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Natural killer (NK) cells play a pivotal role in the first line of defense against cancer. NK 
cells that are deficient in CD3 and a clonal T cell receptor (TCR) can be subdivided into 
two major subtypes, CD56dimCD16+ cytotoxic and CD56brightCD16− immunoregulatory 
NK cells. Cytotoxic NK cells not only directly kill tumor cells without previous stimulation 
by cytotoxic effector molecules, such as perforin and granzymes or via death recep-
tor interactions, but also act as regulatory cells for the immune system by secreting 
cytokines and chemokines. The aim of this review is to highlight therapeutic strategies 
utilizing autologous and allogenic NK cells, combinations of NK cells with monoclonal 
antibodies to induce antibody-dependent cellular cytotoxicity, or immune checkpoint 
inhibitors. Additionally, we discuss the use of chimeric antigen receptor-engineered NK 
cells in cancer immunotherapy.

Keywords: natural killer cell, immunotherapy, monoclonal antibody, antibody-dependent cellular cytotoxicity, 
checkpoint inhibitors, chimeric antigen receptor

iNTRODUCTiON

The adoptive transfer of ex vivo expanded and/or activated human natural killer (NK) cells 
represents a promising approach to treat cancer, as NK cells are specialized in the detection and 
elimination of “modified-self ” (1). Apart from T cells, which are capable to recognize tumor-
associated foreign antigens (TAA) only when presented on major histocompatibility complex 
antigen (MHC) molecules through the clonal T cell receptor (TCR), cells of the innate immune 
system [i.e., NK cells, lymphokine-activated killer (LAK) cells, and cytokine-induced killer (CIK) 
cells] can recognize and kill neoplastic cells even in the absence of human leukocyte antigen (HLA) 
and without prior stimulation. NK cells not only control tumor progression but are also engaged in 
reciprocal interactions with dendritic cells (DCs), macrophages, T cells, and endothelial cells (2). 
Clinical application of NK cells is an area of intense investigation not only in oncology, especially 
in hematological malignancies, including leukemia and lymphoma, but also in solid tumors such 
as ovarian cancer, sarcoma, hepatocellular carcinoma, glioblastoma, and many other types (3–9). 
Adoptive transfer of autologous or allogeneic NK cells might be superior to the currently widely 
used donor lymphocyte infusion, which predominantly contain T lymphocytes, due to the fact 
that NK cells provide the first line of defense and generally mediate less graft-versus-host disease 
(GvHD) than T cells (10, 11). An alternative for primary NK cells are well-characterized NK-like 
cell lines such as NK-92, KHYG-1, NKL, and NKG that show antitumor activities (12) and can be 
easily and reproducibly expanded and applied according to regulatory GMP standards (13, 14).
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Based on their tissue distribution and origin, NK cells are 
divided in bone marrow-derived adult conventional (periph-
eral) NK cells, thymic-derived, fetal-liver derived, liver resident, 
 uterine-resident intestinal-resident NK cells (15). According to 
the 14th meeting of the Society of Natural Immunity, it is impera-
tive to harmonize not only the donor source and ultimately donor 
selection but also the manufacturing and quality control of NK 
cells used in clinical trials (16). Adult conventional NK cells that 
are predominantly characterized by the expression of the homo-
meric adhesion molecule NCAM (CD56) and the low affinity 
receptor FcyRIII (CD16) and by lacking T cell specific markers 
such as CD3 and the TCR constitute around 5–20% of periph-
eral blood lymphocytes. The activity of NK cells is defined by a 
fine balance of activating and inhibiting receptors belonging to 
different families including the killer-cell immunoglobulin-like 
receptors (KIRs), C-type lectin like or natural cytotoxicity class 
of receptors, and costimulatory receptors (17, 18). According 
to the surface expression density of CD56 and CD16, NK cells 
are subdivided into CD56brightCD16− (90–95%) that are typically 
characterized by a low cytotoxicity and a high cytokine produc-
tion and CD56dimCD16+ cells (5–10%) with a high cytotoxic 
activity and a low cytokine release profile (19). CD56dimCD16+ 
NK cells that appear first after stem cell transplantation (SCT) 
or an IL-2-driven in  vivo therapy are thought to represent a 
more immature NK cell type (20–22). This subpopulation is 
hypothesized to change its phenotype and differentiation state 
throughout its whole lifespan (23) and thus might be of special 
interest for clinical applications. CD56brightCD16− NK cells are 
considered to exert immunoregulatory functions through the 
production of Th1 cytokines [i.e., interferon gamma (IFN-γ)] 
in response to interleukins such as IL-2, IL-12, IL-15, IL-18, 
and IL-21. They can rapidly proliferate, home to secondary 
lymphoid organs, and mediate the cross talk between the adap-
tive and innate immune system (24). In contrast, transforming 
growth factor-β (TGF-β), IL-10, prostaglandin E2, indolamine 
2,3-dioxygenase, adenosine (25), immune checkpoint inhibitors 
that are produced either by the tumor or its microenvironment 
as well as immunosuppressive cells such as regulatory T cells 
(Tregs) and myeloid-derived suppressor cells (MDSCs) can 
render the NK cell activity silent. Therefore, strategies that 
antagonize these factors and immunosuppressive cells, the 
avoidance of tumor hypoxia, the application of immune check-
point inhibitor antibodies, might be beneficial to overcome the 
suppression of NK cells.

