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Abstract

Background: Artificial insemination is widely used in many cattle breeding programs. Semen samples of breeding
bulls are collected and closely examined immediately after collection at artificial insemination centers. Only ejaculates
without anomalous findings are retained for artificial insemination. Although morphological aberrations of the
spermatozoa are a frequent reason for discarding ejaculates, the genetic determinants underlying poor semen

quality are scarcely understood.

Results: A tail stump sperm defect was observed in three bulls of the Swedish Red cattle breed. The spermatozoa of
affected bulls were immotile because of severely disorganized tails indicating disturbed spermatogenesis. We
genotyped three affected bulls and 18 unaffected male half-sibs at 46,035 SNPs and performed homozygosity
mapping to map the fertility disorder to an 842 Mb interval on bovine chromosome 13. The analysis of whole-genome
re-sequencing data of an affected bull and 300 unaffected animals from eleven cattle breeds other than Swedish Red
revealed a 1 bp deletion (Chr13: 24,301,425 bp, ss1815612719) in the eleventh exon of the armadillo repeat containing
3-encoding gene (ARMC3) that was compatible with the supposed recessive mode of inheritance. The deletion is
expected to alter the reading frame and to induce premature translation termination (p.A451fs26). The mutated

protein is shortened by 401 amino acids (46 %) and lacks domains that are likely essential for normal protein function.

Conclusions: We report the phenotypic and genetic characterization of a sterilizing tail stump sperm defect in the
Swedish Red cattle breed. Exploiting high-density genotypes and massive re-sequencing data enabled us to identify
the most likely causal mutation for the fertility disorder in bovine ARMC3. Our results provide the basis for monitoring
the mutated variant in the Swedish Red cattle population and for the early identification of infertile animals.
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Background

Artificial insemination (AI) is widely used instead of nat-
ural mating in many cattle breeding populations. Ejacu-
lates of breeding bulls are collected once or twice a
week and closely examined immediately after semen col-
lection at highly specialized Al centers. Only ejaculates
without apparent abnormalities are retained for Al Up
to 20 % of all collected ejaculates are rejected because
they do not comply with current standards for AI [1].
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Diagnoses of insufficient semen quality involve the ab-
sence of spermatozoa, low sperm concentration, reduced
motility or viability and morphological aberrations of
spermatozoa [2].

A motile sperm flagellum is essential for the fertilization
in vivo. Morphological aberrations of the sperm tail com-
promise sperm motility and impair fertilization. Such
aberrations are collectively referred to as multiple mor-
phological abnormalities of the flagella (MMAE, [3]). Diag-
noses of MMAF involve stump and short tail spermatozoa
and dysplasia of the fibrous sheath. Sequence variants
causing MMAF have been identified in, e.g., humans [3—
5], pigs [6, 7] and mice [8-10]. However, sequence
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variants causing MMAF have not been identified in cattle
so far.

Bulls with MMAF have been observed in Holstein-
Friesian, Ayrshire and Indobrasil cattle [11-15]. The af-
fected bulls were isolated cases within their breeds with-
out known relationship among each other indicating a
heterogeneous genetic etiology of MMAF across breeds.
However, Alanko et al. [16] reported three related bulls
from the Ayrshire cattle breed with a sterilizing tail
stump sperm defect suggesting that such conditions may
be inherited in an autosomal recessive fashion in cattle.

Here we present the phenotypic manifestation and the
genetic analysis of a recessively inherited tail stump
sperm defect in the Swedish Red cattle breed. The appli-
cation of homozygosity mapping facilitated the mapping
of the fertility disorder to a short segment on bovine
chromosome 13. The analysis of comprehensive whole-
genome sequence data revealed a frameshift mutation in
ARMC3 that most likely causes the sperm tail disorder
in Swedish Red cattle.

