic imaging, but only in 2D 

geometries [84], [85]. In one study [85], the Barzilai-Borwein scheme was used along with 

augmented Lagrangian-type minimization, while in another study [84], the Barzilai-Borwein 

scheme was implemented in reconstruction based on a block-sparse discrete cosine transform 

model. Here we perform 3D sparsity-based reconstruction using a gradient descent with Barzilai-

Borwein approach. Sparsity-based image reconstruction performs better in 3D geometries than in 

2D geometries because the 3D reconstructed image is more compressible. More advanced 

reconstruction approaches are necessary in 3D geometries, particularly in cardiovascular and 
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neurological imaging, which may help reduce the artifacts arising from insufficient data (as 

shown in Figure 5.2, Figure 5.4 and Figure 5.5). 

 

Figure 5.5 Reconstructions of experimental data using BP, L2-LSQR, L1-GDBT and L1-GDBB. 

(a-b) MIP results (side and top views) of reconstructions of experimental data using BP, L2-

LSQR, L1-GDBT and L1-GDBB. (c) Zoomed-in images of the top-view MIP region enclosed in 

the dot-dashed box in (b). The corresponding region for each reconstruction is shown, even 

though the box is drawn only for BP. The regions labeled “T” and “B” served as target and 

background regions, respectively, for calculating SNR and CNR. (taken from [83]) 

Taken together, our results indicate that the two sparsity-based methods perform well and generate far 

fewer artifacts and higher CNR than BP reconstruction and commonly-used iterative reconstruction 

approaches based on L2-norm regularization. Specifically, both L1- GDBT and L1-GDBB performed 

better than BP and L2-LSQR in simulation and experiments, and L1-GDBB showed a 4-fold faster 

computational time than L1-GDBT. The computational complexity at each iteration of the L1-GDBT and 
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L1-GDBB algorithms are  2

itN N   and  N , where N  represents the size of image and itN  is the 

number of backtracking line search iterations. This substantial gain in reconstruction quality with L1-

GDBB with respect to L2-LSQR comes with only a moderate 55% increase in CPU time. Short 

reconstruction time is essential in practical applications, particularly when processing large datasets, such 

as in biomedical research. Image reconstruction can be further accelerated through parallel 

implementations of the algorithms in a graphics processing unit (GPU). For example, efficient GPU 

implementation of the matrix-vector multiplications in iterative inversions can significantly accelerate L2-

LSQR-based reconstruction, even allowing real-time reconstruction with a 2D model [86]. Thereby, 

similar implementations for a 3D optoacoustic model combined with the L1-GDBB method described 

here may lead to a highly practical and accurate approach in the future. 

The L1-GDBB method can become especially beneficial in the case of incomplete tomographic 

data. Reasons for this incompleteness may be the restricted accessibility to surrounding positions 

of the sample or technological constraints limiting the number of channels that can be acquired 

per laser pulse, e.g. in dynamic imaging applications. A particularly important example of 

insufficient data is limited-view acquisition, when acoustic signals are collected only over a 

limited angle. Limited-view acquisition is particularly important for optoacoustic clinical 

translation as hand-held or endoscopic probes cannot fully enclose the imaged tissue. In this case, 

proper regularization can also enhance the CNR of the images [74] and reduce sharp artifacts 

corresponding to the edges of the detection arc [87]. Even with good regularization, structures in 

certain orientations may not be visualized well in limited-view acquisitions, which can be 

corrected using other approaches [88]–[90]. 

In conclusion, the reconstruction approach suggested here can greatly impact the resolution, 

contrast and overall quality of the optoacoustic images rendered with currently-used 3D 

tomographic systems. The proposed method may become the method of choice in many practical 

cases.  
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6 Data optimization in frequency domain 

optoacoustic tomography 

6.1 Motivation 

Frequency domain optoacoustic tomography (FD-OAT), in which the sample is illuminated with 

an intensity-modulated CW laser, can be used instead of time domain optoacoustic tomography 

(TD-OAT), in which the object is illuminated with a pulsed laser [16], [91]–[93]. FD-OAT has 

several advantages over TD-OAT. First, the use of CW lasers makes FD-OAT systems more 

cost-effective and compact than TD-OAT systems. Second, FD-OAT achieves adequate SNR 

using much lower laser energies and coherent processing with high duty cycles. TD-OAT and 

FD-OAT have been compared in terms of SNR [98] and maximum depth [17]. 

Theoretical advances in FD-OAT [94], [95] have led to the implementation of several FD-OAT 

systems in the last decade [16], [91], [93], [96], [97]. For example, FD-OAT systems have been 

successful in phantom and animal experiments utilizing a frequency-swept (chirped), intensity-

modulated CW laser and coherent frequency domain signal processing technology. 

