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Abstract: The Standard Model (SM) prediction for the ratio ε′/ε appears to be signifi-

cantly below the experimental data. Also εK in the SM tends to be below the data. Any

new physics (NP) removing these anomalies will first of all have impact on flavour ob-

servables in the K meson system, in particular on rare decays K+ → π+νν̄, KL → π0νν̄,

KL → µ+µ− and KL → π0`+`− and ∆MK . Restricting the operators contributing to

ε′/ε to the SM ones and to the corresponding primed operators, NP contributions to

ε′/ε are quite generally dominated either by QCD penguin (QCDP) operators Q6(Q′6) or

electroweak penguin (EWP) operators Q8(Q′8) with rather different implications for other

flavour observables. Our presentation includes general models with tree-level Z and Z ′

flavour violating exchanges for which we summarize known results and add several new

ones. We also briefly discuss few specific models. The correlations of ε′/ε with other

flavour observables listed above allow to differentiate between models in which ε′/ε can

be enhanced. Various DNA-tables are helpful in this respect. We find that simultaneous

enhancements of ε′/ε, εK , B(KL → π0νν̄) and B(K+ → π+νν̄) in Z scenarios are only

possible in the presence of both left-handed and right-handed flavour-violating couplings.

In Z ′ scenarios this is not required but the size of NP effects and the correlation between

B(KL → π0νν̄) and B(K+ → π+νν̄) depends strongly on whether QCDP or EWP domi-

nate NP contributions to ε′/ε. In the QCDP case possible enhancements of both branching

ratios are much larger than for EWP scenario and take place only on the branch parallel

to the Grossman-Nir bound, which is in the case of EWP dominance only possible in the

absence of NP in εK . We point out that QCDP and EWP scenarios of NP in ε′/ε can also

be uniquely distinguished by the size and the sign of NP contribution to ∆MK , elevating

the importance of the precise calculation of ∆MK in the SM. We emphasize the importance

of the theoretical improvements not only on ε′/ε, εK and ∆MK but also on KL → µ+µ−,

KL → π0`+`−, and the K → ππ isospin amplitudes ReA0 and ReA2 which would in the

future enrich our analysis.
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1 Introduction

The ratio ε′/ε measures the size of the direct CP violation in KL → ππ decays relative

to the indirect CP violation described by εK and is rather sensitive to new physics (NP).

In the Standard Model (SM) ε′ is governed by QCD penguins (QCDP) but receives also

an important destructively interfering contribution from electroweak penguins (EWP). Be-

yond the SM the structure of NP contributions to ε′/ε is in general different as often only

the EWP operators contribute in a significant manner. But, one can also construct sce-

narios in which NP contributions from QCDP dominate. This is for instance the case of

certain Z ′ models which we will present in detail below. Moreover, there exist models

in which NP contributions to ε′/ε can be dominated by new operators which can be ne-

glected within the SM. A prominent example is the chromomagnetic penguin operator in

supersymmetric models.

The present status of ε′/ε in the SM has been reviewed recently in [1, 2], where

references to rich literature can be found. After the new results for the hadronic matrix

elements of QCDP and EWP (V − A) ⊗ (V + A) operators from RBC-UKQCD lattice

collaboration [3–5] and the extraction of the corresponding matrix elements of penguin

(V −A)⊗ (V −A) operators from the CP-conserving K → ππ amplitudes one finds [1]

(ε′/ε)SM = (1.9± 4.5)× 10−4 . (1.1)

This result differs with 2.9σ significance from the experimental world average from NA48 [6]

and KTeV [7, 8] collaborations,

(ε′/ε)exp = (16.6± 2.3)× 10−4 , (1.2)

suggesting evidence for NP in K decays.

As demonstrated in [9] these new results from lattice-QCD are supported by the large

N approach, which moreover allows to derive upper bounds on the matrix elements of the

dominant penguin operators. This implies [1, 9]

(ε′/ε)SM ≤ (8.6± 3.2)× 10−4 , (large N), (1.3)

still 2σ below the experimental data. Additional arguments for this bound will be given

in section 2.

While, the improvement on the estimate of isospin corrections, final state interactions

(FSI) [10–15] and the inclusion of NNLO QCD corrections could in principle increase ε′/ε

with respect to the one in (1.1), it is rather unlikely that values of ε′/ε violating the upper

bound in (1.3) will be found within the SM. After all, until now, lattice QCD confirmed most

of earlier results on K meson flavour physics obtained in the large N approach (see [2, 16]).

In particular a recent analysis of FSI in this approach in [17] gives additional support

for these expectations. As stated in this paper, it turns out that beyond the strict large

N limit, FSI are likely to be important for the ∆I = 1/2 rule, in agreement with [10–15],

but much less relevant for ε′/ε. It appears then that the SM has significant difficulties in

explaining the experimental value of ε′/ε. This implies that NP models in which this ratio

can be enhanced with respect to its SM value are presently favoured.
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Now, the renormalization group effects play a very important role in the analysis of

ε′/ε. They have been known already for more than twenty years at the NLO level [18–23]

and present technology could extend them to the NNLO level if necessary. First steps in

this direction have been taken in [24–26]. The situation with hadronic matrix elements is

another story and even if significant progress on their evaluation has been made over the

last 25 years, the present status is clearly not satisfactory. Still, both the large N approach

and lattice QCD show that hadronic matrix elements of QCD and EWP (V −A)⊗ (V +A)

operators, Q6 and Q8 respectively, are by far the largest among those of contributing

operators with the relevant matrix element 〈Q8〉2 being larger than 〈Q6〉0 in magnitude by

roughly a factor of two.

With the Wilson coefficient y6 of Q6 being roughly by a factor of 90 larger than y8 of

Q8 (see [1]) one would expect the Q6 operator to be by far the dominant one in ε′/ε. That

this does not happen is due to the factor

ReA2

ReA0
=

1

22.4
(1.4)

which in the basic formula for ε′/ε in (2.1) suppresses the Q6 contribution relative to the

Q8 one. As a result strong cancellation between these two dominant contributions to ε′/ε

in the SM takes place so that contributions of other less important (V − A) ⊗ (V − A)

operators matter. A detailed anatomy of such contributions has been presented in [1].

Beyond the SM quite often the Wilson coefficients of Q6 and Q8 and of the primed

operators Q′6 and Q′8,1 in the NP contribution to ε′/ε are of the same order and then

operators Q8 and/or Q′8 win easily this competition because of the suppression of the Q6

and Q′6 contributions by the factor in (1.4) and the fact that their hadronic matrix elements

are smaller than the ones of Q8 and Q′8. Therefore retaining only the latter contributions

in the NP part is a reasonable approximation if one wants to make a rough estimate of

ε′/ε with the accuracy of 10%. Only in the presence of a flavour symmetry which assures

the flavour universality of diagonal quark couplings, Q6 and/or Q′6 win this competition

because the contribution of Q8(Q′8) is then either negligible or absent. In such cases Q6

and/or Q′6 are by far the dominant contributions to ε′/ε.

This simplification in the renormalization group analysis, pointed out in [27], and

present in many extensions of the SM, allows for a quick rough estimate of the size of NP

contributions to ε′/ε in a given model. Moreover, the absence of cancellations between

QCD and electroweak penguin contributions in the NP part makes it subject to much

smaller theoretical uncertainties than it is the case within the SM. Then leading order

renormalization group analysis is sufficient, in particular, for finding the sign of NP con-

tribution as a function of model parameters, generally couplings of NP to quarks. This

sign is in most cases not unique because of the presence of free parameters represented by

new couplings in a given model. But requiring that NP enhances ε′/ε relative to its SM

value, determines the signs of these couplings with implications for other observables in

the K meson system. As ε′/ε is only sensitive to imaginary couplings, we will simultane-

ously assume that there is a modest anomaly in εK , which together with ε′/ε will allow us

1These operators are obtained from Q6 and Q8 through the interchange of V −A and V +A.
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to determine both imaginary and real flavour violating couplings of Z and Z ′ implied by

these anomalies. This in turn will give us predictions for NP contributions to KL → π0νν̄,

K+ → π+νν̄, KL → µ+µ− and ∆MK implied by these anomalies. In certain models the

enhancement of ε′/ε implies uniquely enhancement or suppression of other observables or

even eliminates significant NP contributions from them. In this manner even patterns of

deviations from SM predictions can identify the favoured NP models.

This strategy of identifying NP through quark flavour violating processes has been

proposed in [28] and graphically represented in terms of DNA-charts. But the case of ε′/ε

has not been discussed there in this manner and we would like to do it here in the form

of DNA-tables, see tables 3 and 4, concentrating fully on the K meson system. But as we

will see this system by itself can already give us a valuable insight into physics beyond the

SM. The implications for other meson systems require more assumptions on the flavour

structure of NP and will be considered elsewhere. A recent study of the impact of K

physics observables on the determination of the Unitarity triangle can be found in [29].

Our paper is organized as follows. In section 2 we recall the basic formula for ε′/ε

that is valid in all extensions of the SM and recall the relevant hadronic matrix elements

of the operators Q6(Q′6) and Q8(Q′8). In section 3 we present our strategy for addressing

the sizable ε′/ε anomaly and a modest εK anomaly with the hope that it will make our

paper more transparent. In section 4 we discuss models in which NP contributions to

ε′/ε come dominantly from tree-level Z exchanges and identify a number of scenarios for

flavour-violating Z couplings that could provide the required enhancement of ε′/ε with

concrete implications for other flavour observables listed above. In section 5 we generalize

this discussion to models with tree-level Z ′ exchanges and discuss briefly the effects of

Z − Z ′ mixing. We also consider there the case of G′, a colour octet of heavy gauge

bosons. In both sections we demonstrate how these different models can be differentiated

with the help of other observables. Of particular interest is the case of MZ′ outside the

reach of the LHC if the flavour structure of a given model is such that the suppression

by Z ′ propagator is compensated by the increase of flavour-violating couplings. We also

stress that for MZ′ ≥ 10 TeV renormalization group effects imply additional significant

enhancements of both QCDP and EWP contributions to ε′/ε. In section 6 we briefly

discuss scenarios in which contributions of both Z and Z ′ are present even in the absence

of significant Z−Z ′ mixing. This is the case of models in which in addition to Z ′ also new

heavy fermions, like vector-like quarks, are present implying through the mixing with SM

quarks flavour-violating Z couplings. While our discussion is rather general, in section 7 we

give examples of specific Z and Z ′ models, in which one can reach clear cut conclusions and

briefly summarize more complicated models. In section 8 we discuss possible implications

of NP in the K → ππ isospin amplitudes ReA0 and ReA2. In section 9 we contemplate

on the implications of the possible discovery of NP in K+ → π+νν̄ by NA62 experiment

in 2018 in the presence of ε′/ε anomaly, dependently on whether NP in εK is present

or absent. Finally in section 10 we summarize most important findings and give a brief

outlook for the coming years and list most important open questions. Several appendices

contain a collection of useful formulae.

Our paper differs from other papers on flavour physics in K meson system in that we

do not obtain the results for ε′/ε and εK as output of a complicated analysis but treat

– 4 –
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them as input parametrizing the size of NP contributions to them by two parameters of

O(1): κε′ and κε. See section 3 for the explicit formulation of this strategy.

Our paper differs also from many papers on rare processes present in the literature

in that it does not contain a single plot coming from a sophisticated numerical analysis.

The uncertainty in the QCDP contribution to ε′/ε in the SM leaves still a very large room

for NP in ε′/ε and a detailed numerical analysis would only wash out the pattern of NP

required to enhance ε′/ε. The absence of sophisticated plots is compensated by numerous

simple analytic formulae and DNA-tables that should allow model builders to estimate

quickly the pattern of NP in the K meson system in her or his favourite model. Our

goal is to present the material in such a manner that potential readers can follow all steps

in detail.

Finally, our paper differs also from the recent literature on flavour physics which is

dominated by the anomalies in most recent data for B → K(K∗)`+`− and B → D(D∗)τντ
reported by LHCb, BaBar and Belle. The case of ε′/ε is different as the data is roughly

fifteen years old and the progress is presently done by theorists, not experimentalists. But

as the recent papers [1, 3, 4, 9] show, ε′/ε after rather silent ten years is striking back,

in particular in correlation with K+ → π+νν̄ and KL → π0νν̄ [30, 31] on which the

data [32–34] will improve significantly in the coming years. Moreover, as we will see in

the context of our presentation, theoretical improvements not only on ε′/ε but also on εK ,

∆MK , KL → µ+µ−, KL → π0`+`−, and the K → ππ isospin amplitudes ReA0 and ReA2

will give us new insights in NP at short distance scales.

2 Basic formula for ε′/ε

The basic formula for ε′/ε reads [1]

ε′

ε
= − ω+√

2 |εK |

[
ImA0

ReA0
(1− Ω̂eff)− 1

a

ImA2

ReA2

]
, (2.1)

with (ω+, a) and Ω̂eff given as follows

ω+ = a
ReA2

ReA0
= (4.53± 0.02)× 10−2, a = 1.017, Ω̂eff = (14.8± 8.0)× 10−2 . (2.2)

Here a and Ω̂eff summarize isospin breaking corrections and include strong isospin viola-

tion (mu 6= md), the correction to the isospin limit coming from ∆I = 5/2 transitions and

electromagnetic corrections [35–37]. Ω̂eff differs from Ωeff in [35, 36] which includes contri-

butions of EWP. Here they are present in ImA0 and of course in ImA2. Strictly speaking

ε′/ε is a complex quantity and the expression in (2.1) applies to its real part but its phase

is so small that we can drop the symbol “Re” in all expressions below in order to simplify

the notation.

The amplitudes ReA0,2 are then extracted from the branching ratios on K → ππ

decays in the isospin limit. Their values are given by

ReA0 = 33.22(1)× 10−8 GeV , ReA2 = 1.479(3)× 10−8 GeV . (2.3)

For the analysis of NP contributions in our paper the only relevant operators are the

following QCDP and EWP (V −A)⊗ (V +A) operators:

– 5 –
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QCD-penguins:

Q5 = (s̄d)V−A
∑

q=u,d,s,c,b,t

(q̄q)V+A Q6 = (s̄αdβ)V−A
∑

q=u,d,s,c,b,t

(q̄βqα)V+A (2.4)

Electroweak penguins:

Q7 =
3

2
(s̄d)V−A

∑
q=u,d,s,c,b,t

eq (q̄q)V+A Q8 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s,c,b,t

eq (q̄βqα)V+A . (2.5)

The primed operators Q′i are obtained from Qi through the interchange of V −A and

V +A. Summation over colour indices α and β is understood. In the case of Z models top

quark contribution should be omitted.

Eventually, if we are only interested in signs of NP contributions to ε′/ε and ap-

proximate estimates of their magnitudes, only Q6(Q′6) will be relevant for ImA0 and only

contribution of Q8(Q′8) for ImA2. Thus we only need two hadronic matrix elements:

〈Q6(mc)〉0 = − 4

√
3

2

[
m2

K

ms(mc) +md(mc)

]2

(FK − Fπ)B
(1/2)
6 = −0.58B

(1/2)
6 GeV3 (2.6)

〈Q8(mc)〉2 =
√

2

√
3

2

[
m2

K

ms(mc) +md(mc)

]2

Fπ B
(3/2)
8 = 1.06B

(3/2)
8 GeV3. (2.7)

This approximate treatment would not be justified within the SM because of strong cancel-

lations between QCDP and EWP contributions. But as we explained above such cancella-

tions are absent in many extensions of the SM and for sure in the models considered by us.

The choice of the scale µ = mc is convenient as it is used in analytic formulae for ε′/ε

in [1]. But otherwise the precise value of µ is not relevant as the dominant µ dependence

of the Wilson coefficients and of the matrix elements of Q6 and Q8 operators has a simple

structure being dominantly governed by the µ dependence of involved quark masses. As

a result of this the µ dependence of the parameters B
(1/2)
6 and B

(3/2)
8 is negligible for

µ ≥ 1 GeV [22]. The matrix elements of primed operators differ only by sign from the

ones given above. The numerical values in (2.6) and (2.7) are given for the central values

of [38, 39]

mK = 497.614 MeV, Fπ = 130.41(20) MeV,
FK
Fπ

= 1.194(5) , (2.8)

ms(mc) = 109.1(2.8) MeV, md(mc) = 5.44(19) MeV . (2.9)

The values of other parameters are collected in table 1.

Recently significant progress on the values of B
(1/2)
6 and B

(3/2)
8 has been made by the

RBC-UKQCD collaboration, who presented new results on the relevant hadronic matrix

elements of the operators Q6 [4] and Q8 [3]. These results imply the following values for

B
(1/2)
6 and B

(3/2)
8 [1, 45]

B
(1/2)
6 = 0.57± 0.19 , B

(3/2)
8 = 0.76± 0.05 , (RBC-UKQCD) (2.10)

– 6 –
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GF 1.16637(1)× 10−5 GeV−2 MW 80.385 GeV

sin2 θW 0.23116(13) MZ 91.1876 GeV

|εK | 2.228(11)× 10−3 [40] mK 0.4976 GeV

∆MK 3.483× 10−15 GeV [40] B̂K 0.750(15) [16, 39]

λ = |Vus| 0.2252(9) [41] B
(1/2)
6 0.70

αs(MZ) 0.1185(6) [40] B
(3/2)
8 0.76

κ̃ε 0.94± 0.02 [42, 43] η2 0.5765(65) [44]

r̃(MZ) 1.068 Reλt −3.0 · 10−4

r̃(3 TeV) 0.95 Imλt 1.4 · 10−4

Table 1. Values of theoretical and experimental quantities used as input parameters. See also (2.8)

and (2.9).

to be compared with their values in the strict large N limit of QCD [46–48]

B
(1/2)
6 = B

(3/2)
8 = 1, (large N Limit) . (2.11)

But, in this analytic, dual approach to QCD, one can demonstrate explicitly the sup-

pression of both B
(1/2)
6 and B

(3/2)
8 below their large-N limit and derive conservative upper

bounds on both B
(1/2)
6 and B

(3/2)
8 which read [9]

B
(1/2)
6 < B

(3/2)
8 < 1 (large-N). (2.12)

While this approach gives B
(3/2)
8 (mc) = 0.80± 0.10, the result for B

(1/2)
6 is less precise but

there is a strong indication that B
(1/2)
6 < B

(3/2)
8 , with typical values B

(1/2)
6 ≈ 0.5 − 0.6 at

scales O(1 GeV), in agreement with (2.10).2

We should emphasize that this suppression of B
(1/2)
6 and B

(3/2)
8 results from the meson

evolution of the density-density operators Q6 and Q8 from µ ≈ 0 (strict large N limit)

to scales O(1 GeV), where the hadronic matrix elements are multiplied by the Wilson

coefficients. The scale dependence of both parameters is logarithmic but the one of B
(1/2)
6

is stronger than of B
(3/2)
8 implying at scales O(1 GeV) the inequalities in (2.12). This

pattern of scale dependence of both parameters is consistent with the one for µ > 1 GeV [22]

that can be found by usual renormalization group methods. But the scale dependence for

µ > 1 GeV is weaker than for lower scales, as expected. For further details, see [9].

