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Abstract

There is a significant discussion on categorizing requirements in academia. Most
commonly, requirements are categorized into functional requirements (FRs) and
non-functional requirements (NFRs). However, as pointed out by Glinz and Broy,

there is a terminological confusion about the underlying terms.
This disagreement over categorizing requirements is not only prevalent in research, but

it also influences how requirements are elicited, documented, and validated in practice.
As a matter of fact, up until now, there does not exist a commonly accepted approach
for the NFR-specific elicitation, documentation, and analysis; so-called NFRs are usually
described vaguely, remain often not quantified, and as a result remain difficult to analyze
and test. Furthermore, so-called NFRs are often retrofitted in the development process
or pursued in parallel with, but separately from functional requirements and, thus, are
implicitly managed with little or no consequence analysis. This limited focus on so-called
NFRs can result in the long run in high maintenance costs.
Although the importance of so-called NFRs for software and systems development

is widely accepted, the discourse in academia is still dominated by how to categorize
requirements. One point of view is that a categorization should be grounded in method-
ological reasons and we should rather base a requirements categorization on a system
model. The underlying argument is that if we base a categorization on a system model,
we can precisely specify requirements in terms of properties of systems, where properties
are represented by logical predicates.
The goal of the dissertation is to address the following two major questions: First,

is a requirements categorization based on a system model adequate for requirements
found in practice? With adequate, we mean that the categorization is applicable for
industrial requirements and supports subsequent development activities. Second, how can
a requirements categorization based on a system model be operationalized for subsequent
development activities? To this end, we contribute a detailed analysis how practitioners
handle and categorize requirements, elaborate the reasons for and resulting consequences
on the overall development process, analyze the adequacy of a categorization based on
a system model, analyze problems with requirements categorizations in practice, and
present and evaluate an approach that embeds such a categorization for requirements in
subsequent development activities.
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“If you want to trigger a hot debate among a group of require-
ments engineering people, just let them talk about non-functional
requirements.”

— Martin Glinz, 2007
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Introduction

This dissertation is about requirements categorizations in general, and in particular
about the adequacy and operationalization of a categorization based on a system
model. In this dissertation, with adequacy of a requirements categorization, we

mean that the categorization is applicable for industrial requirements and, furthermore,
supports subsequent development activities. In this chapter, we introduce and motive
this topic by discussing categorizations and the associated consequences in practice
(Section 1.1). In Section 1.2 we introduce our research hypothesis and formulate the
problem statements. We derive the research objectives in Section 1.3 and present the
overall research methodology and major contributions in Section 1.4.

1.1. Context: Requirements Categorizations and their
Consequences in Practice

Requirements Engineering (RE) is an essential part of every software and systems
engineering project. It can be defined as the process of discovering the purpose of software
systems by identifying stakeholders and their needs and by documenting these in a form
that is amenable to analysis, communication, and subsequent implementation [Nuseibeh
and Easterbrook, 2000]. RE has a crucial impact on the functionality, quality, costs
and, thus, the usefulness and resulting complexity of the system under consideration.
Many problems arise if RE is underestimated or conducted thoughtlessly; Important
requirements are often not identified and, thus, essential requirements are not fulfilled by
the final product. Moreover, the later an error is found, the higher are the associated
costs for revising it [Boehm, 1981; Mund et al., 2015]. In particular, Boehm estimates
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1. Introduction

that an error in the requirements discovered while implementing a system, needs about
20 times more effort to correct compared to when it is discovered in the requirements
engineering stage; If the error is detected after delivering the software, an effort of a
factor of 100 is needed [Boehm, 1981].

1.1.1. Problems of Current Categorizations

There is a significant academic discussion on categorizing requirements. Most com-
monly [IEEE Std 830-1998, 1998; Pohl, 2010; Robertson and Robertson, 2012; Som-
merville and Kotonya, 1998; Sommerville and Sawyer, 1997; Van Lamsweerde, 2001],
requirements are categorized into functional requirements (FRs) and non-functional
requirements (NFRs). However, as pointed out by e.g. Pohl [2010], Glinz [2007], and Broy
[2016], there is a terminological confusion about the underlying terms. Glinz points
out three major problems with current categorizations of non-functional requirements,
including the so-called definition problem. He discusses that there is no consensus about
the terms used by current definitions of non-functional requirements. Moreover, Broy
[2016] points out that there is no agreed meaning of the terms functional and non-
functional. The term functional may be understood in multiple ways. For example, in the
mathematical way, i.e., a mapping between two sets, or in an engineering way, i.e., the
purpose of a system or of a certain part thereof. Similarly for the term non-functional;
The obvious way to categorize non-functional requirements as all those requirements
that are not functional is overly simplistic and does not provide a helpful and actionable
categorization. Pohl [2010] argues that the term “non-functional requirement” should
not be used as they are essentially underspecified requirements and we should rather
categorize requirements into functional requirements, quality requirements (QRs), and
constraints.

Still, the structuring principles used for most approaches are not completely clear, not
overly precise, and not explicitly stated [Broy, 2016]. For example, Pohl [2010], the IEEE
Std 830-1998 [1998], Lauesen [2002], Robertson and Robertson [2012], Sommerville [2007],
and Wiegers and Beatty [2013], categorize requirements in functional requirements, quality
requirements, and constraints. In their categorization, a quality requirement is defined as
“a quality property of the entire system or of a system component, service, or function”
(see e.g. [Pohl, 2010]). If we analyze this definition in detail, we can see that the scope
of a quality requirement is specified as the “entire system”, a “system component”, a
“service”, or a “function”. Yet, in the second part of the definition, the equally fuzzy term
“quality property” is used. Pohl [2010], for example, further gives examples and a short
definition for quality properties like “availability refers to the percentage of time during
which the system is actually available for use and fully operational”. However, again,
fuzzy and not clearly defined terms like “actually available” and “fully operational” are
used. Thus, we argue that the main principles of requirements categorizations are not
clearly and precisely defined in literature and thus leaves room for interpretation. This is
not only an academic problem—and even more importantly—this confusion impacts how
requirements and in particular QRs are handled in practice.

4



1.2. Research Hypothesis & Problem Statement

1.1.2. Resulting Consequences in Practice
This disagreement with requirements categorizations is not only prevalent in research,
but it also influences how requirements are elicited, documented, and validated in
practice [Ameller et al., 2012; Borg et al., 2003; Chung and Nixon, 1995; Svensson et al.,
2009]. As a matter of fact, up until now, there does not exist a commonly accepted
approach for the QR-specific elicitation, documentation, and analysis [Borg et al., 2003;
Svensson et al., 2009]; QRs are usually described vaguely [Ameller et al., 2012; Borg
et al., 2003], remain often not quantified [Svensson et al., 2009], and as a result remain
difficult to analyze and test [Ameller et al., 2012; Borg et al., 2003; Svensson et al., 2009].
Furthermore, QRs are often retrofitted in the development process or pursued in parallel
with, but separately from, functional requirements [Chung and Nixon, 1995] and, thus,
are implicitly managed with little or no consequence analysis [Svensson et al., 2009]. It
is an open question whether these problems are caused by the nature of QRs or by the
mere fact that a requirement is marked as such. Still, this limited focus on QRs can
result in the long run in high maintenance costs [Svensson et al., 2009].
In particular, QRs like reliability, security, or performance strongly influence the

architecture of a system. For example, a security requirement like “only authenticated
and authorized users are allowed to access the software” demands a mechanism for user
authentication, authorization, and access rights from the software. If this requirement
is not fulfilled, the overall project success may be in danger. Moreover, a performance
requirement specifying maximal bounds on latencies for a distributed telecommunication
software, requires a high effort to test, as a test setup with a large amount of participants
in the network is needed. Furthermore, the usability requirement “the time-based zoom
function must be comfortable to use” describes an external property of the system in
relation to its usage. It has a strong impact on the user interface and the interactions of
the user with the software. Because of its inherent subjectivity, it is further hard and
time-consuming to test.
In summary, there is a disagreement with requirements categorization in academia,

which influences how requirements are handled in practice. Still, it is widely acknowledged
that QRs are vital for the success of software systems in practice [Chung and Nixon,
1995], although there are many issues with how QRs are handled in practice.

1.2. Research Hypothesis & Problem Statement
Although the importance of QRs for software and systems development is widely accepted,
the discourse in academia is dominated by how to categorize requirements [Broy, 2016;
Glinz, 2007]. One point of view is that a categorization should be unambiguous and
grounded in methodological reasons. Therefore, we should rather base a requirements
categorization on a system model that provides us with a clear notion and concept of a
system. The underlying argument is that if we base a categorization on a system model,
we can precisely specify requirements in terms of properties of systems, where properties
are represented by logical predicates. This allows us to precisely and explicitly specify
the structuring principles of the categorization. For example, Broy [2015, 2016] catego-
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1. Introduction

rizes requirements in behavioral properties and representational properties. Behavioral
properties subsume traditional functional requirements, such as “the user must be able to
remove articles from the shopping basket” as well as so-called QRs that describe behavior
such as “the system must react on every input within 10ms”. Representational properties
include so-called QRs or constraints that determine how a system shall be syntactically
or technically represented, such as “the software must be implemented in the programming
language Java” [Broy, 2015, 2016].