The reconstruction of FD-OAT images can be performed using an analytical solution such as 

back-projection [99] or using model-based reconstruction [37]. Usually, model-based 

reconstruction is superior; for example, it generates fewer negative values and can take into 

account impulse responses. However, the specific impacts of various system parameters on FD-

OAT reconstructions have not been studied yet [37]; these parameters include the total number 

of projections or modulation frequencies required to avoid aliasing artifacts. Exploring how these 

parameters influence FD-OAT systems is important for optimizing the geometry of these 

systems, and it may also be useful for TD-OAT. 
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In this chapter, model-based FD-OAT reconstruction is explored using measured optoacoustic 

amplitude and phase at multiple discrete frequencies. The Nyquist-Shannon theorem is used to 

identify a linear relationship linking the number of projections, reconstruction dimensions/field 

of view, the number of modulation frequencies and the speed of sound for FD-OAT 

reconstruction. This formula is validated in numerical simulations. Another formula is derived 

indicating the minimum number of frequencies needed for adequate reconstruction. Finally 

condition number of the forward model matrix is studied to reveal the influence of the 

parameters in FD-OAT. 

6.2 Method 

Model-based reconstruction in FD-OAT is based on the equation [36], [37] 

     p M z  ,  (6.1) 

where  p  is the vector of the measured complex signals and z  is the vector denoting the 

object.  M  is the forward model matrix, which is given as 
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where 1i   , n
  is the angular frequency, c  is the speed of sound, ,p q

r  is the Cartesian 

coordinates, and m
r  is the transducer position.  

The complex forward model matrix  M  and measurements  p  can be re-expressed in real 

number format for the following inversion: 

     p M z  , (6.3) 
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where           p Re p ;Im p ,           M Re M ;Im M ,  Re  and 

 Im  are the real and imaginary parts of the matrix. 

The inversion of Eq. (6.3) can be achieved by traditional Tikhonov regularization using 
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M z p z   (6.4) 

where   is the regularization parameter. 

6.3 Total number of projections needed to avoid aliasing artifacts 

 

Figure 6.1 Projection parameters that influence FD-OAT reconstruction. (a) Detection geometry. 

(b) One full phase cycle is needed to uniquely differentiate each pixel. 

The CW laser at a modulated frequency of f  can extract an object of size /c f , where c  is the 

speed of sound of the object in the medium. Because signal with a modulation frequency f  is 

bipolar, one full phase cycle is needed to within an object of size / 2c f  (Figure 6.1). Based on 

the Nyquist-Shannon theorem, the maximum interval between two neighboring projections at the 

edge of the reconstruction dimension ( D ) should not be greater than / 2c f :  

 
2 2

D c

f
 •    (6.5) 
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where   is the detection angle interval. Then the maximum detection angle interval max
  needed 

for a unique reconstruction is given by 

 max /c Df    (6.6) 

  

Figure 6.2. FD-OAT geometry in the frequency domain. 
maxk  is the largest angular spacing 

between two neighboring projections, 
rk is the radial sampling interval, 

maxf  is the maximum 

frequency and c  is the speed of sound. 

As a result, the minimum total number of projections 
_minP

N  for 360° detection geometry in FD-

OAT shows the following linear relationship with reconstruction dimension D , modulation 

frequency f  and speed of sound c : 

 
_min max

2 2
P

N Df c   / /  . (6.7) 

The maximum detection angle interval max
  to avoid aliasing artifacts can also be explained in 

the frequency domain [100]–[102]. If the radial sampling interval 
rk  is sufficient to reconstruct 

S  pixels along the reconstruction dimension D , then the largest angular spacing 
maxk  
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between two neighboring projections should not be greater than the radial k-space sampling 

interval 
rk : 

 max
max max

1
r

f
k k

c D
   •      (6.8) 

Thus the maximum detection angle interval max
  is 

 max

max

c

D f
 

•
 . (6.9) 

Applying Eq. (6.9) to the individual modulation frequency in FD-OAT yields Eq. (6.6). 

6.4 Validation of the total number of projections needed at a 

particular modulation frequency 

The prediction in Eq. (6.7) was validated using the following simulation. A sphere of diameter 

400 µm is positioned at the edge of the FOV with a diameter of 12 mm [Figure 6.3(a)]. The edge 

is the most difficult part of the image to reconstruct. We investigate the minimum number of 

projections needed to obtain a reconstruction without aliasing over 360º at a single modulation 

frequency f =2.6 MHz. Reconstructions are performed using projections corresponding to 20%, 

50% and 100% of 
_minP

N  based on Eq. (6.7) [Figure 6.3 (b-d)]. We also use the following 

criterion to get 
min

P : 

 
2 2

1 12 2
Recon Recon / Reconp p p     , (6.10) 

where Reconi  is the reconstruction with total number of projections i , and   is set to 32 10 . 

