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Abstract

For financial institutions, fast and accurate computational methods for parametric asset
models are essential. We start with a numerical investigation of a widely applied approach
in the financial industry, the de–Americanization methodology. Here, the problem of
calibrating to American option prices is reduced to calibrating to European options
by translating American option data via binomial tree techniques into European prices.
The results of this study identify scenarios in which the de–Americanization methodology
performs well and in which de–Americanization leads into pitfalls. Therefore, the need of
executing recurrent tasks such as pricing, calibration and risk assessment accurately and
in real-time, sets the direction to complexity reduction. Via Chebyshev interpolation the
recurrent nature of these tasks is exploited by polynomial interpolation in the parameter
space. Identifying criteria for (sub)exponential convergence and deriving explicit error
bounds enables to reduce run-times while maintaining accuracy. For the Chebyshev
interpolation any option pricing technique can be applied for evaluating the function
at the nodal points. With option pricing in mind, a new approach is pursued. The
Chebyshev interpolation is combined with dynamic programming concepts. The resulting
generality of this framework allows for various applications in mathematical finance and
beyond our example of pricing American options.
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Zusammenfassung

Finanzinstitutionen stehen vor der Herausforderung, numerische Methoden zur para-
metrischen Optionspreisbewertung zu verwenden, die sowohl exakt als auch schnell sind.
Zunächst wird eine in der Finanzindustrie verbreitete Methode, die de–Americanization
Methode, untersucht. Bei dieser werden vor dem Starten des Kalibrierungsprozesses
amerikanische Optionspreise mit Hilfe von Binomialbäumen in pseudo-europäische Op-
tionspreise übersetzt. Damit wird die Kalibrierung an amerikanischen Optionen vere-
infacht zu einer Kalibrierung an europäischen Optionen. Im Rahmen der empirischen
Analyse wurden sowohl Szenarien identifiziert, in denen die vorgeschlagene de–Americani-
zation Methode zuverlässige Ergebnisse liefert, als auch Szenarien, in denen die Methode
zu nicht korrekten Ergebnissen führt. Der Bedarf, immer wiederkehrende, parameter-
abhängige Aufgaben - Optionspreisbewertung, Kalibrierung und Risikobewertungen -
sowohl genau als auch in Echtzeit auszuwerten zu können, motivieren den Schritt zu
Vereinfachungstechniken, die die Komplexität genau dieser Aufgaben reduzieren. Die
Chebyshev Interpolation löst die wiederkehrende Natur durch eine Polynominterpolation
im entsprechenden Parameterraum. Durch einen Kriterienkatalog für exponentielle Kon-
vergenz und durch explizite Fehlerschranken ermöglicht diese Methode eine Reduzierung
der Laufzeiten bei gleichzeitigem Erhalt der Genauigkeit. Darüber hinaus verknüpfen
wir die Chebyshev Interpolation mit der dynamischen Programmierung, um dynamis-
che Probleme effizient lösen zu können. Das resultierende Grundgerüst ist so allgemein
konzipiert, dass es in vielen Anwendungsbereichen der Finanzmathematik verwendet wer-
den kann.
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1 Introduction

In mathematics the complicated
things are reduced to simple things.
So it is in painting.

Thomas Eakins

For financial institutions with a strong dedication to trading or assessment of financial
derivatives and risk management, numerous financial quantities have to be computed on
a daily basis. Here, we focus on option prices, sensitivities and risk measures for products
in different models and for varying parameter constellations. Growing market activities
and fast-paced trading environments require that these evaluations are done in almost
real time. Thus, fast and accurate computational methods for parametric stock price
models are essential.

Besides market environments, the model sophistication has risen tremendously since the
seminal work of Black and Scholes (1973) and Merton (1973). Stochastic volatility and
Lévy models, as well as models based on further classes of stochastic processes, have been
developed to deal with shortcomings of the Black&Scholes model and to capture market
observations more appropriately, such as non-constant volatilites and jumps. For stock
models, see Heston (1993), Eberlein et al. (1998), Duffie et al. (2003) and Cuchiero et al.
(2012).

The usefulness of a pricing model critically depends on how well it captures the relevant
aspects of market reality in its numerical implementation. Exploiting new ways to deal
with the rising computational complexity therefore supports the evolution of pricing
models and touches a core concern of present mathematical finance. A large body of
computational tasks in finance need to be repeatedly performed in real time for a varying
set of parameters. Prominent examples are option pricing and hedging of different option
sensitivities, e.g. delta and vega, which also need to be calculated in real time. In
particular for optimization routines arising in model calibration, and in the context of
risk control and assessment, such as for quantification and monitoring of risk measures.

In a nutshell, trade-offs have to be found between accuracy and computational costs, es-
pecially with the generally rising complexity of the problems. Which kind of complexity
reduction techniques can be applied? In Chapter 3, we take calibrating American options
as an example. For single-stock options, only market data for American options is avail-
able and so, American options have be used to calibrate a stock price model. In contrast
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1 Introduction

to European options, which give the option-holder the right to exercise the option at
maturity, American options allow the option-holder to exercise the option once at any
time up to the maturity. Thus, American options are so-called path-dependent options
and the pricing, especially under advanced models, relies on computationally-expensive
numerical techniques, such as the Monte Carlo simulation or partial (integro) differential
methods. Naturally, it is much faster to calibrate a model to European options than to
American options. Especially since there exists a variety of (semi-)closed pricing formu-
las for European options. This is applied in the de–Americanization methodology, as
for instance mentioned in Carr and Wu (2010), which we will investigate in the third
chapter. Basically, before any calibration is applied, the American options are replaced
by European options using binomial tree techniques. Our empirical study of the de–
Americanization methodology shows that this method tends to perform well in several
scenarios. However, in some scenarios, significant errors occur when compared to a di-
rect calibration to American options. The major drawback of the de–Americanization
methodology is that no error control is given.

The problems from calibrating to American options serve as an example and motivate our
investigations of complexity reduction methods in finance. Our approach in the following
is to systemically exploit the recurrent nature of parametric computational problems in
finance in order to gain efficiency in combination with error convergence results. Our
main focus here is parametric option pricing. In the literature, parametric option pric-
ing problems have largely been addressed by applying Fourier techniques following Carr
and Madan (1999) and Raible (2000). The focus is on adopting fast Fourier transform
(FFT) methods and variants for option pricing. For pricing European options with FFT,
we refer to Lee (2004). Further developments are, for instance, provided by Lord et al.
(2008) for early exercise options and by Feng and Linetsky (2008) and Kudryavtsev and
Levendorskĭi (2009) for barrier options. Another path to efficiently handle large param-
eter sets is built on solving parametrized partial differential equations, the reduced basis
methods. Sachs and Schu (2010), Cont et al. (2011), Pironneau (2011) and Haasdonk
et al. (2013) and Burkovska et al. (2015) applied this approach to price European, and
American, plain vanilla options and European baskets. Looking at both methods, FFT
methods can be advantageous when the prices are required in a large number of Fourier
variables, e.g. for a large set of strikes of European plain vanillas. Reduced basis meth-
ods, on the other hand, when an accurate PDE solver is readily available. We continue
by giving an example of how the reduced basis method is applied to the calibration of
American options in the Heston stochastic volatility model, and how the results com-
pare to the results of the de–Americanization methodology. Summarizing with respect
to parametric option pricing, the reduced basis method, as well as FFT method, reveal
an immense complexity reduction potential by targeting parameter dependence. Both
techniques have in common that they are add-ons to the functional architecture of the
underlying pricing technique. In Figure 1.1, we visually illustrate this add-on feature.

Our following investigations are driven by the observation that, naturally, in financial
institutions a diversity of models, a multitude of option types, and, as a consequence,
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1 Introduction

Figure 1.1: Schematic overview: Both option pricing techniques, FFT (add-on to Fourier
pricing) and reduced basis (add-on to a PDE technique), exploit the parame-
ter dependency as an add-on to the functional architecture of the underlying
pricing technique.

a wide variety of underlying pricing techniques, are used simultaneously to cope with
different queries. In contrast to the usage of parameter dependency outlined in Figure
1.1, we introduce polynomial interpolation of option prices in the parameter space as a
complexity reduction technique. The resulting procedure splits into two phases: Pre-
computation and real-time evaluation. The first one is also called offline-phase while
the second is also called online-phase. In the pre-computation phase, the prices are
computed for some fixed parameter configurations, namely the interpolation nodes. Here,
any appropriate pricing method, for instance, based on the Fourier, PDE or even Monte-
Carlo techniques, can be chosen. Then, the online-phase consists of the evaluation of
the interpolation. Provided that the evaluation of the interpolation is faster than the
benchmark tool, the scheme permits a gain in efficiency in all cases where accuracy
can be maintained. A visualization of this approach is shown in Figure 1.2. We see

Figure 1.2: Idea of exploiting parameter dependencies independently of the underlying
pricing technique. The answer in this thesis will be Chebyshev polynomial
interpolation. The pricing techniques of PDE methods, Fourier pricing and
Monte-Carlo simulation are only applied during the offline phase.

two use-cases for this approach. Firstly, in comparison to the benchmarking pricing
routine, the online evaluation as an evaluation of a polynomial will be rather fast and
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1 Introduction

can potentially outweigh the expensive pre-computation phase. This may especially
be the case in optimization routines in which the same problem for several parameter
combinations has to be solved rather frequently. Secondly, even for computing only
a few prices, this approach can be beneficial because it allows the application of the
computationally-costly pre-computation phase in idle times.

Regarding the choice of polynomial interpolation type, it is well-known that the efficiency
depends on the degree of regularity of the approximated function. In Chapter 4, we
focus theoretically on the pricing of European (basket) options. In Gaß et al. (2016),
we investigate the regularity of the option prices as functions of the parameters and
find that these functions are indeed analytic for a large set of option types, models and
parameters. We observe that parameters of interest often range within bounded intervals.
Chebyshev interpolation has proven to be extremely useful for applications in such diverse
fields as physics, engineering, statistics and economics. Nevertheless, for pricing tasks
in mathematical finance, Chebyshev interpolation still seems to be rarely used and its
potential is yet to be unfolded. In the multivariate case, we choose a tensorized version
of Chebyshev interpolation. Pistorius and Stolte (2012) use Chebyshev interpolation
of Black&Scholes prices in the volatility as an intermediate step to derive a pricing
methodology for a time-changed model. Independently from us, Pachon (2016) recently
proposed Chebyshev interpolation as a quadrature rule for the computation of option
prices with a Fourier-type representation, which is comparable to the cosine method of
Fang and Oosterlee (2008).

The focus in Chapter 4 is on parametric option pricing and on European options. Nu-
merical experiments have shown that the Chebyshev interpolation can also be beneficial
for path-dependent options, such as American options. In Chapter 5, we provide a the-
oretical framework that includes American option pricing, Chebyshev interpolation and
error convergence results. As shown in Peskir and Shiryaev (2006), American option pric-
ing is an optimal stopping problem that can be described by a dynamic programming
principle. Our approach is the usage of Chebyshev interpolation within the dynamic
programming principle to establish a complexity reduction for solving them. Moreover,
we derive error convergence results based on the results of the Chebyshev interpolation.
Whereas in Chapter 4, the focus is on parametric problems, in the dynamic programming
framework in Chapter 5, the Chebyshev interpolation is not applied to the parameters,
but solely to the value of the underlying during the backward time stepping scheme. The
generality of this dynamic programming framework allows for various applications in the
dynamic programming area and therewith for applications in mathematical finance, and
is not limited to pricing American options. Additionally, we present ideas to connect the
dynamic Chebyshev approach with empirical interpolation techniques to incorporate the
parameter dependency, too.
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The main contributions of this thesis can be summarized in the following way.

Chapter 3 In this chapter, we present the de–Americanization methodology and empirically
investigate this methodology for the CEV model. To do so, we implement a finite
element solver for the CEV model and establish a calibration to synthetic, as well
as to market data. We identify scenarios in which the methodology works rather
well, but also present scenarios in which the methodology leads to high errors.
These results are separately presented in Burkovska et al. (2016), of which I am
the leading author, complemented by results for the Heston and the Merton models.

Moreover, we give an outlook on the calibration of American options in the Heston
model with the reduced basis method, which is done in Burkovska et al. (2016b).
Lastly, we introduce the regularized Heston model as stochastic volatility model
with bounded coefficients. These are required by standard Feynman-Kac results
to establish the bridge between option price and PDE solution. We conclude by
presenting convergence results from the regularized Heston to the Heston model.

Chapter 4 We present the Chebyshev polynomial interpolation technique and provide a new
and improved error bound for analytic functions for the tensorized multivariate
extension. We provide accessible sufficient conditions on options and models that
guarantee an asymptotic error decay of order O

`

%´
D?N

˘

in the total number N
of interpolation nodes, where % ą 1 is given by the domain of analyticity and D
is the number of varying parameters. In Glau and Mahlstedt (2016), of which I
am the leading author, the improved convergence results for the analytic case are
presented.

The rest of the chapter is based on Gaß et al. (2016) and I present the parts to
which I provided a significant contribution. Empirically, for multivariate basket
and path-dependent options, we use Monte-Carlo as a reference method and high-
light the quality of the Chebyshev interpolation method beyond the scope of the
theoretically-investigated European options. Moreover, we embed the Chebyshev
interpolation with Monte-Carlo at the nodal points into the (multilevel) parametric
Monte-Carlo framework and show, that for a wide and important range of prob-
lems, the Chebyshev method turns out to be more efficient than the parametric
multilevel Monte-Carlo.

Chapter 5 This chapter is based on Glau et al. (2017a) and Glau et al. (2017b) and I present
the parts to which I provided a significant contribution. We combine the Chebyshev
interpolation with the dynamic programming principle to establish a complexity
reduction for solving them. Key idea is a reduction of the occurring conditional
expectations to conditional expectations of Chebyshev polynomials. We illustrate
the generality of this framework and provide several approaches to derive the con-
ditional expectations of Chebyshev polynomials. In the dynamic programming
framework, the Chebyshev interpolation is not applied to the parameters, but to
the underlying value itself. To tackle parametric problems here, we combine the
framework with empirical interpolation in the parameters.
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2 Mathematical Preliminaries

We are servants rather than masters
in mathematics.

Charles Hermite

In this chapter, we present some general mathematical preliminaries on which the thesis
relies. As outlined in the introduction, a major part of the thesis is related to option
pricing. We will see that within a risk-neutral valuation framework the calculation of
an option price is basically the derivation of an expectation, an expectation of a payoff
function on a stochastic process. We illustrate the models used in this thesis and then
we present three concepts for the derivation of this expectation, the option price. First
we show the connection to partial differential equations and present the finite element
method in detail. Second, we illustrate the concept of Fourier pricing. As third point,
we present the Monte-Carlo method as simulation technique. Lastly, in this chapter, we
present some further concepts which will be applied within this thesis.

For basic in probability spaces, stochastic processes and stochastic differential equa-
tions, we refer the reader to Musiela and Rutkowski (2006), Øksendal (2003) and Zagst
(2002).

2.1 Asset Price Models and Option Pricing

We start with the description of asset price models. The asset price dynamics pSτ qτě0

are governed by a stochastic differential equation (SDE). In this thesis, we introduce the
Black&Scholes model, the CEV model, the Heston model and the Merton model. All of
these models are described by a SDE of the form

dSτ “ rSτ dτ ` σpS, τqSτ dWτ ` Sτ´ dJτ , S0 “ s ě 0, (2.1a)

Jτ “
Nτ
ÿ

i“0

Yi, (2.1b)

with Wτ a standard Wiener process, r the risk-free interest rate and a volatility function
σpS, τq. The jump part pJτ qτě0 is a compound Poisson process with intensity λ ě 0 and
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2 Mathematical Preliminaries

independent identically distributed jumps Yi, i P N, that are independent of the Poisson
process pNτ qτě0. The Poisson process and the Wiener process are also independent.

If we let the diffusion coefficient σpS, τq be constant and the jump intensity λ “ 0, then
we are in the classical Black&Scholes model of Black and Scholes (1973) and Merton
(1973).

As an example of a local volatility model, we begin by presenting the CEV model, which
was introduced by Cox (1975). Here, the local volatility is assumed to be a deterministic
function of the asset price for the process in (2.1), σpS, τq “ σSζ´1

τ , 0 ă ζ ă 1, σ ą 0
and λ “ 0.

As an example of a stochastic volatility model, we use the model proposed by Heston
(1993). In contrast to the CEV model, the stochastic volatility is driven by a second
Brownian motion ĂWτ whose correlation with Wτ is described by a correlation parameter
ρ P r´1, 1s, and the model is based on the dynamics of both the stock price (2.1), with
jump intensity λ “ 0, and the variance vτ (2.2),

dvτ “ κpγ ´ vτ qdt` ξ
?
vτdĂWτ , (2.2)

with σpS, τq “
?
vτ , mean variance γ ą 0, rate of mean reversion κ ą 0 and volatility of

volatility ξ ą 0. Jumps are not included in either of the CEV or Heston models.

The Merton model includes jumps. The log-asset price process is not exclusively driven
by a Brownian motion, but instead follows a jump-diffusion process. Thus, in the model
of Merton (1976), the volatility of the asset process is still assumed to be constant, i.e.
for all S ą 0 and for all τ ą 0 it holds σpS, τq ” σ ą 0. But being a jump diffusion
model, the jump intensity λ ą 0 is positive and Nt „ Poisspλtq. The jumps are taken
to be independent normally distributed random variables, Yi „ N pα, β2q with expected
jump size α P R and standard deviation β ą 0.

After the description of the asset or underlying as a stochastic process, we now focus on
option pricing. An option is a derivative whose payoff depends on the performance of the
underlying S. So-called plain vanilla European call or put options have at maturity T , for
a pre-specified strike K, the payoff maxtST ´K, 0u (call) or maxtK´ST , 0u (put). Here,
the payoff does only depend on the value of the underlying at maturity T . American call
or put options have the same payoff function than their European counterpart, however
the option holder has the right to exercise the option at any time up to maturity T . In
this case, we refer to path-dependent options.

The option is determined by the risk-neutral valuation theory, see Bingham and Kiesel
(2004). Here, the basic assumption is that in the determination of the option price the
individual risk preferences of a potential investor, may she either be risk-seeking or risk-
avers, are not considered. Already implicitly defined by the terminology risk-neutral,
for the option price only the expected payoff of the option is important. Furthermore,
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2 Mathematical Preliminaries

to be consistent with this risk-neutral perspective, the expectation is taken under a
measure, under which the underlying process is, in expectation, evolving like the risk-
free asset. In other words, the with the risk-free interest rate discounted underlying
process is a martingale. Bingham and Kiesel (2004) refer to this measure as strong
equivalent martingale measure.

Embedding the risk-neutral valuation theory, in the following the option price at time t,
for an underlying S described by (2.1), with a payoff function g, on a filtered probability
space pΩ,F , P,Fq with filtration F “ pFtq0ďtďT , under a strong equivalent martingale
measure Q is given by

EQre
´rpT´tqgpST q|Fts. (2.3)

For notational ease, we use in the following Er¨s for the expectation under the risk-neutral
measure, EQr¨s.

Before we present three ways to derive this expectation, we introduce the definition of
strong solutions based on the following SDE in the one dimensional case

dXt “ bpt,Xtqdt` σpt,XtqdWt, (2.4)

where bpt, xq and σpt, xq are Borel-measurable functions from r0,8q ˆ RÑ R.

Definition 2.1.1 (Strong solution). (Karatzas and Shreve, 1996, Definition 2.1, p. 285)
A strong solution of the stochastic differential equation (2.4) on the given probability space
pΩ,F , P,Fq with filtration F “ pFtq0ďtďT and with respect to the fixed Brownian motion
W and initial condition ζ, is a process X “ tXt; 0 ď t ă 8u with continuous sample
paths and with the following properties:

(i) X is adapted to the filtration F “ pFtq0ďtďT

(ii) P rX0 “ ζs “ 1

(iii) P r
şt
0t|bps,Xs| ` σ

2px,Xsquds ă 8s “ 1, 0 ď t ă 8

(iv) the integral version of (2.4)

Xt “ X0 `

ż t

0
bps,Xsqds`

ż t

0
σps,XsqdWs; 0 ď t ă 8,

holds almost surely.

Definition 2.1.2 (Strong uniqueness). (Karatzas and Shreve, 1996, Definition 5.2.3,
p. 286) Let the drift vector bpt, xq and dispersion matrix σpt, xq be given. Suppose that,
wheneverW is a 1-dimensional Brownian motion on some pΩ,F , P q, ζ is an independent,
1-dimensional random vector, tFtu is an augmented filtration, and X,X̃ are two strong
solutions of (2.4) relative to W with initial condition ζ, then P rXt “ X̃t; 0 ď t ă 8s “ 1.
Under these conditions, we say that strong uniqueness holds for the pair pb, σq.
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After the introduction of strong, unique solutions, we present the Proposition of Yamada
and Watanabe as illustrated in Karatzas and Shreve (1996):

Proposition 2.1.3. (Karatzas and Shreve, 1996, Proposition 2.13, p. 291) Let us sup-
pose that the coefficients of the one-dimensional equation

dXt “ bpt,Xtqdt` σpt,XtqdWt,

satisfy the conditions

|bpt, xq ´ bpt, yq| ď K|x´ y|, (2.5)
|σpt, xq ´ σpt, yq| ď hp|x´ y|q, (2.6)

for every 0 ď t ă 8 and x P R, y P R, where K is a positive constant and h : r0,8q Ñ
r0,8q is a strictly increasing function with hp0q “ 0 and for all ε ą 0,

ż

p0,εq
h´2puqdu “ 8. (2.7)

Then strong uniqueness holds for the equation (2.4).

2.2 Three Ways to Derive the Option Price

The derivation of option prices is in the center of this thesis. It is well known that all
roads lead to Rome and similarly, there are several ways to derive the option price in
(2.3). In this section, we present three ways. First, we show the expectation is connected
to the solution of a partial differential equation.

2.2.1 Connection to Solutions of Partial Differential Equations

Naturally the question arises of how the stochastic representation can be connected with
the solution of a PDE. Karatzas and Shreve (1996) start by considering a solution to the
stochastic integral equation

Xt,x
s “ x`

ż s

t
bpθ,Xt,x

θ qdθ `

ż s

t
Σpθ,Xt,x

θ qdWθ, t ď s ă 8. (2.8)

This representation is connected to our SDE in 2.1 by considering the part bpθ,Xt,x
θ q as

drift coefficient and Σpθ,Xt,x
θ q as diffusion coefficient. Here, we do not consider jumps

and basically set the jump intensity λ “ 0. Following Karatzas and Shreve (1996),
the connection between the solution of an SDE and the solution of a partial differential
equation is stated in Theorem 2.2.5.

In order to provide this theorem, we first define the second-order differential operator.
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Definition 2.2.1 (Second-order differential operator). (Karatzas and Shreve, 1996, p.
312) Suppose pXpt,xq,W q, pΩ,F ,Pq, tFtu is a weak solution to the stochastic differential
equation dXt “ bpt,Xtqdt`Σpt,XtqdWt. For every t ě 0, we introduce the second-order
differential operator

pAtfqpxq :“
1

2

d
ÿ

i“1

d
ÿ

k“1

aikpt, xq
B2fpxq

BxiBxk
`

d
ÿ

i“1

bipt, xq
Bfpxq

Bxi
, f P C2pRdq, (2.9)

where aikpt, xq are the components of the diffusion matrix, i.e

aikpt, xq :“
r
ÿ

j“1

Σijpt, xqΣkjpt, xq.

Note that this notation requires a definition of the SDE as follows in component-wise
notation dXpiqt “ bipt,Xtqdt`

řr
j“1 Σpt,XtqdW

piq
t .

We will see that the connection between the solution of an SDE and the solution of a
partial differential equation is based in the existence of weak solutions and uniqueness
in the probability of law. When does a weak solution exist and what does unique in the
sense of probability law mean? First, we state the definition of a weak solution.

Definition 2.2.2 (Weak solution). (Karatzas and Shreve, 1996, Definition 5.3.1) A weak
solution of equation (2.8) is a triple pXpt,xq,W q, pΩ,F ,Pq, tFsu, where

(i) pΩ,F ,Pq is a probability space, and tFsu is a filtration of sub´σ´fields of F sat-
isfying the usual conditions,

(ii) X “ tXs,Fs; 0 ď s ă 8u is a continuous, adapted Rd´valued process, W “

tWs,Fs; 0 ď s ă 8u is an r´dimensional Brownian motion,

(iii) Pr
şs
0 |bipt,Xtq| ` σ2

ijpt,Xtqdt ă 8s “ 1 holds for every 1 ď i ď d, 1 ď j ď r and
0 ď s ă 8,

(iv) The integral version (2.8) of the SDE (2.1) holds almost surely.

After the definition of a weak solution, we immediately refer to the following theorem of
Skorokhod (1965), which provides criteria for the existence of a weak solution. We state
the version given in Karatzas and Shreve (1996).

Theorem 2.2.3. (Karatzas and Shreve, 1996, Theorem 5.4.22) Consider the stochastic
differential equation

dXt “ bpXtqdt` ΣpXtqdWt, (2.10)
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where the coefficients bi,Σij : Rd Ñ R are bounded and continuous functions. Corre-
sponding to every initial distribution µ on BpRdq with

ż

Rd
}x}2mµpdxq ă 8, for some m ą 1,

there exists a weak solution to (2.10).

Finally, we state the definition of uniqueness in the sense of probability law.

Definition 2.2.4 (Uniqueness in the sense of probability law). (Karatzas and Shreve,
1996, Definition 5.3.4) We say that uniqueness in the sense of probability law holds
for (2.8) if, for any two weak solutions pXpt,xq,W q, pΩ,F ,Pq, tFsu and pX̃pt,xq, W̃ q, pΩ̃,
F̃ , P̃q, tF̃su, with the same initial distribution, i.e.,

PrX0 P Γs “ P̃rX̃0 P Γs, for all Γ P BpRdq,

the two processes X and X̃ have the same law.

To prove this uniqueness, we refer the reader further to Karatzas and Shreve (1996).
Important in this section is the connection established by Theorem 2.2.5 to the solution
of partial differential equations.

Theorem 2.2.5. (Karatzas and Shreve, 1996, Theorem 5.7.6) Under the Assumptions

• the coefficients bipt, xq,Σijpt, xq : r0,8qˆRd Ñ R of 2.8 are continuous and satisfy
the linear growth condition }bpt, xq}2`}Σpt, xq}2 ď K2p1`}x}2q for every 0 ď t ă
8, x P Rd, where K is a positive constant,

• the equation (2.8) has a weak solution pXpt,xq,W q, pΩ,F ,Pq, tFsu for every pair
pt, xq,

• this solution is unique in the sense of probability law,

• With an arbitrary but fixed T ą 0 and appropriate constants L ą 0, λ ě 1 we
consider functions fpxq : Rd Ñ R, gpt, xq : r0, T s ˆ Rd Ñ R and kpt, xq : r0, T s ˆ
Rd Ñ r0,8q which are continuous and satisfy

piq |fpxq| ď Lp1` }x}2λq or piiq fpxq ě 0; @x P Rd (2.11)

as well as

piiiq |gpt, xq| ď Lp1` }x}2λq or pivq gpt, xq ě 0; @0 ď t ď T, x P Rd, (2.12)
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suppose that vpt, xq : r0, T s ˆ Rd Ñ Rd is continuous, is of class C1,2pr0, T s ˆ Rdq and
satisfies the Cauchy problem

´
Bv

Bt
` kv “ Atv ` g, in r0, T s ˆ Rd, (2.13)

vpT, xq “ fpxq, x P Rd, (2.14)

as well as the polynomial growth condition

max
0ďtďT

|vpt, xq| ďMp1` }x}2µq, x P Rd, (2.15)

for some M ą 0, µ ě 1. Then vpt, xq admits the stochastic representation

vpt, xq “

Et,x
„

fpXT q exp

ˆ

´

ż T

t
kpθ,Xθqdθ

˙

`

ż T

t
gps,Xsq exp

ˆ

´

ż s

t
kpθ,Xθqdθ

˙

ds



on r0, T s ˆ Rd, in particular, such a solution is unique.

In Section 3.2, we present a specific technique to solve a partial differential equation
for (American) options in the CEV model, namely the finite element method. As an
outlook, we refer to the standard result regarding the existence of a weak solution in
Theorem 2.2.3. There, boundedness of the coefficients of the SDE is required. For the
Heston model, this is not satisfied because the stochastic process describing the stochastic
volatility itself is unbounded and therefore, as a coefficient for the underlying price process
unbounded, too. This has been our motivation to introduce a regularized Heston model
in Section 3.6.2 with bounded coefficients. A second motivation is that the resulting
PDE then has nicer properties.

2.2.2 Fourier pricing

The conditional expectation in (2.3) can be derived by solving an integral. Here, we intro-
duce the concept of Fourier transforms. We will work here with the following definition
of the Fourier transform.

Definition 2.2.6 (Fourier transform). Let a function f be in L1pRq. Then, we define the
Fourier transform pf as follows,

pfpzq “

ż 8

´8

eizxfpxqdx.

As the following lemma shows, the original function f can be expressed by its Fourier
transform.
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Lemma 2.2.7 (Fourier inversion). (Rudin, 1987, Theorem 9.11) Let a function f be in
L1pRq and pf be in L1pRq. Then,

gpxq “
1

2π

ż 8

´8

e´izx pfpzqdz.

and g P C0pRq and gpxq “ fpxq a.e.

The connection between Fourier transform techniques and option pricing follows from
the following theorem.

Theorem 2.2.8 (Parseval’s identity). (Rudin, 1987, Proof of Theorem 9.13) Let f, g P
L2pRq. Then,

ż 8

´8

fpxqgpxqdx “
1

2π

ż 8

´8

pfpzqpgpzqdz, (2.16)

where ¨ denotes the complex conjugate.

Parseval’s identity as in (2.16) can be very useful in determining the option price. If the
random variable ST has a density function f , then it holds

Ere´rpT´tqgpST q|Fts “ e´rpT´tq
ż 8

´8

gpxqfpxqdx.

Basically, we are on the left-hand-side of Parseval’s identity. For some stochastic pro-
cesses, the density function is not known explicitly, like e.g. in the Merton model. How-
ever, the characteristic function, the Fourier transform of the probability density function,
is known. Heston (1993) describes for his stochastic volatility model the characteristic
function and applies Fourier techniques to determine the option price. In a nutshell,
Parseval’s identity is the link between the option price and Fourier techniques.

Remark 2.2.9. Often the payoff function g in (2.3) is not in L1pRq. Then, the Fourier
transform does not exist. Here, the idea is the introduction of a dampening factor. Let
η P R such that eηxgpxq P L1pRq. Then, the Fourier transform of eηxgpxq exists. In
order to not change the value of the integral on the left-hand-side of Parseval’s identity,
in this case the function fpxq is weighted with the function e´ηx. In our application, f
is the density function and decaying very rapidly at the limits and, thus, it often holds
fpxqe´ηx P L1pRq. Denoting with pgη the Fourier transform of eηxgpxq and with yf´η the
Fourier transform of e´ηxgpxq, we get

ż 8

´8

rgpxqeηxsre´ηxfpxqsdx “
1

2π

ż 8

´8

pgηpzq{f´ηpzqdz.

The dampening factor allows us to use Parseval’s identity to switch into the Fourier
world, even if the payoff functions are not in L1pRq.
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2.2.3 Monte-Carlo simulation

The idea of the Monte-Carlo simulation is to solve the integral or expectation in (2.3) by
repeatedly simulating the underlying SDE in (2.1) independently, determining for each
simulation the discounted payoff and, finally, taking the mean,

e´rpT qErgpST qs « e´rpT q
1

M

M
ÿ

k“1

gpSkT q.

Following Glasserman (2003), the estimator above is, for M ě 1, unbiased in the sense
that its expectation is the target quantity and forM Ñ8, the estimator is consistent and
converging to the true option price. In applications with a finite M ă 8, the Monte-
Carlo simulation makes an approximation error. If we assume that, for the random
variable ST , Er|gpST q|s ă 8 and V arrgpST qs “ σ2 ă 8, then it can easily be shown
that ErErgpST qs ´ 1

M

řM
k“1 gpS

k
T qs “

σ?
M

and that the approximation error is, due to
the central limit theorem, asymptotically normal distributed. This yields

lim
MÑ8

P

˜

σa
?
M
ď ErgpST qs ´

1

M

M
ÿ

k“1

gpSkT q ď
σb
?
M

¸

“ Φpbq ´ Φpaq,

where Φ is the cumulative distribution function of a standard normal distribution.

Regarding Monte-Carlo simulations, for a given number M of sample paths it can be
beneficial to apply variance reduction techniques to reduce the variance of the Monte-
Carlo estimator. Here, we present the idea of antithetic variates. This method uses pairs
of samples that are negatively correlated with each other. The motivation is given by the
general relation V arpX ` Y q ď V arpXq ` V arpY q ` 2CovpX,Y q. In our applications,
by simulating a Brownian motion, random variables Z „ Np0, σ̃q, where the volatility σ̃
depends on the explicit application. To apply antithetic variates, we use additionally the
random variable ´Z in an additional sample. By denoting with Sk`T and Sk´T the two
samples, our Monte-Carlo estimator,

2

M

M
2
ÿ

k“1

gpSk`T q `
2

M

M
2
ÿ

k“1

gpSk´T q,

applies the idea of antithetic variates and if Sk`T and Sk`T , the variance is reduced. For
more details, we refer to Glasserman (2003) and Seydel (2012).

Remark 2.2.10. The name Monte-Carlo traces back to the origins of the Monte-Carlo
technique in the 1940s. John von Neumann, contacted by Stansilaw Ulam, came up with
the code name Monte-Carlo for a secret project at the Los Alamos National Laboratory,
see Anderson (1986) and Andrieu et al. (2003).
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<

i<

´1 1

a
b

a` b “ %

Figure 2.1: Illustration of a Bernstein ellipse with foci at ˘1. The sum of the connection
of each point on the ellipse with the two foci is exactly %. We see that
semimajor a and semiminor b of the ellipse are summing up to the radius of
the ellipse %.

2.3 Miscellaneous

In this section, some further concepts are introduced to which we will refer later in the
thesis. In the theory later, we require functions defined on r´1, 1s to be analytically
extendable to a Bernstein ellipse with foci at ˘1 and radius %. The convergence results
for the Chebyshev interpolation are connected to %. The definition of a Bernstein ellipse
traces back to Bernstein (1912). In Figure 2.1, we illustrate a Bernstein ellipse with foci
at ˘1. The sum of the connection of each point on the ellipse with the two foci is exactly
%. We see that semimajor a and semiminor b of the ellipse are summing up to the radius
of the ellipse %. In (4.36), we show how the D´variate Bernstein ellipse is defined and
which transformation has to be applied for arbitrary foci p and p.

Moreover, in Chapter 5, we combine Chebyshev interpolation with the empirical interpo-
lation and present in the following algorithm the basic concept of empirical interpolation.
The idea behind empirical interpolation is to approximate a parameter-dependent func-
tion gpx, µq by a sum of functions in which parameter dependent part and x dependent
part are separated, e.g.

gpx, µq «
M
ÿ

m“1

gpx˚m, µqΘmpxq.

The points x˚m, m “ 1, . . . ,M are referred to as so-called magic points, see Barrault et al.
(2004) and Maday et al. (2009). Especially when applying an integration, a separability
of parameter dependent part and space dependent part is beneficial, see Gaß et al. (2016).
In the following, we provide in Algorithm 1 the description of the empirical interpolation
algorithm from Barrault et al. (2004) as described in Gaß (2016). This version describes
the empirical interpolation algorithm for a function g : Ω ˆ P Ñ R with Ω Ă R and
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P Ă R. Thus, the spacial dimension is d “ 1 and the dimensionality of the parameter
space is D. Interestingly, (Gaß, 2016, Algorithm 3) is also described in a discrete way, i.e.
it reflects that in a numerical implementation, Ω as well as P are discretized. The idea of
the empirical interpolation is that first the parameter p˚ is identified at which the highest
error occurs and, then, the space value x˚ for which, given parameter p˚, the highest
error occurs. This value is then determined as magic point and gpx˚q is incorporated
into the empirical interpolator. This is also referred to as greedy search.

Algorithm 1 (Gaß, 2016, Algorithm 3): Discrete EI algorithm, d “ 1

1: Let Ωdiscr. be a finite, discrete set in R, |Ωdiscr.| “ N P N, Ω “ tω1, . . . , ωNu
2: Let Pdiscr. be some finite parameter set in R, |Pdiscr.| “ K P N
3: Let further Udiscr. be a finite set of parametrized vectors on Ωdiscr., |Udiscr.| “ K P N,
Udiscr “ t~ui “ puppiqpω1q, . . . , uppiqpωN qq | pi P Pdiscr, i P t1, . . . ,Kuu Ă RN

4: function Discrete Interpolation Operator Idiscr
M p~uq

5: return IdiscrM p~uq “
řM
i“1 αip~uq~qi

6: with αi P R, i P t1, . . . ,Mu, depending on ~u and given by
7: Q~α “ p~upι1q, . . . , ~upιM qq, Q P RMˆM , Qij “ ~q

pιiq
j

8: where the set of magic indices tι1, . . . , ιMu Ă t1, . . . , Nu and the set of basis
vectors t~q1, . . . , ~qMu are recursively defined by

9: ~u1 “ arg max
~uiPUdiscr, i“1,...,K

max
j“1,...,N

ˇ

ˇ

ˇ
~u
pjq
i

ˇ

ˇ

ˇ

10: ι1 “ arg maxj“1,...,N

ˇ

ˇ

ˇ
~u
pjq
1

ˇ

ˇ

ˇ

11: ξ1 “ ωι1
12: ~q1 “

1

~u
pι1q
1

~u1

13: and for M ą 1 with ~ri “ ~ui ´ I
discr
M´1p~uiq, i P t1, . . . , Nu, by

14: ~uM “ arg max
~uiPUdiscr, i“1,...,K

max
jPt1,...,Nu

ˇ

ˇ

ˇ
~r
pjq
i

ˇ

ˇ

ˇ

15: ιM “ arg max
i“1,...,N

ˇ

ˇ

ˇ
~r
piq
M

ˇ

ˇ

ˇ

16: ξM “ ωιM
17: ~qM “ 1

~r
pιM q

M

`

~uM ´ I
discr
M´1p~uiq

˘

The convergence rate of the empirical interpolation is connected to the Kolmogorov n-
width. In the following, we state the definition.

Definition 2.3.1 (Kolmogorov n-width). Let X be Banach space of continuous functions
defined over a domain Ω part of R, Rd, or Cd. The Kolmogorov n-width of U in X is
defined by

dnpU,Xq “ inf
Xn

sup
xPU

inf
yPXn

}x´ y}X
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where Xn is some (unknown) n-dimensional subspace of X. The n-width of U thus mea-
sures the extent to which U may be approximated by some finite dimensional space of
dimension n.
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3 Numerical Investigation of the
de–Americanization Method

Mathematics is the cheapest science.
Unlike physics or chemistry, it does
not require any expensive equipment.
All one needs for mathematics is a
pencil and paper.

George Pólya

This chapter is based on Burkovska et al. (2016) and presents the parts to which I provided
a significant contribution

In the financial industry, this statement of George Pólya does not hold any longer. Re-
garding derivatives, complex models and product types require extensive pricing tech-
niques and often the fair price of a derivative has to be numerically approximated. Here,
pencil and paper are replaced by computers and in addition to accuracy, run-times are
essential as well. In this chapter, we focus on calibration to American options. But why
American options?

The most frequently traded single stock options are of American type. In general, there
exists a variety of (semi-)closed pricing formulas for European options. However, for
American options, there hardly exist any closed pricing formulas, and the pricing under
advanced models rely on computationally expensive numerical techniques such as the
Monte Carlo simulation or partial (integro) differential methods.

Tackling this core problem, in the financial industry, the so-called de–Americanization
approach has become market standard: American option prices are transferred into Eu-
ropean prices before the calibration process itself is started. This is usually done by
applying a relatively simple binomial tree. By replacing American options with Euro-
pean options, the complexity of the calibration problem is reduced and the computational
costs are lowered significantly. The striking advantage of this procedure is that it enables
to employ the advanced and standard tools for model calibration to European option data
which are readibly available and typically efficient. Figure 3.1 illustrates the scheme of
the de–Americanization methodology.

The de–Americanization methodology enjoys three attractive features,
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Market Data:
American
Option Prices

de-Americanized
European
Option Prices

Calibrated
Model Parameters

Calibrated
Model Parameters

Binomial
Tree

Simplification

Calibration Calibration

Figure 3.1: De–Americanization scheme: American option prices are transferred into Eu-
ropean prices before the calibration process itself is started. We investigate
the effects of de–Americanization by comparing the results to directly cali-
brating American options.

• it delivers fast run-times,

• it is easy to implement,

• it can flexibly be integrated into the pricing and calibration toolbox at hand.

One downside is that no theoretical error control is available. Therefore, it is important
to empirically investigate the accuracy, the performance and the resulting methodological
risk of the method.

The method is briefly mentioned by Carr and Wu (2010), who describe how their im-
plied volatility data, stemming from the provider OptionMetrics, is obtained by applying
exactly this de-Americanization scheme. To the best of our knowledge, the de–Ameri-
canization methodology has not been investigated deeply in the literature. We therefore
devote the current paper to this task. In order to conduct a thourough investigation,
we consider prominent models and identify relevant scenarios in which to perform ex-
tensive numerical tests. We focus on options on non-dividend-paying underlyings and
explore the CEV model as an example of a local volatility model, the Heston model as
a stochastic volatility model and the Merton model as a jump diffusion model. For all
of these models, we implemented finite element solvers as benchmark method for pricing
American options.

The following questions serve as guidelines to specify decisive parameter settings within
our studies.

1. Since American and European puts on non-dividend-paying underlyings coincide
for zero interest rates, we analyze in particular the methodology for different interest
rates.
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2. Intuitively, with higher maturities, the early exercise feature of American options
becomes more valuable and American and European option prices differ more sig-
nificantly. Therefore, we investigate the following question: Does the accuracy of
the de–Americanization methodology depend on the maturity and do de–Ameri-
canization errors increase with increasing maturities?

3. In-the-money and out-of-the-money options play different roles. First, out-of-the-
money options are preferred by practitioners for calibration since they are more
liquidly traded, see for instance Carr and Wu (2010). Second, in-the-money options
are more likely to be exercised. How does the de–Americanization methodology
perform for out-of-the-money options and for in-the-money options?

Our investigation is organized as follows. First, we introduce the de–Americanization
methodology in Section 3.1. Then, we briefly describe in Section 3.2 the models and
the benchmark pricing methodology. Section 3.3 presents the numerical results: The
accuracy of the calibration procedure obviously hinges on the accuracy of the underlying
pricing routine. We therefore first specify the de–Americanization pricing routine and
investigate its accuracy. Afterwards, we present the results of calibration to both syn-
thetic data and market data. To conclude the numerical study, we present the effects of
different calibration results on the pricing of exotic options. We summarize our findings
in Section 3.4.

Short literature overview on American options

For an overview of pricing American options, we refer to Barone-Adesi (2005). The prob-
lem of pricing an American put traces back to Samuelson (1965) and McKean (1965).
Brennan and Schwartz (1977) were one of the first who provided numerical solutions and
also the binomial tree model of Cox et al. (1979) was used to price American options.
Broadie and Detemple (1996) approximate the American put price by interpolating be-
tween an upper and lower bound of the price. Longstaff and Schwartz (2001) combined
American option pricing with Monte-Carlo techniques based on a polynomial interpola-
tion of the continuation value. The American option price problem can also be interpreted
as a free boundary problem, see e.g. Kim (1990) or as an optimal stopping problem, see
e.g. Peskir and Shiryaev (2006), and be formulated as a dynamic programming principle.
Although Barone-Adesi (2005) concludes that the mainstream computational problems
have been solved satisfactorily, by switching the focus on calibration, there are rather
recent developments for calibrating American options. As examples, we state Haring
and Hochreiter (2015), who apply a specific search algorithm, namely a Cuckoo search
algorithm, in the calibration process, and Ballestra and Cecere (2016). They provide a
method to forecast the parameters of the constant elasticity of variance (CEV) model
implied by American options in order to fit the model relatively quickly to market data.
To summarize, calibrating American market data is a numerically challenging problem.
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The research in the literature puts the focus now on optimizing the calibration proce-
dure to reduce the run-time. At its core, still path-dependent, rather complex, American
options are priced.

3.1 De–Americanization Methodology

In this section, we give a precise and detailed description of the methodology. The de–
Americanization methodology is used to fit models to market data. The core idea of de–
Americanization is to transfer the available American option data into pseudo-European
option prices prior to calibration. This significantly reduces the computational time as
well as the complexity of the required pricing technique. Basically, de–Americanization
can be split into three parts. The first part consists in collecting the available market
data. The currently observable price of the underlying S0, interest rate r and the available
American option prices are collected. In the following, we will denote the American
option price of the i-th observed option by V i

A. We interpret the market data as the true
option prices, thus we assume that the observed market prices V i

A can be interpreted
as supremum over all stopping times t P 0, T : V i

A “ suptPr0,TisEre
´rt

rHipStq|F0s, i “

1, . . . , N , where t is a stopping time, rHi is the i-th payoff function, Ti the maturity of
the i-th option, and the expectations are taken under a risk-neutral measure, F is the
natural filtration, and N denotes the total number of options. Up to this point, no
approximation has been used.

The second step is the application of the binomial tree to create pseudo-European –
so-called de-Americanized – prices based on the observed American market data. In this
step, we look at each American option individually and find the price of the corresponding
European option with the same strike and maturity. This European option is found by
fitting a binomial tree to the American option. The binomial tree was introduced by
Cox et al. (1979) as follows. Starting at S0, at each time step and at each node, the
underlying can either go up by a factor of u or down by a factor of 1

u and the risk-neutral
probability of an upward movement is given by

p “
er∆t ´ 1

u

u´ 1
u

. (3.1)

Once the tree is set up, options can be valuated by going backwards from each final
node. Thus, path-dependent options can be evaluated easily. Since for each option i
the American option price V i

A is known, as well as S0 and r, the only unknown pa-
rameter of the tree is the upward factor u. At this step, the upward factor u˚i is de-
termined such that the price of the American option in the binomial tree matches the
observed market price. Thus, denoting t0 : ∆t : Tiu “ t0,∆t, 2∆t, . . . , Tiu, we have
suptPt0:∆t:TiuEre

´rt
rHipS

u˚i
t q|F0s “ V i

A, where t is a stopping time,Su
˚
i
t denotes the un-

derlying process described by a binomial tree with upward factor u˚i . The early exercise
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feature of American options is reflected in the fact that the the supremum is taken over
all discrete time steps. A detailed description of pricing American options in a binomial
tree model is given in Van der Hoek and Elliott (2006). Once Su

˚
i
t is determined, the cor-

responding European option with the same strike and maturity as the American option
is specified, V i

E “ Ere´rTi rHipS
u˚i
Ti
q|F0s. Note that fixing u˚i also implicitly determines

the implied volatility.

Then, for each American option V i
A, a corresponding European option V i

E has been found,
and the actual model calibration can start. The goal is to fit a model M , depending on
parameters µ P Rd, where d denotes the number of parameters in the model, to the Euro-
pean option prices V i

E , i “ 1, . . . , N . Denote by SMpµqTi
the underlying process in model

M with parameters µ P Rd. In the calibration, the parameter vector µ is determined
by minimizing the objective function of the calibration. Algorithm 2 summarizes the
de–Americanization methodology in detail.

Algorithm 2 De–Americanization methodology
1: procedure Collection of Observable Data
2: S0, r,
3: V i

A “ suptPr0,TisEre
´rt

rHipStq|F0s, i “ 1, . . . , N

4: procedure Application of the binomial tree to each option individually
5: for i “ 1 : N
6: Find u˚i such that
7: suptPt0:∆t:TiuEre

´rt
rHipS

u˚i
t q|F0s “ V i

A where the supremum is taken over
all stopping times t

8: Derive the corresponding European option price with u˚i
9: V i

E “ Ere´rTi rHipS
u˚i
Ti
q|F0s

10: end
11: procedure Calibration to European options
12: Find µ such that the differences
13: Ere´rTi rHipSMpµqTi

qs ´ V i
E , i “ 1, . . . , N

14: are minimized according to the objective function

Regarding the uniqueness of the factor u˚i in the De–Americanization methodology de-
scribed in Algorithm 2, we will first investigate the case of a European put option. There-
fore, we interpret the risk-neutral probability in (3.1) as function of u, ppuq “ uer∆t´1

u2´1
.