Furthermore, given a requirements categorization that is based on a system model,
the seamless transition to architectural design (operationalization) is facilitated, as
requirements are built on clearly defined and explicitly stated logical properties over a
set of systems. Following these arguments, we formulate the research hypothesis for this
dissertation:

Research Hypothesis:
A requirements categorization based on a system model is adequate1 for
requirements found in practice and is operationalizable for subsequent
development activities.

Based on this hypothesis, we derive two problem statements that we aim to address
in this dissertation. First, we want to address the first part of the hypothesis, i.e., is a
categorization based on a system model adequate for requirements found in practice?
Second, we want to propose an approach to embed and operationalize the categorization
in subsequent development activities. More precisely, we derive the following two problem
statements:

Problem Statement:

P1: Is a requirements categorization based on a system model adequate1
for requirements found in practice?

P2: How can a requirements categorization based on a system model be
operationalized for subsequent development activities?

1.3. Research Objectives
Based on the two problem statements, we formulate the following objectives, which we
pursue in the remainder of this dissertation:

Objective 1: We want to understand how and why practitioners categorize requirements
and what are the resulting consequences. In this objective, we aim to understand
the state of the practice. In particular, we want to understand how practitioners

1In this dissertation, with adequacy of a requirements categorization, we mean that the categorization is
applicable for industrial requirements and, furthermore, supports subsequent development activities.
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handle requirements, what are the reasons for and what are the consequences of
the way they handle requirements.

Objective 2: We want to assess if a categorization based on a system model is adequate1

for requirements found in practice and whether it effectively supports subsequent
development activities. In this objective, we focus on requirements found in practice.
In particular, we want to analyze whether a categorization based on a system model
is adequate for those requirements and, furthermore, want to discuss whether such
a categorization effectively supports subsequent development activities.

Objective 3: We want to develop an approach that is based on such a categorization
and want to assess whether it is applicable in practice. In this objective, we aim to
propose an approach that embeds and operationalizes a categorization that is based
on a system model in subsequent development activities. In particular, we aim
to propose an approach that allows practitioners to specify QRs based on clearly
defined concepts.

1.4. Research Methodology & Contributions
In this dissertation, we provide supporting evidence for our hypothesis and solutions for
the stated problems. In particular, this dissertation analyzes in detail how practitioners
categorize and handle requirements, elaborates the reasons for and resulting consequences
on the overall development process, analyses the adequacy of a categorization based
on a system model, analyzes and critically discusses the implications of requirements
categorizations in practice, and presents and evaluates an approach that embeds such a
categorization for requirements in subsequent development activities. Figure 1.1 shows
an overview of the research methodology and contributions of this dissertation; Empirical
studies are marked with an E, constructive contributions with a C, and validation studies
with a V. The dissertation presents the following main contributions to the current state
of the art:

Contribution 1 An investigation of how practitioners categorize and handle require-
ments (E). In this contribution, we report on a survey we conducted with 109
practitioners to explore whether and, if so, why they consider requirements la-
beled as FRs differently from those labeled as QRs as well as to disclose resulting
consequences for the development process.
88% of our respondents stated that they document QRs and 85% of them declare
to make an explicit distinction between QRs and FRs. Furthermore, our results
indicate that the development process strongly differs between QRs and FRs,
especially in late phases such as testing. This was true regardless of the style of
documentation. We further identified a number of reasons why practitioners tend to
(or not to) distinguish between QRs and FRs, and we analyzed both problems and
benefits from distinguishing (or not) between QRs and FRs. The reported reasons
include: QRs have a different nature, are cross-functional, strongly influence the

7



1. Introduction

Research Hypothesis:
A categorization based on a system model is adequate 

for requirements found in practice and is 
operationalizable for subsequent development 

activities. 

Problem Statement 2:
How can a categorization based on a system model be 
operationalized for subsequent development activities?

Main Conclusion:
Our approach provides a means to define, specify and integrate 
quality requirements based on a system model.

C3: An approach for defining, specifying, 
and integrating quality requirements based on a 
system model. 

Main Conclusion:
Performance requirements found in practice can be defined, 
specified, and integrated with our approach.

C4: Validation of our approach on the 
example of performance requirements.

Main Conclusion:
Most requirements labeled as "non-functional" or "quality" 
requirements are misleadingly declared as such, as they 
describe behavior of the system.

C2: An analysis of the adequacy of a categorization 
based on a system model 
with respect to requirements found in practice.

Main Conclusion:
Categorizations should be based on methodological reasons and 
should efficiently support subsequent development activities.

C1: An investigation of how practitioners categorize 
and handle requirements.

Problem Statement 1:
Is a categorization based on a system model adequate 
for requirements found in practice?

E

E C

V

Figure 1.1.: Overview of the research methodology and contributions of this dissertation.
Empirical studies are marked with an E, constructive contributions with a
C, and validation studies with a V.
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1.4. Research Methodology & Contributions

architecture, and require different verification methods. Moreover, another reason
for making a distinction was reported to lie in company practices or the company
processes. We also identified problems that result from this distinction such as
that traceability becomes more expensive, the distinction between QRs and FRs is
blurry, and QRs are neglected or forgotten along the process.

Our results indicate that making a distinction or not does not have negative or
positive consequences per se. It therefore seems more important that the decision
whether to make an explicit distinction or not should be made consciously such
that people are also aware of the risks that this distinction bears so that they may
take appropriate countermeasures. A distinction might, for example, be justified
by specialized testing teams for specific quality attributes or by requirements that
are reused between a number of projects. A direct consequence of this conscious
decision is that people are also aware of the potential risks that this distinction bears
(e.g., the importance of trace links between FRs and QRs to assure that QRs are
not neglected). In summary, we conclude that QRs are not (sufficiently) integrated
in the software development process and furthermore that several problems are
evident with QRs.

Contribution 2 An analysis of the adequacy of a categorization based on a system model
with respect to requirements found in practice (E). In this contribution, we analyze
11 requirements specifications from 5 different companies for different application
domains and of different sizes with in total 530 requirements that are labeled as “non-
functional”, “quality”, or any specific quality attribute. Our results show that 75%
of the requirements labeled as “quality” in the considered industrial specifications
describe system behavior and 25% describe the representation of the system. As
behavior has many facets, we further categorize behavioral QRs according to the
system view they address (interface, architecture, or state), and the behavior theory
used to express them (syntactic, logical, probabilistic, or timed) [Broy, 2015, 2016].
Based on this fine-grained categorization that is based on a system model, we discuss
the implications we see on handling QRs in the software development phases, e.g.,
testing or design.

Based on these results, we argue that functional requirements describe any kind
of behavior over the interface of the system, including timing and/or probabilis-
tic behavior. From this perspective, we conclude that many of those QRs that
address system properties describe the same type of behavior as functional re-
quirements do. This is true for almost all QR classes we analyzed; even for QR
classes which are sometimes called internal quality attributes (e.g., portability or
maintainability) [McConnell, 2004]. Hence, we argue that Broy’s requirements
categorization—that is based on a system model—is adequate1 for requirements
found in practice, as the categories can be linked to system development activities.
From a practical point of view, this means that most QRs can be elicited, specified,
and analyzed like functional requirements. For example, QRs classified as black-box
interface requirements, are candidates for system tests. In our data set, system test
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cases could have been specified for almost 51.5% of the QRs. This contribution
supports (the first part of) our hypothesis, i.e., a categorization based on a system
model is adequate1 for requirements found in practice.

Contribution 3 An approach for defining, specifying, and integrating quality require-
ments based on a system model (C). In this contribution, we present an approach for
defining, specifying, and integrating QRs based on a system model. In particular,
the approach takes a specific quality attribute as input and creates a precise and
explicit definition and customized sentence patterns for requirements concerning
this quality attribute. We achieve the precise and explicit definition by an explicit
mapping to a system model and the customization to a given organizational con-
text by using the idea of activity-based quality models [Deissenboeck et al., 2007;
Femmer et al., 2015]. Furthermore, we give guidance how the individual steps
can be performed by means of executing the approach for the quality attributes
performance and availability.

The resulting definitions and sentence patterns can then be integrated in the overall
RE process to support the documentation, elicitation, management, and validation
of requirements in the given organizational context. Thus, our approach needs to
be conducted in advance for a given set of quality requirements and a given context;
The results can then be used as for example a company standard to specify and
elicit quality requirements.

This contribution supports (the second part of) our hypothesis, i.e., it provides an
approach for an operationalization of the categorization for subsequent development
activities.

Contribution 4 Validation of our approach on the example of performance requirements
(V). In this contribution, we instantiate our approach for one specific quality
attribute (performance requirements) and conduct an evaluation with respect to
its applicability and ability to uncover incompleteness.