Figure 6.3(e) shows the criterion as a function of projection number, and Figure 6.3(f) shows the 

maximum intensity of the reconstructed image as a function of projection number. 
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Figure 6.3 Validation of the predicted minimum number of projections needed to avoid aliasing 

artifacts during FD-OAT reconstruction. (a) Original image. (b-d) Reconstructions with 

projection numbers equal to 20%, 50% or 100% of the required projections at the modulation 

frequency of 2.6 MHz and reconstruction dimension of 12 mm. (e) Criterion as a function of 

projection number. (f) Maximum intensity of the reconstruction as a function of projection 

number. 
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6.5 Total number of modulation frequencies needed for even 

sampling 

A total number of modulation frequencies FN  is generated with an even sampling (ES) pattern 

over the bandwidth  max0, f . The individual modulation frequency ES

if  is given as [37] 

 
ES max

i

F
f i f N • /  . (6.11) 

To ensure a unique reconstruction, the total number of independent measurements should not 

more than twice of the total number of pixels. The sum of projections [
1,..., FP P ] at the 

F
N

modulation frequencies can be described as  

  
2

max
1 2 1

max

2 2
... ... 2*

2 4 / 2

F
F F

f ND D D
P P P f f

c c f c

    
       •   

 
 . (6.12) 

In this case, the minimum total number of modulation frequencies 
_ minFN  for the reconstruction 

dimension ( D ) with the highest frequency maxf  should be  

 _ min max2 /FN D f c •  . (6.13) 

6.6 Analysis the measurements optimization with condition number 

of forward matrix  

The condition number of the forward model matrix in FD-OAT indicates the ability of how good 

the original image can be reconstructed [37]. Using simulations, we investigate how 

reconstruction quality changes when FN  and PN  fall below the respective 
_ minFN  and 

_minP
N  

thresholds derived using the Eq. (6.13) and Eq. (6.7). This validates our mathematical approach, 

and it also provides a rational basis for assessing reconstruction quality when the numbers of 

projections and/or modulation frequencies are too few. Simulations were performed using the 

following parameters: detection angle, 180°; reconstruction grid, 60  60; reconstruction 

resolution, 200 µm; and speed of sound, 1500 m/s. In this case, 
_ minFN  is 60, and 

_minP
N  for 
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individual modulation frequencies is chosen based on Eq. (6.7). Modulation frequencies evenly 

span the interval [
3.75

FN
-3.75] MHz based on the speed of sound and reconstruction resolution. 

The total number of frequencies FN  and total number of projections PN  are systematically 

reduced to assess the effects on condition number. Among projections [
1,..., FP P ], all projections 

for individual frequencies iP  > PN  are reduced to PN . Figure 6.4(a) shows the logarithm of 

condition number as a function of the ratios of frequency or projection number to their respective 

minimum thresholds. (The logarithm is taken because of the large range in condition numbers.) 

Figure 6.4(b) shows how the ratio of the total number of measurements measurementsN  to total 

number of pixels pixelsN  varies with the ratios of frequency or projection number to their 

respective minimum thresholds. 

 

Figure 6.4 (a) Map of the logarithm of condition number (CN) as a function of different numbers 

of projections and modulation frequencies. (b) Map of the ratio of total measurements to total 

pixels as a function of different numbers of projections and modulation frequencies. 

6.7 Discussion and conclusion 

In this chapter we explore the use of frequency domain model-based reconstruction to guide the 

setting of geometry parameters for FD-OAT systems. This approach may also be useful for time 

domain optoacoustic imaging. 
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Previous frequency domain optoacoustic imaging approaches defined a “global” projection 

number that was the same for all modulation frequencies within the frequency band. The 

approach proposed here, based on the Nyquist theorem, uses an equation that determines the 

minimum projection number separately for each frequency in the band, in order to ensure a 

unique reconstruction. This equation is validated with a numerical simulation for different 

frequencies and different reconstruction image sizes. This equation is validated in the case of 

noiseless data. In the presence of noise, the number of required projections may be greater than 

what the equation indicates.  

We also analyzed the influence of the number of frequencies sampled within a bandwidth on the 

resulting reconstruction. The minimum number of frequencies needed to achieve a unique 

reconstruction in FD-OAT can be calculated analytically. This approach is validated by 

computing the condition number of the frequency domain model matrix for different numbers of 

modulation frequencies within the bandwidth.  

The condition number of the frequency domain model matrix correlates with the robustness of 

the reconstruction to input error or noise. Figure 6.4(a) shows that when the modulation 

frequency number and projection number are both insufficient, the condition number is too high, 

indicating that it is impossible to get a unique reconstruction for the general case. Conversely, 

when the modulation frequency number and projection number are both sufficient, a unique 

reconstruction is possible in all cases. In situations when one or the other number is insufficient, 

the other parameter can be manipulated to compensate. Thus it may be useful to perform 

condition number analysis for FD-OAT in order to optimize the procedure when data limitations 

are likely. Such analysis may be useful even when sufficient frequencies and projections are 

available, since it can define the minimum dataset needed for adequate reconstruction, allowing 

data elimination for quality control reasons without jeopardizing the reconstruction.  
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7 Conclusion and outlook 

7.1 Conclusive remarks  

Reconstruction is an essential process for optoacoustic tomography. Accurate reconstruction 

permits visualization of complex anatomical structures, and it facilitates subsequent multispectral 

analysis. The present work introduced model-based acoustic inversion methods for various 

optoacoustic tomography systems.  