At each node in the binomial tree we have a two-point distribution, that we call Bernoulli
distribution X „ QBpuq, where the value u is taken with probability ppuq and the value
1
u is taken with probability p1´ ppuqq.
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Proposition 3.1.1. For i “ 1, ...., n, let Xi „ QBpuq and Yi „ QBpu1q. If u ď u1, and
u, u1 ą er∆t then for any K P R

E

«˜

K ´

n
ź

i“1

Xi

¸`ff

ď E

«˜

K ´

n
ź

i“1

Yi

¸`ff

.

Proof. We can reduce this case to the one-dimensional case in the following way. Let
j P t1, ..., nu and denote by P jp¨qp¨q the conditional probability given σpXi, i ­“ jq. Then,
by definition of the conditional probability

E

«˜

K ´

n
ź

i“1

Xi

¸`ff

“

ĳ

˜

K ´Xjpω
1q
ź

i ­“j

Xipωq

¸`

P jpdω1qpωqP pdωq.

For all j P t1, ..., nu and ω P Ω the function x ÞÑ pK ´ x
ś

i ­“j Xipωqq
` is convex. By the

independence of Xj and tXi, i ­“ ju a.s. P jpXj P ¨q “ P pXj P ¨q. This allows us to use
the one-dimensional result from Lemma 3.1.2 and from Xj ĺcx Yj it follows

ż

˜

K ´Xjpω
1q
ź

i ­“j

Xi

¸`

P jpdω1q ď

ż

˜

K ´ Yjpω
1q
ź

i ­“j

Xi

¸`

P jpdω1q a.s.

This yields

E

«˜

K ´

n
ź

i“1

Xi

¸`ff

ď E

«˜

K ´ Yj
ź

i ­“j

Xi

¸`ff

.

As a next step, conditioning on pσpYj , Xi, i ­“ j, j2q the same technique is applied to show

E

«˜

K ´Xj2

ź

i‰j,j2

XiYj

¸`ff

ď E

«˜

K ´ Yj2
ź

i‰j,j2

XiYj

¸`ff

and successively, the assertion of the proposition follows.

Here, we present an additional lemma which will be used in the proof of Proposition
3.1.1.

Lemma 3.1.2. Focusing on one node in the binomial tree, let X „ QBpuq and Y „

QBpu1q with u1 ě u. Let u, u1 ą er∆t be satisfied. Then the random variable X is
smaller than the random variable Y with respect to the convex order, i.e. X ďcx Y .

Proof. Following (Müller and Stoyan, 2002, Theorem 1.5.3 and Theorem 1.5.7) it suffices
to show

1. ErXs “ ErY s
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2. ErpX ´ kq`s ď ErpY ´ kq`s

Since p as in (3.1) is set up as risk-neutral probability, it holds for any u that ErXs “ er∆t

and thus, the first condition is satisfied. Given a random variable X with a factor u and
a random variable Y with factor u1 ą u, we distinguish regarding the second condition 5
cases.

Case 1: 1
u1 ď

1
u ď u ď u1 ď k

Obviously, in any case both options are out-of-the-money and ErpX ´ kq`s “ 0 “

ErpY ´ kq`s.

Case 2: 1
u1 ď

1
u ď u ď k ď u1.

Here, ErpX ´ kq`s “ 0 and hence, the second condition is satisfied.

Case 3: 1
u1 ď

1
u ď k ď u ď u1.

In this case, we have

ErpY ´ kq`s ´ ErpX ´ kq`s “ ppu1qpu1 ´ kq ´ ppuqpu´ kq

“ pu1qu1 ´ ppuqu´ k
`

ppu1q ´ ppuq
˘

.

The function ppuq “ uer∆t´1
u2´1

is a monotonically decreasing function because the derivative

p1puq “ ´er∆t´u2er∆t`2u
pu2´1q2

would have the roots ua,b “ 1˘
?

1´e2r∆t

er∆t
, but due to er∆t ě 1

either the derivative has no roots or a root at u “ 1 in the case r “ 0. Thus, by assuming
u1, u ą er∆t, ErpY ´ kq`s ´ ErpX ´ kq`s is monotone in k and in Case 4 for k “ 1

u we
show that ErpY ´ kq`s ´ ErpX ´ kq`s “ 0 holds.

Case 4: 1
u1 ď k ă 1

u ď u ď u1.

Due to k ď 1
u it follows ErpX ´ kq`s “ ErX ´ ks. Thus, ErpY ´ kq`s ´ErpX ´ kq`s “

ErpY ´ kq`s ´ ErX ´ kqs. Obviously, it holds

ErpY ´ kq`s ě ErY ´ ks

and this leads to ErpY ´ kq`s ´ ErX ´ kqs ě ErY ´ ks ´ ErX ´ kqs “ 0.

Case 5: k ď 1
u1 ď

1
u ď u ď u1.

It holds ErpY ´ kq`s “ ErY ´ ks and ErpX ´ kq`s “ ErX ´ ks. Thus, ErpY ´ kq`s ´
ErpX ´ kq`s “ ErY ´ ks ´ ErX ´ ks “ 0 follows.

Remark 3.1.3. In the implementation of the tree, we set the time step size ∆t « 0.0002
and we use a simple bi-section approach as suggested by Van der Hoek and Elliott (2006)
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to find u˚. Thus, given a market price VA, starting with an upper bound uub and a lower
bound ulb satisfying the conditions in Proposition 3.1.1 such that,

sup
tPt0:∆t:Tiu

Ere´rt rHipSuubt q|F0s ą VA,

sup
tPt0:∆t:Tiu

Ere´rt rHipSulbt q|F0s ă VA,

the bi-section approach is started and the new candidate for u˚ is û “ uub`ulb
2 . When

suptPt0:∆t:TiuEre
´rt

rHipSût q|F0s ą VA, we set uub “ û for the next iteration, otherwise
ulb “ û. As stopping criterion, we choose

ˇ

ˇ

ˇ
sup

tPt0:∆t:Tiu
Ere´rt rHipSût q|F0s ´ VA

ˇ

ˇ

ˇ
ď ε,

and set ε “ 10´5 in our implementation. In Proposition 3.1.1 we have investigated the
European put case and can deduce from the convex ordering that the put prices are mono-
tonically increasing in u. For a strict order, the u˚-value is thus uniquely determined.
In our case, the u˚-value can be determined uniquely as minimum of all u values satis-
fying the stopping criterion. Moreover, this indicates that also the American put price
in the binomial tree is increasing with increasing u. We validated this by numerical tests
(not reported). This is in line with the recommendation in Van der Hoek and Elliott
(2006). The only observed limitation is that the American put price can not be given by
an immediate exercise at the initial time. This is explained in detail in Remark 3.3.1.

3.2 Pricing Methodology

In this section, we present model formulation and numerical implementation of the CEV
model. To investigate the de–Americanization methodology, we need to price the Ameri-
can and European options. Our market data in the numerical study later on will be based
on options on the Google stock (Ticker: GOOG). As Google does not pay dividends, we
neglect dividend payments in our pricing methodology. Without dividend payments, for
r ą 0, it holds in general that American calls coincide with European calls and only
American puts have to be treated differently. The opposite is true for r ă 0, in which
case American and European puts coincide and American and European calls have to be
treated differently.

In general, for European options, there exists a variety of fast pricing methodologies such
as Fast Fourier Transform (Carr and Madan (1999); Raible (2000)) or even closed-form
solutions. The common approaches for pricing American options are P(I)DE methods
using either the finite difference method (FDM) or a finite element method (FEM).
We choose FEM since it is typically more flexible. To solve the resulting variational
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inequalities for American options, we use the Projected SOR Algorithm, Achdou and
Pironneau (2005), Seydel (2012).

3.2.1 Pricing PDE

Denote by t “ T ´ τ the time to maturity T , T ă 8 and by K the strike of an option.
For the CEV model, we stay with the S variable, S P p0,8q. In the following, we will
denote an American or European call or put price by PAm{Eucall{put . For the CEV model we

have PAm{Eucall{put : p0, T q ˆ R` Ñ R`. The value of an option at t “ 0 is given by the

payoff function rHcall{putp¨q, Pcall{putp0q “ P0 “ rHcall{put with rHcallpSq :“ pS ´ Kq` or
rHputpSq :“ pK ´ Sq`.

Then, to find the value of the European option PEucall{put, paying P
call{put
0 “ H̃call{putpSq

(P call{put0 “ rHcall{putpxq) at t “ 0 leads to solve the following initial boundary value
problem

BPEucall{put

Bt
´ LCEV PEucall{put “ 0, PEucall{putp0q “ P

call{put
0 , (3.2)

where the spatial partial (integro) differential operator LCEV is given by

LCEVPAm{Eucall{put : “
σSζ´1

t

2
S2
B2P

Am{Eu
call{put

BS2
` rS

BP
Am{Eu
call{put

BS
´ rP

Am{Eu
call{put . (3.3a)

Due to its early exercise possibility, pricing an American option (e.g., put) results in
additional inequality constraints, and leads us to solve the following system of inequalities

BPAmcall{put

Bt
´ LCEV PAmcall{put ě 0, PAmcall{put ´ P

call{put
0 ě 0, (3.4a)

˜

BPAmcall{put

Bt
´ LCEV PAmcall{put

¸

¨

´

PAmcall{put ´ P
call{put
0

¯

“ 0. (3.4b)

We denote the parameter vector by µ :“ pσ, ζq P R2 for the CEV model. Then the
problems (3.2), (3.4) are parametrized problems with µ P P, where P Ă Rd is a param-
eter space. The solution can be written as P “ P pµq. In some cases, for notational
convenience, we will omit the parameter-dependence of P and related quantities.
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3.2.2 Variational Formulation

As a next step, we pose the problem in the weak from and introduce the variational
formulation. We localize the problems to an open bounded domain Ω Ă R, defined as
Ω :“ pSmin, Smaxq Ă R1. The functional space is introduced in (3.5).

V : “ tv P L2pΩq : S
Bv

BS
P L2pΩqu. (3.5)

Define V 1 to be the dual space of V and denote by x¨, ¨y a duality pairing between V
and V 1 and by p¨, ¨q an inner product on L2pΩq. Denote a temporal interval I :“ r0, T s,
T ą 0.

Following Achdou and Pironneau (2005), we can define aCEV : V ˆ V Ñ R,

aCEV pψ, φ;µq :“

ż

Ω

σS2ζ

2

Bψ

BS

Bφ

BS
dS ` r

ż

Ω
ψφdS `

ż

Ω
p´rS ` ζσ2S2ζ´1q

Bψ

BS
φdS. (3.6a)

Then a weak from of (3.2) reads as follows, Achdou and Pironneau (2005): Find upµq P
L2pI;V q X C1pI;L2pΩqq with Bupµq

Bt P L2pI;V 1q, fpµq P L2pI;V 1q, u0pµq P L
2pΩq, such

that for a.e. t P I holds
B

Bu

Bt
pt;µq, φ

F

` apupt;µq, φ;µq “ xfpt;µq, φy, φ P V, (3.7a)

up0;µq “ u0pµq, (3.7b)

where
xfpt;µq, φy “ ´apuLpt;µq, φq ´

B

BuL
Bt
pt;µq, φ

F

. (3.8)

and up0;µq “ P p0;µq ´ uLp0;µq, the modified payoff is Hpt;µq :“ rH ´ uLpt;µq. Here
uLpµq is a Dirichlet lift function, uLpµq P L2pI;V qXC1pI;L2pΩqq with BuL

Bt pµq P L
2pI;V 1q,

such that uLpt;µq “ gpt;µq on BΩD, where the function of the boundary values g are
defined below. Then the price of an option in (3.2) is given as P “ upµq ` uLpµq.

With the use of the above notations, we present the variational formulation for American
options. Introduce a closed convex subset Kpt;µq Ă V ,

Kpt;µq :“ tφ P V : φ ě Hpt;µq, in Ωu, (3.9)

where the inequality is understood in a pointwise sense. Then the weak form of (3.4),
Achdou and Pironneau (2005), reads as follows: Given u0pµq P Kpµq, find upµq P
L2pI;V q X C1pI;L2pΩqq with Bu

Bt pµq P L
2pI;V 1q, such that upt;µq P Kpt;µq for a.e. t P I
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and the following holds for all φ P Kpt;µq
B

Bu

Bt
pt;µq, φ´ upt;µq

F

` apupt;µq, φ´ upt;µq;µq ě xfpt;µq, φ´ upt;µqy , (3.10a)

up0;µq “ u0pµq, (3.10b)

where up0;µq “ P p0;µq ´ uLp0;µq and the price of an American put option (3.4) is
determined as P pµq “ upµq ` uLpµq.

Boundary Conditions

We tackle the non-homogeneous truncated Dirichlet boundary conditions by means of
the lift function uLptq “ gptq onto the domain. For the CEV model, following Seydel
(2012), we applied the boundary conditions

P
Am{Eu
call pt, Sminq “ 0, P

Am{Eu
call pt, Smaxq “ Smax ´ e

´rtK, for call options,

PEuput pt, Sminq “ e´rtK ´ Smin, PEuput pt, Smaxq “ 0, for European put options,

PAmput pt, Sminq “ K ´ Smin, PAmput pt, Smaxq “ 0, for American put options.

Discrete Approximation in Time and Space

For the discretization of the problem in time and space, we follow Achdou and Pironneau
(2005). We introduce an equidistantly-spaced partition of the time interval r0, T s into N
intervals rt0, t1s, . . . , rtN´1, tN s with ∆t “ t1 ´ t0. The spacial domain is also split into
subintervals ωi “ rSi´1, Sis, 1 ď i ď Nh ` 1 such that Smin “ S0 ă S1 ă . . . ă SNh ă
SNh`1 “ Smax. We refer to the size of the interval ωi as hi, set h “ maxi“1,...,Nh`1 hi, and
the grid is chosen in such a way that the strike is a node. Then, we define the discrete
space Vh by

Vh “ tv P V,@ω P tω1, . . . , ωNh`1u, v|ω P P1pωqu,

where the space of linear functions on ω is denoted by P1pωq. Then, we can also introduce
a discrete version of the closed set K,

Khpt;µq :“ tφ P Vh : φ ě Hpt;µq, in Ωu. (3.11)

Thus, we formulate (3.10) in semi-discrete form applying an implicit Euler scheme for the
time stepping. Find uptk`1;µq P Khptk`1;µq, tk P r0, T s, such that for all φ P Khptk`1;µq
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holds,

1

∆t
xuptk`1;µq ´ uptk;µq, φ´ uptk`1;µqy`apuptk`1;µq, φ´ uptk`1;µq;µq

ě xfptk`1;µq, φ´ uptk`1;µqy , (3.12a)
up0;µq “ u0pµq, (3.12b)

At this point, we introduce a nodal basis of Vh. We choose the so-called hat functions
ϕi, i “ 1, . . . , Nh ` 1,

ϕipSq “

$

’

&

’

%

S´Si´1

Si´Si´1
, Si´1 ď S ă Si,

Si´S
Si´Si´1

, Si ď S ă Si`1,

0, elsewhere.

(3.13)

Figure 3.2 visualizes the concept of hat functions and in the following, we

• express uptk`1;µq “
řNh`1
i“1 ciptk`1qϕi, uptk;µq “

řNh`1
i“1 ciptkqϕi and fptk`1;µq “

řNh`1
i“1 fiptk`1qϕi with the nodal basis,

• apply the Galerkin method, i.e. we now that (3.12) has to be satisfied for all
φ P Khptk`1;µq and, hence, especially for each basis function ϕi, i “ 1, . . . , Nh`1,

• introduce the mass matrix M “ pmijq1ďi,jďNh`1 with mij “ xϕi, ϕjy, and the
stiffness matrix A “ pmijq1ďi,jďNh`1 with aij “ apϕj , ϕiq.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

Figure 3.2: Illustration of hat functions ϕi, i “ 2, . . . , 14, over a node grid with 15 nodes.

These steps allow use to rewrite the inequality from (3.12) in matrix,

1

∆t
Mpcptk`1q ´ cptkqq `Acptk`1q ěMf̃ptk`1q.

Note that the coefficient vector f̃ptk`1q is slightly adjusted. To solve the inequality in
each time step, we apply the projected successive over-relaxation algorithm as presented
in Achdou and Pironneau (2005) and Seydel (2012).
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3.3 Numerical Study of the effects of de–Americanization

Our main objective is to investigate the de–Americanization methodology with respect
to the previously stated questions 1-3 on page 31. But before we look at these questions
and the calibration results in detail, we describe the discretization of our FEM pricers
followed by an investigation of the effects of de–Americanization on pricing. Then we
switch to calibrating to synthetic data and, finally, to market data.

3.3.1 Discretization

We set up mesh sizes and time discretization in all three models such that the errors
compared to benchmark solutions are roughly the same. In our test setting, we set
S0 “ 1, r “ 0.07, T “ t0.5, 0.875, 1.25, 1.625, 2u and K to 21 equally distributed values
in r0.5, 1.5s. For the discretization, we choose rSmin, Smaxs “ r0.01, 2s for the CEV model
and we set N “ 1000, as well as ∆t “ 0.008 for all models. We choose σ “ 0.15 and ζ “
0.75 and as benchmark solution we implement the semi-closed-form solution of the CEV
model for European put and call prices as shown in Schroeder (1989). Summarizing the
results, we observe that, with the introduced discretization, the absolute error between
the benchmark and the FEM solution is in the region of 10´3 to 10´4.

3.3.2 Effects of de–Americanization on Pricing

First, we focus on pricing differences caused by de–Americanization. Therefore, we com-
pare the de–Americanized American prices with the derived European option prices in
the following way. Starting with a set of model parameters, we price the American and
European options. Then, the binomial tree is applied to translate the American option
prices into de-Americanized pseudo-European prices. Subsequently, we compare the Eu-
ropean and the pseudo-European so-called de-Americanized prices to identify the effects
of the de–Americanization methodology.

The advantage of this approach is that we can purely focus on de–Americanization,
decoupled from calibration issues. In order to do so, we define the following test set for
the range of investigated options. Here, we focus on put options due to the fact that
American and European calls coincide for non-dividend-paying underlyings.

S0 “ 1

K “ 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20

T “
1

12
,

2

12
,

3

12
,

4

12
,

6

12
,

9

12
,
12

12
,
24

12
r “ 0, 0.01, 0.02, 0.05, 0.07 (3.14)
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Five parameter sets are investigated to cover the parameter range. These are summarized
in Table 3.1.

σ ζ

p1 0.2 0.5
p2 0.275 0.6
p3 0.35 0.7
p4 0.425 0.8
p5 0.5 0.9

Table 3.1: Overview of the parameter sets used for the CEV model

Motivation of the selected parameters for the CEV model
The main feature of the CEVmodel is the elasticity of variance parameter ζ, which is com-
bined with the level of the underlying to obtain a local volatility, namely σpS, tq “ σSζ´1,
reflecting the leverage effect. In our example, we investigate American puts and the
option-holder benefits from decreasing asset prices. In general, increasing the volatility
leads to increasing option prices, but especially compared to the classical Black-Scholes
model we are interested in the question of how strongly the incorporated leverage effect
influences the put prices and whether the differences between American and European
puts can be captured by the binomial tree. Thus, our selection for ζ in p1 is 0.5, which
strongly differs from the Black-Scholes model, and then ζ is further increased up to 0.9
within the scenarios. Additionally, we increase the values of σ.

Remark 3.3.1. We price the put options in (3.14) for the parameter sets shown in Table
3.1. For some parameters, especially for high interest rates combined with low volatility,
it could occur that the price of an American put option equals exactly Ki ´ S0, so that
this American put option would be exercised immediately. In the following analysis, we
excluded these cases because a unique European option price cannot be determined by
applying the binomial tree. As illustrated in the following toy example in Figure 3.3,
there are several possible values for u to replicate the American option price if the price
of the American option is determined by immediately exercising it. In the example, a put
option with strike K “ 120 is priced. Here, u “ 1.04 and u “ 1.11 are possible solutions.
To avoid this, we consequently only consider American put options in our analyses when
PAmput ą pK ´ S0q

` ¨ p1` δq. Thus, the American put option price exceeds the immediate
exercise price by a factor of δ. We set δ “ 1%. In theory, we cannot guarantee that
in all other cases the application of the binomial tree finds a unique u˚ to replicate the
American option price. However, in various empirical tests this has been the case and
only when the price of an American put option equals exactly Ki ´ S0, problems have
been observed.

In Tables A.1 - A.3 in the appendix, we show in the appendix the pricing effects for
the synthetic prices in (3.14). For each scenario pi, i “ 1, . . . , 5, we present the average
difference between the de-Americanized prices and the European prices for each maturity
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107.33, 12.67, 12.67

103.6, 15.80, 16.40

100.00, 18.81, 20.00 100.00, 20.00, 20.00

96.53, 22.88, 23.47

93.17, 26.83, 26.83

u « 1.036

123.63, 0.00, 0.00

111.19, 10.01, 10.01

100.00, 19.69, 20.00 100.00, 20.00, 20.00

89.94, 29.46, 30.06

80.89, 39.11, 39.11

u « 1.112

Figure 3.3: Given an American put option price of 20 with S0 “ 100, K “ 120, r “ 0.01,
i.e., an American put option in the exercise region, a unique tree cannot be
found to replicate this option. In this example, we show two binomial trees
for u « 1.036 (top) as well as u « 1.112 (bottom). In each tree, we show
the value of the underlying (black), the European put price (blue) and the
American put price (red) at each node. Both trees replicate the American
option price of 20.00 but result in different European put prices: 18.81 and
19.69.
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and each strike and accordingly show the maximal European price in this maturity to
reflect the issue stated in Remark 3.3.1. Similar studies have been done for the maximal
error at each strike and maturity and confirm the findings based on the average error
presented in the following. In Figure 3.4, we highlight the results for scenario p5 in the
CEV model to illustrate the effects of de-Americanization in several interest rate envi-
ronments for different maturities or different strikes. For a better interpretability, in each
of the figures the differences between the corresponding American and European option
are shown, too. This figure clearly highlights the case r “ 0 as fewer de-Americanization
effects.
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Figure 3.4: De–Americanization effects on pricing put options in the CEV model. As
an example, the results are shown for p5 for the average error between the
de-Americanized and the European prices for each strike (top right) and
each maturity (bottom right). The average differences of the corresponding
American and European prices is shown for each strike (top left) and each
maturity (bottom left).

In general, for the CEV model, we observe that for short maturities the de–Americanized
prices seem to overprice the European prices, whereas for longer maturities they seem
to underprice the European options. We see that with increasing σ and ζ parameters
the maximal error increases and, overall, all parameter sets behave similarly. Focusing
on the interest rate, we observe that for higher interest rates (r “ 5% and r “ 7%)
the average errors are higher or at least in a comparable region. Especially for higher
interest rates, the maximal price has to be considered, because the higher the interest
rate, the higher the probability that we did not consider some in-the-money options
due to Remark 3.3.1 and that the options with high prices are neglected in this setting.
Thus we deduce that the error increases with increasing interest rates and that at high
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maturities the error increases for scenarios with higher volatility. For scenarios p1, p2

and p3, we clearly observe that the effects of de-Americanization increase with increasing
strikes. This means that for in-the-money options the de-Americanization effects tend
to be stronger than for out-of-the-money options. This is consistent with the statements
made by Carr and Wu (2010). However, for higher interest rates, the average error seems
to decrease with increasing strikes. The test setting in (3.14) is defined for S “ 1. In
the CEV model, the volatility is scaled with Sζ´1. In additional test, we set in (3.14)
S “ 100 and scaled the strike values K with a factor of 100, too. Overall, we observe
that the errors of the de-Americanization methodology, see Tables A.4 and A.5, give a
similar picture to the results for S “ 1. Naturally, by investigating differences of prices,
the absolute number of the error is higher by a factor of 10 to 100, which is tolerable
when the underlying value is scaled with a factor of 100.

In addition to all of these de–Americanization effects in absolute terms, we checked the
magnitude of the relative error for the 1-year at-the-money put option, i.e., the absolute
difference between the European and the de-Americanized price divided by the European
price. In the CEV model, the average relative error for this option in all scenarios and
interest rate settings was 0.1% with a peak of 0.17% at scenario p2 with r “ 1%.

Summarizing the results,

• de–Americanization effects are sensitive to interest rate. The higher the interest
rates, the higher the observable pricing differences,

• de–Americanization effects increase with increasing volatility and increasing matu-
rities,

• de–Americanization effects tend to be stronger in-the-money,

• de–Americanization effects increase with higher jump intensities as shown by the
results for the Merton model in Burkovska et al. (2016).

Overall, in the settings mentioned above, we observe a systematic effect caused by de–
Americanization. In the next step, we are interested in finding out whether these effects
are also reflected in the calibration results.

3.3.3 Effects of de–Americanization on Calibration to Synthetic Data

Here, we study the de-Americanization effect on synthetic American market data. To this
effect, in a first step, we generate artificial market data using our FEM implementations of
the three considered models. In a second step, we calibrate each model to the previously
generated market data. This methodology allows us to disregard the noise affiliated with
real market data and thus enables us to study the effect of de-Americanization exclusively.
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Our artificial market data is specified as follows.

S0 “ 1

r “ 7%

T1 “
2

12
, K1 “ t0.95, 0.975, 1, 1.025, 1.05u,

T2 “
6

12
, K2 “ t0.9, 0.925,K1, 1.075, 1.1u,

T3 “
9

12
, K3 “ t0.85, 0.875,K2, 1.125, 1.15u,

T4 “ 1, K4 “ t0.8, 0.825,K3, 1.175, 1.2u,

T5 “ 2, K5 “ t0.75, 0.775,K4, 1.225, 1.25u.

(3.15)

As the data in (3.15) shows, we consider a high-interest market and a set of maturities
ranging from rather short-term American options with 2 months maturity to long-term
American products with 2 years maturity. Each maturity Ti is associated with a set
of strikes Ki, i P t1, . . . , 5u. To analyze the effects of de–Americanization on pricing,
we price these options for the five parameter scenarios in Table 3.1. Regarding the
calibration methodology, we have to make two choices. First, we have to decide which
option types to include and, second, we need to determine the objective function.

Regarding the choice of options, we first consider only put options for the whole strike tra-
jectory due to the fact that, in our setting of non-dividend paying underlyings, American
and European calls coincide. Thus, we include in-the-money as well as out-of-the-money
options. Second, motivated by the fact that the value of out-of-the-money options does
not include any intrinsic value and is therefore supposed to better reflect the randomness
of the market (as mentioned in Carr and Wu (2010)), we consider as a second approach
that only includes out-of-the money puts and out-of-the money calls for the whole set
of strikes and maturities. Consequently, in this second study, for each i P t1, . . . , 5u, we
consider call option prices for maturities Ti and strikes k P Ki with k ą 1 and put option
prices for maturities Ti and strikes k P Ki with k ă 1. At-the-money option data, i.e.,
options with strike K “ 1, is neglected.

Once the synthetic American market data has been generated, we create associated sec-
ond synthetic market data by applying the de-Americanization routine using the binomial
model.

Remark 3.3.1 and Figure 3.3 describe situations in which the de-Americanization rou-
tine yields non-unique results. In the calibration to de-Americanized prices, we exclude
options that cannot be de-Americanized uniquely as explained by the following remark.

Remark 3.3.2 (Disregarding non-unique de–Americanized prices). As outlined above,
we artificially generate American market data for a calibration study on synthetic data.
In a first step, we calibrate to the generated American prices directly. In a second step,
we de–Americanize the option data and calibrate to the resulting quasi-European options.
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Here, we only consider option prices that admit a unique de–Americanized price. Conse-
quently, all American put option prices that violate

PAmput ą pK ´ S0q
` ¨ p1` δq, with δ “ 1%, (3.16)

are not de–Americanized and thus are neglected in the second step.

The second crucial assumption is the objective function. A variety of objective functions
are proposed in the literature, e.g., the root mean square error, the average absolute
error as a percentage of the mean price, the average absolute error, the average relative
percentage error, absolute price differences, relative price differences, absolute implied
volatilities, relative implied volatilities (see for example Detlefsen and Haerdle (2006),
Bauer (1991), Fengler (2005), Schoutens et al. (2004)).

We work directly with the observed prices and choose an objective function that considers
prices, and due to the fact that the considered out-of-the-money option prices are rather
small, we focus on absolute instead of relative differences. In the calibration, we take the
absolute average squared error (aase) as the objective function and we minimize,

aase “
1

#options

ÿ

optionk

|Market pricek ´Model pricek|
2. (3.17)

The results of the calibration to synthetic data are summarized in Table 3.2 for the CEV
model for calibrating to put options and calibrating to out-of-the-money options.

Overall, we see that for the CEV model the parameters match well when calibrating to
American options. When calibrating to de-Americanized prices however, the volatility
parameter σ is underestimated in most cases and this underestimation is counterbalanced
by an overestimated ζ-value.

Summarizing the results, we observe that when calibrating de-Americanized synthetic
data in a high-interest-rate environment for the continuous CEV model, the main pa-
rameters driving the volatility of the underlying, ζ and σ (CEV), are often not exactly
matched. In these cases, the application of the binomial tree is not able to capture the
volatility of the underlying exactly. Furthermore, in Burkovska et al. (2016), we see that
for the Heston model the parameters ξ and ρ are often mismatched and for the jump
model (Merton), we observe that due to the de-Americanization the jump intensity is
(more strongly) mismatched than when directly calibrating to American options and in
these cases the wrongly calibrated jump intensity parameter may be compensated by
adjusting the other model parameters accordingly.
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CEV
σ ζ aase

p1

true 0.2 0.5 —

Put Am 0.1977 0.4962 7.74e-6
DeAm 0.1894 0.4501 8.35e-5

oom Am 0.1997 0.4996 4.52e-6
DeAm 0.1793 0.9609 2.75e-4

p2

true 0.275 0.6 —

Put Am 0.2740 0.6004 4.98e-7
DeAm 0.2607 0.7539 2.04e-6

oom Am 0.2736 0.5978 1.91e-6
DeAm 0.2484 0.5367 1.10e-5

p3

true 0.35 0.7 —

Put Am 0.3515 0.7576 4.37e-5
DeAm 0.3272 0.8528 1.92e-4

oom Am 0.3476 0.6984 1.00e-4
DeAm 0.3141 0.5527 5.99e-4

p4

true 0.425 0.8 —

Put Am 0.4258 0.7898 1.53e-6
DeAm 0.3942 0.8755 7.30e-6

oom Am 0.4262 0.7966 3.27e-6
DeAm 0.3801 0.6009 1.96e-5

p5

true 0.5 0.9 —

Put Am 0.4982 0.9036 1.53e-6
DeAm 0.4570 0.9192 1.02e-5

oom Am 0.4986 0.9036 4.02e-6
DeAm 0.4430 0.6549 2.38e-5

Table 3.2: Calibration results for calibrating to put options only and out-of-the-
money options for the CEV model. Due to the effect of non-unique de-
Americanization results, for the CEV model, some option prices have been
neglected in the calibration to de-Americanized option data, as Remark 3.3.2
explains. In scenarios p1 to p5, 5, 5, 10, 10 and 10 prices were excluded in the
calibration to put options only.

3.3.4 Effects of de–Americanization on Calibration to Market Data

In this section, we investigate the effects of de–Americanization by calibrating market
data. The single stock of our choice is Google as an example of a non-dividend-paying
stock. Table 3.3 gives an overview of the processed data for the calibration procedure.
In total, we obtained a data set containing 482 options, with slightly more puts than
calls. The risk-free interest rate for maturities of 1 month, 3 months, 6 months, 1 year
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and 2 years are taken from the U.S. Department of the Treasury1 and have been linearly
interpolated whenever necessary.

Maturity T # of options r
T1 27.02.2015 0.07 47 0.0001
T2 20.03.2015 0.13 49 0.000129508
T3 17.04.2015 0.20 52 0.00017541
T4 19.06.2015 0.38 87 0.00046087
T5 18.09.2015 0.62 98 0.000955435
T6 15.01.2016 0.95 101 0.001602174
T7 20.01.2017 1.97 48 0.004786339

Table 3.3: Processed Google option data for t0 “ 02.02.2015, S0 “ 523.76

In order to structure the available data, we follow the methodology applied for the
volatility index (VIX) by the Chicago board of exchange (CBOE (2009)):

• Only out-of-the-money put and call options are used

• The midpoint of the bid-ask spread for each option with strike Ki is considered

• Only options with non-zero bid prices are considered

• Once two puts with consecutive strike prices are found to have zero bid prices, no
puts with lower strikes are considered for inclusion (same for calls)

Basically, by this selection procedure, we only select out-of-the-money options that (due
to non-zero bid prices) can be considered as liquid. In general, an option price consists
of two components reflecting the time value and the intrinsic value of the option. By
focusing on out-of-the-money options, the intrinsic value effects are mostly neglected and
the highest option price will be at-the-money. Additionally, the highest market activity
is in the at-the-money and slightly out-of-the-money region. The calibration results are
summarized in Table 3.4.

CEV
σ ζ aase

Google Data Am 0.25 0.98 3
DeAm 0.25 0.97 3.32

Table 3.4: Calibration results for calibrating to out-of-the-money put and call options
combined.

Here, we observe hardly any differences in the parameters. This is in line with our obser-
vations in Section 3.3.2 for low-interest-rate environments. In these settings, American

1www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
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and European puts almost coincide and, thus, there will hardly be any difference in the
prices and it is only natural that we observe very similar calibration results.

3.3.5 Effects of de–Americanization in Pricing Exotic Options

Plain vanilla options are traded liquidly in the market and are used to calibrate models.
Financial institutions use these calibrated models to price more exotic products such as
barrier and lookback options. In this subsection, we analyze which influences different
calibration results have on the accuracy of exotic option prices.

We analyze a down-and-out call option and a lookback option and hence translate
differences in the calibrated model parameters into quantitative prices. The payoff
rHDOCpSpT qq of a down-and-out call option with barrier B is given by

rHDOCpSpT qq “ pSpT q ´Kq` ¨ 1mintďT SptqěB. (3.18)

In our setting, we set S0 “ 100, the barrier B to 90% of the initial underlying value and
the strike K to 105% of the underlying value. For the lookback option, we choose the
same strike and the payoff rHLookbackpSpT qq is

rHLookbackpSpT qq “ pS̄pT q ´Kq`, with S̄pT q “ max
tďT

Sptq. (3.19)

We price these two exotic options for the calibrated parameters in Tables 3.2 and 3.4
via a standard Monte Carlo method with 106 sample paths, 400 time steps per year
and antithetic variates as variance reduction technique. The results are shown in the
following Table 3.5.

In p1 and p2 of the CEV model, the scenarios with relatively small volatility, we do not
see any differences. Thus, in cases with small volatility and medium elasticity of variance
ζ, de–Americanization seems to perform well. In the other scenarios, we observe that the
calibration of de–Americanized prices leads to higher exotic option prices if we calibrate
put options only and lower exotic option prices if we calibrate out-of-the-money options.
Thus, the typically lower calibrated σ-value in combination with an increased ζ-value
obtained by calibrating de-Americanized options has this effect on the pricing of exotic
options.

In high-interest-rate environments, the de–Americanization methodology leads to differ-
ent exotic options prices in the CEV model when the volatility of the underlying is higher.
When using only put options, the exotic option prices tend to be higher; when consider-
ing out-of-the-money options, the exotic option prices tend to be lower. As additionally
illustrated in Burkovska et al. (2016), in the Heston model, we observe a similar picture
as in the CEV model, however here no general statement holds between higher and lower
exotic option prices. Regarding the Merton model, the differences in the exotic option
prices are more visible when considering the down-and-out barrier option.
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CEV
barrier lookback

p1

true 9.93 10.11

Put Am 9.93 10.10
DeAm 9.93 10.01

oom Am 9.93 10.11
DeAm 10.13 11.13

p2

true 10.13 11.14

Put Am 10.14 11.14
DeAm 11.47 14.59

oom Am 10.12 11.10
DeAm 9.95 10.40

p3

true 11.60 14.93

Put Am 12.48 17.83
DeAm 13.53 23.85

oom Am 11.56 14.81
DeAm 10.07 10.91

p4

true 13.56 24.08

Put Am 13.54 24.00
DeAm 14.14 30.87

oom Am 13.51 23.81
DeAm 10.60 12.37

p5

true 14.76 43.40

Put Am 14.80 43.99
DeAm 14.78 43.50

oom Am 14.74 42.81
DeAm 11.68 15.13

Google
data

Am 14.21 32.10
DeAm 14.12 30.70

Table 3.5: Overview of prices for barrier and lookback options

3.4 Conclusion

We investigated the de–Americanization methodology by performing accuracy studies
to compare the empirical results of this approach to those obtained by solving related
variational inequalities for local volatility, stochastic volatility and jump diffusion models.
On page 31, we pose key questions regarding the robustness of the de–Americanization
methodology with regard to changes in the (i) interest rates, (ii) maturities and (iii)
in-the-money and out-of-the-money options.

First, focusing on pricing, we observe that de–Americanization causes larger errors (i)
for higher interest rates, (ii) for higher maturities and (iii) in the in-the-money region
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in scenarios with higher volatility and/or correlation. Second, we investigate model
calibration to synthetic data for a specified set of maturities and strikes in a high-interest-
rate environment. Numerically, we observe noticeable differences in the calibration results
of the de–Americanization methodology compared to the benchmark. For continuous
models, the main difference lies in the resulting volatility parameters. When calibrating
to Google data, hardly any differences occur, which can be explained by the very low-
interest-rate environment. This is in line with the results for question (i).

In a final step, we investigate the effects of de–Americanization in the model calibration
on pricing exotic options. Here, exotic option prices play the role of a measure of the
distance between differently calibrated model parameters. In most cases, we observe that
exotic option prices are reasonably close to the benchmark prices. However, we observe
severe outliers for all investigated models. We find scenarios in which the exotic option
prices differ by roughly 50% in the CEV model (p4), see Table 3.5.

Additionally, the results for the Heston and Merton model in Burkovska et al. (2016) are
aligned to these observations. Additionally, as a jump diffusion model, the results for
the Merton model also show higher de–Americanization effects for scenarios with higher
jump intensities and that the jump intensity is underestimated by the de–Americaniza-
tion methodology, especially in settings with high jump intensities.

In a nutshell, the methodological risk of de–Americanization critically depends on the
interest rate environment.

• For low-interest-environments, the errors caused by de–Americanization are negli-
gibly small and the de–Americanization methodology can be employed when fast
run-times are preferred.

• For higher-interest-rate environments, however, de–Americanization leads to un-
controllable outliers.

Intuitively, the higher the interest rate, the higher is the early exercise premium of an
American put option and, hence, the higher are the differences between an American
and a European put price. At its core, the de–Americanization methodology is replacing
American options with European options. Thus, with higher differences between both of
them, the potential of making an error increases. As second observation,

• de–Americanization tends to lead to outliers in scenarios with a higher volatility
and/or higher jump intensities.

In these scenarios, the model describing the evolution of the underlying differs strongly
from the assumptions of the Black&Scholes model, namely a constant volatility coeffi-
cient and the absence of jumps. The binomial tree is roughly a discrete version of the
Black&Scholes model and, secondly, the model independent approach of the binomial tree
leads to higher errors the stronger the underlying process differs from the Black&Scholes
model. Therefore, and since the de–Americanization methodology does not provide an
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error control, we strongly recommend applying a pricing method in the calibration that
is certified by error estimators.

Also for scenarios in which a direct application of the de–Americanization methodology
can lead to outliers, the method can be applied usefully.

• It can, for example, be used as first estimator for the model parameters and this
estimate can then be used as initial guess in a calibration routine to reduce the
run-time.

We leave the inclusion of dividends for future research. The numerical results for the
jump diffusion model and the sensitivity to interest rates indicate that discrete and
continuous dividends may intensify the errors caused by the de–Americanization method.
Furthermore, the application of a binomial tree to translate American into European
prices can be challenged in further research and the binomial tree could be replaced by
a more sophisticated, maybe not anymore model invariant, technique. Obviously, one
has to keep in mind here that this leads to higher computational efforts and one of
the advantages of the de–Americanization methodology, like faster run-times and model
flexibility could be reduced.

3.5 Outlook: The Reduced Basis Method

Previously, we applied the finite element method as PDE solver for calibrating American
option prices. The investigations have shown that the de–Americanization methodology
does not work efficiently enough for all the parameter scenarios. Based on PDE methods,
we propose the reduced basis method here as a complexity reduction technique and will
give a quick overview of Burkovska et al. (2016b). Starting with the quote of Thomas
Eakins in the introduction, colors can be represented by the RBG color model. In this
additive model, each color can be constructed by adding weighted red, blue and green
colors. The weights are usually scaled between 0 and 255. Each color can then be
represented as a 3-tupel pa, b, cq with 0 ď a, b, c ď 255, with the convention of black
being p0, 0, 0q and white being p255, 255, 255q. In a fascinating way, all colors can be
represented by only a few colors, namely the three colors red, green and blue. This
color/painting example illustrates the idea behind the reduced basis method. In order
to solve parametric PDEs, compared to the high-dimensional basis in the finite element
method, for example, the key idea is to define a problem-adapted lower dimensional
basis and thereby significantly reducing the complexity of numerically solving parametric
partial differential equations. The problem-adapted basis functions are based on solutions
of the PDE for specific parameters. By doing so, the resulting algebraic systems are
considerably smaller. The set of few basis functions then basically works like the colors
red, blue and green in the example above and each solution for a new parameter is a
combination of solutions to these few parameters.
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The reduced basis method (RBM) is not a new approach. The method has been studied
on a variety of applications. We refer to Patera and Rozza (2006), Quarteroni et al.
(2016), Hesthaven et al. (2016) for an overview. For model reduction techniques in
finance, we find recent work with a focus on proper orthogonal decomposition (POD),
e.g. Sachs and Schu (2008), Sachs and Schneider (2014), Sachs et al. (2014), Pironneau
(2012), Peherstorfer et al. (2015) and RBM results, e.g. Cont et al. (2011), Pironneau
(2011), Pironneau (2012). Here, the focus has been on the simpler case of European
options. For American options, described by parabolic variational inequalites, we refer to
Burkovska et al. (2015) and Balajewicz and Toivanen (2016). More generally, variational
inequalities are also investigated by Glas and Urban (2014). The basis construction for
parabolic inequalities becomes much more challenging than for variational equalities. We
refer here to the POD-Angle-Greedy strategy as described in Burkovska et al. (2015).
Cont et al. (2011) and Pironneau (2009) study the calibration with the RBM to European
option, the extension to American options, to the best of our knowledge, has not yet been
addressed.

In Burkovska et al. (2016b), we compare calibration results with the RBM to calibration
results of the de–Americanization methodology. In a nutshell, the calibration results
using the RBM method are closer to the calibration results applying the FEM solver than
the de–Americanization methodology, especially in a high-interest rate setting with high
volatility parameters. The de–Americanization methodology is still the fastest method
to calibrate to American options. However, the reduced basis method as a complexity
reduction technique allows to calibrate relatively fast to American options and tends to
work fine in scenarios, for which the de–Americanization methodology runs into pitfalls,
too.

3.6 Excursion: The Regularized Heston Model

The work in this section started in 2014 in parallel to Ackerer et al. (2016). This section
is an excursion to indicated possible ways to work with regularized models. Our example is
a regularized version of the Heston model that falls as a special case into the investigated
Jacobi stochastic volatility model of Ackerer et al. (2016).

At the end of Section 2.2.1, we have indicated that the Heston model, due to an un-
bounded coefficient in the SDE describing the underlying, does not fit into the classic
PDE theory. Moreover, the resulting PDE for bounded coefficients has regularity advan-
tageous and does not require a truncation of the domain. This motivates our approach
to introduce a regularized Heston model with bounded coefficients and in addition, we
show that our regularized Heston model converges to the original Heston model.
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Our regularized Heston model is given by the following SDEs

dSptq “ µSdt`
a

ṽptqSdW1ptq (3.20)

dṽptq “ κpθ ´ ṽptqqdt` σ

d

pṽptq ´ εq ¨

ˆ

1´
ṽptq

V̄

˙

dW2ptq, κ, θ, σ ą 0, (3.21)

where W1ptq and W2ptq are Wiener processes with correlation ρ and the two constants
0 ă ε ă V̄ ă 8 define the space for the volatility process, i.e. ṽptq P pε, V̄ q. Basically, in
contrast to the Heston model, the diffusion coefficient of the volatility process is bounded.
In the following, we show first that the regularized Heston model, described by SDEs
(3.20) and (3.21), has a strong solution and then, we investigate the convergence of the
regularized Heston model to the Heston model.

3.6.1 Existence and Strong Solution in the Bounded Domain I “ pε, V̄ q

In the following, we show that the regularized volatility process ṽ has a strong, unique
solution within the interval pε, V̄ q. Here, we have the issue that our coefficients are only
defined on an open interval pε, V̄ q Ă R and we have to prove that our process is well-
defined and does not exit this interval. The standard results stated in Chapter 2 have to
be adapted to the bounded domain. First, we introduce the concepts of a weak solution
up to explosion and then the concept of a solution in an interval up to exit time, i.e. not
the time until the process explodes, but the time until the process exits the interval.

Definition 3.6.1 (Weak solution up to explosion time). (Karatzas and Shreve, 1996,
Definition 5.1, p. 329) A weak solution up to an explosion time of the equation

dXt “ bpXtqdt` σpXtqdWt, (3.22)

is a triple pX,W q, pΩ,F , P q, tFtu, where

(i) pΩ,F , P q is a probability space, and tFtu is a filtration of sub-σ-fields of F satisfying
the usual conditions

(ii) X “ tXt,Ft; 0 ď t ă 8u is a continuous, adapted R Y t8u-valued process, W “

tWt,Ft; 0 ď t ă 8u is a standard, one-dimensional Brownian motion

(iii) with

Sn :“ inftt ě 0; |Xt| ě nu (3.23)

we have for all 0 ď t ă 8

P

„
ż t^Sn

0
t|bpXsq| ` σ

2pXsquds ă 8



“ 1, (3.24)

valid for every n ě 1, and
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(iv)

P

„

Xt^Sn “ X0 `

ż t

0
bpXsq1sďSnds`

ż t

0
σpXsq1sďSndWs; @0 ď t ă 8



“ 1

(3.25)

valid for every n ě 1.

S :“ limnÑ8Sn is the explosion time of the process X.

Definition 3.6.2 (Non-degeneracy and local integrability). For the SDE described in
(3.22), we define the assumptions of non-degeneracy and local integrability in the following
way,

(Non-degeneracy) for all x P R holds σ2 ą 0,

(Local integrability) for all x P R exists ε ą 0 such that
ż x`ε

x´ε

|bpyq|

σ2pyq
dy ă 8.

Theorem 3.6.3. (Karatzas and Shreve, 1996, Theorem 5.15, p.341) Assume that σ´2

is locally integrable at every point in R, and non-degeneracy and local integrability as-
sumptions from Definition 3.6.2 hold. Then, for every initial distribution µ, the equation
(3.22) has a weak solution up to an explosion time, and this solution is unique in the
sense of law.

Of course, with our SDE in (3.21), we do not only care about an explosion in the sense
of |Xt| “ 8, but we want to investigate if our process is leaving the interval of interest,
namely pε, V̄ q.
From this point on, we follow Karatzas and Shreve (1996) and do not look at the entire
real line, but we do focus on the interval

I “ pε, V̄ q Ă R. (3.26)

We show in Lemma 3.6.4 that our SDE (3.21) satisfies non-degeneracy and local integra-
bility assumptions and we can introduce the definition of weak solutions in an Interval I
until explosion (exit) time.

Lemma 3.6.4. The SDE (3.21) with coefficients σpxq “ σ
b

px´ εq ¨ p1´ x
V̄
q and bpxq “

κpθ ´ xq satisfies the following non-degeneracy and local integrability assumptions in the
interval I.

Proof. The function x ÞÑ σpxq is a continuous function on I and the square-root of a
polynomial of degree 2. Thus, there exists a maximum of two roots. Obviously, σpεq “ 0
and σpV̄ q “ 0 and ε, V̄ R I. Hence, for all x P I holds ñ σ2pxq ą 0.
For the local integrability, we define for x P I, δx “ mintx´ε2 , V̄´x2 u. Thus, we achieve
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that for all y P rx´ δx, x` δxs Ă I : σpyq ă 8, |bpyq| ă 8. As a direct consequence, the
quotient 1`|bpxq|

σ2pxq
is continuous on rx´ δx, x` δxs), the local integrability is given.

For SDEs of type (3.22) fulfilling non-degeneracy and local integrability assumptions, we
can introduce the following definition of weak solutions in intervals.