In particular, we present a context-independent and context-dependent content
model for performance requirements, a clear and precise definition of the content
elements and a discussion how to express them based on the Focus system model,
and an operationalization through sentence patterns for the specification of perfor-
mance requirement. Furthermore, we derive a notion of completeness based on the
context-dependent content model. To make the model widely applicable, we based
the context-independent content model on broad categorizations of non-functional/
quality requirements in literature [Behkamal et al., 2009; Boehm et al., 1976; Botella
et al., 2004; Dromey, 1995; Glinz, 2005, 2007; Grady, 1992; ISO/IEC 25010-2011,
2011; ISO/IEC 9126-2001, 2001; McCall et al., 1977; Robertson and Robertson,
2012; Sommerville, 2007], unifying the different aspects of performance described
in the individual categorizations. To make our approach applicable in practice,
we operationalize the content model through sentence patterns for performance
requirements. To evaluate our approach, we applied the resulting sentence patterns
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to 58 performance requirements taken from 11 industrial specifications and analyzed
(i) the applicability and (ii) the ability to uncover incompleteness. We were able
to rephrase 86% of the performance requirements. Moreover, we found that the
resulting sentence patterns can be used to detect incompleteness in performance
requirements, revealing that 68% of the analyzed performance requirements were
incomplete.

This contribution supports (the second part of) our hypothesis, i.e., it provides an
instantiation and assessment of the approach.

Delimitation: Focus on Product-related Requirements
We focus on product-related requirements, i.e., requirements that describe properties
of the product or system under development, and explicitly exclude process-related
requirements, i.e., requirements that describe properties concerning the development
process2. We further categorize product-related requirements into functional requirements,
quality requirements, and constraints. Moreover, in contrast to e.g. Pohl [2010], we do
not understand “non-functional” requirements as underspecified requirements. We do
consider functional requirements and quality requirements without considering the level
of underspecification of the requirement. Thus, for the remainder of this dissertation, the
terms product-related non-functional requirement and quality requirement only differ with
respect to one point: quality requirements additionally provide the quality property to
which they refer, while non-functional requirements do not.

1.5. Outline

This dissertation consists of ten chapters. Chapter 2 (Fundamentals) introduces the fun-
damentals of this dissertation: the requirements engineering discipline and its important
concepts, the Focus theory and its probabilistic extension, and Broy’s requirements
categorization (which is based on the Focus system model). Chapter 3 (Related Work)
describes the current state of the art regarding the contents of this dissertation in general.
In particular, we report on related work regarding requirements categorizations and
their implications in practice. Chapter 4 (An Investigation of How Practitioners Handle
Requirements) investigates how practitioners categorize and handle requirements. In
Chapter 5 (An Analysis of the Adequacy of a Categorization based on a System Model
with Respect to Requirements found in Practice), we empirically investigate whether
a requirements categorization that is based on a system model is adequate1 for indus-
trial requirements. Chapter 6 (An Analysis of Requirements Categorizations and their
Consequences in Practice) analyzes the state of the practice and derives problems with
requirements categorizations sketches possible solutions to overcome the deficiencies

2Sometimes, the distinction between product and process-related requirements is not made and process-
related requirements are subsumed as constraints. In this dissertation, we want to make explicit that
we focus on product-related requirements.
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associated with QR in practice. In Chapter 7 (An Approach for Defining, Specifying, and
Integrating Quality Requirements based on a System Model), we introduce our approach
for defining, specifying, and integrating quality requirements and exemplarily show how
to apply it for performance and availability requirements. Chapter 8 (Validation of the
Approach on the Example of Performance Requirements) evaluates our approach with
respect to its applicability and ability to detect incompleteness in industrial performance
requirements. In Chapter 9 (Reflection on the Expressiveness of our Approach), we dis-
cuss the limitations of our approach and, finally, in Chapter 10 (Conclusions & Outlook),
we conclude the dissertation and formulate future research directions.

Previously Published Material
Parts of this dissertation have been previously published in the following publications:

• Eckhardt, J., Méndez Fernández, D., and Vogelsang, A. (2015). How to specify
Non-functional Requirements to support seamless modeling? A Study Design
and Preliminary Results. In Proceedings of the 9th International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 164–167 (short
paper, research track, 4 pages)

• Eckhardt, J., Vogelsang, A., and Méndez Fernández, D. (2016c). Are Non-functional
Requirements Really Non-functional? An Investigation of Non-functional Require-
ments in Practice. In Proceedings of the 38th International Conference on Software
Engineering (ICSE), pages 832–842 (full paper, research track, 10 pages)

• Eckhardt, J., Vogelsang, A., Femmer, H., and Mager, P. (2016b). Challenging
Incompleteness of Performance Requirements by Sentence Patterns. In Proceedings
of the 24th International Requirements Engineering Conference (RE), pages 46–55
(full paper, research track, 10 pages)

• Eckhardt, J., Vogelsang, A., and Mendéz Fernández, D. (2016d). On the Distinc-
tion of Functional and Quality Requirements in Practice. In Proceedings of the
17th International Conference on Product-Focused Software Process Improvement
(PROFES), pages 31–47 (full paper, research track, 16 pages)

• Eckhardt, J., Vogelsang, A., and Femmer, H. (2016a). An Approach for Creating
Sentence Patterns for Quality Requirements. In Proceedings of the 6th International
Workshop on Requirements Patterns (RePa), pages 308–315 (full paper, 8 pages)
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“We are like dwarfs on the shoulders of giants, so that we can see
more than they, and things at a greater distance, not by virtue
of any sharpness of sight on our part, or any physical distinction,
but because we are carried high and raised up by their giant size.”

— Bernard De Chartres, 12th century
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Fundamentals

The goal of this chapter is to provide the fundamentals for this dissertation. First,
to set the scope of this dissertation, in Section 2.1, we introduce fundamentals on
requirements engineering in general, including its major goals, its core concepts

and definitions. As this thesis discusses a categorization based on a system model, we
provide an overview of a particular system modeling theory, namely the Focus theory
and its probabilistic extension in Section 2.2. Finally, in Section 2.3, we introduce Broy’s
requirements categorization that is based the system model of the Focus theory.

2.1. Fundamentals: Requirements Engineering
The IEEE standard committee defines software engineering as a systematic and cost-
effective approach to software development projects [IEEE Std 610.12-1990, 1990], which
can be divided into different phases, such as requirements engineering, design, implemen-
tation or testing. In this dissertation, we are in particular interested in requirements
engineering (RE). To this end, we subsequently introduce the foundations in the area of
requirements engineering.

2.1.1. Goals of Requirements Engineering

RE aims to discover the purpose of software systems, identify stakeholders and their
needs, and document these in a form that is amenable to analysis, communication, and
subsequent implementation [Nuseibeh and Easterbrook, 2000]. According to Zave [1997],
RE has the following goals:
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G1 To capture and specify the problem space, i.e., “real-world goals for functions and
constraints on software systems” [Zave, 1997].

G2 To continuously administrate the specified requirements (and changes) over their
whole life cycle.

Thus, the goals are twofold: on the one-hand, the goal is to capture and specify the
problem space and, on the other-hand, to manage the resulting artifacts.

2.1.2. Requirements Engineering

Requirements Engineering (RE) can be defined as the activity of “describing a problem
space as comprehensively as possible by comprising iterative and systematic approaches
to define a requirements specification aligned to the needs of all relevant stakehold-
ers” [Méndez Fernández, 2011].
We base our understanding of RE on the definition by Pohl [2010]. Pohl defines

three dimensions of requirements engineering, in particular, the content dimension, the
agreement dimension, and the documentation dimension. The content dimension ensures
that all requirements are known and understood in detail, the agreement dimension
considers the establishment of sufficient stakeholder agreement, and the documentation
dimension considers the documentation/specification of requirements in compliance with
the defined formats and rules. Based on these three dimensions, he defines requirements
engineering as a process:

Requirements Engineering (Process) Requirements engineering is a cooperative,
iterative, and incremental process which aims at ensuring that:

• All relevant requirements are explicitly known and understood at the required level
of detail.

• A sufficient agreement about the system requirements is achieved between the
stakeholders involved.

• All requirements are documented and specified in compliance with the relevant
documentation/specification formats and rules.

Note. We additionally follow the view of, e.g., Femmer et al. [2015], as we understand
RE as a supporting means for software engineering, with the goal to produce working
software products in a systematic and predictable way. Therefore, the value of the outcome
of RE cannot be assessed on its own but must be evaluated in its use as a function to the
rest of the engineering endeavor.

Requirements Engineering Activities Pohl [2010] derives three core activities that
significantly contribute to the achievement of the three goals stated above:
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Documentation: The focus of this activity is the documentation and specification of
the elicited requirements and other important information according to defined
documentation and specification rules.

Elicitation: The focus of this activity is to improve the understanding of the require-
ments. In particular, during the elicitation activity, requirements are elicited from
stakeholders and other requirements sources, e.g., laws and standards, and the
requirements are collaboratively developed.

Negotiation: The focus of this activity is to detect, explicitly state, and resolve all
conflicts between the viewpoints of the different stakeholders.

Pohl further defines two cross-sectional activities that significantly influence the re-
quirements engineering process. They support the core activities and secure the results
of the overall requirements engineering.

Validation: The focus of this activity is to validate the requirements (artifacts), i.e.,
to detect defects in requirements, to validate the core activities, i.e., to check
the compliance between the activities performed and the process and/or activity
specifications, and to validate the consideration of the system context, i.e., to
validate whether the system context has been considered in the intended way
during requirements engineering.

Management: The focus of this activity is the management of the requirements artifacts,
the management of the activities, and the observation of the system context.