It is probably useful to recall at this stage that the recent finding of ε′/ε in the SM

being below its experimental value has been signalled already by early analyses, among

them in [54–56], which used B
(1/2)
6 = B

(3/2)
8 = 1. See [57] for an early review. The new

result in (2.12) tells us that this is an upper bound on these two parameters and the recent

lattice and large N calculations show that these parameters are significantly below this

bound making ε′/ε in the SM even smaller than previously expected.

On the other hand, it has been advocated by the chiral perturbation theory practition-

ers [10, 11, 13–15] that final state interactions (FSI), not included in the large N approach

2On the other hand a number of other large N approaches [49–51] violates strongly the bounds in (2.12)

with B
(1/2)
6 in the ballpark of 3 and B

(3/2)
8 > 1 in striking disagreement with lattice results. Similar

comment applies to B
(3/2)
8 in the dispersive approach [52, 53].
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in the leading order, effectively increase the value of B
(1/2)
6 by roughly a factor of 1.5 and

suppress B
(3/2)
8 by roughly 10% bringing SM predition for ε′/ε close to the experimental re-

sult in (1.2). However, the recent analysis in [17]demonstrates that this claim in the case of

B
(1/2)
6 cannot be justified. In fact, as pointed out in that paper, within a pure effective (me-

son) field approach like chiral perturbation theory the dominant current-current operators

governing the ∆I = 1/2 rule and the dominant density-density (four-quark) QCD penguin

operator Q6 governing ε′/ε cannot be disentangled from each other. Therefore, without an

UV completion, that is QCD at short distance scales, the claim that the isospin amplitude

ReA0 and B
(1/2)
6 are enhanced through FSI in the same manner, as done in [10, 11, 13–15] ,

cannot be justified. But in the context of a dual QCD approach, which includes both long

distance dynamics and the QCD at short distance scales, such a distinction is possible.

One finds then that beyond the strict large N limit FSI are likely to be important for the

∆I = 1/2 rule but much less relevant for ε′/ε [17].

It should also be emphasized that the estimates in [10, 11, 13–15] omitted the non-

factorizable contributions to B
(1/2)
6 and B

(3/2)
8 , represented by meson evolution mentioned

above and calculated in [9]. As stressed above, the inclusion of them in the hadronic

matrix elements is mandatory in order for the calculations of matrix elements and of

Wilson coefficients to be compatible with each other.

These findings diminish significantly hopes that improved treatment of FSI within

lattice QCD approach and dual QCD approach would bring the SM prediction for ε′/ε to

agree with the experimental data, opening thereby an arena for important NP contributions

to this ratio and giving strong motivation for the analysis presented in our paper.

Unfortunately, due to cancellations between various contributions, the error on ε′/ε in

the SM remains to be substantial. From present perspective we do not expect that this

error can be reduced significantly by using large N approach or other analytical approaches.

Therefore, the efforts to find out the room left for NP contributions in ε′/ε will be led in

the coming years by lattice QCD. But it would be important to have at least second lattice

group, beyond RBC-UKQCD, which would take part in these efforts. As this may take

still several years, it is useful to develop some strategies to be able to face NP in ε′/ε, if the

present results on ε′/ε in the SM from lattice QCD and large N approach will be confirmed

by more precise lattice calculations. One such strategy is proposed below.

This information is sufficient for our analysis which as the main goal has the identifi-

cation of NP patterns in flavour observables in a number of models implied by the desire

to enhance ε′/ε over its SM value in a significant manner. In particular those models are

of interest which can provide a positive shift in ε′/ε by at least 5× 10−4.

3 Strategy

3.1 Present

In our paper the central role will be played by ε′/ε and εK for which in the presence of NP

contributions we have

ε′

ε
=

(
ε′

ε

)SM

+

(
ε′

ε

)NP

, εK ≡ eiϕε
[
εSM
K + εNP

K

]
. (3.1)
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In view of uncertainties present in the SM estimates of ε′/ε and to a lesser extent in εK
we will fully concentrate on NP contributions. Therefore in order to identify the pattern

of NP contributions to flavour observables implied by the ε′/ε anomaly in a transparent

manner, we will proceed in a given model as follows:

Step 1: we assume that NP provides a positive shift in ε′/ε:(
ε′

ε

)NP

= κε′ · 10−3, 0.5 ≤ κε′ ≤ 1.5, (3.2)

with the range for κε′ indicating the required size of this contribution. But in the formulae

below, κε′ will be a free parameter. This step will determine the imaginary parts of flavour-

violating Z and Z ′ couplings to quarks as functions of κε′ .

Step 2: in order to determine the relevant real parts of the couplings involved, in the

presence of the imaginary part determined from ε′/ε, we will assume that in addition to

the ε′/ε anomaly, NP can also affect the parameter εK . We will describe this effect by the

parameter κε so that now in addition to (3.2) we will study the implications of the shift in

εK due to NP

(εK)NP = κε · 10−3, 0.1 ≤ κε ≤ 0.4 . (3.3)

The positive sign of κε is motivated by the fact that if εK is predicted in the SM using

CKM parameters extracted from B system observables, its value is found typically below

the data as first emphasized in [42, 58]. See also [59, 60]. But it should be stressed that this

depends on whether inclusive or exclusive determinations of |Vub| and |Vcb| are used and

with the inclusive ones SM value of εK agrees well with the data. But then as emphasized

in [61] ∆Ms and ∆Md are significantly above the data. Other related discussions can be

found in [27, 62–64].

While this possible “ anomaly” is certainly not as pronounced as the ε′/ε one, it is

instructive to assume that it is present at the level indicated in (3.3), that is at most 20%.

Step 3: in view of the uncertainty in κε′ we set several parameters to their central values.

In particular for the SM contributions to rare decays we set the CKM factors to

Reλt = −3.0 · 10−4, Imλt = 1.4 · 10−4 (3.4)

which are in the ballpark of present estimates obtained by UTfit [59] and CKMfitter [60]

collaborations. For this choice of CKM parameters the central value of the resulting εSM
K

is 1.96 · 10−3. With the experimental value of εK in table 1 this implies κε = 0.26. But we

will still vary κε while keeping the values in (3.4) as NP contributions do not depend on

them but are sensitive functions of κε.

Step 4: having fixed the flavour violating couplings of Z or Z ′ in this manner, we will

express NP contributions to the branching ratios for K+ → π+νν̄, KL → π0νν̄ and KL →
µ+µ− and to ∆MK in terms of κε′ and κε. This will allow us to study directly the impact

of ε′/ε and εK anomalies in Z and Z ′ scenarios on these four observables. In table 2 we

indicate the dependence of a given observable on the real and/or the imaginary Z or Z ′
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ε′/ε εK KL → π0νν̄ K+ → π+νν̄ KL → µ+µ− ∆MK

Im∆ ∗ ∗ ∗ ∗ ∗

Re∆ ∗ ∗ ∗ ∗

Table 2. The dependence of various observables on the imaginary and/or real parts of Z and Z ′

flavour-violating couplings.

flavour violating coupling to quarks. In our strategy imaginary parts depend only on κε′ ,

while the real parts on both κε′ and κε. The pattern of flavour violation depends in a given

NP scenario on the relative size of real and imaginary parts of couplings and we will see

this explicitly later on.

In the context of our presentation we will see that in Z scenarios with only left-handed

or right-handed flavour violating couplings the most important constraint on the real parts

of new couplings comes not from εK or ∆MK but from KL → µ+µ−. On the other hand,

in all Z ′ scenarios and in the case of Z scenarios with left-right operators contributing

to εK , these are always εK and ∆MK and not KL → µ+µ− that are most important

for the determination of the real parts of the new couplings after the ε′/ε constraint has

been imposed.

3.2 Future

The present strategy above assumes that the progress in the evaluation of ε′/ε in the SM

will be faster than experimental information on K+ → π+νν̄. If in 2018 the situation will

be reverse, it will be better to choose as variables κε and Rνν̄+ defined in (4.21). In the next

sections we will provide Rνν̄+ as a function of κε′ for fixed κε using the present strategy.

But knowing Rνν̄+ better than ε′/ε in the SM will allow us to read off from our plots the

favourite range for κε′ in a given NP scenario for given κε and the diagonal couplings of

Z ′. As these plots will be given for B
(1/2)
6 = 0.70 and B

(3/2)
8 = 0.76, the shift in ε′/ε

represented by κε′ will be given for other values of B
(1/2)
6 and B

(3/2)
8 simply by

κε′(B
(1/2)
6 ) = κε′

[
B

(1/2)
6

0.70

]
, κε′(B

(3/2)
8 ) = κε′

[
B

(3/2)
8

0.76

]
, (3.5)

where κε′ without the argument is the one found in the plots. Even if going backwards

will require resolution of some sign ambiguities, they should be easily resolved. Note that

knowing Rνν̄+ will allow to obtain Rνν̄0 , defined in (4.20) directly from our plots, using

the value of κε′ extracted from Rνν̄+ and κε. The formulae in (3.5) are only relevant for

predicting ε′/ε in this manner. Clearly, when Rνν̄0 will also be know the analysis will be

rather constrained.

4 Z models

4.1 Preliminaries

The most recent analyses of ε′/ε in these models can be found in [27, 30] and some results

presented below are based on these papers. In particular, the relevant renormalization
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group analysis in the spirit of the present paper has been performed in [27]. We summarize

and slightly extend it in appendix A.

It is straightforward to calculate the values of the Wilson coefficients entering NP part

of the K → ππ Hamiltonian in these models. We define these coefficients by

Heff(K → ππ)(Z) =

10∑
i=3

(Ci(µ)Qi + C ′i(µ)Q′i), (4.1)

where the primed operators Q′i are obtained from Qi by interchanging V − A and V + A.

The operators Qi are the ones entering the SM contribution [22]

Heff(K → ππ)(SM) =
GF√

2
VudV

∗
us

10∑
i=1

(zSM
i (µ) + τySM

i (µ))Qi, τ = − VtdV
∗
ts

VudV ∗us
. (4.2)

Explicit expressions for some of them have been given above and the remaining ones can

be found in [22]. Q1,2 are current-current operators, Q3 − Q6 are QCDP operators and

Q7 −Q10 EWP operators. Note that whereas zi and yi are dimensionless, the coefficients

in (4.1) carry dimension as seen explicitly below.

We define the relevant flavour violating Z couplings ∆sd
L,R(Z) by [65]

iL(Z) = i
[
∆sd
L (Z)(s̄γµPLd) + ∆sd

R (Z)(s̄γµPRd)
]
Zµ, PL,R =

1

2
(1∓ γ5) . (4.3)

Considering then the simple tree-level Z exchange, the non-vanishing Wilson coefficients

at µ = MZ are then given at the LO as follows [27]

C3(MZ) = −
[
g2

6cW

]
∆sd
L (Z)

4M2
Z

, C ′5(MZ) = −
[
g2

6cW

]
∆sd
R (Z)

4M2
Z

, (4.4)

C7(MZ) = −
[

4g2s
2
W

6cW

]
∆sd
L (Z)

4M2
Z

, C ′9(MZ) = −
[

4g2s
2
W

6cW

]
∆sd
R (Z)

4M2
Z

, (4.5)

C9(MZ) =

[
4g2c

2
W

6cW

]
∆sd
L (Z)

4M2
Z

, C ′7(MZ) =

[
4g2c

2
W

6cW

]
∆sd
R (Z)

4M2
Z

. (4.6)

We have used the known flavour conserving couplings of Z to quarks which are collected in

the same notation in an appendix in [66]. The SU(2)L gauge coupling constant g2(MZ) =

0.652. We note that the values of the coefficients in front of ∆L,R are in the case of C9 and

C ′7 by a factor of c2
W /s

2
W ≈ 3.33 larger than for the remaining coefficients. It should also

be stressed that these formulae are also valid for new Z penguins which provide one loop

contributions to the couplings ∆sd
L,R(Z).

We also notice that in contrast to the SM the contributions of current-current operators

Q1,2 are absent and they cannot be generated through renormalization group effects from

penguin operators.3 Moreover, whereas the QCDP operator coefficients in the SM are

3If new heavy charged gauge bosons are present in a given model new contributions to Wilson coefficients

of current-current operators would be generated and in turn also the coefficients of penguin operators would

be modified through renormalization group effects. But these effects are expected to be significantly smaller

than the ones considered here.
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enhanced by more than an order of magnitude over the EWP coefficients due to the factor

αs/αem, this enhancement is absent here.

In appendix A we demonstrate that after performing the renormalization group evolu-

tion fromMZ down tomc and considering the size of hadronic matrix elements it is sufficient

to keep only contributions of Q6 and Q′6 generated from Q5 and Q′5 or contributions of Q8

and Q′8, generated from Q7 and Q′7, if we want to identify the sign of NP contribution to

ε′/ε and do not aim for high precision. But, in Z scenarios, the known structure of flavour

diagonal Z couplings to quarks implies that only EWP Q8 and Q′8 matter.

4.2 Left-Handed Scenario (LHS)

4.2.1 ε′/ε

In this scenario only LH flavour-violating couplings are non-vanishing and the pair (Q7, Q8)

has to be considered. Even if at µ = MZ the Wilson coefficient of the EWP operator

Q8 vanishes in the leading order, its large mixing with Q7 operator, its large anomalous

dimension and enhanced hadronic K → ππ matrix elements make it the dominant EWP

operator in ε′/ε. It leaves behind the Q7 operator whose Wilson coefficient, as seen in (4.5),

does not vanish at µ = MZ . We find then [27](
ε′

ε

)L
Z

=
1

a

ω+

|εK |
√

2

Im[ANP
2 ]L

ReA2
= 0.96× 109

[
Im[ANP

2 ]L

GeV

]
(4.7)

with

Im[ANP
2 ]L = ImC8(mc)〈Q8(mc)〉2 (4.8)

and

C8(mc) = 0.76C7(MZ) = −0.76

[
4g2s

2
W

6cW

]
∆sd
L (Z)

4M2
Z

= −2.62× 10−6

[
∆sd
L (Z)

GeV2

]
. (4.9)

Here g2 = g2(MZ) = 0.652 is the SU(2)L gauge coupling and the factor 0.76 is the outcome

of the RG evolution summarized in appendix A. For our purposes most important is the

sign in this result and that the RG factor is O(1). 〈Q8(mc)〉2 is given in (2.7).

Collecting all these results we find(
ε′

ε

)L
Z

= −2.64× 103B
(3/2)
8 Im∆sd

L (Z) . (4.10)

While for our purposes this result is sufficient, in this scenario, in which the RG running

starts at the electroweak scale, it is straightforward to proceed in a different manner by

including NP effects through particular shifts in the functions X, Y and Z entering the

analytic formula for ε′/ε in [1]. These shifts read [27]

∆X = ∆Y = ∆Z = cW
8π2

g3
2

Im∆sd
L (Z)

Imλt
= 1.78× 106

[
1.4 · 10−4

Imλt

]
Im∆sd

L (Z) . (4.11)

In doing this we include in fact NLO QCD corrections and all operators whose Wilson

coefficients are affected by NP and this allows us to confirm that only the modification
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in the contribution of the operator Q8 really matters if we do not aim for high precision.

Indeed, inserting these shifts into the analytic formula for ε′/ε in [1] we reproduce the

result in (4.10) within roughly 10% and similar accuracy is expected for other estimates of

NP contributions to ε′/ε below. Compared to the present uncertainty in the SM prediction

for ε′/ε, this accuracy is certainly sufficient, but can be increased in the future if necessary.

The final formula for ε′/ε in LHS scenario is then given by(
ε′

ε

)
LHS

=

(
ε′

ε

)
SM

+

(
ε′

ε

)L
Z

(4.12)

where the second term stands for the contribution in (4.10) and if one aims for higher

accuracy it originates in the modification related to the shifts in (4.11).

In order to see the implications of the ε′/ε anomaly in this NP scenario we assume that

NP provides a positive shift in ε′/ε, as defined in (3.2), keeping κε′ as a free positive definite

parameter. In accordance with our strategy we set other parameters to their central values.

In particular for the SM contributions to rare decays we set the CKM factors to the values

in (3.4).

From (4.10) and (3.2) we find first

Im∆sd
L (Z) = −5.0κε′

[
0.76

B
(3/2)
8

]
· 10−7 . (4.13)

The sign is fixed through the requirement of the enhancement of ε′/ε. In order to simplify

the formulae below we set B
(3/2)
8 = 0.76 but having (4.13) it is straightforward to find out

what happens for or other values of B
(3/2)
8 . Moreover, as seen in (2.10), B

(3/2)
8 is already

rather precisely known.

4.2.2 εK , ∆MK and KL → µ+µ−

For K+ → π+νν̄ we will also need Re∆sd
L (Z). To this end using the formulae of appendix B

we find the shifts in εK and ∆MK to be

(εK)ZVLL = −4.26× 107 Im∆sd
L (Z)Re∆sd

L (Z) (4.14)

and
(∆MK)ZVLL

(∆MK)exp
= 6.43× 107 [(Re∆sd

L (Z))2 − (Im∆sd
L (Z))2] . (4.15)

From (3.3), (4.13) and (4.14) we determine Re∆sd
L (Z) to be

Re∆sd
L (Z) = 4.7

[
κε
κε′

] [
B

(3/2)
8

0.76

]
· 10−5 . (4.16)

However, the strongest constraint for Re∆sd
L (Z) in this scenario comes from the KL →

µ+µ− bound in (D.4) which implies the allowed range

− 1.19 · 10−6 ≤ Re∆sd
L (Z) ≤ 3.96 · 10−6 (4.17)
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and consequently using (4.16)

κε ≤ 0.084κε′

[
0.76

B
(3/2)
8

]
. (4.18)

Inserting the values of the couplings in (4.13) and (4.17) into (4.14) and (4.15) we find

that the shift in εK is very small, at the level of 4% at most

− 2.7κε′ · 10−5 ≤ (εK)ZVLL ≤ 8.4κε′ · 10−5 (4.19)

with the sign following the one of Re∆sd
L (Z). The shift in ∆MK is fully negligible.

Thus in this NP scenario SM must describe well the data on εK and ∆MK unless NP

generating flavour-violating Z couplings can provide significant one-loop contributions to

εK and ∆MK . Such a possibility is encountered in models with heavy vector-like quarks

in [67], provided their masses are above 5 TeV.