Results

A recessively inherited tail stump sperm defect in the
Swedish Red cattle breed

Three young bulls (11 months) of the Swedish Red cattle
breed born in 2008, 2009 and 2012, were reported from
an Al center because they produced ejaculates with im-
motile spermatozoa during a semen collection period of
5 months. Examination of the bulls’ fresh ejaculates re-
vealed a reduced sperm concentration (~140 million
spermatozoa per ml) despite normal ejaculate volume
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(~4 ml). The sperm count was only 10-20 % of the aver-
age sperm count of control bulls. All spermatozoa were
immotile because of multiple flagellar abnormalities such
as rudimentary (less than 5 % of the normal length),
short length and absent tails. A proximal droplet sur-
rounded most rudimentary tails (Fig. 1a-b). The propor-
tion of spermatozoa with abnormal heads ranged from
47 to 62 %, which is ten times higher than in normal
ejaculates (Table 1). None of the spermatozoa were
motile. Histological sections of the testicles revealed a
lack of full-length sperm tails in the luminal part of
the tubuli seminiferi indicating disturbed spermato-
genesis (Fig. 1c-d).

The analysis of the pedigree records of three affected
bulls revealed a common ancestor (born in 1987) in
their paternal and maternal path (see Additional file 1).
Eighteen male half-sibs of the affected bulls were used
for AL The quality of their ejaculates was normal and
their fertility records were within reference ranges indi-
cating undisturbed reproductive performance. Based on
these findings, an autosomal recessive mode of inherit-
ance was assumed for the tail stump sperm defect.

The tail stump sperm defect maps to bovine chromosome
13

To identify the genomic region associated with the tail
stump sperm defect, three affected and 18 unaffected
male half-sibs were genotyped with the Illumina Bovi-
neSNP50 genotyping array. After quality control, geno-
types at 46,035 SNPs were screened for the presence of
long runs of homozygosity (ROH) in three affected bulls.

are absent in the affected bull

Fig. 1 Phenotypic manifestation of the tail stump sperm defect. Representative figures of spermatozoa of a control (a) and an affected bull (b).
Spermatozoa of affected bulls had multiple aberrations such as short tails (blue star), rudimentary tails with proximal droplet (arrows), rudimentary
tails without proximal droplet (yellow triangle) and coiled tails (red star). Histological sections of the testicles of a control (c) and an affected (d)
bull. Numerous full-length sperm tails are present in the luminal part of the tubuli seminiferi in the control bull, whereas full-length sperm tails
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Table 1 Sperm morphology in fresh ejaculates of three affected

Al bulls

Phenotype Bull 1 Bull2 Bull3

Tail morphology Normal tails 0% 0% 0%
Absent tails 2% 3% 4%
Rudimentary tails 45% 63% 28%
Short straight tails 27% 15% 29%
Folded or coiled short tails 26 % 19% 39 %

Head morphology  Normal heads 42% 53% 38%
Abnormal heads 58% 47% 62%

Only two genomic regions were consistently homozy-
gous in all affected animals: a 1.13 Mb segment on
BTA22 (from 48,349,750 bp to 49,479,051 bp) and an
842 Mb segment on BTA13 (from 22,308,682 bp to
30,733,648 bp) (Fig. 2a). The segment on BTA22 was
also homozygous in six fertile half-sibs precluding an as-
sociation with the tail stump sperm defect. In contrast,
the 8.42 Mb segment on BTA13 was never found in the
homozygous state in eighteen unaffected half-sibs corre-
sponding to an autosomal recessive inheritance (Fig. 2b).

A 1 bp deletion in ARMC3 is associated with the tail
stump sperm defect

To pinpoint the mutation causing the tail stump sperm
defect, the whole genome of an affected bull was se-
quenced to an average read depth of 9.29. In addition,
we exploited data of 300 previously sequenced animals
from eleven cattle breeds other than Swedish Red for
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the identification of the mutation. Deleterious recessive
mutations are assumed to have occurred after breed for-
mation and are thus likely to be breed-specific. Thus we
assumed that the causal mutation should not segregate
among the sequenced control animals. Multi-sample
variant calling in the 8.42 Mb region of extended homo-
zygosity on BTA13 yielded genotypes at 81,925 single
nucleotide and short insertion and deletion polymor-
phisms (74,385 SNPs, 7540 Indels). In addition, 11,505
structural variants were detected in the genome-wide se-
quence data of the affected bull and 226 control animals
with genome coverage of at least eight-fold.