Activation and cytolytic activity of NK cells is dependent 
upon the activation of NK cell receptors including the natural 
cytotoxicity receptors (NKp30, NKp44, NKp46), C-type lectin 
receptors NKG2D, CD94/NKG2C, activatory KIRs, DNAX 
accessory molecule-1 (DNAM-1, CD226), and costimulatory 
receptors such as 2B4, NTB-A, CRACC, CD2, CD59, and CD16 
(Figure 1A) (26, 27). Additionally, certain cytokines such as IL-2, 
IL-12, IL-15, IL-18, and IL-21 are known to stimulate both, the 
proliferative and cytolytic activity of NK cells (28). In order to 
avoid NK cell-mediated autoimmunity, their cytolytic activities 
are counterbalanced by the presence of inhibitory receptors 
such as inhibitory KIRs (22), CD94/NKG2A heterodimers, and 
checkpoint inhibitor receptors.

ALLOGeNiC AND AUTOLOGOUS NK 
CeLL-BASeD iMMUNOTHeRAPieS

Allogenic NK Cell Approaches
Allogeneic T cells have been shown to be very effective in the 
treatment of hematological diseases; however, this approach 
is often hampered by severe GvHD. Therefore, NK cells have 
been  tested in haploidentical SCT settings. In multicenter 
phase  I/II clinical trial, high-risk tumor patients were treated 
either with freshly isolated or IL-2-stimulated NK-donor lym-
phocyte infusion (NK-DLI) after haploidentical SCT without 
any signs of GvHD when less than 25  ×  103/kg NK cells 
were injected (29–31). It was also shown that IL-2-activated 
NK-DLI was more resistant toward immunosuppressive 
therapy compared to unstimulated NK-DLI (32), and that these 
effector cells were able to counteract the immunosuppressive 
activity of soluble MICA by reactivating NKG2D-mediated 
cytotoxicity (33, 34). The persistence of ex vivo haploidentical 
IL-2-activated and -expanded NK-DLIs ranges between 7 and 
10 days in patients with AML, NHL, and ovarian cancer (35, 36). 
Allogeneic NK cells that were primed in a two-stage procedure 
with a leukemic cell line were found to show beneficial effects 
in patients with resistant AML in a phase I clinical trial (37), 
and the adoptive transfer of allogeneic CD56dimCD16− NK-DLI 
after haploidentical SCT showed promising results with respect 
to overall survival in a phase I/II clinical trial with patients with 
AML, ALL, CML, Hodgkin disease, and MDS (38). Another 
study using haploidentical KIR-ligand CD56+CD3− NK-DLI in 
elderly AML patients showed an excellent safety profile and 
promising clinical responses (39).