4.2.3 K+ → π+νν̄ and KL → π0νν̄

All formulae for these decays that are relevant for us have been collected in appendix C.

In the case of KL → π0νν̄ we get a unique prediction:

Rνν̄0 ≡
B(KL → π0νν̄)

B(KL → π0νν̄)SM
= (1− 0.6κε′)

2 (4.20)

which for κε′ = 1.0 amounts to a suppression of the SM prediction by a factor of 6.3.

The corresponding branching ratio for K+ → π+νν̄ is suppressed through the suppres-

sion of ImXeff governing KL → π0νν̄ and also through suppression of ReXeff for positive

values of Re∆sd
L (Z). But for sufficiently negative values of Re∆sd

L (Z) in (4.17) it can be

enhanced. Using the formulae in appendix C we find then

Rνν̄+ ≡
B(K+ → π+νν̄)

B(K+ → π+νν̄)SM
≤ 1.94 . (4.21)

This upper limit practically does not depend on κε′ as the NP contribution to the dominant

part of Rνν̄+ coming from the modification of ReXeff is independent of κε′ and is directly

bounded by KL → µ+µ− and not by the combination of ε′/ε and εK .

In figure 1 we show Rνν̄0 as a function of κε′ . For the chosen values of the CKM

parameters in (3.4) one has

B(K+ → π+νν̄)SM = 7.7 · 10−11 , B(KL → π0νν̄)SM = 2.8 · 10−11 (4.22)

to be compared with the present SM estimates that include uncertainties in the tree-level

determinations of CKM parameters [45]

B(K+ → π+νν̄)SM = (8.4±1.0)·10−11 , B(KL → π0νν̄)SM = (3.4±0.6)·10−11 . (4.23)

We will use the values in (4.22) in all formulae below.
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4.3 Right-handed Scenario (RHS)

4.3.1 ε′/ε

In this case the operator Q′8 dominates. But its mixing with Q′7 is the same as the one

between Q8 and Q7. Only the value of C ′7(MZ) is different and the matrix element of Q′8
differs from the one of Q8 only by sign. Using (4.6) we then find(

ε′

ε

)R
Z

=
1

a

ω+

|εK |
√

2

Im[ANP
2 ]R

ReA2
= 0.96× 109

[
Im[ANP

2 ]R

GeV

]
(4.24)

with

Im[ANP
2 ]R = ImC ′8(mc)〈Q′8(mc)〉2 , 〈Q′8(mc)〉2 = −〈Q8(mc)〉2 , (4.25)

where

C ′8(mc) = 0.76C ′7(MZ) = 0.76

[
4g2c

2
W

6cW

]
∆sd
R (Z)

4M2
Z

= 8.71× 10−6

[
∆sd
R (Z)

GeV2

]
. (4.26)

Collecting all these results we find now(
ε′

ε

)R
Z

= −8.79× 103B
(3/2)
8 Im∆sd

R (Z) (4.27)

and note that the numerical factor on the r.h.s. is by a factor c2
W /s

2
W = 3.33 larger than

in (4.10) but the sign is the same.

Thus (
ε′

ε

)
RHS

=

(
ε′

ε

)
SM

+

(
ε′

ε

)R
Z

(4.28)

with the last term given in (4.27).

From (4.27) and (3.2) we find now

Im∆sd
R (Z) = −1.50κε′

[
0.76

B
(3/2)
8

]
· 10−7 . (4.29)

The sign is fixed through the requirement of the enhancement of ε′/ε. For a given κε′

the magnitude of the required coupling can be smaller than in LHS because the relevant

Wilson coefficient contains the additional factor 3.33. This also means that it is easier to

enhance ε′/ε in this scenario while satisfying other constraints. This difference relative to

LHS changes the implications for other observables.

4.3.2 εK , ∆MK and KL → µ+µ−

The strongest constraint for Re∆sd
L (Z) in this scenario comes again from the KL → µ+µ−

bound in (D.4) which implies this time the allowed range

− 3.96 · 10−6 ≤ Re∆sd
R (Z) ≤ 1.19 · 10−6 , (4.30)

simply the flip of the sign due to the flip of the sign in (D.7).

Using the formulae of appendix B we find the shifts in εK and ∆MK to be even

smaller than in LHS. Thus also in this NP scenario SM must describe the data on εK and

∆MK well unless loop contributions could be significant. On the other hand the results

for K+ → π+νν̄ and KL → π0νν̄ are more interesting.
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Figure 1. Rνν̄0 as a function of κε′ for LHS and RHS Z scenarios.

4.3.3 K+ → π+νν̄ and KL → π0νν̄

We again obtain a unique prediction:

Rνν̄0 = (1− 0.18κε′)
2, (4.31)

but this time the suppression of Rνν̄0 is smaller. For κε′ = 1.0 it amounts to a suppression

by a factor of 1.5. In figure 1 we show Rνν̄0 as a function of κε′ in this scenario.

The corresponding branching ratio for K+ → π+νν̄ is suppressed through the suppres-

sion of ImXeff and also through suppression of ReXeff for positive values of Re∆sd
R (Z). But

for sufficiently negative values of Re∆sd
R (Z) in (4.30) it can be enhanced. As the allowed

magnitude in the latter case is larger than in LHS, the upper bound on the branching

ratio is weaker. The dependence of this upper bound on κε′ is even weaker than in LHS

as ReXeff , which is independent of it, is dominantly responsible for the modification of the

K+ → π+νν̄ rate. We find

Rνν̄+ ≤ 5.7 . (4.32)

Certainly such a large enhancement is very unlikely but it shows that in this scenario

large enhancements of B(K+ → π+νν̄) are possible. The fact that in RHS the bound on

K+ → π+νν̄ from KL → µ+µ− is much weaker than in LHS has been pointed out in the

context of the analysis of the Randall-Sundrum model with custodial protection, where rare

decays are governed by tree-level Z exchanges with RH flavour violating couplings [68].

4.4 General Z scenarios

4.4.1 ε′/ε

When both ∆sd
L (Z) and ∆sd

R (Z) are present the general formula for ε′/ε is given as follows(
ε′

ε

)
Z

=

(
ε′

ε

)
SM

+

(
ε′

ε

)L
Z

+

(
ε′

ε

)R
Z

(4.33)
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with the last two terms representing LHS and RHS contributions discussed above. As

the operators Qi and Q′i do not mix under renormalization we can just add these two

contributions to the SM part independently of each other.

The ε′/ε constraint now reads

Im∆sd
L (Z) + 3.33 Im∆sd

R (Z) = −5.0κε′

[
0.76

B
(3/2)
8

]
· 10−7 . (4.34)

The presence of two couplings allows now for more possibilities as we will see soon. We set

B
(3/2)
8 = 0.76 in what follows.

4.4.2 εK , ∆MK and KL → µ+µ−

This time also LR operators contribute to εK and ∆MK and quite generally constitute by

far the dominant contributions to these quantities so that we can approximate the shifts

in εK and ∆MK by keeping only LR contributions

(εK)Z ≈ 2.07 · 109[(Im∆sd
L (Z)Re∆sd

R (Z) + Im∆sd
R (Z)Re∆sd

L (Z)] (4.35)

and

RZ∆M ≡
(∆MK)Z

(∆MK)exp
≈ −6.21 · 109[(Re∆sd

L (Z)Re∆sd
R (Z)− Im∆sd

L (Z)Im∆sd
R (Z)]. (4.36)

The large size of LR contribution with respect to VLL and VRR contributions is not only

related to enhanced hadronic matrix elements of LR operators but also to larger Wilson

coefficients at µ = mc that are enhanced through renormalization group effects [69]. The

ones of VLL and VRR operators are suppressed slightly by these effects.

The presence of LR operators has a very important consequence. While in LHS and

RHS the KL → µ+µ− bound provided by far the strongest constraint on Re∆sd
L,R(Z),

now also εK plays a role and κε will enter the game. However, as we will see in the first

example below, for κε ≥ 0.3 and κε′ ≤ 0.6 the KL → µ+µ− will again bound the rate for

K+ → π+νν̄.

In this context it should be remarked that in principle it is possible to eliminate LR

contributions by choosing properly the real and imaginary parts of LH and RH couplings.

It is also possible to use LR contributions to ∆MK or εK to eliminate completely NP con-

tributions to them by cancelling the contributions from VLL and VRR operators [27, 70].

This is only possible in the presence of suitable hierarchy between LH and RH couplings.

In what follows we will assume that such fine-tuned situations do not take place.

While, the presence of LR operators is regarded often as a problem, it should be

realized that in the case of possible anomalies in εK and ∆MK they could be welcome in

the Z case, where in LHS and RHS NP contributions to εK and ∆MK turned out to be

small. In order to illustrate this we will assume, as announced in section 3, that in addition

to the ε′/ε anomaly, the data show also εK anomaly parametrized by κε in (3.3).
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4.4.3 K+ → π+νν̄ and KL → π0νν̄

For K+ → π+νν̄ and KL → π0νν̄ the relevant expressions are collected in appendix C.

In particular (C.14) implies that in KL → π0νν̄ the enhancement of its branching ratio

requires the sum of the imaginary parts of the couplings to be positive. This enhances

also K+ → π+νν̄ but as seen in (C.13) could be compensated by the decrease of ReXeff

unless the sum of the corresponding real parts is negative. For KL → µ+µ− the relevant

expressions are given in appendix D. In particular in (D.7).

It is clear that with more parameters involved there are many possibilities in this

NP scenario and which one is realized in nature will be only known through precise con-

frontation of the SM predictions for ε′/ε, B(K+ → π+νν̄), B(KL → π0νν̄), εK and ∆MK

with future data. Indeed, presently it is not excluded that NP contributes to all of these

quantities so that some enhancements and/or suppressions will be required.

Now among the five quantities in question only ε′/ε and to a lesser extent εK exhibit

some anomaly and NP models providing enhancements of both of them appear to be

favoured. How much enhancement is needed in ε′/ε will strongly depend on the future

value of B
(1/2)
6 . In the case of εK this depends on the values of the CKM parameters, in

particular on the value of |Vcb|.
It would also be favourable, in particular for experimentalists, if the nature required

the enhancements of both B(K+ → π+νν̄) and B(KL → π0νν̄) relative to SM predictions,

simply, because then these branching ratios would be easier to measure and one could

achieve a higher experimental precision on them. But, we have seen in LHS and RHS

that enhancement of ε′/ε implied automatically suppression of B(KL → π0νν̄), while

B(K+ → π+νν̄) could be both enhanced and suppressed. NP contributions to εK and

∆MK were found at the level of a few percent at most after the ε′/ε and KL → µ+µ−

constraints have been imposed. Therefore these scenarios while being in principle able

to remove ε′/ε anomaly, cannot simultaneously solve possible εK anomaly. In fact, as

already observed in [27], in these scenarios a 10 − 20% NP contribution to εK would give

significantly larger shift in ε′/ε than it is allowed by the data.

The question then arises whether it is possible in a general Z scenario to remove the

ε′/ε anomaly through the shift in (3.2), enhance εK by a shift in (3.3) and simultane-

ously enhance B(KL → π0νν̄) and B(K+ → π+νν̄) while satisfying the KL → µ+µ− and

∆MK constraints. The inspection of the formulae in appendices B–D shows that this is

indeed possible.

4.4.4 Phenomenology

In order to exhibit this possibility in explicit terms and investigate the interplay between

various quantities we introduce two real parameters r1 and r2 through

Im∆sd
L (Z) = −r1 Im∆sd

R (Z), Re∆sd
L (Z) = r2 Re∆sd

R (Z) . (4.37)

Using (4.35) we find then

(εK)Z ≈ 2.07 · 109 (r2 − r1)Im∆sd
R (Z)Re∆sd

R (Z) . (4.38)
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Figure 2. Rνν̄0 and Rνν̄+ , as functions of κε′ for κε = 0.1, 0.2, 0.3, 0.4 for the example 1. The

horizontal black line corresponds to the upper bound in (4.47). The experimental 1σ range for Rνν̄+

in (C.8) is displayed by the grey band.

Imposing the shifts in (3.2) and (3.3) we can determine:

Im∆sd
R (Z) =

5.0

(r1 − 3.33)
κε′ · 10−7, Re∆sd

R (Z) = 0.97
(r1 − 3.33)

(r2 − r1)

κε
κε′
· 10−6 . (4.39)

Formulae (4.37) and (4.39) inserted in the expressions in appendices B–D allow to express

the branching ratios for K+ → π+νν̄, KL → π0νν̄ and KL → µ+µ− and ∆MK in terms of

κε′ , κε, r1 and r2.

In particular in order to see the signs of NP effects we find first

ReXeff(Z) = −4.44 · 10−4 + 2.51 · 102 (1 + r2) Re∆sd
R (Z) , (4.40)

ImXeff(Z) = 2.07 · 10−4 + 2.51 · 102 (1− r1) Im∆sd
R (Z) , (4.41)

ReYeff(Z) = −2.83 · 10−4 + 2.51 · 102 (r2 − 1) Re∆sd
R (Z) (4.42)

and

RZ∆M ≈ −6.21 · 109
[
r2 (Re∆sd

R (Z))2 + r1 (Im∆sd
R (Z))2

]
. (4.43)

With κε′ being positive we find then that ε′/ε and B(KL → π0νν̄), with the latter

governed by ImXeff(Z), can be simultaneously enhanced provided

Im∆sd
R (Z) < 0 , 1.0 < r1 < 3.33 . (4.44)

If in addition εK and B(K+ → π+νν̄) should be enhanced r2 has to satisfy4

r2 > r1 , Re∆sd
R (Z) < 0 or r2 < −1 , Re∆sd

R (Z) > 0 . (4.45)

We illustrate the implications of these findings with two examples:

4We assume here the enhancement of the magnitude of ReXeff.
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Example 1: we fix r1 = 2 and r2 = 3 to get

Im∆sd
R (Z) = −3.76κε′ · 10−7, Re∆sd

R (Z) = −1.33
κε
κε′
· 10−6 . (4.46)

This is in fact the case considered already in [30] but here we present it in more explicit

terms. In particular we include K+ → π+νν̄ and KL → µ+µ− in this discussion and not

only KL → π0νν̄ as done in that paper. The inspection of formulae for ReXeff(Z) and

ReYeff(Z) above accompanied by numerical analysis show that in this example

Rνν̄+ ≈ R
µµ̄
L =

B(KL → µ+µ−)

B(KL → µ+µ−)SM
≤ 3.5 (4.47)

with the latter bound resulting from the bound in (D.4). On the other hand ∆MK does

not play any essential role with |RZ∆M | ≤ 0.04. Here only short distance contributions to

KL → µ+µ− are involved.

In figure 2 we show Rνν̄0 and Rνν̄+ , as functions of κε′ for κε = 0.1, 0.2, 0.3, 0.4,5

represented in the case of Rνν̄+ by different colours

κε = 0.1 (green), κε = 0.2 (red), κε = 0.3 (cyan), κε = 0.4 (yellow) . (4.48)

Rνν̄0 is given by blue line and the upper bound in (4.47) is indicated by a black horizon-

tal line.

We observe that with increasing κε′ the enhancement of Rνν̄0 slowly increases. On the

other hand for a given κε the ratio Rνν̄+ decreases with increasing κε′ . Both properties can

easily be understood from the formulae in (4.40), (4.41) and (4.46). We note that for a

given κε′ the upper bound in (4.47) implies and upper bound on κε which becomes weaker

with increasing κε′ . Most interesting appear the values κε′ ≥ 1.0 and κε ≈ 0.25 for which

both ε′/ε and εK anomalies can be solved in agreement with the KL → µ+µ− bound and

both K+ → π+νν̄ and KL → π0νν̄ are significantly enhanced over their SM values.

Example 2: we fix r1 = 3 and r2 = −2 to get

Im∆sd
R (Z) = −1.52κε′ · 10−6, Re∆sd

R (Z) = 6.6
κε
κε′
· 10−8 . (4.49)

Note that now imaginary parts of the couplings are larger than the real parts with interest-

ing consequences. In figure 3 we show for this case Rνν̄0 and Rνν̄+ , as functions of κε′ again

for κε = 0.1, 0.2, 0.3, 0.4. Now the relation (4.47) is no longer valid and the bound from

KL → µ+µ− is irrelevant because the real parts of the couplings are much smaller than in

the previous example. We observe basically no dependence of Rνν̄+ on κε as this parameter

affects only the real parts of the couplings which are small in this example. Again ∆MK

does not play any essenial role with |RZ∆M | ≤ 0.05.

We observe a very strong enhancement of both branching ratios which increases with

increasing κε′ . This should be contrasted with the previous example in which for a given κε

5In principle while varying κε we should also modify our CKM parameters as they correspond to κε =

0.26. But the dominant dependence on CKM parameters cancels in the ratios considered and keeping CKM

fixed exposes better the dependence on κε in the plots.
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Figure 3. Rνν̄0 and Rνν̄+ , as functions of κε′ for the example 2. Rνν̄0 is independent of κε and the

dependence of Rνν̄+ on κε is negligible. The experimental 1σ range for Rνν̄+ in (C.8) is displayed by

the grey band.

the two branching ratios were anticorrelated. This is best seen in figure 4 where we show in

the left panel Rνν̄0 vs Rνν̄+ for the example 1 and in the right panel the corresponding plot

for the example 2. A given line in the left panel, on which the ratios are anticorrelated,

corresponds to a fixed value of κε and the range on each line results from the variation of

κε′ in the range 0.5 ≤ κε′ ≤ 1.5. We impose the constraint from B(KL → µ+µ−). In the

right panel the value of κε does not matter and the range for the values of both branching

ratios corresponds to 0.5 ≤ κε′ ≤ 1.5 with largest enhancements for largest κε′ . Moreover,

the two ratios increase in a correlated manner on the line parallel to the GN bound in (C.7)

which expressed through the ratios Rνν̄0 and Rνν̄+ reads

Rνν̄0 ≤ 11.85Rνν̄+ . (4.50)

We indicate this bound by a black line. Such a correlation between K+ → π+νν̄ and

KL → π0νν̄ is characteristic for cases in which only imaginary parts in the new couplings

matter and both branching ratios are affected only by the modification of ImXeff . For a

general discussion see [71].

4.5 Summary of NP patterns in Z scenarios

The lessons from these four exercises are as follows:

• In the LHS , a given request for the enhancement of ε′/ε determines the coupling

Im∆sd
L (Z).

• This result has direct unique implications on KL → π0νν̄: suppression of B(KL →
π0νν̄). This property is known from NP scenarios in which NP to KL → π0νν̄ and

ε′/ε enters dominantly through the modification of Z-penguins.