Seventy-seven variants were compatible with recessive
inheritance that is homozygous for the reference allele
in 300 control animals and homozygous for the alternate
allele in the affected bull. Bioinformatic analysis revealed
that 76 variants were located in non-coding regions of
the genome and one variant resided in the coding region
of the armadillo repeat containing 3-encoding gene
(ARMC3, Chrl3: 24,301,425 bp, ss1815612719, Fig. 3a,
see Additional files 2 and 3).

To further reduce the number of plausible candidate
causal mutations, we exploited whole-genome sequence
data of 1147 animals from 29 cattle breeds that had been
sequenced for Run4 of the 1000 bull genomes project
[17]. Because of the close relationship among animals of
three Nordic Red cattle breeds, we excluded 56 sequenced
animals from the Ayrshire, Swedish Red and Danish Red
cattle breed for variant filtering. Thirty-five out of 77 com-
patible variants also segregated among 1009 animals from
breeds other than Nordic Red (see Additional file 4). In
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Fig. 2 Homozygosity mapping in three animals with a sterilizing tail stump sperm defect. a Shades of blue represent long runs of homozygosity
(ROH) in three animals along the 29 autosomes. The red borders highlight two regions on BTA13 and BTA22 with ROH in all affected animals.
b Autozygosity mapping on BTA13 in three affected animals. Blue and pale blue represent homozygous genotypes (AA and BB), heterozygous
genotypes (AB) are displayed in light grey. White color indicates missing genotypes. The red bar indicates a common 842 Mb segment of homozygosity
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Homo sapiens NHDIMHAIISPLRSANTVVQSKAALAVTATACDVEARTELRNSGGLEPLVELLRSKNDEVRKHASWAVMVCAGDELTANELCRLGALDILE
Pan troglodytes NHDIMHAIISPLRSANTVVQSKAALAVTATACDVEARTELRNSGGLEPLVELLRSKNDEVRKHASWAVMVCAGDELTANELCRLGALDILE
Macaca mulatta NHDIMHAIISPLRSANTVVQSKAALAVAATACDVEARTELRNSGGLEPLVELLRSKNDEVRKHASWAVMVCAGDELTANELCRLGALDILE
Mus musculus NHEIMHALLGPLHSTNTLVQSTAALTVAATACDVEARTQLRNCGGLVPLVGLLHSKNDEVRRHASWAVMVCAGDEPMAVELCRLGALNILE
Rattus norvegicus NHEIMRALLGPLHSTNTVVQSTAALTVAATACDVESRNELKNCGGLEPLIELLHSKNDEVRRHASWAIMVCAGDELMAVELCRLGALDILE

Fig. 3 A 1 bp deletion in ARMC3 induces premature translation termination. a Snapshot from the Integrated Genomics Viewer (IGV, [51]) showing
a homozygous 1 bp deletion on chromosome 13 at 24,301,425 bp in an animal with the tail stump sperm defect. b Genomic structure of bovine
ARMC3. Bovine ARMC3 consists of 19 exons (vertical bars) and its translation starts in exon 2. The red vertical bar represents the eleventh exon
where the 1 bp deletion is located. The coordinates of ten Armadillo (ARM) repeats were determined using the Simple Modular Architecture Research
Tool [50]. Blue arrows represent the position of the start and stop codons. ¢ The bovine ARMC3 protein sequence consists of 876 amino acids and it
contains ten ARM repeats (green boxes). The red triangle represents the start of the shift in translation resulting from the 1 bp deletion. d Multi-species
alignment of a part of the ARMC3 protein sequence. Blue colour highlights the protein sequence of the tenth ARM repeat, which is absent in the
mutated (mt) bovine sequence