Allogeneic NK cell therapies after haploidentical SCT show 
considerable progress within the last decade as determined in 
phase I/II clinical trials especially in patients with hematological 
diseases. A better understanding of the nature of NK cell recep-
tors and activities (GvL versus GvHD), improved KIR typing, 
improved cell purification methods to obtain higher purities, and 
improved donor selections might improve the clinical outcome 
of NK cell-based therapies. In addition, further improvements 
may include novel cytokine cocktails (including IL-12, IL-15, 
IL-18, and IL-21), the combination of haploidentical NK cell 
therapies with standard therapies (radiochemotherapy) and/
or immune checkpoint inhibitor blockade, and the inclusion 
of chimeric antigen receptors (CARs) to NK cells. In contrast 
to hematological diseases, the impact of an NK cell-mediated 
therapy in solid tumors has to be analyzed in more detailed in 
further clinical trials.

Autologous NK Cell Approaches
Due to a large number of immune escape mechanisms of the 
tumor and its tumor microenvironment, NK cells of tumor 
patients are frequently tolerant to autologous tumors and have a 
lower cytotoxic potential compared to NK cells of healthy indi-
viduals (40). Ex vivo stimulation of NK cells of tumor patients 
with pro-inflammatory cytokines therefore could be beneficial 
in enhancing the antitumor immune activity mediated by 
NK  cells. IL-2 (Proleukin) is widely applied and approved in 
various clinical protocols for the expansion and activation of 
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FiGURe 1 | NK cells-based immunotherapeutic concepts. (A) NK cell stimulation approach. Antibody-mediated blockade of the inhibitory receptors expressed 
on the cell membrane of NK cells as well as stimulation of the activating receptors results in an increased cytolytic activity of NK cells. (B) Antibody-dependent 
cellular cytotoxicity (ADCC) therapies. Binding of the FcγR to the Fc fragment of the antibody (left) results in the activation of NK cells and induces the release of 
effector molecules such as perforin and granzyme. Application of bispecific antibodies (right) directed against CD16 (on NK cells) and tumor antigens facilitate 
conjugate formation of NK cells with tumor cells. (C) Chimeric antigen receptor (CAR)-engineered NK cells. CAR consists of an external recognition domain [i.e., 
small chain variable fragment (scFv)] that recognizes the tumor-specific antigen, a transmembrane domain, and an intracellular signaling domain (CD3-ζ chain) that 
induces NK cell activation.
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human effector T and NK cells (40–44), however, with varying 
success. Furthermore, in cases of a systemic application of high 
doses of IL-2, severe side effects are induced. A phase I clinical 
trial indicated that ex vivo low dose IL-2 plus Hsp70 peptide-
activated, autologous NK cells have been found to be safe and 
well tolerated even at maximum doses of up to six complete 
leukapheresis products (45–47). In contrast to IL-2 alone, a 

stimulation of patient-derived NK cells with Hsp70 peptide plus 
IL-2 resulted in a reactivation of their cytolytic activity against 
Hsp70 membrane positive tumor cells (45). The stimulation 
of NK cells with cluster of differentiation 3 (CD3)-secreted 
cytokines resulted in a retardation of the growth of melanoma 
and breast tumors in mice with severe combined immunodefi-
ciency (SCID). In a study by Lamas et al., it was demonstrated that 
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leptin, a hormone–cytokine produced primarily by the adipose 
tissue, increased NK-92 cell metabolic activity and modulated 
NK cell cytotoxicity toward cancer cells due to an upregulated 
TNF-related apoptosis-inducing ligand (TRAIL) and IFN-γ 
expression (48). Another attractive cytokine candidate that 
was shown to enhance in  vitro and in  vivo NK cell-mediated 
cytotoxicity and cytokine production is IL-15 (49, 50).