• The imposition of the KL → µ+µ− constraint determines the range for Re∆sd
L (Z)

which with the already fixed Im∆sd
L (Z) allows to calculate the shifts in εK and ∆MK .
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Figure 4. Rνν̄0 vs Rνν̄+ for κε = 0.1, 0.2, 0.3, 0.4 for the example 1 (left panel) and the example 2

(right panel) varying 0.5 ≤ κε′ ≤ 1.5. The vertical black line in the left panel corresponds to the

upper bound in (4.47). The dependence on κε in the right panel is negligible and the black line

represents the GN bound in (4.50). The experimental 1σ range for Rνν̄+ in (C.8) is displayed by the

grey band.

These shifts turn out to be very small for εK and negligible for ∆MK . Therefore

unless loop contributions from physics generating ∆sd
L (Z) play significant role in

both quantities, the SM predictions for εK and ∆MK must agree well with data for

this NP scenario to survive.

• Finally, with fixed Im∆sd
L (Z) and the allowed range for Re∆sd

L (Z), the range for

B(K+ → π+νν̄) can be obtained. But in view of uncertainties in the KL → µ+µ−

constraint both enhancement and suppressions of B(K+ → π+νν̄) are possible and

no specific pattern of correlation between B(KL → π0νν̄) and B(K+ → π+νν̄) is

found. In the absence of a relevant εK constraint this is consistent with the general

analysis in [71]. B(K+ → π+νν̄) can be enhanced by a factor of 2 at most.

• Analogous pattern is found in RHS, although the numerics is different. First due

the modification of the initial conditions for the Wilson coefficients the suppression

of B(KL → π0νν̄) for a given κε′ is smaller. Moreover, the flip of the sign in NP

contribution to KL → µ+µ− allows for larger enhancement of B(K+ → π+νν̄), a

property known from our previous analyses. An enhancement of B(K+ → π+νν̄) up

to a factor of 5.7 is possible.

• In a general Z scenario the pattern of NP effects changes because of the appearance

of LR operators dominating NP contributions to εK and ∆MK . Consequently for

large range of parameters these two quantities, in particular εK , provide stronger

constraint on Re∆sd
L,R(Z) than KL → µ+µ−. But the main virtue of the general

scenario is the possibility of enhancing simultaneously ε′/ε, εK , B(K+ → π+νν̄) and

B(KL → π0νν̄) which is not possible in LHS and RHS. Thus the presence of both

LH and RH flavour-violating currents is essential for obtaining simultaneously the

enhancements in question.
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• We have illustrated this on two examples with the results shown in figures 2–4 for

which as seen in figure 4 the correlation between branching ratios for K+ → π+νν̄

and KL → π0νν̄ are strikingly different. In particular in the second example in which

the imaginary parts in the couplings dominate the correlation takes place along the

line parallel to the line representing GN bound.

We will now turn our attention to Z ′ models which, as we will see, exhibit quite

different pattern of NP effects in the K meson system than the LH and RH Z scenarios. In

particular we will find that at the qualitative level Z ′ models with only LH or RH flavour-

violating couplings can generate very naturally the patterns found in the two examples in

figures 2–4 that in Z scenario required the presence of both LH and RH couplings. In fact

the pattern of correlation between K+ → π+νν̄ and KL → π0νν̄ found in the example

1 will also be found in Z ′ scenario in which NP in ε′/ε is dominated by EWP operator

Q8. On the other hand QCDP operator Q6 generated by Z ′ exchange implies a pattern

of correlation between KL → π0νν̄ and K+ → π+νν̄ found in the example 2. But the

implication for NP effects in ∆MK will turn out to be more interesting than found in the

latter example.

5 Z′ models

5.1 Preliminaries

Also in this case the operators Q8 and Q′8 dominate NP contribution to ε′/ε in several

models and we will recall some of them below. However, this time flavour diagonal Z ′

couplings to quarks are model dependent, which allows to construct models in which the

QCDP operator Q6 or the operator Q′6 dominates NP contribution to ε′/ε. As this case

cannot be realized in Z scenarios it is instructive to discuss this scenario first. In particular

it will turn out that in this case it is much easier to reach our goal of enhancing simultane-

ously ε′/ε, εK , K+ → π+νν̄ and KL → π0νν̄. Moreover, the presence of flavour-violating

right-handed currents is not required.

In order for Q6 or Q′6 to dominate the scene the diagonal RH or LH quark couplings

must be flavour universal which with the normalization of Wilson coefficients in (4.1)

implies [27]

C3(MZ′) =
∆sd
L (Z ′)∆qq

L (Z ′)

4M2
Z′

, C ′3(MZ′) =
∆sd
R (Z ′)∆qq

R (Z ′)

4M2
Z′

, (5.1)

C5(MZ′) =
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

, C ′5(MZ′) =
∆sd
R (Z ′)∆qq

L (Z ′)

4M2
Z′

. (5.2)

The couplings ∆sd
L,R(Z ′) are defined by (4.3) with Z replaced by Z ′. ∆qq

L,R(Z ′) are flavour

universal quark couplings which are assumed to be real. It should be noted that EWP are

absent here. Moreover, they cannot be generated from QCDP through QCD renormaliza-

tion group effects so that their contributions to NP part of ε′/ε can be neglected. This

should be contrasted with the SM, where they are generated by electroweak interactions

from the mixing with current-current operators that have much larger Wilson coefficients

than QCDP.
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Now as briefly discussed in section 7 there exist models in which only LH or RH

couplings are present. In that case the Wilson coefficients C5(MZ′) and C ′5(MZ′) vanish in

the leading order. Non-vanishing contribution of Q6 and Q′6 can still be generated through

their mixing with (V ∓ A)× (V ∓ A) operators Q3 and Q′3, respectively. But this mixing

is significantly smaller than between Q6 and Q5 and between Q′6 and Q′5 leading to much

smaller Wilson coefficients of Q6 and Q′6 at µ = mc than it is possible when the Wilson

coefficients C5(MZ′) and C ′5(MZ′) do not vanish. We will therefore consider only the latter

case but the former case of only LH or RH couplings implies similar phenomenology to the

one presented below except that NP effects in ε′/ε are significantly smaller than the ones

discussed by us.

In this context we also note that without a specific model there is a considerable

freedom in the values of the diagonal quark and lepton couplings of Z ′, although one must

make sure that they are consistent with LEP II and LHC bounds. Concerning LHC bounds,

the study in [72] implies

∣∣∆qq̄
R (Z ′)

∣∣ ≤ 1.0

[
MZ′

3 TeV

] [
1 +

(
1.3 TeV

MZ′

)2
]
. (5.3)

On the other hand bounds on the leptonic Z ′ couplings can be extracted from the final

analysis of the LEP-II data [73], although there is still a considerable freedom as the bounds

are for products of electron and other lepton couplings. Therefore the allowed coupling

∆νν̄
L (Z ′) can be increased by lowering ∆eē

L (Z ′) coupling.

As an example for our nominal value MZ′ = 3 TeV the choices

∆qq̄
R (Z ′) = 1, ∆qq̄

L (Z ′) = −1, ∆νν̄
L (Z ′) = ∆µµ̄

L (Z ′) = 0.5 (5.4)

are consistent with these bounds.6 Yet, it should be kept in mind that these couplings

can in principle be larger or smaller. For larger (smaller) ∆νν̄
L (Z ′) NP contributions to

the branching ratios for K+ → π+νν̄ and KL → π0νν̄ will be larger (smaller), but in a

correlated manner. The implications of the change of the couplings ∆qq̄
L,R(Z ′) are more

profound as we will see in the context of our presentation. But, for the time being we will

assume that ∆qq̄
L,R(Z ′) are O(1).

5.2 Z′ with QCD penguin dominance (LHS)

5.2.1 ε′/ε

We begin with NP scenario with purely LH flavour-violating quark couplings and flavour

universal RH flavour diagonal couplings. In this case the operator Q6 is dominant. It mixes

with the operator Q5 and the LO RG analysis gives [27] (see appendix A)

C6(mc) = 1.13
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

= 3.14× 10−8

[
∆sd
L (Z ′)∆qq

R (Z ′)

GeV2

] [
3 TeV

MZ′

]2

(5.5)

with 1.13 resulting from RG evolution from MZ′ = 3 TeV down to µ = mc. With increasing

MZ′ this factor increases logarithmically but C6(mc) decreases much faster because of the

6The relation between leptonic couplings follows from SU(2)L gauge invariance.
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last factor. Still as we will discuss later if the flavour structure of a given model is such

that the suppression by Z ′ propagator is compensated by the increase of flavour-violating

couplings, for MZ′ ≥ 10 TeV the RG effects above MZ′ = 3 TeV begin to play some

role implying additional enhancements of both QCDP and EWP contributions to ε′/ε.

The contribution of Q5 can be neglected because of its strongly colour suppressed matrix

element. Moreover, relative importance of Q5 decreases with increasing MZ′ again due to

RG effects. See appendix A for details.

We then find(
ε′

ε

)L
Z′

= − Im[ANP
0 ]L

ReA0

[
ω+

|εK |
√

2

]
(1− Ω̂eff) = −3.69× 107

[
Im[ANP

0 ]L

GeV

]
(5.6)

where we set all relevant quantities at their central values and

[ANP
0 ]L = C6(mc)〈Q6(mc)〉0 (5.7)

with 〈Q6(µ)〉0 given in (2.6).

Collecting all these results we find(
ε′

ε

)L
Z′

= 0.67B
(1/2)
6

[
3 TeV

MZ′

]2

Im(∆sd
L (Z ′))∆qq

R (Z ′) . (5.8)

It should be noted that due to a large value of MZ′ and the suppression factors of the

Q6 contribution to ε′/ε mentioned before, the overall numerical factor in this result is for

∆qq̄
R (Z ′) = O(1) by more than three orders of magnitude smaller than in the case of the

corresponding Z scenario. See (4.10).

We next request the enhancement of ε′/ε as given in (3.2) and set the values of CKM

factors to the ones in (3.4). Setting B
(1/2)
6 = 0.7, a typical value consistent with lattice

and large N results, we find from (5.8) and (3.2)

Im∆sd
L (Z ′) = 2.1

[
κε′

∆qq̄
R (Z ′)

][
0.70

B
(1/2)
6

] [
MZ′

3 TeV

]2

· 10−3 . (5.9)

The sign is fixed through the requirement of the enhancement of ε′/ε in (3.2) and the sign

of ∆qq̄
R (Z ′) in (5.4). The large difference between the values in (4.13) and (5.9) is striking.

The strong suppression of NP contribution to ε′/ε by a large Z ′ mass, suppressed matrix

element of Q6 relative to the one of Q8 and the inverse “∆I = 1/2” factor in (1.4) have to

be compensated by increasing Im∆sd
L (Z ′). This will have interesting consequences.

5.2.2 εK , ∆MK and KL → µ+µ−

Because of the increased value of Im∆sd
L (Z ′), not KL → µ+µ− bound (D.4), as in the

corresponding Z scenario, but εK and ∆MK put the strongest constraints on Re∆sd
L (Z ′).

Using the instructions at the end of appendix B we find

(εK)Z
′

VLL = −3.51× 104

[
3 TeV

MZ′

]2

Im∆sd
L (Z ′)Re∆sd

L (Z ′) (5.10)
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and

RZ
′

∆M =
(∆MK)Z

′
VLL

(∆MK)exp
= 5.29× 104

[
3 TeV

MZ′

]2

[(Re∆sd
L (Z ′))2 − (Im∆sd

L (Z ′))2] (5.11)

Requiring the enhancement of εK as in (3.3) and using (5.9) we find

Re∆sd
L (Z ′) = −1.4κε

[
∆qq̄
R (Z ′)

κε′

][
B

(1/2)
6

0.70

]
· 10−5 . (5.12)

It should be noted that this result is independent of the value of MZ′ . Moreover, there

is again a striking difference from the Z case as now Re∆sd
L (Z ′) is much smaller than

Im∆sd
L (Z ′) making the coupling ∆sd

L (Z ′) to an excellent approximation imaginary with two

first interesting consequences:

• The KL → µ+µ− constraint is easily satisfied.

• ∆MK is uniquely suppressed with the suppression increasing with increasing κε′ and

MZ′ :

RZ
′

∆M (QCDP) ≡
(∆MK)Z

′
VLL

(∆MK)exp
= −0.23

[
κε′

∆qq̄
R (Z ′)

]2 [
MZ′

3 TeV

]2
[

0.70

B
(1/2)
6

]2

. (5.13)

Whether this suppression is consistent with the data cannot be answered at present because

of large uncertainties in the evaluation of ∆MK within the SM.

Indeed the present SM estimate without the inclusion of long distance effects reads [74]

RSM
∆M = 0.89± 0.34 . (5.14)

Large N approach [16] indicates that long distance contributions enhance this ratio by

roughly 20%. First lattice calculations [75] are still subject to large uncertainties and also

the large error in (5.14) precludes any definite conclusions at present whether NP should

enhance or suppress this ratio.

5.2.3 K+ → π+νν̄ and KL → π0νν̄

But the most interesting implications of the ε′/ε anomaly in this scenario are the ones

for K+ → π+νν̄ and KL → π0νν̄. Inserting the couplings in (5.9) and (5.12) into (C.16)

and (C.17)we find that the branching ratios B(KL → π0νν̄) and B(K+ → π+νν̄) are to

an excellent approximation affected only through the shift in ImXeff . Therefore, there is a

strict correlation between B(KL → π0νν̄) and B(K+ → π+νν̄) which in the plane of these

two branching ratios takes place on the branch parallel to the Grossman-Nir bound [76]

in (4.50). This is a very striking difference from Z scenarios LHS and RHS which to our

knowledge has not been noticed before. On the other hand there are some similarities to

the example 2 in the general Z scenario in which the imaginary parts of the couplings

dominate and the value of the parameter κε does not play any role for K+ → π+νν̄ and

KL → π0νν̄.
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Figure 5. Rνν̄+ and Rνν̄0 , as functions of κε′ for ∆νν̄
L (Z ′) = 0.3, 0.4, 0.5 for QCDP scenario.

MZ′ = 3 TeV. The dependence on κε is negligible. The upper black line in the lower left panel is

the GN bound. In the fourth panel correlation of RZ
′

∆M with Rνν̄+ is given. The experimental 1σ

range for Rνν̄+ in (C.8) is displayed by the grey band.

In figure 5 we show Rνν̄0 and Rνν̄+ as functions of κε′ and different values of ∆νν̄
L (Z ′)

with the colour coding:

∆νν̄
L (Z ′) = 0.3 (red), ∆νν̄

L (Z ′) = 0.4 (green), ∆νν̄
L (Z ′) = 0.5 (blue) . (5.15)

We keep the diagonal quark coupling ∆qq̄
R (Z ′) = 1 but as seen in (5.9) the results depend

only on the ratio κε′/∆
qq̄
R (Z ′) and it is straightforward to find out what happens for other

values of ∆qq̄
R (Z ′). As the real parts of flavour violating couplings are small the parameter

κε has no impact on this plot. In the third panel we show Rνν̄0 vs Rνν̄+ with the lower

straight line representing the strict correlation between both ratios mentioned before and

the upper line is the GN upper bound. In the fourth panel we show the correlation of RZ
′

∆M

with Rνν̄+ for different values of ∆νν̄
L (Z ′).

We observe that for ∆νν̄
L (Z ′) = 0.5 and κε′ = 1.0 the branching ratio B(KL → π0νν̄) is

enhanced by a factor of 17.6 and B(K+ → π+νν̄) by a factor of 2.4 with respect to the SM

values. Moreover ∆MK is suppressed by roughly 25%. These results are for MZ′ = 3 TeV.

Larger values of MZ′ will be considered in section 5.8.

The NP effects for largest κε′ are spectacular but probably unrealistic. There are

various means to decrease them as can be deduced from the plots in figure 5. We give

two examples:
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∆qq̄
R (Z ′) ∆νν̄

L (Z ′) ε′/ε B(KL → π0νν̄) B(K+ → π+νν̄) ∆MK

+ + + + + −

− + + − − −

+ − + − − −

− − + + + −

Table 3. Pattern of correlated enhancements (+) and suppressions (−) in Z ′ scenarios in which

NP in ε′/ε is dominated by QCDP operator Q6.

• κε′ in (3.2) could turn out to be moderate, say κε′ = 0.5, so that Im∆sd
L (Z ′) is smaller

by a factor of two relative to the κε′ = 1.0 case. The enhancements of B(KL → π0νν̄)

and B(K+ → π+νν̄) will then decrease approximately to 6.8 and 1.5, respectively.

Moreover the suppression of ∆MK will only be by 6%. The enhancement of εK
in (3.3) can still be kept by increasing Re∆sd

L (Z ′) by a factor of 2 without any visible

consequences for other observables.

• The enhancements of B(KL → π0νν̄) and B(K+ → π+νν̄) can be decreased by

making ∆νν̄
L (Z ′) smaller. In fact this will be the only option if κε′ will be required to

be close to unity. Note, however, that modifying ∆νν̄
L (Z ′) will affect the two branching

ratios in a correlated manner.

It should also be kept in mind that an increase of ∆qq̄
R (Z ′) to obtain larger enhancement of

ε′/ε and smaller Im∆sd
L (Z ′) is bounded by the LHC data in (5.3).

Clearly, the result that the branching ratios B(KL → π0νν̄) and B(K+ → π+νν̄) are

enhanced because ε′/ε is enhanced is related to the choice of the signs of flavour diagonal

quark and neutrino couplings in (5.4). If the sign of one of these couplings is reversed but

still the enhancement of ε′/ε is required, both branching ratios are suppressed along the

branch parallel to the GN bound. But ∆MK being governed by the square of the imaginary

couplings is always suppressed. We summarize all cases in table 3. It should also be noticed

that this pattern would not change if it turned out that εK should be suppressed (κε < 0),

which would reverse the sign of Re∆sd
L (Z ′). Simply, because Re∆sd

L (Z ′) is so much smaller

than Im∆sd
L (Z ′) that its sign does not matter.

In summary the two striking predictions of this scenario is the simultaneous enhance-

ment or simultaneous suppression of the branching ratios for K+ → π+νν̄ and KL → π0νν̄

accompanied always by the suppression of ∆MK . Finding the enhancement of K+ → π+νν̄

and suppression of KL → π0νν̄ or vice versa at NA62 and KOPIO experiments and/or the

need for an enhancement of ∆MK by NP would rule out this scenario independently of

what will happen with εK .