Definition 3.6.5 (Weak solution in interval up to exit time). (Karatzas and Shreve,
1996, Definition 5.20, p. 343) A weak solution up to exit time in the interval I=(l,r) of
equation (3.22) is a triple pX,W q, pΩ,F , P q, tFtu, where

(i) pΩ,F , P q is a probability space, and tFtu is a filtration of sub-σ-fields of F satisfying
the usual conditions

(ii) X “ tXt,Ft; 0 ď t ă 8u is a continuous, adapted rl, rs-valued process, W “

tWt,Ft; 0 ď t ă 8u is a standard, one-dimensional Brownian motion

(iii) with tlnu8n“1 and trnu8n“1 strictly monotone sequences satisfying l ă ln ă rn ă r,
limnÑ8ln “ l, limnÑ8rn “ r, and

Sn :“ inftt ě 0 : Xt R pln, rnqu

the equations (3.24) and (3.25) hold.

Here, S :“ inftt ě 0 : Xt R pl, rqu “ limnÑ8Sn is the exit time from I.

Theorem 3.6.6. The defined SDE (3.21) has a weak solution in the interval pε, V̄ q up
to exit time S.

Proof. (i) and (ii) of Definition 3.6.5 are satisfied. For (iii), we define for n ě 1: ln :“

ε ` 1
n
V̄´ε

3 and rn :“ V̄ ´ 1
n
V̄´ε

3 . Obviously, limnÑ8ln “ ε, limnÑ8rn “ V̄ . The
equations (3.24) and (3.25) are satisfied due to the fact that for t ă Sn pSn :“ inftt ě
0 : Xt R pln, rnquq the process Xt is bounded by |Xt| ă maxt|ln|, |rn|u and the non-
degeneracy and local integrability assumptions are satisfied (Lemma 3.6.4). Additionally,
we adapt Theorem 3.6.3 for the interval pε, V̄ q. Thus, there exists a weak solution in the
interval pε, V̄ q up to exit time S.

Consequently, we want to show that the process X given by (3.21) does not exit the
interval pε, V̄ q, thus we will show S :“ inftt ě 0 : Xt R pε, V̄ qu “ limnÑ8Sn “ 8. Here,
one way is Feller’s test for explosions.

Theorem 3.6.7 (Feller’s test for explosion). (Karatzas and Shreve, 1996, Theorem 5.29,
p. 348) Assume that non-degeneracy and local integrability assumptions hold, and let
pX,W q, pΩ,F , P q, tFtu be a weak solution in I “ pl, rq of (3.22) with non-random initial
condition X0 “ x P I. Then P rS “ 8s “ 1 or P rS “ 8s ă 1, according to whether

vpl`q “ vpr´q “ 8
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or not. Here, for all x P I and c P I arbitrary,

vpxq :“

ż x

c
pppxq ´ ppyqqmpdyq,

ppxq :“

ż x

c
exp

ˆ

´2

ż η

c

bpζq

σ2pζq
dζ

˙

dη pscale functionq,

mpdxq :“
2dx

p1pxqσ2pxq
pspeed measureq.

Proof. (Karatzas and Shreve, 1996, p. 348f)

Lemma 3.6.8. In the setting of Theorem 3.6.7, the following implications hold:

ppr´q “ 8 ñ vpr´q “ 8,

ppl`q “ ´8 ñ vpl`q “ 8

Proof. Let ppr´q “ 8,

vpr´q : “

ż x

c
pppr´q ´ ppyqq

2dy

p1pyqσ2pyq

“

ż x

c
p8 ´ ppyqq

2dy

p1pyqσ2pyq

“ 8.

Let ppl`q “ ´8, we use c ą x to switch the limits of the integral,

vpl`q : “

ż x

c
pppl`q ´ ppyqq

2dy

p1pyqσ2pyq

“

ż x

c
p´8´ ppyqq

2dy

p1pyqσ2pyq

“ ´

ż c

x
p´8´ ppyqq

2dy

p1pyqσ2pyq

“ 8.

Lemma 3.6.9. Assuming σ2pV̄´εq
?
V̄´

?
ε
ď 2κmintV̄ ´ θ, θ ´ εu, every local weak solution of

(3.21) in I is a global weak solution.

Proof. This statement follows directly from (Ackerer et al., 2016, Theorem 1) which
explicitly defines the condition.
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So far, we have shown that our SDE (3.21) has a global weak solution existing in the
interval I “ pε, V̄ q. Now, we are interested in showing uniqueness and stating that we
have a global strong solution existing in the interval I.

Theorem 3.6.10. With the assumptions of Lemma 3.6.9 and X0 “ x P I :“ pε, V̄ q,
(3.21) has a global unique strong solution in I.

Proof. We follow (Revuz and Yor, 1999, Theorem 3.5, p. 390) which states that pathwise
uniqueness holds for (3.21) if |σpxq ´ σpyq|2 ď ρp|x ´ y|q and b is Lipschitz continuous,
where ρ is a Borel function on p0,8q with

ş

0`
1

ρpαqdα “ 8. ρpxq :“ σ2
´

V̄´ε
V̄

¯

x satisfies
these conditions and we have to investigate |σpxq ´ σpyq|2 only for x, y P pε, V̄ q. Let
x, y P pε, V̄ q,

|σpxq ´ σpyq| “

ˇ

ˇ

ˇ

ˇ

σ

c

px´ εq ¨
´

1´
x

V̄

¯

´ σ

c

py ´ εq ¨
´

1´
y

V̄

¯

ˇ

ˇ

ˇ

ˇ

“ σ

ˇ

ˇ

ˇ

ˇ

c

px´ εq ¨
´

1´
x

V̄

¯

´

c

py ´ εq ¨
´

1´
y

V̄

¯

ˇ

ˇ

ˇ

ˇ

ď σ

c

ˇ

ˇ

ˇ
px´ εq ¨

´

1´
x

V̄

¯

´ py ´ εq ¨
´

1´
y

V̄

¯ˇ

ˇ

ˇ
.

Given this estimate for |σpxq ´ σpyq|, rearranging yields

“ σ

d

ˇ

ˇ

ˇ

ˇ

x´
x2

V̄
´ ε`

εx

V̄
´

ˆ

y ´
y2

V̄
´ ε`

εy

V̄

˙
ˇ

ˇ

ˇ

ˇ

“ σ

d

ˇ

ˇ

ˇ

ˇ

x´ y ´
x2 ´ y2

V̄
`
εpx´ yq

V̄

ˇ

ˇ

ˇ

ˇ

“ σ

d

ˇ

ˇ

ˇ

ˇ

V̄ px´ yq

V̄
´
px´ yqpx` yq

V̄
`
εpx´ yq

V̄

ˇ

ˇ

ˇ

ˇ

“ σ

d

ˇ

ˇ

ˇ

ˇ

V̄ ´ px` yq ` ε

V̄
px´ yq

ˇ

ˇ

ˇ

ˇ

.

Finally, using x, y P pε, V̄ q results in |σpxq ´ σpyq| ď σ

c

ˇ

ˇ

ˇ

V̄´ε
V̄
px´ yq

ˇ

ˇ

ˇ
and, thus,

|σpxq ´ σpyq|2 ď σ2

ˆ

V̄ ´ ε

V̄

˙

|x´ y|.

For the drift component, we can show, the even stronger condition, that it is globally
Lipschitz. Let x, y P pε, V̄ q

|bpxq ´ bpyq| “ |κpθ ´ xq ´ κpθ ´ yq|, |κ ą 0

“ κ|pθ ´ xq ´ pθ ´ yq| “ κ|θ ´ x´ θ ` y|

“ κ| ´ x` y| “ κ|x´ y|

Thus, pathwise uniqueness holds. From (Karatzas and Shreve, 1996, Corollary 3.23, p.
310) it follows that weak existence and pathwise uniqueness imply strong existence. From
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this point, we can build a bridge back to the Yamada and Watanabe Proposition 2.1.3
and just set hpxq :“ ρpxq

1
2 .

3.6.2 Convergence

After the introduction of the regularized Heston model, we embed the regularized Heston
model into the Heston model by showing, that for ε Ñ 0 and V̄ Ñ 8 the regularized
Heston model converges to the Heston model in appropriate sense and, further on, we
show an upper bound for the error. Let us start with the two SDEs of the Heston

dvptq “ bpvptqqdt` σpvptqqdW ptq, κ, θ, σ ą 0,

bpvptqq “ κpθ ´ vptqq,

σpvptqq “ σ
a

vptq,

and the regularized Heston model

dṽptq “ b̃pvptqqdt` σ̃pṽptqqdW ptq, κ, θ, σ ą 0

b̃pṽptqqdt “ κpθ ´ vptqq “ bpṽptqq,

σ̃pṽptqq “ σ

d

pṽptq ´ εq ¨

ˆ

1´
ṽptq

V̄

˙

.

In order to investigate the convergence, we define tvnptqu8n“1

dvnptq “ bnpvnptqqdt` σnpvnptqqdW ptq, κ, θ, σ ą 0

bnpvnptqqdt “ κpθ ´ vnptqq “ bpvnptqq,

σnpvnptqq “ σ

d

pvnptq ´ εnq ¨

ˆ

1´
vnptq

V̄n

˙

εn “
1

n
¨ ε

V̄n “ n ¨ V.

Obviously, εn Ñ 0 and V̄n Ñ8. In order to show convergence in law, we apply Theorem
IX. 4.8 from Jacod and Shiryaev (2003).

Theorem 3.6.11. The regularized Heston model converges in law to the Heston model,
i.e. the process ṽnptq converges in law to the process vptq.

Proof. By applying Theorem 3.6.10, we know that for every n P N there exists a unique
global solution for the process ṽnptq. Thus, to apply Theorem IX. 4.8 from Jacod and
Shiryaev (2003), we only have to show that the coefficient functions b̃npxq and σ̃npxq
converge locally uniformly to bpxq resp. σpxq. Due to b̃npxq “ bpxq for all n P N the
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locally uniformly convergence is naturally given. For the diffusion coefficient, we have
to show the locally uniformly convergence. Clearly, for all x P I exists m P N such that
εm ď x ď V̄m and then for an open domain U Ă I, we have to show that for y P U and
n ě m the diffusion coefficient converges uniformly. Let n ě m,

|σnpyq ´ σpyq| “ |σ

c

py ´ εnqp1´
y

V̄n
q ´ σ

?
y| “ σ|

c

py ´ εnqp1´
y

V̄n
q ´

?
y|

ď σ

c

|py ´ εnqp1´
y

V̄n
q ´ y| “ σ

d

|py ´
y2

V̄n
´ εn `

εny

V̄n
q ´ y|

“ σ

d

|
y2

V̄n
` εn ´

εny

V̄n
| ď σ

d

|
y2

V̄n
` εn| ď σp

d

|
y2

V̄n
| `

a

|εn|q

For pn Ñ 8q it holds σp
b

|
y2

V̄n
| `

a

|εn|q Ñ 0. Thus, the convergence in law follows
directly from (Jacod and Shiryaev, 2003, Theorem IX. 4.8).

As a last step, we investigate the convergence rate for the processes vptq and vnptq.

Theorem 3.6.12. Given a fix interval rε, V s Ă pεn, V̄nq, the approximation error between
the regularized Heston model and the Heston model (the processes are stopped whenever
one of them is leaving rε, V s) with Cn “

b

|V
2`εnV
V̄n

` εn| is given by

Er|vτ ptq ´ ṽτnptq|
2s “ 4

C2
n

2κ2 ` 4
´

σ?
2ε

¯2

˜

exp

˜

p2κ2 ` 4

ˆ

σ
?

2ε

˙2

qt

¸

´ 1

¸

(3.27)

Choosing εn and V̄n such that Cn Ñ 0 pn Ñ 8q, the approximation error decays to
zero,

Er|vτ ptq ´ ṽτnptq|
2s Ñ 0 pnÑ8q (3.28)

Proof. In order to do an analysis of the convergence rate, we need to have Lipschitz
coefficient functions. This is generally not satisfied by the diffusion coefficients. We
therefore define the following stopping times.

τ1 :“ infts : ṽpsq ă εu (3.29)
τ2 :“ infts : vpsq ă εu (3.30)
τ3 :“ infts : ṽpsq ą V u (3.31)
τ4 :“ infts : vpsq ą V u (3.32)
τ :“ mintτ1, τ2, τ3, τ4u (3.33)
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Finally, we investigate the convergence rate for the processes vτ ptq and vτnptq stopped at
t^ τ in the interval rε, V s Ă pεn, V̄nq.

Er|vτ ptq ´ vτnptq|
2s ď2Er|

ż t^τ

0
bpvpsqq ´ bpvnpsqqds|

2s

` 2Er|

ż t^τ

0
σpvpsqq ´ σnpvnpsqqdWs|

2s,

Applying Itô isometry yields

ď2Er

ż t^τ

0
|bpvpsqq ´ bpvnpsqq|

2dss

` 2Er

ż t^τ

0
|σpvpsqq ´ σnpvnpsqq|

2dss

Now, we exploit pa` bq2 ď 2pa2 ` b2q,

“2Er

ż t^τ

0
|bpvpsqq ´ bpvnpsqq|

2dss

` 2Er

ż t^τ

0
|σpvpsqq ´ σnpvpsqq ` σnpvpsqq ´ σnpvnpsqq|

2dss

ď2Er

ż t^τ

0
|bpvpsqq ´ bpvnpsqq|

2dss

` 4Er

ż t^τ

0
|σpvpsqq ´ σnpvpsqq|

2dss

` 4Er

ż t^τ

0
|σnpvpsqq ´ σnpvnpsqq|

2dss

As a next step, the stopping time is taken into the expectation via the indicator function,

ď2Er

ż t

0
1tsďτu|bpvpsqq ´ bpvnpsqq|

2dss

` 4Er

ż t

0
1tsďτu|σpvpsqq ´ σnpvpsqq|

2dss

` 4Er

ż t

0
1tsďτu|σnpvpsqq ´ σnpvnpsqq|

2dss

ď2Er

ż t

0
1tsďτu|bpvps^ τqq ´ bpvnps^ τqq|

2dss

` 4Er

ż t

0
1tsďτu|σpvps^ τqq ´ σnpvps^ τqq|

2dss

` 4Er

ż t

0
1tsďτu|σnpvps^ τqq ´ σnpvnps^ τqq|

2dss
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The indicator function is bounded by 1, which yields for the expected error,

ď2Er

ż t

0
|bpvps^ τqq ´ bpvnps^ τqq|

2dss

` 4Er

ż t

0
|σpvps^ τqq ´ σnpvps^ τqq|

2dss

` 4Er

ż t

0
|σnpvps^ τqq ´ σnpvnps^ τqq|

2dss

Applying Fubini then yields,

ď2

ż t

0
Er|bpvps^ τqq ´ bpvnps^ τqq|

2sds

` 4

ż t

0
Er|σpvps^ τqq ´ σnpvnps^ τqq|

2sds

` 4

ż t

0
Er|σnpvps^ τqq ´ σnpvnps^ τqq|

2sds.

From the proof of Theorem 3.6.10 we know that the coefficient function b is Lipschitz.
Thus, with Lipschitz constant κ, |bpxq ´ bpyq| ď κ|x ´ y| ñ |bpxq ´ bpyq|2 ď κ2|x ´ y|2.
This leads directly to

Er|vτ ptq ´ vτnptq|
2s ď2κ2

ż t

0
Er|vps^ τq ´ vnps^ τq|

2sds

` 4

ż t

0
Er|σpvps^ τqq ´ σnpvps^ τqq|

2sds

` 4

ż t

0
Er|σnpvps^ τqq ´ σnpvnps^ τqq|

2sds

From Lemma 3.6.13, we know that on rε, V s the coefficient function σn is Lipschitz with
constant L :“ σ?

2ε
.

Er|vτ ptq ´ vτnptq|
2s ďp2κ2 ` 4L2q

ż t

0
Er|vps^ τq ´ vnps^ τq|

2sds

` 4

ż t

0
Er|σpvps^ τqq ´ σnpvps^ τqq|

2sds

Lastly, we have to find an upper bound for the term Er|σpvps ^ τqq ´ σnpvps ^ τqq|2s,
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due to the definition of τ only on the interval rε, V s. Let x P rε, V s

|σpxq ´ σ̃npxq| “ |
?
x´

c

px´ εnqp1´
x

V̄n
q| ď

c

|x´ px´ εnqp1´
x

V̄n
q|

“

d

|
x2

V̄n
` εn ´

εnx

V̄n
| ď

d

|
x2

V̄n
` εn `

εnx

V̄n
|

ď

d

|
V 2 ` εnV

V̄n
` εn| “: Cn

Thus, it follows,

Er|vτ ptq ´ vτnptq|
2s ďp2κ2 ` 4L2q

ż t

0
Er|vps^ τq ´ vnps^ τq|

2sds` 4tC2
n.

For notation purposes, we set at this point: K1 “ 2κ2 ` 4L2 and apply Gronwall’s
inequality, see Gronwall (1919),

Er|vτ ptq ´ vτnptq|
2s ď 4tC2

n `

ż t

0
4sC2

n ˚K1e
şt
sK1duds

“ 4tC2
n `

ż t

0
4sC2

n ˚K1e
K1pt´sqds

“ 4tC2
n ` 4C2

n ˚K1e
K1t

ż t

0
se´K1sds

Solving the integral
şt
0 se

´K1sds yields,

“ 4tC2
n ` 4C2

n ˚K1e
K1t

„

´
e´K1spK1s` 1q

K2
1

t

s“0

“ 4tC2
n ` 4C2

n ˚K1e
K1t 1´ e

´K1tpK1t` 1q

K2
1

“ 4C2
n

ˆ

t`
1

K1

`

eK1t ´ eK1t´K1tpK1t` 1q
˘

˙

“ 4C2
n

ˆ

t`
1

K1

´

eK1pt ´ pK1t` 1q
¯

˙

“ 4
C2
n

K1

´

eK1pt ´ 1
¯

“ 4
C2
n

2κ2 ` 4
´

σ?
2ε

¯2

˜

exp

˜

p2κ2 ` 4

ˆ

σ
?

2ε

˙2

qt

¸

´ 1

¸

From the definition of Cn “
b

|V
2`εnV
V̄n

` εn| we can directly conclude (due to εn Ñ

0 and V̄n Ñ 8 pn Ñ 8q) that Cn Ñ 0 and thus, C2
n Ñ 0 for pn Ñ 8q. We therefore

know, for pnÑ8q,

Er|vτ ptq ´ vτnptq|
2s Ñ 0
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3 Numerical Investigation of the de–Americanization Method

Lemma 3.6.13. The function σnpvnptqq “ σ
b

pvnptq ´ εnq ¨ p1´
vnptq
V̄n
q is Lipschitz on

the interval rε, V s Ă pεn, V̄nq.

Proof. From the proof of Theorem 3.6.10, we can directly jump to the part

|σnpxq ´ σnpyq|

|x´ y|
ď
σ
b

|V̄n´px`yq`εn|
V̄n

a

|x´ y|

|x´ y|

“
σ
b

|V̄n´px`yq`εn|
V̄n

a

|x´ y|
a

|x´ y|
a

|x` y|

“
σ
b

|V̄n´px`yq`εn|
V̄n

a

|x` y|

At this point, we know that x, y P rε, V s Ă pεn, V̄nq and that the quotient |V̄n´px`yq`εn|
V̄n

is smaller than 1. This leads to

|σnpxq ´ σnpyq|

|x´ y|
ď

σ
a

|x` y|
(3.34)

Finally, the quotient takes its maximum value for the minimum values for x and y, which
is due to x, y P rε, V s Ă pεn, V̄nq given by

|σnpxq ´ σnpyq|

|x´ y|
ď

σ
?

2ε
. (3.35)

Thus, the Lipschitz constant is given by σ?
2ε
.

66



4 Chebyshev Polynomial Interpolation
Method

I had a polynomial once. My doctor
removed it.

Michael Grant

This chapter is based on Gaß et al. (2016) and Glau and Mahlstedt (2016), and presents
the parts to which I mainly contributed.

4.1 Chebyshev Polynomial Interpolation

In the previous chapter, we have seen, given an example of calibrating American option
prices, that recurrent tasks, such as parametric option pricing, can be a computationally-
challenging procedure. Further on, we look for complexity reduction techniques to de-
crease run-times while maintaining accuracy. In this chapter, we will interpret option
prices as functions of the parameters and then apply polynomial interpolation to the
parameters. We will see that this complexity reduction technique is decomposed in a so-
called online and offline-part. Once the coefficients of the polynomial are determined in
the offline-phase, option pricing in the online-phase is reduced to the evaluation of a poly-
nomial which is a task with hardly any computational costs. Referring to Michael Grant’s
rather amusing quote, a rather skeptical approach towards polynomial interpolation may
result from the Runge’s phenomenon, Runge (1901). Applying polynomial interpolation
of a function f on a domain, the natural intuition is to fix the interpolating polynomi-
als on equidistantly-spaced interpolation points, so-called nodal points. Runge (1901)
shows that this equidistant nodal point approach may lead to a polynomial interpolation
with oscillations. He showed that polynomial interpolation on equidistantly-spaced grids
may diverge, even for analytic functions. In Figure 4.1, we present the interpolation of
the Runge function fpxq “ 1

1`25x2 on the domain r´1, 1s with 5 (top) and 10 (bottom)
equidistantly-spaced nodal points.

Obviously, by increasing the number of nodal points to N “ 10, the absolute error
increases towards the limits ´1 and 1 of the domain. Overall, this is an example in which
the maximal interpolation error over the domain, i.e. }fpxq´ ppxq}8 with ppxq denoting
the interpolating polynomial, is not decreasing with increasing N . This may be a reason
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Figure 4.1: Polynomial interpolation of the Runge function fpxq “ 1
1`25x2 with

equidistantly-spaced nodal points. We use 5 (top) and 10 (bottom) nodal
points. These are marked in black.

to call a doctor. He would diagnose that this is connected to the increasing derivatives of
the function f at the bound. In general, a polynomial of degree N is determined uniquely
if the value of the polynomial at N ` 1 points is specified, see (Davis, 1975, Theorem
2.1.1). As Runge’s phenomenon has shown, equidistantly-chosen nodal points are not a
good choice. For functions f that are n times continuously differentiable on r´1, 1s, and
for which f pn`1q exists on p´1, 1q, (Davis, 1975, Theorem 3.1.1) provides a bound for the
interpolation error. If the function f is approximated by a polynomial pn, fixed on nodal
points x0, . . . , xn, the error is given by

fpxq ´ pnpxq “

śn
i“0px´ xiq

pn` 1q!
f pn`1qpζq, (4.1)
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4 Chebyshev Polynomial Interpolation Method

where ζ P p´1, 1q depends on the choice of the nodal points and the specific x. By
replacing in (4.1) f pn`1qpζq with max´1ăyă1 f

pn`1qpyq, clearly an upper bound for the
error is found. The remaining term

śn
i“0px´xiq
pn`1q! does not depend on the function f and,

therefore, the choice of nodal points effects the error bound. Although we see here the
derivative of the function f influencing the error bound, later on we will work mostly
with the assumption that the function f is analytic. Following Davis (1975), Chebyshev
points are the way to minimizing the product

śN
i“0px´ xiq and hence, the interpolation

error. As explained in Trefethen (2013), there are two sets of Chebyshev points. One
is connected to the zeros of Chebyshev polynomials, the other one is connected to the
extrema of a Chebyshev polynomial. The above mentioned minimizing property from
Davis (1975) is connected to the zeros of the Chebyshev polynomial based on the fact
that

śN
i“0px´xiq is a monic polynomial of degree N`1 and on choosing the nodal points

in such a way that
śN
i“0px´ xiq “

TN`1pxq
2N

. Here, TN`1pxq is the Chebyshev polynomial
of degree N ` 1 and by the scaling factor, TN`1pxq

2N
is a monic polynomial. For the monic

Chebyshev polynomial it holds that maxxPr´1,1s
TN`1pxq

2N
ď maxxPr´1,1s pN`1pxq, where

pN`1 is an arbitrary monic polynomial of degree N ` 1. Hence, by choosing the zeros
of TN`1pxq as nodal points for

śN
i“0px ´ xiq, the minimizing property follows. In the

following, we will introduce the Chebyshev polynomials and some main properties.

Remark 4.1.1. The Chebyshev polynomials trace back to the Russian mathematician,
Pafnuty Lvovich Chebyshev. Interestingly, the Chebyshev polynomials are denoted with
the letter T . This traces back to the works of the French mathematician, Bernstein, who
used the letter T based on French transliterations, such as "Tchebischeff", see Trefethen
(2013).

4.1.1 Chebyshev Polynomials

We start with an introduction of Chebyshev polynomials and some basic properties.
Here, we follow Rivlin (1990) and Trefethen (2013).

Definition 4.1.2. On r´1, 1s, the n-th Chebyshev polynomial (n P N) is defined as

Tnpxq “ cospn ¨ arccospxqq.

Trefethen (2013) also gives the interpretation that the n-th Chebyshev polynomial can
be defined as the real part of zn on the unit circle,

x “
1

2
pz ` z´1q “ cospθq, θ “ arccospxq,

Tnpxq “
1

2
pzn ` z´nq “ cospnθq.

The Chebyshev polynomials are defined on the interval x P r´1, 1s. Figure 4.2 shows
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Figure 4.2: The first 6 Chebyshev polynomials T0pxq, . . . , T5pxq on the interval r´1, 1s.

for n “ 0, . . . , 5 the Chebyshev polynomials Tn. The figure indicates graphically that
the Chebyshev polynomial Tn is a polynomial of degree n. Rivlin (1990) shows explicitly
that each Chebyshev polynomial is a polynomial of degree n and derives the coefficients
as follows, denoting with rxs the greatest integer not exceeding x,

Tnpxq “
n
ÿ

i“0

tix
i

tn´p2k`1q “ 0, k “ 0, . . . ,

„

n´ 1

2



(4.2)

tn´p2kq “ p´1qk
rn{2s
ÿ

j“k

ˆ

n

2j

˙ˆ

j

k

˙

, k “ 0, . . . ,
”n

2

ı

.

The Chebyshev polynomial Tnpxq has n roots x̂1, . . . , x̂n,

x̂i “ cos

ˆ

2i´ 1

n

π

2

˙

, i “ 1, . . . , n, (4.3)

and takes at n` 1 points x0, . . . , xn,

xi “ cos

ˆ

iπ

n

˙

, i “ 0, . . . , n, (4.4)

the extrema value ˘1.
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4 Chebyshev Polynomial Interpolation Method

In addition, the following recursion formula for n ě 1 for the Chebyshev polynomials
holds,

Tn`1pxq “ 2xTnpxq ´ Tn´1pxq. (4.5)

With (4.5), we conclude that in Figure 4.2, the Chebyshev polynomials are given as
T0pxq “ 1, T1pxq “ x, T2pxq “ 2x2 ´ 1, T3pxq “ 4x3 ´ 3x, T4pxq “ 8x4 ´ 8x2 ` 1
and T5pxq “ 16x5 ´ 20x3 ` 5x. The choice of Chebyshev polynomials for polynomial
interpolation is connected to the orthogonality properties of the Chebyshev polynomials.
First, there is, as shown in Rivlin (1990), the continuous orthogonality relationship with
a weight function wpxq :“ 1?

1´x2 ,

ż 1

´1
TjpxqTipxq ¨

1
?

1´ x2
dx “ 0, for i ‰ j (4.6)

ż 1

´1
T 2
j pxq ¨

1
?

1´ x2
dx “

#

π
2 , j ‰ 0,

π, j “ 0.
(4.7)

Hence, the Chebyshev polynomials tTnpxqu8n“0 form a sequence of orthogonal polynomials
on r´1, 1s with the weight function wpxq. Later, this property will be applied in the
derivation of error bounds for the polynomial interpolation with Chebyshev polynomials.
By interpolating a given function with a polynomial of degree n, n ` 1 nodal points
have to be fixed. As regards Chebyshev polynomial interpolation, there are two possible
ways. Either the n`1 roots of Tn`1pxq, see (4.3), are used as nodal points, referred to as
Chebyshev points of the first kind, or the n` 1 points at which Tnpxq takes its extreme
values, see (4.4), are taken. In this case, the points are also referred to as Chebyshev-
Lobatto points, Chebyshev extreme points, or Chebyshev points of the second kind and,
following Trefethen (2013), these points are applied more in practice. For this reason,
we later focus on this interpolation nodes and refer to them as Chebyshev points or
nodal points. By choosing either the roots x̂i or the extremal points xi as nodal points,
orthogonality properties of Chebyshev polynomials can be exploited for the setting of
the coefficients. We state both orthogonality properties taken from Rivlin (1990) and,
for the first one, provide a proof for an understanding of this orthogonality property and
get a feeling for Chebyshev polynomials.

Proposition 4.1.3. Denoting with xk, k “ 0, . . . , N the extremal points of TN pxq as in
(4.4), the following property holds for 0 ď i, j ď N , denoting with 2 that the first and last
summand are halved,

N
ÿ

k“0

2TjpxkqTipxkq “

$

’

&

’

%

0, i ‰ j,
N
2 , i “ j ‰ 0 and i “ j ‰ N,

N, i “ j “ 0 or i “ j “ N.

(4.8)
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4 Chebyshev Polynomial Interpolation Method

Proof. During the proof, we will apply the following trigonometric calculation rules.

cospxq ¨ cospyq “
1

2
rcospx` yq ` cospx´ yqs (4.9)

N
ÿ

k“0

cospa` k ¨ bq “
sin

´

pN`1qb
2

¯

¨ cos
`

a` Nb
2

˘

sin
`

b
2

˘ (4.10)

sinpxq ¨ cospyq “
1

2
rsinpx` yq ` sinpx´ yqs (4.11)

sinpx` yq

sinpxq
“ sinpyq cotpxq ` cospyq (4.12)

Let i ‰ j, then

N
ÿ

k“0

TjpxkqTipxkq “
N
ÿ

k“0

cos

ˆ

ikπ

N

˙

cos

ˆ

jkπ

N

˙

(4.13)

(4.9)
“

1

2

N
ÿ

k“0

„

cos

ˆ

kpi` jqπ

N

˙

` cos

ˆ

kpi´ jqπ

N

˙

By applying (4.10) with a “ 0 and b “ pi`jqπ
N respectively b “ pi´jqπ

N , this yields,

(4.13) “
1

2

»

–

sin
´

N`1
2

pi`jqπ
N

¯

cos
´

N
2
pi`jqπ
N

¯

sin
´

pi`jqπ
2N

¯ `

sin
´

N`1
2

pi´jqπ
N

¯

cos
´

N
2
pi´jqπ
N

¯

sin
´

pi´jqπ
2N

¯

fi

fl

“
1

4

»

–

sin
´

2N`1
2

pi`jqπ
N

¯

` sin
´

pi`jqπ
2N

¯

sin
´

pi`jqπ
2N

¯ `

sin
´

2N`1
2

pi´jqπ
N

¯

` sin
´

pi´jqπ
2N

¯

sin
´

pi´jqπ
2N

¯

fi

fl

“
1

4

»

–2`
sin

´

2N`1
2

pi`jqπ
N

¯

sin
´

pi`jqπ
2N

¯ `

sin
´

2N`1
2

pi´jqπ
N

¯

sin
´

pi´jqπ
2N

¯

fi

fl

“
1

4

»

–2`
sin

´

pi`jqπ
2N ` pi` jqπ

¯

sin
´

pi`jqπ
2N

¯ `

sin
´

pi´jqπ
2N ` pi´ jqπ

¯

sin
´

pi´jqπ
2N

¯

fi

fl

(4.12)
“

1

4

„

2` sinppi` jqπq cot

ˆ

pi` jqπ

2N

˙

` cosppi` jqπq



`
1

4

„

sinppi´ jqπq cot

ˆ

pi´ jqπ

2N

˙

` cosppi´ jqπq


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4 Chebyshev Polynomial Interpolation Method

From sinppi` jqπq “ 0 “ sinppi´ jqπq, it directly follows,

(4.13) “
1

4
r2` cosppi` jqπq ` cosppi´ jqπqs

“
1

4
r2` 2 cospiπq cospjπqs

“
1

2
r1` cospiπq cospjπqs

“
1

2
rTipx0qTjpx0q ` TipxN qTjpxN qs

ñ

N
ÿ

k“0

2TjpxkqTipxkq “ 0.

Let i “ j “ 0, then

N
ÿ

k“0

2T0pxkqT0pxkq “
1

2
rT0px0qT0px0q ` T0pxN qT0pxN qs `

N´1
ÿ

k“1

1 “ N. (4.14)

Let i “ j “ N , then

N
ÿ

k“0

2TN pxkqTN pxkq “
N
ÿ

k“0

2 cospkπq cospkπq “ N.

Let 1 ď i “ j ă N , then

N
ÿ

k“0

TipxkqTipxkq “
N
ÿ

k“0

cos

ˆ

ikπ

N

˙

cos

ˆ

ikπ

N

˙

(4.9)
“

1

2

N
ÿ

k“0

„

cos

ˆ

2ikπ

N

˙

` 1



“
N ` 1

2
`

1

2

N
ÿ

k“0

cos

ˆ

2ikπ

N

˙

(4.10)
“

N ` 1

2
`

1

2

sin
´

pN`1q2πi
2N

¯

cospπiq

sin
`

2πi
2N

˘ .
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Here, we distinguish two cases. First let i be even, then cospπiq “ 1 and,

N
ÿ

k“0

TipxkqTipxkq “
N ` 1

2
`

1

2

sin
´

pN`1q2πi
2N

¯

sin
`

2πi
2N

˘

(4.12)
“

N ` 1

2
`

1

2

„

sinpπiq cot

ˆ

2πi

2N

˙

` cospπiq



“
N ` 1

2
`

1

2
“
N

2
` 1.

Let i be odd, then cospπiq “ ´1 and,

N
ÿ

k“0

TipxkqTipxkq “
N ` 1

2
´

1

2

sin
´

pN`1q2πi
2N

¯

sin
`

2πi
2N

˘

(4.12)
“

N ` 1

2
´

1

2

„

sinpπiq cot

ˆ

2πi

2N

˙

` cospπiq



“
N ` 1

2
´

1

2
¨ p´1q “

N

2
` 1.

In both cases, it holds Tipx0qTipx0q “ 1 and TipxN qTipxN q “ 1.
Therefore,

řN
k“0

2TipxkqTipxkq “
N
2 .

Proposition 4.1.4. Denoting with x̂k, k “ 1, . . . , N`1 the roots of TN`1pxq as in (4.3),
the following property holds for 0 ď i, j ď N

N
ÿ

k“1

Tjpx̂kqTipx̂kq “

$

’

&

’

%

0, i ‰ j,
N
2 , i “ j ‰ 0,

N, i “ j “ 0.

(4.15)

4.1.2 Chebyshev Polynomial Interpolation

In the following, we want to approximate a function f : r´1, 1s Ñ R via Chebyshev poly-
nomial interpolation, i.e. we want to approximate f by a sum of Chebyshev polynomials
from degree 0 until N ,

fpxq «
N
ÿ

j“0

cjTjpxq. (4.16)

The coefficients cj , j “ 1, . . . , N are defined by evaluating the function f at specific
interpolation points. Recalling the definition and properties of Chebyshev polynomials,
the Chebyshev polynomial of degree N has N ` 1 extreme points at which either the
value 1 or ´1 is taken. Exactly these points xk “ cos

`

kπ
N

˘

, k “ 0, . . . , N are taken as
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4 Chebyshev Polynomial Interpolation Method

interpolation points. Therefore, the coefficients cj , j “ 1, . . . , N have to be defined in
such a way, that

fpxkq “
N
ÿ

j“0

cjTjpxkq, (4.17)

holds. In a first step we assume, that (4.17) holds and both sides of the equation are
multiplied by Tipxkq, i “ 0, . . . , N . This leads to,

fpxkqTipxkq “
N
ÿ

j“0

cjTjpxkqTipxkq. (4.18)

Next, we summarize over all interpolation points xk and due the orthogonality properties
of the Chebyshev polynomials we take the first and last summand with factor 1

2 , which
is indicated by 2 at the sigma sign,

N
ÿ

k“0

2fpxkqTipxkq “
N
ÿ

k“0

2

N
ÿ

j“0

cjTjpxkqTipxkq. (4.19)

To finally apply the orthogonality, we rearrange the equation in the following way,

N
ÿ

k“0

2fpxkqTipxkq “
N
ÿ

j“0

cj

«

N
ÿ

k“0

2TjpxkqTipxkq

ff

. (4.20)

In this case, the orthogonality of the Chebyshev polynomials (4.8) leads to the following
coefficients.

c0 “
1

N

N
ÿ

k“0

2fpxkqT0pxkq, (4.21)

cj “
2

N

N
ÿ

k“0

2fpxkqTjpxkq, 1 ď j ď N ´ 1, (4.22)

cN “
1

N

N
ÿ

k“0

2fpxkqTN pxkq. (4.23)

We condense the definition of the Chebyshev interpolation method coefficients in the
following equation,

cj “
210ăjăN

N

N
ÿ

k“0

2fpxkqTjpxkq, 0 ď j ď N. (4.24)

Here, we briefly discuss the second way, using the zeros of the Chebyshev polynomial.
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Obviously, by setting up (4.16) not the zeros of TN pxq are taken because there are only N
zeros and additionally, the summand including TN pxq would be zero at all interpolation
points. Here the zeros of TN`1pxq are taken. They are given by x̂k “ cos

´

2k´1
N`1

π
2

¯

, k “

1, . . . , N ` 1. Taking the x̂k, k “ 1, . . . , N ` 1 as interpolation points we can approach
similarly to the previous case with the extreme points as interpolation points and start
with

fpx̂kq “
N
ÿ

j“0

cjTjpx̂kq. (4.25)

Again, both sides of the equation are multiplied by Tipxkq, i “ 0, . . . , N ans summarize
over all interpolation points x̂k,

N`1
ÿ

k“1

fpx̂kqTipx̂kq “
N`1
ÿ

k“1

N
ÿ

j“0

cjTjpx̂kqTipx̂kq. (4.26)

Note, that here we do not have to halve the first and the last summand. Rearranging
terms leads to,

N`1
ÿ

k“1

fpx̂kqTipx̂kq “
N
ÿ

j“0

cj

«

N`1
ÿ

k“1

Tjpx̂kqTipx̂kq

ff

. (4.27)

At this point we apply again the orthogonolity properties of Chebyshev polynomials,
(4.15) and achieve,

cj “
21ją0

N ` 1

N`1
ÿ

k“1

fpxkqTjpxkq, 0 ď j ď N. (4.28)

4.1.3 Multivariate Chebyshev Interpolation

The Chebyshev polynomial interpolation has a tensor based extension to the multivariate
case. In order to obtain a nice notation, consider interpolation of functions

fpxq, x P r´1, 1sD. (4.29)

For a more general hyperrectangular parameter space X “ rx1, x1s ˆ . . .ˆ rxD, xDs, the
appropriate linear transformations need to be performed. Let N :“ pN1, . . . , NDq with
Ni P N0 for i “ 1, . . . , D. The interpolation with

śD
i“1pNi ` 1q summands is given by

IN pfp¨qqpxq :“
ÿ

jPJ

cjTjpxq, (4.30)
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where the summation index j is a multiindex ranging over J :“ tpj1, . . . , jDq P N
D
0 : ji ď

Ni for i “ 1, . . . , Du, i.e.

IN pfp¨qqpxq “
N1
ÿ

j1“0

. . .
ND
ÿ

jD“0

cpj1,...,jDqTpj1,...,jDqpxq. (4.31)

The basis functions Tj for j “ pj1, . . . , jDq P J are defined by

Tjpx1, . . . , xDq “
D
ź

i“1

Tjipxiq. (4.32)

The coefficients cj for j “ pj1, . . . , jDq P J are given by

cj “
´

D
ź

i“1

21t0ăjiăNiu

Ni

¯

N1
ÿ

k1“0

2

. . .
ND
ÿ

kD“0

2

fpxpk1,...,kDqq

D
ź

i“1

cos

ˆ

jiπ
ki
Ni

˙

, (4.33)

where
ř 2 indicates that the first and last summand are halved and the Chebyshev nodes

xk for multiindex k “ pk1, . . . , kDq P J are given by

xk “ pxk1 , . . . , xkDq (4.34)

with the univariate Chebyshev nodes xki “ cos
´

π ki
Ni

¯

for ki “ 0, . . . , Ni and i “ 1, . . . , D.
In Figure 4.3, we show for the one-dimensional, two-dimensional and three-dimensional
Chebyshev polynomial interpolation the nodal points by setting N “ 10 in each di-
mensions. This results in one dimension to 11 nodal points, in two dimensions to 121
(“ 112) nodal points and finally to 1331 (“ 113) nodal points in three dimensions. This
already indicates that the approach with tensorized Chebyshev polynomials suffers from
the curse of dimensionality. Additionally, for the one-dimensional case we also present an
interpretation of the Chebyshev nodes as shown in Trefethen (2013). N`1 equidistantly
spaced points on the upper half of the unit circle and the projection to the x-axis.

4.2 Convergence Results of the Chebyshev Interpolation
Method

In this section, we investigate the error bounds for analytic and differentiable functions.
The main motivation in improving the existing error bounds in the literature is that
sharper error bounds reduce computational cost, because they allow to use less nodal
points to achieve a given accuracy. Especially in combination with the Monte-Carlo
technique to evaluate the function at the nodal points, this is beneficial.

In the univariate case, it is well known that the error of approximation with Chebyshev
polynomials decays polynomially for differentiable functions and exponentially for ana-
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Figure 4.3: Nodal points in blue of the one-dimensional (left), two-dimensional (middle)
and three-dimensional (right) Chebyshev polynomial interpolation by setting
N “ 10 in each dimensions. For the one-dimensional case, we also show in
red N ` 1 equidistantly spaced points on the upper half of the unit circle.

lytic functions. Let f be analytic in r´1, 1s, then it has an analytic extension to some
Bernstein ellipse Bpr´1, 1s, %q with parameter % ą 1, defined as the open region in the
complex plane bounded by the ellipse with foci ˘1 and semiminor and semimajor axis
lengths summing up to %. This and the following result traces back to the seminal work
of Bernstein (1912).

Theorem 4.2.1. (Trefethen, 2013, Theorem 8.2) Let a function f be analytic in the open
Bernstein ellipse Bpr´1, 1s, %q, with % ą 1, where it satisfies |f | ď V for some constant
V ą 0. Then for each N ě 0,

}f ´ IN pfq}L8pr´1,1sq ď 4V
%´N

%´ 1
.

In the multivariate case we will extend a convergence result from Sauter and Schwab
(2004). We consider parametric option prices of form

fpxq for x P X (4.35)

with X Ă RD of hyperrectangular structure, i.e. X “ rx1, x1s ˆ . . .ˆ rxD, xDs with real
xi ď xi for all i “ 1, . . . , D. We define the D-variate and transformed analogon of a
Bernstein ellipse around the hyperrectangle X with parameter vector % P p1,8qD as

BpX , %q :“ Bprx1, x1s, %1q ˆ . . .ˆBprxD, xDs, %Dq (4.36)

with Bprx, xs, %q :“ τrx,xs ˝Bpr´1, 1s, %q, where for x P C we have the transform
τrx,xs

`

<pxq
˘

:“ x` x´x
2

`

1´<pxq
˘

and τrx,xs
`

=pxq
˘

:“ x´x
2 =pxq. We call BpX , %q gener-

alized Bernstein ellipse if the sets Bpr´1, 1s, %iq are Bernstein ellipses for i “ 1, . . . , D.
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Theorem 4.2.2. Let X Q x ÞÑ fpxq be a real valued function that has an analytic
extension to a generalized Bernstein ellipse BpX , %q with parameter vector % P p1,8qD

and supxPBpX ,%q |fpxq| ď V . Then

max
xPX

ˇ

ˇfpxq ´ IN pfp¨qqpxq
ˇ

ˇ ď 2
D
2
`1 ¨ V ¨

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

.

The basic structure of the proof is the same as in (Sauter and Schwab, 2004, Proof of
Lemma 7.3.3). To provide a complete, understandable proof, we first show the same
steps as in (Sauter and Schwab, 2004, Proof of Lemma 7.3.3) and state explicitly at
which point the proof changes.

Proof. In (Sauter and Schwab, 2004, Proof of Lemma 7.3.3) the proof is given for the
following error bound:

max
pPP

ˇ

ˇf ´ IN pfq
ˇ

ˇ ď
?
D2

D
2
`1V %´Nminp1´ %

´2
minq

´D
2 ,

where N is the number of interpolation points in each of the D dimensions, %min :“
minDi“1 %i and V the bound of f on BpP, %q with P “ r´1, 1sD. Here, we extend (Sauter
and Schwab, 2004, Proof of Lemma 7.3.3) by incorporating the different values of Ni,
i “ 1, . . . , D, as well as expressing the error bound with the different %i, i “ 1, . . . , D.

In general we work with a parameter space P of hyperrectangular structure, P “ rp
1
, p1sˆ

. . . ˆ rp
D
, pDs. With the introduced linear transformation, we have a transformation

τP : r´1, 1sD Ñ P with

τPppq “

ˆ

pi `
p
i
´ pi

2
p1´ pq

˙D

i“1

. (4.37)

Let p ÞÑ Pricep be a function on P. We set {Pricep “ Pricep ˝ τPppq. Furthermore, let
pIN p

{Price
p¨q
qppq be the Chebyshev interpolation of {Pricep on r´1, 1sD. Then it holds

IN pPrice
p¨qqppq “ ÎN p

{Price
p¨q
qp¨q ˝ τ´1

P ppq.

Hence, it directly follows

Pricep ´ IN pPrice
p¨qqppq “

ˆ

{Price ´ pIN p
{Price

p¨q
qp¨q

˙

˝ τ´1
P ppq.
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Applying the error estimation from (Sauter and Schwab, 2004, Lemma 7.3.3) results
ˇ

ˇPrice ´ IN pPrice
p¨qqp¨q

ˇ

ˇ

C0pPq “
ˇ

ˇPrice ´ IN pPrice
p¨qqp¨q

ˇ

ˇ

C0pr´1,1sDq

ď
?
D2

D
2
`1

pV %´Nminp1´ %
´2
minq

´D
2

“
?
D2

D
2
`1V %´Nminp1´ %

´2
minq

´D
2 ,

where pV “ suppPBpr´1,1sD,%q
{Price

p
, V “ suppPBpP,%q Price

p. Summarizing, the trans-
formation τP : r´1, 1sD Ñ P does not affect the error analysis, only by applying the
transformation as described in (4.37),

BpP, %q :“ Bprp
1
, p1s, %1q ˆ . . .ˆBprpD, pDs, %Dq,

with Bprp, ps, %q :“ τrp,ps ˝ Bpr´1, 1s, %q. Note that %i is not the radius of the ellipse
Bprp

i
, pis, %iq but of the normed ellipse Bpr´1, 1s, %iq. Therefore, in the following it

suffices to show the proof for P “ r´1, 1sD.

As in (Sauter and Schwab, 2004, Proof of Lemma 7.3.3) we introduce the scalar product

xf, gy% :“

ż

BpP,%q

fpzqgpzq
śD
i“1

b

|1´ z2
i |

dz

and the Hilbert space

L2pBpP, %qq :“ tf : f is analytic in BpP, %q and ||f ||2% :“ xf, fy% ă 8u.

Following (Sauter and Schwab, 2004, Proof of Lemma 7.3.3), we define a complete or-
thonormal system for L2pBpP, %qq w.r.t. the scalar product x¨, ¨y% by the scaled Cheby-
shev polynomials

T̃µpzq :“ cµTµpzq with cµ :“

ˆ

2

π

˙
D
2

D
ź

i“1

p%2µi
i ` %´2µi

i q´
1
2 , for all µ P ND0 .

Following Sauter and Schwab (2004), for any arbitrary bounded linear functional E on
L2pBpP, %qq we have

|Epfq| ď ||E||%||f ||%, (4.38)

where ||E||% denotes the operator norm. Due to the orthonormality of
´

T̃µ

¯

µPND0
it

follows that, see Sauter and Schwab (2004),

||E||% “ sup
fPL2pBpP,%qqzt0u

|Epfq|

}f}%
“

d

ÿ

µPND0

|EpT̃µq|2.
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In the following let E be the error of the Chebyshev polynomial interpolation at a fixed
p P P,

Epfq :“ fppq ´ IN pfp¨qqppq.

Starting with (4.38), we first focus on ||E||%. In a first step, due to the orthonormal
system, we get }E}2% “

ř

µPND0
|EpT̃µq|

2. For any µ P ND0 it holds that |EpT̃µq| “ |T̃µpxq´
IN pT̃µp¨qqpxq| “ |cµTµpxq ´ cµIN pTµp¨qqpxq| “ |cµ| ¨ |µpxq ´ IN pTµp¨qqpxq| “ |cµ| ¨ |EpTµq|.
This leads to,

}E}2% “
ÿ

µPND0

|EpT̃µq|
2 “

ÿ

µPND0

c2
µ|EpTµq|

2.