Artifact-based Requirements Engineering In general, there are two paradigms for
establishing an RE approach: activity orientation and artifact orientation. In an activity-
oriented RE approach, a RE reference model is provided as an ordered set of activities
and methods, each defining procedures and techniques for a particular purpose, from
which project participants can select the appropriate one to design their project-specific
RE process [Méndez Fernández and Penzenstadler, 2015]. That is, activity orientation
prescribes how to do something. In contrast to this, artifact-orientation abstracts from
the way of creating the results and specifies what has to be done [Méndez Fernández
et al., 2010], i.e., project participants concentrate on the RE artifacts rather than on the
way of creating them. The research group of Broy takes an artifact-centric perspective on
requirements engineering [Méndez Fernández, 2011; Méndez Fernández and Penzenstadler,
2015; Méndez Fernández et al., 2010]; Méndez Fernández and Penzenstadler summarize
over six years of experiences in fundamental and evidence-based research on requirements
engineering in the AMDiRE approach [Méndez Fernández and Penzenstadler, 2015].
The artifact model constitutes the backbone by defining structure and content of

domain-specific results of RE activities [Méndez Fernández et al., 2010]. The structure
addresses the aspects of hierarchically ordered documents or data sets being produced
during development tasks in which single content items serve as containers for the concepts,
respectively concept models. The concept models (or content model) define those aspects
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of a system under consideration dealt with during the development process and reflected
in the elements of the description techniques and their relations [Méndez Fernández et al.,
2010].

Figure 2.1 shows the AMDiRE artifact model. It contains three artifacts, the context
specification, the requirements specification, and the system specification. The context
specification defines the context of the system under consideration (SuC) including the
specification of the overall project scope, the stakeholders, rules, goals, and constraints
as well as a specification of the domain model. The requirements specification comprises
the requirements of the SuC, taking a black-box view on the system, i.e., from a user’s
perspective without constraining the internal realization of the system. Finally, the
system specification comprises a glass-box view on the internal realization of a system
including a logical component architecture and a specification of the behavior.

Note. In AMDiRE, the context and requirements specification address the problem space
and the system specification addresses the solution space and is the interface to tie in
with the design phase (see Section 2.1.6 for a discussion of the problem space and the
solution space).

2.1.3. Requirements
There are several definitions of the term requirement in literature. In the remainder
of this dissertation, we understand the term requirement as defined in the IEEE Std
610.12-1990 [1990]:

Requirement A requirement is a

1. Condition or capability needed by a user to solve a problem or achieve an objective.

2. Condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed
documents.

3. Documented representation of a condition or capability as defined in 1 or 2.

Note. In this dissertation, we do not distinguish between requirements and requirement
artifacts, i.e., the term requirement denotes both, the concept and its representation.

2.1.4. Requirements Categorizations
In literature, there are mainly two different approaches to categorize requirements: (i) a
requirements categorization into functional requirements, non-functional requirements
and (ii) into functional requirements, quality requirements, and constraints.
Some categorizations further distinguish between product-related and process-related

requirements. In this dissertation, we focus on product-related requirements, i.e., require-
ments that concern properties of the product or system under development.
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Figure 2.1.: Overview of AMDiRE artifact model.
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Functional vs. Non-functional Requirements

Many authors categorize requirements into functional and non-functional [Antón, 1997;
Davis, 1993; Glinz, 2007; Jacobson et al., 1999; Landes and Studer, 1995; Mylopoulos
et al., 1992; Ncube, 2000; Paech and Kerkow, 2004; Robertson and Robertson, 2012;
Sommerville and Kotonya, 1998; Van Lamsweerde, 2001; Wiegers and Beatty, 2013;
Young, 2004]. There is more or less a consensus about the term functional requirement3.
Usually, a functional requirement expresses that a system offers a certain behavior such
that it can be used for a specific purpose. For example, Sommerville [Sommerville, 2007]
defines functional requirements as follows.

Functional Requirements “These [functional requirements] are statements of services
the system should provide, how the system should react to particular inputs and how the
system should behave in particular situations. In some cases, the functional requirements
may also state what the system should not do. [...] When expressed as user requirements,
the requirements are usually described in a fairly abstract way. However, functional
system requirements describe the system function in detail, its inputs and outputs,
exceptions, and so on.”4

Non-functional Requirements For the term non-functional requirement, there is no
consensus in literature. Table 2.1 gives an overview of common definitions of the term.
Glinz [2007] analyzed most of the classifications and derived three major problems

with the notion of non-functional requirements: the definition problem, the classification
problem, and the representation problem. The definition problem pinpoints the termino-
logical and conceptual discrepancies in the various definitions, the classification problem
pinpoints the differences in the concepts for sub-classifying non-functional requirements,
and the representation problem pinpoints that the notion of a non-functional requirement
is representation dependent. In summary, there is no consensus about the definition of the
term non-functional requirement in literature, the concepts are fuzzy, and representation
dependent.

Note. Pohl [2010] argues that non-functional requirements are in fact underspecified
requirements that allow many different interpretations concerning the desired system
properties. He argues that non-functional requirements should be refined to functional
requirements or quality requirements.

Categorization based on (Software) Quality Models

There are several categorizations [Chung et al., 2012; ISO/IEC 25010-2011, 2011; ISO/IEC
9126-2001, 2001; Lauesen, 2002; Lochmann and Wagner, 2012; Wiegers and Beatty, 2013]

3Broy [Broy, 2016] points out that there is no agreed meaning of the term function. It may be understood
in multiple ways; For example in the mathematical way, i.e., a mapping between two sets, or in an
engineering way, i.e., the purpose of a system or of a certain part thereof.

4The reported definition is adapted from the definition presented in [Pohl, 2010].
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Table 2.1.: Definitions of the term “non-functional requirement”. Adapted and extended
from Glinz [2007].

Source Definition
Antón [1997] Describe the non-behavioral aspects of a system, cap-

turing the properties and constraints under which a
system must operate.

Davis [1993] The required overall attributes of the system, including
portability, reliability, efficiency, human engineering, testa-
bility, understandability, and modifiability.

Jacobson et al. [1999] A requirement that specifies system properties, such
as environmental and implementation constraints,
performance, platform dependencies, maintainability, ex-
tensibility, and reliability. A requirement that specifies
physical constraints on a functional requirement.

Sommerville and Kotonya [1998] Requirements which are not specifically concerned with the
functionality of a system. They place restrictions on
the product being developed and the development process,
and they specify external constraints that the product
must meet.

Mylopoulos et al. [1992] [...] global requirements on its development or operational
cost, performance, reliability, maintainability, portability,
robustness, and the like. [...] There is not a formal defini-
tion or a complete list of nonfunctional requirements.

Ncube [2000] The behavioral properties that the specified functions
must have, such as performance, usability.

Robertson and Robertson [2012] A property, or quality, that the product must have, such
as an appearance, or a speed or accuracy property.

Wiegers and Beatty [2013] A description of a property or characteristic that a
software system must exhibit or a constraint that it must
respect, other than an observable system behavior.

Glinz [2007] A non-functional requirement is an attribute of or a con-
straint on a system.

Landes and Studer [1995] NFRs constitute the justifications of design decisions and
constrain the way in which the required functionality
may be realized.

Paech and Kerkow [2004] The term non-functional requirement is used to delineate
requirements focusing on how good software does something
as opposed to the functional requirements, which focus on
what the software does.

Van Lamsweerde [2001] [...] types of concerns: functional concerns associated with
the services to be provided, and nonfunctional concerns
associated with quality of service such as safety, security,
accuracy, performance, and so forth.

Young [2004] A necessary attribute in a system that specifies how func-
tions are to be performed, often referred to in systems
engineering as the -ilities.
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Quality Attributes

Important primarily to users Important primarily to developers

▶ Availability
▶ Efficiency
▶ Flexibility
▶ Integrity

▶ Interoperability
▶ Reliability
▶ Robustness
▶ Usability

▶ Maintainability
▶ Portability
▶ Reusability
▶ Testability

Figure 2.2.: Software Quality Model as defined by Wiegers and Beatty [2013] adapted
from Pohl [2010].

that categorize requirements into functional requirements, quality requirements, and
constraints with a similar definition for the term “functional requirement” as introduced
above. However, they advise against the usage of the term “non-functional” as they argue
that non-functional requirements are in their essence underspecified functional or quality
requirements [Pohl, 2010]. Instead, they introduce the category quality requirements. A
quality requirement is then defined as requirement describing a quality property of a
system with respect to a quality model. Quality requirements then describe a quality
property of the system, while quality properties are defined based on (software) quality
models. Wiegers and Beatty [2013] define such a quality model. He distinguishes between
quality attributes important primarily to users and quality attributes important primarily
to developers. Figure 2.2 gives an overview of his quality model and Table 2.2 gives
a short description of the quality characteristics. In addition, Lochmann and Wagner
[2012] extend this understanding of quality by the paradigm of activity-based quality
models [Deissenboeck, 2009; Deissenboeck et al., 2007]. They define the quality attributes
by referring to activities that are conducted with or on the system and identify (intrinsic)
properties that influence the activities’ efficiency or effectiveness. For example, the
quality attribute maintainability is defined as the efficiency (i.e., the effort spent) and
effectiveness (i.e., the resulting stakeholders’ satisfaction) of conducting the activity
maintenance [Lochmann and Wagner, 2012]. They chose to use activities for decomposing
quality as they provide a clear decomposition criterion: activities may be composed into
sub-activities. Figure 2.3 shows the structure and the quality attributes of the quality
model. The quality model consists of a tree of main quality attributes, a list of auxiliary
quality attributes, and a tree of orthogonal quality attributes. An individual definition
for the quality attributes can be found in the original work [Lochmann and Wagner,
2012].