Multimodal therapy approaches in cancer therapy that 
employs chemotherapy with NK cell-based immunotherapy 
could also be potentially harmed by drug-mediated cytotoxi-
city toward NK cells. An interesting approach proposed by 
Dasgupta et al. showed that genetically engineered NK-92 cells 
that were resistant to both temozolomide and trimetrexate (51) 
showed significant therapeutic efficacy in a NOD/SCID/γ-
chain knockout (NSG) neuroblastoma mouse model with 
respect to tumor regression and survival rates in comparison 
to animals receiving non-engineered cell-based therapy and 
chemotherapy (51). Presumably, further combinations with 
other therapeutic approaches can further increase the efficacy 
of the adoptive transfer of autologous NK cells. Finkel et  al. 
could show significantly enhanced antitumor effects mediated 
by NK cells following ionizing radiation and hyperthermia 
treatment. These data provide evidence that a combination of 
standard therapies such as radiotherapy, hyperthermia, and 
immunotherapy is feasible (52).

ADCC-Based immunotherapy
Natural killer cells play a significant role in facilitating 
antitumor immunotherapies based on the application of the 
tumor-targeting monoclonal antibodies. One of the possible 
immunotherapeutic approaches is based on the antibody-
dependent cellular cytotoxicity (ADCC), which is mediated 
by NK cells (Figure 1B). NK cells are known to express both 
FcγRIIC/CD32c and FcγRIIIA/CD16a receptors that specifi-
cally bind the Fc region of IgG antibodies (53, 54). FcγRIIIA is 
usually associated with FcRI-γ chains or CD3-ζ chains that 
are known to have immune tyrosine-based activating motifs 
(ITAM) in the cytoplasmic domain (55). Following activation 
of the FcγR, these ITAM are phosphorylated (i.e., activation of 
signal transduction pathways including PI3K, NFkB, and ERK 
pathways) that leads to NK cell cytokine secretion and tumor 
cell lysis (56). ADCC of NK cells is based on (i) secretion of 
the cytotoxic granules (containing perforin and granzymes), (ii) 
TNF-mediated signaling, and (iii) pro-inflammatory cytokine 
release (i.e., IFNγ) (57).

Binding to the Fc fragment leads to the activation of cytotox-
icity of NK cells that is utilized in the treatment of various types 
of cancers characterized by the overexpression of the certain 
tumor-associated antigens. To date, several ADCC therapies 
have been assessed in clinical trials including anti-CD20 mAbs 
(non-Hodgkin’s lymphoma, chronic lymphocytic lymphoma), 
anti-ganglioside D2 (anti-GD2) mAbs (neuroblastoma, mela-
noma), anti-human epidermal growth factor (anti-HER2) mAbs 
(breast and gastric cancers), anti-epidermal growth factor recep-
tor (anti-EGFR) mAbs (colorectal and head and neck cancer), 
and many other tumor entities (58–62). For the ADCC therapy, 
various types of antibodies (i.e., mouse antibodies, chimeric 

antibodies, and fully humanized antibodies) were applied. 
Thus, Veluchamy et al. (63) demonstrated that supplementary 
anti-EGFR-targeted therapy using monoclonal antibodies (i.e., 
cetuximab, panitumumab) significantly enhanced cytotoxic 
activity of NK cells toward EGFR-positive colorectal tumor 
cells. Furthermore, cetuximab, a chimeric mAb, was FDA 
approved for the treatment of EGFR-overexpressing metastatic 
colorectal cancer, metastatic non-small cell lung cancer, and 
head and neck cancer (64). The main limitation of the proposed 
ADCC approach is the source of tumor-specific target antigens. 
Presumably, combination of mAbs that target various tumor 
antigens could enhance the efficacy of the therapy. Also, the 
polymorphism of both FcγRIIC and FcγRIIIA can influence 
the affinity of the FcγR toward IgG antibodies and as a result 
influence ADCC (65, 66).

Alternative approaches to increase the specificity and killing 
activity of NK cells could be based on genetically engineered 
bispecific (BiKEs) and trispecific killer engagers (TriKEs) (67) 
(Figure  1B). These designed antibodies facilitate conjugate 
formation between NK cells and tumor cells. They usually bind 
both the tumor antigen and the FcγRIIIA/CD16 (68). Recently, 
a bispecific tetravalent antibody was introduced that targets 
both CD30 and CD16 for treatment of the relapsed Hodgkin 
lymphoma patients (69). Designed constructs exhibited supe-
rior cytotoxicity compared to conventional antibodies and 
were independent of the Fc gamma receptor IIIA (FcγRIIIA) 
allotypes (70).