First, a method for accelerating optoacoustic reconstruction and performing system analysis 

using a wavelet-packet framework is proposed and tested with an optoacoustic system involving 

a single-element transducer. The spatial impulse response of the transducer is incorporated into 

the optoacoustic system model matrix for subsequent inversion. Transferring the model matrix 

and the optoacoustic signal into the wavelet domain significantly accelerates the reconstruction, 

which enables parallel TSVD inversion on a much smaller scale. In the event that the 

optoacoustic model matrix is too big for SVD analysis, the condition number can be calculated 

for smaller submatrices generated after wavelet packet decomposition.  

Next, a sparsity-based reconstruction is developed for a cross-sectional optoacoustic system with 

a focused transducer array. A cost function is used that includes the L1 norm of the image in 

sparse representation and a total variation term. The minimization process is implemented with 

gradient descent with backtracking line search. Model-based sparsity-based inversion performs 

better than conventional Tikhonov regularization and back-projection reconstruction for 

reconstructing numerical and experimental datasets involving full-view and limited-view 

geometries, giving sharper images and weaker streak artifacts. 
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Sparsity-based reconstruction is then adapted to 3D geometries, since ultrasound waves in 

optoacoustics propagate in all directions and reconstructed images are more compressible in 3D. 

To accelerate reconstruction, Barzilai-Borwein line search is used to determine analytically the 

step size for each iteration of gradient descent. The proposed method offers 4-fold faster 

reconstruction than the previously reported L1-norm regularized reconstruction based on 

gradient descent with backtracking line search. Moreover, the new algorithm provides higher-

quality images with fewer artifacts than the L2-norm regularized reconstruction and the back-

projection reconstruction. 

Finally, optoacoustic reconstruction is studied in the frequency domain. The Nyquist-Shannon 

theorem is applied to uncover a linear relationship among projection number, reconstruction 

dimensions, modulation frequency and speed of sound to obtain a unique reconstruction. .We 

also get a formula to get the minimum demand of the frequencies needed. Analysis of forward 

model matrix characteristics, e.g. condition number, which is typical in time domain 

optoacoustic tomography, is extended here to the frequency domain to reveal inherent 

reconstruction properties. 

7.2 Outlook and future directions 

One direction is to accelerate the reconstruction with the wavelet packet framework utilizing 

model matrix sparsity. Extending the 2D algorithm presented here to 3D will require overcoming 

several challenges. One is to reduce the memory of the large model matrix in 3D as much as 

possible before wavelet packet decomposition. Another is to deal with the expected complexity 

of inverting with wavelet packets in the case of limited-view geometry.  

Sparsity-based optoacoustic reconstructions are shown here to provide superior image quality 

over existing reconstruction algorithms. However, sparsity-based reconstructions in this thesis 

are implemented on a CPU and require a certain amount of computational time. Short 

reconstruction time is essential in practical applications, particularly for large datasets. Image 

reconstruction can be further accelerated through parallel implementations of the algorithms in a 

graphics processing unit (GPU). For example, efficient GPU implementation of the matrix-

vector multiplications in iterative inversions can significantly accelerate L2-norm based 

reconstruction, even allowing real-time reconstruction with a 2D model [86]. Therefore, similar 
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implementations for a 3D optoacoustic model combined with the sparsity-based method 

described here may lead to a tool that is both accurate and practical. Another direction is to study 

the random selection on projections under the sparsity-based reconstruction framework to reduce 

the measurements and reconstruction time. 

Finally, frequency domain optoacoustic tomography is analyzed here as an alternative to the 

same technique in the time domain. Frequency domain optoacoustic tomography offers the 

freedom of selectively exciting the object with a certain frequency band or even single 

frequencies, depending on absorber size (reconstruction image resolution). Sampling pattern is 

an interesting topic in frequency domain optoacoustic tomography reconstruction. In addition, 

frequency domain model-based reconstruction can be used to study sparsity-based reconstruction 

methods involving single modulation frequencies, which may be useful for understanding and 

improving time domain sparsity-based optoacoustic reconstruction. It may be possible to further 

improve frequency domain model-based reconstruction algorithms using fast Fourier 

transformation. 

 

 

 

 

 

 

 

 

 

 

 



7 Conclusion and outlook 

90 

 

 

 

 

 



 

91 

 

 

Publications list 

1. Yiyong Han, Lu Ding, Xosé Luis Deán Ben, Daniel Razansky, Jaya Prakash, Vasilis 

Ntziachristos. Three-dimensional optoacoustic reconstruction using fast sparse representation. 

Optics Letters 42(5), 979-982 (2017) 

2. Yiyong Han, Vasilis Ntziachristos, Amir Rosenthal. Optoacoustic image reconstruction 

and system analysis for finite-aperture detectors under the wavelet-packet framework. Journal of 

Biomedical Optics 21(1), 016002 (2016) 

3. Yiyong Han, Stratis Tzoumas, Antonio Nunes, Vasilis Ntziachristos, Amir Rosenthal. 

Sparsity-based acoustic inversion in cross-sectional multi-scale optoacoustic imaging. Medical 

Physics 42(9), 5444-5452 (2015) 

 



Publications list 

92 

 



 

93 

 

 

Bibliography 

[1] V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology.,” 

Nat. Methods, vol. 7, no. 8, pp. 603–614, 2010. 

[2] L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to 

Organs,” Science, vol. 335, no. 6075, pp. 1458–1462, Mar. 2012. 