Given a quality model, a quality requirement is usually defined as [Pohl, 2010]:

Quality Requirement A quality requirement defines a quality property of the entire
system, of a system component, service, or function.
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Figure 2.3.: (Activity-based) Software Quality Model as defined by Lochmann and Wagner
[2012].
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Table 2.2.: Quality attributes defined by Wiegers and Beatty [2013].
Quality Attributes Description
Availability Availability refers to the percentage of time during which the

system is actually available for use and fully operational.
Efficiency Efficiency is a measure of how well the system utilizes hardware

resources such as processor time, memory, or communication
bandwidth.

Flexibility Flexibility indicates how much effort is needed to extend the
system with new capabilities.

Integrity Integrity denotes how well the system is protected against
unauthorized access, violations of data privacy, information
loss, and infections through maleficent software.

Interoperability Interoperability indicates how easily the system can exchange
data or services with other systems.

Reliability Reliability is the probability of the system executing without
failure for a specific period of time.

Robustness Robustness is the degree to which a system or component
continues to function correctly when confronted with invalid
inputs, defects in connected systems or components, or unex-
pected operating conditions.

Usability Usability measures the effort the user requires to prepare input
for, operate, and interpret the output of the system.

Maintainability Maintainability indicates how easy it is to correct a defect or
make a change in the system.

Portability Portability relates to the effort it takes to migrate a system or
component from one operating environment to another.

Reusability Reusability indicates the extent to which a component can be
used in systems other than the one for which it was initially
developed.

Testability Testability refers to the ease with which the software compo-
nents or integrated system can be tested to find defects.
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Constraints A constraint is an organizational or technological requirement that re-
stricts the way in which the system shall be developed [Pohl, 2010; Robertson and
Robertson, 2012].

2.1.5. Our Notion of Requirements for this Dissertation
In this dissertation, we analyze requirements categorizations and their adequacy in
practice. For this, we take an observatory point of view and do not prefer a certain
requirements categorization. However, in this section, we introduce the terminology that
we use in the remainder of this dissertation regarding requirements categorization. In
particular, we follow the view of Pohl and Robertson & Robertson and categorize require-
ments into functional requirements, quality requirements, and constraints. Moreover, we
focus on product-related requirements, i.e., requirements that describe properties of
the product or system under development, and explicitly exclude constraints or so-called
process requirements.

In contrast to Pohl [2010], we do not understand “non-functional” requirements as un-
derspecified functional or underspecified quality requirements. We do consider functional
requirements and quality requirements without considering the level of underspecification
of the requirement. Thus, for the remainder of this dissertation, the terms product-related
non-functional requirement and quality requirement only differ with respect to one point:
quality requirements additionally provide the quality property to which they refer, as for
example availability, while non-functional requirements do not.
Therefore, as we analyze how practitioners handle requirements (Chapter 4) and

requirements found in requirements specifications in practice (Chapter 5 and Chapter 8),
we understand all those requirements that are labeled as “non-functional”, “quality”, or
any specific quality attribute as quality requirements.

We follow the definition of Broy [2015, 2016] for functional requirements, the definition
of Pohl [2010] for quality requirements, and the definition of Robertson and Robertson
[2012] for constraints.

Functional Requirements A functional requirement of a system expresses that

• a system shall offer a particular functional feature such that the system can be
used for a specific purpose, or

• a function of a system having a particular property—that may be a logical property
or a probabilistic one—modeling part of the interface behavior of the system,
specified by the interaction between the system and its operational context.

Quality Requirement A quality requirement defines a quality property of the entire
system, of a system component, service, or function.

Constraints A constraint is an organizational or technological requirement that re-
stricts the way in which the system shall be developed [Pohl, 2010; Robertson and
Robertson, 2012].
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2.1.6. Problem Space vs. Solution Space
In requirements engineering, it is important to separate the definition of requirements,
i.e., “what shall be developed”, from developing the design, i.e., the “how shall the system
be developed”. In other words, it is important to separate the problem space from the
solution space. The main reason for this separation is to make explicit that there are
multiple solutions (hows) for a given problem (what). Specifying directly the solution
for a given problem bears the risk to miss other possible solutions that might solve the
problem more efficiently. Thus, the selection of solutions for a given problem should be
made explicit and based on argumentation rather than on implicit experience.

During the development of a system, there are multiple problem-solution pairs (see for
example the metaphor of the Twin Peaks Model [Cleland-Huang et al., 2013; Nuseibeh,
2001]) as they depend on the stakeholder’s viewpoints [Davis, 1993; Pohl, 2010]. For
example, for a system architect, by specifying a requirement, the requirement engineer
defines the problem (what) while the resulting system architecture defines the solutions
(hows). In essence, this is a very simplistic view, but nonetheless characterizes the
iterations between problems and solutions during development. Ultimately, iterating
between problem and solutions in each phase eventually reduces the number of possible
solutions and yields to a (hopefully) efficient set of solutions.

2.2. Fundamentals: A Formal System Model
In the remainder of this dissertation, we aim to assess whether a categorization based
on a system model is adequate1 for requirements found in practice. To this end, we
introduce in this section the Focus theory [Broy, 2010a,b; Broy and Stølen, 2001] and
its probabilistic extension [Neubeck, 2012]. The Focus theory provides the following
characteristics:

• A system is interactive and encapsulates a state that cannot be assessed directly
from the outside. A system interacts with its environment exclusively by its interface.
An interface is formed by named and typed channels, which are communication
links for asynchronous, buffered message exchange.

• A system receives input messages (from its environment) on its input channels and
returns output messages (to its environment) over its output channels.

• A system may be underspecified, i.e., nondeterministic. This means that, given a
sequence of input messages, there may exist several sequences of output messages
that represent the reaction of the system.

• A system may have a probabilistic behavior. This means that, given a sequence
of input messages, there may exist several sequences of output messages that may
occur with different probability.

• The interaction between a system and its environment takes places concurrently in
a global time frame.
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In the following, we first introduce basic concepts like numbers, functions, and streams.
Then, we introduce nondeterministic interface behaviors and finally probabilistic and
nondeterministic interface behaviors. Finally, we introduce the underlying system model.

2.2.1. Functions and Streams

Basic Numbers In the following, we use the notion N = {1, 2, 3, . . . , } for natural
numbers excluding zero and N0 = N ∪ {0} for the natural number including zero. We
further use the extended natural numbers N0 = N0 ∪ {∞}, the real numbers R, and the
extended real numbers R = R ∪ {−∞,+∞}.

Multiset A multiset (or bag) is a generalization of the concept of a set and allows
multiple instances of the multiset’s elements. Formally, a multiset M over a set A is a
mapping from A to N0. The number M(x), x ∈ A represents how often the element x
appears in the multiset M . We call NA

0 the set of all multisets over A.

Functions Given a function f : X → Y . We call dom(f) := X the domain and
rng(f) := Y the range of the function. For finite sets X = {x1, . . . , xn}, we may define f
by

f = (x1 7→ f.x1, . . . , xn 7→ f.xn)

Note. In the following, we use the notion f.x interchangeably with f(x).

Streams A stream is an infinite or finite sequence of elements of a given set. Given a
set M of messages, we call the function

s : {0, . . . , n− 1} →M

stream (or sequence) of length n over M . A stream s may be written as

s = 〈s.0, . . . , s.(n− 1)〉

An infinite stream over the set of messages M is a function N0 → M . We write Mn,
M∗, M∞, Mω for the set of streams of length n, finite streams, infinite streams, and
streams of arbitrary length. Due to the functional nature of streams, we can also define
the domain and range of a stream:

dom ∈Mω → {[0, . . . , n] | n ∈ N} ∪ N
rng ∈Mω → ℘(M)

Timed Streams An infinite timed stream represents differs from an ordinary stream
in a way that it represents an infinite history of communications over a channel or an
infinite history of activities that are carried out sequentially in a discrete time scale[Broy,
2010a]. The discrete time frame represents time as an infinite chain of time intervals of
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finite equal duration. In each time interval a finite number of messages is communicated
or a finite number of actions is executed.
With

(M∗)∞

we denote the set of timed streams. Elements of (M∗)∞ are infinite sequences of finite
sequences.

Operators on Streams In this work, we will use the following simple operators on
streams. For further details on these operators, the reader is referred to [Broy, 2010a,b;
Broy and Stølen, 2001].

〈〉 Empty sequence or empty stream.
〈m〉 One-element stream containing m as its only element.
x.t t-th element of the stream x.
#x Length of the stream x.
x∧z Concatenation of the stream x with the stream z.
x ↓t Prefix of length t of the stream x.

C[c/c′] The renaming of the channel c in the component C to c′
s |ij Returns the sub stream of s starting from i to j.

Prefix Ordering on Streams We introduce a prefix ordering v, which is a partial
order on steams. Given streams x, y ∈Mω, the order is defined as

x v y ⇔ ∃z ∈Mω : x∧z = y

where x∧z denotes the concatenation of sequences, if x is infinite, x∧z = x.