Combination of immune Checkpoint 
inhibitor Blockade and NK Cell Therapy
Application of the immune checkpoint inhibitor blockade 
could provide another approach for improving NK cell-based 
therapies (Figure 1A). In the study by Guo et al., introduction of 
the anti-PD1 blocking antibody to the NK cell therapy not only 
enhanced the in vitro activity of the cells (i.e., higher expression 
of NK activation receptors NKG2D, NKp44, and NKp30) but 
also augmented the therapeutic potency in the in vivo model of 
multiple myeloma in mice (71). Thus, treatment of autologous 
NK cells with blocking anti-PD-1 antibodies (pidilizumab) 
either alone or in combination with rituximab has been found to 
restore the cell-mediated cytolytic activity of NK cells in patients 
with multiple myeloma, renal cell carcinoma, and follicular 
lymphoma (72, 73).

Application of the anti-NKG2A antibodies could represent a 
novel immunotherapeutic approach in NK cell-based therapy. 
CD94/NKG2A is an inhibitory receptor that binds HLA-E. Many 
solid tumors and hemotological malignancies were shown to 
overexpress the HLA-E that could lead to the inhibition of the 
cytotoxic activity of NK cells and CD8+ cytotoxic T lymphocytes 
(74–77). Monalizumab (previously known as IPH2201) repre-
sents an anti-NKG2A checkpoint inhibitor that is currently tested 
in clinical trials including head and neck cancers, advanced solid 
tumors, ovarian cancers, and CLLs.

Another checkpoint inhibitory strategy is based on the 
application of blocking antibodies toward KIRs, which are 
activated through the MHC I class molecules present on tumor 
cells (78, 79). Anti-KIRs monoclonal antibodies (IPH2101) that 
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target KIR2DL-1, -2, and -3 that are specific for HLA-C mol-
ecules were investigated in several phase I/II clinical trials (80, 
81). Previous preclinical studies clearly confirmed the efficacy 
of the KIRs blockade on NK cells with respect to an increase in 
the cytotoxicity of the immune cells toward cancer cells (82, 83). 
Other immune checkpoint inhibitors [i.e., antibodies toward 
T cell immunoglobulin and mucin domain 3 (TIM-3), CD96], 
which are already used for the reactivation of exhausted T cells 
in melanoma patients, also demonstrated certain effects on NK 
cells, but the data are controversially discussed with regard to 
their therapeutic potential (84–86). The role of a TIM-3 blockade 
especially after cytokine activation of NK cells also show varying 
results. Further studies are necessary to elucidate the thera-
peutic role of the blockade of this checkpoint inhibitor, which 
is expressed on nearly all NK cells. The concomitant blockade 
of several inhibitors might increase the efficacy of the NK cell-
based immunotherapy, although the induced side effects, such 
as skin rash, mucosa irritation, diarrhea, colitis, hepatotoxixicty, 
endocrinopasis, and general autoimmunity, should be considered 
with caution.

CAR-eNGiNeeReD NK CeLL THeRAPY

For a specific tumor, targeting the application of genetically 
engineered CARs for NK cells might provide a promising 
strategy. A CAR typically consists of an external recognition 
domain [i.e., small chain variable fragment (scFv)] that rec-
ognizes a tumor-specific antigen, a transmembrane domain, 
and an intracellular signaling domain that mediates NK cell 
activation. For signaling, usually the ζ chain of the TCR 
complex CD3 is employed (Figure  1C). At present, there are 
three generations of CARs in preclinical and clinical settings: 
(i) CARs with ζ chain of CD3; (ii) combination of CD3-ζ chain 
with coactivating proteins (e.g., CD28, CD137, and CD134); 
and (iii) application of CD3-ζ with multiple coactivating 
domains (87–89). Target cell lines for the development of 
CARs can be established NK-like cell lines (1) (e.g., NK-92 
cells) (14), freshly isolated peripheral blood NK cells (2, 90), or 
induced pluripotent stem cells (iPSCs) (3) or after subsequent 
differentiation into mature NK cells (91, 92).