[3] C. Li and L. V Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. 

Med. Biol., vol. 54, no. 19, pp. R59–R97, 2009. 

[4] P. Beard, “Biomedical photoacoustic imaging.,” Interface Focus, vol. 1, no. 4, pp. 602–31, 

2011. 

[5] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum., vol. 

77, no. 4, pp. 1–22, 2006. 

[6] D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral 

optoacoustic tomography of biomarkers.,” Nat. Protoc., vol. 6, no. 8, pp. 1121–29, 2011. 

[7] G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, 

and three dimensions,” Phys. Rev. Lett., vol. 67, no. 24, pp. 3384–3387, 1991. 

[8] Lihong V. Wang, Photoacoustic Imaging and Spectroscopy. Boca Raton, Florida: CRC 

Press, 2009. 

[9] Lihong V. Wang and Hsin i Wu, Biomedical Optics. Hoboken, New Jersey: John Wiley & 

Sons, 2007. 

[10] A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in Optoacoustic 

Tomography: A Review,” Curr. Med. Imaging Rev., vol. 9, no. 4, pp. 318–336, 2013. 

[11] J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photon. Rev., vol. 7, no. 5, pp. 

758–778, 2013. 



Bibliography 

94 

[12] J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics, vol. 2, 

no. 2, pp. 87–101, 2014. 

[13] V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral 

optoacoustic tomography (MSOT),” Chem. Rev., vol. 110, no. 5, pp. 2783–2794, 2010. 

[14] D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. 

Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent 

proteins in vivo,” Nat. Photonics, vol. 3, no. 7, pp. 412–417, 2009. 

[15] X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V Wang, “Noninvasive laser-induced 

photoacoustic tomography for structural and functional in vivo imaging of the brain.,” Nat. 

Biotechnol., vol. 21, no. 7, pp. 803–806, 2003. 

[16] S. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, “Frequency-domain 

photothermoacoustics: Alternative imaging modality of biological tissues,” J. Appl. Phys., 

vol. 105, no. 10, 2009. 

[17] S. a Telenkov and A. Mandelis, “Photothermoacoustic imaging of biological tissues: 

maximum depth characterization comparison of time and frequency-domain 

measurements.,” J. Biomed. Opt., vol. 14, no. 4, p. 44025, 2009. 

[18] R. A. Kruger, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. 

Phys., vol. 22, no. 10, p. 1605, 1995. 

[19] M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed 

tomography,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 71, no. 1, pp. 1–7, 

2005. 

[20] K. P. Koestli, M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward 

projection of optoacoustic pressure transients using fourier transform methods,” Phys. 

Med. Biol., vol. 46, no. 7, pp. 1863–72, 2001. 

[21] Y. Xu and L. V Wang, “Time reversal and its application to tomography with diffracting 

sources.,” Phys. Rev. Lett., vol. 92, no. 3, p. 33902, 2004. 

[22] P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, “Exact and approximative 

imaging methods for photoacoustic tomography using an arbitrary detection surface,” 

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 75, no. 4, pp. 1–10, 2007. 



Bibliography 

95 

[23] B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing 

acoustic media using time reversal,” Inverse Probl., vol. 26, no. 11, p. 115003, 2010. 

[24] A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based 

acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging, 

vol. 29, no. 6, pp. 1275–1285, 2010. 

[25] C. G. Hoelen and F. F. de Mul, “Image reconstruction for photoacoustic scanning of tissue 

structures.,” Appl. Opt., vol. 39, no. 31, pp. 5872–5883, 2000. 

[26] Y. Han, V. Ntziachristos, and A. Rosenthal, “Optoacoustic image reconstruction and 

system analysis for finite-aperture detectors under the wavelet-packet framework,” J. 

Biomed. Opt., vol. 21, no. 1, p. 16002, Jan. 2016. 

[27] A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion 

with arbitrary-shape detectors.,” Med. Phys., vol. 38, no. 7, pp. 4285–4295, 2011. 

[28] D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, 

“Modeling the shape of cylindrically focused transducers in three-dimensional 

optoacoustic tomography.,” J. Biomed. Opt., vol. 18, p. 76014, 2013. 

[29] K. Wang, S. A. Ermilov, R. Su, H. P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An 

imaging model incorporating ultrasonic transducer properties for three-dimensional 

optoacoustic tomography,” IEEE Trans. Med. Imaging, vol. 30, no. 2, pp. 203–214, 2011. 

[30] A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, 

“Model-based optoacoustic inversions with incomplete projection data,” Med Phys, vol. 

38, no. 3, pp. 1694–1704, 2011. 

[31] Y. Xu, L. V Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-

view thermoacoustic tomography.,” Med. Phys., vol. 31, no. 4, pp. 724–733, 2004. 

[32] X. L. Deán-Ben, R. Ma, A. Rosenthal, V. Ntziachristos, and D. Razansky, “Weighted 

model-based optoacoustic reconstruction in acoustic scattering media.,” Phys. Med. Biol., 

vol. 58, no. 16, pp. 5555–66, 2013. 