2.2.2. Syntactic and Semantic System Interfaces

In Focus, systems are specified by logical expressions relating the input and output
histories. In order to compose systems (or components), a composition operator is
provided (the so-called parallel composition with feedback). The composition operator
allows to model concurrent execution and interaction of systems within a network.
To capture the systematic and stepwise development of systems, e.g., from high-level
requirements over system requirements to a concrete system implementation, the notion
of refinement is introduced. The compositionality of the refinement in Focus guarantees
that refinement steps for the system of a composed system realize a refinement step for
the composed system, and thus, modularity is guaranteed.

Types A type is a set of data elements. These data elements are then used as messages
or as values of state attributes. Let S be a set of types be given. Then,

M =
⋃
s∈S

s
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F

O

I
...

...

(a) System F with input chan-
nels I and output channels
O.

F1

O1

I1
...

...

F2

O2

I2
...

...

F1⨂F2

(b) Composition of F1 with F2.

Figure 2.4.: Graphical representation of a system and of composition of two systems.

is the set of all data messages.

Typed Channels A typed channel is an identifier for a sequential directed commu-
nication link for messages of that type. Let C be the set of typed channel names. We
assume that a type assignment for the channels is given as follows

type : C → S

Channel Valuations Given a set C of typed channels, a channel valuation is an
element of the set C, with

C = {x : C → (M∗)∞ : ∀c ∈ C : x.c ∈ (type(c)∗)∞)}

A channel valuation x ∈ C associates a stream of elements of type type(c) with each
channel c ∈ C.

Syntactic Interface Let I be a set of typed input channels and O the set of typed
output channels. The pair (I,O) characterizes the syntactic interface of a system.
Figure 2.4a shows a graphical representation of a system and its interface. The syntactic
interface is denoted by

(I I O)

Interface Behavior Let I be a set of typed input channels and O the set of typed
output channels. We call the function F interface behavior. F is defined as follows

F : I → ℘(O)
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Given the input history x ∈ I, F.x denotes the set of all output histories that a system
with behavior F may exhibit on input x. If F.x is a one-element set for every input
history x ∈ I, we call F deterministic.

Causality in Interface Behaviors Let an interface behavior F : I → ℘(O) be given.
F is called weakly causal, if for all t ∈ N, x ∈ I, z ∈ I, the following holds

x ↓t= y ↓t ⇒ (F.x) ↓t= (F.z) ↓t

Hence, F is weakly causal if the output in the t-th position in the stream does not
depend on the input that is received after t. This ensures that there is a proper flow for
the system modeled by F . F is called strongly causal, if for all t ∈ N, x ∈ I, z ∈ I, the
following holds

x ↓t= y ↓t ⇒ (F.x) ↓t+1= (F.z) ↓t+1

If F is strongly causal, then, the output in the t-th position does not depend on input
that is received after t− 1.

Realizability An interface behavior F is called realizable, if there exists a strongly
causal total function f : I → O such that

∀x ∈ I : f.x ∈ F.x

A strongly causal function f : I → O provides a deterministic strategy to calculate for
every input history a particular output history that is correct with respect to F .

Full Realizability An interface behavior F is called fully realizable, if it is realizable
and if, for all input histories x ∈ I

F.x = {f.x : f ∈ [F ]}

holds. Full realizability guarantees that, for all output histories, there is a strategy (a
deterministic implementation) that computes this output history.

Composition Given two interface behaviors

F1 : I1 → ℘(O1) and F2 : I2 → ℘(O2)

with disjoint sets of output channels, i.e., O1 ∩ O2 = ∅. Then, we define the parallel
composition with feedback by the interface behavior (see Figure 2.4b for a graphical
representation of the composition)

F1 ⊗ F2 : I → ℘(O)
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where I = (I1 ∪ I2) \ (O1 ∪O2) and O = (O1 ∪O2) \ (I1 ∪ I2). The resulting function is
specified by the following equation (here y ∈ C where the set of channels C is given by
C = I1 ∪ I2 ∪O1 ∪O2):

(F1 ⊗ F2).x = {y|O : y|I = x|I ∧ y|O1 ∈ F1(y|I1) ∧ y|O2 ∈ F2(y|I2)}

Refinement (Property Refinement) Given two interface behaviors

F1 : I → ℘(O) and F2 : I → ℘(O)

F1 is refined by F2, written F1  F2, if

∀x ∈ I : F2.x ⊆ F1.x

Refinement allows us to replace an interface behavior with one having additional
properties. This way a behavior is replaced by a more restricted one. Obviously, property
refinement is a partial order and thus reflexive, asymmetric, and transitive. One can
see a refinement step as adding requirements as it is done step by step in requirements
engineering.

Compositionality of (Property) Refinement The (property) refinement is compo-
sitional in Focus. Given two pairs of interface behaviors

F1 : I1 → ℘(O1) and F2 : I2 → ℘(O2)

and
F ′1 : I1 → ℘(O1) and F ′2 : I2 → ℘(O2)

then, the compositionality of refinement is expressed by the following rule:

F1  F ′1 F2  F ′2
F1 ⊗ F2  F ′1 ⊗ F ′2

2.2.3. Probabilistic System Behavior

In this section, we briefly introduce basic concepts of probability theory. We largely
follow the presentation of Neubeck [2012] and Junker [2016].

σ-field Given a set Ω, a set F ⊆ ℘(Ω) is called a σ-field, if F is closed under complements
and countable unions and contains ∅. Due to its closure properties, a σ-field also always
contains Ω. The pair (Ω,F) is called a measurable space and the elements of F are called
measurable sets.

If G is a subset of ℘(Ω), then with σ(G) we denote the σ-field generated by G, that
is, the smallest σ-field that subsumes G, which is guaranteed to exist. As elaborated
by Neubeck [2012], one can construct σ-fields Sn over finite streams of length n and a
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σ-field S over infinite streams. In particular, S is the σ-field generated by the set of basic
cylinders, i.e., a set of the form C(x) = {y ∈ Σ∞ : x v y}, for x ∈ Σ∗.

Probability Space A probability space is a triple (Ω,F , µ) where (Ω,F) is a measur-
able space, µ is a function F → R such that

• ∀A ∈ F : µ(A) ≥ 0

• µ(
⋃∞

i=1Ai) = Σ∞i=1µ(Ai) for pairwise disjoint sets (Ak)k

• µ(Ω) = 1

Probability Space for Infinite Streams As shown by Neubeck [2012], a probability
space for infinite streams (Σ∞,S, µ) can be derived from consistent probability spaces
(Σn,Sn, µn) for finite streams. Then, µ is the probability measure on infinite streams
that is consistent with all probability measures µn for fixed prefixes.
In the following, we will denote the set of possible probability measures for a set of

streams Σ∞ with Pr(Σ∞). We will furthermore use the notation Pr[q(µ)] as short form
for µ({ω}q(ω)) for a predicate on streams q.

Probabilistic Interface Behavior Let I be a set of typed input channels and O the
set of typed output channels. We call the function F probabilistic interface behavior. F
is defined as follows

F : I → ℘(Pr(O))

F maps input histories to sets of probability measures over output histories. For a
more detailed discussion on the theoretical basis of the probabilistic extension of Focus,
the reader is referred to the work of Neubeck [2012] and Junker [2016].

Note. Neubeck [2012] further provides notions of causality, composition, compositionality,
etc. that extend the previously introduced notions to the probabilistic case.

2.2.4. System, Components, and Functions

Figure 2.5 gives an overview of our understanding of a system, its components, and
its functions: A system interacts over a set of typed input/output channels with its
environment. It is composed of a set of components (C1, C2, and C3 in the figure), which
communicate over a set of typed input output channels with each other. Functions provide
a different view on the system; The overall functionality of a system is decomposed
according to features that are provided to a user. The purpose of a system is to offer a set
of user functions that serve a specific purpose [Broy et al., 2007]. Thus, a system provides
a set of functions (F1 and F2 in the figure) that communicate via typed input/output
channels with its environment.
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C1

C2 C3

System

F2

F1

Figure 2.5.: System. Component, and Functions.

System More formally, a system has a unique identifier s and is specified by a syntactic
interface (I I O) and probabilistic interface behavior

S : I → ℘(Pr(O))

Behavior Function For reasons of simplicity, we introduce the behavior function B,
that returns for a given identifier the respective probabilistic interface behavior. Thus,
given a function, component, or system with identifier id and syntactic interface (I I O)
and probabilistic interface behavior F : I → ℘(Pr(O)), the following holds:

B(id) = F

Component A component has a unique identifier ci and is specified by a syntactic
interface (I I O) and probabilistic interface behavior

C : I → ℘(Pr(O))

Given a system with identifier s and syntactic interface (Is I Os) and a set of
components with identifiers c1, . . . , cn and syntactic interface (Ic1 I Oc1), . . . , (Icn I Ocn),
then the composition of the behaviors of all ci is equal to the behavior of the system.