conclusion, the coding variant in ARMC3 and 41 non- from position 451 onwards resulting in a premature
coding variants were considered as candidate causal vari-  translation termination at position 476 (p.A451fs26). The
ants for the tail stump sperm defect. mutated protein should be shortened by 401 amino acids
The bovine ARMC3 gene consists of 19 exons encod- (46 %). Bioinformatic analysis revealed that the protein se-
ing 876 amino acids (Fig. 3b). The variant compatible  quence of bovine ARMC3 contains ten armadillo/beta-ca-
with recessive inheritance (ss1815612719) is a 1 bp dele-  tenin-like (ARM) repeats (Fig. 3c). The deletion variant
tion in the eleventh exon of ARMCS3 affecting the third resides within the highly conserved armadillo repeat con-
base of codon 450 (ENSBTAT00000061467:c.1350_1351-  taining domain. Due to the frameshift with premature
delGGinsG). Sanger sequencing confirmed homozygosity  translation termination, the mutated protein is expected
for the deletion variant in two bulls with the tail stump  to lack one ARM repeat (Fig. 3d).
sperm defect. The 1 bp deletion is expected to alter the We genotyped 97 Al bulls from the Swedish Red cattle
reading frame and to change the amino acid sequence breed with normal fertility at ss1815612719 using
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customized genotyping assays. None of the bulls was
homozygous for the deletion variant. Seventy-four bulls
were homozygous for the reference allele and 23 bulls
were heterozygous carriers of the 1 bp deletion yielding
a frequency of the deletion of 11.9 %.

Discussion

Although there is considerable phenotypic variation both
in semen quality and insemination success of Al bulls,
the genetic determinants underlying male reproductive
traits are scarcely understood [18]. Low heritability of
fertility traits and small-sized samples complicated the
mapping of causal sequence variants in the past. More-
over, fertility-associated variants did not reach convin-
cing levels of significance in replication studies [19, 20].
Recently, the availability of comprehensive genotype and
massive re-sequencing data enabled the identification of
a recessively inherited variant of idiopathic male subferti-
lity in cattle [21]. However, to our knowledge, our study is
the first to reveal a mutation that manifests in morpho-
logical aberrations of the spermatozoa in cattle.

The analysis of pedigree records indicated that the
sperm tail disorder is inherited in an autosomal recessive
fashion. Sequence variants underlying recessive traits are
traditionally identified by comparing allele counts of
dense molecular markers in affected and unaffected indi-
viduals (e.g, [21]). The likelihood to map a mendelian
trait in a genome-wide case/control-association study
depends on the number of affected individuals [22]. The
tail stump sperm defect is a rare disorder in the Swedish
Red cattle breed. Assuming a frequency of the deleteri-
ous allele of 12 % in the population, random mating and
100 bulls that are annually purchased by the Swedish Al
center, one would expect only one of them to be affected
by the tail stump sperm defect. Accordingly, only three
affected bulls were recognized in the past 10 years. We
genotyped those bulls with a genotyping array and
resorted to perform homozygosity mapping, which facili-
tates pinpointing genomic regions underlying recessive
traits with a small number of affected individuals [23].
Three affected bulls had a common 8.42 Mb segment of
extended homozygosity which is a typical length ob-
served in studies that are based on few affected animals
[23-26]. Compatible with recessive inheritance, none of
the fertile half-sibs was homozygous. Next generation se-
quencing of an affected bull revealed a frameshift muta-
tion in ARMC3 (ss1815612719, c.1350delG, p.A451{s26)
that segregated with the tail stump sperm defect. Forty-
one variants in non-protein-coding regions were also as-
sociated with the disorder. However, we consider the
frameshift in ARMC3 as the most likely causal mutation
because it is predicted to result in a protein that lacks
401 amino acids. The function of the truncated ARMC3
protein may be severely compromised, since it lacks
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domains that are likely required for normal protein func-
tion [27].