[33] X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Effects of small variations of speed 

of sound in optoacoustic tomographic imaging.,” Med. Phys., vol. 41, no. 7, p. 73301, 

2014. 



Bibliography 

96 

[34] X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate model-based 

reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Trans. 

Med. Imaging, vol. 31, no. 10, pp. 1922–1928, 2012. 

[35] X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of optoacoustic model-

based reconstruction using angular image discretization,” IEEE Trans. Med. Imaging, vol. 

31, no. 5, pp. 1154–1162, 2012. 

[36] J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic 

tomography,” IEEE Trans. Med. Imaging, vol. 28, no. 4, pp. 585–594, 2009. 

[37] P. Mohajerani, S. Kellnberger, and V. Ntziachristos, “Frequency domain optoacoustic 

tomography using amplitude and phase,” Photoacoustics, vol. 2, no. 3, pp. 111–118, 2014. 

[38] K. Wang, R. Su, A. a Oraevsky, and M. a Anastasio, “Investigation of iterative image 

reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol., vol. 57, 

no. 17, pp. 5399–5423, 2012. 

[39] F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book. London: 

Academic Press, 1990. 

[40] P. Laugier and G. Haïat, Bone Quantitative Ultrasound. Dordrecht: Springer Netherlands, 

2011. 

[41] B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-Space Propagation Models for 

Acoustically Heterogeneous Media: Application To Biomedical Photoacoustics.,” J. 

Acoust. Soc. Am., vol. 121, no. 6, pp. 3453–3464, 2007. 

[42] L. V Wang and X. Yang, “Boundary conditions in photoacoustic tomography and image 

reconstruction,” J. Biomed. Opt., vol. 12, no. 1, p. 14027, 2007. 

[43] K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-

transform image reconstruction and a detector with an anisotropic response.,” Appl. Opt., 

vol. 42, no. 10, pp. 1899–908, 2003. 

[44] P. C. Hansen, “The L-Curve and its Use in the Numerical Treatment of Inverse Problems,” 

Comput. Inverse Probl. Electrocardiology, ed. P. Johnston, Adv. Comput. Bioeng., vol. 4, 

pp. 119–142, 2000. 



Bibliography 

97 

[45] K. Wang, R. W. Schoonover, R. Su, A. Oraevsky, and M. A. Anastasio, “Discrete imaging 

models for three-dimensional optoacoustic tomography using radially symmetric 

expansion functions,” IEEE Trans. Med. Imaging, vol. 33, no. 5, pp. 1180–1193, 2014. 

[46] T. Jetzfellner, A. Rosenthal, K. H. Englmeier, A. Dima, M. N. A. Caballero, D. Razansky, 

and V. Ntziachristos, “Interpolated model-matrix optoacoustic tomography of the mouse 

brain,” Appl. Phys. Lett., vol. 98, no. 16, pp. 1–4, 2011. 

[47] C. Lutzweiler, X. L. Deán-Ben, and D. Razansky, “Expediting model-based optoacoustic 

reconstructions with tomographic symmetries.,” Med. Phys., vol. 41, p. 13302, 2014. 

[48] A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast 

multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics 

and biodistribution in multiple organs,” PLoS One, vol. 7, no. 1, p. e30491, 2012. 

[49] E. Herzog, A. Taruttis, N. Beziere, A. a Lutich, and D. Razansky, “Optical imaging of 

cancer heterogeneity with Multispectral,” Radiology, vol. 263, no. 2, pp. 461–468, 2012. 

[50] A. Buehler, M. Kacprowicz, A. Taruttis, and V. Ntziachristos, “Real-time handheld 

multispectral optoacoustic imaging.,” Opt. Lett., vol. 38, no. 9, pp. 1404–6, 2013. 

[51] J. Gateau, M. A. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional 

optoacoustic tomography using a conventional ultrasound linear detector array: whole-

body tomographic system for small animals.,” Med. Phys., vol. 40, no. 1, p. 13302, 2013. 

[52] A. Rosenthal, T. Jetzfellner, D. Razansky, and V. Ntziachristos, “Efficient framework for 

model-based tomographic image reconstruction using wavelet packets,” IEEE Trans. Med. 

Imaging, vol. 31, no. 7, pp. 1346–1357, 2012. 

[53] R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic 

tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express, vol. 

17, no. 24, p. 21414, Nov. 2009. 

[54] M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and 

characterization of an omnidirectional photoacoustic point source for calibration of a 

staring 3D photoacoustic imaging system.,” Opt. Express, vol. 17, no. 17, pp. 15228–

15238, 2009. 

[55] S. A. Mallat, A Wavelet Tour of Signal Processing. San Diego, California: Acadmic, 1998. 



Bibliography 

98 

[56] P. C. Hansen, “The truncated SVD as a method for regularization,” Bit, vol. 27, no. 4, pp. 

534–553, 1987. 

[57] W. W. Hager, “Condition Estimates,” SIAM J. Sci. Stat. Comput., vol. 5, no. 2, pp. 311–

316, 1984. 

[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: 

From Error Visibility to Structural Similarity,” IEEE Trans. Image Process., vol. 13, no. 4, 

pp. 600–612, Apr. 2004. 