B(s) =
⊗

i∈{1,...,n}
B(ci)

Function A function has a unique identifier fi and is specified by a syntactic interface
(I I O) and probabilistic interface behavior

F : I → ℘(Pr(O))

A function describes the structure and the behavior of the system from a black-box
perspective (i.e. at the interface of the system). Thus, given a system with identifier s
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and syntactic interface (Is I Os), then I ⊆ Is and O ⊆ Os. Furthermore, given a set of
functions with identifiers f1, . . . , fn and syntactic interface (If1 I Of1), . . . , (Ifn I Ofn),
then the composition of the behaviors of all fi is equal to the behavior of the system.

B(s) =
⊗

i∈{1,...,n}
B(fi)

Requirements In terms of the system modeling theory, a requirement describes desired
observations of behavior between a system and its environment. Therefore, a requirement
for a probabilistic system is expressed by a predicate over histories of input streams and
probability distributions over output histories:

R : I ×Pr(O)→ B

A system, component, or function with identifier id fulfills a requirement R with the
same syntactic interface, iff

R B

In the following, we discuss the scope of a requirement; It may restrict the behavior of
an individual system, but also restrict the behavior of a set of systems. The former case
is already well understood by e.g. Broy [Broy, 2010a,b; Broy and Stølen, 2001] in the
timed and untimed, deterministic and nondeterministic case and by Neubeck [2012] in
the probabilistic case. For the latter, i.e., requirements that restrict the behavior of a set
of systems, we discuss possible application scenarios for the probabilistic case and show
how one can construct a probability space over a (finite) set of systems by a product
space construction (see e.g. [Bauer, 2001; Gray et al., 2001; Pollard, 2002]).

Requirements over Sets of Systems

Usually, the scope of a requirement is a system, i.e., a requirement describes a desired
property of a system. For example, consider the following (probabilistic) requirement:

“The probability that the airbag of the system fails to work in case of a crash shall be less
than 0.01%.”

Given such a requirement, we can for example check whether a system at hand fulfills that
requirement. This requirement may describe a deterministic behavior, it may describe a
nondeterministic behavior, it may describe a (deterministic) probabilistic behavior, or it
may describe a (nondeterministic) probabilistic behavior. All these cases are already well
understood by, e.g., Broy [Broy, 2010a,b; Broy and Stølen, 2001] (in the deterministic
and nondeterministic case) and Neubeck [2012] (in the probabilistic case).
However, there are some cases where we do not want to restrict the behavior of a

single system, but the behavior of a set of systems, e.g., the set of all vehicles of a car
manufacturer. For example, we may want to formulate a (probabilistic) requirement like

“The probability that no airbag of a vehicle out of the set of all our vehicles fails to
work in case of a crash shall be more than 0.99%.”
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1E-5

1E-5

1E-5

1E-5
1E-5

1E-5

(a) A set of systems with probabilistic be-
havior.

(b) A set of systems with one broken system
(indicated as red circle).

Figure 2.6.: Two different interpretations of probabilistic requirements over sets of sys-
tems.

We can understand this requirement in two different ways (see Figure 2.6):

1. Consider a probabilistic description of a the airbag with a probability to fail of
0.001% and 10 identical (and independent) systems (see Figure 2.6a). Then, we
can compute the probability that no airbag fails as the product of the individual
probabilities, as the individual systems are independent of each other.

Pr(∀s ∈ S : ¬Fail(s)) = Πs∈SPr(¬Fail(s))
= Πs∈S(1−Pr(Fail(s)))
= (1− 0.00001)10

= 0.9999000045 (> 0.99%)

Thus, in our example, the requirement holds. However, a probabilistic description
of a system is just a means to model uncertainty about the behavior of the system
(similar to nondeterministic or fuzzy descriptions [Koutsoumpas, 2015]). Thus, if
we pick a real system, the airbag either works or does not work (if we only consider
deterministic systems). We discuss this case in the following.

2. Following this argument, if we consider only deterministic systems, the airbag
of a given system either works or does not work. It may be broken because of
some failures in the production process. In this case, we can also understand the
requirement as
“The probability that the airbag of one randomly chosen vehicle out of the set of all

our vehicles fails to work in case of a crash shall be less than 0.01%.”
In this case, we can leverage the concept of a priori probabilities (see, e.g., [Mood
et al., 1974]), i.e., the probability that is derived purely by deductive reasoning.
One way of deriving a priori probabilities is the principle of indifference, i.e., if
there are N mutually exclusive and exhaustive events and if they are equally likely,
then the probability of a given event occurring is 1

N .
Let us consider an example: Given a set of systems of size 20000. We know that
because of the production process, there is one system out of 20000, with a broken
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airbag. If we know that the airbag of one of our 20000 systems is broken, we
can derive the a priori probability as follows (as we have mutually exclusive and
exhaustive events):

Pr(∃s ∈ S : Fail(s)) = 1
|S|

= 1
20000 = 0.00005 (< 0.01%)

Thus, again, the requirement holds. However, in this case, the probability only
depends on the number of broken systems in relation to the total number of systems.

Practical Relevance of Requirements over Sets of Systems Both cases are
practically relevant. As already discussed in our example, for a car manufacturer,
it is highly important to calculate the defect probability of the set of their systems
by probabilistic models (case 1). This may be due to legal reasons. This case is also
relevant for safety and availability requirements. For example, there may be a probabilistic
description of a system which includes the description of random failures (see e.g. [Börcsök,
2011]). Then, we may want to formulate requirements that describe the absence of those
failures with a certain probability for one system. If there are multiple systems shipped,
it is also of importance to formulate requirements over this set of systems.

The second case is also practically important. For example, a production process may
introduce systematic failures (see e.g. [Börcsök, 2011]) for certain subsystems. Then, if
multiple of those subsystems are integrated, we may be interested in the probability that
a given system contains a broken subsystem.

In the following, we will focus on case 1: requirements that describe a property over a
set of systems with probabilistic behavior. In particular, we provide a formal notion of a
requirement over such a set of systems.

Requirements over Sets of Systems with Probabilistic Behavior

In order to introduce probabilistic behavior for a single system, we need to construct a
probability space (Ω,B, µ). However, as we have infinite streams as our sample space Ω
(e.g. for a given set of typed channels O, we have Ω = O), we face the challenge to create
a measure on subsets of Ω, which is uncountable. The work of Neubeck [2012] shows
how to construct a measurable space and a probability measure µi for Ω5. They extend
the concept of a product space (Σ∞, σ(℘(Σ)∞)) as introduced by Gray et al. [2001] by
cylinders instead of rectangles, i.e., sets of the form {ρ ∈ (S)∞ | ϕ v ρ}. Then, they
construct a unique probability measure µi on the product space by the extension theorem
of Carathéodory. This enables to formulate requirements as predicates over histories of
input streams and probability distributions over output histories: R ⊆ I ×Pr(O).
If the scope of a requirement is a set of systems, we can leverage the construction

by Neubeck. However, in contrast to Neubeck’s construction, we want to formulate
requirements over a set of systems S (e.g., the set of all vehicles of a specific company).

5Note that µi depends on the input i.
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(c) Probabilistic behavior of S3.

Figure 2.7.: Three example systems S1, S2 and S3. The state F indicates failure. The
systems are independent of the input for reasons of simplicity. Thus, the
probability measure is also independent of the input.

In order to formulate those requirements, we need to construct a probability space over
sets of systems. We construct the measurable product space as follows:
Given an arbitrary set S of (probabilistic) systems, each over typed input channels I

and typed output channels O, with their associated σ-fields As = (Ωs,As) and probability
measure Prs,i for s ∈ S and Ω = O (as introduced by Neubeck [2012]). Note that the
probability measure Prs,i depends on the input i ∈ I for each system s ∈ S. Then, we
can construct the product space Πs∈SAs as follows:

(Πs∈SΩs,
{
{ω ∈ Πs∈SΩs | ∀j ∈ J, ωj ∈Mj} | J ⊆ S finite, ∀j ∈ J : Mj ∈ Aj

}︸ ︷︷ ︸
The set of all finite cylinders over Πs∈SΩs

)

Note (Independence Assumption). Note that we base this construction on one basic as-
sumption: The individual systems in S are assumed to be independent of each other. This
assumption allows us to construct the product space. If the systems are not independent
of each other, we have to construct one system which is composed of multiple subsystems.
This may for example be needed if we consider systems whose failure probability depends
on the number of created systems or if the systems interact with each other.

Then, according to Bauer [2001] and Pollard [2002], we know that there exists a unique
probability measure PrΠ,i over Πs∈SAs with the property that for finite J ⊆ S and
Mj ∈ Aj ,

PrΠ,i(∀j ∈ J : Xj ∈Mj) = Πj∈JPrj,i(Mj)

Furthermore, given that the set of systems S is finite, we can directly calculate this
probability. Thus, for reasons of simplicity, we require the set of systems to be finite
for the remainder of this thesis. Now, given a finite set of systems S, and a a family of
properties Ps, we can formulate requirements like

• “The probability that all systems s out of S fulfills property Ps shall be greater than
0.999”, which is
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PrΠ,i(∀s ∈ S : Ps) = Πs∈SPrs,i(Ps)

Thus, the probability that Ps is fulfilled by every system s ∈ S is the product
of the individual probabilities. For example, let us consider the three systems in
Figure 2.7. In these systems, the state F indicates failure and the state C indicates
correct behavior. Thus, in system S1 the probability that the system works correct
is 0.99, in system S2 it is 1, and in system S3 it is 0.9. Now we can formulate the
requirement

“The probability that all systems s out of {S1, S2, S3} work correct shall be greater
than 0.9”.