5.3 Z′ with QCD Penguin Dominance (RHS)

In the case of LHS the flavour symmetry on all diagonal RH quark couplings has to be

imposed. But in the RHS the flavour diagonal couplings are left-handed and the ones in
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an SU(2)L doublet must be equal to each other due to SU(2)L gauge symmetry which is

still unbroken for Z ′ masses larger than few TeV. Thus it is more natural in this case to

generate only QCDP operators than in LHS.

We find this time

C ′6(mc) = 1.13
∆sd
R (Z ′)∆qq

L (Z ′)

4M2
Z′

= 3.14× 10−8

[
∆sd
R (Z ′)∆qq

L (Z ′)

GeV2

] [
3 TeV

MZ′

]2

(5.16)

ε′/ε is again given by (5.6) but this time

[ANP
0 ]R = C ′6(µ)〈Q′6(µ)〉0, 〈Q′6(µ)〉0 = −〈Q6(µ)〉0 (5.17)

Collecting all these results we find(
ε′

ε

)R
Z′

= −0.67B
(1/2)
6

[
3 TeV

MZ′

]2

Im(∆sd
R (Z ′))∆qq

L (Z ′) . (5.18)

The difference in sign from (5.18) is only relevant in a model in which the flavour diagonal

couplings are known or can be measured somewhere. With the choice of the quark flavour

diagonal couplings in (5.4) there is no change in the values of flavour violating couplings

except that now these are right-handed couplings instead of left-handed ones. Even if NP

contribution to KL → µ+µ− changes sign, this change is too small to be relevant because

the real parts of NP couplings are small. For other choices of signs of flavour diagonal

couplings a DNA-Table analogous to table 3 can be constructed by just reversing the signs

of ∆qq̄
R (Z ′) and replacing it by ∆qq̄

L (Z ′).

5.4 Z′ with QCD penguin dominance (general)

5.4.1 ε′/ε

We will next consider scenario in which both LH and RH flavour violating Z ′ couplings are

present. From (5.8) and (5.18) we find(
ε′

ε

)
Z′

= 0.67B
(1/2)
6

[
3 TeV

MZ′

]2 [
Im(∆sd

L (Z ′))∆qq
R (Z ′)− Im(∆sd

R (Z ′))∆qq
L (Z ′)

]
. (5.19)

This result is interesting in itself. If Z ′ couplings to quarks are left-right symmetric there

is, similar to KL → µ+µ−, no NP contribution to ε′/ε. In view of strong indication for

κε′ 6= 0 left-right symmetry in the Z ′ couplings to quarks has to be broken.

But there is still another reason that such a situation cannot be realized as either

the coupling ∆qq
L (Z ′) or the coupling ∆qq

R (Z ′) can be flavour universal. They cannot be

both flavour universal as then it would not be possible to generate large flavour violating

couplings in the mass eigenstate basis for any of the terms in (5.19). But one could consider

e.g. ∆qq
R (Z ′) to be flavour universal to a high degree still allowing for a strongly suppressed

but non-vanishing coupling ∆sd
R (Z ′). In any case for these reasons only one term in (5.19)

will be important allowing in principle the solution to the ε′/ε anomaly. But the presence

of both LH and RH flavour-violating couplings, even if one is much smaller than the other,

changes the εK and ∆MK constraints through LR operators, as we have seen in the general
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Z case. While in the latter scenario this allowed us to obtain interesting results for rare

decays, in Z ′ scenarios the requirement of much larger couplings than in the Z case for

solving the ε′/ε anomaly makes the εK and ∆MK constraints problematic as we will discuss

briefly now.

5.4.2 εK and ∆MK

We have now

(εK)NP = (εK)Z
′

VLL + (εK)Z
′

VRR + (εK)Z
′

LR (5.20)

where

(εK)Z
′

LR = −3.39× 106

[
3 TeV

MZ′

]2

Im
[
∆sd
L (Z ′)∆sd

R (Z ′)
]∗

(5.21)

and

RZ
′

∆M =
(∆MK)Z

′
VLL

(∆MK)exp
+

(∆MK)Z
′

VRR

(∆MK)exp
+

(∆MK)Z
′

LR

(∆MK)exp
(5.22)

with
(∆MK)Z

′
LR

(∆MK)exp
= −1.02× 107

[
3 TeV

MZ′

]2

Re
[
∆sd
L (Z ′)∆sd

R (Z ′)
]∗
. (5.23)

5.4.3 Implications

In view of the large coupling Im∆sd
L (Z ′) or Im∆sd

R (Z ′) required to solve the ε′/ε anomaly,

NP contributions to εK and ∆MK in the presence of both LH and RH currents are very

large. The only solution would be a very fine-tuned scenario in which the four couplings

Im∆sd
L,R(Z ′) and Re∆sd

L,R(Z ′) take very particular values. But eventually in order to get

significant shift in ε′/ε and satisfy ∆MK and εK constraints either RH or LH couplings

would have to be very small bringing us back to the LHS or RHS scenario, respectively.

We conclude therefore that the solution to the ε′/ε anomaly in Z ′ scenarios through

the QCDP is only possible in the LHS or RHS if one wants to avoid fine-tuning of couplings.

Then also the branching ratios for K+ → π+νν̄ and KL → π0νν̄ can be enhanced in a

correlated manner and εK enhanced as favoured by the data.

This is different from the Z case, where the four enhancements in question could only

be simultaneously obtained in the presence of LH and RH couplings without fine-tuning

of parameters.

5.5 A heavy G′

We have just seen that the removal of ε′/ε anomaly in Q6 scenario implies for ∆νν̄
L (Z ′) =

O(1) large NP effects in K+ → π+νν̄ and KL → π0νν̄. It is possible that the ε′/ε anomaly

will remain but no NP will be found in K+ → π+νν̄ and KL → π0νν̄. The simplest

solution would be to set ∆νν̄
L (Z ′) = 0. But another possibility would be the presence of

a heavy G′ which does not couple to neutrinos. One of the prominent examples of this

type are Kaluza-Klein gluons in Randall-Sundrum scenarios that belong to the adjoint

representation of the colour SU(3)c. But here we want to consider a simplified scenario

that has been considered in the context of NP contribution to the ∆I = 1/2 rule in [27]

and some of the results obtained there can be used in the case of ε′/ε here.
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Following [27] we will then assume that these gauge bosons carry a common mass MG′

and being in the octet representation of SU(3)c couple to fermions in the same manner as

gluons do. However, we will allow for different values of their left-handed and right-handed

couplings. Therefore up to the colour matrix ta, the couplings to quarks will be again

parametrized by:

∆sd
L (G′), ∆sd

R (G′), ∆qq
L (G′), ∆qq

R (G′) . (5.24)

As G′ carries colour, the RG analysis is modified through the change of the initial

conditions at µ = MG′ that read now [27]

C3(MG′) =

[
−1

6

]
∆sd
L (G′)∆qq

L (G′)

4M2
G′

, C ′3(MG′) =

[
−1

6

]
∆sd
R (G′)∆qq

R (G′)

4M2
G′

, (5.25)

C4(MG′) =

[
1

2

]
∆sd
L (G′)∆qq

L (G′)

4M2
G′

, C ′4(MG′) =

[
1

2

]
∆sd
R (G′)∆qq

R (G′)

4M2
G′

, (5.26)

C5(MG′) =

[
−1

6

]
∆sd
L (G′)∆qq

R (G′)

4M2
G′

, C ′5(MG′) =

[
−1

6

]
∆sd
R (G′)∆qq

L (G′)

4M2
G′

, (5.27)

C6(MG′) =

[
1

2

]
∆sd
L (G′)∆qq

R (G′)

4M2
G′

, C ′6(MG′) =

[
1

2

]
∆sd
R (G′)∆qq

L (G′)

4M2
G′

. (5.28)

In the LHS scenario the contributions of primed operators are absent. Moreover, due

the non-vanishing value of C6(MG′) the dominance of the operator Q6 is this time even

more pronounced than in the case of a colourless Z ′. See appendix A. One finds then in

the LHS [27]

C6(mc) = 1.61
∆sd
L (G′)∆qq

R (G′)

4M2
G′

(5.29)

with 1.61 resulting from RG evolution from MG′ = 3.0 TeV down to mc.

We find then(
ε′

ε

)L
G′

= 0.70B
(1/2)
6

[
3.5 TeV

MG′

]2

Im(∆sd
L (G′))∆qq

R (G′) , (5.30)

where the difference in the RG factor for MG′ = 3.0 TeV and MG′ = 3.5 TeV can be

neglected.

Now the upper bound on ∆qq
R (G′) from LHC reads [72]

∣∣∆qq̄
R (G′)

∣∣ ≤ 2.0

[
MG′

3.5 TeV

] [
1 +

(
1.4 TeV

MG′

)2
]
. (5.31)

Taking B
(1/2)
6 = 0.7, ∆qq

R (G′) = 2.0 and MG′ = 3.5 TeV we find then(
ε′

ε

)L
G′

= 0.98 Im∆sd
L (G′) (5.32)

and consequently the removal of ε′/ε anomaly requires now

Im∆sd
L (G′) = 1.02κε′

[
2.0

∆qq̄
R (G′)

]
10−3, (5.33)

which is by a factor of two lower than in the case of Z ′.
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As shown in [27] NP contributions to εK and ∆MK are for MG′ = MZ′ suppressed by a

colour factor of three relative to Z ′ case, but also in this case the removal of the εK tension

together with (5.33) implies that the coupling ∆sd
L (G′) is nearly imaginary. Therefore, also

in this case the unique prediction is the suppression of ∆MK below it SM value. Yet, this

suppression is smaller relative to Z ′ case by roughly a factor of 17 due to smaller value of

Im∆sd
L (G′), the colour factor 1/3 in NP contribution to ∆MK and the higher mass of G′.

Thus in contrast to the Z ′ case, NP effects in ∆MK are fully negligible in this scenario.

While, this scenario of NP is not very exciting, we cannot exclude it at present. It

should also be remarked that NP contributions to ∆MK could be obtained also with G′

by making ∆sd
R (G′) non-vanishing.

5.6 Z′ with electroweak penguin dominance

5.6.1 The case of ∆qq
R (Z′) = O(1)

We will next consider the case of a Z ′ model of the LHS type in which NP contribution

to ε′/ε is governed by the Q8 operator. The 331 models discussed briefly in section 7.5

are specific models belonging to this class of models. It should be noted that as far as

K+ → π+νν̄, KL → π0νν̄, εK , ∆MK and KL → µ+µ− are concerned the formulae of the

LH scenario in which Q6 dominated NP in ε′/ε remain unchanged. On the other hand the

formula for ε′/ε is modified in a very significant matter which will imply striking differences

from QCDP scenario.

Generalizing the analysis of 331 models in [77] to a Z ′ model with arbitrary diagonal

couplings we find

C8(mc) = 1.35C7(MZ′) = 1.35
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

(5.34)

with 1.35 resulting from RG evolution from MZ′ = 3.0 TeV down to mc. Here, in order

to simplify the notation we denoted the RH flavour diagonal quark coupling simply by

∆qq̄
R (Z ′).7

Proceeding as in LHS Z scenario in section 4.2 and replacing C8(mc) in (4.9) by (5.34)

we find instead of (5.8)(
ε′

ε

)L
Z′

= 38.0B
(3/2)
8

[
3 TeV

MZ′

]2

Im(∆sd
L (Z ′))∆qq̄

R (Z ′) . (5.35)

Compared to (5.8) the larger overall coefficient implies a smaller Im∆sd
L (Z ′) required to

solve the ε′/ε anomaly. On the other hand compared to (4.10) in the LHS Z scenario, the

sign of the model dependent ∆qq
R (Z ′) can be chosen in such a manner that one can enhance

simultaneously ε′/ε and B(KL → π0νν̄). This was not possible in the LH Z scenario in

which the diagonal quark couplings were fixed.

7In reality it is a proper linear combination of diagonal up-quark and down-quark couplings that enters

the Q7 and Q8 penguin operators. We denote this combination simply by ∆qq̄
R (Z′).
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Figure 6. Rνν̄0 and Rνν̄+ , as functions of κε′ for κε = 0.1, 0.2, 0.3, 0.4 for EWP scenario.

Setting B
(3/2)
8 = 0.76 we find the required couplings for the solution of ε′/ε and εK

anomalies through the shifts in (3.2) and (3.3) to be:

Im∆sd
L (Z ′) = 3.5

[
κε′

∆qq̄
R (Z ′)

][
0.76

B
(3/2)
8

] [
MZ′

3 TeV

]2

· 10−5 , (5.36)

Re∆sd
L (Z ′) = −8.2κε

[
∆qq̄
R (Z ′)

κε′

][
B

(3/2)
8

0.76

]
· 10−4 (5.37)

which in view of a large MZ′ can be made consistent with the KL → µ+µ− bound for

∆µµ̄
A (Z ′) = O(1). Note that Re∆sd

L (Z ′) is independent of MZ′ .

We observe that the signs in (5.36) and (5.37) are the same as in (5.9) and (5.12),

respectively implying that also now B(KL → π0νν̄) and B(K+ → π+νν̄) will be enhanced

over their SM values but the correlation between these enhancements is different due to the

fact that the real part of ∆sd
L (Z ′) is larger than its imaginary part. Moreover NP effects

implied in these decays by the ε′/ε and εK anomalies turn out to be significantly smaller

than in the QCDP scenario.

In the first panel in figure 6 we show Rνν̄0 and Rνν̄+ as functions of κε′ and different

values of κε with the colour coding in (4.48). Rνν̄0 is given by the blue line. Due to smaller

values of imaginary parts required for a given κε′ to fit the data on ε′/ε the implied NP

effects in both ratios are smaller than in the QCDP case and therefore we set this time

∆νν̄
L (Z ′) = 0.5. On the other hand in contrast to QCDP case, where there is no dependence

on κε, the enhancement of B(K+ → π+νν̄) in EWP scenario strongly depends on the ratio

κε/κε′ . This is also seen in the second panel in which we present the results of the first

panel as Rνν̄0 vs Rνν̄+ . This result has a pattern similar to the first Z example in figure 4

but NP effects are now much smaller.

Interestingly, we find that ∆MK is exclusively enhanced as opposed to its suppression

in QCDP scenario as seen in (5.13). This time we have

RZ
′

∆M (EWP) ≡
(∆MK)Z

′
VLL

(∆MK)exp
= 3.6 · 10−2 κ2

ε

[
∆qq̄
R (Z ′)

κε′

]2 [
0.76

B
(3/2)
8

]2 [
3 TeV

MZ′

]2

. (5.38)
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∆qq̄
R (Z ′) ∆νν̄

L (Z ′) ε′/ε |εK | B(KL → π0νν̄) B(K+ → π+νν̄) ∆MK

+ + + + + + +

+ + + − + − +

− + + + − − +

− + + − − + +

+ − + + − − +

+ − + − − + +

− − + + + + +

− − + − + − +

Table 4. Pattern of correlated enhancements (+) and suppressions (−) in Z ′ scenarios in which

NP in ε′/ε is dominated by EWP operator Q8.

We note that dependence on κε′ and ∆qq̄
R (Z ′) is different than in (5.13) and the enhancement

depends on κε. But the striking difference is in the size of the effect and its MZ′ dependence.

NP contribution to ∆MK is now in the ballpark of a few percent only and decreases with

increasing MZ′ as opposed to the QCD penguin case, where it is sizable and increases with

increasing MZ′ thereby significantly suppressing ∆MK . See figure 5.

Clearly, similar to the case of the Q6 dominance, the result that the branching ratios

B(KL → π0νν̄) and B(K+ → π+νν̄) are enhanced because ε′/ε is enhanced is related to

the choice of the signs of flavour diagonal quark and neutrino couplings in (5.4). If the

sign of one of these couplings is reversed but still the enhancement of ε′/ε is required, both

branching ratios are suppressed. But if in addition we require that εK is suppressed then

K+ → π+νν̄ is enhanced again but KL → π0νν̄ suppressed. We show various possibilities

in table 4. This table differs from table 3 because the flip of the sign of Re∆sd
L (Z ′), caused

by the flip of the sign of NP contribution to εK , now matters as Re∆sd
L (Z ′) is much larger

than in the QCDP case. This has no impact on KL → π0νν̄ but changes enhancement

of K+ → π+νν̄ into its suppression and vice versa. On the other hand ∆MK being

governed this time by the square of the real couplings is always enhanced as opposed to

the QCDP case.

The striking prediction of this scenario is also the prediction that in the case of a

negative shift of εK by NP one of the branching ratios must be enhanced with respect to

the SM and the other suppressed, a feature which is not possible in the QCDP scenario.

In view of these rather different results it should be possible to distinguish the QCDP

and EWP mechanisms in Z ′ scenarios when the situation with ε′/ε and εK anomalies will

be clarified and the data on B(KL → π0νν̄) and B(K+ → π+νν̄) will be available. The

improved knowledge of ∆MK will be important in this distinction due to the different signs

and sizes of NP contributions to ∆MK in these two scenarios.
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5.6.2 The case of ∆qq
R (Z′)� 1

The pattern just discussed is modified if ∆qq
R (Z ′) is strongly suppressed for some dynamical

reason. For instance choosing ∆qq
R (Z ′) = 0.01 we find

Im∆sd
L (Z ′) = 3.5κε′ 10−3 , Re∆sd

L (Z ′) = −8.2
κε
κε′

10−6 (5.39)

which as seen in (5.9 ) and (5.12) is rather similar to the case of the QCDP so that

enhancements of K+ → π+νν̄ and KL → π0νν̄ are correlated on a branch parallel to the

GN bound. Yet, it should be emphasized that in the EWP case this can only be obtained

by choosing the coupling ∆qq
R (Z ′) to be very small, while in the case of QCDP one obtains

this result automatically as in order to satisfy all flavour bounds while solving the ε′/ε

anomaly ∆qq
R (Z ′) must be O(1).

We will not consider the cases of RHS and of a general scenario. Due to the arbitrary

values of diagonal couplings not much new can be learned relative to the cases already

considered. But such scenarios could be of interest in specific models.

5.7 The impact of Z − Z′ mixing

Generally, in a Z ′ scenario, the Z − Z ′ mixing will generate in the process of electroweak

symmetry breaking flavour-violating tree-level Z contributions. As an example a non-

vanishing coupling

∆sd
L (Z) = sin ξ∆sd

L (Z ′) (5.40)

will be generated with ξ being the mixing angle. This mixing is bounded by LEP data to

be O(10−3) and has the structure

sin ξ = cmix
M2
Z

M2
Z′

(5.41)

with cmix being a model dependent factor. Inserting (5.40) into (4.5) and performing RG

evolution from MZ to mc we find the Z contribution to C8 generated by this mixing:

C8(mc) = −0.76 cmix

[
4g2s

2
W

6cW

]
∆sd
L (Z ′)

4M2
Z′

. (5.42)

Comparing with (5.34) we observe that Z contribution has eventually the same depen-

dence on MZ′ as Z ′ contribution. Which of these contributions is larger depends on the

model dependent values of cmix and ∆qq̄
R which govern Z ′ contribution to ε′/ε.