From now on the proof differs compared to (Sauter and Schwab, 2004, Proof of Lemma
7.3.3), since we use the values of Ni, i “ 1, . . . , D and %i, i “ 1, . . . , D. Due to our
choice of the Chebyshev points of the second kind instead of Chebyshev points of the
first kind in the Chebyshev interpolation, we cannot apply (Sauter and Schwab, 2004,
Corollary 7.3.1), but adjust this result in Lemma 4.2.3 to the Chebyshev points of the
second kind. At this step, we analyze the error of interpolating Chebyshev polynomials
Tµ with µ P ND0 . Lemma 4.2.3 provides us with the results that if the degree of the
Chebyshev polynomial Tµ in each dimension i is smaller than the corresponding degree
of the interpolation, i.e. µi ď Ni for i “ 1, . . . , D, then the error is 0. Thus, we only have
to analyze the summands for which at least for one dimension i the condition µi ď Ni

does not hold. For these cases we then apply the error bound of Lemma 4.2.3.
ÿ

µPND0

c2
µ|EpTµq|

2 “
ÿ

µPND0 ,Di:µiąNi

c2
µ|EpTµq|

2 ď
ÿ

µPND0 ,Di:µiąNi

4c2
µ.

Overall, using
´

śD
j“1 %

2µj
j ` x

¯´1
ď

´

śD
j“1 %

2µj
j

¯´1
“

śD
j“1 %

´2µj
j for x ą 0, µj P N0

and j “ 1, . . . , D and this leads to

}E}2% ď 4
ÿ

µPND0 ,Di:µiąNi

c2
µ ď 4

ˆ

2

π

˙D D
ÿ

i“1

¨

˝

ÿ

µPND0 ,µiąNi

D
ź

j“1

%
´2µj
j

˛

‚

ď 4

ˆ

2

π

˙D D
ÿ

i“1

%´2Ni
i

¨

˝

ÿ

µPND0 ,µiąNi

%
´2pµi´Niq
i

D
ź

j“1,j‰i

%
´2µj
j

˛

‚

ď 4

ˆ

2

π

˙D D
ÿ

i“1

%´2Ni
i

¨

˝

ÿ

µPND0

D
ź

j“1

%
´2µj
j

˛

‚.

From this point on we use the convergence of the geometric series since |%´2
j | ă 1, j “
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1, . . . , D,

}E}2% ď 4

ˆ

2

π

˙D D
ÿ

i“1

%´2Ni
i

˜

8
ÿ

µ1“0

. . .
8
ÿ

µD“0

D
ź

j“1

%
´2µj
j

¸

“ 4

ˆ

2

π

˙D D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

.

Recalling (4.38), we have to estimate }f}%,

}f}2% “

ż

BpP,%q

fpzqfpzq
śD
i“1

b

|1´ z2
i |

dz ď

˜

sup
zPBpP,%q

|fpzq|

¸2

}1}2%.

From π
D
2 T̃0 “ 1 it directly follows that }1}2% “

´

π
D
2

¯2
}T̃0}

2
% “ πD and thus

}f}2% ď πD ¨ V 2.

Combining the results leads to

|Epfq| “ |fppq ´ IN pfp¨qqppq
ˇ

ˇ ď

˜

πD ¨ V 2 ¨ 4

ˆ

2

π

˙D D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

“ 2
D
2
`1V

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

.

The following lemma shows that the Chebyshev interpolation of a polynomial with a
degree as most as high as the degree of the interpolating Chebyshev polynomial is exact
and furthermore determines an upper bound for interpolating Chebyshev polynomials
with a higher degree.

Lemma 4.2.3. For x P r´1, 1sD it holds

|Tµpxq ´ IN pTµp¨qqpxq| “ 0 for all µ P ND0 : µi ď Ni, i “ 1, . . . , D, (4.39)

|Tµpxq ´ IN pTµp¨qqpxq| ď 2 for all µ P ND0 : Di P t1, . . . , Du : µi ą Ni. (4.40)

Proof. Uniqueness properties of the Chebyshev interpolation directly imply (4.39). The
proof of (4.40) is similar to (Sauter and Schwab, 2004, Proof of Hilfssatz 7.3.1). They
use the zeros of the Chebyshev polynomial as interpolation points, whereas we use the
extreme points and therefore, we use a different orthogonality property in this proof. We
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first focus on the one-dimensional case. Recalling (4.30), the Chebyshev interpolation of
Tµ, µ ą N , is given as

IN pTµqpxq “
N
ÿ

j“0

cjTjpxq with cj “
210ăjăN

N

N
ÿ

k“0

2

TµpxkqTjpxkq, j ď N,

where xk denotes the k-th extremum of TN . Here, we can apply the following orthogo-
nality (Rivlin, 1990, p.54),

N
ÿ

k“0

2

TµpxkqTjpxkq “

$

’

’

’

’

&

’

’

’

’

%

0, µ` j ‰ 0 mod p2Nq and |µ´ j| ‰ 0 mod p2Nq,
N, µ` j “ 0 mod p2Nq and |µ´ j| “ 0 mod p2Nq,
N
2 , µ` j “ 0 mod p2Nq and |µ´ j| ‰ 0 mod p2Nq,
N
2 , µ` j ‰ 0 mod p2Nq and |µ´ j| “ 0 mod p2Nq.

(4.41)

For j ď N and µ ą N this yields the existence of γ ď N such that

IN pTµq “ Tγ . (4.42)

(4.42) follows elementarily from the case that for any µ ą N only for one 0 ď j ď N the
orthogonality can lead to a coefficient cj ą 0.

Proving the claim, we distinguish several cases. In all of these cases, we assume that
there exists 0 ď j ď N such that

řN
k“0

2

TµpxkqTjpxkq ‰ 0. We will then show that for
all other 0 ď i ď N, i ‰ j it follows

řN
k“0

2

TµpxkqTjpxkq “ 0.

First, assume there exists j such that µ ` j “ 0 mod p2Nq and µ ´ j “ 0 mod p2Nq.
Then it directly follows for all 0 ď i ď N , i ‰ j that µ ` i ‰ 0 mod p2Nq and µ ´ i ‰
0 mod p2Nq.

Second, assume there exists j such that µ ` j “ 0 mod p2Nq and µ ´ j ‰ 0 mod p2Nq.
Analogously, for all 0 ď i ď N , i ‰ j we have µ ` i ‰ 0 mod p2Nq and additionally
from µ ` j “ 0 mod p2Nq it follows that µ ` j ´ 2N “ 0 mod p2Nq and, thus, for all
0 ď i ď N , i ‰ j we have µ´ i ą µ` j´ 2N which is equivalent to µ´ i ‰ 0 mod p2Nq.

A similar argumentation holds for the third case µ ` j ‰ 0 mod p2Nq and |µ ´ j| “
0 mod p2Nq.

Therefore, (4.42) holds and it directly follows that |Tµ ´ IN pTµq| ď |Tµ| ` |IN pTµq| ď
1 ` 1 “ 2. Thus (4.40) holds in the one-dimensional case. The extension to the
D´dimensional case follows analogously by applying the triangle inequality |

śD
i“1 Ti,µi´

śD
i“1 INipTi,µiq| ď |

śD
i“1 Ti,µi | ` |

śD
i“1 INipTi,µiq| ď

śD
i“1 |Ti,µi | `

śD
i“1 |INipTi,µiq| and

inserting the one-dimensional result to each tensor component.

Corollary 4.2.4. Under the assumptions of Theorem 4.2.2 there exists a constant C ą 0
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such that

max
xPX

ˇ

ˇfpxq ´ IN pfp¨qqpxq
ˇ

ˇ ď C%´N , (4.43)

where % “ min
1ďiďD

%i and N “ min
1ďiďD

Ni.

Remark 4.2.5. In particular, under the assumptions required by Theorem 4.2.2 with
N “

śD
i“1pNi ` 1q denoting the total number of nodes, Corollary 4.2.4 shows that the

error decay is of (sub)exponential order O
`

%´
D?N

˘

for some % ą 1.

So far, we have extented the error bound for the tensorized Chebyshev interpolation of
Sauter and Schwab (2004) slightly in Theorem 4.2.2. This proof relies on a method for
error estimation for analytic integrands from Davis (1975). The error bound is connected
to the radius % of a Bernstein ellipse and in the one-dimensional case Trefethen (2013)
presents a different approach, which goes back to Bernstein (1912). In Börm (2010) error
bounds are presented for the case when the derivatives of the function f are bounded.
However, here we assume f to be analytic. We iteratively extend in the following the
one-dimensional result shown in Trefethen (2013) to the multivariate by induction over
the dimension. In each iteration step the interpolation in one additional variable is added
consecutively. The resulting nested structure of the proof reaches a certain complexity
and therefore requires more space than the proof in Sauter and Schwab (2004). Figure
4.4 illustrates this iterative interpolation idea in the proof of the upcoming Theorem
4.2.6.

Figure 4.4: Schematic illustration of the iterative proof for Theorem 4.2.6. A function in
3 variables is iteratively interpolated in one dimension at each step. At the
first step of the proof, the one-dimensional interpolation results can easily
be applied using given properties of the function f . From the second step
onwards however, even if at each step only a one-dimensional interpolation
is applied, the according properties of a "new temporarily" function have to
be verified.
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Theorem 4.2.6. Let f : X Ñ R have an analytic extension to a generalized Bernstein
ellipse BpX , %q with parameter vector % P p1,8qD with
maxxPBpX ,%q |fpxq| ď V ă 8. Then

max
xPX

ˇ

ˇfpxq´IN pfqpxq
ˇ

ˇ

ď min
σPSD

D
ÿ

i“1

4V
%´Niσpiq

%i ´ 1
`

D
ÿ

k“2

4V
%´Nkσpkq

%σpkq ´ 1
¨ 2k´1 pk ´ 1q ` 2k´1 ´ 1

śk´1
j“1p1´

1
%σpjq

q
,

where SD denotes the symmetric group on D elements.

Proof. We show the statement for an arbitrary σ P SD and for ease of notation we use
σpiq “ i for i “ 1, . . . , D. Obviously, we can iteratively interpolate in the parameter in
such a way that the error bound is minimized by choosing the corresponding σ P SD.

We prove the assertion of the theorem via induction over the dimension D of the param-
eter domain. We assume that the function f is analytic in r´1, 1sD and is analytically
extendable to the open Bernstein ellipse Bpr´1, 1sD, %q. For D “ 1 and X “ r´1, 1s the
proof of the assertion is presented in (Trefethen, 2013, Theorem 8.2). The generalization
of the assertion to the case of a general parameter interval X Ă R is elementary and
follows from a linear transformation as described in the proof of Theorem 4.2.2.

The key idea of the proof is to use the triangle inequality to estimate the interpolation
error in D ` 1 components as sum of two parts. First, the interpolation error of the
original function in component D ` 1. Second, the error of interpolating a function
which has already been interpolated in the first D dimensions in component D ` 1.
Hereby, in both cases the issue is basically reduced to a one-dimensional interpolation
and the known theory from (Trefethen, 2013, Theorem 8.2) can be applied. The crucial
step is to derive the bound of the function which has already been interpolated in the
first D dimensions on the corresponding Bernstein ellipse.

Let us now assume that the assertion is proven for dimension 1, . . . , D. Let XD`1 :“
rx1, p1

s ˆ . . . ˆ rxD`1, pD`1
s and let f : X Ñ R have an analytic extension to the

generalized Bernstein ellipseBpXD`1, %D`1q for some parameter vector %D`1 P p1,8qD`1

and let maxxPBpXD`1,%D`1q |fpxq| ď V . To set up notation, we write xD1 “ px1, . . . , xDq
and define in the following the Chebyshev interpolation operators. For interpolation only
in the i´th component with N Chebyshev points,

IiN pfqpx
D`1
1 q :“ IN pfpx1, . . . , xi´1, ¨, xi`1, . . . , xD`1qqpxiq.

Analogously, interpolation only in j components with Nk1 , . . . , Nkj Chebyshev points is
denoted by

I
j1,...,jj
Nk1

,...,Nkj
pfqpxD`1

1 q :“ I
jj
Nkj

˝ . . . ˝ Ij1Nk1
pfqpxD`1

1 q,
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and finally, the interpolation in all D ` 1 components with N1, . . . , ND`1 Chebyshev
points is

IN1,...,ND`1
pfqpxD`1

1 q :“ ID`1
ND`1

˝ . . . ˝ I1
N1
pfqpxD`1

1 q.

In the following the norm | ¨ | denotes the 8´norm on r´1, 1sD`1. We are interested in
the interpolation error

|fpxD`1
1 q ´ IN1,...,ND`1

pfqpxD`1
1 q|

ď |fpxD`1
1 q ´ ID`1

ND`1
pfqpxD`1

1 q| ` |ID`1
ND`1

pfqpxD`1
1 q ´ IN1,...,ND`1

pfqpxD`1
1 q|.

We first show that the first part, as a one dimensional interpolation, is bounded by,
(Trefethen, 2013, Theorem 8.2),

|fpxD`1
1 q ´ ID`1

ND`1
pfqpxD`1

1 q| ď 4V
%
´ND`1

D`1

%D`1 ´ 1
. (4.44)

In order to derive (4.44), we have to show that the coefficients of the Chebyshev poly-
nomial interpolation are bounded. Following Trefethen (2013), the on xD`1 depending
coefficient akD`1

is defined as

akD`1
:“

21kD`1ą0

π

ż 1

´1

fpxD`1
1 qTkD`1

ppD`1q
b

1´ x2
D`1

dxD`1.

By using the same transformation as in the proof of (Trefethen, 2013, Theorem 8.1), just
adapted to the multidimensional setting, i.e.

xi “
zi ` z

´1
i

2
, i “ 1, . . . D ` 1,

F pz1, . . . , zD`1q “ F pz´1
1 , . . . , z´1

D`1q “ fpx1, . . . , xD`1q,

we achieve for the estimation of the coefficient akD`1
,

|akD`1
| “

ˇ

ˇ

ˇ

ˇ

ˇ

2´1kD`1“0

πi

ż

|zD`1|“%D`1

z
´1´kD`1

D`1 F pz1, . . . , zD`1qdzD`1

ˇ

ˇ

ˇ

ˇ

ˇ

.

Here, we use that F is bounded by the same constant as f , which is given by assumption,
|fpxD`1

1 q|Bpr´1,1sD`1,%q ď V . Therefore, analogously to (Trefethen, 2013, Theorem 8.1),
this leads to

|akD`1
| ď 2%

´kD`1

D`1 V. (4.45)

This estimate can be used to derive (4.44) by applying (Trefethen, 2013, Theorem 8.2).
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For the second part we use

|ID`1
ND`1

pfqpxD`1
1 q ´ IN1,...,ND`1

pfqpxD`1
1 q| “ |ID`1

ND`1
pf ´ I1,...,D

N1,...,ND
pfqpxD`1

1 qqpxD`1
1 q|.

At this point we again apply the triangle inequality and achieve

|ID`1
ND`1

pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qqpxD`1

1 q|

ď |ID`1
ND`1

pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qqpxD`1

1 q ´ pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qq| (4.46)

` |pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qq|.

The term (4.46) is basically an interpolation in the D`1 component of the function pf´
I1,...,D
N1,...,ND

pfqpxD`1
1 qq. An upper boundMpDq for this function is given in Lemma 4.2.8.

With this bound, we can estimate the interpolation error of interpolating pfpxD`1
1 q ´

I1,...,D
N1,...,ND

pfqpxD`1
1 qq in the component D+1,

|ID`1
ND`1

pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qqpxD`1

1 q ´ pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qq|

ď 4MpDq
%
´ND`1

D`1

%D`1 ´ 1

The term |pfpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 qq| is the interpolation error in D dimensions,
and we assume that this one is by our induction hypothesis bounded, depending on D,
i.e.

|pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qq| ď BpDq, BpDq ą 0. (4.47)

Collecting all parts, we achieve for the error of our interpolation in D ` 1 components,

|ID`1
ND`1

pf ´ I1,...,D
N1,...,ND

pfqpxD`1
1 qqpxD`1

1 q| ď 4V
%
´ND`1

D`1

%D`1 ´ 1
`BpDq ` 4MpDq

%
´ND`1

D`1

%D`1 ´ 1
.

Finally, if we start with D “ 1 and apply the presented procedure step-wise, we get via
straightforward induction,

BpDq “
D
ÿ

i“1

4V
%´Nii

%i ´ 1
`

D
ÿ

k“2

4Mpk ´ 1q
%´Nkk

%k ´ 1
.

Naturally, we can further estimate the error by using si
%i
ă 1 and resp. p1 ´ si

%i
q ă 1 in

the numerator,

BpDq ď
D
ÿ

i“1

4V
%´Nii

%i ´ 1
`

D
ÿ

k“2

4V
%´Nkk

%k ´ 1
¨ 2k´1 pk ´ 1q ` 2k´1 ´ 1

śk´1
j“1p1´

sj
%j
q

.
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Recalling the definition of si “ 1` ε with ε P p0,minDj“1 %j ´ 1q, the definition holds for
any ε P p0,minDj“1 %j ´ 1q and therefore also for limεÑ0

BpDq ď lim
εÑ0

D
ÿ

i“1

4V
%´Nii

%i ´ 1
`

D
ÿ

k“2

4V
%´Nkk

%k ´ 1
¨ 2k´1 pk ´ 1q ` 2k´1 ´ 1

śk´1
j“1p1´

1`ε
%j
q

“

D
ÿ

i“1

4V
%´Nii

%i ´ 1
`

D
ÿ

k“2

4V
%´Nkk

%k ´ 1
¨ 2k´1 pk ´ 1q ` 2k´1 ´ 1

śk´1
j“1p1´

1
%j
q

.

In the following lemmata, we use the convention N
0 “ 8, N P N` and the notation

xM1 “ px1, . . . , xM q. This notation is to keep the statements shorter and make them
more readable.

Lemma 4.2.7. Let X Q xM1 ÞÑ fpxM1 q be a real valued function that has an analytic
extension to a generalized Bernstein ellipse BpX , %q with parameter vector % P p1,8qM .
Then the Chebyshev polynomial interpolation I1

N pfqpx
M
1 q is given by,

I1
N pfqpx

M
1 q “

N
ÿ

k“0

akpx
M
2 qTkpx1q `

8
ÿ

k“N`1

akpx
M
2 qTmpk,Nqpx1q, (4.48)

where mpk,Nq “ |pk`N ´ 1qpmod2Nq ´ pN ´ 1q| and akpxM2 q “
2
π

ş1
´1 fpx

M
1 q

Tkpx1q?
1´x2

1

dx1

Proof. Following (Trefethen, 2013, Equation (4.9)), from aliasing properties of Chebyshev
polynomials it results that

fpxM1 q ´ I
1
N pfqpx

M
1 q “

8
ÿ

k“N`1

akpx
M
2 qpTkpx1q ´ Tmpk,Nqpx1qq.

By writing the Chebyshev series for fpxM1 q, see Trefethen (2013), we get,

8
ÿ

k“0

akpx
M
2 qTkpx1q ´ I

1
N pfqpx

M
1 q “

8
ÿ

k“N`1

akpx
M
2 qpTkpx1q ´ Tmpk,Nqpx1qq,

and rearranging terms yields (4.48).

As shown previously, the error of interpolating a function fpx1, . . . , xD`1 in one arbi-
trary component i, the value V bounding the function f on Bpr´1, 1s, %iq is a crucial
for the error bound. In the proof of Theorem 4.2.6, we interpolate the already in the
first components x1, . . . , xD interpolated function, fpxD`1

1 q ´ I1,...,D
N1,...,ND

pfqpxD`1
1 q, to be

precise, in the component xD`1. Hence, the bound of fpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 q
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4 Chebyshev Polynomial Interpolation Method

on Bpr´1, 1s, %D`1q is needed. Note the convention xM1 “ px1, . . . , xM q to simplify the
notation.

Lemma 4.2.8. Let X Q xD`1
1 ÞÑ fpxD`1

1 q be a real valued function that has an analytic
extension to a generalized Bernstein ellipse BpX , %q with parameter vector % P p1,8qD`1.
Then

sup
xD`1PBpr´1,1s,%D`1q

|fpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 q| ďMpDq

:“ 2DV

řD
i“1

´

si
%i

¯Ni`1
`
ř

σPt0,1uDzt0uD
ś

δ:σδ“0p1´
´

sδ
%δ

¯Nδ`1
ś

δ:σδ“1

´

sδ
%δ

¯Nδ`1

śD
j“1p1´

sj
%j
q

Proof. Starting with,

sup
xD`1PBpr´1,1s,%D`1q

|fpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 q|,

we express the interpolation of f in D components as in Lemma 4.2.9,

sup
xD`1PBpr´1,1s,%D`1q

ˇ

ˇ

ˇ

ˇ

fpxD`1
1 q ´

ÿ

σPt0,1uD

D
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD1 , xD`1qτpk
D
1 , σ

D
1 , x

D
1 q

ˇ

ˇ

ˇ

ˇ

.

Following Trefethen (2013) and as used in Lemma 4.2.7, we can express f in the following
way,

fpxD`1
1 q “

D
ÿ

δ“1

8
ÿ

kδ“0

IpkD1 , xD`1qτpk
D
1 , σ

D
1 “ 0, xD1 q,

leading to,

sup
xD`1PBpr´1,1s,%D`1q

|fpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 q|

“ sup
xD`1PBpr´1,1s,%D`1q

ˇ

ˇ

ˇ

ˇ

D
ÿ

δ“1

8
ÿ

kδ“0

IpkD1 , xD`1qτpk
D
1 , σ

D
1 “ 0, xD1 q

´
ÿ

σPt0,1uD

D
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD1 , xD`1qτpk
D
1 , σ

D
1 , x

D
1 q

ˇ

ˇ

ˇ

ˇ

.

In the next step, we use from the second summand the part σ “ t0uD, subtract it from
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the subtrahend and use the triangle inequality.

sup
xD`1PBpr´1,1s,%D`1q

|fpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 q|

“ sup
xD`1PBpr´1,1s,%D`1q

ˇ

ˇ

ˇ

ˇ

D
ÿ

i“1

¨

˝

8
ÿ

ki“Ni`1

D
ÿ

j“1,j‰i

8
ÿ

kj“0

IpkD1 , xD`1qτpk
D
1 , σ

D
1 “ 0, xD1 q

˛

‚

´
ÿ

σPt0,1uDzt0uD

D
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD1 , xD`1qτpk
D
1 , σ

D
1 , x

D
1 q

ˇ

ˇ

ˇ

ˇ

ď sup
xD`1PBpr´1,1s,%D`1q

ˇ

ˇ

ˇ

ˇ

D
ÿ

i“1

¨

˝

8
ÿ

ki“Ni`1

D
ÿ

j“1,j‰i

8
ÿ

kj“0

IpkD1 , xD`1qτpk
D
1 , σ

D
1 “ 0, xD1 q

˛

‚

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ÿ

σPt0,1uDzt0uD

D
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD1 , xD`1qτpk
D
1 , σ

D
1 , x

D
1 q

ˇ

ˇ

ˇ

ˇ

To estimate the supremum, we first need estimations for |IpkD1 , xD`1q| and
|τpkD1 , σ

D
1 , x

D
1 q|.

|IpkD1 ,xD`1q| “

ˇ

ˇ

ˇ

ˇ

D
ź

i“1

21kią0

π

ż

r´1,1sD
fpxD`1

1 q

D
ź

j“1

Tkj pxjq
b

1´ x2
j

dpxD1 q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

D
ź

i“2

21kią0

π

ż

r´1,1sD´1

21k1ą0

π

ż 1

´1
f
Tk1px1q
a

1´ x2
1

dpx1q

D
ź

j“2

Tkj pxjq
b

1´ x2
j

dpxD2 q

ˇ

ˇ

ˇ

ˇ

.

Analogously to deriving the estimation (4.45), we can estimate the integral with respect
to x1 as 2

1k1ą0

π

ş1
´1 f

Tk1
px1q?

1´x2
1

dpp1q ď 2V %´k1
1 . The remainingD´1 dimensional integral can

in a similar way be estimated as D´1 one-dimensional integrals with V “ 1. Altogether,
this results in the following estimation for |Ipk1, . . . , kDq|,

|IpkD1 , xD`1q| ď 2DV
D
ź

i“1

%´kii .

For |τpkD1 , σD1 “ 0, xD1 q|, we make use of Bernstein’s inequality, using that the norm of
each Chebyshev polynomial is bounded by 1 on r´1, 1s. For each i “ 1, . . . , D we choose
a Bernstein ellipse with radius si such that 1 ă si ă %i. Here, we define si “ 1 ` ε and
this yields for x : xi P Bpr´1, 1s, siq, i “ 1, . . . , D,

|τpkD1 , σ
D
1 , x

D
1 q| “

ź

δ:σδ“0

Tkδpxδq
ź

δ:σδ“1

Tmδpkδqpxδq ď
ź

δ:σδ“0

skδδ

ź

δ:σδ“1

s
mδpkδq
δ .
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By definition, it holds mδpkδq ď kδ. This leads to

|τpkD1 , σ
D
1 “ 0, xD1 q| ď

D
ź

i“1

skii .

Using both estimates leads to

sup
xD`1PBpr´1,1s,%D`1q

|fpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 q|

ď sup
xD`1PBpr´1,1s,%D`1q

ˇ

ˇ

ˇ

ˇ

D
ÿ

i“1

¨

˝

8
ÿ

ki“Ni`1

D
ÿ

j“1,j‰i

8
ÿ

kj“0

2DV
D
ź

l“1

ˆ

sl
%l

˙kl

˛

‚

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ÿ

σPt0,1uDzt0uD

D
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

2DV
D
ź

l“1

ˆ

sl
%l

˙kl
ˇ

ˇ

ˇ

ˇ

.

Due to si ă %i we can apply the convergence results for the geometric series. This leads
to

sup
xD`1PBpr´1,1s,%D`1q

|fpxD`1
1 q ´ I1,...,D

N1,...,ND
pfqpxD`1

1 q|

ďMpDq :“ sup
xD`1PBpr´1,1s,%D`1q

ˇ

ˇ

ˇ

ˇ

2DV
D
ÿ

i“1

´

si
%i

¯Ni`1

śD
j“1p1´

sj
%j
q

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

2DV
ÿ

σPt0,1uDzt0uD

ś

δ:σδ“0p1´
´

sδ
%δ

¯Nδ`1
ś

δ:σδ“1

´

sδ
%δ

¯Nδ`1

śD
j“1p1´

sj
%j
q

ˇ

ˇ

ˇ

ˇ

“ 2DV

řD
i“1

´

si
%i

¯Ni`1
`
ř

σPt0,1uDzt0uD
ś

δ:σδ“0p1´
´

sδ
%δ

¯Nδ`1
ś

δ:σδ“1

´

sδ
%δ

¯Nδ`1

śD
j“1p1´

sj
%j
q

.

Lemma 4.2.9. Let X Q xM1 ÞÑ fpxM1 q be a real valued function that has an analytic
extension to a generalized Bernstein ellipse BpX , %q with parameter vector % P p1,8qM .
ForD ďM let

IpkD1 , x
M
D`1q “

D
ź

i“1

21kią0

π

ż

r´1,1sD
fpxM1 q

D
ź

j“1

Tkj pxjq
b

1´ x2
j

dpx1, . . . , xDq,

τpkD1 , σ
D
1 , x

D
1 q “

ź

δ:σδ“0

Tkδpxδq
ź

δ:σδ“1

Tmδpxδq,
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then the interpolation of fpxM1 q in D components is given by:

I1,...,D
N1,...,ND

pfqpxM1 q “
ÿ

σPt0,1uD

D
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD1 , x
M
D`1qτpk

D
1 , σ

D
1 , x

D
1 q.

Proof. We proof this lemma via induction over the dimension D. For D “ 1 it follows
from Lemma 4.2.7,

I1
N1
pfqpxM1 q “

N1
ÿ

k1“0

21k1ą0

π

ż

r´1,1s
fpxM1 q

Tk1px1q
a

1´ x2
1

dx1Tk1px1q

`

8
ÿ

k1“N1`1

21k1ą0

π

ż

r´1,1s
fpxM1 q

Tk1px1q
a

1´ x2
1

dx1Tm1px1q.

Embedded in the introduced notation we get for D “ 1,

I1
N1
pfqpxM1 q “

ÿ

σPt0,1u

1
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

Ipk1
1, x

M
2 qτpk

1
1, σ

1
1, x

1
1q.

For the induction step from D´1 to D, we assume the interpolation in D´1 components
is given by

I1,...,D´1
N1,...,ND´1

pfqpxM1 q “
ÿ

σPt0,1uD´1

D´1
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD´1
1 , xMD qτpk

D´1
1 , σD´1

1 , xD´1
1 q.

For the interpolation in D components we make use of

I1,...,D
N1,...,ND

pfqpxM1 q “ IDND ˝ . . . ˝ I
1
N1
pfqpxM1 q “ IDND ˝ I

1,...,D´1
N1,...,ND´1

pfqpxM1 q.

As for D “ 1 we apply (Trefethen, 2013, p.27) and this leads to

IN1,...,NDpfqpx
D
1 q “

ND
ÿ

kD“0

21kDą0

π

ż 1

´1
I1,...,D´1
N1,...,ND´1

pfqpxM1 q
TkDpxDq
b

1´ x2
D

dxDTkDpxDq

`

8
ÿ

kD“ND`1

21kDą0

π

ż 1

´1
I1,...,D´1
N1,...,ND´1

pfqpxM1 q
TkDpxDq
b

1´ x2
D

dxDTmDpxDq.

By the induction hypothesis and the definitions of IpkD´1
1 , xMD q and
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τpkD´1
1 , σD´1

1 , xD´1
1 q, we achieve,

ż 1

´1
I1,...,D´1
N1,...,ND´1

pfqpxM1 q
TkDpxDq
b

1´ x2
D

dxD

“

ż

r´1,1s

ÿ

σPt0,1uD´1

D´1
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD´1
1 , xMD qτpk

D´1
1 , σD´1

1 , xD´1
1 q

TkDpxDq
b

1´ x2
D

dxD

“

ż

r´1,1s

ÿ

σPt0,1uD´1

D´1
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

D´1
ź

i“1

21kią0

π

ż

r´1,1sD´1

fpxM1 q
D´1
ź

j“1

Tkj pxjq
b

1´ x2
j

dpx1, . . . , xD´1q
TkDpxDq
b

1´ x2
D

dxD.

Rearranging terms yields,

IN1,...,NDpfqpx
M
1 q “

ND
ÿ

kD“0

ÿ

σPt0,1uD´1

D´1
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

D
ź

i“1

21kią0

π

ż

r´1,1sD
fpxM1 q

D
ź

j“1

Tkj pxjq
b

1´ x2
j

dpxD1 q
ź

δ:σδ“0

Tkδpxδq
ź

δ:σδ“1

TmδpxδqTkDpxDq

`

8
ÿ

kD“ND`1

ÿ

σPt0,1uD´1

D´1
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

D
ź

i“1

21kią0

π

ż

r´1,1sD
fppM1 q

D
ź

j“1

Tkj pxjq
b

1´ x2
j

dpxD1 q
ź

δ:σδ“0

Tkδpxδq
ź

δ:σδ“1

TmδpxδqTmDpxDq.

This can be expressed as

I1,...,D
N1,...,ND

pfqpxM1 q “
ÿ

σPt0,1uD

D
ÿ

δ“1

Nδ
1´σδ
ÿ

kδ“pNδ`1q¨σδ

IpkD1 , x
M
D`1qτpk

D
1 , σ

D
1 , x

D
1 q. (4.49)

Finally, in the following we present the new error bound as a combination of this result
with the result from Theorems 4.2.2 and 4.2.6. We furthermore discuss examples for
which the new error bound yields a significant improvement.
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Theorem 4.2.10. Let f : X Ñ R have an analytic extension to a generalized Bernstein
ellipse BpX , %q with parameter vector % P p1,8qD with maxxPBpX ,%q |fpxq| ď V ă 8.
Then

max
xPX

ˇ

ˇfpxq ´ IN pfqpxq
ˇ

ˇ ď mintap%,N,Dq, bp%,N,Dqu,

where, denoting by SD the symmetric group on D elements,

ap%,N,Dq “ min
σPSD

D
ÿ

i“1

4V
%´Niσpiq

%i ´ 1
`

D
ÿ

k“2

4V
%´Nkσpkq

%σpkq ´ 1
¨ 2k´1 pk ´ 1q ` 2k´1 ´ 1

śk´1
j“1p1´

1
%σpjq

q
,

bp%,N,Dq “ 2
D
2
`1 ¨ V ¨

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

.

Proof. The bound maxxPX
ˇ

ˇfpxq´ IN pfqpxq
ˇ

ˇ ď bp%,N,Dq follows from Theorem 4.2.2 as
extension of Sauter and Schwab (2004). The second bound maxxPX

ˇ

ˇfpxq ´ IN pfqpxq
ˇ

ˇ ď

ap%,N,Dq follows from Theorem 4.2.6. Combining both results obviously yields the
assertion of the theorem.

The examples below show that mintap%,N,Dq, bp%,N,Dqu improves both error bounds
ap%,N,Dq and bp%,N,Dq. Noticing that both bounds are scaled with the factor V , we
set V “ 1, moreover, we choose D “ 2.

Example 4.2.11. For %1 “ 2.3 and %2 “ 1.8, and N1 “ N2 “ 10, we have bp%,N,Dq “
0.0018 and ap%,N,Dq “ 0.0066. Therefore, in this example the error bound bp%,N,Dq is
sharper.

Example 4.2.12. If we change slightly the setting from Example 4.2.11 to %1 “ 2.3 and
%2 “ 2.5, and N1 “ N2 “ 10, then the resulting error bounds are bp%,N,Dq “ 0.0017
and ap%,N,Dq “ 0.0011 and thus, the later is the sharper error bound.

As shown in Examples 4.2.11 and 4.2.12, slight changes in the domain of analyticity
and, thus, the radii of the Bernstein ellipses, may reverse the order of ap%,N,Dq and
bp%,N,Dq. Figure 4.5 displays both error bounds ap%,N,Dq and bp%,N,Dq for varying
% with %1 “ %2, N1 “ N2 “ 10. We observe that both error bounds intersect at
%1 “ %2 « 2.800882. For smaller values of %, the sharper error bound is bp%,N,Dq,
whereas for higher values ap%,N,Dq is sharper. So far, the examples indicate that for a
smaller radius of the Bernstein ellipse, bp%,N,Dq tends to be the better error bound and
that for higher radii of the Bernstein ellipses or for strongly differing radii, ap%,N,Dq
tends to be the sharper error bound. Our last example shows a situation where thanks
to Theorem 4.2.10 less nodes are required to guarantee a pre-specified accuracy.
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Figure 4.5: Comparison of the error bounds bp%,N,Dq (blue) and ap%,N,Dq (red,
dashed) by setting %1 “ %2 and N1 “ N2 “ 10. At %1 “ %2 « 2.800882
both error bounds intersect.

Example 4.2.13. Let the radii of the Bernstein ellipse be %1 “ 2.95 and %2 “ 9.8.
Assuming V “ 1, we are interested in achieving an accuracy of ε ď 2 ¨ 10´4. To achieve
bp%,N,Dq ď ε, we have to set N1 “ 11 and N2 “ 5. For achieving ap%,N,Dq ď ε,
we have to set N1 “ 8 and N2 “ 4. An application of error bound bp%,N,Dq would
result in an interpolation with 72 “ p11 ` 1q ¨ p5 ` 1q nodes, whereas we only require
45 “ p8` 1q ¨ p4` 1q nodes when applying the error bound ap%,N,Dq.

Example 4.2.13 highlights the potential of using fewer nodal points to achieve a desired
accuracy by comparing both error bounds. Especially when the evaluation of the in-
terpolated function at the nodal points is challenging, this reduces the computational
costs noticeably. This particularly arises for Chebyshev interpolation combined with
Monte-Carlo simulation for high-dimensional parametric integration.

So far, we have provided an enhanced error bound for tensorized Chebyshev polynomial
interpolation in Theorem 4.2.10 and have shown several examples. Example 4.2.13 high-
lights the effect of the improved error bound. Here, less interpolation nodes are required
to guarantee a pre-specified accuracy. This significantly reduces the computational time,
especially if the evaluation of function f at the nodal points is time-consuming.

4.2.1 Convergence Results Including the Derivatives

In the setting of Theorem 4.2.2 additionally the derivatives of fpxq are approximated by
the according derivatives of the Chebyshev interpolation. The one-dimensional result is
shown in Tadmor (1986) and a multivariate result is derived in Canuto and Quarteroni
(1982) for functions in Sobolev spaces. These results allow us to obtain the Chebyshev
approximation of derivatives with no additional cost. To state the according convergence
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results we follow Canuto and Quarteroni (1982) and introduce the weighted Sobolev
spaces for σ P N by

W σ,ω
2 pX q “

!

φ P L2pX q : }φ}Wσ,ω
2 pX q ă 8

)

, (4.50)

with norm
}φ}2Wσ,ω

2 pX q “
ÿ

|α|ďσ

ż

X
|Bαφppq|2ωpxqdx, (4.51)

wherein α “ pα1, . . . , αDq P N
D
0 is a multiindex and Bα “ Bα1 ¨ ¨ ¨ BαD and the weight

function ω on X given by

ωpxq :“
D
ź

j“1

ωpτ´1
rxj ,xjs

pxjqq, ωpτ´1
rxj ,xjs

pxjqq :“ p1´ τ´1
rxj ,xjs

pxjq
2q´

1
2 (4.52)

with τrxj ,xjspxq “ xj`
xj´x

2

`

1´x
˘

. Then we apply the result of (Canuto and Quarteroni,
1982, Theorem 3.1) in the following corollary.

Proposition 4.2.14. Let P Q p ÞÑ Pricep P W σ,ω
2 pPq and set Ni “ N, i “ 1, . . . , D,

i.e.the same number of nodal points in each dimension. Then for any D
2 ă σ P N and

any σ ě µ P N0 there exists a constant C ą 0 such that

}Pricep¨q ´ IN pPrice
p¨qqp¨q}Wµ,ω

2 pPq ď CN2µ´σ}Pricep¨q}Wσ,ω
2 pPq,

Proof. Before we apply (Canuto and Quarteroni, 1982, Theorem 3.1), which assumes
X “ r´1, 1sD, we investigate how the linear transformation τX , as introduced in the
proof of Theorem 4.2.2, influences the derivatives. Let x ÞÑ fpxq be a function on X .
We set phpxq “ fpxq ˝ τX pxq. Furthermore, let pIN p

phqpxq be the Chebyshev interpolation
of phpxq on r´1, 1sD. Then, it directly follows

fpxq ´ IN pfp¨qqpxq “
´

php¨q ´ pIN p
phqp¨q

¯

˝ τ´1
X pxq.

First, let us assume D “ 1, i.e. X “ rx, xs, and let α P N0. For the partial derivatives it
holds

Bαfpxq ´ BαIN pfp¨qqpxq “ B
α
`

fpxq ´ IN pfp¨qqpxq
˘

“ Bα
´´

php¨q ´ pIN p
phqp¨q

¯

˝ τ´1
X pxq

¯

“ Bα´1
´

B1
phpτ´1

X pxqq ´ B1
pIN p

php¨qqpτ´1
X pxqq

¯

“ Bα´1 2

x´ x

´”

B1
ph
ı

pτ´1
X pxqq ´

”

B1
pIN p

php¨qq
ı

pτ´1
X pxqq

¯

.
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Repeating this step iteratively yields

Bαfpxq ´ BαIN pfp¨qqpxq “
2α

px´ xqα

´”

Bαph
ı

pτ´1
X pxqq ´

”

BαpIN p
php¨qq

ı

pτ´1
X pxqq

¯

.

Hence, the error on r´1, 1s is scaled with a factor 2α

px´xqα . Extending this to the D-
variate case with, this analogously results with α “ pα1, . . . , αDq P N

D
0 is a multi-index

and Bα “ Bα1 ¨ ¨ ¨ BαD

Bαfpxq ´ BαIN pfp¨qqpxq “

D
ź

i“1

2|αi|

pxi ´ xiq
|αi|

´”

Bαph
ı

pτ´1
X pxqq ´

”

BαpIN p
php¨qq

ı

pτ´1
X pxqq

¯

.

From Theorem 3.1 in Canuto and Quarteroni (1982) the assertion follows directly for
php¨q on X “ r´1, 1sD, i.e. for any D

2 ă σ P N and any σ ě µ P N0 there exists a
constant C̃ ą 0 such that

}php¨q ´ pIN p
phqp¨q}Wµ,ω

2 pX q ď C̃N2µ´σ}php¨q}Wσ,ω
2 pX q, (4.53)

For arbitrary X the constant from 4.53 has to be multiplied with the according factor
resulting from the linear transformation τX .

The result in Corollary 4.2.14 is given in terms of weighted Sobolev norms. In the
following remark, we connect the approximation error in the weighted Sobolev norm to
the C lpX q norm, where C lpX q is the Banach space of all functions u in X such that u
and Bαu with |α| ď l are uniformly continuous in X and the norm

‖u‖ClpX q “ max
|α|ďl

max
xPX

|Bαupxq|

is finite.

Proposition 4.2.15. Let P Q p ÞÑ Pricep P W σ,ω
2 pPq and set Ni “ N, i “ 1, . . . , D,

i.e.the same number of nodal points in each dimension. Then for any D
2 ă σ P N and

any σ ě µ P N0 and l P N0 with µ´ l ą D
2 , there exists a constant C̄pσq ą 0 depending

on σ, such that

}Pricep¨q ´ IN pPrice
p¨qqp¨q}ClpPq ď C̄pσqN2µ´σ max

|α|ďσ
sup
pPP

|BαPricep|.

Proof. In the setting of Proposition 4.2.14, we start with the estimation of the approxi-
mation error in the weighted Sobolev norms,

}fp¨q ´ IN pfp¨qqp¨q}Wµ,ω
2 pX q ď CN2µ´σ}fp¨q}Wσ,ω

2 pX q. (4.54)
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On X it holds that wpxq ě 1 and, thus, we can deduce for the Sobolev norm with a
constant weight of 1,

}fp¨q ´ IN pfp¨qqp¨q}Wµ,ω
2 pX q ě }fp¨q ´ IN pfp¨qqp¨q}Wµ,1

2 pX q.

With Wµ
2 pX q the usual Sobolev space,

Wµ
2 pX q “

!

φ P L2pX q : }φ}Wµ
2 pX q ă 8

)

, }φ}2Wµ
2 pX q

“
ÿ

|α|ďµ

ż

X
|Bαφpxq|2 dx,

Corollary 6.2 from Wloka (1987) directly yields that for any l with µ´ l ą D
2 there exists

a constant C̃ such that

}fp¨q ´ IN pfp¨qqp¨q}ClpX q ď C̃}fp¨q ´ IN pp¨qqp¨q}Wµ
2 pX q. (4.55)

In formula (4.55) we have derived a lower bound for the left hand side of expression
(4.54). Next, we will find an upper bound for the right hand side of (4.54). From the
definition of the weighted Sobolev norm, see (4.51), it follows

}fp¨q}Wσ,ω
2 pX q “

g

f

f

e

ÿ

|α|ďσ

ż

X
|Bαfpxq|2ωpxqdx

ď

g

f

f

e

ÿ

|α|ďσ

sup
xPX

|Bαfpxq|2
ż

X
ωpxqdx.

Here, we apply
ş

X ωpxq dx “ πD and that there exists a constant α2pσq depending on σ
such that

}fpxq}Wσ,ω
2 pX q ď

c

α2pσqmax
|α|ďσ

sup
xPX

|Bαfpxq|2πD

“ αpσqmax
|α|ďσ

sup
xPX

|Bαfpxq|π
D
2 . (4.56)

Finally, using (4.55) and (4.56) in (4.54) yields an estimate of the approximation error
in the C lpX q norm,

1

C̃
}fp¨q ´ IN pfp¨qqp¨q}ClpX q ď CN2µ´σαpσqmax

|α|ďσ
sup
xPX

|Bαfpxq|π
D
2 .

Collecting all constants in C̄pσq, the assertion follows directly.
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4.3 Chebyshev Interpolation Method for Parametric Option
Pricing

Once we have studied the convergence properties of Chebyshev polynomial interpola-
tion, we can now apply the Chebyshev interpolation to parametric option pricing. For
parameters p P RD, where D P N denotes the dimensionality of the parameter space, the
price Pricep is approximated by tensorized Chebyshev polynomials Tj with pre-computed
coefficients cj , j P J , as follows,

Pricep «
ÿ

jPJ

cjTjppq.

4.3.1 Exponential Convergence of Chebyshev Interpolation for POP

In this section we embed the multivariate Chebyshev interpolation into the option pricing
framework. We provide sufficient conditions under which option prices depend analyti-
cally on the parameters.

Analytic properties of option prices can be conveniently studied in terms of Fourier
transforms. First, Fourier representations of option prices are explicitly available for
a large class of both option types and asset models. Second, Fourier transformation
unveils the analytic properties of both the payoff structure and the distribution of the
underlying stochastic quantity in a beautiful way. By contrast, if option prices are
represented as expectations, their analyticity in the parameters is hidden. For example
the function K ÞÑ pST ´Kq` is not even differentiable, whereas the Fourier transform
of the dampened call payoff function evidently is analytic in the strike, compare (Gaß
et al., 2016, Table 1).

Conditions for Exponential Convergence

Let us first introduce a general option pricing framework. We consider option prices of
the form

Pricep“pp
1,p2q “ E

`

fp
1
pXp2

q
˘

(4.57)

where fp1 is a parametrized family of measurable payoff functions fp1
: Rd Ñ R` with

payoff parameters p1 P P1 and Xp2 is a family of Rd-valued random variables with model
parameters p2 P P2. The parameter set

p “ pp1, p2q P P “ P1 ˆ P2 Ă RD (4.58)

99



4 Chebyshev Polynomial Interpolation Method

is again of hyperrectangular structure, i.e. P1 “ rp
1
, p1s ˆ . . .ˆ rpm, pms and

P2 “ rp
m`1

, pm`1s ˆ . . . ˆ rp
D
, pDs for some 1 ď m ď D and real p

i
ď pi for all

i “ 1, . . . , D.

Typically we are given a parametrized Rd-valued driving stochastic process Hp1 with Sp1

being the vector of asset price processes modeled as an exponential of Hp1 , i.e.

Sp
1,i
t “ Sp

1,i
0 exppHp1,i

t q, 0 ď t ď T, 1 ď i ď d, (4.59)

and Xp2 is an FT -measurable Rd-valued random variable, possibly depending on the
history of the d driving processes, i.e. p2 “ pT, p1q and

Xp2
:“ Ψ

`

Hp1

t , 0 ď t ď T
˘

,

where Ψ is an Rd-valued measurable functional.

We now focus on the case that the price (4.57) is given in terms of Fourier transforms.
This enables us to provide sufficient conditions under which the parametrized prices have
an analytic extension to an appropriate generalized Bernstein ellipse. For most relevant
options, the payoff profile fp1 is not integrable and its Fourier transform over the real
axis is not well defined. Instead, there exists an exponential dampening factor η P Rd

such that exη,¨y fp
1
P L1pRdq. We therefore introduce exponential weights in our set of

conditions and denote the Fourier transform of g P L1pRdq by

ĝpzq :“

ż

Rd
eixz,xy gpxqdx

and we denote the Fourier transform of exη,¨y f P L1pRdq by f̂p¨ ´ iηq. The exponential
weight of the payoff will be compensated by exponentially weighting the distribution of
Xp2 and that weight will reappear in the argument of ϕp2 , the characteristic function of
Xp2 .

Conditions 4.3.1. Let parameter set P “ P1ˆP2 Ă RD of hyperrectangular structure
as in (4.58). Let % P p1,8qD and denote %1 :“ p%1, . . . , %mq and %2 :“ p%m`1, . . . , %Dq
and let weight η P Rd.
(A1) For every p1 P P1 the mapping x ÞÑ exη,xy fp

1
pxq is in L1pRd).

(A2) For every z P Rd the mapping p1 ÞÑ
xfp1
pz ´ iηq is analytic in the general-

ized Bernstein ellipse BpP1, %1q and there are constants c1, c2 ą 0 such that
supp1PBpP1,%1q |

xfp1
p´z ´ iηq| ď c1e

c2|z| for all z P Rd.

(A3) For every p2 P P2 the exponential moment condition E
`

e´xη,X
p2y

˘

ă 8 holds.