Modified NK cells were shown to significantly enhance anti-
tumor immune responses. Thus, to facilitate selective target cell 
recognition and enhanced specific cytotoxicity against B-acute 
lymphoblastic leukemia (B-ALL), the authors transduced the 
cells with a lentiviral vector encoding a CAR that carry a com-
posite CD28–CD3ζ domain for signaling and a CD19-specific 
scFv antibody fragment for cell binding (CAR 63.28.z) (93). 
Treatment with CAR-modified NK cells in a xenograft model 
resulted in complete and durable molecular remissions of estab-
lished primary B-ALL (93). To date, several NK-92-based cell 
lines have been engineered that express a number of different 
CARs including CD138 or CS1 (anti-multiple myeloma), human 
epidermal growth factor receptor 2 (HER2) for solid tumors, 
CD20, CD19 for B cell leukemias, wild-type EGFR and mutant 
form EGFRvIII for breast cancer patients with brain metastasis, 
glioblastoma, and ganglioside protein D2 (GD2) for neuroecto-
dermal tumors (3, 94–104).

In summary, many preclinical studies clearly demonstrate 
therapeutic efficacy of CAR-engineered NK cell-based therapies. 
However, only few studies compare the efficacy of first-, second-, 
and third-generation CARs. Another aspect is the choice of the 
source of NK cells. NK cell lines provide an interesting alterna-
tive for peripheral blood-derived NK cells because there is an 
unlimited availability. However, the density of activatory NK 
cell receptors on NK cell lines is generally lower, an irradiation 
prior infusion is necessary, and therefore the in vivo persistence 
is reduced. In contrast, peripheral blood NK cells carry a wider 
range of activating receptors (i.e., CD16, NKp44, and NKp46) 
and could be administered without prior irradiation and thus 
might improve the clinical effectiveness of the cell therapy (105). 
Another challenge of genetically engineered CARs is the choice 
of the tumor target. Future clinical applications might utilize 
several targets to increase the specificity of CAR-based therapies. 
Modification of the NK cells that makes them insensitive to the 
immunosuppressive tumor milieu could further increase the 
efficacy of CAR-NK cells to kill solid tumors that are resistant to 
NK cell-based immunotherapy.

Alternative approaches are based on the NK cell line NK-92 that 
is insensitive toward immunosuppressive cytokines (e.g., TGF-β). 
In a study by Yang et al., it was shown that adoptive transfer of a 
dominant negative TGF-β type II receptor (DNTβRII) into NK 
cells significantly decreased tumor proliferation in a lung cancer 
mouse model (106). Moreover, as recently shown by the group 
of Genßler et  al., genetically engineering NK cells have been 
shown to overcome tumor heterogeneity by targeting different 
tumor targets (107). Dual-specific NK cells that recognize both 
EGFR and EGFRvIII antigens are superior to the monospecific 
CAR-NK cells in the therapy of glioblastoma (107).

CONCLUSiON

Natural killer cells-based immunotherapies provide a promis-
ing approach that could be employed as an adjuvant anticancer 
therapy. Most likely, a combination of ex vivo cytokine-stimulated 
autologous or allogenic NK cells with other immunomodulators 
(i.e., monoclonal antibodies, immune checkpoint inhibitor 
blockade) and/or standard therapies (i.e., chemo- and radio-
therapy) might exert beneficial effects in the treatment of cancer. 
CAR-engineered NK cells represent a novel immunotherapeutic 
strategy that could increase the specificity NK cells. Although 
most NK cell-based therapies are presently in the preclinical 
phase, recent advances in the therapeutic strategies as well as 
modifications of the NK cell biology will significantly contribute 
to the clinical efficacy of NK cell-based therapeutic concepts.
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