Absence or impaired function of ARMC3 possibly pre-
vents physiological spermatogenesis resulting in mor-
phological aberrations of the spermatozoa. The sperm
tails of homozygous bulls were severely disorganized and
all spermatozoa were immotile precluding successful
fertilization in vivo. Apart from immotile spermatozoa,
the bulls were healthy. The morphological aberrations of
the spermatozoa are similar to those observed in the
Ayrshire cattle breed [12-14, 16]. Because Swedish Red
cattle are closely related to Ayrshire cattle [28, 29], it is
possible that the frameshift mutation in ARMC3 oc-
curred in a common ancestor of the two breeds and that
it might also be associated with the sperm tail disorder
in Ayrshire cattle. However, the genetic underpinnings
of apparently similar phenotypes may be completely dif-
ferent across breeds (e.g, [24, 30, 31]). In any case, it is
recommended to survey sequence variants in ARMC3 in
bulls with fertility disorders in cattle breeds other than
Swedish Red.

To our knowledge, our study reveals for the first time
an association of a mutation in ARMC3 with morpho-
logical abnormalities of the sperm flagellum. However,
deleterious mutations in other genes encoding armadillo
repeat-containing proteins have already been shown to
compromise sperm motility [8, 32]. In our study, the
spermatozoa of bulls that were homozygous for the
frameshift mutation in ARMC3 were immotile because
of severe flagellar abnormalities. A previous study dem-
onstrated that dysfunction of ARMC4, a paralog to
ARMC3, impairs physiological function of the cilia and
sperm flagella in humans [33]. Proper function of Gudu,
a gene highly homologous to ARMC4, is essential for an
undisturbed spermatogenesis in Drosophila melanogaster
[34]. Our investigations also evidenced an impaired
spermatogenesis in bulls homozygous for the frameshift
mutation in ARMC3. Such findings suggest a crucial role
of ARMCS3 for physiological spermatogenesis.

The morphological aberrations of the spermatozoa ob-
served in our study are similar to those observed in
Yorkshire boars with a loss of function mutation in
SPEF?2 [6]. Both defects manifest in immotile spermato-
zoa precluding fertilization in vivo both in natural ser-
vice and Al The phenotypic manifestations of the two
defects differ only slightly. Spermatozoa of animals being
homozygous for the ARMC3 frameshift mutation mostly
lack the midpiece with mitochondria, which is, however,
commonly present in spermatozoa of animals homozy-
gous for the SPEF2 mutation [6].

Conclusions
The combination of high-density genotype and whole-
genome re-sequencing data revealed a recessively inherited
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frameshift mutation in bovine ARMC3 that most likely
causes a sterilizing tail stump sperm defect in Swedish Red
cattle. Our findings suggest that impaired function of
ARMC3 compromises spermatogenesis and thereby re-
sults in severely disorganized sperm tails, which prevents
successful fertilization in vivo. Compared to mutations that
manifest in idiopathic male sub- or infertility [21], sperm-
atozoa of affected animals have striking morphological ab-
errations that facilitate to unambiguously identify
homozygous bulls at Al centers. However, our findings fa-
cilitate to identify affected young bulls before they are pur-
chased by Al centers using e.g, genotyping assays on
customized genotyping arrays.

Methods

Animal ethics statement

All animals were housed at an approved commercial Al
center in Ornsro, Sweden. Semen samples were collected
by employees of the Al center as part of their regular
breeding and reproductive measures in cattle industry.
Bulls with the tail stump sperm defect were slaughtered
because their semen was not suitable for artificial insem-
ination. The decision to slaughter the bulls was made
solely by the owner (i.e., Al center) of the bulls. None of
the authors of the present study was involved in the de-
cision to slaughter the bulls. Testicles of an affected bull
were collected after slaughter. Consent from the owner
of the bulls was obtained to use the semen and tissue
samples for this study. No ethical approval was required
for this study.