A simple class of models that illustrates these effects are 331 models in which cmix and

∆qq̄
R are given in terms of fundamental parameters of these models. A detailed analysis of

the impact of Z − Z ′ mixing on flavour observables in 331 models, including ε′/ε, can be

found in [77] and in a recent update in [78]. One finds after taking electroweak precision

constraints into account, that in most of these models for a large range of parameters Z ′

contributions dominate but if one aims for precision the effects of Z contributions cannot

be neglected. A brief summary of the analysis in [78] is given in section 7.5.
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5.8 Z′ outside the reach of the LHC

5.8.1 QCD penguin dominance

Our discussion in section 5.2 has revealed interesting MZ′ dependence of flavour observables

when the ε′/ε and εK constraints in (3.2) and (3.3) are imposed. They originate in the

fact that these constraints taken together require the following MZ′ dependence of the

Z ′ couplings

• Im∆sd
L (Z ′) must increase as M2

Z′ ,

• Re∆sd
L (Z ′) must be independent of MZ′ .

Therefore the increase of MZ′ assures the dominance of imaginary couplings. This should

be no surprise as both quantities are CP-violating and the imaginary couplings have to be

larger in order to explain the anomalies in ε′/ε and εK at larger MZ′ .

As a consequence of this MZ′ dependence

• B(KL → π0νν̄) is independent of MZ′ because ImXeff is independent of it. The

suppression by 1/M2
Z′ is cancelled by the increase of Im∆sd

L (Z ′).

• But ReXeff decreases with increasing MZ′ and consequently in principle B(K+ →
π+νν̄) will decrease. But this effect is so small in QCDP scenario that similar to

B(KL → π0νν̄) also this branching ratio will be independent of MZ′ with NP con-

tributing only through ImXeff.

• On the other hand the branching ratio for KL → µ+µ− decreases with increasing

MZ′ as it depends only on real parts of the couplings.

As a result of this pattern the correlation between B(KL → π0νν̄) and B(K+ → π+νν̄)

will be confined to the line parallel to the GN bound. But what is interesting is that this

correlation will depend only on κε′ and is independent of MZ′ . Comparing (5.9) with (5.12)

we find that the real parts are comparable with imaginary ones only for MZ′ < 500 GeV

which is clearly excluded by the LHC. Therefore, for fixed κε′ and κε nothing will change

as far as K+ → π+νν̄ and KL → π0νν̄ are concerned when MZ′ is increased but the

constraint from KL → µ+µ− will be weaker.

Yet, these scaling laws cannot be true forever as for sufficiently large MZ′ the couplings

will enter non-perturbative regime and our calculations will no longer apply. Moreover,

these scaling laws did not yet take into account the bound on NP contributions to ∆MK .

Indeed as seen in (5.13) this contribution increases in QCDP scenario with increasing MZ′

and suppresses ∆MK that is positive in the SM. At some value of MZ′ this NP effect will

be too large for the theory to agree with experiment. The rescue could come from increased

value of ∆qq̄
R (Z ′) or decreased value of κε′ . This simply means that when ∆MK constraint is

taken into account there is an upper bound on κε′ which becomes stronger with increasing

MZ′ . Or in other words at sufficiently high values of MZ′ it will not be possible to explain

the anomalies in question and with further increase of MZ′ NP will decouple.

At this stage one should emphasize that for more precise calculations, when going to

much higher values of MZ′ , well above the LHC scales, RG effects represented by numerical
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Figure 7. RZ
′

∆M (QCDP) as a function of MZ′ for different values of κ̄ε′ .

factors like 1.13, 1.61 and 1.35 for QCDP, G′ and EWP contributions to ε′/ε valid for

MZ′ = 3 TeV have to be modified as collected in table 5 in appendix A. For MZ′ = 100 TeV

they are increased typically by a factor of 1.3− 1.5 relative to MZ′ = 3 TeV.

Formula (5.13) generalized to include RG corrections for MZ′ ≥ 3 TeV reads

RZ
′

∆M (QCDP) = −0.23

[
1.13

r65(MZ′)

]2
[

κε′

∆qq̄
R (Z ′)

]2 [
MZ′

3 TeV

]2
[

0.70

B
(1/2)
6

]2

, (5.43)

with r65(MZ′) given in table 5. In figure 7 we show RZ
′

∆M (QCDP) as a function of MZ′ for

different values of the ratio

κ̄ε′ ≡
κε′

∆qq̄
R (Z ′)

. (5.44)

We observe that already for MZ′ = 6 TeV the shift in ∆MK is large unless κε′ is at most

0.5 or ∆qq̄
R (Z ′) > 1.0. As seen in (5.3) for MZ′ = 6 TeV the choice ∆qq̄

R (Z ′) = 2.0 is still

consistent with LHC bounds.

The bound on ∆MK in question can be avoided to some extent by going to the general

Z ′ scenario which contains also ∆sd
R (Z ′). This allows, as suggested in [27], to weaken with

some fine-tuning ∆MK constraint while solving ε′/ε anomaly. But, in order to perform a

meaningful analysis the value of ∆MK in the SM must be known significantly better than

it is the case now. In particular if suppressions of ∆MK are not allowed one will have to

abandon this scenario. Then, as we will discuss soon, the EWP scenario would be favoured.

It should also be emphasized that in a concrete model additional constraints could come

from other observables, in particular from observables like the B0
s,d− B̄0

s,d mass differences

∆Ms,d and CP asymmetries SψKS and Sψφ which could further change the scaling laws.

We refer to [78] for scaling laws found in the context of 331 models.
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5.8.2 Electroweak penguin dominance

The main difference in this scenario is the finding that for ∆qq̄
R = O(1) and MZ′ = 3 TeV

Re∆sd
R (Z ′)� Im∆sd

R (Z ′) . (5.45)

With increasing MZ′ this hierarchy becomes for fixed (κε′ , κε) smaller as Im∆sd
R (Z ′) in-

creases with MZ′ and Re∆sd
R (Z ′) is independent of it. By comparing (5.36) and (5.37) we

learn that the magnitudes of both couplings are equal for

MZ′ = 14.5
√
κε

[
∆qq
R

κε′

]
TeV (5.46)

But even for these values of MZ′

• The correlation between K+ → π+νν̄ and KL → π0νν̄ is away from the branch

parallel to the GN bound.

• NP contribution to ∆MK has opposite sign to the one in QCDP scenario and ∆MK

is enhanced and not suppressed relative to its SM value. Moreover this enhancement

is at the level of a few percent only and decreases with increasing MZ′ so that possible

problems with ∆MK constraint encountered in QCDP scenario are absent here unless

future precise estimates of ∆MK in the SM will require sizable contribution from NP.

Clearly a precise value of ∆MK in the SM will be crucial in order to see whether

the enhancement of ∆MK predicted here is consistent with the data. In particular if an

enhancement of ∆MK is not allowed, one will have to abandon this scenario.

5.9 Summary of NP patterns in Z′ scenarios

The striking difference from Z scenarios, known already from our previous studies, is the

increased importance of the constraints from ∆F = 2 observables. This has two virtues in

the presence of the ε′/ε constraint:

• The real parts of the couplings are determined for not too a large κε from the εK
constraint, which is theoretically cleaner than the KL → µ+µ− constraint that was

more important in LHS and RHS Z scenarios.

• There is a large hierarchy between real and imaginary parts of the flavour violating

couplings implied by anomalies in both Q6 and Q8 scenarios. But as seen in (5.9)

and (5.12) in the case of Q6 and in (5.36) and (5.37) in the case of Q8 this hierarchy

is different unless the εK anomaly is absent.

Because of a significant difference in the manner QCDP and electroweak penguins

enter ε′/ε, there are striking differences in the implications for the correlation between

K+ → π+νν̄ and KL → π0νν̄ in these two NP scenarios if significant NP contributions to

ε′/ε are required:
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• In the case of QCDP scenario the correlation between B(KL → π0νν̄) and B(K+ →
π+νν̄) takes place along the branch parallel to the GN bound. Moreover, this feature

is independent of MZ′ .

• In the EWP scenario this correlation proceeds away from this branch for diagonal

couplings O(1) if NP in εK is present with the departure from this branch increasing

with the increased NP effect in εK . But with increasing MZ′ this branch will be

approached although it is reached for MZ′ well beyond the LHC scales unless κε is

very small. See (5.46).

• For fixed values of the neutrino and diagonal quark couplings the predicted enhance-

ments of B(KL → π0νν̄) and B(K+ → π+νν̄) are much larger when NP in QCDP is

required to remove the ε′/ε anomaly. This is simply related to the fact that QCDP

operators are less effective in enhancing ε′/ε than EWP operators and consequently

the imaginary parts of the flavour violating couplings are required to be larger.

• Finally, a striking difference is the manner in which NP affects ∆MK in these two

scenarios. In QCDP scenario ∆MK is suppressed and this effect increases with in-

creasing MZ′ whereas in the EWP scenario ∆MK is enhanced and this effect decreases

with increasing MZ′ as long as real couplings dominate. Already on the basis of this

property one could differentiate between these two scenarios when the SM prediction

for ∆MK improves.

The plots in figures 5 and 6 show clearly the differences between QCDP and EWP

scenarios.

6 Hybrid scenarios: Z and Z′

Similar to flavour non-universal Z ′ couplings to quarks in the flavour basis, leading to

flavour-violating Z ′ couplings to quarks in the mass eigenstate basis, also flavour-violating

Z couplings can be generated. As an example in Randall-Sundrum scenario such couplings

result from the breakdown of flavour universality of Z couplings to quarks in the flavour

basis. But such couplings are also generated in the presence of new heavy fermions with

different transformation properties under the SM gauge group than the ordinary quarks and

leptons. The mixing of these new fermions with the ordinary fermions generates flavour-

violating Z couplings in the mass eigenstate basis. In order to avoid anomalies the most

natural here are vector-like fermions.

In the presence of both Z and Z ′ contributions, independently of the dynamics behind

their origin, the formulae for all observables discussed by us can be straightforwardly

generalized using the formulae of previous sections. We find then(
ε′

ε

)
NP

=

(
ε′

ε

)
Z

+

(
ε′

ε

)
Z′
. (6.1)

Z contribution is given in the case of the LHS in (4.10). Z ′ contribution in the QCDP

scenario is given in (5.8) and the one for EWP in (5.35).

– 39 –



J
H
E
P
0
4
(
2
0
1
6
)
0
7
1

Similar we have

(εK)NP
VLL = (εK)ZVLL + (εK)Z

′
VLL (6.2)

with the two contributions given in (4.14) and (5.10), respectively. Next

(∆MK)NP
VLL

(∆MK)exp
=

(∆MK)ZVLL

(∆MK)exp
+

(∆MK)Z
′

VLL

(∆MK)exp
(6.3)

with Z and Z ′ contributions given in (4.15) and (5.11), respectively.

In the case of K+ → π+νν̄ and KL → π0νν̄ we simply have

ReXNP
eff = ReXeff(Z) + ReXeff(Z ′) (6.4)

and

ImXNP
eff = ImXeff(Z) + ImXeff(Z ′) , (6.5)

where different contributions can be found in (C.13), (C.14), (C.16) and (C.17).

In order to get a rough idea about the relative size of Z and Z ′ contributions to different

observables we assume first that their contributions to ε′/ε and εK are related as follows(
ε′

ε

)
Z

= a

(
ε′

ε

)
Z′
, (εK)ZVLL = b (εK)Z

′
VLL (6.6)

with a and b being real, positive and O(1).

Proceeding as in the previous sections we find for Z couplings now

Im∆sd
L (Z) = −5.0

a

(1 + a)
κε′

[
0.76

B
(3/2)
8

]
· 10−7 (6.7)

and

Re∆sd
L (Z) = 4.7

b(1 + a)

a(1 + b)

[
κε
κε′

] [
B

(3/2)
8

0.76

]
· 10−5 , (6.8)

which for a� 1 and b� 1 reduce to (4.13) and (4.16), respectively.

For Z ′ scenario with QCDP dominance in ε′/ε we find

Im∆sd
L (Z ′) =

2.1

(1 + a)

[
κε′

∆qq̄
R (Z ′)

][
0.70

B
(1/2)
6

] [
MZ′

3 TeV

]2

· 10−3 (6.9)

and

Re∆sd
L (Z ′) = −1.4

(1 + a)

(1 + b)
κε

[
∆qq̄
R (Z ′)

κε′

][
B

(1/2)
6

0.70

]
· 10−5 , (6.10)

which for a = b = 0 reduce to (5.9) and (5.12), respectively.

Correspondingly for Z ′ scenario with EWP dominance in ε′/ε we find

Im∆sd
L (Z ′) =

3.5

(1 + a)

[
κε′

∆qq̄
R (Z ′)

][
0.76

B
(3/2)
8

] [
MZ′

3 TeV

]2

· 10−5 , (6.11)

Re∆sd
L (Z ′) = −8.2

(1 + a)

(1 + b)
κε

[
∆qq̄
R (Z ′)

κε′

][
B

(3/2)
8

0.76

]
· 10−4 , (6.12)

which reduce for a = b = 0 to (5.36) and (6.12), respectively.
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The comparison of (6.8) with (4.17) tells us that b cannot be O(1) but rather b ≤ 0.05.

We conclude therefore that

• Z ′ dominates the contribution of NP to εK which is consistent with previous general

analysis [65].

On the other hand assuming that a = O(1) the inspection of the formulae for the

quantities in (6.3)–(6.5) implies the following pattern of Z and Z ′ contributions.

In the QCDP scenario:

• NP contribution to ∆MK is dominated by Z ′.

• ReXNP
eff is dominated by Z

• ImXNP
eff is dominated by Z ′.

In the EWP scenario:

• Z and Z ′ contributions to ∆MK are of the same order.

• Contributions from Z and Z ′ to ReXNP
eff are of the same order but as they have

opposite signs for ∆qq̄
R (Z ′)∆νν̄

L (Z ′) > 0 the branching ratio for K+ → π+νν̄ can

be enhanced or suppressed if necessary, dependently on the values of parameters

involved.

• ImXNP
eff is dominated by Z.

Now, in many model constructions the full Z ′ and Z flavour-violating couplings, both

real and imaginary parts, are related by a common real factor so that the ratio of real

couplings of Z ′ and Z equals the ratio of imaginary ones. Imposing this on the couplings

obtained above we find the relations between the parameters a and b and knowing already

that b� 1 we can find out the size of a in different scenarios. In the case of QCDP scenario

we obtain

a2 = b
1.4

(∆qq̄
R (Z ′))2

· 104

[
MZ′

3 TeV

]2
[

0.70

B
(1/2)
6

]2 [
B

(3/2)
8

0.76

]2

, (QCDP) (6.13)

and for EWP one

a2 = b
4.0

(∆qq̄
R (Z ′))2

[
MZ′

3 TeV

]2

. (EWP) (6.14)

For b ≤ 0.05 one has then in the QCDP scenario for Z ′

a ≤ 26.5

∆qq̄
R (Z ′)

[
MZ′

3 TeV

]
, (QCDP) , (6.15)

where we neglected the difference between B
(1/2)
6 and B

(3/2)
8 . Evidently, unless the con-

tribution of Z to εK is totally negligible, Z generally dominates NP contribution to ε′/ε

and therefore Q8 operator wins over Q6 as expected already from arguments given at the
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beginning of our paper. This also implies that now, as opposed to the case of a = O(1)

discussed above, contributions from Z and Z ′ to ImXNP
eff can be for sufficiently large a of

the same order. But, as they have opposite signs for ∆νν̄
L (Z ′) > 0, the branching ratio

for KL → π0νν̄ can be enhanced or suppressed if necessary, dependently on the values of

parameters involved.

On the other hand in EWP scenario both contributions are dominated by Q8 operator.

We find then

a ≤ 0.45

∆qq̄
R (Z ′)

[
MZ′

3 TeV

]
, (EWP) , (6.16)

so that in this case a = O(1) and Z contribution to ε′/ε can be comparable to the Z ′

one. Consequently the pattern of NP effects listed for EWP above applies. Only for

very suppressed ∆qq̄
R (Z ′) and large MZ′ the contribution from Z can again dominate as in

QCDP scenario.

Without a specific model it is not possible to make more concrete predictions but it

is clear that the structure of NP contributions is more involved than in previous scenarios.

One should also keep in mind that in certain models contributions from loop diagrams

could play some role, in particular in models in which vector-like quarks and new heavy

scalars are present.

7 Selected models

7.1 Preliminaries

Here we will briefly describe results in specific models as presented already in the literature.

Some of these analyses have to be updated but the pattern of NP effects in the described

NP scenarios is known and consistent with pattern found in previous sections.

7.2 Models with minimal flavour violation

The recent analysis of simplified models, in particular those with minimal flavour violation

and those with U(2)3 symmetry shows that one should not expect a solution to ε′/ε anomaly

from such models [30]. This is also the case of the MSSM with MFV as already analyzed

in [79] and NP effects in this scenario must be presently even smaller due to the increase

of the supersymmetry scale.

7.3 A model with a universal extra dimension

In this model NP contribution to ε′/ε depends on only one new parameter: the com-

pactification radius. One finds ε′/ε to be smaller than its SM value independently of the

compactification radius [80]. Consequently this model is disfavoured by ε′/ε and there is

no need to discuss its implications for other observables.

7.4 Littlest Higgs model with T-parity

In this model NP contributions to K+ → π+νν̄, KL → π0νν̄ and ε′/ε are governed by EWP

and in particular the ones in ε′/ε by the operator Q8. The model has the same operator
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structure as the SM and FCNC processes appear first at one loop level. But effectively for

these three observables the model has the structure of Z LH scenario with the coupling

∆sd
L (Z) resulting from one-loop contributions involving new fermions and gauge bosons.

Moreover NP contributions to εK are governed by new box diagrams. Consequently the

correlation with between K+ → π+νν̄, KL → π0νν̄, ε′/ε is more involved than in simple

models discussed by us. But the anticorrelation between ε′/ε and KL → π0νν̄ is also

valid here.

The most recent analysis in [31] shows that

• The LHT model agrees well with the data on ∆F = 2 observables and is capable of

removing some slight tensions between the SM predictions and the data. In particular

εK can be enhanced.

• If ε′/ε constraint is ignored the most interesting departures from SM predictions can

be found for K+ → π+νν̄ and KL → π0νν̄ decays. An enhancement of the branching

ratio for K+ → π+νν̄ by a factor of two relative to the SM prediction is still possible.