[59] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-

curve for large discrete ill-posed problems,” J. Comput. Appl. Math., vol. 123, no. 1–2, pp. 

423–446, 2000. 

[60] M. Xu and L. V Wang, “Analytic explanation of spatial resolution related to bandwidth 

and detector aperture size in thermoacoustic or photoacoustic reconstruction.,” Phys. Rev. 

E. Stat. Nonlin. Soft Matter Phys., vol. 67, no. 5 Pt 2, p. 56605, 2003. 

[61] P. Burgholzer, J. Bauer-Marschallinger, H. Grun, M. Haltmeier, and G. Paltauf, 

“Temporal back-projection algorithms for photoacoustic tomography with integrating line 

detectors,” Inverse Probl., vol. 23, no. 6, pp. S65–S80, 2007. 

[62] V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V 

Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer 

with arc-array-transducer,” Proc. SPIE, vol. 3916, pp. 36–47, 2000. 

[63] S. Morscher, W. H. P. Driessen, J. Claussen, and N. C. Burton, “Semi-quantitative 

multispectral optoacoustic tomography (MSOT) for volumetric PK imaging of gastric 

emptying,” Photoacoustics, vol. 2, no. 3, pp. 103–110, 2014. 

[64] Y. Han, S. Tzoumas, A. Nunes, V. Ntziachristos, and A. Rosenthal, “Sparsity-based 

acoustic inversion in cross-sectional multiscale optoacoustic imaging,” Med. Phys., vol. 

42, no. 9, pp. 5444–5452, 2015. 

[65] D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing Photoacoustic Imaging based 

on random optical illumination,” Int. J. Funct. Inform. Personal. Med., vol. 2, no. 4, p. 

394, 2009. 

[66] X. Liu, D. Peng, W. Guo, X. Ma, X. Yang, and J. Tian, “Compressed sensing 



Bibliography 

99 

photoacoustic imaging based on fast alternating direction algorithm,” Int. J. Biomed. 

Imaging, vol. 2012, p. 206214, 2012. 

[67] Z. Guo, C. Li, L. Song, and L. V Wang, “Compressed sensing in photoacoustic 

tomography in vivo.,” J. Biomed. Opt., vol. 15, no. 2, p. 21311, 2010. 

[68] M. Sun, N. Feng, Y. Shen, X. Shen, L. Ma, J. Li, and Z. Wu, “Photoacoustic imaging 

method based on arc-direction compressed sensing and multi-angle observation,” Opt. 

Express, vol. 19, no. 16, p. 14801, 2011. 

[69] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed 

sensing for rapid MR imaging,” Magn. Reson. Med., vol. 58, no. 6, pp. 1182–1195, 2007. 

[70] L. Rudin S. Osher and E. Fatemi, “Nonlinear total variation based noise removal 

algorithms,” Phys. D, vol. 60, no. 1–4, pp. 259–268, 1992. 

[71] Y. Dong, T. Görner, and S. Kunis, “An iterative reconstruction scheme for photoacoustic 

imaging,” Preprint, pp. 1–15, 2011. 

[72] A. A. Oraevsky, K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, X. Pan, and L. 

V Wang, “Limited data image reconstruction in optoacoustic tomography by constrained 

total variation minimization,” Photons Plus Ultrasound Imaging Sens. 2011, vol. 7899, p. 

78993U–6, 2011. 

[73] L. Yao and H. B. Jiang, “Enhancing finite element-based photoacoustic tomography using 

total variation minimization,” Appl. Opt., vol. 50, no. 25, pp. 5031–5041, 2011. 

[74] L. Yao and H. Jiang, “Photoacoustic image reconstruction from few-detector and limited-

angle data,” Biomed. Opt. Express, vol. 2, no. 9, p. 2649, 2011. 

[75] S. Boyd and L. Vandenberghe, Convex optimization theory, vol. 25, no. 3. New York: 

Cambridge University Press, 2010. 

[76] E. Y. Sidky, C.-M. Kao, and X. Pan, “Accurate image reconstruction from few-views and 

limited-angle data in divergent-beam CT,” J. Xray. Sci. Technol., vol. 14, pp. 119–139, 

2009. 

[77] J. Meng, L. H. V Wang, L. L. Ying, D. Liang, and L. Song, “Compressed-sensing 

photoacoustic computed tomography in vivo with partially known support,” Opt. Express, 



Bibliography 

100 

vol. 20, no. 15, pp. 16510–16523, 2012. 

[78] X. L. Deán-Ben and D. Razansky, “Functional optoacoustic human angiography with 

handheld video rate three dimensional scanner,” Photoacoustics, vol. 1, no. 3–4, pp. 68–

73, 2013. 

[79] X. L. Dean-Ben, A. Ozbek, and D. Razansky, “Volumetric Real-Time Tracking of 

Peripheral Human Vasculature With GPU-Accelerated Three-Dimensional Optoacoustic 

Tomography,” IEEE Trans. Med. Imaging, vol. 32, no. 11, pp. 2050–2055, Nov. 2013. 

[80] S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. 

Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves 

quantitative blood oxygenation imaging deep in tissues,” Nat. Commun., vol. 7, no. May, 

p. 12121, 2016. 

[81] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA J. Numer. 

Anal., vol. 8, no. 1, pp. 141–148, 1988. 

[82] C. C. Paige and M. a. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and 

Sparse Least Squares,” ACM Trans. Math. Softw., vol. 8, no. 1, pp. 43–71, 1982. 

[83] Y. Han, L. Ding, X. L. D. Ben, D. Razansky, J. Prakash, and V. Ntziachristos, “Three-

dimensional optoacoustic reconstruction using fast sparse representation,” Opt. Lett., vol. 

42, no. 5, p. 979, Mar. 2017. 

[84] C. Zhang, Y. Wang, and J. Wang, “Efficient block-sparse model-based algorithm for 

photoacoustic image reconstruction,” Biomed. Signal Process. Control, vol. 26, pp. 11–22, 

2016. 

[85] C. Zhang, Y. Zhang, and Y. Wang, “A photoacoustic image reconstruction method using 

total variation and nonconvex optimization.,” Biomed. Eng. Online, vol. 13, no. 1, p. 117, 

2014. 

[86] L. Ding, X. L. De??n-Ben, and D. Razansky, “Real-Time Model-Based Inversion in 

Cross-Sectional Optoacoustic Tomography,” IEEE Trans. Med. Imaging, vol. 35, no. 8, 

pp. 1883–1891, 2016. 

[87] J. Frikel and E. T. Quinto, “Artifacts in Incomplete Data Tomography with Applications 

to Photoacoustic Tomography and Sonar,” SIAM J. Appl. Math., vol. 75, no. 2, pp. 703–



Bibliography 

101 

725, Jan. 2015. 

[88] J. Gateau, T. Chaigne, O. Katz, S. Gigan, and E. Bossy, “Improving visibility in 

photoacoustic imaging using dynamic speckle illumination.,” Opt. Lett., vol. 38, no. 23, 

pp. 5188–91, 2013. 

[89] L. L. V. L. L. V. Wang, G. Li, J. Xia, and L. L. V. L. L. V. Wang, “Ultrasonic-heating-

encoded photoacoustic tomography with virtually augmented detection view,” Optica, vol. 

2, no. 4, p. 307, 2015. 

[90] X. L. Dean-Ben, L. Ding, and D. Razansky, “Dynamic particle enhancement in limited-

view optoacoustic tomography,” pp. 1–5, 2015. 

[91] S. Kellnberger, N. C. Deliolanis, D. Queirós, G. Sergiadis, and V. Ntziachristos, “In vivo 

frequency domain optoacoustic tomography,” Opt. Lett., vol. 37, no. 16, p. 3423, 2012. 

[92] S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic 

measurements in time and frequency domains,” Rev. Sci. Instrum., vol. 81, no. 12, p. 

124901, 2010. 

[93] S. a Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth 

selective amplitude and phase imaging of turbid phantoms and biological tissue.,” J. 

Biomed. Opt., vol. 11, no. 4, p. 44006, 2006. 

[94] A. Mandelis and C. Feng, “Frequency-domain theory of laser infrared photothermal 

radiometric detection of thermal waves generated by diffuse-photon-density wave fields in 

turbid media,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 65, no. 2, pp. 2002–

2003, 2002. 

[95] N. Baddour, “Theory and analysis of frequency-domain photoacoustic tomography.,” J. 

Acoust. Soc. Am., vol. 123, no. 5, pp. 2577–2590, 2008. 

[96] Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser 

photothermoacoustic frequency-swept system for subsurface imaging: theory and 

experiment.,” J. Acoust. Soc. Am., vol. 116, no. 6, pp. 3523–3533, 2004. 

[97] L. V Wang and K. Maslov, “Photoacoustic imaging of biological tissue with intensity-

modulated continuous-wave laser.,” J. Biomed. Opt., vol. 13, no. 2, p. 24006, 2005. 



Bibliography 

102 

[98] A. Petschke and P. J. La Rivière, “Comparison of intensity-modulated continuous-wave 

lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging 

applications,” Biomed. Opt. Express, vol. 1, no. 4, p. 1188, 2010. 

[99] P. Mohajerani, S. Kellnberger, and V. Ntziachristos, “Fast Fourier backprojection for 

frequency-domain optoacoustic tomography,” Opt. Lett., vol. 39, no. 18, p. 5455, 2014. 

[100] P. M. Joseph, “Sampling errors in projection reconstruction MRI.,” Magn. Reson. Med., 

vol. 40, pp. 460–466, 1998. 

[101] V. Rasche, D. Holz, and W. Schepper, “Radial turbo spin echo imaging,” Magn. Reson. 

Med., vol. 32, no. 5, pp. 629–638, 1994. 

[102] D. C. Peters, F. R. Korosec, T. M. Grist, W. F. Block, J. E. Holden, K. K. Vigen, and C. A. 

Mistretta, “Undersampled projection reconstruction applied to MR angiography,” Magn. 

Reson. Med., vol. 43, no. 1, pp. 91–101, 2000. 

 