(A4) For every z P Rd the mapping p2 ÞÑ ϕp
2
pz ` iηq is analytic in the generalized

Bernstein ellipse BpP2, %2q and there are constants α P p1, 2s and c1, c2 ą 0 such
that supp2PBpP2,%2q |ϕ

p2
pz ` iηq| ď c1 e´c2|z|

α for all z P Rd.
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Theorem 4.3.2. Let % P p1,8qD and weight η P Rd. Under conditions (A1)–(A4),
P Q p ÞÑ Pricep has an analytic extension to the generalized Bernstein ellipse BpP, %q
and suppPBpP,%q |Price

p| ď V , and thus,

max
pPP

ˇ

ˇPricep ´ IN pPrice
p¨qqppq

ˇ

ˇ ď mintap%,N,Dq, bp%,N,Dqu,

where, denoting by SD the symmetric group on D elements,

ap%,N,Dq “ min
σPSD

D
ÿ

i“1

4V
%´Niσpiq

%i ´ 1
`

D
ÿ

k“2

4V
%´Nkσpkq

%σpkq ´ 1
¨ 2k´1 pk ´ 1q ` 2k´1 ´ 1

śk´1
j“1p1´

1
%σpjq

q
,

bp%,N,Dq “ 2
D
2
`1 ¨ V ¨

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

.

Proof. Thanks to assumptions (A2) and (A4) the mapping z ÞÑ xfp1
p´z´ iηqϕp

2
pz` iηq

belongs to L1pRdq for every p “ pp1, p2q P P. Together with conditions (A1) and (A3),
we therefore can apply (Eberlein et al., 2010, Theorem 3.2). This gives the following
Fourier representation of the option prices,

Pricep “
1

p2πqd

ż

Rd`iη

xfp1
p´zqϕp

2
pzqd z.

Due to assumptions (A2) and (A4) the mapping

p “ pp1, p2q ÞÑ
xfp1
p´zqϕp

2
pzq

has an analytic extension to BpP, %q.

Let γ be a contour of a compact triangle in the interior of Bprp
i
, pis, %iq for arbitrary

i “ 1, . . . , D. Then thanks to assumption (A2) and (A4) we may apply Fubini’s theorem
and obtain

ż

γ
Pricepp1,...,pDqpzq d pi “

1

p2πqd

ż

γ

ż

Rd`iη

xfp1
p´zqϕp

2
pzq d z d pi

“
1

p2πqd

ż

Rd`iη

ż

γ

xfp1
p´zqϕp

2
pzq d pi d z “ 0.

Moreover, thanks to assumptions (A2) and (A4), dominated convergence shows continu-
ity of p ÞÑ Pricep in BpP, %q which yields the analyticity of p ÞÑ Pricep in BpP, %q thanks
to a version of Morera’s theorem provided in (Jänich, 2004, Satz 8).

Similar to Corollary 4.2.14 in the setting of Theorem 4.3.2 additionally the according
derivatives are approximated as well by the Chebyshev interpolation. A very interesting
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application of this result in finance is the computation of sensitivities like delta or vega
of an option price for risk assessment purposes. Theorem 4.3.2 together with Corollary
4.2.14 yield the following corollary.

Corollary 4.3.3. Under the assumptions of Theorem 4.3.2, for all l P N, µ and σ with
σ ą D

2 , 0 ď µ ď σ and µ´ l ą D
2 there exist a constant C, such that

}Pricep ´ IN pPrice
p¨qqppq}ClpPq ď CN2µ´σ}Pricep}Wσ

2 pPq,

where the spaces and norms are defined in Section 4.2.1.

In Gaß et al. (2016) it is shown that Conditions (A1)–(A4) are satisfied for a large class of
payoff functions and asset models. Here, we focus on basket options in affine models.

Let Xπ1 be a parametric family of affine processes with state space D Ă Rd for π1 P Π1

such that for every π1 P Π1 there exists a complex-valued function νπ1 and a Cd-valued
function φπ1 such that

ϕp
2“pt,x,π1qpzq “ E

`

eixz,X
π1

t y
ˇ

ˇXπ1

0 “ x
˘

“ eν
π1 pt,izq`xφπ

1
pt,izq,xy, (4.60)

for every t ě 0, z P Rd and x P D. Under mild regularity conditions, the functions νπ1

and φπ1 are determined as solutions to generalized Riccati equations. We refer to Duffie
et al. (2003) for a detailed exposition. The rich class of affine processes comprises the
class of Lévy processes, for which νπ1pt, izq “ tψπ

1

pzq with ψπ1 given as some exponent
in the Lévy-Khintchine formula and φπ1pt, izq ” 0. Moreover, many popular stochastic
volatility models such as the Heston model as well as stochastic volatility models with
jumps, e.g. the model of Barndorff-Nielsen and Shephard (2001) and time-changed Lévy
models, see Carr et al. (2003) and Kallsen (2006), are driven by affine processes.

Consider option prices of the form

PricepK,T,x,π
1q “ E

`

fKpXπ1

T q|X
π1

0 “ x
˘

(4.61)

where fK is a parametrized family of measurable payoff functions fK : Rd Ñ R` for
K P P1.

Corollary 4.3.4. Under the conditions (A1)–(A3) for weight η P Rd, % P p1,8qD and
P “ P1 ˆ P2 Ă RD of hyperrectangular structure assume

(i) for every parameter p2 “ pt, x, π1q P P2 Ă RD´m that the validity of the affine
property (4.60) extends to z “ R` iη, i.e. for every z P R` iη,

ϕp
2“pt,x,π1qpzq “ E

`

eixz,X
π1

t y
ˇ

ˇXπ1

0 “ x
˘

“ eν
π1 pt,izq`xφπ

1
pt,izq,xy,
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(ii) for every z P Rd that the mappings pt, π1q ÞÑ νπ
1

pt, iz´ηq and pt, π1q ÞÑ φπ
1

pt, iz´ηq
have an analytic extension to the Bernstein ellipse BpΠ1, %1q for some parameter
%1 P p1,8qD´m´1,

(iii) there exist α P p1, 2s and constants C1, C2 ą 0 such that uniformly in the parameters
p2 “ pt, x, π1q P BpP2, r%2q for a generalized Bernstein ellipse with r%2 P p1,8qD´m

<
`

νπ
1

pt, iz ´ ηq ` xφπ
1

pt, iz ´ ηq, xy
˘

ď C1 ´ C2|z|
α for all z P R.

Then there exist constants C ą 0, % ą 1 such that

max
pPP1ˆP2

ˇ

ˇPricep ´ IN pPrice
p¨qqppq

ˇ

ˇ ď C%´N .

Proof. Thanks to Theorem 4.3.2 and Corollary 4.2.4 and in view of the assumed validity
of Conditions (A1)–(A3), it suffices to verify Condition (A4). While assumptions (i) and
(ii) together yield the analyticity condition in (A4), part (iii) provides the upper bound
in (A4).

4.4 Numerical Experiments for Parametric Option Pricing

We apply the Chebyshev interpolation method to parametric option pricing considering
a variety of option types in different well known option pricing models. Moreover, we
conduct both an error analysis as well as a convergence study. The first focuses on the
accuracy that can be achieved with a reasonable number of Chebyshev interpolation
points. The latter confirms the theoretical order of convergence derived in Section 4.3.1,
when the number of Chebyshev points increases. Finally, we study the gain in efficiency
for selected multivariate options.

We measure the numerical accuracy of the Chebyshev method by comparing derived
prices with prices coming from a reference method. We employ the reference method not
only for computing reference prices but also for computing prices at Chebyshev nodes
Pricep

pk1,...,kDq with pk1, . . . , kDq P J during the precomputation phase of the Chebyshev
coefficients cj , j P J , in (4.33). Thereby, a comparability between Chebyshev prices and
reference prices is maintained.

We implemented the Chebyshev method for applications with two parameters. To that
extent we pick two free parameters pi1 , pi2 out of (4.58), 1 ď i1 ă i2 ď D, in each model
setup and fix all other parameters at reasonable constant values. We then evaluate option
prices for different products on a discrete parameter grid P Ď rp

i1
, pi1sˆrpi2

, pi2s defined
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by

P “
!´

p
ki1
i1
, p
ki2
i2

¯

, ki1 , ki2 P t0, . . . , 100u
)

,

p
kij
ij
“ p

ij
`
kij
100

´

pij ´ pij

¯

, kij P t0, . . . , 100u, j P t1, 2u.
(4.62)

Once the prices have been derived on P, we compute the discrete L8pPq and L2pPq error
measures,

εL8pNq “ max
pPP

ˇ

ˇ

ˇ
Pricep ´ IN pPrice

p¨qqppq
ˇ

ˇ

ˇ
,

εL2pNq “

g

f

f

e
∆P

ÿ

pPP

ˇ

ˇ

ˇ
Pricep ´ IN pPrice

p¨qqppq
ˇ

ˇ

ˇ

2
,

(4.63)

where ∆P “
ppi1´pi1

q

100

ppi2´pi2
q

100 , to interpret the accuracy of our implementation and of
the Chebyshev method as such.

4.4.1 European Options

In Gaß et al. (2016), we first did a consistency study for a plain vanilla European call
option on one asset as well as a European digital down&out option. The empirically
observed (sub)exponential error decay for increasing N as well as the error of the Cheby-
shev interpolation on a test grid, verify the theoretical results from Theorem 4.3.2. The
detailed results are in (Gaß et al., 2016, Section 5.1).

4.4.2 Basket and Path-dependent Options

In this section we use the Chebyshev method to price basket and path-dependent options.
First, we apply the method to interpolate Monte-Carlo estimates of prices of financial
products and check the resulting accuracy. To this aim we exemplarily choose basket,
barrier and lookback options in 5-dimensional Black&Scholes, Heston and Merton mod-
els. Second, we combine the Chebyshev method with a Crank-Nicolson finite difference
solver with Brennan Schwartz approximation, see Brennan and Schwartz (1977), for pric-
ing a univariate American put option in the Black&Scholes model. The finite difference
solver and the Monte-Carlo implementation for the Heston and Merton models was pro-
vided by Maximilian Mair. In this section, I used these implementation to produce the
results. For the efficiency study later on, I modified the provided codes.

In our Monte-Carlo simulation we use 106 sample paths, antithetic variates as variance
reduction technique and 400 time steps per year. The error of the Monte-Carlo method
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cannot be computed directly. We thus turn to statistical error analysis and use the well-
known 95% confidence bounds to determine the accuracy. These bounds are derived by
following the assumption of a normally distributed Monte-Carlo estimator with mean
equal to the estimator’s value and variance equal to the empirical variance. We pick two
free parameters pi1 , pi2 out of (4.58), 1 ď i1 ă i2 ď D, in each model setup and fix all
other parameters at reasonable constant values. In this section we define the discrete
parameter grid P Ď rp

i1
, pi1s ˆ rpi2

, pi2s by

P “
!´

p
ki1
i1
, p
ki2
i2

¯

, ki1 , ki2 P t0, . . . , 40u
)

,

p
kij
ij
“ p

ij
`
kij
40

´

pij ´ pij

¯

, kij P t0, . . . , 40u, j P t1, 2u,
(4.64)

and call P test grid. On this test grid the largest confidence bound is 0.025 on average lees
than 0.013. For the finite difference method, we investigate the error for all parameter
tuples in P by comparing each approximation to the limit of the sequence of finite
difference approximations with increasing grid size. Here, the error was below 0.005. In
our calculations we work with a grid size in time as well as in space (log-moneyness)
of 50 ¨ maxt1, T u and compared the result to the resulting prices using grid sizes of
1000 ¨ maxt1, T u. This grid size has been determined as sufficient for the limit due to
hardly any changes compared to grid sizes of 500 ¨maxt1, T u.

Here, our main concern is the accuracy of the Chebyshev interpolation when we vary
for each option the parameters strike and maturity analogously to the previous section.
For N P t5, 10, 30u, we precompute the Chebyshev coefficients as defined in (4.33) with
D “ 2 where always N1 “ N2 “ N . An overview of fixed and free parameters in our
model selection is given in Table 4.1. For computational simplicity in the Monte-Carlo
simulation, we assume uncorrelated underlyings.

Let us briefly define the payoffs of the multivariate basket and path-dependent options.
The payoff profile of a basket option for d underlyings is given as

fK
`

S1
T , . . . , S

d
T

˘

“

˜˜

1

d

d
ÿ

j“1

SjT

¸

´K

¸`

.

We denote St “ pS1
t , . . . , S

d
t q, S

j
T :“ min0ďtďT S

j
t and SjT :“ max0ďtďT S

j
t . A lookback

option for d underlyings is defined as

fK
´

S
1
T , . . . , S

d
T

¯

“

˜˜

1

d

d
ÿ

j“1

S
j
T

¸

´K

¸`

.
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Model fixed parameters free parameters
p1 p2 p1 p2

BS Sj0 “ 100, σj “ 0.2 K P r83.33, 125s T P r0.5, 2s
r “ 0.005

Heston Sj0 “ 100, κj “ 2, K P r83.33, 125s T P r0.5, 2s
r “ 0.005 θj “ 0.22,

σj “ 0.3,
ρj “ ´0.5,
vj,0 “ 0.22

Merton Sj0 “ 100, σj “ 0.2, K P r83.33, 125s T P r0.5, 2s
r “ 0.005 αj “ ´0.1,

βj “ 0.45,
λj “ 0.1

Table 4.1: Parametrization of models, basket and path-dependent options. The model
parameters are given for j “ 1, . . . , d to reflect the multivariate setting with
free parameters strike K and maturity T .

As a multivariate barrier option on d underlyings we define the payoff

fK
`

tSptqu0ďtďT
˘

“

˜˜

1

d

d
ÿ

j“1

SjT

¸

´K

¸`

¨ 1
tSjTě80, j“1,...,du

.

For an American put option the payoff is the same as for a European put,

fK
`

St
˘

“ pK ´ Stq
` ,

but the option holder has the right to exercise the option at any time t up to maturity
T .

We now turn to the results of our numerical experiments. In order to evaluate the accu-
racy of the Chebyshev interpolation we look for the worst case error εL8 . The absolute
error of the Chebyshev interpolation method can be directly computed by comparing the
interpolated option prices with those obtained by the reference numerical algorithm i.e.
either the Monte-Carlo or the Finite Difference method. Since the Chebyshev interpola-
tion matches the reference method on the Chebyshev nodes, we will use the out-of-sample
test grid as in (4.64). Table 4.2 shows the numerical results for the basket and path-
dependent options for N “ 5, Table 4.3 for N “ 10 and Table 4.4 for N “ 30. In addition
to the L8 errors the tables display the Monte-Carlo (MC) prices, the Monte-Carlo confi-
dence bounds and the Chebyshev Interpolation (CI) prices for those parameters at which
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Model Option εL8 MC price MC conf. bound CI price
BS Basket 1.338 ¨ 10´1 8.6073 1.171 ¨ 10´2 8.4735
Heston Basket 9.238 ¨ 10´2 0.0009 1.036 ¨ 10´4 0.0933
Merton Basket 9.815 ¨ 10´2 8.8491 1.552 ¨ 10´2 8.7510
BS Lookback 2.409 ¨ 10´1 9.4623 9.861 ¨ 10´3 9.2213
Heston Lookback 5.134 ¨ 10´1 0.0314 6.472 ¨ 10´4 -0.4820
Merton Lookback 2.074 ¨ 10´1 1.0919 9.568 ¨ 10´3 0.8844
BS Barrier 1.299 ¨ 10´1 1.0587 5.092 ¨ 10´3 1.1887
Heston Barrier 1.073 ¨ 10´1 2.7670 9.137 ¨ 10´3 2.6597
Merton Barrier 9.916 ¨ 10´2 1.3810 1.102 ¨ 10´2 1.4802

Table 4.2: Interpolation of exotic options with Chebyshev interpolation. N “ 5 and
d “ 5 in all cases. In addition to the L8 errors the table displays the Monte-
Carlo (MC) prices, the Monte-Carlo confidence bounds and the Chebyshev
Interpolation (CI) prices for those parameters at which the L8 error is realized.

Model Option εL8 MC price MC conf. bound CI price
BS Basket 2.368 ¨ 10´3 2.4543 7.493 ¨ 10´3 2.4566
Heston Basket 2.134 ¨ 10´3 3.1946 1.073 ¨ 10´2 3.1925
Merton Basket 3.521 ¨ 10´3 6.1929 2.231 ¨ 10´2 6.1894
BS Lookback 2.861 ¨ 10´2 0.9827 4.197 ¨ 10´3 0.9541
Heston Lookback 1.098 ¨ 10´1 2.0559 4.826 ¨ 10´3 2.1656
Merton Lookback 3.221 ¨ 10´2 4.7072 1.264 ¨ 10´2 4.7394
BS Barrier 4.414 ¨ 10´3 5.3173 1.725 ¨ 10´2 5.3129
Heston Barrier 5.393 ¨ 10´3 0.7158 5.879 ¨ 10´3 0.7212
Merton Barrier 3.376 ¨ 10´3 9.2688 2.302 ¨ 10´2 9.2722

Table 4.3: Interpolation of exotic options with Chebyshev interpolation. N “ 10 and
d “ 5 in all cases. In addition to the L8 errors the table displays the Monte-
Carlo (MC) prices, the Monte-Carlo confidence bounds and the Chebyshev
Interpolation (CI) prices for those parameters at which the L8 error is realized.

the L8 error is realized.

The results show that for N “ 30 the accuracy is for all selected options at a level of
10´3. We see that the Chebyshev interpolation error is dominated by the Monte-Carlo
confidence bounds to a degree which renders it negligible in a comparison between the
two. For basket and barrier options the L8 error already reaches satisfying levels of
order 10´3 at N “ 10 already. Again, the Chebyshev approximation falls within the
confidence bounds of the Monte-Carlo approximation. Thus, Chebyshev interpolation
with only 121 “ p10` 1q2 nodes suffices for mimicking the Monte Carlo pricing results.
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Model Option εL8 MC price MC conf. bound CI price
BS Basket 1.452 ¨ 10´3 5.1149 1.200 ¨ 10´2 5.1163
Heston Basket 1.047 ¨ 10´3 7.6555 1.371 ¨ 10´2 7.6545
Merton Basket 3.765 ¨ 10´3 7.2449 2.359 ¨ 10´2 7.2412
BS Lookback 3.766 ¨ 10´3 25.9007 1.032 ¨ 10´2 25.9045
Heston Lookback 1.914 ¨ 10´3 16.4972 9.754 ¨ 10´3 16.4991
Merton Lookback 3.646 ¨ 10´3 27.1018 1.623 ¨ 10´2 27.1054
BS Barrier 5.331 ¨ 10´3 5.6029 1.730 ¨ 10´2 5.6082
Heston Barrier 2.486 ¨ 10´3 3.6997 1.353 ¨ 10´2 3.6972
Merton Barrier 4.298 ¨ 10´3 6.6358 2.309 ¨ 10´2 6.6315

Table 4.4: Interpolation of exotic options with Chebyshev interpolation. N “ 30 and
d “ 5 in all cases. In addition to the L8 errors the table displays the Monte-
Carlo (MC) prices, the Monte-Carlo confidence bounds and the Chebyshev
Interpolation (CI) prices for those parameters at which the L8 error is realized.

This statement does not hold for lookback options, where the L8 error still differs no-
ticeably when comparing N “ 10 to N “ 30. As can be seen from Table 4.2 Chebyshev
interpolation with N “ 5 may yield unreliable pricing results. For lookback options in
the Heston model we even observe negative prices in individual cases. Chebyshev pricing

N εL8 FD price CI price
5 3.731 ¨ 10´3 1.9261 1.9224
10 1.636 ¨ 10´3 12.0730 12.0746
30 3.075 ¨ 10´3 6.3317 6.3286

Table 4.5: Interpolation of one-dimensional American puts with Chebyshev interpolation
in the Black&Scholes model. In addition to the L8 errors the table displays
the Finite Differences (FD) prices and the Chebyshev Interpolation (CI) prices
for those parameters at which the L8 error is realized.

of American options in the Black&Scholes model is even more accurate as illustrated in
Table 4.5. Here, already for N “ 5 the accuracy of the reference method is achieved.
We conclude that the Chebyshev interpolation is highly promising for the evaluation of
multivariate basket and path-dependent options. Yet the accuracy of the interpolation
critically depends on the accuracy of the reference method at the nodal points which
motivates further analysis that we perform in the subsequent subsection.
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Interaction of Approximation Errors at Nodal Points and Interpolation Errors

The Chebyshev method is most promising for use cases, where computationally intensive
pricing methods are required. For applying here a Chebyshev interpolation, the issue of
distorted prices at the nodes and their consequences rises naturally. The observed noisy
prices at the nodal points are

Pricep
pk1,...,kDq

ε “ Pricep
pk1,...,kDq

` εp
pk1,...,kDq ,

where εppk1,...,kDq is the approximation error introduced by the underlying numerical tech-
nique at the Chebyshev nodes. Due to linearity, the resulting interpolation is of the
form

IN pPrice
p¨q
ε qppq “ IN pPrice

p¨qqppq ` IN pε
p¨qqp¨q (4.65)

with the error function

εppq “
ND
ÿ

jD“0

. . .
N1
ÿ

j1“0

cεj1,...,jDTj1,...,jDppq, (4.66)

with the coefficients cεj for j “ pj1, . . . , jDq P J given by

cεj “
´

D
ź

i“1

21t0ăjiăNiu

Ni

¯

N1
ÿ

k1“0

2

. . .
ND
ÿ

kD“0

2

εp
pk1,...,kDq

D
ź

i“1

cos

ˆ

jiπ
ki
Ni

˙

. (4.67)

If εppk1,...,kDq
ď ε for all Chebyshev nodes ppk1,...,kDq, we obtain

|εppq| ď 2Dε̄
D
ź

i“1

pNi ` 1q, (4.68)

since the Chebyshev polynomials are bounded by 1. This yields the following remark.

Remark 4.4.1. Let P Q p ÞÑ Pricep be given as in Theorem 4.2.10 and assume that
εp
pk1,...,kDq

ď ε for all Chebyshev nodes ppk1,...,kDq. Then

max
pPP

ˇ

ˇPricep ´ IN pPrice
p¨q
ε qppq

ˇ

ˇ

ď mintap%,N,Dq, bp%,N,Dqu ` 2Dε̄
D
ź

i“1

pNi ` 1q.
(4.69)

The following example shall illustrate the practical consequences of Remark 4.4.1. In
the setting of (Gaß et al., 2016, Corollary 3) we set rS0{K,S0{Ks “ r0.8, 1.2s, rT , T s “
r0.5, 2s. This results in ζ1 “ 2.5

1.5 “
5
3 and ζ2 “ 2

0.4 “ 5. Thus, for %1 “ 2.9 P p1, 3q and
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%2 “ 9.8 P p1, 5`
?

24q, Remark 4.4.1 yields with N1 “ N2 “ 6,

max
pPP

ˇ

ˇPricep ´ IN pPrice
p¨qqppq

ˇ

ˇ ď 0.0072` 196 ¨ ε̄.

In this example, the accuracy of the reference method has to reach a level of 10´5 to
guarantee an overall error of order 10´3. This demonstrates a trade-off between increasing
N1 and N2 compared to the accuracy of the reference method. The error bound above
is rather conservative. Our experiments from the previous section suggest that this
bound highly overestimates the errors empirically observed. However, the presented
error bound from Remark 4.4.1 can guarantee a desired accuracy by determining an
adequate number of Chebyshev nodes and the corresponding accuracy of the reference
method used at the Chebyshev nodes. For practical implementations, we suggest the
following procedure. For a prescribed accuracy, without considering any distortion at
the nodal points, the Ni, i “ 1, . . . , D, can be determined from the first term in (4.69)
by choosing Ni, i “ 1, . . . , D, as small as possible such that the prescribed accuracy
is attained. Accordingly, the accuracy that the reference method needs to achieve is
bounded by the second term. A very accurate reference method in combination with
small Ni, i “ 1, . . . , D, promise best results. With this rule of thumb in mind the
experiments of Section 4.4.3 below have been conducted.

4.4.3 Study of the Gain in Efficiency

In the previous section, we investigated the accuracy of the Chebyshev polynomial inter-
polation method using Monte-Carlo as reference pricing methods. Finally, we investigate
the gain in efficiency achieved by the method in comparison to Monte-Carlo pricing.
We compute the results on a PC with Intel Xeon CPU with 3.10 GHz with 20 MB
SmartCache. All codes are written in Matlab R2014a.

Comparison to Monte-Carlo pricing

In this section, we choose a multivariate lookback option in the Heston model, based on
5 underlyings, as an example. For the efficiency study, we first vary one parameter, then
we vary two.
Variation of one model parameter
For the multivariate lookback option in the Heston model, the following parameters are
fixed with j “ 1, . . . , 5

Sj0 “ 100, r “ 0.005, K “ 100, T “ 1,

κj “ 2, θj “ 0.22, ρj “ ´0.5, vj,0 “ 0.22.
(4.70)
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As the free parameter in the Chebyshev interpolation, we pick the volatility of the volatil-
ity coefficient σ “ σj , j “ 1, . . . , 5,

σ P rσmin, σmaxs, σmin “ 0.1, σmax “ 0.5. (4.71)

The benchmark method is standard Monte-Carlo pricing, again with 106 sample paths,
antithetic variates as variance reduction technique, and 400 time steps per year. We refer
to this setting as the benchmark setting.

Following the discussion from Section 4.4.2, when we evaluate the prices at the nodal
points, we guarantee a small ε̄ in the Monte-Carlo method by enriching the Monte-
Carlo setting to 5 ¨ 106 sample paths, antithetic variates, and 400 time steps per year. In
Table 4.6, we present the accuracy results for the Chebyshev interpolation withNHeston

Cheby “

6 based on the enriched Monte-Carlo setting. To this end, we compare the absolute
differences of the Chebyshev prices and the enriched Monte-Carlo prices on the test grid
P Ď rp, ps,

P “
!´

σk
¯

, k P t0, . . . ,Mu
)

,

σk “ σmin `
k

M
pσmax ´ σminq , k P t0, . . . ,Mu.

(4.72)

The highest observed error on the test grid with M “ 20 is at a level of 10´2. On
the same test grid with M “ 20, the benchmark Monte-Carlo setting has a worst-
case confidence bound of 1.644 ¨ 10´2, and by comparing the benchmark Monte-Carlo
prices to the enriched Monte-Carlo prices on this test grid, the maximal absolute error
is 7.361 ¨ 10´3. Therefore, we conclude that the Monte-Carlo benchmark setting and the
presented Chebyshev interpolation method have a roughly comparable accuracy. On the
basis of this accuracy study, we now turn to the comparison of run-times.

We compare the run-times of the Chebyshev interpolation with NHeston
Cheby “ 6, where

the offline phase is based on the enriched Monte-Carlo setting, to the run-times of the
Monte-Carlo benchmark setting described above.

Table 4.7 provides the results in each case. The results for M “ 1 were empirically
measured, all others were extrapolated from that, since the same amount of computation
time would have had to be invested for each parameter set. The table indicates that
from M “ 50 onwards interpolation by Chebyshev is faster. In Figure 4.6, for each
M “ 1, . . . , 100, we additionally present the run-times of the Chebyshev interpolation
method, including the offline phase, compared to the Monte-Carlo method. Here, we
observe that forM “ 35 both lines intersect and forM ą 35 the Chebyshev interpolation
method is faster. The intersection of the two lines does not occur at M “ NHeston

Cheby ` 1.
This reflects the fact that a Monte-Carlo method with more sample paths was used in
the offline phase for the Chebyshev interpolation.
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Varying εL8 MC price MC conf. bound CI price
σ 9.970¨10´3 18.6607 4.592 ¨ 10´3 18.6707

Table 4.6: Interpolation of multivariate lookback options with Chebyshev interpolation
for N “ 6 based on an enriched Monte-Carlo setting with 5 ¨ 106 sample
paths, antithetic variates, and 400 time steps per year. In addition to the L8

error on the test grid, we also report the Monte-Carlo (MC) price, the Monte-
Carlo confidence bound, and the Chebyshev Interpolation (CI) price for the
parameters at which the L8 error is realized. We observe that the accuracy
of the Chebyshev interpolation for N “ 6 is roughly in the same range as the
accuracy of the benchmark Monte-Carlo setting (worst-case confidence bound
of 1.644 ¨ 10´2 and worst-case error of 7.361 ¨ 10´3).
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Figure 4.6: Effiency study for a multidimensional lookback option in the Heston model
with 5 underlyings varying one model parameter σ. Comparison of run-times
of Monte-Carlo pricing with Chebyshev pricing including the offline phase.
Both methods have been set up to deliver comparable accuracies. We observe
that both curves intersect at roughly M “ 35.
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M 1 10 50 100

TCheby
online (s) 2.7¨10´5 2.7¨10´4 1.4¨10´3 2.7¨10´3

TCheby
offline+online (s) 1.2¨104 1.2¨104 1.2¨104 1.2¨104

TMonte-Carlo (s) 3.4¨102 3.4¨103 1.7¨104 3.4¨104

TCheby
offline+online

TMonte-Carlo 3473.4% 347.3% 69.5% 34.73%

Table 4.7: Efficiency study for a multivariate lookback option in the Heston model based
on 5 underlyings. Here, we vary one model parameter and compare the Cheby-
shev results to Monte-Carlo. Both methods have been set up to deliver compa-
rable accuracies. As the number of computed prices increases, the Chebyshev
algorithm increasingly profits from the initial investment of the offline phase.

Variation of two model parameters
We choose ρj “ ρ, j “ 1, . . . , 5, and vary

ρ P rρmin, ρmaxs, ρmin “ ´1, ρmax “ 1,

σ P rσmin, σmaxs, σmin “ 0.1, σmax “ 0.5,
(4.73)

fixing all other parameters to the values of setting (4.70). In order to guarantee a roughly
comparable accuracy between the Chebyshev interpolation method and the benchmark
Monte-Carlo pricing, we use the following test grid P Ď rσmin, σmaxs ˆ rρmin, ρmaxs,

P “
!´

σk1 , ρk2

¯

, k1, k2 P t0, . . . ,Mu
)

,

σk1 “ σmin `
k1

M
pσmax ´ σminq , k1 P t0, . . . ,Mu,

ρk2 “ ρmin `
k2

M
pρmax ´ ρminq , k2 P t0, . . . ,Mu.

In Table 4.8, we present the accuracy results for the Chebyshev interpolation with
NHeston

Cheby “ 6 based on the enriched Monte-Carlo setting by setting M “ 20. Com-
paring the benchmark Monte-Carlo setting and the enriched Monte-Carlo setting on this
test grid withM “ 20, we observe that the maximal absolute error is 2.791 ¨10´2 and the
confidence bounds of the benchmark Monte-Carlo setting do not exceed 6.783 ¨ 10´2.

To compare the run-times, we show the run-times that are required to compute the prices
for M2 parameter tuples for different values of M . Again, the run-times are measured
for M “ 1 and extrapolated for other values of M . Table 4.9 presents the results.
In Figure 4.7, for each M “ 1, . . . , 100, the run-times of the Chebyshev interpolation
method, including the offline phase, are presented and compared to the Monte-Carlo
method. We observe that forM “ 15 both lines intersect and forM ą 15 the Chebyshev
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Varying εL8 MC price MC conf. bound CI price
σ, ρ 5.260 ¨ 10´2 5.239 1.428 ¨ 10´2 5.292

Table 4.8: Interpolation of multivariate lookback options with Chebyshev interpolation
for N “ 6 based on an enriched Monte-Carlo setting with 5 ¨ 106 sample
paths, antithetic variates, and 400 time steps per year. In addition to the
L8 error on the test grid, we also report the Monte-Carlo (MC) price, the
Monte-Carlo confidence bound, and the Chebyshev Interpolation (CI) price
for the parameters at which the L8 error is realized. We observe that the
accuracy of the Chebyshev interpolation N “ 6 is roughly in the same range
as the accuracy of the benchmark Monte-Carlo setting (worst-case confidence
bound of 6.783 ¨ 10´2 and worst-case error of 2.791 ¨ 10´2).

Heston
M 1 10 50 100

TCheby
online (s) 7.1¨10´4 7.1¨10´2 1.8 7.1

TCheby
offline+online (s) 8.2¨104 8.2¨104 8.2¨104 8.2¨104

TMonte-Carlo (s) 3.4¨102 3.4¨104 8.4¨105 3.4¨106

TCheby
offline+online

TMonte-Carlo 24313.9% 243.1% 9.7% 2.4%

Table 4.9: Efficiency study for a multivariate lookback option in the Heston model based
on 5 underlyings. Here, we vary two model parameters and compare the
Chebyshev results to Monte-Carlo. Both methods have been set up to de-
liver comparable accuracies. As the number of computed prices increases, the
Chebyshev algorithm increasingly profits from the initial investment of the
offline phase.

method outperforms its benchmark. Contrary to the case where only one parameter is
varied, the intersection of both lines occurs at a significantly lower value of M due to the
fact that for each M pricing must be performed for M2 parameter tupels.

Additionally, Table 4.9 highlights that, in the case of a total number of 502 parameter
tuples, the Chebyshev method exhibits a significant decrease in (total) pricing run-times.
For the maximal number of 1002 parameter tuples that we investigated, pricing in either
model resulted in more than 97% of run-time savings in our implementation. While
computating 1002 Heston prices using the Monte-Carlo method requires up to 39 days,
the Chebyshev method computes the very same prices in 23 hours only. Note that only
7 seconds of this time span are consumed by actual pricing during the online phase.
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Figure 4.7: Effiency study for a multivariate lookback option in the Heston model based
on 5 underlyings, varying the two model parameters σ and ρ. Comparison of
run-times for Monte-Carlo pricing and Chebyshev pricing including the offline
phase. Both methods have been set up to deliver comparable accuracies. We
observe that the Monte-Carlo and the Chebyshev curves intersect at roughly
M “ 15.

4.4.4 Relation to Advanced Monte-Carlo Techniques

Up to this point, we have compared the Chebyshev interpolation method with a standard
Monte-Carlo technique. Since the invention of Monte-Carlo methods in the 1940s, see
Metropolis (1987), Monte-Carlo techniques have been further developed. In particular,
quasi Monte-Carlo and multilevel Monte-Carlo methods have proved to be significantly
more efficient in a variety of examples in mathematical finance, L’Ecuyer (2009) and
Giles (2015). Thus, by employing these techniques in the offline phase, the Chebyshev
interpolation method can be enhanced. In terms of efficiency, we expect Figure 4.7
to change only by rescaling the time axis: The run-time for the computation of the
Monte-Carlo prices on the test grid is reduced proportionally. Obviously, the offline
phase of the Chebyshev interpolation scales in the same way. As a first improvement
of our implementation of the offline phase, in which, for each nodal point we produce a
new independent set of samples, one can reuse a once drawn sample set to compute the
prices at all nodal points. Furthermore, the run-time of the offline phase can be reduced
significantly by parallelisation.
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Relation to parametric multilevel Monte-Carlo

There is an interesting relation between the Chebyshev interpolation approach that we
proposed in this section and the parametric multilevel Monte-Carlo method suggested by
S. Heinrich in Heinrich (1998) and Heinrich and Sindambiwe (1999). To be more precise,
as concisely explained in Section 2.1 in Heinrich (2001), the starting point of Heinrich
(1998) is the interpolation of the function

p1 ÞÑ Epfp
1
pXqq (4.74)

and the computation of ErfpkpXqs at the nodes pk with Monte-Carlo. Note that in this
setting, the random variable X is not parametric. Next, he introduces the multilevel
Monte-Carlo method. This is a hierarchical procedure based on nested grids. In each
step, the estimator of the coarser grid serves as a control variate. The grids then are
chosen optimally to balance cost and accuracy. Heinrich and Sindambiwe (1999) shows
that the resulting algorithm is optimal for a certain class of problems. This class of
problems is characterized by the regularity of the function pp1, xq ÞÑ fp

1
pxq, namely that

it belongs to a Sobolev space. The order r of the partial derivatives in pp1, xq is the
determining factor for the efficiency. In particular, the weak partial derivatives in both
the parameters p1 P RD and in x P Rd need to exist in order to apply the approach.

In contrast, our error analysis is based on the regularity of the mapping

pp1, p2q ÞÑ Epfp
1
pXqp

2
q. (4.75)

The resulting problem class is significantly larger than the setting of Heinrich (1998)
and Heinrich and Sindambiwe (1999). This is essential for applications in finance, as the
examples of a European call and digital option prove: The payoff function of a European
call has a kink. The call option prices as a function of the parameters, however, are in
many cases even analytic. This is also the case for digital options, whose payoffs are not
even weakly differentiable, see Gaß et al. (2016).

We relate the error analysis presented in Section 4.4.2 with the results of Heinrich and
Sindambiwe (1999). For given cost, Heinrich and Sindambiwe (1999) presents the ex-
pected error in the L2´norm. We, on the other hand, work with the expectation of the
stronger L8´norm. This norm is more suitable for quantifying mispricing. Since the
Chebyshev interpolation is tailored to minimize the maximum error, this comes without
additional cost. In the following lemma, we present the expected error in the L8´norm.
We assume that the error of a Monte-Carlo simulation with cost M is unbiased and
normally distributed with standard deviation σM .

Lemma 4.4.2. Let P Q p ÞÑ Pricep be given as in Theorem 4.3.2 and let the errors
at all nodal points be independently and identically normally distributed with distribution
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N p0, σM q. Then,

E

ˆ

max
pPP

ˇ

ˇPricep ´ IN pPrice
p¨q
ε qppq

ˇ

ˇ

˙

ď 2
D
2
`1 ¨ V ¨

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

` 2D
D
ź

i“1

pNi ` 1qσM

c

π

2
. (4.76)

Proof. As in Section 4.4.2, Theorem 4.3.2 yields

E

ˆ

max
pPP

ˇ

ˇPricep ´ IN pPrice
p¨q
ε qppq

ˇ

ˇ

˙

ď E

¨

˝2
D
2
`1 ¨ V ¨

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

` 2D
N1
ÿ

k1“0

. . .
ND
ÿ

kd“0

|εp
pk1,...,kDq

|

˛

‚

“ 2
D
2
`1 ¨ V ¨

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

` 2D
N1
ÿ

k1“0

. . .
ND
ÿ

kd“0

E
´

|εp
pk1,...,kDq

|

¯

.

The assertion follows from Ep|εp
pk1,...,kDq

|q “ σM
a

π
2 .

In Heinrich (2001), it is shown that there exist constants c1 and c2 such that for each
integer M the cost of the parametric Monte-Carlo method is bounded by c1M and the
error is bounded by c2M

´α, where α depends on the regularity of the function f and
α P p0, 1

2q. The index α depends on the dimension of the parameter space and the Sobolev
order of the function space to which f belongs.

To present an error analysis in the same spirit, we observe that, in terms of costs , if
c̄1 denotes the cost of one Monte-Carlo simulation, it follows directly that the cost of
deriving the interpolation IN pPrice

p¨q
ε q is bounded by c̄1M. We therefore define the upper

bound of the offline cost of the Chebyshev method by c̄1M “ c̄1
śD
i“1pNi ` 1qM , where

Ni is the number of nodal points in dimension i and M is the number of sample paths at
each nodal point. In order to estimate the error, according by the central limit theorem
it is reasonable to assume σM “ σ{

?
M for large M and σM from Lemma 4.4.2.

Theorem 4.4.3. Let the assumptions of Lemma 4.4.2 hold, further let σM “ σ{
?
M

for σM . For each β P p0, 1{2q there exist constants c̄1, c̄2 ą 0 such that for each integer
M ą 1 there is a choice of M,N such that the offline cost of the Chebyshev method is
bounded by c̄1M and

E

ˆ

max
pPP

ˇ

ˇPricep ´ IN pPrice
p¨q
ε qppq

ˇ

ˇ

˙

ď c̄2M´β.
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Proof. To balance cost and efficiency, we choose the number of sample paths in (4.76) to
be M and the number of nodal points of the Chebyshev interpolation in an appropriate
way. Combining (4.76) and Corollary 4.43 results in

E

ˆ

max
pPP

ˇ

ˇPricep ´ IN pPrice
p¨q
ε qppq

ˇ

ˇ

˙

ď C1%
´N ` C2

D
ź

i“1

pNi ` 1q
1
?
M
,

where % “ min
1ďiďD

%i, N “ min
1ďiďD

Ni, and C2 “ 2Dσ
a

π
2 .

Let β P p0, 1
2q. We show that there exists c̄2 such that C1%

´N ` C2
śD
i“1pNi ` 1q 1?

M
ď

c̄2M´β . Therefore, we select the number of nodal points in each direction depending on
M . For simplicity, we choose the same number of nodal points in each dimension and set
pNi ` 1q as a function of M , i.e. Ni ` 1 “ NpMq. Furthermore, we set NpMq :“M

α´β
Dβ

for some α ą β, which yields M´α “M´β . Moreover, we set C̃1 “ C1%. Next, we want

to find c̄2 ą 0 such that C̃1%
´NpMq ď c̄2

2 M
´α and C2

NpMqD
?
M

ď c̄2
2 M

´α, which implies
the statement of the theorem. Both inequalities are equivalent to

NpMq ď
D

d

c̄2
M

1
2
´α

2C2
, and NpMq ě log%

˜

2C̃1M
α

c̄2

¸

.

The first inequality becomes

M
α´β
β
`α´ 1

2 ď
c̄2

2C2
,

which holds if 1{2 ą α ą β ą α
3
2
´α

and c̄2 satisfies c̄2
2C2

ě 1. We therefore set α :“

p1 ` εqβ with ε :“ minp1{p2βq ´ 1, 3{p2p1 ` βqq ´ 1q{2. The second inequality becomes
M

α´β
Dβ ě log%p

2C̃1Mα

c̄2
q, which can be satisfied by an appropriate choice of c̄2.

Remark 4.4.4. (i) The error of the multilevel Monte-Carlo estimate of (Heinrich,
2001, Theorem 1) decays with

?
M, if the function f is sufficiently regular. This

is the only case in which the asymptotic order of convergence in (Heinrich, 2001,
Theorem 1) is slightly better than the result of Theorem 4.4.3, which gives an order
β arbitrarily close to 1{2, even for the stronger L8´norm.

(ii) In contrast to (Heinrich, 2001, Theorem 1), the payoff function pp1, xq ÞÑ fp
1
pxq

is not required to be weakly differentiable to a specific order. Moreover, Theorem
4.4.3 allows a parametrized random variable Xp2 .

(iii) In Theorem 4.4.3, the error of the resulting Chebyshev interpolation is put in rela-
tion to the cost of the offline phase. This is in the spirit of Heinrich (2001), and,
together with (i) and (ii) of this remark, shows that our approach is competitive.
From an application point of view, however, the cost of the online phase is crucial.
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This applies especially to cases where a real-time evaluation in the online phase is
required and the offline phase can be executed in idle times.

(iv) The online cost is proportional to the number of nodal points. If the highest priority
is given to the efficiency of the online phase, one can proceed as follows to achieve
a pre-specified accuracy ε: First, choose the number of nodal points such that the
first summand of the error bound in (4.76) is smaller than ε{2. Then, choose
the number of samples M of the selected Monte-Carlo technique such that also the
second summand of the error bound in (4.76) is smaller than ε{2. See for instance
the example after Remark 4.4.1.

Referring to part (iv) of Remark 4.4.4, with increasing dimension of the parameter space
the second summand in (4.76) grows exponentially. The following lemma shows that by
considering the expected weighted L2-error for each parameter p individually instead of
the expected L8-norm, the bound reduces considerably. As weight function we use wppq
as in (4.52) and we first investigate the case P “ r´1, 1sD.

Lemma 4.4.5. Let r´1, 1sD Q p ÞÑ Pricep be given as in Theorem 4.3.2 and let the errors
at all nodal points be independently and identically normally distributed with distribution
N p0, σM q. Then,

˜

E

˜

ż

r´1,1sD

`

Pricep ´ IN pPrice
p¨q
ε qppq

˘2
wppqdp

¸¸
1
2

ď 2
D
2
`1 ¨ V ¨

˜

D
ÿ
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%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

`

˜

p2πqD
D
ź

i“1

pNi ` 1q

¸

1
2

σM . (4.77)

Proof. First, we apply the Minkowski inequality to split the estimate as follows

˜

E

˜

ż

r´1,1sD

`

Pricep ´ IN pPrice
p¨q
ε qppq

˘2
wppqdp

¸¸
1
2

“

˜

E

˜

ż

r´1,1sD

`

Pricep ´ IN pPrice
p¨qqppq ` IN pε

p¨qqp¨q
˘2
wppqdp

¸¸
1
2

ď

˜

E

˜

ż

r´1,1sD

`

Pricep ´ IN pPrice
p¨qqppq

˘2
wppqdp

¸¸
1
2

(4.78)

`

˜

E

˜

ż

r´1,1sD

`

IN pε
p¨qqp¨q

˘2
wppqdp

¸¸
1
2

(4.79)

The first summand (4.78) is bounded by 2
D
2
`1 ¨ V ¨

ˆ

řD
i“1 %

´2Ni
i

śD
j“1

1
1´%´2

j

˙
1
2

. To
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estimate the second summand (4.79), we make use of the orthogonalities (4.6) and (4.7)
of the Chebyshev polynomials.

˜

E

˜

ż

r´1,1sD

`
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p¨qqp¨q

˘2
wppqdp

¸¸
1
2
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˜
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ď

˜

E

˜

πD
ÿ

j

c2
j

¸¸
1
2

In (4.80), we applied the orthogonality. Note that we introduce the lower equal relation
due to the fact that we just estimated the weighted integral over the product of two
Chebyshev polynomials by π and not distinguish cases, in which it actually is π

2 .
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The last step has been possible due to the fact that the errors at the nodal points are
independent and identically distributed. Knowing that ε is normally distributed with
normal distribution N p0, σM q, we define a new random variable,

Y :“
N1
ÿ

k1“0

2

. . .
ND
ÿ

kD“0

2

εp
pk1,...,kDq

D
ź

i“1

cos

ˆ

jiπ
ki
Ni

˙

As a sum of normally distributed random variables Y is normally distributed as well. In
our error estimation, we want to find a bound for (4.79) and we apply that Y is normally
distributed with a variance that is lower than the variance of aN p0,

řN1
k1“0

2

. . .
řND
kD“0

2

σM q “

N p0,
śD
i“1NiσM q normal distribution. Let Ỹ „ N p0,

śD
i“1NiσM q. This leads to the
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following estimate,

˜

E

˜

πD
ÿ

j

c2
j

¸¸
1
2

ď

˜

πD
ÿ

j

´

D
ź

i“1

21t0ăjiăNiu

Ni

¯2
E
´
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Combining the estimates for (4.78) and (4.79) yields the assertion.

The complexity considerations from Theorem 4.4.3 can be derived analogously.

Finally, let us mention that the multilevel Monte-Carlo method of Heinrich and Sin-
dambiwe (1999) is described for an arbitrary nodal interpolation and illustrated by a
piecewise linear interpolation. The efficiency analysis in (Heinrich, 2001, Theorem 1)
and Theorem 4.4.3 focuses only on the complexity of the offline phase and ignores the
complexity of the online phase. In this view, the number of nodal points of the interpola-
tion is less important. Whereas this can be appropriate for a one-dimensional parameter
space, a simple example makes clear how crucial it can become for multivariate parameter
spaces to require as few nodal points as possible to achieve a pre-specified accuracy. For
instance, when interpolating piecewise linearly on an equidistant grid in the multilevel
Monte-Carlo method of Heinrich (2001) with L levels, 2L nodal points in each direction
are applied. For a D-dimensional parameter space, this results in 2LD nodal points. For
L “ 10 and D “ 2, this results in more than 1 million nodal points. In this case, the
online cost is in the range of the cost of a Monte-Carlo simulation, which makes the inter-
polation redundant. Applying Chebyshev polynomial interpolation, a small number of
nodal points such as 7, as shown in Section 4.4.3, suffices for the Chebyshev interpolation
method to obtain an appropriate accuracy. In this case, the total number of nodes is
49 for the tensorized Chebyshev interpolation in two dimensions. Thus, the online cost
outperforms Monte-Carlo significantly.

This highlights the fact that the choice of the interpolation method is crucial. One
promising idea is to combine the Chebyshev interpolation with multilevel Monte-Carlo.
To do so, a hierarchically structured interpolation is essential. This can be achieved by
setting the degree of the Chebyshev interpolations to 2l´1N , where l “ 1, . . . , L denotes
the level.
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4.5 Conclusion and Outlook

We have applied the Chebyshev method to parametric option pricing. Within the scope
of European options, we defined Conditions 4.3.1 that guarantee (sub-)exponential error
convergence. Additionally, also the numerical experiments for American, barrier and
lookback options display promising results. A theoretical error analysis for all nonlinear
pricing problems is beyond the scope of the thesis, while we are convinced that further
investigations in this direction are valuable. Regarding the pricing of American options
as optimal stopping problems, we introduce in the next chapter the dynamic Chebyshev
interpolation method. The theoretical and experimental results of our case studies show
that the method can perform considerably well when few parameters are varied. As a
consequence, we recommend the interpolation method for this case and also when solely
the strike of a plain vanilla option is varied and fast Fourier methods are available.
For calibration purposes for example, strikes are not given in a discrete logarithmic
scale, which makes an additional interpolation necessary in order to apply FFT. Here,
Chebyshev polynomials offer an attractive alternative. In particular, the maturity can
be used as supplementary free variable. Moreover, for models with a low number of
parameters, another path could be beneficial: Interpolating the objective function of
the parameters directly. Then the optimization would boil down to a minimization of
a tensorized polynomial, which could be exploited in further research. As may be seen
from Armenti et al. (2015), where the Chebyshev interpolation is applied, this advantage
can also be exploited for other optimization procedures in finance for example in risk
allocation.