An even larger enhancement in the case of KL → π0νν̄ is allowed. But as expected

from the properties of Z LH scenario of section 4.2, when the ε′/ε constraint is taken

into account the necessary enhancement of ε′/ε requires rather strong suppression

of KL → π0νν̄. On the other hand significant shifts of K+ → π+νν̄ with respect

to SM are then no longer allowed. Figures 6 and 7 in [31] show this behaviour in a

spectacular manner.

7.5 331 models

The 331 models are based on the gauge group SU(3)C × SU(3)L×U(1)X . In these models

new contributions to ε′/ε and other flavour observables are dominated by tree-level ex-

changes of a Z ′ with non-negligible contributions from tree-level Z exchanges generated

through the Z − Z ′ mixing. The size of these NP effects depends not only on MZ′ but in

particular on a parameter β, which distinguishes between various 331 models, on fermion

representations under the gauge group and a parameter tan β̄ present in the Z − Z ′ mix-

ing [77]. The ranges of these parameters are restricted by electroweak precision tests and

flavour data, in particular from B physics. A recent updated analysis has been presented

in [78].

The model belongs to the class of Z ′ models with LH flavour-violating couplings with

only a small effect from Z −Z ′ mixing in ε′/ε that is dominated by the operator Q8. But,

in contrast to the general case analyzed in section 5.6, the diagonal couplings are known in

a given 331 model as functions of β. The new analysis in [78] shows that the impact of a

required enhancement of ε′/ε on other flavour observables is significant. The main findings

of [78] for MZ′ = 3 TeV are as follows:

• Among seven 331 models singled out in [77] through electroweak precision study

only three can provide significant shift of ε′/ε but for MZ′ = 3 TeV not larger than

6× 10−4, that is κε′ ≤ 0.6.
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• Two of them can simultaneously suppress Bs → µ+µ− but do not offer the explana-

tion of the suppression of the Wilson coefficient C9 in B → K∗µ+µ− (the so-called

LHCb anomaly).

• On the contrary the third model offers partial explanation of this anomaly simulta-

neously enhancing ε′/ε but does not provide suppression of Bs → µ+µ− which could

be required when the data improves and the inclusive value of |Vcb| will be favoured.

• NP effects in K+ → π+νν̄, KL → π0νν̄ and B → K(K∗)νν̄ are found to be small.

This could be challenged by NA62, KOPIO and Belle II experiments in this decade.

Interestingly, the special flavour structure of 331 models implies that even for MZ′ =

30 TeV a shift of ε′/ε up to 8×10−4 and a significant shift in εK can be obtained, while the

effects in other flavour observables are small. This makes these models appealing in view of

the possibility of accessing masses of MZ′ far beyond the LHC reach. The increase in the

maximal shift in ε′/ε is caused by RG effects summarized in table 5. But for MZ′ > 30 TeV

the ∆MK constraint becomes important and NP effects in ε′/ε decrease as 1/MZ′ .

7.6 More complicated models

Clearly there are other possibilities involving new operators. In particular it has been

pointed out that in general supersymmetric models ε′/ε can receive important contributions

from chromomagnetic penguin operators [81, 82]. In fact in 1999 this contribution could

alone be responsible for experimental value of ε′/ε subject to very large uncertainties of

the relevant hadronic matrix element. This assumed the masses of squarks and gluinos in

the ballpark of 500 GeV. With the present lower bounds on these masses in the ballpark

of few TeV, it is unlikely that these operators can still provide a significant contribution to

ε′/ε when all constraints from other observables are taken into account. Similar comments

apply to other models like the one in [83], Randall-Sundrum models [84] and left-right

symmetric models [85], where in the past ε′/ε could receive important contributions from

chromomagnetic penguins. It would be interesting to update such analyses, in particular

when the value of B
(1/2)
6 and the hadronic matrix elements of chromomagnetic penguins

will be better known.

8 New physics in ReA0 and ReA2

The calculations of K → ππ isospin amplitudes ReA0 and ReA2 within the SM, related to

the ∆I = 1/2 rule in (1.4) have been the subject of many efforts in the last 40 years. Some

aspects of these efforts have been recalled in [16]. Here we only note that both the dual

approach to QCD [16] and lattice approach [3] obtain satisfactory results for the amplitude

ReA2 within the SM leaving there only small room for NP contributions.

On the other hand, whereas in the large N approach one finds [16](
ReA0

ReA2

)
dual QCD

= 16.0± 1.5 , (8.1)
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the most recent result from the RBC-UKQCD collaboration reads [4](
ReA0

ReA2

)
lattice QCD

= 31.0± 6.6 . (8.2)

Due to large error in the lattice result, both results are compatible with each other and

both signal that this rule follows dominantly from the QCD dynamics related to current-

current operators. In addition both leave room for sizable NP contributions. But, from

the present perspective only lattice simulations can provide precise value of ReA0 one day,

so that we will know whether some part of this rule at the level of (20− 30)%, as signalled

by the result in (8.1), originates in NP contributions.

This issue has been addressed in [27], where it has been demonstrated that a QCDP

generated by a heavy Z ′ and in particular a heavy G′ in the reach of the LHC could be

responsible for the missing piece in ReA0 in (8.1) but this requires a very large fine-tuning

of parameters in order to satisfy the experimental bounds from ∆MK and εK even in the

absence of the ε′/ε anomaly, which was unknown at the time of the publication in [27].

The point is that a sizable contribution of Q6 operator to ReA0 requires Re∆sd
L (Z ′) =

O(1) which as stressed in [27] violates ∆MK by many orders of magnitude if only LH

flavour-violating currents are considered. In the presence of ε′/ε anomaly, which requires

Im∆sd
L (Z ′) = O(10−3) the results of previous sections show that also εK constraint is then

violated by several orders of magnitude.

The only possible solution is the introduction of both LH and RH flavour violating

currents with real and imaginary parts of both currents properly chosen so that both

∆MK and εK constraints are satisfied and significant contribution to ReA0 is obtained.

The ε′/ε anomaly provides additional constraint but as seen in figure 4 of [27] in the case

of Z ′ scenario and in section 6 of that paper in the case of G′ scenario, satisfactory results

for ReA0, ε′/ε, εK and ∆MK can be obtained. But it should be kept in mind that such

a solution requires very high fine-tuning of parameters and on the basis of the analysis

in [27] the central value of lattice result in (8.2) is too far away from the data that one

could attribute this difference to any NP.

In summary, the future precise lattice calculations will hopefully tell us whether there

is some NP contributing significantly to ReA0. This would enrich the present analysis as

one would have, together with ReA2, two additional constraints. But on the basis of [27]

it is rather unlikely that this NP is represented by heavy Z ′ or G′ unless the nature allows

for very high fine-tunings.

9 2018 visions

With all these results at hand we can dream about the discovery of NP in K+ → π+νν̄ by

the NA62 experiment:

B(K+ → π+νν̄) = (18.0± 2.0) · 10−11, (NA62, 2018) . (9.1)

Indeed, looking at the grey bands in several figures presented by us, such a result would

be truly tantalizing with a big impact on our field.
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We will next assume that the lattice values of B
(1/2)
6 and B

(3/2)
8 will be close to our

central values

B
(1/2)
6 ≈ 0.70, B

(3/2)
8 ≈ 0.76, (9.2)

and that the CKM parameters are such that κε′ ≈ 1.0 will be required.

Concerning εK we will consider two scenarios, one with κε = 0.4 and the other with

κε = 0, that is no εK anomaly.

9.1 κε′ = 1.0 and κε = 0.4

Inspecting the results of previous sections, we conclude the following

• Z scenarios with only LH and RH couplings will be ruled out as they cannot accom-

modate εK anomaly with κε = 0.4 unless at one loop level in the presence of new

heavy fermions or scalars significant contributions to εK would be generated. Then

in principle the rates for K+ → π+νν̄ in LHS and RHS could be made consistent

with the result in (9.1).

• It is clearly much easier to reproduce the data in the general Z scenario. In fact

as seen in figure 4 both examples presented by us could accommodate the result

in (9.1), explain simultaneously ε′/ε and εK anomalies and predict an enhancement

of B(KL → π0νν̄) by a factor of two to three in the first example and by an order of

magnitude in the second example.

• As seen in figure 5 the QCDP generated by Z ′ can reproduce the result in (9.1) for

∆νν̄
L (Z ′) = 0.5 and κε′ = 1.0. This then implies the enhancement of the rate for

KL → π0νν̄ by a factor of 15 − 20: good news for KOPIO. Moreover, εK can be

made consistent with the data independently of κε′ .

• Interestingly, as seen in figure 6, EWP generated by Z ′ will not be able to explain the

result in (9.1) unless the coupling ∆qq̄
R (Z ′) is very strongly suppressed below unity.

Also NP effects in KL → π0νν̄ are predicted to be small.

9.2 κε′ = 1.0 and κε = 0.0

If εK can be explained within the SM the main modification relative to the case of κε 6= 0

is that in all scenarios the correlation between KL → π0νν̄ and K+ → π+νν̄ takes place

on the branch parallel to GN bound in strict correlation with ε′/ε or equivalently κε′ . Yet,

there are differences between various scenarios:

• Z scenarios with only LH or RH currents and EWP(Z ′) scenario with ∆qq̄
R = O(1)

imply SM-like values for B(K+ → π+νν̄), far below the result in (9.1).

• For QCDP(Z ′) nothing changes relative to the previous case and interesting results

for both rare decay branching ratios can be obtained. Also the general Z case can

work in view of sufficient number of free parameters. EWP scenario can also work

provided ∆qq̄
R (Z ′) is very strongly suppressed below unity.
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In summary we observe that a NA62 measurement of B(K+ → π+νν̄) in the ballpark

of the result in (9.1) will be able to make reduction of possibilities with the simplest scenario

being QCDP generated through a tree-level Z ′ exchange. But then the crucial question

will be what is the value of ∆MK in the SM.

10 Outlook and open questions

Our general analysis of ε′/ε and εK in models with tree-level flavour-violating Z and Z ′

exchanges shows that such dynamics could be responsible for the observed ε′/ε anomaly

with interesting implications for other flavour observables in the K meson system. In

particular it could shed some light on NP in εK and ∆MK . Our results are summarized

in numerous plots and two tables which show that the inclusion of other observables can

clearly distinguish between various possibilities.

Except for the case of Z scenarios with only left-handed (LHS) and right-handed (RHS)

flavour violating currents, where KL → µ+µ− bound was the most important constraint

on the real parts of flavour violating couplings, in the remaining scenarios the pattern of

flavour violation was governed in the large part of the parameter space entirely by CP-

violating quantities: ε′/ε and εK . NP effects in them where described by two parameters

κε′ and κε as defined in (3.2) and (3.3).

In LH and RH Z ′ scenarios the role of ε′/ε was to determine imaginary parts of flavour

violating Z ′ couplings. Having them, the role of εK was to determine the real parts of these

couplings. These then had clear implications for other observables, in particular for the

branching ratios for K+ → π+νν̄ and KL → π0νν̄ and for ∆MK . The case of general

scenarios with LH and RH couplings is more involved but also here we could get a picture

what is going on.

From our point of view the most interesting results of this work are as follows:

• In LH and RH Z scenarios the enhancement of ε′/ε implies uniquely suppression of

KL → π0νν̄. Moreover, NP effects in εK and ∆MK are very small.

• Simultaneous enhancements of ε′/ε, εK and of the branching ratios for K+ → π+νν̄

and KL → π0νν̄ in Z scenarios are only possible in the presence of both LH and RH

flavour violating couplings. As far as ε′/ε and KL → π0νν̄ are concerned this finding

has already been reported in [30] but our new analysis summarized in figures 2–4

extended this case significantly.

• If the enhancement of ε′/ε in Z ′ scenarios is governed by QCDP operator Q6, the

branching ratios for KL → π0νν̄ and K+ → π+νν̄ are strictly correlated, as seen in

figure 5, along the branch parallel to the GN bound. They can be both enhanced

or suppressed dependently on the signs of diagonal quark and neutrino couplings

that are relevant for ε′/ε and these rare decays, respectively. Various possibilities

are summarized in table 3. There we see that in these scenarios ∆MK is uniquely

suppressed relative to its SM value. This is directly related to the dominance of imag-

inary parts of flavour violating couplings necessary to provide sufficient enhancement
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of ε′/ε. The suppression of ∆MK could turn out to be a challenge for this scenario

implying possibly an upper bound on κε′ as we stressed in section 5.8 and illustrated

in figure 5 and in particular in figure 7. On the other hand the role of εK is smaller,

even if solution to possible tensions there are offered.

• But two messages on QCDP scenario from our analysis are clear. If B(K+ → π+νν̄)

will turn out one day to be enhanced by NP relative to the SM prediction and

B(KL → π0νν̄) suppressed or vice versa, the QCDP scenario will not be able to

describe it. This is also the case when ∆MK in the SM will be found below its

experimental value.

• Rather different pattern of the implications of the ε′/ε anomaly are found in Z ′

scenarios in which the enhancement of ε′/ε is governed by EWP operator Q8. In

particular the correlation between K+ → π+νν̄ and KL → π0νν̄ depends on the size

and the sign of NP contribution to εK which was not the case of QCDP scenario.

Moreover, as seen in figure 6, the structure of this correlation is very different from

the one in figure 5, although also in this case, for κε > 0, both branching ratios are

enhanced with respect their SM values. They can also be simultaneously suppressed

for different signs of diagonal quark and neutrino couplings. Various possibilities are

summarized in table 4.

• But as we emphasized and shown in this table, for κε < 0 in the EWP scenario,

the enhancement of K+ → π+νν̄ implies simultaneous suppression of KL → π0νν̄ or

vice versa which is not possible in the QCDP scenario. Moreover, in this scenario

∆MK is uniquely enhanced relative to its SM value. This is directly related to

the dominance of the real parts of flavour violating couplings necessary to provide

sufficient contribution to εK in the presence of an enhancement of ε′/ε. But, as

opposed to the QCDP case, this NP effect is small.

These results show that a good knowledge of ∆MK within the SM would help a lot in

distinguishing between QCDP and EWP scenarios. Presently the uncertainties in ∆MK

from both perturbative contributions [74] and long distance calculations both within large

N approach [16] and lattice simulations [75] are too large to be able to conclude whether

positive or negative shift, if any, in ∆MK from NP is favoured.

The dominant part of our Z ′ study concerned MZ′ in the reach of the LHC but as

we demonstrated in section 5.8, ε′/ε will give us an insight into short distance dynamics

even if Z ′ cannot be seen by ATLAS and CMS experiments. We also restricted our study

to the K meson system. In concrete models there are correlations between observables in

K meson system and other meson systems. An example are models with minimal flavour

violation. But as shown in [30], in such models NP effects in ε′/ε, εK , K+ → π+νν̄ and

KL → π0νν̄ are small. Larger effects can be obtained in LHT and 331 models for which

the most recent analyses can be found in [31] and [78], respectively.

There is no doubt that in the coming years K meson physics will strike back, in

particular through improved estimates of SM predictions for ε′/ε, εK , ∆MK and KL →
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µ+µ− and through crucial measurements of the branching ratios for K+ → π+νν̄ and

KL → π0νν̄. Correlations with other meson systems, lepton flavour physics, electric dipole

moments and other rare processes should allow us to identify NP at very short distance

scales [28] and we should hope that this physics will also be directly seen at the LHC.

Let us then end our paper by listing most pressing questions for the coming years. On

the theoretical side we have:

• What is the value of κε′? Here the answer will come not only from lattice QCD

but also through improved values of the CKM parameters, NNLO QCD corrections

and an improved understanding of FSI and isospin breaking effects. The NNLO QCD

corrections should be available soon. The recent analysis in the large N approach

in [17] indicates that FSI are likely to be important for the ∆I = 1/2 rule in agreement

with previous studies [10–15], but much less relevant for ε′/ε.

• What is the value of κε? Here the reduction of CKM uncertainties is most

important. But the most recent analysis in [61] indicates that if no NP is present in

εK , it is expected to be found in ∆Ms,d.

• What is the value of ∆MK in the SM? Here lattice QCD should provide useful

answers.

• What are the precise values of ReA2 and ReA0? Again lattice QCD will play

the crucial role here.

On the experimental side we have:

• What is B(K+ → π+νν̄) from NA62? We should know it in 2018.

• What is B(KL → π0νν̄) from KOPIO? We should know it around the year 2020.

• Do Z′, G′ or other new particles with masses in the reach of the LHC

exist? We could know it already this year.

Definitely there are exciting times ahead of us!

Acknowledgments

First of all I would like to thank Robert Buras-Schnell for a very careful and critical reading

of the manuscript and decisive help in numerical calculations, in particular for constructing

all the plots present in this paper. I thank Jean-Marc Gérard for illuminating discussions.

The collaboration with Fulvia De Fazio on ε′/ε in the context of 331 models and brief

discussions with Christoph Bobeth are also highly appreciated. This research was done

and financed in the context of the ERC Advanced Grant project “FLAVOUR”(267104)

and was partially supported by the DFG cluster of excellence “Origin and Structure of

the Universe”.

– 49 –



J
H
E
P
0
4
(
2
0
1
6
)
0
7
1

A More information on renormalization group evolution

A.1 QCD penguins

We follow here [27] and consider first the case of Z ′ with flavour universal diagonal quark

couplings. In this case the QCDP Q5 and Q6 have to be considered. The mixing with

other operators is neglected and we work in LO approximation.

Denoting then by ~C(MZ′) the column vector with components given by the Wilson

coefficients C5 and C6 at µ = MZ′ we find their values at µ = mc by means of

~C(mc) = Û(mc,MZ′) ~C(MZ′) (A.1)

where

Û(mc,MZ′) = Û (f=4)(mc,mb)Û
(f=5)(mb,mt)Û

(f=6)(mt,MZ′) (A.2)

and [86]

Û (f)(µ1, µ2) = V̂

[αs(µ2)

αs(µ1)

]~γ(0)

2β0


D

V̂ −1. (A.3)

The relevant 2× 2 one-loop anomalous dimension matrix in the basis (Q5, Q6) can be

extracted from the known 6 × 6 matrix [87] and is given as follows

γ̂s(αs) = γ̂(0)
s

αs
4π
, γ̂(0)

s =

(
2 −6

− f 2
9 −16 + f 2

3

)
(A.4)

with f being the number of quark flavours.