Animals

Three bulls of the Swedish Red cattle breed born between
2008 and 2012 with a sterilizing tail stump sperm defect
were included in the study together with 18 unaffected
fertile male half-sibs. The bulls were housed in an Al bull
center in Ornsro, Sweden. The age of the bulls during
semen collection ranged from 11 to 16 months. Em-
ployees from the Al center collected semen approximately
twice a week as part of their regular practice.

Sperm motility, morphology and testicular histology

We examined ten ejaculates per bull. Aliquots of fresh
semen were put into vials to measure sperm concentration
using a photometric method and a haemocytometer (Biir-
ker chamber). A drop of semen (approximately 7 ul was
put on a pre-warmed slide to evaluate sperm morphology.
Head and sperm tail morphology of 200 spermatozoa was
assessed from slides stained with the Williams stain (bright
field microscopy) and from a wet mount formol-saline
sample using a phase contrast microscope with 1000x
magnification, respectively. Moreover, sperm head morph-
ology was assessed in dry smears stained with carbol fuch-
sin according to Williams [35] and Lagerlof [36]. Testicles
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from an affected bull were collected after slaughter. Histo-
logical specimens were taken from the testicles, fixed in
Bouin’s solution and embedded in paraffin. Sections
(5 um) were cut and stained with haematoxylin and eosin.

Genotyping of affected and unaffected animals
Twenty-one bulls (three affected, 18 unaffected) of the
Swedish Red cattle breed were genotyped using the Illu-
mina BovineSNP50 Bead chip (Illumina, Inc., San Diego,
CA, USA). The chromosomal position of the SNPs
corresponded to the UMD3.1 assembly of the bovine gen-
ome [37]. Mitochondrial, X-chromosomal, Y-chromosomal
SNPs and SNPs with unknown chromosomal position
were not considered for further analyses. After quality con-
trol (per SNP and per individual call-rate higher than 90 %,
no deviation from the Hardy-Weinberg equilibrium (P>
0.0001)), 46,035 SNPs were retained for further analyses.
Beagle genetic analysis software [38] was used to impute
sporadically missing genotypes and to infer haplotypes.

Homozygosity mapping

Segments of extended homozygosity were identified in
three affected bulls using the homozyg-function imple-
mented in the whole genome association analysis toolset
PLINK [39, 40]. Due to the relatively sparse genome
coverage of the genotype data (1 SNP per 56 kb), we re-
stricted our analysis to runs of homozygosity (ROH)
with a minimum number of 20 contiguous homozygous
SNPs and a minimum length of 500 kb.

Generation of sequence data

Genomic DNA of an affected bull was prepared from a
semen sample following standard protocols using pro-
teinase K digestion and phenol-chloroform extraction. A
gDNA sequencing library with 420 bp insert size was
prepared using the TruSeq DNA Sample Preparation Kit
(Illumina inc., San Diego, CA, USA). The sample was se-
quenced on an Illumina HiSeq2500 system using TruSeq
SBS v3 chemistry (Illumina inc., San Diego, CA, USA)
and the 2x100 bp paired-end read module. The fastq-
files were generated with the CASAVA bcl2fastg conver-
sion software (version 1.8.3, Illumina inc., San Diego,
CA, USA). The alignment of the reads to the University
of Maryland reference sequence (UMD3.1, [37]) was per-
formed with the Burrows-Wheeler Aligner [41]. The
resulting SAM file was converted into a BAM file with
SAMtools [42]. Duplicate reads were identified and
marked with the MarkDuplicates command of Picard-
tools [43].