For higher dimensions, the curse of dimensionality occurs by using the tensorized mul-
tivariate Chebyshev interpolation. Hence, for multivariate polynomial interpolation, the
introduction of sparsity techniques promise higher efficiency, as for instance by compres-
sion techniques for tensors as reviewed by Kolda and Bader (2009). The high potential
of low-rank tensor methods is illustrated in a numerical example for evaluating spread
options in the bivariate Black&Scholes model, which is available online, see Glau et al.
(2017). Moreover, Trefethen (2016) presents error analysis for multivariate polynomial
approximation.

Additionally, connecting with the idea in Figure 1.1, we refer to Gaß et al. (2016),
who replace the Chebyshev interpolation with empirical interpolation for Fourier pricing
methods and avoid the curse of dimensionality in the parameters assuming that an only
one-dimensional underlying is given.
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5 Dynamic Programming Framework
with Chebyshev Interpolation

The art of doing mathematics is
finding that special case that contains
all the germs of generality.

David Hilbert

This chapter is based on Glau et al. (2017a) and Glau et al. (2017b), and presents the
parts to which I provided a significant contribution.

Previously, we have seen that the Chebyshev interpolation works rather nicely for para-
metric option pricing. Focusing on American option pricing, from the theoretical perspec-
tive, statements about convergence and error decay are missing in this approach so far.
Additionally, by applying the Chebyshev interpolation in the parameter space, we have
to consider the curse of dimensionaltiy. In this chapter, we present an idea of applying
Chebyshev interpolation to dynamic programming problems. The backbone of this idea
is the reduction of dynamic programming problems to the derivation of the conditional
expectations of Chebyshev polynomials. The special case is in this case, the Chebyshev
polynomials which allow us a strict connection to the previous error analysis. As we
will see, this approach is rather general and provides a very broad framework for solving
dynamic programming problems. Furthermore, it can be extended to other polynomial
interpolation techniques, too. Additionally, the empirical interpolation approach in the
parameter space can be combined with solving a dynamic programming problem with
Chebyshev interpolation and, thus, avoid the curse of dimensionality in the parameter
space.

Now, we will introduce the Bellman-Wald equation as a specific form of dynamic pro-
gramming, illustrate how the Chebyshev interpolation can be combined with it and then
apply it to price American options. In the following, we follow the illustrations in Peskir
and Shiryaev (2006). Originating in Wald (1947), sequential analysis has been introduced
as a method with the characteristic feature that, at the beginning of the experiment, the
number of observations is not pre-specified. Here, at each stage of the experiment, the
decision to terminate depends on the results of the observation previously made. In
Bellman (1957), the Wald-Bellman equation backward induction is applied as a dynamic
programming principle. As introduced before, American options give the option-holder
the right the exercise the option at any time up to maturity T . In this context, the
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question arises at which time it is optimal to exercise the option. This lies in the field of
optimal stopping. We assume that the process is Markovian and first, we let the time be
discrete. We work with the setting as in Peskir and Shiryaev (2006), a time-homogeneous
Markov chain X “ pXnqně0 on a filtered probability space pΩ,F , pFnqně0,Pxq taking
values in a measurable space pX ,BpX qq, where BpX q is the Borel σ´algebra on X Ă Rd.
It is assumed that the chain X starts at x under Px for x P X and that the mapping
xÑ PxpF q is measurable for each F P F .

Given a measurable function g : X Ñ R fulfilling (with gpXN q “ 0 if N “ 8q,

Ex

„

sup
0ďnďN

|gpXnq|



ă 8 for all x P X , (5.1)

the following optimal stopping problem is investigated,

V N pxq “ sup
0ďτďN

ExrGpXτ qs, (5.2)

where x P X and the supremum is taken over all stopping times τ of X with respect
to pFnqně0. In our setting, the time horizon is finite. We focus on pricing American
options with maturity T ă 8. We set Gn “ GpXnq and thus, we can use the method
of backward induction which leads to a recursively-defined sequence of random variables
pSNn q0ďnďN ,

SNn “ GN for n “ N,

SNn “ V N´n for n “ N ´ 1, . . . , 0.

For 0 ď n ď N we consider the following stopping time,

τNn “ inftn ď k ď N : SNk “ Gku.

As shown in (Peskir and Shiryaev, 2006, Proof of Theorem 1.7), the identity SNn “

V N´npXnq holds and we can introduce a second stopping time

τD “ inft0 ď n ď N : Xn P Dnu,

where we set for 0 ď n ď N ,

Dn “ tx P X : V N´npxq “ Gpxqu.

This setting allows us to state the following result from Peskir and Shiryaev (2006).

Proposition 5.0.1. (Peskir and Shiryaev, 2006, Theorem 1.7). Assume condition (5.1)
holds and consider the optimal stopping problem (5.2). Then the value function V N pxq
satisfies the Wald-Bellman equations

V npxq “ maxtGpxq, ExrV
n´1pXn´1q|FN´nsu for all x P E,
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for n “ 1, . . . , N where V 0 “ G. Moreover,

(i) The stopping time τD is optimal in (5.2).

(ii) If τ˚ is an optimal stopping time in (5.2), then τD ď τ˚ PX ´ a.s. for every x in
X .

(iii) The sequence pV N´npXnqq0ďnďN is the smallest supermartingale which dominates
pGpXnqq0ďnďN under Px for x P X given and fixed.

(iv) The stopped sequence pV N´n^τDpXn^τDqq0ďnďN is a martingale under Px for every
x P X .

This illustrating introduction is for the time-homogeneous case. In (Peskir and Shiryaev,
2006, Chapter 1.1) also the time-inhomogeneous case is presented. Although our nu-
merical examples in Section 5.6 later on are for the time-homgeneous case, we formulate
our Dynamic Programming Principle for both cases. We apply a discrete time stepping
t “ t1 ă . . . ă tnT “ T . Note that nT refers to the number of time steps we apply be-
tween t and T . For notational convenience, we indicate the value function at each time
step with subscript tu to directly refer to the time step tu. Additionally, we allow for an
arbitrary function f , not necessarily the maximum function at each time step to provide
a more general framework. The theoretic convergence results later on will incorporate
the Lipschitz constant of f , namely Lf .

Definition 5.0.2. We consider the following Dynamic Programming Principle (DPP)
with Vt as solution,

VT pxq “ gpT, xq (5.3)
Vtupxq “ f

`

gptu, xq, ErVtu`1pXtu`1q|Xtu “ xs
˘

, (5.4)

where t “ t1 ă . . . ă tnT “ T denote the time steps.

Definition 5.0.2 allows us to investigate general dynamic programming principles, in
which Vtpxq represents the value function depending on x. This can either be the un-
derlying stock price in pricing, e.g. American options, or the wealth of an investor. In
the following, we present how Chebyshev interpolation can be applied in this setting to
simplify the derivation of the conditional expectations.
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5.1 Derivation of Conditional Expectations

In this section, we present the combination of solving a DPP and using Chebyshev poly-
nomial interpolation. Numerically, time consuming at each time step tu, t “ t1 ă . . . ă
tnT “ T is the derivation of the conditional expectation ErVtu`1pXtu`1q|Xtu “ xs. The
key idea is to reduce the derivation of the conditional expectations to derive conditional
expectations of Chebyshev polynomials. At the initial time T “ tnT , we apply tensorized
Chebyshev interpolation to the function gpT, xq, i.e. for x P X , VT pxq “ gpT, xq «
ř

j cjTjpxq. Here, j is a multi-index reflecting the dimensionality of the underlying space
X and Tj is the tensorized Chebyshev polynomial. A detailed notation is given in Section
4.1.2. Note that at the initial time, the value function VT pxq is equal to the function
gpT, xq and a conditional expectation has not to be derived. From the first time step
backwards in time, however, the conditional expectation has to be derived and, here,
the Chebyshev interpolation is applied. At the first time step tnT´1, the derivation
of ErgpXtnT

q|XtnT´1 “ xs is replaced by deriving Er
ř

j cjTjpτ
´1
X pXtnT

qq|XtnT´1 “ xs.
In general, Chebyshev polynomials are defined for the domain r´1, 1s. Therefore, the
transformations τ´1

X as in (4.37) have to be applied.

The linearity of the expectations allows us to further simplify the conditional expectation
of a sum to a sum of conditional expectations,

ř

j cjErTjpτ
´1
X pXtnT

qq|XtnT´1 “ xs. Up
to this point, the value function at tnT´1 is approximated by

VtnT´1pxq « f

˜

gptnT´1, xq,
ÿ

j

cjErTjpτ
´1
X pXtnT

qq|XtnT´1 “ xs

¸

.

Moreover, we again apply a Chebyshev interpolation for the value function at time step
VtnT´1 . Therefore, VtnT´1 only has to be evaluated at the specific Chebyshev nodes.
Hence, denoting with xk “ pxk1 , . . . , xkDq the Chebyshev nodes, only for all nodal points
the value function at tnT´1 has to be evaluated,

VtnT´1px
kq « f

˜

gptnT´1, τX px
kqq,

ÿ

j

cjErTjpτ
´1
X pXtnT

qq|XtnT´1 “ τX px
kqs

¸

.

We apply this procedure iteratively at each time step. Therefore, only the conditional
expectations of the Chebyshev polynomials, ErTjpτ´1

X pXtu`1qq|Xtu “ τX px
kqs, have to

be evaluated at each time step tu for each Chebyshev node xk. This complete iterative
procedure is described in detail in Algorithm 3. Moreover, if an equidistant time stepping
is applied, the conditional expectations only have to be derived once, see Algorithm
4. Naturally, the question arises how the conditional expectations of the Chebyshev
polynomials can be derived. Here, we present four different ways.
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Probability density function

For the derivation of ErTjpXtu`1q|Xtu “ τX px
kqs, let the density function of X for the

time tu`1 ´ tu be given as pdfpx, µtu`1´tuq. Then, the conditional expectation can be
derived by solving an integral,

ErTjpτ
´1
X pXtu`1qq|Xtu “ τX px

kqs

“

ż x1´xk1

x1´xk1

. . .

ż xD´xkD

xD´xkD

D
ź

i“1

Tjipτ
´1
rxi,xis

pxiqq ¨ pdfpx, µtu`1´tuqdxD . . . dx1.

This approach is rather intuitive and easy to implement. However, this approach is
strictly connected to the availability of the probability density function and, as regards
run-times, for all nodal points xk a D´dimensional integral has to be solved.

Fourier Transformation

An alternative approach, especially for cases in which the probability density function is
not given explicitly, e.g. for the Merton model, is the Fourier transform. We illustrate
this approach in the one dimensional case and assume first that the transformation τ´1

rx1,x1s

is not required, i.e. X “ r´1, 1s.

We have,

Γtu,tu`1pTjqpx
kq “ErTjpXtu`1q1tXtu`1Pr´1,1qu|Xtu “ xks

“

ż 1´xk

´1´xk
Tjpy ` x

kqPXtu,tu`1 pdyq,

where PXtu,tu`1 is the distribution of the underlying process X over the time horizon
tu`1 ´ tu. Instead of directly computing these integrals, we decide to use Parseval’s
identity, see (2.16), and use Fourier transforms. We want to express the Fourier transform
of Tjpy ` xkq with the linear shift of xk as the Fourier transform of Tjpyq. Let the
transformation Hxk : y ÞÑ y ` xk denote this linear transformation. Then,

{Tj ˝Hxkpξq “

ż xmax´xk

xmin´xk
eiξyHxkTjpyqdy “

ż xmax´xk

xmin´xk
eiξyTjpx

k ` yqdy

“

ż xmax

xmin

eiξpy´x
kqTjpyqdy “ e´iξx

k
pTjpξq. (5.5)
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Then, we have,

Γti,ti`1pTjqpx
kq “ErTjpXti`1q1tXti`1Prxmin,xmaxqu|Xti “ xks

“
1

2π

ż 8

8

e´iξx
k
pTjpξq

{

PXti,ti`1 pξqdξ.

{

PXti,ti`1 pξq denotes the characteristic function of the underlying process X. The Fourier
transform of the Chebyshev polynomials are presented in Dominguez et al. (2011) and
the authors also provide a Matlab implementation.
So far, we have presented the way of applying Fourier transforms to derive the conditional
expectations of the Chebyshev polynomials only for the special case X “ r´1, 1s. In the
following, let us assume an arbitrary interval X “ rx, xs. In this case, the affine linear
transformation τrx,xs as in (4.37) comes into play. In (5.5), this transformation has to be
considered, too. We get,

{Tj ˝Hxkpξq “

ż x´xk

x´xk
eiξxTjpτ

´1
rx,xspx` x

kqqdx.

First, we set y “ x` xk. This yields

ż x´xk

x´xk
eiξxTjpτ

´1
rx,xspx` x

kqqdx “

ż x

x
eiξpy´x

kqTjpτ
´1
rx,xspyqqdy

“ e´iξx
k

ż x

x
eiξyTjpτ

´1
rx,xspyqqdy.

Now, by setting z “ τ´1
rx,xspyq and using dy

dz “
x´x

2 , we get,

e´iξx
k

ż x

x
eiξyTjpτ

´1
rx,xspyqqdy “ e´iξx

k

ż 1

´1
eiξτrx,xspzqTjpzq

x´ x

2
dz.

Plugging-in the definition of τrx,xs results in,

e´iξx
k

ż 1

´1
eiξτrx,xspzqTjpzq

x´ x

2
dz “ e´iξx

k

ż 1

´1
eiξpx´

x´x
2
qeiξ

x´x
2
zTjpzq

x´ x

2
dz

“ e´iξx
k
eiξpx´

x´x
2
qx´ x

2

ż 1

´1
eiξ

x´x
2
zTjpzqdz.

Denoting with ξ̄ “ x´x
2 ξ, we get,

{HxkTjpξq “ e´iξx
k
eiξpx´

x´x
2
qx´ x

2
pTjpξ̄q.
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Truncated moments

In this approach, we use that each one dimensional Chebyshev polynomial can be repre-
sented as a sum of monomials, i.e.

Tjpxq “

j
ÿ

l“0

alx
l, j P N.

The coefficients al, l “ 0, . . . , j, see (4.2), can easily be derived using the chebfun function
poly(), Driscoll et al. (2014). Then, if the one dimensional Chebyshev polynomials are
given as Tjipxiq “

řji
l“0 ai,lx

l
i, i “ 1, . . . , D, we can express

D
ź

i“1

Tjipτ
´1
rxi,xis

pxiqq “
D
ź

i“1

˜

ji
ÿ

l“0

ai,lpτ
´1
rxi,xis

pxiqq
l

¸

“
ÿ

q

aqx
q, (5.6)

where q “ pq1, . . . , qDq, qi “ 1, . . . , ji, aq “
śD
i“1 ai,qi and xq “

śD
i“1pτ

´1
rxi,xis

xiq
qi .

Therefore, in order to determine

E

«

D
ź

i“1

Tjipτ
´1
rxi,xis

pXi,tu`1qq|Xtu “ τX px
kq

ff

, (5.7)

we derive the expectations

E
”

τ´1
rx1,x1s

pX1,tu`1q
j1 ¨ . . . ¨ τ´1

rxD,xDs
pXD,tu`1q

jD |Xtu “ τX px
kq

ı

(5.8)

for the products of monomials and use (5.6) to assemble the expectation (5.7). So, the
problem of the conditional expectations has been reduced to deriving moments. However,
the Chebyshev polynomials do only have support on the compact domain X . Therefore,
we actually need to derive truncated moments, i.e. an indicator function has to be
added,

E

«

τ´1
rx1,x1s

pX1,tu`1q
j1 ¨ . . . ¨ τ´1

rxD,xDs
pXD,tu`1q

jD ¨

D
ź

i“1

1X1,tu`1Prxi,xis
|Xtu “ τX px

kq

ff

.

For the normal distribution, Kan and Robotti (2016) present results for the multivari-
ate truncated moments and also provide a Matlab implementation. We will use this
result later in the application section to determine option prices in the one dimensional
Black&Scholes setting, see Section 5.6.
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Monte-Carlo simulation

Lastly, especially in cases for which neither a probability density function, nor a char-
acteristic function of the underlying process is given, the Monte-Carlo simulation as
described in 2.2.3 is possible. The CEV model is one example of a model which has
neither a probability density, nor a characteristic function in closed-form.

5.2 Dynamic Chebyshev in the Case of Analyticity

In the previous section, we presented several ways to derive the conditional expectations.
Now, we focus on the algorithmic structure to solve the DPP (5.3)-(5.4). The key idea
is that, in either stochastic control problems or numerical option pricing schemes, an
iterative time stepping scheme is necessary and, in this thesis, we make use of the ap-
proximation of the specific target function as a Chebyshev polynomial. This significantly
simplifies the iterative procedure:

• The derivation of conditional expectations is reduced to the derivation of condi-
tional expectations of Chebyshev polynomials.

• The conditional expectations have to be determined for a relatively small number
of nodal points of the interpolation compared to a (fine) space grid.

• In each time step, only the Chebyshev coefficients have to be saved. At t “ 0
the pricing of the derivative is reduced to an evaluation of a polynomial. This is
especially beneficial when the price has to be determined for a variety of underlying
values S.

• As illustrated in Section 4.2.1, the Chebyshev interpolation also interpolates the
partial derivatives. Therefore, by just deriving the derivatives of the Chebyshev
polynomial, the Greeks Delta and Gamma are computed with hardly any additional
computational effort and especially no computational costs in the iterative scheme.

• In the so-called preparation/precomputation step, the conditional expectations of
the Chebyshev polynomials are taken. Thus, in the time stepping scheme several
different option types and payoffs can easily be evaluated quickly, because the
conditional expectations are not tailored to a specific payoff.

Later on, we will introduce a splitting of the domain X at each time step as, clearly,
then the conditional expectations cannot be completely derived in the precomputation
step.
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5.2.1 Description of Algorithms

In the following, let the underlying process X be a stochastic process with state space Rd
and let two functions be given as f : RˆRÑ R and g : r0, T sˆRd Ñ R. The function g
will determine the initial condition at time T and enable the start of the iterative scheme.
The function f determines the value of the value function at each time step tu, Vtupxq,
see (5.3)-(5.4).

Algorithm 3 General algorithm
1: procedure Preparation Step
2: Fix an interval X “ rx1, x1s ˆ . . .ˆ rxD, xDs for the interpolation
3: Fix N1, . . . , ND as the number of nodal points of the Chebyshev interpolation in

each dimension
4: Determine nodal points xk “ pxk1 , . . . , xkDq with xki “ cos

´

π ki
Ni

¯

for ki “

0, . . . , Ni and i “ 1, . . . , D, set yk “ τX px
kq

5: Denote with Tj the Chebyshev polynomial for all j P J with j “ pj1, . . . , jDq, jl “
0, . . . , Nl

6: Set up time stepping 0 “ t1, . . . , tnT “ T
7: For all j P J , for all tu, u “ 0, . . . , nT ´ 1, for all k “ pk1, . . . , kDq, kl “ 0, . . . , Nl

8: Compute Γtu,tu`1pTjqpy
kq :“ ErTjpτ

´1
X pXtu`1qq|Xtu “ yks

9: procedure Initial time T
10: PT py

kq “ gpT, ykq, k “ pk1, . . . , kDq, kl “ 0, . . . , Nl, derive
11: cjpT q “

´

śD
i“1

2
1t0ăjiăNiu

Ni

¯

řN1
k1“0

2

. . .
řND
kD“0

2

PT py
kq
śD
i“1 cos

´

jiπ
ki
Ni

¯

12: Obtain Chebyshev interpolation of PT pxq “
ř

jPJ cjpT qTjpxq

13: procedure Iterative time stepping from tu`1 Ñ tu, u “ nT ´ 1, . . . , 1
14: Given Chebyshev interpolation of Ptu`1pxq “

ř

jPJ cjptu`1qTjpτ
´1
X pxqq

15: Derivation of Ptupykq, k “ pk1, . . . , kDq, kl “ 0, . . . , Nl at the nodal points
16: for k “ pk1, . . . , kDq, kl “ 0, . . . , Nl

17: Ptupy
kq “ fpgptu, y

kq, ErPtu`1pXtu`1q|Xtu “ yksq
18: Ptupy

kq “ fpgptu, y
kq,

ř

jPJ cjptu`1qErTjpτ
´1
X pXtu`1qq|Xtu “ yksq

19: Ptupy
kq “ fpgptu, y

kq,
ř

jPJ cjptu`1qΓtu,tu`1pTjqpy
kqq

20: end
21: Derive
22: cjptuq “

´

śD
i“1

2
1t0ăjiăNiu

Ni

¯

řN1
k1“0

2

. . .
řND
kD“0

2

Ptupy
kq
śD
i“1 cos

´

jiπ
ki
Ni

¯

23: Obtain Chebyshev interpolation of Ptupxq “
ř

jPJ cjptuqTjpτ
´1
X pxqq

24: procedure Deriving the solution at t “ 0
25: P0pxq “

ř

jPJ cjp0qTjpτ
´1
X pxqq

Algorithm 3 can be simplified, if X is a Markov process with stationary increments and
an equidistant time stepping scheme is used. In the preparation step, the derivation of
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the conditional expectations has to be done once and not for each time step individually
as Algorithm 4 shows.

Algorithm 4 Simplified algorithm for equidistant time stepping and a Markov process
with stationary increments
1: procedure Preparation Step
2: Replace in Algorithm 3 Lines 6-8 with:
3: Set up equidistant time stepping 0 “ t1, . . . , tnT “ T
4: For all j “ pj1, . . . , jDq, jl “ 0, . . . , Nl, for all k “ pk1, . . . , kDq, kl “ 0, . . . , Nl

5: Compute Γ∆tpTjqpy
kq :“ ErTjpτ

´1
X pXtnT

qq|XtnT´1 “ yks

6: procedure Iterative time stepping from tu`1 Ñ tu, u “ nT ´ 1, . . . , 1
7: Replace in Algorithm 3 Line 19 with:
8: Ptupy

kq “ fpgptu, y
kq,

ř

jPJ cjptu`1qΓ∆tpTjqpy
kqq

5.2.2 Error Analysis

In this section, we analyze the error of the pricing scheme as described in Algorithm 3.
First, we assume that the function only has support on X . As illustrated in Algorithm
3, Ptupxq denotes the dynamic Chebyshev interpolation of Vtupxq.

Remark 5.2.1. The error analysis in the following is connected to the error of the
tensorized Chebyshev interpolation. In Theorem 4.2.10, we present our improved error
bound. During the iterative time stepping procedure, this error bound will be applied at
every time step. Therefore, we introduce a new notation

αp%,N,D, V q :“ mintap%,N,D, V q, bp%,N,D, V qu (5.9)

where, denoting by SD the symmetric group on D elements,

ap%,N,D, V q “ min
σPSD

D
ÿ

i“1

4V
%´Niσpiq

%i ´ 1
`

D
ÿ

k“2

4V
%´Nkσpkq

%σpkq ´ 1
¨ 2k´1 pk ´ 1q ` 2k´1 ´ 1

śk´1
j“1p1´

1
%σpjq

q
,

bp%,N,D, V q “ 2
D
2
`1 ¨ V ¨

˜

D
ÿ

i“1

%´2Ni
i

D
ź

j“1

1

1´ %´2
j

¸

1
2

.

Note that in addition to the statement in Theorem 4.2.10, ap%,N,D, V q and bp%,N,D, V q
are here also functions of the bound V of the interpolated function on the corresponding
Bernstein ellipse.
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Additionally, for notational ease we introduce

CD,N :“ 2D
D
ź

i“1

pNi ` 1q. (5.10)

Theorem 5.2.2. Let a Dynamic Programming Principle be given as in (5.3) and (5.4).
Given a time stepping t “ t1 ă . . . ă tnT “ T , let X Q x ÞÑ Vtupxq be a real valued
function that has an analytic extension to a generalized Bernstein ellipse BpX , %tuq with
parameter vector %tu P p1,8qD and supxPBpX ,%tu q |Vtupxq| ď Mtu for u “ 1, . . . , nT .
Furthermore, let f : Rˆ RÑ R be continuous.
Then, by applying Algorithm 3, the resulting solution Ptupxq converges to the solution
Vtupxq for mini“1,...,DNi Ñ8. Furthermore, the approximation error at time tu is given
by

max
xPX

|Vtupxq ´ Ptupxq| ď αp%tu , N,D,Mtuq ` CD,NFtu “: εtu , (5.11)

where CD,N as in (5.10), αp%tu , N,D,Mtuq as in (5.9) and

Ftu :“ max
jPJ

|Vtupxjq ´ Ptupxjq|. (5.12)

Proof. By constructing the error bound, we follow Algorithm 3 and construct the error
bound recursively. At the initial time step, tnT “ T , PtnT is the Chebyshev interpolation
of gpT, xq “ VT pxq. From Theorem 4.2.10, we see that the interpolation error is bounded
by

max
xPX

|VT pxq ´ PtnT pxq| ď αp%tnT , N,D,MtnT
q.

Now we consider the step from tnT Ñ tnT´1. At this step, we interpolate the function
VtnT´1 with PtnT´1 . Unlike as in the initial time step, here we have to consider distor-
tions at the nodal points of the Chebyshev interpolation. We use the interpolation from
the previous time step PtnT instead of the true value function VtnT´1 to evaluate the
conditional expectations,

ErVtnT pXtnT
q|XtnT´1 “ τX px

kqs « ErPtnT pXtnT
q|XtnT´1 “ τX px

kqs

“
ÿ

jPJ

cj,tnT ErTjpτ
´1
X pXtnT´1qq|XtnT´1 “ τX px

kqs.

Therefore, a second error source is added. We define the error at the nodal points as

max
k
|VtnT´1pτX px

kqq ´ PtnT´1pτX px
kqq| “: FtnT´1 .

Note that FtnT´1 depends on the error at the previous time step and also on the function
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f from the DPP (5.3)-(5.4). Now, following Remark 4.4.1 yields,

max
xPX

|VtnT´1pxq ´ PtnT´1pxq| ď αp%tnT´1 , N,D,MtnT´1q ` CD,NFtnT´1 ,

with CD,N as in (5.10).

We denote the overall error bound at tnT´1 with

εtnT´1 “ αp%tnT´1 , N,D,MtnT´1q ` CD,NFtnT´1 .

This procedure can be applied iteratively through the time stepping of Algorithm 3. At
the time step tu`1 Ñ tu, the distortion at the nodal points between the value function and
Ptu`1 , Ftupf, εtu`1q, is derived using εtu`1 . Then, the overall error bound at tu is again
a combination of the Chebyshev interpolation error αp%tu , N,D,Mtuq and an additional
error term driven by the distortion at the nodal points, i.e.

εtu “ αp%tu , N,D,Mtuq ` CD,NFtu .

Thus, the recursive nature of the error is hidden in the distortion term Ftu . The con-
tinuity of the function f yields Ftu Ñ 0 with increasing N . Due to the convergence
of Ptu`1pxq to Vtu`1pxq, the conditional expectation ErPtu`1pXtu`1q|Xtu “ τX px

kqs con-
verges to ErVtu`1pXtu`1q|Xtu “ τX px

kqs by the dominated convergence theorem applying
the bound εtu . The continuity of f then yields

f
´

gptu, τX px
kqq, ErPtu`1pXtu`1q|Xtu “ τX px

kqs

¯

Ñ f
´

gptu, τX px
kqq, ErVtu`1pXtu`1q|Xtu “ τX px

kqs

¯

.

The error of the Chebyshev interpolation αp%tu , N,D,Mtuq decreases exponentially. Con-
cluding, with increasing N, the overall error bound εtu Ñ 0 for all u “ 1, . . . , nT .

Remark 5.2.3. Assume that in the setting of Theorem 5.2.2, the conditional expectations
ErTjpτ

´1
X pXtu`1qq|Xtu “ τX px

kqs cannot be derived exactly - due to the used evaluation
technique, e.g. Monte-Carlo methods, an additional error is made. Let this error bounded
by a constant δ. We assume that in (5.12), the recursive error reflecting this δ can be
incorporated such that

F δtu “ Ftu ` hpδq.

Here, Ftu denotes the error assuming the conditional expectations can be evaluated ex-
actly.

Corollary 5.2.4. Let the setting be as in Theorem 5.2.2. Furthermore, let f be Lips-
chitz continuous with constant Lf . The approximation Ptu from Algorithm 3 converges
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exponentially to the solution Vtu and the error is bounded by

εtu “
nT
ÿ

j“u

Cj´uD,NL
j´u
f αp%tj , N,D,Mtj q. (5.13)

Proof. The function f is Lipschitz continuous,

|fpx1, y1q ´ fpx2, y2q| ď Lf p|x1 ´ x2| ` |y1 ´ y2|q.

In this case, we can calculate an upper bound for the distortion error in (5.12).

Ftu “ max
k
|VtupτX px

kqq ´ PtupτX px
kqq|

“ max
k
|f
´

gptu, τX px
kqq, ErPtu`1pXtu`1q|Xtu “ τX px

kqs

¯

´ f
´

gptu, τX px
kqq, ErVtu`1pXtu`1q|Xtu “ τX px

kqs

¯

|

ď max
k

Lf

´
ˇ

ˇ

ˇ
gptu, τX px

kqq ´ gptu, τX px
kqq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
ErPtu`1pXtu`1q|Xtu “ τX px

kqs ´ ErVtu`1pXtu`1q|Xtu “ τX px
kqs

ˇ

ˇ

ˇ

¯

“ max
k

Lf

´ˇ

ˇ

ˇ
ErPtu`1pXtu`1q ´ Vtu`1pXtu`1q|Xtu “ τX px

kqs

ˇ

ˇ

ˇ

¯

ď max
k

Lf

´

ˇ

ˇErεtu`1 |Xtu “ τX px
kqs

ˇ

ˇ

¯

“ Lf ¨ εtu`1 .

This results in

εtu “ αp%tu , N,D,Mtuq ` CD,NLfεtu`1 .

By induction, we now show (5.13). For u “ nT we have

εnT “ αp%tnT , N,D,MtnT
q “

nT
ÿ

j“nT

Cj´nTD,N Lj´nTf αp%tj , N,D,Mtj q.

We assume that for nT , . . . , u ` 1 equation (5.13) holds. Then, we obtain for the error
εtu

εtu “ αp%tu , N,D,Mtuq ` CD,NLfεtu`1

“ αp%tu , N,D,Mtuq ` CD,NLf

nT
ÿ

j“u`1

C
j´pu`1q
D,N L

j´pu`1q
f αp%tj , N,D,Mtj q

“ αp%tu , N,D,Mtuq `

nT
ÿ

j“u`1

Cj´uD,NL
j´u
f αp%tj , N,D,Mtj q
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This can be expressed as

εtu “
nT
ÿ

j“u

Cj´uD,NL
j´u
f αp%tj , N,D,Mtj q. (5.14)

The error bound (5.9) then yields

εtu ď CN
DnT %´N , (5.15)

where N “ max
1ďiďD

Ni, N “ min
1ďiďD

Ni and % “ min
1ďjďnT

min1ďiďD %i,tj . The error bound

consists of a polynomial term increasing in N and an exponentially decaying term in N .
Overall, due to % ą 1 the exponential decaying behaviour dominates.

Remark 5.2.5. Assume that in the framework of Corollary 5.2.4 we have for the solu-
tions Vtu a constant parameter vector 1 ă % ď %tu and a constant bound M ěMtu for all
u “ 1, . . . , nT . Furthermore, let N “ Ni for i “ 1, . . . , D. In this case, the error bound
(5.14) can be written as

εtu “ αp%,N,D,Mq
nT
ÿ

j“u

`

2DpN ` 1qD
˘j´u

Lj´uf .

Although the dynamic Chebyshev framework offers a variety of applications, our first
motivation has been the pricing of American option. By determining the price of an
American option via solving the DPP, a time discretization is applied. Obviously in this
case, we would rather have a Bermudan option with exercise dates exactly matching the
applied discrete time stepping scheme. Therefore, we are theoretically interested in the
error behaviour for nT Ñ8.

Remark 5.2.6. Assume we are in the setup of Corollary 5.2.4 and Remark 5.2.5. If we
let N and nT go to infinity, we have to make sure that the error bound goes to zero. The
following conditions on the relation between nT and N ensure convergence

nT ă
logp%q

D
¨

N

logpNq
.

Remark 5.2.7. In many applications, we need f of the DPP (5.3) and (5.4) to be the
maximum function px, yq ÞÑ maxtx, yu. This function is, of course, Lipschitz continuous
with constant 1 and thus, we are in the framework of Corollary 5.2.4.

The assumption of an analytic value function is relatively strong. So far, our error
analysis is based on analytic value functions. In Section 4.2.1, we especially took an
additional look at differentiable functions. This can be applied similarly at this point
here, too, and will also be shown in Glau et al. (2017b). In the following, we present
a different approach, splitting. Often the analyticity assumption is not satisfied on the
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complete domain X due to a few points. The idea now is to split the domain accordingly
at these specific points into sub-domains in which the analyticity assumption holds.

5.3 Solutions for Kinks and Discontinuities

In this section, we pose solutions for the case when the mapping x ÞÑ Vtupxq is not
analytic a time step tu. First, we present the idea of splitting the domain and second,
the concept of applying mollifiers.

5.3.1 Splitting of the Domain

Given a time stepping t “ t1 ă . . . ă tnT “ T , in some applications X Q x ÞÑ Vtupxq
might not be analytic or differentiable on the complete domain X . For instance, the payoff
of a call or a put option, in the one dimensional case, at maturity has a kink at the strike
K and is therefore not analytic in the domain rx, xs with x ă K ă x. In this section, we
present the idea of splitting the hyperrectangular domain X “ rx1, x1sˆ . . .ˆrxD, xDs in
several sub-domains, such that, on each sub-domain, the function itself is again analytic
or differentiable and we can apply the theory presented above. Therefore, we split at
each time step tu, each one dimensional interval rxi, xis, i “ 1, . . . , D in qi,tu intervals
such that rxi, xis “

Ťqi,tu
j“1 rx

j
i,tu
, xji,tus with xji,tu “ xj`1

i,tu
, j “ 1, . . . , qi ´ 1 and thus,

Şqi,tu
j“1 px

j
i,tu
, xji,tuq “ H. In this way, we can express X at each time step tu in the

following way,

X “
q1,tu
ď

j“1

rxj1,tu , x
j
1,tu
s ˆ . . .ˆ

qD,tu
ď

j“1

rxjD,tu , x
j
D,tu

s. (5.16)

Hence, instead of one multivariate Chebyshev interpolation, we apply
śD
i“1 qi,tu multi-

variate Chebyshev interpolations at tu on smaller intervals on which the function is of
higher regularity and in this sense behaves better. The striking advantage behind this
idea is that, in general, less interpolation nodes are required on all of the small intervals
together than for one interpolation over the whole interval. For notational ease in the
following theorem, we express the space X at tu from (5.16) with Qtu :“

śD
i“1 qi,tu as,

X “
Qtu
ď

l“1

Xl,tu , with Xl,tu “ rx
h1,tu plq
1,tu

, x
h1,tu plq
1,tu

s ˆ . . .ˆ rx
hD,tu plq
D,tu

, x
hD,tu plq
D,tu

s, (5.17)

where hi,tuplq P t1, . . . , qi,tuu is such that hi,tup1q “ 1 for i “ 1, . . . , D and @l ą 1 and
@u “ 1, . . . , l ´ 1 Dd P t1, . . . , Du : hd,tuplq ‰ hdpuq. First, we introduce Theorem 5.3.1
for the interpolation at one fixed time point, before the extension to the time stepping
scheme is applied in Theorem 5.3.4.
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Theorem 5.3.1. Let X Q X ÞÑ gpxq be a real valued function and with Q :“
śD
i“1 qi let

X “
Q
ď

l“1

Xl, with Xl “ rx
h1plq
1 , x

h1plq
1 s ˆ . . .ˆ rx

hDplq
D , x

hDplq
D s.

We will denote this partition of X as X̃ g “ tX1, . . . ,XQu. For l “ 1, . . . , Q, let g
ˇ

ˇ

Xl
have an analytic extension to a generalized Bernstein ellipse BpXl, %lq with parameter
vector %l P p1,8qD and supxPBpXl,%lq |gpxq| ď Ml. Assume that the distortion error
for all Chebyshev nodes xpk1,l,...,kD,lq P Xl is bounded by εl. We define the interpolation
resulting by the Chebyshev polynomial interpolation on each interval Xi, i “ 1, . . . , Q, in
the following way,

I
N
˚pgp¨qqpxq “

ÿ

l“1,...,Q

INlpg
ˇ

ˇ

Xl
p¨qqpxq1Xlpxq.

Note that we indicate the interpolation of the function g on the complete domain X with
N
˚ to depict the splitting concept. Then

max
xPX

ˇ

ˇgpxq ´ I
N
˚pgp¨qqpxq

ˇ

ˇ ď

max
1ďlďQ

αp%l, Nl, D,Mlq ` 2Dε̄l

D
ź

i“1

pNi ` 1q.

Proof. Let x P X . If x P Xl, then the function gl :“ g
ˇ

ˇ

Xl
satisfies the assumptions from

Remark 4.4.1 with Ml and the generalized Bernstein ellipse BpXl, %lq. This yields

max
xPXl

ˇ

ˇglpxq ´ INlpglp¨qqpxq
ˇ

ˇ

ď αp%l, Nl, D,Mlq ` 2Dε̄l

D
ź

i“1

pNi,l ` 1q.

From maxxPX
ˇ

ˇgpxq´ I
N
˚pgp¨qqpxq

ˇ

ˇ ď max1ďlďQ maxxPXl
ˇ

ˇglpxq´ INlpglp¨qqpxq
ˇ

ˇ the asser-
tion follows directly.

In the following, we use the result from Theorem 5.3.1 to determine the error applying
Algorithm 3 considering the splitting of X in several sub-domains, i.e. applying on each
sub-domain a Chebyshev interpolation. Note that, in this case, we allow the splitting
of the domain X at each time step tu into sub-domains as in (5.17) and that, between
different time steps, the number of sub-domains may change. Additionally, we allow
the use of different numbers of nodal points in the Chebyshev interpolations Nl,tu “

pN1,l,tu , . . . , ND,l,tuq at each time step tu and on each sub-interval. We introduce the
additional notation Vl,tu :“ Vtu

ˇ

ˇ

Xl,tu
. First, we illustrate the dynamic Chebyshev scheme
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with splitting in Algorithm 5 for the one dimensional case and two intervals. Then, the
error convergence is investigated in Theorem 5.3.4.

Remark 5.3.2. For the example of pricing American put options, at maturity T , the
kink is obviously given at the money. Thus, we can split the interval into rx, xs “ rx,KsY
rK,xs and, for the first time step, we preserve analyticity. In all the other time steps,
we take the maximum of the payoff function and the conditional expectation as value
of the value function. We know that, for instance, the put payoff is analytic on the
domain rx,Ks and that the conditional expectation is analytic in general, see Gaß et al.
(2016). Thus, by taking the maximum at each time step to determine the value of the
value function, this maximum has a splitting point x̃ in the domain rx,Ks. In this
application, only one splitting point exists at each time tu because the function gptu, xq
and the conditional expectation are both monotonically decreasing functions in x and for
x “ x the function gptu, xq is greater than the conditional expectation and for x “ x vice
versa. For the second time step, we therefore split the interval into rx, xs “ rx, x̃sYrx̃, xs.
More iteratively, at each time tu we determine a splitting point x̃tu and split the domain
rx, xs into rx, x̃tus Y rx̃tu , xs. Of course, on both sub-domains Chebyshev interpolations
are then applied. In our implementation, we use the Matlab function fzero to find at time
step tu the root of y0 ÞÑ gptu, y0q ´ ErPtu`1pXtu`1q|Xtu “ y0s in order to determine the
splitting point. Even more tailored to the example of a put payoff is the application of
a Newton’s method as in Fang and Oosterlee (2009). A more general algorithm to find
splitting points is presented in Pachon (2016). He implemented a splitting algorithm into
the chebfun package that finds the splitting points of arbitrary functions and is not limited
to one splitting point in a domain, which is already known in advance.

Remark 5.3.3. Although we can preserve analyticity via splitting, one has to keep in
mind that regarding convergence, analyticity is only beneficial when the corresponding
radius % of the corresponding Bernstein ellipse is noticeably larger than 1. In numerical
test, see Gaß et al. (2016), we observed that the choice of the parameter domain is
important. For very short-dated option, the radius of the Bernstein ellipse converged
almost to 1 and thus, the error decay only occurred at a very slow rate.
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Algorithm 5 Algorithm 3 with splitting at each time step for an American put option
1: procedure Pre-Computation Step
2: Fix an interval rx, xs for the space of the underlying
3: Fix N1 and N2 as the number of nodal points of the Chebyshev interpolations on

the domains rx, x̃s and rx̃, xs
4: Determine nodal points xk1 “ cos

´

π k
N1

¯

for k “ 0, . . . , N1 and xk2 “ cos
´

π k
N2

¯

for k “ 0, . . . , N2

5: Set up time stepping 0 “ t1, . . . , tnT “ T

6: procedure Initial time T
7: Set x̃T “ K, split interval rx, xs into rx, x̃T s and rx̃T , xs
8: Set yk1 “ τrx,x̃T spx

k
1q and yk2 “ τrx̃T ,xspx

k
2q

9: Apply Chebyshev interpolation on both intervals
10: PT py

k
1 q “ gpT, yk1 q, k “ 1 : N1, derive

11: c1,j1pT q “
´

2
1t0ăj1ăN1u

N1

¯

řN1
k“0

2

PT py
k
1 q cos

´

j1π
k
N1

¯

12: PT py
k
2 q “ gpT, yk2 q, k “ 1 : N2, derive

13: c2,j2pT q “
´

2
1t0ăj2ăN2u

N2

¯

řN2
k“0

2

PT py
k
2 q cos

´

j2π
k
N2

¯

14: Obtain Chebyshev interpolation
15: PT pxq “

řN1
j1“0 c1,j1pT qTj1pτ

´1
rx,x̃T s

pxqq ¨ 1rx,x̃T spxq +
řN2
j2“0 c2,j2pT qTj2pτ

´1
rx̃T ,xs

pxqq ¨

1rx̃T ,xspxq

16: procedure Iterative time stepping from tu`1 Ñ tu, u “ nT ´ 1, . . . , 1
17: Define functions in dependence on y0 to determine the splitting point
18: ErPtu`1pXtu`1q|Xtu “ y0s “

19:
řN1
j1“0 c1,j1ptu`1qErTj1pτ

´1
rx,x̃tu`1 s

pXtu`1qq ¨ 1rx,x̃tu`1 s
pXtu`1q|Xtu “ y0s

20: `
řN2
j2“0 c2,j2ptu`1qErTj2pτ

´1
rx̃tu`1 ,xs

pXtu`1qq ¨ 1rx̃tu`1 ,xs
pXtu`1q|Xtu “ y0s

21: Determine splitting point
22: Find x̃tu as root of y0 ÞÑ gpti, y0q ´ ErPtu`1pXtu`1q|Xtu “ y0s

23: Split interval into rx, x̃tus and rx̃tu , xs
24: Set yk1 “ τrx,x̃tu spx

k
1q and yk2 “ τrx̃tu ,xspx

k
2q

25: Apply Chebyshev interpolation on both intervals
26: Ptupy

k
1 q “ gptu, y

k
1 q, k “ 1 : N1, derive

27: c1,j1ptuq “
´

2
1t0ăj1ăN1u

N1

¯

řN1
k“0

2

Ptupy
k
1 q cos

´

j1π
k
N1

¯

28: Ptupy
k
2 q “ ErPtu`1pXtu`1q|Xtu “ yk2 s, k “ 1 : N2, derive

29: c2,j2ptuq “
´

2
1t0ăj2ăN2u

N2

¯

řN2
k“0

2

Ptupy
k
2 q cos

´

j2π
k
N2

¯

30: Obtain Chebyshev interpolation
31: Ptupxq “

řN1
j1“0 c1,j1ptuqTj1pτ

´1
rx,x̃tu s

pxqq ¨ 1rx,x̃tu spxq

32: `
řN2
j2“0 c2,j2ptuqTj2pτ

´1
rx̃tu ,xs

pxqq ¨ 1rx̃tu ,xspxq

33: procedure Deriving the solution at t=0
34: P0pxq “

řN1
j1“0 c1,j1p0qTj1pτ

´1
rx,x̃t1 s

pxqq ¨ 1rx,x̃0spxq +
řN2
j2“0 c2,j2p0qTj2pτ

´1
rx̃t1 ,xs

pxqq ¨

1rx̃0,xspxq
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Theorem 5.3.4. Let a Dynamic Programming Principle be given as in (5.3) and (5.4).
Given a time stepping t “ t1 ă . . . ă tnT “ T , let at each time step tu X be given as
in (5.17) such that for each l and tu, Xl,tu Q x ÞÑ Vl,tupxq is a real valued function that
has an analytic extension to a generalized Bernstein ellipse BpXl,tu , %l,tuq with parameter
vector %l,tu P p1,8qD and supxPBpXl,%l,tu q |Vl,tupxq| ď Ml,tu for k “ 1, . . . , nT . Further,
let f : Rˆ RÑ R be Lipschitz continuous with constant Lf .
Then, by applying Algorithm 5 on the splitted intervals, the resulting solution Ptupxq
converges to the solution Vtupxq for Ni,l,tu Ñ8, i “ 1, . . . , D. Furthermore, with CD,N “
2D

śD
i“1pNi ` 1q and Qtu “

śD
i“1 qi,tu, the approximation error at time tu is given by

max
xPX

|Vtupxq ´ Ptupxq| ď εtu :“
nT
ÿ

j“u

Lj´uf max
1ďlďQtj

Cj´uD,Nl,tu
αp%tl,j , Nl,tj , D,Mtl,j q, (5.18)

and decays exponentially.

Proof. Similar to the proof of Theorem 5.2.2 at the inital time tnT “ T , we apply
Theorem 5.3.1 with ε̄l “ 0 resulting in,

max
xPX

|VT pxq ´ PtnT pxq| ď max
l“1,...,QtnT

αp%l,tnT , Nl,tnT
, D,Ml,tnT

q.

Due to the Lipschitz-continuity of f , in the setting of Corollary 5.2.4 we know that with
CD,N as in (5.10),

εtnT´1 “ max
1ďlďQtnT´1

αp%l,tnT´1 , Nl,tnT´1 , D,Ml,tnT´1q

` Lf max
1ďlďQtnT

CD,Nl,tnT
αp%l,tnT , Nl,tnT

, D,Ml,tnT
q.

With a similar induction as in the proof of Corollary 5.2.4, it follows for the error at tu,

εtk “
nT
ÿ

j“k

Lj´kf max
1ďlďQtj

Cj´kD,Nl,tj
αp%tl,j , Nl,tj , D,Mtl,j q

ď CN
DnT %´N ,

where

N “ max
1ďjďnT

max
1ďlď

śD
i“1 qi,tj

max
1ďiďD

Ni,l,tj , N “ min
1ďjďnT

min
1ďlď

śD
i“1 qi,tj

min
1ďiďD

Ni,l,tj

% “ min
1ďjďnT

min
1ďlď

śD
i“1 qi,tj

min
1ďiďD

%i,l,tj .

The error bound consists of a term increasing polynomially in N and a term that decays
exponentially inN . Overall, due to % ą 1, the exponential decaying behaviour dominates.
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In Algorithm 6, we present for an equidistant time stepping and a Markov process with
stationary increments a simplified version of the splitting applied in Algorithm 5. Here,
only at the strike of the option a splitting is applied. Thus, a pre-computation of the
conditional expectations is possible.