The matrix V̂ diagonalizes γ̂(0)T

γ̂
(0)
D = V̂ −1γ̂(0)T V̂ , (A.5)

~γ(0) is the vector containing the diagonal elements of the diagonal matrix:

γ̂
(0)
D =

(
γ

(0)
+ 0

0 γ
(0)
−

)
(A.6)

and

β0 =
33− 2f

3
. (A.7)

For αs(MZ) = 0.1185, mc = 1.3 GeV and MZ′ = 3 TeV we have[
C5(mc)

C6(mc)

]
=

[
0.86 0.19

1.13 3.60

][
1

0

]
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

. (A.8)

Consequently

C5(mc) = 0.86
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

, C6(mc) = 1.13
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

. (A.9)
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Due to the large element (1, 2) in the matrix (A.4) and the large anomalous dimension

of the Q6 operator represented by the (2, 2) element of this matrix, C6(mc) is by a factor

of 1.3 larger than C5(mc) even if C6(MZ′) vanishes at LO. Moreover the matrix element

〈Q5〉0 is strongly colour suppressed [9] which is not the case of 〈Q6〉0 and within a good

approximation we can neglect the contribution of Q5. In the case of (Q′5, Q
′
6) the formulae

remain unchanged except that the value of C ′5(MZ′) differs from C5(MZ′).

In the case of G′ the initial conditions for the Wilson coefficients C5 and C6 at µ = MG′

are modified and given in (5.27) and (5.28). One finds then[
C5(mc)

C6(mc)

]
=

[
0.86 0.19

1.13 3.60

][
−1/6

1/2

]
∆sd
L (G′)∆qq

R (G′)

4M2
G′

. (A.10)

Consequently instead of (A.9) one has

C5(mc) = −0.05
∆sd
L (G′)∆qq

R (G′)

4M2
G′

, C6(mc) = 1.61
∆sd
L (G′)∆qq

R (G′)

4M2
G′

(A.11)

so that now Q6 operator is even more dominant over Q5 than in the Z ′ scenario.

A.2 Electroweak penguins

The basic equation for the RG evolution can also be used for Z models except that

~C(mc) = Û(mc,MZ) ~C(MZ) (A.12)

where

Û(mc,MZ) = Û (f=4)(mc,mb)Û
(f=5)(mb,MZ) (A.13)

and the relevant one-loop anomalous dimension matrix in the (Q7, Q8) basis is very similar

to the one in (A.4)

γ̂(0)
s =

(
2 −6

0 −16

)
. (A.14)

Performing the renormalization group evolution from MZ to mc = 1.3 GeV we find [27]

C7(mc) = 0.87C7(MZ) C8(mc) = 0.76C7(MZ). (A.15)

Due to the large element (1, 2) in the matrix (A.14) and the large anomalous dimension

of the Q8 operator represented by the (2, 2) element in (A.14), the two coefficients are

comparable in size. But the matrix element 〈Q7〉2 is colour suppressed which is not the

case of 〈Q8〉2 and within a good approximation we can neglect the contributions of Q7.

In the case of (Q′7, Q
′
8) the formulae remain unchanged except that the value of C ′7(MZ)

differs from C7(MZ).

If a Z ′ model has such flavour diagonal couplings that at the end only the operators

(Q7, Q8) or (Q′7, Q
′
8) have to be considered, additional evolution from MZ to MZ′ has to

be performed as in (A.2) but the anomalous dimension matrix is as given in (A.14). One

finds then for αs(MZ) = 0.1185, mc = 1.3 GeV and MZ′ = 3 TeV [77]

C8(mc) = 1.35C7(MZ′) (A.16)

with 1.35 being RG factor. The longer RG evolution than in the case of Z made this

factor larger.
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MZ′ 3 TeV 6 TeV 10 TeV 20 TeV 50 TeV 100 TeV

r65 1.13 1.22 1.28 1.37 1.48 1.56

r87 1.35 1.48 1.56 1.69 1.85 1.97

rG′ 1.61 1.70 1.77 1.85 1.96 2.05

Table 5. The MZ′(MG′) dependence of the RG factors r65, r87 and rG′ at LO with two-loop

running of αs.

A.3 Beyond the LHC scales

In the case of Z ′ we define for arbitrary MZ′ the factors r65 and r87 by

C6(mc) = r65C5(MZ′), C8(mc) = r87C7(MZ′). (A.17)

In the case of G′ we define the corresponding factor through

C6(mc) = rG′
∆sd
L (G′)∆qq

R (G′)

4M2
G′

. (A.18)

All these factors increase with increasing MZ′ . We show this dependence in table 5.8

B εK and ∆MK

B.1 General formulae

For the CP-violating parameter εK and ∆MK we have respectively

εK =
κ̃εe

iϕε

√
2(∆MK)exp

[
Im
(
MK

12

)]
≡ eiϕε

[
εSM
K + εNP

K

]
, (B.1)

∆MK = 2Re
(
MK

12

)
= (∆MK)SM + (∆MK)NP (B.2)

where ϕε = (43.51±0.05)◦ and κ̃ε = 0.94±0.02 [42, 43] takes into account that ϕε 6= π
4 and

includes long distance effects in Im(Γ12) and Im(M12). We have separated the overall phase

factor so that εSM
K and εNP

K are real quantities with εNP
K representing NP contributions.

Generally we can write

MK
12 = [MK

12 ]SM + [MK
12 ]NP , (B.3)

where the first term is the SM contribution for which the explicit expression can be found

e.g. in [28]. We decompose the NP part as follows

[MK
12 ]NP = [MK

12 ]VLL + [MK
12 ]VRR + [MK

12 ]LR. (B.4)

The first two contributions come from the operators

QVLL
1 = (s̄γµPLd) (s̄γµPLd) , QVRR

1 = (s̄γµPRd) (s̄γµPRd) (B.5)

and the last one from

QLR
1 = (s̄γµPLd) (s̄γµPRd) , QLR

2 = (s̄PLd) (s̄PRd) . (B.6)
8We thank Christoph Bobeth for checking this table.
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B.2 Z and Z′ cases

Using formulae in [65] we find then in the case of tree-level Z contribution

[MK
12 ]∗VLL =

1

6
F 2
KB̂KmKη2r̃

[
∆sd
L (Z)

MZ

]2

(B.7)

where

η2 = 0.576, r̃ ≈ 1.068, B̂K ≈ 0.75 . (B.8)

For VRR one should just replace L by R. We emphasize the complex conjugation in this

formula.

For the LR contribution we simply have

[MK
12 ]∗LR =

∆sd
L (Z)∆sd

R (Z)

M2
Z

〈Q̂LR
1 (MZ)〉sd (B.9)

where using the technology of [69, 88] we have expressed the amplitude in terms of the

renormalisation scheme independent matrix element

〈Q̂LR
1 (MZ)〉sd = 〈QLR

1 (MZ)〉sd
(

1− 1

6

αs(MZ)

4π

)
− αs(MZ)

4π
〈QLR

2 (MZ)〉sd . (B.10)

On the basis of [89–91] one finds for MZ and MZ′ = 3 TeV

〈Q̂LR
1 (MZ)〉sd ≈ −0.09 GeV3 , 〈Q̂LR

1 (MZ′)〉sd ≈ −0.16 GeV3 . (B.11)

This matrix element increases with increasing MZ′ . See table 5 in [70].

For εK and ∆MK , inserting relevant contributions to M12 into (B.1) and (B.2), we get

then in the case of Z

εNP
K = −4.26 · 107

[
Im∆sd

L (Z)Re∆sd
L (Z) + Im∆sd

R (Z)Re∆sd
R (Z)

]
+ (εK)ZLR (B.12)

with

(εK)ZLR = 2.07 · 109
[
Im∆sd

L (Z)Re∆sd
R (Z) + Im∆sd

R (Z)Re∆sd
L (Z)

]
(B.13)

and

(∆MK)NP

(∆MK)exp
= 6.43 · 107

∑
P=L,R

[
(Re∆sd

P (Z))2 − (Im∆sd
P (Z))2

]
+

(∆MK)ZLR

(∆MK)exp
(B.14)

with

(∆MK)ZLR

(∆MK)exp
= −6.21 · 109

[
Re∆sd

L (Z)Re∆sd
R (Z)− Im∆sd

L (Z)Im∆sd
R (Z)

]
. (B.15)

The fact that the LR contributions in these expressions have opposite sign to the ones

from VLL and VRR operators is related to the opposite signs in the relevant hadronic

matrix elements.

For the Z ′ tree-level exchanges, MZ should be replaced by MZ′ , in VLL and VRR

contributions r̃ = 0.95 should used and in LR contribution the value of the matrix element

〈Q̂LR
1 〉 in (B.11). See section 5 for explicit formulae.
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C K+ → π+νν̄ and KL → π0νν̄

C.1 General formulae

The branching ratios for K+ → π+νν̄ and KL → π0νν̄ in any extension of the SM in which

light neutrinos couple only to left-handed currents are given as follows

B(K+ → π+νν̄) = κ+ ·

[(
ImXeff

λ5

)2

+

(
Reλc
λ

Pc(X) +
ReXeff

λ5

)2
]
, (C.1)

B(KL → π0νν̄) = κL ·
(

ImXeff

λ5

)2

, (C.2)

where λ = |Vus| and [92]

κ+ = (5.173± 0.025) · 10−11

[
λ

0.225

]8

, κL = (2.231± 0.013) · 10−10

[
λ

0.225

]8

. (C.3)

For the charm contribution, represented by Pc(X), the calculations in [92–96] imply [45]

Pc(X) = 0.404± 0.024, (C.4)

where the error is dominated by the long distance uncertainty estimated in [96]. Next

Xeff = V ∗tsVtd [XL +XR] , (C.5)

where the functions XL and XR summarise the contributions from left-handed and right-

handed quark currents, respectively. λi = V ∗isVid are the CKM factors. In what follows we

will set these factors to

Reλt = −3.0 · 10−4, Imλt = 1.4 · 10−4 (C.6)

which are in the ballpark of present best estimates [59, 60]. The Grossman-Nir (GN) bound

on B(KL → π0νν̄) reads [76]

B(KL → π0νν̄) ≤ κL
κ+
B(K+ → π+νν̄) = 4.31B(K+ → π+νν̄), (C.7)

where we have shown only the central value as it is never reached in the models considered

by us. See figures 4 and 5.

Experimentally we have [97]

B(K+ → π+νν̄)exp = (17.3+11.5
−10.5) · 10−11 , (C.8)

and the 90% C.L. upper bound [98]

B(KL → π0νν̄)exp ≤ 2.6 · 10−8 . (C.9)
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C.2 Z and Z′ cases

In what follows we will give the expressions for Xeff in Z and Z ′ models which inserted

into (C.1) and (C.2) give the branching ratios for K+ → π+νν̄ and KL → π0νν̄. It should

be noted that the particular values of the CKM factors in (C.6) enter only in the SM

contributions and in their interferences with NP contributions.

In the case of tree-level Z exchanges we have [65]

XL = XSM
L +

∆νν̄
L (Z)

g2
SMM

2
Z

∆sd
L (Z)

V ∗tsVtd
, XR =

∆νν̄
L (Z)

g2
SMM

2
Z

∆sd
R (Z)

V ∗tsVtd
(C.10)

where

g2
SM = 4

M2
WG

2
F

2π2
= 1.78137× 10−7 GeV−2 . (C.11)

In the SM only XL is non-vanishing and is given by [99–102]

XSM
L = 1.481± 0.009 (C.12)

as extracted in [45] from original papers. With the known coupling ∆νν̄
L (Z) = 0.372 and

the CKM factors in (C.6) we have then

ReXeff(Z) = −4.44 · 10−4 + 2.51 · 102[Re∆sd
L (Z) + Re∆sd

R (Z)] , (C.13)

ImXeff(Z) = 2.07 · 10−4 + 2.51 · 102[Im∆sd
L (Z) + Im∆sd

R (Z)] , (C.14)

where the first terms on the r.h.s. are SM contributions for CKM factors in (C.6). Note that

in KL → π0νν̄ the enhancement of its branching ratio requires the sum of the imaginary

parts of the couplings to be positive. This enhances also K+ → π+νν̄ but could be

compensated by the decrease of ReXeff unless the sum of the corresponding real parts

is negative.

In the case of tree-level Z ′ exchanges one should just replace everywhere the index Z

by Z ′, in particular MZ by MZ′ , and use ∆νν̄
L (Z ′).

The numerical factors in the NP parts in (C.13) and (C.14) above should then be

multiplied by

R =

[
MZ

MZ′

]2 ∆νν̄
L (Z ′)

0.372
= 2.48× 10−3

[
3 TeV

MZ′

]2

∆νν̄
L (Z ′) . (C.15)

Thus we get

ReXeff(Z ′) = −4.44 · 10−4 + 0.62

[
3 TeV

MZ′

]2

[Re∆sd
L (Z ′) + Re∆sd

R (Z ′)]∆νν̄
L (Z ′) , (C.16)

ImXeff(Z ′) = 2.07 · 10−4 + 0.62

[
3 TeV

MZ′

]2

[Im∆sd
L (Z ′) + Im∆sd

R (Z ′)]∆νν̄
L (Z ′) . (C.17)
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D KL → µ+µ−

D.1 General formulae

Only the so-called short distance (SD) part of a dispersive contribution to KL → µ+µ−

can be reliably calculated. It is given generally as follows (λ = 0.2252)

B(KL → µ+µ−)SD = 2.01 · 10−9

(
ReYeff

λ5
+

Reλc
λ

Pc(Y )

)2

, (D.1)

where at NNLO [103]

Pc(Y ) = 0.115± 0.017. (D.2)

The short distance contributions are described by

Yeff = V ∗tsVtd [YL(K)− YR(K)] , (D.3)

where the functions YL and YR summarise the contributions from left-handed and right-

handed quark currents, respectively. Notice the minus sign in front of YR, as opposed to

XR in (C.5), that results from the fact that only the axial-vector current contributes. This

difference allows to be sensitive to right-handed couplings, which is not possible in the case

of K → πνν̄ decays.

The extraction of the short distance part from the data is subject to considerable

uncertainties. The most recent estimate gives [104]

B(KL → µ+µ−)SD ≤ 2.5 · 10−9 , (D.4)

to be compared with (0.8± 0.1) · 10−9 in the SM. With our choice of CKM parameters we

find 0.72 · 10−9. It is important to improve this estimate as this would further increase the

role of this decay in bounding NP contributions not only in Z scenarios.

D.2 Z and Z′ cases

In the case of tree-level Z exchanges we have [65]

YL(K) = Y SM
L (K) +

∆µµ̄
A (Z)

g2
SMM

2
Z

∆sd
L (Z)

V ∗tsVtd
, YR(K) =

∆µµ̄
A (Z)

g2
SMM

2
Z

∆sd
R (Z)

V ∗tsVtd
, (D.5)

where [105]

Y SM
L (K) = 0.942 . (D.6)

With the known coupling ∆µµ̄
A (Z) = 0.372 and the CKM factors in (C.6) we have then

ReYeff(Z) = −2.83 · 10−4 + 2.51 · 102[Re∆sd
L (Z)− Re∆sd

R (Z)] . (D.7)

In the case of tree-level Z ′ exchanges one should just replace everywhere the index Z

by Z ′, in particular MZ by MZ′ , and use ∆µµ̄
A (Z ′). As ∆µµ̄

A (Z) = ∆νν̄
L (Z) also the same

numerical factor in (C.15) should multiply NP part in (D.7). Thus we have

ReYeff(Z ′) = −2.83 · 10−4 + 0.62

[
3 TeV

MZ′

]2

[Re∆sd
L (Z ′)− Re∆sd

R (Z ′)]∆µµ̄
A (Z ′) . (D.8)
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E KL → π0`+`−

The rare decays KL → π0e+e− and KL → π0µ+µ− are dominated by CP-violating contri-

butions. The indirect CP-violating contributions are determined by the measured decays

KS → π0`+`− and the parameter εK in a model independent manner. It is the dominant

contribution within the SM with both branching being O(10−11) [106] and by one order of

magnitude smaller than the present experimental bounds

B(KL → π0e+e−)exp < 28 · 10−11 [107] , B(KL → π0µ+µ−)exp < 38 · 10−11 [108] ,

(E.1)

leaving thereby large room for NP contributions. In the models analyzed by us these

bounds have no impact on K+ → π+νν̄ and KL → π0νν̄ decays but the present data on

K+ → π+νν̄ do not allow to reach the above bounds in the Z ′(Z) scenarios considered.

To our knowledge, there are no definite plans to measure these decays in the near

future and we will not analyze them here. They are similar to B → K`+`− decays except

that the dipole operator contributions turn out to be small in the SM and in many NP

scenarios. NP contributions shift the values of the coefficients C7V and C7A which are

sensitive to ∆µµ̄
V (Z ′) and ∆µµ̄

A (Z ′), respectively. Similar for Z. In the presence of right-

handed flavour violating currents also C ′7V and C ′7A are generated. This is the case of RS

scenario with custodial protection [68]. There are also recent efforts to improve SM predic-

tion by means of lattice QCD [109]. The importance of testing NP scenarios, in particular

those involving right-handed currents, by means of these decays has been stressed in [106].

Moreover, the measurement of both decays could disentangle the scalar/pseudoscalar from

vector/axialvector contributions. But from present perspective such tests will eventually

become realistic only in the next decade. References to reach literature can be found

in [106] and the analysis of these decays within general Z and Z ′ models can be found

in [65]. As seen in figures 12 and 33 of that paper there is a strong correlation between

these decays and KL → π0νν̄ in Z and Z ′ scenarios so that the increase of B(KL → π0νν̄)

increases also the branching ratios for KL → π0`+`−. But the presence of the indirect

CP-violating contributions in the latter decays, that are negligible in KL → π0νν̄, shadows

NP effects in them. Only when B(KL → π0νν̄) is enhanced by an order of magnitude

sizable enhancements of B(KL → π0`+`−) are possible. Similar correlations are found in

the LHT model [110] and RSc [68].

In Z scenarios due to the smallness of ∆µµ̄
V (Z) NP enters these decays predominantly

through C7A and C ′7A. More interesting is the NP pattern in Z ′ scenarios due to the

SU(2)L relation

∆νν̄
L (Z ′) =

∆µµ̄
V (Z ′)−∆µµ̄

A (Z ′)

2
. (E.2)

This relation implies correlations between Z ′ contributions to K+ → π+νν̄, KL → π0νν̄,

KL → µ+µ− and KL → π0`+`− analogous to the ones between B → K(K∗)νν̄, Bd →
K(K∗)µ+µ− and Bs → µ+µ− that have been analyzed in detail in [111]. In order for such

relations to become vital in the K-meson system theoretical uncertainties in KL → µ+µ−

and KL → π0`+`− have to be decreased by much. For the most recent analysis of KL,S →
π0`+`− and K+ → π+`+`− decays including correlations with LHCb anomalies see [112].
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