Identification of candidate causal variants

Single nucleotide and short insertion and deletion poly-
morphisms were genotyped in the affected bull together
with 300 previously sequenced animals from eleven
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cattle breeds (Gelbvieh (# = 12), Nordic Finncattle (7 = 6),
Fleckvieh  (n=153), Original Simmental (n=15),
Holstein-Friesian (7 = 31), Brown Swiss (# = 50), Murnau-
Werdenfelser (n=2), Ayrshire (n =2), Red-Holstein (n =
21), Original Braunvieh (n=8)) other than Swedish Red
[44] using the multi-sample approach implemented in the
mpileup function of SAMtools [42] and a variant calling
pipeline as detailed by Jansen et al. [25]. Larger insertions
and deletions and structural rearrangements were identi-
fied in the affected animal and 226 sequenced control ani-
mals with an average genome coverage above 8-fold using
the Pindel software package [45]. To identify mutations
compatible with recessive inheritance, all polymorphic
sites were filtered for variants that were homozygous for
the alternate allele in the affected bull and homozygous
for the reference allele in 300 sequenced control animals.
Candidate causal variants were annotated using the Vari-
ant Effect Predictor tool [46, 47]. Additionally, sequence
variants of 1147 animals from 29 breeds that were se-
quenced for the 1000 bull genomes project [17] were ana-
lyzed to obtain genotypes of compatible variants in a
larger cohort. The animals of the 1000 bull genomes pro-
ject were mostly influential sires that had been widely used
for artificial insemination.

Validation of the ss1815612719 polymorphism

PCR primers TTCAGTGCCAGGTTCATTGC and TTG
GCTGGATGAGGTCAGTT were designed with Primer 3
[48] to scrutinize the ss1815612719 polymorphism by
Sanger sequencing in two affected bulls and 97 unaffected
artificial insemination bulls of the Swedish Red cattle
breed. DNA was extracted from semen samples following
standard protocols using proteinase K digestion and
phenol-chloroform extraction. Genomic PCR products
were sequenced using a 3730x1 DNA Analyzer (Applied
Biosystems) and data were analyzed with the Variant Re-
porter v1.0 program (Applied Biosystems).

Bioinformatic analysis of ARMC3

The ARMC3 protein sequence was obtained from
ensembl (ENSBTAT00000061467) and the ClustalW2 tool
[49] was used for multiple species alignment. The annota-
tion of ARMCS3 protein domains was carried out using the
Simple Modular Architecture Research Tool [50].

Availability of supporting data

The data supporting the results of this article are in-
cluded within the article and its additional files. Whole-
genome sequencing data of a bull with the tail stump
sperm defect were deposited in the European Nucleotide
Archive (http://www.ebi.ac.uk/ena) under
number PRJEB12739.

accession
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Additional files

Additional file 1: Pedigree of three bulls with the tail stump sperm
defect. Red and blue color represents three affected bulls and their
common ancestor. The drawn pedigree includes only obligate mutation
carriers. (PNG 27 kb)

Additional file 2: Sequence variants identified using the SAMtools
software package that were compatible with recessive inheritance.
Grey background indicates 15 sequence variants that were not polymorphic
among 1147 animals of the 1000 bull genomes project. Red color indicates
a coding variant compatible with recessive inheritance. The functional
consequence of the alternative allele was predicted using the Variant Effect
Predictor from Ensembl (see Methods). (XLSX 61 kb)

Additional file 3: Structural sequence variants that were compatible
with recessive inheritance. Grey background indicates an intergenic
sequence variant that was not polymorphic among 1147 animals of the
1000 bull genomes project. (XLSX 36 kb)

Additional file 4: Genotype distribution of 73 candidate causal
mutations for the tail stump sperm defect in 1147 animals from the
1000 bull genomes project. Alternate allele frequency and genotype
distribution of 73 variants in 29 breeds (homozygous animals for the
reference allele | heterozygous animals | homozygous animals for the
alternate allele). Grey color indicates variants that were considered as
candidate causal mutations. Red color indicates the deletion mutation in
the coding sequence of ARMC3. (XLSX 49 kb)
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