Algorithm 6 Fixed splitting at the strike K, simplified version of Algorithm 5 for
equidistant time stepping and a Markov process with stationary increments
1: procedure Pre-Computation Step
2: Fix an interval rx, xs for the space of the underlying, set x̃ “ logpKq
3: Fix N1 and N2 as number of nodal points of the Chebyshev interpolations on the

domains rx, x̃s and rx̃, xs
4: Determine nodal points xk1 “ cos

´

π k
N1

¯

for k “ 0, . . . , N1 and xk2 “ cos
´

π k
N2

¯

for k “ 0, . . . , N2, set yk1 “ τrx,x̃spx
k
1q and yk2 “ τrx̃,xspx

k
2q

5: Set up equidistant time stepping 0 “ t1, . . . , tnT “ T
6: For j1 “ 1, . . . , N1 and for k “ 0, . . . , N1,
7: compute Γ1

∆tpTj1qpy
k
1 q :“ ErTj1pτ

´1
rx,x̃spXtnT

qq1rx,x̃spXtnT
q|XtnT´1 “ yk1 s

8: For j2 “ 1, . . . , N2 and for k “ 0, . . . , N2,
9: compute Γ2

∆tpTj2qpy
k
2 q :“ ErTj2pτ

´1
rx̃,xspXtnT

qq1rx̃,xspXtnT
q|XtnT´1 “ yk2 s

10: procedure Initial time T
11: Apply Chebyshev interpolation on both intervals, i “ 1, 2
12: PT py

k
i q “ gpT, yki q, k “ 1 : Ni, derive

13: ci,jipT q “
´

2
1t0ăjiăNiu

Ni

¯

řNi
k“0

2

PT py
k
i q cos

´

jiπ
k
Ni

¯

14: Obtain Chebyshev interpolation
15: PT pxq “

řN1
j1“0 c1,j1pT qTj1pτ

´1
rx,x̃spxqq ¨ 1rx,x̃spxq +

řN2
j2“0 c2,j2pT qTj2pτ

´1
rx̃,xspxqq ¨

1rx̃,xspxq

16: procedure Iterative time stepping from tu`1 Ñ tu, u “ nT ´ 1, . . . , 1
17: Apply Chebyshev interpolation on both intervals, i “ 1, 2,
18: Ptupy

k
i q “ fpgptu, y

k
i q,

řNi
ji“0 ci,j1ptu`1qΓ

1
tu,tu`1

pTjiqpy
k
i qq, k “ 1 : N1, derive

19: ci,jiptuq “
´

2
1t0ăjiăNiu

Ni

¯

řNi
k“0

2

Ptupy
k
i q cos

´

jiπ
k
Ni

¯

20: Obtain Chebyshev interpolation
21: Ptupxq “

řN1
j1“0 c1,j1ptuqTj1pτ

´1
rx,x̃spxqq ¨ 1rx,x̃spxq +

řN2
j2“0 c2,j2ptuqTj2pτ

´1
rx̃,xspxqq ¨

1rx̃,xspxq

22: procedure Deriving the solution at t=0
23: P0pxq “

řN1
j1“0 c1,j1p0qTj1pτ

´1
rx,x̃spxqq ¨ 1rx,x̃spxq +

řN2
j2“0 c2,j2p0qTj2pτ

´1
rx̃,xspxqq ¨

1rx̃,xspxq
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5.3.2 Mollifier to the Function g(t,x)

In the previous section, we have presented the idea of splitting the domain in several
sub-domains, if the mapping X Q x ÞÑ Vtupxq is not analytic on the whole domain.
However, if in after each time step, a different splitting of the domain is necessary, the
key idea of pre-computing the conditional expectations once as illustrated in Algorithm 4
is not possible. Different splitting of the domain leads to different integration bounds for
the conditional expectations. Therefore, at each time step, the conditional expectations
have to be re-evaluated. This may reduce the run-time, especially if the derivation of the
conditional expectation is rather costly. In this section, we present a different approach.
Often, the necessity of splitting results from the fact that the function g is not analytic.
For the DPP (5.3) and (5.4), we illustrate this idea with the example of pricing options. In
option pricing, there is usually the kink in the hockey-stick-like payoff function. Our idea
is to slightly smooth the payoff function g. In the case of an American put option, we will
replace the payoff function pT, xq ÞÑ gpT, xq “ maxtK ´ ex, 0u with a function pT, xq ÞÑ
g̃pT, xq. This function g̃pT, xq a real valued function that has an analytic extension to
a generalized Bernstein ellipse with an appropriate parameter vector %Pp1,8qD. Then,
we apply Algorithm 4. Here, our idea is to replace the payoff function gpT, xq with the
Black&Scholes price for a European put with a maturity matching the first time step.
In the following theorem, we analyze how the error εg :“ maxxPX tgpT, xq ´ g̃pT, xqu
propagates.

Theorem 5.3.5. Let the setting be as in Theorem 5.2.2. Further, let f be Lipschitz
continuous with constant Lf . Let the function gpt, xq be approximated by a real valued
function g̃pt, xq that has an analytic extension to a generalized Bernstein ellipse with an
appropriate parameter vector %Pp1,8qD and let εg :“ maxxPX tgpT, xq ´ g̃pT, xqu. Then,
the approximation Ptu from Algorithm 3 converges to the solution Vtu, if εg Ñ 0, and the
error is bounded by

εtu “
nT
ÿ

j“u

Cj´uD,NL
j´u
f αp%tj , N,D,Mtj q `

nT
ÿ

j“u

Cj´u`1
D,N Lj´uf εg. (5.19)

Proof. As in the proof of Theorem 5.2.2, we first take a look at the error at the first time
step. Here, we have additionally the issue that we have a distortion at the nodal points
of the Chebyshev interpolation , which is bounded by εg. Thus, on the initial time step,
we observe the following error with CD,N “ 2D

śD
i“1pNi ` 1q,

max
xPX

|VT pxq ´ PtnT pxq| ď αp%tnT , N,D,MtnT
q ` CD,N ¨ εg.

The function f is Lipschitz continuous, thus we can switch at this point into the proof
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of Corollary 5.2.4. For the error at the nodal points at time tu, Ftu , it holds,

Ftu “ max
k
|VtupτX px

kqq ´ PtupτX px
kqq|

ď max
k

Lf

´ˇ

ˇ

ˇ
gptu, τX px

kqq ´ g̃ptu, τX px
kqq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
ErPtu`1pXtu`1q|Xtu “ τX px

kqs ´ ErVtu`1pXtu`1q|Xtu “ τX px
kqs

ˇ

ˇ

ˇ

¯

ď max
k

Lf

´

εg `
ˇ

ˇ

ˇ
ErPtu`1pXtu`1q ´ Vtu`1pXtu`1q|Xtu “ τX px

kqs

ˇ

ˇ

ˇ

¯

ď max
k

Lf

´

εg `
ˇ

ˇErεtu`1 |Xtu “ τX px
kqs

ˇ

ˇ

¯

“ Lf ¨ pεg ` εtu`1q.

This yields,

εtu “ αp%tu , N,D,Mtuq ` CD,NLf pεg ` εtu`1q.

A similar induction as in the proof of Corollary 5.2.4, (5.19) follows. Here, the additional
part incorporating the εg terms has to be added accordingly. For εg Ñ 0, the convergence
is as in Corollary 5.2.4.

5.4 Alternative Approximation of General Moments in the
Pre-Computation

In this section, we will apply a slightly different approach to the dynamic Chebyshev
procedure . Consider a one dimensional setting, let X “ rx, xs. Starting with the DPP
(5.3) and (5.4), we again apply at time tu`1 a Chebyshev polynomial interpolation to
the value function Vtu`1 , which then will be used at time tu to derive the conditional
expectation,

Vtupxq “ max

#

gptu, xq, E

«

N
ÿ

j“0

cjptu`1qTjpτ
´1
rx,xspXtu`1qq1Xtu`1Prx,xs

|Xtu “ x

ff+

“ max

#

gptu, xq,
N
ÿ

j“0

cjptu`1qE
”

Tjpτ
´1
rx,xspXtu`1qq1Xtu`1Prx,xs

|Xtu “ x
ı

+

.

At this point, we focus on the conditional expectation, which we will evaluate at x0 P X ,

E
”

Tjpτ
´1
rx,xspXtu`1qq1Xtu`1Prx,xs

|Xtu “ x0

ı

“

ż x´x0

x´x0

Tjpτ
´1
rx,xspx` x0qqpdfXtu`1´tu

pxqdx,

where pdfXtu`1´tu
pxq denotes the probability density function of the process X from tu

to tu`1. Here, we apply a second Chebyshev polynomial interpolation to the probability
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density function on rx´ x0, x´ x0s, i.e.

pdfXtu`1´tu
pxq «

M
ÿ

i“0

γipx0qTipτ
´1
rx´x0,x´x0s

pxqq.

Usually, the probability density function has infinite support. However, due to the limits
of the integration, we only need to approximate on the bounded domain rx´x0, x´x0s and
therefore, no additional error by truncating the domain from p´8,8q to rx´x0, x´x0s

is made.

This yields

E
”

Tjpτ
´1
rx,xspXtu`1qq1Xtu`1Prx,xs

|Xtu “ x0

ı

«

ż x´x0

x´x0

Tjpτ
´1
rx,xspx` x0qq

M
ÿ

i“0

γipx0qTipτ
´1
rx´x0,x´x0s

pxqqdx

“

ż x´x0

x´x0

Tjpτ
´1
rx,xspx` x0qq

M
ÿ

i“0

γipx0qTipτ
´1
rx,xspx` x0qqdx

“

M
ÿ

i“0

γipx0q

ż x´x0

x´x0

Tjpτ
´1
rx,xspx` x0qqTipτ

´1
rx,xspx` x0qqdx.

Now, we apply the variable transformation z “ τ´1
rx,xspx` x0q and this results in,

M
ÿ

i“0

γipx0q

ż x´x0

x´x0

Tjpτ
´1
rx,xspx` x0qqTipτ

´1
rx,xspx` x0qqdx

“

M
ÿ

i“0

γipx0q

ż 1

´1
TjpzqTipzq

x´ x

2
dz

“
x´ x

2

M
ÿ

i“0

γipx0q

ż 1

´1
TjpzqTipzqdz. (5.20)

The integral over a product of Chebyshev polynomials is given by Rivlin (1990),

Ij,i :“

ż 1

´1
TjpzqTipzqdz “

#

0 for |j ´ i| odd

´

”

1
pi`jq2´1

` 1
pi´jq2´1

ı

for |j ´ i| even.
(5.21)

Combining the results yields,

Vtupxq “ max

#

gptu, xq,
px´ xq

2

N
ÿ

j“0

cjptu`1q

M
ÿ

i“0

γipxqIj,i

+

.
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Interestingly, the conditional expectations only have to be derived at the nodal points
xk. This means that for each of the N ` 1 nodal points a one dimensional Chebyshev
interpolation is applied to pdfXtu`1´tu

pxq on rx ´ x0, x ´ x0s. Note that the quantities
řM
i“0 γipx

kqIj,i can be derived in the pre-computation step for the nodal points xk as
long as no splitting procedure is applied in the time stepping.

Let us now switch to the multivariate setting, let X “ rx1, x1sˆ . . .ˆrxD, xDs. For x P X
consider the DPP,

VT pxq “ gpT, xq (5.22)
Vtupxq “ maxtgptu, xq, ErVtu`1pXtu`1q|Xtu “ xsu, (5.23)

we again apply at time tu`1 a D-dimensional Chebyshev polynomial interpolation to
the value function Vtu`1 . Then, at tu we get for the conditional expectations with j “
pj1, . . . , jDq,

Vtupxq “ max

#

gptu, xq, E

«

ÿ

j

cjptu`1q

D
ź

i“1

Tjipτ
´1
rxi,xis

pXtu`1,iqq1Xtu`1,i
Prxi,xis

|Xtu “ x

ff+

“ max

#

gptu, xq,
ÿ

j

cjptu`1qE

«

D
ź

i“1

Tjipτ
´1
rxi,xis

pXtu`1,iqq1Xtu`1,i
Prxi,xis

|Xtu “ x

ff+

.

Similar to the one dimensional case, we focus on deriving the conditional expectation for
x0 “ px01, . . . , x0Dq P X .

E

«

D
ź

i“1

Tjipτ
´1
rxi,xis

pXtu`1,iqq1Xtu`1,i
Prxi,xis

|Xtu “ x0

ff

“

ż x1´x01

x1´x01

. . .

ż xD´x0D

xD´x0D

D
ź

i“1

Tjipτ
´1
rxi,xis

pxi ` x0iqqpdfXtu`1´tu
pxqdxD . . . dx1,

where here pdfXtu`1´tu
pxq denotes the probability density function of the multivariate

process X from tu to tu`1. As a next step, a second D´dimensional Chebyshev interpo-
lation is applied to the probability density function on rx1 ´ x01, x1 ´ x01s ˆ . . .ˆ rxD ´
x0D, xD ´ x0Ds , with q “ pq1, . . . , qDq,

pdfXtu`1´tu
pxq «

ÿ

q

γqpx0q

D
ź

i“1

Tqipτ
´1
rxi´x0i,xi´x0is

pxiqq.
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Hence, the integral can be approximated in the following way,

ż x1´x01

x1´x01

. . .

ż xD´x0D

xD´x0D

D
ź

i“1

Tjipτ
´1
rxi,xis

pxi ` x0iqqpdfXtu`1´tu
pxqdx

«

ż x1´x01

x1´x01

. . .

ż xD´x0D

xD´x0D

D
ź

i“1

Tjipτ
´1
rxi,xis

pxi ` x0iqq
ÿ

q

γqpx0q

D
ź

i“1

Tqipτ
´1
rxi´x0i,xi´x0is

pxiqqdx

“
ÿ

q

γqpx0q

ż x1´x01

x1´x01

. . .

ż xD´x0D

xD´x0D

D
ź

i“1

Tjipτ
´1
rxi,xis

pxi ` x0iqq

D
ź

i“1

Tqipτ
´1
rxi,xis

pxi ` x0iqqdx

Analogously to the one dimensional case, we apply the variable transformation to z “
pz1, . . . , zDq with zi “ τ´1

rxi,xis
pxi ` x0iq, for i “ 1, . . . , D. This yields, by reducing the

D´dimensional integral to D one dimensional, integrals of the form
ş1
´1 TjipziqTqipziqdzi

ÿ

q

γqpx0q

ż x1´x01

x1´x01

. . .

ż xD´x0D

xD´x0D

D
ź

i“1

Tjipτ
´1
rxi,xis

pxi ` x0iqq

D
ź

i“1

Tqipτ
´1
rxi,xis

pxi ` x0iqqdx

“

śD
i“1 xi ´ xi

2D

ÿ

q

γqpx0q

ż x1´x01

x1´x01

. . .

ż xD´x0D

xD´x0D

D
ź

i“1

Tjipziq
D
ź

i“1

TqipziqdzD . . . dz1

“

śD
i“1 xi ´ xi

2D

ÿ

q

γqpx0q

ż 1

´1
. . .

ż 1

´1

D´1
ź

i“1

Tjipziq
D´1
ź

i“1

Tqipziq¨

„
ż 1

´1
TjDpzDqTqDpzDqdzD



dzD´1 . . . dz1

“

śD
i“1 xi ´ xi

2D

ÿ

q

γqpx0q ¨

ż 1

´1
. . .

ż 1

´1

D´1
ź

i“1

Tjipziq
D´1
ź

i“1

Tqipziq rIjD,qD s dzD´1 . . . dz1

“

śD
i“1 xi ´ xi

2D

ÿ

q

γqpx0qIjD,qD ¨

ż 1

´1
. . .

ż 1

´1

D´2
ź

i“1

Tjipziq
D´2
ź

i“1

Tqipziq

„
ż 1

´1
TjD´1pzD´1qTqD´1pzD´1qdzD´1



dzD´2 . . . dz1

“ . . . “

śD
i“1 xi ´ xi

2D

ÿ

q

γqpx0q

D
ź

i“1

Iji,qi .

Combining the results yields, with KpX q :“
śD
i“1 xi´xi

2D
,

Vtupxq “ max

#

gptu, xq,KpX q
ÿ

j

cjptu`1q
ÿ

q

γqpxq
D
ź

i“1

Iji,qi

+

.
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Algorithm 7 Dynamic Chebyshev with alternative approximation of general moments
in the Pre-Computation
1: procedure Pre-Computation Step
2: Fix an interval X “ rx1, x1s ˆ . . .ˆ rxD, xDs for the interpolation
3: Fix N1, . . . , ND as the number of nodal points of the Chebyshev interpolation in

each dimension
4: Determine nodal points xk “ pxk1 , . . . , xkDq with xki “ cos

´

π ki
Ni

¯

for ki “

0, . . . , Ni and i “ 1, . . . , D, set yk “ τX px
kq

5: Denote with Tj the Chebyshev polynomial for all j P J with j “ pj1, . . . , jDq, jl “
0, . . . , Nl

6: Add in the pre-computation step of Algorithm 3 the Chebyshev interpolation of
the density function

7: pdfXtu`1´tu
pxq «

řM
i“0 γipx0qTipτ

´1
rx´x0,x´x0s

pxqq
8: Set up time stepping 0 “ t1, . . . , tnT “ T
9: For all j P J , for all tu, u “ 0, . . . , nT ´ 1, for all k “ pk1, . . . , kDq, kl “ 0, . . . , Nl

10: Compute Γtu,tu`1pTjqpy
kq :“ ErTjpτ

´1
X pXtu`1qq|Xtu “ yks as in (5.20), (5.21).

11: Apply the procedures Initial Time T, Iterative Time Stepping and Deriving the So-
lution as in Algorithm 3.

Theorem 5.4.1. Let a Dynamic Programming Principle be given as in (5.22) and (5.23).
Given a time stepping t “ t1 ă . . . ă tnT “ T , let X Q x ÞÑ Vtupxq be a real valued
function that has an analytic extension to a generalized Bernstein ellipse BpX , %tuq with
parameter vector %tu P p1,8qD and supxPBpX ,%tu q |Vtupxq| ď Mtu for k “ 1, . . . , nT .
Additionally, let for all nodal points xk the probability density function pdfXtu`1´tu

pxq on
X pxkq :“ rx1´ xk1 , x1´ xk1s ˆ . . .ˆ rxD ´ xkD , xD ´ xkD s have an analytic extension to
a generalized Bernstein ellipse BpX pxkq, %pdf q with parameter vector %pdf P p1,8qD and
supxPBpX pxkq,%pdf q |pdfXtu`1´tu

pxq| ďMpdf .
Then, by applying Algorithm 7, the resulting solution Ptupxq converges to the solution
Vtupxq for Ni Ñ8, i “ 1, . . . , D and the error is bounded by

εtu “
nT
ÿ

j“u

Cj´uD,Nαp%tj , N,D,Mtj q `

nT
ÿ

j“u`1

Cj´uD,N

˜

Mtjαp%pdf , Npdf , D,Mpdf q

D
ź

i“1

pxi ´ xiq

¸

.

where αp%tj , N,D,Mtj q as in (5.9), CD,N “ 2D as in (5.10).

Proof. Analogously to the proof in Theorem 5.2.2, at the initial time step tnT “ T , PtnT
is the Chebyshev interpolation of gpT, xq “ VT pxq. From Theorem 4.2.10, we obtain that
the interpolation error is bounded by

max
xPX

|VT pxq ´ PtnT pxq| ď αp%tnT , N,D,MtnT
q,
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where αp%tnT , N,D,MtnT
q as in (5.9). Now we consider the step from tnT Ñ tnT´1. At

this step, we approximate the function VtnT´1 with PtnT´1 . Here, we have to consider the
distortion at the nodal points. Unlike as in the proof in Theorem 5.2.2, the distortion
at the nodal points does not only result from the previous Chebyshev interpolation, but
additionally from the Chebyshev interpolation of the probability density function. This
proof is directly shown for fpx, yq “ maxpx, yq and thus, the function is Lipschitz with
constant Lf “ 1. This allows us to directly go into the proof of Corollary 5.2.4. At tnT´1,
we investigate the error at the nodal points. By estimating this error, the additional
Chebyshev interpolation of the probability density function has to be considered. For
notational ease in the proof, we assume that the true probability density function x ÞÑ
pdfXtu`1´tu

pxq is given as,

pdfXtu`1´tu
pxq “ pdf IXtu`1´tu

pxq ` pdf εXtu`1´tu
pxq,

where pdf IXtu`1´tu
pxq represents the interpolated probability density functions and

pdf εXtu`1´tu
pxq the error term. In the following, we indicate with Epdf˚Xtu`1´tu

rY s the

expectation of a random variable with probability density function pdf˚Xtu`1´tu
, i.e.

Epdf˚Xtu`1´tu

rY s “
ş

X y ¨ pdf
˚
Xtu`1´tu

pyqdy. For the error at the nodal points this yields,

max
k
|VtnT´1pτX px

kqq ´ PtnT´1pτX px
kqq|

ď max
k

´ˇ

ˇ

ˇ
EpdfIXtu`1´tu

rPtnT pXtnT
q|XtnT´1 “ τX px

kqs

´ EpdfXtu`1´tu
rVtnT pXtnT

q|XtnT´1 “ τX px
kqs

ˇ

ˇ

ˇ

¯

.

Now, with x “ px1, . . . , xDq, we get,

max
k

´ˇ

ˇ

ˇ
EpdfIXtu`1´tu

rPtnT pXtnT
q|XtnT´1 “ τX px

kqs

´ EpdfXtu`1´tu
rVtnT pXtnT

q|XtnT´1 “ τX px
kqs

ˇ

ˇ

ˇ

¯

“ max
k

ˇ

ˇ

ˇ

ż x1´xk1

x1´xk1

. . .

ż xD´xkD

xD´xkD

PtnT px` τX px
kqqpdf IXtu`1´tu

pxqdx

´

ż x1´xk1

x1´xk1

. . .

ż xD´xkD

xD´xkD

VtnT px` τX px
kqqpdfXtu`1´tu

pxqdx
ˇ

ˇ

ˇ
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Plugging-in the approximation of the density function yields,

“ max
k

ˇ

ˇ

ˇ

ż x1´xk1

x1´xk1

. . .

ż xD´xkD

xD´xkD

PtnT px` τX px
kqq

´

pdfXtu`1´tu
pxq ´ pdf εXtu`1´tu

pxq
¯

dx

´

ż x1´xk1

x1´xk1

. . .

ż xD´xkD

xD´xkD

VtnT px` τX px
kqqpdfXtu`1´tu

pxqdx
ˇ

ˇ

ˇ

ď max
k

ż x1´xk1

x1´xk1

. . .

ż xD´xkD

xD´xkD

|VtnT px` τX px
kqq ´ PtnT px` τX px

kqq|pdfXtu`1´tu
pxqdx

`

ż x1´xk1

x1´xk1

. . .

ż xD´xkD

xD´xkD

|PtnT px` τX px
kqq||pdf εXtu`1´tu

pxq|dx

Now, we know, as shown in the proof of Corollary 5.2.4, that if the error maxxPX |VtnT pxq´
PtnT pxq| is bounded by αp%tnT , N,D,MtnT

q, then the expected error using the real prob-
ability density function is bounded by exactly αp%tnT , N,D,MtnT

q. Additionally, we
know that |PtnT px ` xjq| ď MtnT

and that |pdf εXtu`1´tu
pxq| ď αp%pdf , Npdf , D,Mpdf q.

This yields for our estimation,

max
k

´ˇ

ˇ

ˇ
EpdfIXtu`1´tu

rPtnT pXtnT
q|XtnT´1 “ τX px

kqs´

EpdfXtu`1´tu
rVtnT pXtnT

q|XtnT´1 “ τX px
kqs

ˇ

ˇ

ˇ

¯

ď αp%tnT , N,D,MtnT
q `MtnT

αp%pdf , Npdf , D,Mpdf q

D
ź

i“1

pxi ´ xiq.

With CD,N as in (5.10) this then yields, analogously to the proof of Corollary 5.2.4, for
the error at tnT´1,

max
xPX

|VtnT´1pxq ´ PtnT´1pxq| ď εtnT´1 :“ αp%tnT´1 , N,D,MtnT´1q`

CD,N

˜

αp%tnT , N,D,MtnT
q `MtnT

αp%pdf , Npdf , D,Mpdf q

D
ź

i“1

pxi ´ xiq

¸

.

Obviously, this directly leads to the recursive scheme for the error bound at tu,

εtu “ αp%tu , N,D,Mtuq`

CD,N

˜

εtu`1 `Mtu`1αp%pdf , Npdf , D,Mpdf q

D
ź

i“1

pxi ´ xiq

¸

.

Now, applying a similar induction as in the proof of Corollary 5.2.4 directly yields,

εtu “
nT
ÿ

j“u

Cj´uD,Nαp%tj , N,D,Mtj q `

nT
ÿ

j“u`1

Cj´uD,N

˜

Mtjαp%pdf , Npdf , D,Mpdf q

D
ź

i“1

pxi ´ xiq

¸

.
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Remark 5.4.2. In Theorem 5.4.1, we directly assumed fpx, yq “ maxpx, yq. In this
case, we could work with Lipschitz constant Lf “ 1. By assuming a general function f
in the DPP (5.3), (5.4), with Lipschitz constant Lf , the error bound in Theorem 5.4.1
gets adjusted to,

εtk “
nT
ÿ

j“k

Lj´kf Cj´kD,Nαp%tj , N,D,Mtj q

`

nT
ÿ

j“k`1

Lj´kf Cj´kD,N

˜

Mtjαp%pdf , Npdf , D,Mpdf q

D
ź

i“1

pxi ´ xiq

¸

.

Remark 5.4.3. This approach is related to the idea suggested in Pachon (2016). In
Pachon (2016), European options with arbitrary payoffs are investigated. Contrary to
the plain vanilla options, which only have a kink at the strike, these arbitrary payoff
functions can have several kinks. To derive the European option price, Pachon (2016)
first splits the domain in several sub-intervals such that the arbitrary payoff function
is smooth on each sub-interval. Second, he interpolates the arbitrary payoff function
on each sub-interval with a Chebyshev interpolation. Then he resulting integrals of the
form

ş1
´1 Tjpxqfpxqdx are solved by applying Clenshaw-Curtis quadrature. Our approach

here, on the contrary, suggests a Chebyshev interpolation of the function f and then the
resulting integral is known explicitly. The error of the Clenshaw-Curtis quadrature of the
integral

ş1
´1 Tjpxqfpxqdx is basically connected to the error of approximating the integrated

function Tjpxqfpxq by Chebyshev interpolation. Thus, replacing our approach to compute
ş1
´1 Tjpxqfpxqdx by applying the Clenshaw-Curtis quadrature, we get, see Theorem 4.2.10,

max
xPr´1,1s

|Tjpxqfpxq ´ IN pTjfqpxq| ď V min
!ap%,N,Dq

V
,
bp%,N,Dq

V

)

,

where V is the surpremum of the function Tjf on the Bernstein ellipse. Let’s assume that
f is bounded by V̄ on the Bernstein ellipse. From Bernstein’s inequality, see Trefethen
(2013), it follows that the Chebyshev polynomial Tjpxq is bounded by %j. Hence, we
estimate V ď %j V̄ and, thus, the convergence rate in %´N is reduced to %´pN´jq. With
the scheme introduced in Algorithm 7, we interpolate only the function f and, hence, we
get for the error,

max
xPr´1,1s

|Tjpxq| ¨ |fpxq ´ IN pfqpxq| ď V̄ min
!ap%,N,Dq

V̄
,
bp%,N,Dq

V̄

)

.

In this case, the error converges with a rate of %´N .

A comparison of both approaches is connected to the cost of evaluating the function f .
If this function is given explicitly in closed-form, then the Clenshaw-Curtis quadrature
of Pachon (2016) is faster than our three step approach of deriving the coefficients of
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the interpolation, assembling the values of (5.21) and combining these derived values to
the value of the integral. However, if an evaluation of the function f is costly, e.g. the
function has to be evaluated via numerically-demanding techniqes, then our approach,
requiring less evaluations of the function f , becomes beneficial.

5.5 Combination of Empirical Interpolation with Dynamic
Chebyshev

In the previous sections, we applied Chebyshev interpolation to the dynamic program-
ming principle to price an American option. So far, we interpolate in the space of the
underlying, i.e. in X . This allows us to derive the American option price for several
underlying values, but for a fixed parameter setting. In this case, other pricing tech-
niques tend to be faster. Now, we are going to make use of the parameter dependency to
construct the option price at the initial time t0 in dependence on the option parameters.
The key idea is to price the according option not only for different underlying values,
but also for different parameter settings. Naturally, deriving at any time the conditional
expectation ErVtu`1pXtu`1q|Xtu “ x0s, with x0 P X , is only the derivation of an integral,
i.e.

ErVtu`1pXtu`1q|Xtu “ x0s “

ż

X
Vtu`1pxq ¨ 1px´x0qPX pxq ¨ pdfXtu`1´tu

pxqdx.

The conditional probability density function pdfXtu`1´tu
, capturing x0, depends on sev-

eral parameters here. Although we apply Chebyshev interpolation to the value function,
in this section we do not actually apply a Chebyshev interpolation to the probability
density function, too. As the concluding remarks of Chapter 4 have indicated, for a
potentially higher-dimensional parameter space our tensorized Chebyshev polynomial
interpolation is rather slow and requires the evaluation of the density function on a ten-
sorized grid. In this case, we follow a different approach. We use empirical interpolation,
see Barrault et al. (2004), for the parameters in the density functions. For a one dimen-
sional underlying, this method, including error analysis, has been presented in Gaß and
Glau (2015) for parametric integration and in Gaß et al. (2016) for option pricing. On
this basis, we approximate the on the parameter µ P Rd depending probability density
function pdfXtu`1´tu

in the following way,

pdfµXtu`1´tu
pxq «

M
ÿ

κ“1

Θκpµ, x
˚
κqqκpxq, (5.24)

where the points x˚κ for κ “ 1, . . . ,M are the so-called magic points and are determined
by a greedy search as shown in Barrault et al. (2004) and depicted in Algorithm 1. The
key idea behind this approach is to split the function pdfµXtu`1´tu

pxq, which depends
on the parameters µ as well as on the space variable x, into a parameter-dependent
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part Θκpµ, x
˚
κq and a space-dependent part qκpxq. In such a way, the computationally

demanding tasks like the derivation of integrals with respect to the space variable x,
is reduced to applying these tasks only to the space dependent part qκpxq. Evaluating
these tasks for several parameters is then reduced to evaluating the linear combinations.
The algorithm of Barrault et al. (2004) as depicted in Algorithm 1 does not only provide
the magic points x˚k for k “ 1, . . . ,M, but also the functions qκpxq. For the parameter-
dependent part it is known that the functions Θκpµ, x

˚
κq are given by evaluating the

approximated function at the fixed points x˚k for the parameters µ, i.e. for k “ 1, . . . ,M
it holds Θκpµ, x

˚
κq “ pdfµXtu`1´tu

px˚κq.

In the following, we now assume

• a one dimensional underlying space, X “ rx, xs Ă R,

• the underlying model is a Markov model with density function,

• an equidistant time stepping such that ∆t “ tu`1 ´ tu for all u “ 1, . . . , nT ´ 1 in
the dynamic programming scheme.

Hence, pdfµXtu`1´tu
pxq “ pdfµX∆t

pxq. For instance, in the Black&Scholes model, the prob-
ability density function is known in closed-form and thus, with µ “ pr, σ,∆t, x0q,

pdfµX∆t
pxq “

1
?

2π∆tσ
e´

1
2

px´x0´rpr´
1
2σ

2q∆tsq2

∆tσ2 . (5.25)

By applying the empirical interpolation of Barrault et al. (2004) as depicted in Algorithm
1, we approximate the density function as

1
?

2π∆tσ
e´

1
2

px´x0´rpr´
1
2σ

2q∆tsq2

∆tσ2 «

M
ÿ

κ“1

Θκpr, σ,∆t, x0, x
˚
κqqκpxq, x P X .

Here, it is important to understand that we approximate the density function on a
bounded parameter domain,

P “ rr, rs ˆ rσ, σs ˆ rx0, x0s ˆ r∆t,∆ts. (5.26)

This allows the following statement for the approximation error.

Theorem 5.5.1. Let the parametric density function pdfµX∆t
be given as in (5.25) and

let the empirical interpolation be applied for x P X “ rx, xs and the bounded parameter
domain P be given such that the mapping p ÞÑ pdfpX∆t

is analytic. Further, let σ,∆t ą 0.
Then, it exists C ą 0 such that

max
xPX

max
µPP

ˇ

ˇpdfµX∆t
´

M
ÿ

κ“1

Θκpµ, x
˚
κqqκpxq

ˇ

ˇ ď C ¨Me´pα´logp4qqM,

where α ą logp4q.
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Proof. From σ,∆t ą 0 it directly follows that the mapping P ˆ X Q pµ, xq ÞÑ pdfµX∆t
pxq

is bounded and µ ÞÑ pdfµX∆t
p¨q is sequentially continuous. Moreover, the function pdfµX∆t

is holomorphic for x P p´8,8q. Therefore, it is possible to stretch the Bernstein ellipse
until a corresponding % ą logp4q is found. Thus, we can apply (Gaß and Glau, 2015,
Theorem 3.2) and the assertion follows.

In this initial example, we investigated the Black&Scholes model. For several other
models, such as the Heston or Merton model, the probability density function is not
given in a closed-form. However, the characteristic function often exists for these models.
Then, it holds

pdfµX∆t
pxq “

1

2π

ż 8

´8

e´izxϕpz;µqdz,

where ϕpz;µq is the characteristic function. For the empirical interpolation, we follow
now the approach of Gaß and Glau (2015) and express the integrand as follows,

e´izxϕpz;µq «
M
ÿ

κ“1

ϕpz˚κ ;µ, xqqκpzq

“

M
ÿ

κ“1

e´iz
˚
κxϕpz˚κ ;µqqκpzq.

This leads directly to

pdfµX∆t
pxq «

1

2π

ż 8

´8

M
ÿ

κ“1

e´iz
˚
κxϕpz˚κ ;µqqκpzqdz

“
1

2π

M
ÿ

κ“1

e´iz
˚
κxϕpz˚κ ;µq

ż 8

´8

qκpzqdz.

The integrals can be pre-computed, we denote Iκ :“
ş8

´8
qκpzqdz,

pdfµX∆t
pxq «

1

2π

M
ÿ

κ“1

e´iz
˚
κxϕpz˚κ ;µqIκ. (5.27)

Given this empirical interpolation at the magic points z˚κ allows us to adjust Algorithm
4 in the following way. For the derivation of the conditional expectations
ErVtu`1pXtu`1q|Xtu “ xs at any time step tu, we still interpolate the value function
Vtu`1 of the preceding time step. Let Vtu`1pxq «

řN
j“1 cjptu`1qTjpxq. The conditional

expectation is then given as an integral over the probability density function, which we
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replace with the approximation by empirical interpolation, (5.27),

ErVtu`1pXtu`1q|Xtu “ x0s « Er
N
ÿ

j“1

cjptu`1qTjpτ
´1
X pxqq|Xtu “ x0s (5.28)

“

N
ÿ

j“1

cjptu`1qErTjpτ
´1
X pxqq|Xtu “ x0s (5.29)

“

N
ÿ

j“1

cjptu`1q

ż x

x
Tjpτ

´1
X pxqqpdfµX∆t

pxqdx. (5.30)

Now, we apply the empirical interpolation for the density function,

«

N
ÿ

j“1

cjptu`1q

ż x

x
Tjpτ

´1
X pxqq

M
ÿ

κ“1

e´iz
˚
κxϕpz˚κ ;µqIκdx (5.31)

“

N
ÿ

j“1

M
ÿ

κ“1

cjptu`1qϕpz
˚
κ ;µqIκ

ż x

x
Tjpτ

´1
X pxqqe´iz

˚
κxdx. (5.32)

As shown above, by deriving the conditional expectations we use an approximation at
two steps: First, the Chebyshev interpolation in (5.28) and, second, the approximation
of the probability density function with the empirical interpolation in (5.31). This re-
quires a modification of Corollary 5.2.4 to incorporate the approximation error from the
empirical interpolation, too. Hence, we want to describe the complete dynamic program-
ming procedure as an algorithm. By looking at (5.32), we see an additional interesting
feature. For each Chebyshev polynomial j and each magic point z˚κ , integrals of the form
şx
x Tjpxqe

´iz˚κxdx have to be evaluated, independently of the parameter µ. This allows us
to evaluate these integrals in a pre-computation step, as long as no splitting is applied
in the time stepping scheme. Moreover, in the dynamic Chebyshev procedure, we derive
the conditional expectations with respect to each nodal point. The computational efforts
can be reduced significantly, when x0, the placeholder for the condition in the condi-
tional expectation, is treated as additional parameter in the empirical interpolation. In
the following, we assume a specific type of probability density function respectively char-
acteristic function. Let pdfµX∆t

denote the probability density function and ϕpz;µq the
corresponding characteristic function, then we assume for the conditional density and
characteristic functions,

pdfµX∆t
px|x0q “ pdfµX∆t

px´ x0q

“
1

2π

ż 8

´8

e´izpx´x0qϕpz;µqdz

“
1

2π

ż 8

´8

e´izxeizx0ϕpz;µqdz. (5.33)
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For example, this holds for the Black&Scholes model or, more generally, in Lévy models.
Before applying the empirical interpolation algorithm, numerical tests have shown that
the results of applying empirical interpolation are more stable, if we focus on

1

2π

ż 8

´8

e´izxϕpz;µqdz “
1

π

ż 8

0
Real

`

e´izxϕpz;µq
˘

dz.

Here, we can use twice the value of the integral of the real part over the positive do-
main instead of the integral of the function over the whole domain. This holds be-
cause for the characteristic function ϕpz;µq “ ϕp´z;µq holds, thus it also holds also for
e´izxeizx0ϕpz;µq. Hence, we approximate

pdfµX∆t
px|x0q «

1

π

ż z

0
Real

`

e´izxeizx0ϕpz;µq
˘

dz.

The empirical interpolation is applied to the integrand Real
`

e´izxeizx0ϕpz;µq
˘

and this

results in summands of the form Real
´

e´iz
˚xeiz

˚x0ϕpz˚;µq
¯

. Here, to evaluate the real
part, we use,

Real
´

e´iz
˚xeiz

˚x0ϕpz˚;µq
¯

“
e´iz

˚xeiz
˚x0ϕpz˚;µq ` eiz

˚xe´iz
˚x0ϕp´z˚;µq

2

Due to this step, instead of (5.32), we have to apply this integration twice for both parts
of the numerator. However, in the pre-computation step this additional costs are more
tolerable. Especially, when the empirical interpolation is numerically more stable in this
case. In Algorithm 8, we describe this procedure in detail. Then, in Theorem 5.5.2, we
show how the additional approximation via the empirical interpolation effects the error
bounds for the dynamic Chebyshev procedure.

156



5 Dynamic Programming Framework with Chebyshev Interpolation

Algorithm 8 Dynamic Chebyshev with empirical interpolation
1: procedure Pre-Computation Step
2: Fix an interval rx, xs for the space of the underlying
3: Fix N as number of nodal points of the Chebyshev interpolation
4: Determine nodal points xk “ cos

`

π k
N

˘

for k “ 0, . . . , N
5: Set up equidistant time stepping 0 “ t1, . . . , tnT “ T with ∆t “ t2 ´ t1
6: Define for the parameter p P Rd of the characteristic function a rectangular pa-

rameter space P “ rp
1
, p1s ˆ . . .ˆ rpd, pds

7: Apply the empirical interpolation algorithm for px, x0, µq P rx, xsˆprx, xsˆPq to
Realpe´izxeizx0ϕpz;µqq with pre-specified tolerance εM on truncated domain r0, zs.

8: For κ “ 1 : M ,
9: store z˚κ of Realpe´izxeizx0ϕpz;µqq «

řM
κ“1Realpe

´iz˚κxeiz
˚
κx0ϕpz˚κ ;µqqqκpzq

10: derive Iκ “
şz
0 qκpzqdz

11: Approximation of density function by 1
π

řM
κ“1Realpe

´iz˚κxeiz
˚
κx0ϕpz˚κ ;µqqIκ

12: For j “ 0 : N and κ “ 1 : M ,
13: compute integrals Int1j,κ :“

şx
x Tjpτ

´1
rx,xspxqqe

´iz˚κxdx

14: compute integrals Int2j,κ :“
şx
x Tjpτ

´1
rx,xspxqqe

iz˚κxdx

15: procedure Derivation parameter-dependent parts
16: For k “ 0 : N , compute for fixed µ and with x0 “ yk for each κ “ 1 : M ,

eiz
˚
κx0ϕpz˚κ ;µq and e´iz˚κx0ϕp´z˚κ ;µq

17: For κ “ 1 : M , for j “ 1 : N ,
18: derive Sj,κpykq “ 1

2

´

eiz
˚
κ y

k
ϕpz˚κ ;µqInt1j,κ ` e

´iz˚κ y
k
ϕp´z˚κ ;µqInt2j,κ

¯

19: procedure Initial time T
20: Set nodal points yk “ τrx,xspx

kq

21: PT py
kq “ gpT, ykq, k “ 1 : N , derive

22: cjpT q “
´

2
1t0ăjăNu

N

¯

řN
k“0

2

PT py
kq cos

`

jπ k
N

˘

23: Obtain Chebyshev interpolation of PT pxq “
řN
j“0 cjpT qTjpτ

´1
rx,xspxqq

24: procedure Iterative time stepping from tu`1 Ñ tu, u “ nT ´ 1, . . . , 1
25: Given Chebyshev interpolation of Ptu`1pxq “

řN
j“0 cjptu`1qTjpτ

´1
rx,xspxqq

26: Derivation of Ptipykq at the nodal points with yk

27: for k “ 0, . . . , N
28: Ptupy

kq “ fpgptu, y
kq, ErPtu`1pXtu`1q|Xtu “ yksq

29: Ptupy
kq “ fpgptu, y

kq, e´r∆t
řN
j“0 cjptu`1qErTjpτ

´1
rx,xspXtu`1qq|Xtu “ yksq

30: Ptupy
kq “ fpgptu, y

kq, e
´r∆t

π

řN
j“0

řM
κ“1 cjptu`1qIκSj,κpy

kqq

31: end
32: Derive
33: cjptuq “

´

2
1t0ăjăNu

N

¯

řN
k“0

2

Ptupy
kq cos

`

jπ k
N

˘

34: Obtain Chebyshev interpolation of Ptupxq “
řN
j“0 cjptuqTjpτ

´1
rx,xspxqq

35: procedure Deriving the solution at t=0
36: P0pxq “

řN
j“0 cjp0qTjpτ

´1
rx,xspxqq
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Theorem 5.5.2. Let a Dynamic Programming Principle be given as in (5.3) and (5.4).
Given a time stepping t “ t1 ă . . . ă tnT “ T , let X Q x ÞÑ Vtupxq be a real valued
function that has an analytic extension to a generalized Bernstein ellipse BpX , %tuq with
parameter vector %tu P p1,8qD and supxPBpX ,%tu q |Vtupxq| ď Mtu for k “ 1, . . . , nT .
Furthermore, let f : RˆRÑ R be continuous. Moreover, let the conditional density and
characteristic functions at each time step tu satisfy the relation (5.33). Let the mapping
z ÞÑ Real

`

e´izpx´x0qϕpz;µq
˘

be analytic and bounded on Bpr´z, zs, %M q with %M ą 4
for any arbitrary parameter combination µ P rx, xs ˆP, where P is a compact parameter
domain.
Then, by applying Algorithm 8 the resulting solution Ptupxq converges to the solution
Vtupxq for N Ñ8 and εz « 0. Furthermore, the approximation error at time tu is given
by

max
xPX

|Vtkpxq ´ Ptk | (5.34)

ď

nT
ÿ

j“k

Cj´kD,Nαp%tj , N,D,Mtj q `

nT
ÿ

j“k`1

Cj´kD,N

ˆ

MtnT

ˆ

CzM
´%M

4

¯´M
` εz

˙

px´ xq

˙

where CD,N as in (5.10), αp%tk , N,D,Mtkq as in (5.9) and εz denotes the truncation
error of the empirical interpolation.

Proof. The proof of the recursive backward time stepping will be similar to the proofs
of Theorem 5.2.2 and Corollary 5.2.4. For an error estimation, we have to consider
the empirical interpolation here in detail. First step is an empirical interpolation on a
rectangular domain rx, xsˆP, including the rectangular parameter space P “ rµ

1
, µ1sˆ

. . .ˆ rµ
d
, µds. We approximate

pdfµX∆t
px|x0q «

1

π

ż z

0
Real

`

e´izxeizx0ϕpz;µq
˘

dz.

By applying empirical interpolation, we truncate the domain to r0, zs. Thus, we introduce
a truncation error. However, let us first focus on the empirical interpolation on the
bounded domain r0, zs and the integration over this bounded domain.

The empirical interpolation is applied to the integrand Realpe´izxeizx0ϕpz;µqq, yielding,

Real
`

e´izxeizx0ϕpz;µq
˘

«

M
ÿ

κ“1

Real
´

e´iz
˚
κxeiz

˚
κx0ϕpz˚κ ;µq

¯

qκpzq.

Then, by choosing a compact parameter domain P, similarly to the setting of Theorem
5.5.1, we can apply the error bound of Gaß and Glau (2015). Note that here the mapping
is analytic, because z ÞÑ Real

`

e´izxeizx0ϕpz;µq
˘

“ z ÞÑ e´izxeizx0ϕpz;µq`eizxe´izx0ϕp´z;µq
2

and z ÞÑ e´izxeizx0ϕpz;µq is analytic as well as z ÞÑ eizxe´izx0ϕp´z;µq. Moreover,
Real

`

e´izxeizx0ϕpz;µq
˘

is bounded on Bpr´z, zs, %M q with %M ą 4. In this case, Gaß
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and Glau (2015) directly yield that it exists C ą 0 such that

max
pPP,xPX

ˇ

ˇ

ˇ

1

π

ż z

0
Real

`

e´izxeizx0ϕpz;µq
˘

dz ´
1

π

ż z

0

M
ÿ

κ“1

Real
´

e´iz
˚
κxeiz

˚
κx0ϕpz˚κ ;µq

¯

qκpzqdz
ˇ

ˇ

ˇ

ď CzM
´%M

4

¯´M
,

for %M ą 4.

Up to this point, we know that we can approximate the probability density function with
an error bounded by CzM

`

%M
4

˘´M
` εz. Here, the second part indicates the truncation

error of the integration region from r0,8q to r0, zs. With these computations, we are
in the setting of Theorem 5.2.2 and Corollary 5.2.4. In a DPP setting like (5.3) and
(5.4), we will show how the approximation error evolves in the backward time stepping
scheme. At the initial time step tnT “ T , the error of the Chebyshev interpolation of
gpT, xq “ VT pxq is bounded by (5.9),

max
xPX

|VT pxq ´ PtnT pxq| ď αp%tnT , N,D,MtnT
q.

Similar to the proof of Theorem 5.4.1, we let the exact value of the conditional probability
density function be given by

pdfX∆t
pxq “ pdfMX∆t

pxq ` pdf ε∆tpxq,

where pdfMXtu`1´tu
pxq represents the empirically interpolated probability density func-

tions and pdf εXtu`1´tu
pxq the error term. For the error at the nodal points, this yields

analogously,

max
jPJ

|VtnT´1pxjq ´ PtnT´1pxjq|

ď max
jPJ

ż x´xj

x´xj

|VtnT px` xjq ´ PtnT px` xjq|pdfX∆t
pxqdx

`

ż x´xj

x´xj

|PtnT px` xjq||pdf
ε
X∆t
pxq|dx

Now, as shown in the proof of Corollary 5.2.4, the error maxxPX |VtnT pxq ´ PtnT pxq| is
bounded by αp%tnT , N,D,MtnT

q, we know that the expected error using the real probabil-
ity density function is bounded by exactly αp%tnT , N,D,MtnT

q. For the second summand,

we use |PtnT px ` xjq| ď MtnT
and |pdf εX∆t

pxq| ď CzM
`

%M
4

˘´M
` εz. Combining these
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yields,

max
jPJ

|VtnT´1pxjq ´ PtnT´1pxjq|

ď αp%tnT , N,D,MtnT
q `MtnT

¨

ˆ

CzM
´%M

4

¯´M
` εz

˙

¨ px´ xq.

With CD,N as in (5.10), this yields, analogously to the proof of Corollary 5.2.4, for the
error at tnT´1,

max
xPX

|VtnT´1pxq ´ PtnT´1pxq| ď εtnT´1 :“ αp%tnT´1 , N,D,MtnT´1q

` CD,N

ˆ

αp%tnT , N,D,MtnT
q `MtnT

¨

ˆ

CzM
´%M

4

¯´M
` εz

˙

¨ px´ xq

˙

.

This directly leads to the recursive scheme for the error bound at tu,

εtu “ αp%tu , N,D,Mtuq`

CD,N

ˆ

εtu`1 `MtnT
¨

ˆ

CzM
´%M

4

¯´M
` εz

˙

¨ px´ xq

˙

.

Now, applying a similar induction, as in the proof of Corollary 5.2.4, directly yields,

εtk “
nT
ÿ

j“k

Cj´kD,Nαp%tj , N,D,Mtj q `

nT
ÿ

j“k`1

Cj´kD,N

ˆ

MtnT

ˆ

CzM
´%M

4

¯´M
` εz

˙

px´ xq

˙

.

Remark 5.5.3. As the error bound in (5.34) indicates, the truncation error of the in-
terval, εz, is included as a factor and is not multiplied by any decaying term. Thus, this
truncation error only gets scaled with a larger factor. Therefore, in the implementation
of Algorithm 8, the empirical interpolation has to be applied carefully. In general, the
characteristic functions decay for increasing z exponentially and therefore, by making z
reasonably large, the truncation error εz decays exponentially as well. For a variety of
Lévy models, this is shown in Glau (2016).

If we want to combine Algorithm 8 with the theoretic statements from Theorem 5.5.2,
analyticity is required. However, due to the kink of the payoff function in the case of a
plain vanilla call or put option, this is not given. As in Section 5.3, we will introduce
here the concept of splitting. For the example of an American put option, we present in
Algorithm 9 a version with splitting.
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Algorithm 9 Dynamic Chebyshev with empirical interpolation and splitting for an
American put option
1: procedure Pre-Computation Step
2: As in Algorithm 8
3: procedure Derivation parameter-dependent parts
4: Fix a parameter µ
5: For k “ 0 : N , compute for fixed µ and with x0 “ xk for each κ “ 1 : M ,
eiz

˚
κx0ϕpz˚κ ;µq and e´iz˚κx0ϕp´z˚κ ;µq

6: procedure Initial time T
7: As in Algorithm 5
8: procedure Iterative time stepping from tu`1 Ñ tu, u “ nT ´ 1, . . . , 1
9: For j1 “ 0 : N1, κ “ 1 : M , ω “ 1, 2, compute integrals

10: Intωj1,κ :“
şx̃tu`1
x Tj1pτ

´1
rx,x̃tu`1 s

pxqqep´1qωiz˚κxdx

11: For j2 “ 0 : N2, κ “ 1 : M , ω “ 1, 2, compute integrals
12: Intωj2,κ :“

şx
x̃tu`1

Tj2pτ
´1
rx̃tu`1 ,xs

pxqqep´1qωiz˚κxdx

13: For κ “ 1 : M , for j1 “ 1 : N1,
14: define Sj1,κpy0q “

1
2

´

eiz
˚
κ y0ϕpz˚κ ;µqInt1j1,κ ` e

´iz˚κ y0ϕp´z˚κ ;µqInt2j1,κ

¯

15: For κ “ 1 : M , for j2 “ 1 : N2,
16: define Sj2,κpy0q “

1
2

´

eiz
˚
κ y0ϕpz˚κ ;µqInt1j2,κ ` e

´iz˚κ y0ϕp´z˚κ ;µqInt2j2,κ

¯

17: Define functions in dependence on y0 to determine the splitting point
18: ErPtu`1pXtu`1q|Xtu “ y0s “

19: e´r∆t

π

řN1
j1“0

řM
κ“1 cj1ptu`1qIκSj1,κpy0q

20: ` e´r∆t

π

řN2
j2“0

řM
κ“1 cj2ptu`1qIκSj2,κpy0q

21: Determine splitting point
22: Find x̃tu as root of y0 ÞÑ gptu, y0q ´ ErPtu`1pXtu`1q|Xtu “ y0s

23: Split interval into rx, x̃tus and rx̃tu , xs
24: Set yk1 “ τrx,x̃tu spx

k
1q and yk2 “ τrx̃tu ,xspx

k
2q

25: Apply Chebyshev interpolation on both intervals
26: Ptupy

k
1 q “ gpT, yk1 q, k “ 1 : N1, derive

27: c1,j1ptuq “
´

2
1t0ăj1ăN1u

N1

¯

řN1
k“0

2

Ptupy
k
1 q cos

´

j1π
k
N1

¯

28: Ptupy
k
2 q “ ErPtu`1pXtu`1q|Xtu “ yk2 s, k “ 1 : N2, derive

29: c2,j2ptuq “
´

2
1t0ăj2ăN2u

N2

¯

řN2
k“0

2

Ptupy
k
2 q cos

´

j2π
k
N2

¯

30: Obtain Chebyshev interpolation
31: Ptupxq “

řN1
j1“0 c1,j1ptuqTj1pτ

´1
rx,x̃tu s

pxqq ¨ 1rx,x̃tu spxq

32: `
řN2
j2“0 c2,j2ptuqTj2pτ

´1
rx̃tu ,xs

pxqq ¨ 1rx̃tu ,xspxq

33: procedure Deriving the solution at t=0
34: P0pxq “

řN1
j1“0 c1,j1p0qTj1pτ

´1
rx,x̃0s

pxqq ¨ 1rx,x̃0spxq

35: `
řN2
j2“0 c2,j2p0qTj2pτ

´1
rx̃0,xs

pxqq ¨ 1rx̃0,xspxq
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5.6 Numerical Experiments - Example Bermudan and
American options

In finance, there are in general two types of plain vanilla options: European and American
options. For a European option, the option-holder only has the right to exercise the
option at maturity, whereas, for American options, the option-holder has the right to
exercise the option at any time up to the maturity. In the following, we will investigate
options which give the option-holder the right to exercise the option at a restricted
set of pre-specified possible exercise dates. This option type is called the Bermudan
option. Similar to the situation of the Bermuda islands between Europe and America,
Bermudan options take an intermediate place between European and American options,
see Schweizer (2002).

Remark 5.6.1. So far, in the theoretic results, we have assumed that the function only
has support on the bounded domain X . The examples in the following are option prices.
For computational purposes, we work in the state space with log variables and thus,
technically, X “ p´8,8q in the one dimensional case being an example. By apply-
ing Algorithm 3 on a compact domain X̃ “ rx, xs, a truncation error is made at both
sides. As we are considering Bermudan and American put options, we neglect the er-
ror made by cutting the domain on the right side by setting x reasonably high. We
consider the truncation error on the left side by adding to the conditional expectations
ErTjpτ

´1
X pXtu`1qq ¨ 1tXtu`1PX u|Xtu “ xks, the expected value of the payoff function on

p´8, xq, ErgpXtu`1q|Xtu “ xks. Here, the assumption is that x is chosen small enough
that below x, we are, in any case, in the exercise region and would exercise the Bermudan
or American put option.

In the following, we present numerical results of the introduced dynamic programming
framework for the Black&Scholes model. Therefore, we define the test setting,

S0 “ 100, S “ 0.02, S “ 250

σ “ 0.15, r “ 0.03, nT “ 32

T “ 1, K “ 100.

(5.35)

Our reference option type is an at-the-money American (Bermudan) put option with all
the parameters specified in (5.35). To investigate the accuracy of our proposed method,
we use the cosine method of Fang and Oosterlee (2009) as the benchmark method. In
von Sydow et al. (2015), the benchmark code is provided and reported with a relative
accuracy of 10´4.

Application of Algorithm 6

First, we apply Algorithm 6 and due to the kink of the put option payoff at maturity,
we apply a splitting of the domain as rS, Ss “ rS,Ks Y rK,Ss. By applying a fixed
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splitting of the domain at K, for this numerical study, we set the number of Chebyshev
interpolation points equal on both sub-intervals. In Figure 5.1, we present the empirical
error decay for increasing the number of nodal points N for integrating over the density
function, in Figure 5.2 for the truncated moment method and in Figure 5.3 for using
Fourier techniques to derive the conditional expectations.
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Figure 5.1: Convergence study of Algorithm 6 for the integration over the density function
(top). For increasing N , the relative error of pricing the reference option type
is reported. The cosine method of Fang and Oosterlee (2009) is used as the
benchmark method. The run-time is reported on the bottom.
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Figure 5.2: Convergence study of Algorithm 6 for applying the truncated moment method
(top). For increasing N , the relative error of pricing the reference option type
is reported. The cosine method of Fang and Oosterlee (2009) is used as the
benchmark method. The run-time is reported on the bottom.
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Figure 5.3: Convergence study of Algorithm 6 for applying Fourier techniques (top). For
increasingN , the relative error of pricing the reference option type is reported.
The cosine method of Fang and Oosterlee (2009) is used as the benchmark
method. The run-time is reported on the bottom.
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We observe that, while integrating the density function, the error decreases with increas-
ing N . Similarly, this holds for applying Fourier techniques to derive the conditional
expectations. However, the truncated moments method does not appear to be numeri-
cally stable. Our implementation is based on the truncated moments given by Kan and
Robotti (2016). With increasing N , the power of xN gets too high and the moment is
very large. Although the results for truncated moments in Figure 5.1 look rather promis-
ing, by increasing N to 50 the option price literally explodes, explicitly to a value in the
region of 1027.

By applying the Chebyshev interpolation, the run-times are directly connected to the
number of nodal points. In Figures 5.1, 5.2 and 5.3, we show how the run-times of each
method evolve with increasing number of nodal points N . So far, we conclude

• The dynamic programming framework with Chebyshev interpolation provides rea-
sonable results when the probability density function or Fourier techniques are
applied

• numerical stability issues occur by applying the truncated moments method.

Application of Algorithm 5

Now, we apply Algorithm 5, in which the splitting point is derived at each time step.
For the Black&Scholes model with configuration (5.35), we use the density function to
derive the conditional expectations and Figure 5.4 illustrates the error convergence for
an increasing number of nodal points N and the run-times. In comparison with Figure
5.1, we observe that by applying splitting at each time point, a lower number of nodal
points is required to achieve the same accuracy. However, as the run-times in Figure 5.4
illustrate, by applying splitting at each time step, the conditional expectations have to
be re-evaluated over different domains at each time step, too. Thus, a pre-computation
of the conditional expectations is no longer possible. Therefore, it becomes absolutely
crucial to have a fast evaluation technique for the conditional expectation. Additionally,
identifying the splitting point at each time step also increases the run-time. In our
implementation, we use here the function fzero in Matlab.

For this experiment, we conclude,

• with splitting at each time step, we ensure that we are in our theoretical observed
framework with respect to the error convergence results

• empirically, the exponential error decay is observed

• the computational cost increases due to the necessity to derive both the conditional
expectations and the splitting point at each time step.
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Figure 5.4: Application of Algorithm 5 by applying integration over the density function
in the Black&Scholes model. For increasing N the relative error and the run-
time is reported. The cosine method of Fang and Oosterlee (2009) is used as
benchmark method.
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Application of Algorithm 9

As a first step in the experiments here, the integrand of
ż 8

´8

e´izxeizx0ϕpzqdz “ 2

ż 8

0
Real

`

e´izxeizx0ϕpzq
˘

dz

« 2

ż 1000

0
Real

`

e´izxeizx0ϕpzq
˘

dz,

where ϕpzq is the characteristic function of the Black&Scholes model, is empirically
interpolated in the following parameters,

∆t P r0.01, 1s, x, x0 P rlogp0.02q, logp250qs,

r P r0, 0.1s, σ P r0.1, 0.5s.

The empirical interpolation on z “ r0, 1000s has been stopped for M “ 1000 when
an empirical accuracy of 10´12 has been observed. For a comparison with the cosine
benchmark method, we now define a test grid of 121 equidistantly-spaced points on
S P r40, 160s. Moreover, for parametric option pricing, we define 27 scenarios consisting
of all combinations of σ P t0.15, 0.3, 0.45u, r P t0.01, 0.03, 0.05u and nT P t16, 32, 64u. On
the test grid, put option prices can become relatively small. Here, we therefore investigate
the absolute error and no longer the relative error. In Figure 5.5, we present the error for
increasing N in the Chebyshev interpolation and the online run-times of the Chebyshev
interpolation. We observe that with about N “ 250, we achieve an acceptable accuracy
for an online run-time of roughly 17 seconds. The cosine method required a run-time of
about 1.13 seconds and is still the faster method in this setting. However, contrary to the
application of Algorithm 5, the combination of empirical interpolation and the dynamic
Chebyshev interpolation allows us to treat the nodal points as an additional parameters.
This, together with the additional interpolation of the characteristic function in the
parameters, significantly speeds up the method. Moreover, we can directly make use of
the decomposition in offline and online-phase for the parameter dependent 27 scenarios.
By applying Algorithm 5, a pre-computation is not possible and the run-times reported
in Figure 5.4 have to multiplied by a factor of 27.
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Figure 5.5: Absolute error (top) of applying Algorithm 9 over the test grid and 27 pa-
rameter settings for increasing N . The cosine method of Fang and Oosterlee
(2009) is used as the benchmark method. The run-times for the online phase
are presented on the bottom.
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5.7 Conclusion

The combination of dynamic programming and Chebyshev interpolation provides a very
general framework for solving DPPs. The driving motivation to investigate this combin-
ing idea is the option pricing of American/Bermudan options. However, this approach
can be easily extended to further applications in mathematical finance. More complex
options, such as swing options, see e.g. Bardou et al. (2009) and Carmona and Touzi
(2008), can also be included. Portfolio optimization problems with non-concave utility
functions become of special interest, as the problems stated in Carassus and Rásonyi
(2015), because due to the non-concave utility functions standard approaches no longer
work and a DPP has to be solved. Especially in cases with a non-concave utility func-
tion that is analytic, our approach should be suitable because no splitting would be
required and, therefore, it is sufficient to derive the conditional expectations once in the
pre-computation phase. Moreover, asset liability management problems in discrete time
markets as, e.g. in Van Binsbergen and Brandt (2007), can be tackled by solving a DPP.
Here, our proposed methodology can be applied.

For the numerical examples, we have chosen a Bermudan option in the Black&Scholes
model. So far, the numerical results serve as proof of concept and highlight the generality
of the dynamic programming framework with respect to the choice of the technique for
solving the conditional expectations. We have tested the integration over the density
function, the truncated moment method and Fourier techniques. Only for the truncated
moments, we observed some numerically stability issues that have to be investigated in
the future.

Comparing Algorithm 6 and Algorithm 5, the dynamic Chebyshev approach in Algo-
rithm 6 is, as regards run-times, the fastest. Thus, this method allows a complete
pre-computation of the conditional expectations, however, some more nodal points are
required to achieve a desired accuracy. The two concepts of splitting and mollifying for
kinks and discontinuities have different advantages and disadvantages. If splitting is re-
quired, the splitting point is often time-dependent and changes during the time stepping
scheme. Thus, a pre-computation of the conditional expectations is not possible and, at
each time step, these have to be derived. This significantly increases the computational
costs. The more expensive the derivation of the conditional expectation is, the more sig-
nificant the run-times increase. Mollifying, on the other side, allows the pre-computation
of the conditional expectations. However, the error of replacing the payoff function by a
mollified function, for example, evolves through the time stepping scheme.

By focusing on a specific use-case, here the one dimensional American/Bermudan op-
tion pricing in the Black&Scholes model, other methods are available that can serve as
benchmark method. After the cosine method of Fang and Oosterlee (2009) provided in
a benchmark study, see von Sydow et al. (2015), the fastest run-times while maintaining
a pre-specified accuracy, we selected this method as the benchmark method. Although
we can achieve results with comparable accuracy, all our dynamic Chebyshev algorithms
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are, with respect to run-times, slower. Otherwise, the cosine approach is based on an ap-
proximation of the characteristic function and thereby, limited to applications, in which
the characteristic function can be exploited. To bring the two philosophies from the
introduction to full-circle, the dynamic Chebyshev approach is in the spirit of Figure 1.2.
Any pricing technique for the derivation of the conditional expectations is sufficient. The
cosine approach is a Fourier-based approach and thus in the spirit of Figure 1.1.

So far, in the numerical implementation, we have used a one dimensional underlying.
Theoretically, the error convergence results do also hold for higher dimensions. However,
analogously to the conclusion of Chapter 4, by increasing the dimension of the tensorized
Chebyshev interpolation, the run-times suffer significantly under the curse of dimension-
ality. Here, a low-rank approximation can be advantageous. Regarding run-times, the
time to find the low-rank approximation becomes a crucial factor, because at each time
step coefficients for a new Chebyshev interpolation have to be assembled. The coefficients
for the tensorized Chebyshev interpolation, contrarily, are known a priori.

Finally, the results shown in Figure 5.5 underline the potential of combining the dy-
namic Chebyshev interpolation with usage of the parameter dependency via empirical
interpolation. Interestingly, the results from Gaß et al. (2016) allow for an arbitrary
dimensionality in the parameter space. Thus, the dynamic Chebyshev framework with
empirical interpolation can be applied to problems with a high-dimensional parameter
space and a lower-dimensional underlying space. The chebfun package, see e.g. Driscoll
et al. (2014), provides Chebyshev interpolations (including low-rank approximations) for
one, two and three dimensions.

An obviously following extension from Algorithm 9, is the application of the empirical
interpolation to the integrand resulting from deriving the conditional expectations, i.e.
resulting from

E
”

Tjpτ
´1
X pXu`1q|Xu “ τX px

kq

ı

.

By doing so, additionally the degree j of the Chebyshev polynomial is incorporated
in the empirical interpolation. Thus, the conditional expectation does not have to be
computed for each Chebyshev polynomial T0, . . . , TN individually and the run-time is
reduced further. This will be investigated in Glau et al. (2017b).

171



5 Dynamic Programming Framework with Chebyshev Interpolation

172



A Detailed Results for Effects of
de–Americanization on Pricing

The tables in this section present the results to the study of the effects of the de–Ameri-
canization methodology on pricing in Section 3.3.2. For the test setting defined in (3.14)
and several parameter scenarios, see Table 3.1, American and European put prices are
derived and then, the de-Americanized prices are compared to the European prices.

T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 1.E-4 1.E-4 1.E-4 1.E-4 1.E-4 1.E-4 9.E-5 6.E-5
r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 2.E-4 1.E-4
r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 2.E-4 8.E-5
r “ 5% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 -3.E-5
r “ 7% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 -9.E-5

p2

r “ 0% 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 1.E-4 1.E-4 7.E-5
r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4
r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 5.E-5
r “ 5% 3.E-4 4.E-4 3.E-4 3.E-4 2.E-4 1.E-4 6.E-5 3.E-4
r “ 7% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 7.E-5 7.E-5 5.E-4

p3

r “ 0% 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 1.E-4 1.E-4 6.E-5
r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4
r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 6.E-5
r “ 5% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 1.E-4 8.E-5 -2.E-4
r “ 7% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 1.E-4 -1.E-7 -3.E-4

p4

r “ 0% 2.E-4 1.E-4 1.E-4 1.E-4 1.E-4 8.E-5 8.E-5 2.E-4
r “ 1% 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 2.E-4 2.E-4 3.E-4
r “ 2% 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 1.E-4 3.E-4
r “ 5% 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 8.E-5 1.E-4
r “ 7% 4.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 7.E-5 2.E-4

p5

r “ 0% 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 1.E-4 9.E-5 4.E-5
r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 6.E-7
r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 -1.E-4
r “ 5% 4.E-4 3.E-4 3.E-4 3.E-4 2.E-4 1.E-4 -7.E-6 -5.E-4
r “ 7% 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4 4.E-5 -1.E-4 -8.E-4

Table A.1: De–Americanization effects on pricing put options in the CEV model - average
error between the de-Americanized and European prices for each maturity.
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0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

p1

r “ 0% 4.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5
r “ 1% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4
r “ 2% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4
r “ 5% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4
r “ 7% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 1.E-4 2.E-4 8.E-5

p2

r “ 0% 5.E-5 9.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5
r “ 1% 9.E-5 2.E-4 3.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4
r “ 2% 8.E-5 2.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4
r “ 5% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4
r “ 7% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

p3

r “ 0% 4.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5
r “ 1% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4
r “ 2% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4
r “ 5% 5.E-5 1.E-4 2.E-4 3.E-4 4.E-4 3.E-4 2.E-4 2.E-4 6.E-5
r “ 7% 3.E-5 9.E-5 2.E-4 2.E-4 3.E-4 3.E-4 2.E-4 1.E-4 -2.E-5

p4

r “ 0% 4.E-5 7.E-5 1.E-4 1.E-4 2.E-4 2.E-4 1.E-4 1.E-4 9.E-5
r “ 1% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 3.E-4 2.E-4
r “ 2% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4
r “ 5% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 -3.E-5
r “ 7% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 -1.E-4

p5

r “ 0% 3.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 7.E-5
r “ 1% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4
r “ 2% 5.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4
r “ 5% 2.E-5 7.E-5 1.E-4 2.E-4 3.E-4 3.E-4 1.E-4 1.E-4 -9.E-6
r “ 7% 4.E-5 4.E-5 1.E-4 2.E-4 2.E-4 2.E-4 4.E-5 4.E-5 -1.E-4

Table A.2: De–Americanization effects on pricing put options in the CEV model - average
error between the de-Americanized and European prices for each strike.

T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 0.055 0.104 0.108 0.154 0.204 0.211 0.218 0.244
r “ 1% 0.055 0.102 0.106 0.151 0.155 0.203 0.208 0.226
r “ 2% 0.054 0.101 0.104 0.107 0.151 0.196 0.198 0.208
r “ 5% 0.052 0.057 0.097 0.098 0.100 0.136 0.136 0.161
r “ 7% 0.051 0.054 0.057 0.093 0.093 0.093 0.093 0.109

p2

r “ 0% 0.103 0.154 0.204 0.208 0.217 0.230 0.242 0.283
r “ 1% 0.103 0.152 0.201 0.204 0.212 0.223 0.233 0.265
r “ 2% 0.102 0.109 0.154 0.201 0.207 0.216 0.224 0.248
r “ 5% 0.099 0.104 0.147 0.150 0.192 0.195 0.198 0.203
r “ 7% 0.058 0.101 0.105 0.144 0.146 0.182 0.181 0.176

p3

r “ 0% 0.152 0.205 0.212 0.219 0.233 0.252 0.269 0.320
r “ 1% 0.108 0.203 0.209 0.216 0.228 0.245 0.260 0.303
r “ 2% 0.107 0.201 0.207 0.213 0.224 0.239 0.251 0.287
r “ 5% 0.105 0.153 0.199 0.203 0.210 0.219 0.226 0.241
r “ 7% 0.103 0.150 0.194 0.196 0.201 0.206 0.210 0.214

p4

r “ 0% 0.156 0.212 0.223 0.233 0.252 0.276 0.297 0.352
r “ 1% 0.155 0.210 0.220 0.230 0.247 0.270 0.288 0.336
r “ 2% 0.154 0.208 0.218 0.227 0.243 0.263 0.279 0.319
r “ 5% 0.152 0.203 0.210 0.217 0.229 0.244 0.255 0.275
r “ 7% 0.150 0.200 0.206 0.211 0.221 0.232 0.239 0.247

p5

r “ 0% 0.205 0.220 0.235 0.248 0.272 0.300 0.323 0.377
r “ 1% 0.205 0.219 0.232 0.245 0.267 0.294 0.314 0.360
r “ 2% 0.204 0.217 0.230 0.242 0.263 0.287 0.306 0.345
r “ 5% 0.201 0.212 0.223 0.233 0.250 0.268 0.281 0.300
r “ 7% 0.156 0.209 0.218 0.227 0.241 0.256 0.266 0.273

Table A.3: De–Americanization effects on pricing put options in the CEV model - max-
imal European put prices.
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T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 4.E-5 2.E-5 2.E-5 -3.E-6 9.E-6 4.E-5 -3.E-5 3.E-5
r “ 1% -2.E-4 -3.E-4 -4.E-4 -4.E-4 -5.E-4 -8.E-4 -1.E-3 -2.E-3
r “ 2% -4.E-4 -7.E-4 -9.E-4 -9.E-4 -1.E-3 -2.E-3 -2.E-3 -4.E-3
r “ 5% -2.E-3 -2.E-3 -3.E-3 -2.E-3 -3.E-3 -4.E-3 -5.E-3 -6.E-3
r “ 7% -3.E-3 -4.E-3 -4.E-3 -3.E-3 -4.E-3 -4.E-3 -5.E-3 -4.E-3

p2

r “ 0% 3.E-5 8.E-5 5.E-5 2.E-5 -4.E-5 -3.E-4 -2.E-5 5.E-5
r “ 1% -6.E-5 -3.E-3 -2.E-3 -2.E-3 -1.E-2 -6.E-3 -6.E-3 -2.E-2
r “ 2% -2.E-4 -8.E-3 -5.E-3 -4.E-3 -4.E-3 -3.E-2 -2.E-2 -2.E-2
r “ 5% -7.E-4 -1.E-3 -1.E-3 -2.E-2 -2.E-2 -2.E-2 -2.E-2 -2.E-2
r “ 7% -1.E-3 -1.E-3 -2.E-3 -2.E-3 -3.E-3 -3.E-2 -3.E-2 -3.E-2

p3

r “ 0% 3.E-5 1.E-4 2.E-5 3.E-4 -2.E-4 2.E-4 -1.E-4 2.E-6
r “ 1% -5.E-4 -3.E-3 -2.E-3 -2.E-3 -2.E-2 -8.E-3 -7.E-3 -9.E-3
r “ 2% -1.E-3 -1.E-2 -5.E-3 -4.E-3 -2.E-2 -3.E-2 -2.E-2 -2.E-2
r “ 5% -5.E-3 -4.E-3 -4.E-3 -2.E-2 -1.E-2 -1.E-2 -2.E-2 -6.E-2
r “ 7% -1.E-2 -6.E-3 -6.E-3 -6.E-3 -3.E-2 -2.E-2 -3.E-2 -4.E-2

p4

r “ 0% -2.E-5 -2.E-4 3.E-5 2.E-4 2.E-4 6.E-5 -3.E-07 1.E-4
r “ 1% -7.E-4 -7.E-3 -3.E-3 -2.E-3 -2.E-3 -3.E-3 -3.E-3 -3.E-3
r “ 2% -2.E-3 -7.E-3 -8.E-3 -6.E-3 -5.E-3 -6.E-3 -7.E-3 -9.E-3
r “ 5% -7.E-3 -4.E-3 -2.E-2 -3.E-2 -2.E-2 -2.E-2 -2.E-2 -3.E-2
r “ 7% -1.E-2 -7.E-3 -4.E-2 -2.E-2 -4.E-2 -3.E-2 -3.E-2 -5.E-2

p5

r “ 0% 2.E-4 -1.E-4 -4.E-4 4.E-4 3.E-4 -1.E-4 -6.E-4 -7.E-4
r “ 1% -2.E-3 -7.E-4 -1.E-3 -3.E-4 -6.E-4 -5.E-4 2.E-3 8.E-2
r “ 2% -4.E-3 -2.E-3 -2.E-3 -2.E-3 -2.E-3 -2.E-3 2.E-3 1.E-1
r “ 5% -7.E-3 -6.E-3 -5.E-3 -6.E-3 -6.E-3 -8.E-3 -6.E-3 1.E-1
r “ 7% -1.E-2 -1.E-2 -8.E-3 -9.E-3 -9.E-3 -1.E-2 -1.E-2 1.E-1

Table A.4: Additional test for S “ 100. De–Americanization effects on pricing put op-
tions in the CEV model - average error between De-Americanized and Euro-
pean prices for each maturity.

T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.94
r “ 1% 19.78 19.68 19.58 19.48 19.28 18.98 18.69 17.62
r “ 2% 19.68 19.48 19.28 19.08 18.68 18.09 17.51 15.38
r “ 5% 19.38 18.88 18.38 17.89 16.91 15.46 14.06 9.33
r “ 7% 19.18 18.48 17.79 17.11 15.75 13.75 11.86 6.05

p2

r “ 0% 19.88 19.88 19.88 19.88 19.90 19.98 20.10 20.82
r “ 1% 19.78 19.68 19.58 19.48 19.31 19.10 18.96 18.72
r “ 2% 19.68 19.48 19.28 19.08 18.72 18.24 17.84 16.72
r “ 5% 19.38 18.88 18.39 17.90 16.97 15.72 14.64 11.43
r “ 7% 19.18 18.48 17.80 17.12 15.83 14.12 12.65 8.52

p3

r “ 0% 19.88 19.89 19.94 20.03 20.29 20.78 21.32 23.44
r “ 1% 19.78 19.69 19.64 19.64 19.73 19.98 20.28 21.55
r “ 2% 19.68 19.49 19.35 19.26 19.17 19.19 19.28 19.76
r “ 5% 19.38 18.90 18.48 18.12 17.55 16.91 16.41 14.94
r “ 7% 19.18 18.50 17.90 17.37 16.50 15.47 14.64 12.19

p4

r “ 0% 19.90 20.11 20.45 20.86 21.71 22.97 24.15 28.11
r “ 1% 19.80 19.92 20.18 20.50 21.20 22.24 23.21 26.35
r “ 2% 19.70 19.73 19.90 20.14 20.69 21.52 22.29 24.67
r “ 5% 19.41 19.16 19.09 19.10 19.22 19.46 19.67 20.07
r “ 7% 19.21 18.78 18.55 18.42 18.27 18.15 18.04 17.37

p5

r “ 0% 20.17 21.03 21.98 22.91 24.63 26.88 28.81 34.23
r “ 1% 20.08 20.86 21.73 22.58 24.16 26.21 27.93 32.55
r “ 2% 19.99 20.68 21.48 22.26 23.70 25.54 27.07 30.93
r “ 5% 19.70 20.16 20.73 21.30 22.34 23.61 24.59 26.42
r “ 7% 19.51 19.81 20.25 20.68 21.47 22.38 23.02 23.70

Table A.5: Additional test for S “ 100. De–Americanization effects on pricing put op-
tions in the CEV model - maximal European put prices.
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Kudryavtsev, O. and S. Z. Levendorskĭi (2009). Fast and accurate pricing of barrier
options under Lévy processes. Finance and Stochastics 13 (4), 531–562.

L’Ecuyer, P. (2009). Quasi-Monte Carlo methods with applications in finance. Finance
and Stochastics 13 (3), 307–349.

Lee, R. W. (2004). Option pricing by transform methods: extensions, unification, and
error control. Journal of Computational Finance 7 (3), 51–86.

181

https://arxiv.org/abs/1507.08937


Bibliography

Longstaff, F. A. and E. S. Schwartz (2001). Valuing American options by simulation: a
simple least-squares approach. Review of Financial studies 14 (1), 113–147.

Lord, R., F. Fang, F. Bervoets, and C. W. Oosterlee (2008). A fast and accurate FFT-
based method for pricing early-exercise options under Lévy processes. SIAM Journal
on Scientific Computing 30 (4), 1678–1705.

Maday, Y., C. Nguyen, P. A.T., and G. Pau (2009). A general multipurpose interpolation
procedure: the magic points. Commutications on Pure and Applied Analysis 8 (1),
383–404.

McKean, H. P. (1965). Appendix: A free boundary problem for the heat equation arising
from a problem in mathematical economics. Sloan Management Review 6 (2), 32.

Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics
and Management Science 4 (1), 141–183.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics 3, 125–144.

Metropolis, N. (1987). The beginning of the Monte Carlo method. pp. 125–130. Los
Alamos Science. Special Issue dedicated to Stanislaw Ulam.

Müller, A. and D. Stoyan (2002). Comparison methods for stochastic models and risks,
Volume 389. Wiley.

Musiela, M. and M. Rutkowski (2006). Martingale methods in financial modelling, Vol-
ume 36. Springer.

Øksendal, B. (2003). Stochastic differential equations, sixth edition. Springer.

Pachon, R. (2016). Numerical pricing of European options with arbitrary pay-
offs. Preprint Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=2712402.

Patera, A. T. and G. Rozza (2006). Reduced basis approximation and a posteriori error
estimation for parametrized partial differential equations. Technical Report Version
1.0, MIT 2006–2007, to appear in (tentative rubric) MIT Pappalardo Graduate Mono-
graphs in Mechanical Engineering, Massachusetts Institute of Technology.

Peherstorfer, B., P. Gómez, and H.-J. Bungartz (2015). Reduced models for sparse grid
discretizations of the multi-asset Black-Scholes equation. Advances in Computational
Mathematics 41 (5), 1365–1389.

Peskir, G. and A. Shiryaev (2006). Optimal stopping and free-boundary problems.
Springer.

Pironneau, O. (2009). Calibration of options on a reduced basis. Journal of Computa-
tional and Applied Mathematics 232 (1), 139–147.

182

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2712402
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2712402


Bibliography

Pironneau, O. (2011). Reduced basis for vanilla and basket options. Risk and Decision
Analysis 2 (4), 185–194.

Pironneau, O. (2012). Proper orthogonal decomposition for pricing options. Journal of
Computational Finance 16 (1), 33–46.

Pistorius, M. and J. Stolte (2012). Fast computation of vanilla prices in time-changed
models and implied volatilities. International Journal of Theoretical and Applied Fi-
nance (15), 1250031.

Quarteroni, A., A. Manzoni, and F. Negri (2016). Reduced basis methods for partial
differential equations, Volume 92 of Unitext. Springer, Cham. An introduction, La
Matematica per il 3+2.

Raible, S. (2000). Lévy processes in finance: theory, numerics, and empirical facts.
Dissertation, Universität Freiburg.

Revuz, D. and M. Yor (1999). Continuous martingales and brownian motion, third
edition. Berlin, Heidelberg, Germany: Springer.

Rivlin, T.-J. (1990). Chebyshev polynomials. John Wiley & Sons, Inc., copublished in
the United States with John Wiley &.

Rudin, W. (1987). Real and complex analysis. Tata McGraw-Hill Education.

Runge, C. (1901). Über empirische Funktionen und die Interpolation zwischen äquidis-
tanten Ordinaten. Zeitschrift für Mathematik und Physik 46 (224-243), 20.

Sachs, E. W. and M. Schneider (2014). Reduced-order models for the implied variance
under local volatility. International Journal of Theoretical and Applied Finance 17 (8),
1450053, 23.

Sachs, E. W., M. Schneider, and M. Schu (2014). Adaptive trust-region POD meth-
ods in PIDE-constrained optimization. In Trends in PDE constrained optimiza-
tion, Volume 165 of International Series of Numerical Mathematics, pp. 327–342.
Birkhäuser/Springer, Cham.

Sachs, E. W. and M. Schu (2008). Reduced order models (POD) for calibration problems
in finance. In K. Kunisch, G. Of, and O. Steinbach (Eds.), Numerical Mathematics and
Advanced Applications: Proceedings of ENUMATH 2007, the 7th European Conference
on Numerical Mathematics and Advanced Applications, Graz, Austria, September 2007,
pp. 735–742. Berlin, Heidelberg: Springer Berlin Heidelberg.

Sachs, E. W. and M. Schu (2010). Reduced order models in PIDE constrained optimiza-
tion. Control and Cybernetics 39 (3), 661–675.

Samuelson, P. A. (1965). Rational theory of warrant pricing. IMR; Industrial Manage-
ment Review (pre-1986) 6 (2), 13.

183



Bibliography

Sauter, S. and C. Schwab (2004). Randelementmethoden: Analyse, Numerik und Imple-
mentierung schneller Algorithmen. Vieweg+Teubner Verlag.

Schoutens, W., E. Simons, and J. Tistaert (2004). A perfect calibration! Now what?
Wilmott Magazine.

Schroeder, M. (1989). Computing the constant elasticity of variance option pricing for-
mula. Journal of Finance 44 (1), 211–219.

Schweizer, M. (2002). On bermudan options. In Advances in Finance and Stochastics,
pp. 257–270. Springer.

Seydel, R. (2012). Tools for computational finance (5 ed.). Springer Science & Business
Media.

Skorokhod, A. (1965). Studies in the theory of random processes. Reading, Massachusetts,
USA: Addion-Wesley Publishing Company, Inc.

Tadmor, E. (1986). The exponential accuracy of Fourier and Chebyshev differencing
methods. SIAM Journal on Numerical Analysis 23 (1), 1–10.

Trefethen, L. N. (2013). Approximation theory and approximation practice. SIAM books.

Trefethen, L. N. (2016). Multivariate polynomial approximation in the hypercube.
Preprint, ArXiv: 1608.02216, https://arxiv.org/abs/1608.02216.

Van Binsbergen, J. H. and M. W. Brandt (2007). Optimal asset allocation in asset
liability management. Technical report, National Bureau of Economic Research.

Van der Hoek, J. and R. J. Elliott (2006). Binomial models in finance. Springer Science
& Business Media.

von Sydow, L., L. Josef Höök, E. Larsson, E. Lindström, S. Milovanović, J. Persson,
V. Shcherbakov, Y. Shpolyanskiy, S. Sirén, J. Toivanen, et al. (2015). BENCHOP–
The BENCHmarking project in option pricing. International Journal of Computer
Mathematics 92 (12), 2361–2379.

Wald, A. (1947). Sequential analysis. 1947. New York: Wiley.

Wloka, J. (1987). Partial differential equations. Cambridge University Press.

Zagst, R. (2002). Interest rate management, first edition. Berlin: Springer-Verlag.

184

https://arxiv.org/abs/1608.02216


List of Tables

3.1 Overview of the parameter sets used for the CEV model . . . . . . . . . . 43
3.2 Calibration results for calibrating to put options only and out-of-the-

money options for the CEV model. Due to the effect of non-unique
de-Americanization results, for the CEV model, some option prices have
been neglected in the calibration to de-Americanized option data, as Re-
mark 3.3.2 explains. In scenarios p1 to p5, 5, 5, 10, 10 and 10 prices were
excluded in the calibration to put options only. . . . . . . . . . . . . . . . 49

3.3 Processed Google option data for t0 “ 02.02.2015, S0 “ 523.76 . . . . . . . 50
3.4 Calibration results for calibrating to out-of-the-money put and call options

combined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Overview of prices for barrier and lookback options . . . . . . . . . . . . . 52

4.1 Parametrization of models, basket and path-dependent options. The model
parameters are given for j “ 1, . . . , d to reflect the multivariate setting
with free parameters strike K and maturity T . . . . . . . . . . . . . . . . 106

4.2 Interpolation of exotic options with Chebyshev interpolation. N “ 5 and
d “ 5 in all cases. In addition to the L8 errors the table displays the
Monte-Carlo (MC) prices, the Monte-Carlo confidence bounds and the
Chebyshev Interpolation (CI) prices for those parameters at which the
L8 error is realized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Interpolation of exotic options with Chebyshev interpolation. N “ 10
and d “ 5 in all cases. In addition to the L8 errors the table displays
the Monte-Carlo (MC) prices, the Monte-Carlo confidence bounds and
the Chebyshev Interpolation (CI) prices for those parameters at which the
L8 error is realized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Interpolation of exotic options with Chebyshev interpolation. N “ 30
and d “ 5 in all cases. In addition to the L8 errors the table displays
the Monte-Carlo (MC) prices, the Monte-Carlo confidence bounds and
the Chebyshev Interpolation (CI) prices for those parameters at which the
L8 error is realized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Interpolation of one-dimensional American puts with Chebyshev interpo-
lation in the Black&Scholes model. In addition to the L8 errors the table
displays the Finite Differences (FD) prices and the Chebyshev Interpola-
tion (CI) prices for those parameters at which the L8 error is realized. . . 108

185



List of Tables

4.6 Interpolation of multivariate lookback options with Chebyshev interpola-
tion for N “ 6 based on an enriched Monte-Carlo setting with 5 ¨ 106

sample paths, antithetic variates, and 400 time steps per year. In addition
to the L8 error on the test grid, we also report the Monte-Carlo (MC)
price, the Monte-Carlo confidence bound, and the Chebyshev Interpola-
tion (CI) price for the parameters at which the L8 error is realized. We
observe that the accuracy of the Chebyshev interpolation for N “ 6 is
roughly in the same range as the accuracy of the benchmark Monte-Carlo
setting (worst-case confidence bound of 1.644 ¨ 10´2 and worst-case error
of 7.361 ¨ 10´3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7 Efficiency study for a multivariate lookback option in the Heston model
based on 5 underlyings. Here, we vary one model parameter and com-
pare the Chebyshev results to Monte-Carlo. Both methods have been set
up to deliver comparable accuracies. As the number of computed prices
increases, the Chebyshev algorithm increasingly profits from the initial
investment of the offline phase. . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 Interpolation of multivariate lookback options with Chebyshev interpola-
tion for N “ 6 based on an enriched Monte-Carlo setting with 5 ¨ 106

sample paths, antithetic variates, and 400 time steps per year. In ad-
dition to the L8 error on the test grid, we also report the Monte-Carlo
(MC) price, the Monte-Carlo confidence bound, and the Chebyshev Inter-
polation (CI) price for the parameters at which the L8 error is realized.
We observe that the accuracy of the Chebyshev interpolation N “ 6 is
roughly in the same range as the accuracy of the benchmark Monte-Carlo
setting (worst-case confidence bound of 6.783 ¨ 10´2 and worst-case error
of 2.791 ¨ 10´2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.9 Efficiency study for a multivariate lookback option in the Heston model
based on 5 underlyings. Here, we vary two model parameters and com-
pare the Chebyshev results to Monte-Carlo. Both methods have been set
up to deliver comparable accuracies. As the number of computed prices
increases, the Chebyshev algorithm increasingly profits from the initial
investment of the offline phase. . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 De–Americanization effects on pricing put options in the CEV model -
average error between the de-Americanized and European prices for each
maturity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.2 De–Americanization effects on pricing put options in the CEV model -
average error between the de-Americanized and European prices for each
strike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.3 De–Americanization effects on pricing put options in the CEV model -
maximal European put prices. . . . . . . . . . . . . . . . . . . . . . . . . . 174

186



List of Tables

A.4 Additional test for S “ 100. De–Americanization effects on pricing put
options in the CEV model - average error between De-Americanized and
European prices for each maturity. . . . . . . . . . . . . . . . . . . . . . . 175

A.5 Additional test for S “ 100. De–Americanization effects on pricing put
options in the CEV model - maximal European put prices. . . . . . . . . . 175

187



List of Figures

1.1 Schematic overview: Both option pricing techniques, FFT (add-on to
Fourier pricing) and reduced basis (add-on to a PDE technique), exploit
the parameter dependency as an add-on to the functional architecture of
the underlying pricing technique. . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Idea of exploiting parameter dependencies independently of the underlying
pricing technique. The answer in this thesis will be Chebyshev polynomial
interpolation. The pricing techniques of PDE methods, Fourier pricing and
Monte-Carlo simulation are only applied during the offline phase. . . . . . 13

2.1 Illustration of a Bernstein ellipse with foci at ˘1. The sum of the connec-
tion of each point on the ellipse with the two foci is exactly %. We see that
semimajor a and semiminor b of the ellipse are summing up to the radius
of the ellipse %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 De–Americanization scheme: American option prices are transferred into
European prices before the calibration process itself is started. We investi-
gate the effects of de–Americanization by comparing the results to directly
calibrating American options. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Illustration of hat functions ϕi, i “ 2, . . . , 14, over a node grid with 15 nodes. 41
3.3 Given an American put option price of 20 with S0 “ 100, K “ 120,

r “ 0.01, i.e., an American put option in the exercise region, a unique tree
cannot be found to replicate this option. In this example, we show two
binomial trees for u « 1.036 (top) as well as u « 1.112 (bottom). In each
tree, we show the value of the underlying (black), the European put price
(blue) and the American put price (red) at each node. Both trees replicate
the American option price of 20.00 but result in different European put
prices: 18.81 and 19.69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 De–Americanization effects on pricing put options in the CEV model. As
an example, the results are shown for p5 for the average error between the
de-Americanized and the European prices for each strike (top right) and
each maturity (bottom right). The average differences of the corresponding
American and European prices is shown for each strike (top left) and each
maturity (bottom left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

188



List of Figures

4.1 Polynomial interpolation of the Runge function fpxq “ 1
1`25x2 with equidistantly-

spaced nodal points. We use 5 (top) and 10 (bottom) nodal points. These
are marked in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 The first 6 Chebyshev polynomials T0pxq, . . . , T5pxq on the interval r´1, 1s. 70
4.3 Nodal points in blue of the one-dimensional (left), two-dimensional (mid-

dle) and three-dimensional (right) Chebyshev polynomial interpolation by
setting N “ 10 in each dimensions. For the one-dimensional case, we also
show in red N ` 1 equidistantly spaced points on the upper half of the
unit circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Schematic illustration of the iterative proof for Theorem 4.2.6. A function
in 3 variables is iteratively interpolated in one dimension at each step.
At the first step of the proof, the one-dimensional interpolation results
can easily be applied using given properties of the function f . From the
second step onwards however, even if at each step only a one-dimensional
interpolation is applied, the according properties of a "new temporarily"
function have to be verified. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Comparison of the error bounds bp%,N,Dq (blue) and ap%,N,Dq (red,
dashed) by setting %1 “ %2 and N1 “ N2 “ 10. At %1 “ %2 « 2.800882
both error bounds intersect. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Effiency study for a multidimensional lookback option in the Heston model
with 5 underlyings varying one model parameter σ. Comparison of run-
times of Monte-Carlo pricing with Chebyshev pricing including the offline
phase. Both methods have been set up to deliver comparable accuracies.
We observe that both curves intersect at roughly M “ 35. . . . . . . . . . 112

4.7 Effiency study for a multivariate lookback option in the Heston model
based on 5 underlyings, varying the two model parameters σ and ρ. Com-
parison of run-times for Monte-Carlo pricing and Chebyshev pricing in-
cluding the offline phase. Both methods have been set up to deliver com-
parable accuracies. We observe that the Monte-Carlo and the Chebyshev
curves intersect at roughly M “ 15. . . . . . . . . . . . . . . . . . . . . . . 115

5.1 Convergence study of Algorithm 6 for the integration over the density
function (top). For increasing N , the relative error of pricing the reference
option type is reported. The cosine method of Fang and Oosterlee (2009)
is used as the benchmark method. The run-time is reported on the bottom.163

5.2 Convergence study of Algorithm 6 for applying the truncated moment
method (top). For increasing N , the relative error of pricing the reference
option type is reported. The cosine method of Fang and Oosterlee (2009)
is used as the benchmark method. The run-time is reported on the bottom.164

5.3 Convergence study of Algorithm 6 for applying Fourier techniques (top).
For increasing N , the relative error of pricing the reference option type is
reported. The cosine method of Fang and Oosterlee (2009) is used as the
benchmark method. The run-time is reported on the bottom. . . . . . . . 165

189



List of Figures

5.4 Application of Algorithm 5 by applying integration over the density func-
tion in the Black&Scholes model. For increasing N the relative error and
the run-time is reported. The cosine method of Fang and Oosterlee (2009)
is used as benchmark method. . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.5 Absolute error (top) of applying Algorithm 9 over the test grid and 27
parameter settings for increasing N . The cosine method of Fang and
Oosterlee (2009) is used as the benchmark method. The run-times for the
online phase are presented on the bottom. . . . . . . . . . . . . . . . . . . 169

190


	Introduction
	Mathematical Preliminaries
	Asset Price Models and Option Pricing
	Three Ways to Derive the Option Price
	Connection to Solutions of Partial Differential Equations
	Fourier pricing
	Monte-Carlo simulation

	Miscellaneous

	Numerical Investigation of the de–Americanization Method
	De–Americanization Methodology
	Pricing Methodology
	Pricing PDE
	Variational Formulation

	Numerical Study of the effects of de–Americanization
	Discretization
	Effects of de–Americanization on Pricing
	Effects of de–Americanization on Calibration to Synthetic Data
	Effects of de–Americanization on Calibration to Market Data
	Effects of de–Americanization in Pricing Exotic Options

	Conclusion
	Outlook: The Reduced Basis Method
	Excursion: The Regularized Heston Model
	Existence and Strong Solution in the Bounded Domain I=(,)
	Convergence


	Chebyshev Polynomial Interpolation Method
	Chebyshev Polynomial Interpolation
	Chebyshev Polynomials
	Chebyshev Polynomial Interpolation
	Multivariate Chebyshev Interpolation

	Convergence Results of the Chebyshev Interpolation Method
	Convergence Results Including the Derivatives

	Chebyshev Interpolation Method for Parametric Option Pricing
	Exponential Convergence of Chebyshev Interpolation for POP

	Numerical Experiments for Parametric Option Pricing
	European Options
	Basket and Path-dependent Options
	Study of the Gain in Efficiency
	Relation to Advanced Monte-Carlo Techniques

	Conclusion and Outlook

	Dynamic Programming Framework with Chebyshev Interpolation
	Derivation of Conditional Expectations
	Dynamic Chebyshev in the Case of Analyticity
	Description of Algorithms
	Error Analysis

	Solutions for Kinks and Discontinuities
	Splitting of the Domain
	Mollifier to the Function g(t,x)

	Alternative Approximation of General Moments in the Pre-Computation
	Combination of Empirical Interpolation with Dynamic Chebyshev
	Numerical Experiments - Example Bermudan and American options
	Conclusion

	Detailed Results for Effects of de–Americanization on Pricing
	Bibliography