Then, we can calculate this probability by

PrΠ(∀s ∈ S : Ps) = Πs∈SPrs(Ps)
= PrS1(PS1) ·PrS2(PS2) ·PrS3(PS3)
= 0.99 · 1 · 0.9
= 0.891

Thus, the requirement is not fulfilled by the set of systems S = {S1, S2, S3}.

• “The probability that one system s out of S does not fulfill property Ps shall be less
than 0.0001”, which is

PrΠ,i(∃s ∈ S : ¬Ps) = 1−PrΠ,i(∀s ∈ S : Ps)
= 1−Πs∈SPrs,i(Ps)
= 1−Πs∈S (1−Prs,i(¬Ps))

Again, consider, for example, the three systems in Figure 2.7. In these systems,
the state F indicates failure and the state C indicates correct behavior. Thus, in
system S1 the probability that the system works incorrect is 0.01, in system S2 it
is 0, and in system S3 it is 0.1. Now we can formulate the requirement

“The probability that one system s out of {S1, S2, S3} works incorrect shall be less
than 0.01”.
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Then, we can calculate this probability by

PrΠ(∃s ∈ S : ¬Ps) = 1−PrΠ(∀s ∈ S : Ps)
= 1−Πs∈SPrs(Ps)
= 1−Πs∈S(1−Prs(¬Ps))
= 1− ((1−PrS1(¬PS1)) · (1−PrS2(¬PS2)) · (1−PrS3(¬PS3))
= 1− ((1− 0.01) · (1− 0) · (1− 0.1))
= 1− 0.891 = 0.109

Thus, the requirement is not fulfilled by the set of systems S = {S1, S2, S3}.

2.3. Requirements Categorization based on a Formal
System Model

In this dissertation, we assess whether a categorization based on a system model is
adequate1 for requirements found in practice and whether it effectively supports subse-
quent development activities. To this end, we introduce in this section an approach for
categorizing requirements based on the system model provided by the Focus theory [Broy,
2015, 2016]. We follow largely the presentation of Broy [2016].

Broy introduces an approach for categorizing system and software requirements with
the goal to provide a sufficiently precise notion and models of adequate systems. He
argues that current approaches that categorize requirements into “non-functional” and
“functional” are simplistic and not very helpful for classification. Furthermore, he argues
that the challenge to characterize classes of functional and non-functional requirements
depends on characterizations of the different kinds of observations made about systems
captured and formalized in terms of adequate system models. To make these categories
precise, he suggests to use structured views onto systems. In particular, he differentiates
a number of viewpoints and levels of abstraction. One level addresses a functional
view that is adequate to model functional requirements. Other level address more
implementation-oriented, technical views onto systems, which then might help to address
implementation-specific properties.

In essence, he distinguishes between behavioral properties and representational properties.
Behavioral properties subsume traditional functional requirements, such as “the user
must be able to remove articles from the shopping basket” as well QRs that describe
behavior such as “the system must react on every input within 10ms”. Representational
properties include QRs that determine how a system shall be syntactically or technically
represented, such as “the software must be implemented in the programming language
Java” [Broy, 2015, 2016]. In the following sections, we introduce his categorization.

2.3.1. Categorization based on a System Model
For categorizing requirements, Broy follows a system-structuring and modeling-oriented
approach. In particular, he uses the two following modeling frameworks:
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Figure 2.8.: Overview of Behavioral Categories (Adapted from Broy [2016]).

• A system notion and a system modeling theory, supporting several fundamental
system views such as the interface view, the architecture view, and the state view.
For these views, he distinguishes between (i) a logical view in terms of sets of
observations and sets of instances of behavior and (ii) a probabilistic view in terms
of probabilities of observations and instances of behaviors.

• A comprehensive system architecture, comprising a context view, a functional view,
an architectural sub-system view, and a technical view including aspects of software,
hardware, and mechanics as well as physical realizations.

2.3.2. Behavioral Properties: System Behavior

Behavioral views address the behavior over the interface of a system as well as the internal
behavior6. There are two principal means to describe the internal behavior of systems:
state machines and architectures, both describing the system’s internal structure, state
space, state transitions, the structuring into its sub-systems, their connection, relationship,
and interaction. The state view is described by the states, given by the state space, which
the system can take, the state transitions, and the probability that certain state transitions
are taken. Figure 2.8 shows the proposed categorization for behavioral properties.

Functional Properties: Logical and Probabilistic Interface Behavior

In the functional view, the functionality of the system is specified by means of the
interface behavior of the system. It is described by the interface behavior of the system
and may include both logical and probabilistic views. As a result, we understand how
the system cooperates with its environment exclusively considering issues of interactions.
In both these views we get the information, which interactions are possible in principle
and what their probabilities are.

6Internal behavior in terms of architecture and state transitions which is hidden from the interface view
by information hiding.
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Behavioral Glass Box View: Logical and Probabilistic Behavior

The glass-box view addresses the internal structure and properties of systems. The
glass-box view consists of two complementary views: the architectural view and the state
view. They are complementary in the sense, that they describe a system’s architecture
in terms of its set of sub-systems with their behavior and interaction and the system’s
state space and state transitions.

• Architectural View: Structure, Logical and Probabilistic Behavior: In
the architectural view, a system is decomposed into a hierarchy of sub-systems
forming its components [Broy, 2010b]. The architecture describes how the compo-
nents are connected and their behavior is described by the interface behaviors of the
components in terms of their interactions. By the description of the behaviors of its
components and the structure of the architecture the behavior of the architecture
is specified from which the interface behavior of the system can be deduced. In
the architectural view, we get a view onto the behavior of a system in terms of its
sub-systems.

• State View: Logical and Probabilistic State Transitions: In a state view a
system is described by a state machine [Vogelsang, 2015; Vogelsang et al., 2015].
The state space of the system is described and the state transition relation is
specified including inputs and outputs. This yields a (probabilistic) Mealy machine
extended to possibly infinite state space. The machine represents the logical state
view.

2.3.3. Non-behavioral Properties: System Representation

Besides behavioral properties, there are non-behavioral properties of systems, including
properties that refer to the syntactic representation of systems. For example, quality
attributes such as the readability of code. A rich class of such properties is found in
the technical views onto systems; for instance, this covers properties such as material or
geometry.

In the behavioral categories, we describe by which modeling concept a system part is
represented. For software, we may require the representation in a specific programming
language or a specific coding standard, as for example the requirement “the software
must be implemented in the programming language Java”. The technical view refers to a
large extent to the question how a system is represented. Therefore, certain technical
standards or specific devices might be suggested or even strictly required. The system
model leads to a clear separation and categorization of properties into the following two
categories of system properties:

Behavioral properties including probabilistic and logical behavior addressing interface,
architectural, state transition, and technical views onto systems.
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Representation related properties that describe the way the system is syntactically
or technically represented, described, structured, implemented, and executed (such
as which programming languages are used etc.).

2.3.4. Summary of Broy’s Categorization
In summary, Broy provides a systematic requirements categorization according to three
fundamental views:

Black-box Interface View In this view, the functionality of the system is specified by
means of the interface and interface behavior in terms of the interaction over the
system boundaries.

(Logical) Sub-system Structuring View This view contains logical and probabilis-
tic properties at the level of architecture—including state views of state spaces and
state transitions. This view is captured by architecture and architectural behavior
or by state and state-transition behavior.

Representation View This view includes technical, physical, syntactical representa-
tion, structuring, and implementation details.

For behavior, Broy further distinguishes between logical behavior in terms of sets of
patterns of interaction and probabilistic behavior in terms of the probabilities for the
patterns of interaction.
To demonstrate the idea, Broy further provides an estimation about the intensity

of the relationship between a set of quality attributes and the proposed requirements
categorization. He uses a set of quality attributes from Lochmann and Wagner [2012].
Figure 2.9 depicts this relationship; The rows represent the quality attributes and the
columns the different views, separated in syntactic, logical, and probabilistic, where
applicable. The intensity of the relationship is indicated by the color of the cell: from
black (very strong) to white (none).

The table indicates that certain system properties are not referring to behavior directly
but to aspects of representation, e.g., readability. Furthermore, there is a rich class of
requirements that are mixtures of properties from several categories. According to his
estimation, only a restricted set of the QRs is related to non-behavioral issues when using
the proposed categorization.
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“We are social creatures to the inmost center of our being. The
notion that one can begin anything at all from scratch, free from
the past, or unindebted to others, could not conceivably be more
wrong.”

— Karl Popper

3 C
ha

pt
er

Related Work

To set the scope of this dissertation, we discuss work related to requirements cat-
egorizations, including a historical sequel. Furthermore, to get an understanding
of how QRs are handled in practice, we further discuss empirical studies on QRs

that analyze how practitioners deal with QRs. Related work concerning the specific
topics of the chapters will be discussed in detail in each of the respective chapters.

3.1. Requirement Categorizations
This dissertation is about requirements categorizations. Thus, in this section, we first
provide a historical sequel to get an understanding on the reasons why there is a traditional
distinction between functional and quality requirements. Then, to get an overview on
requirements categorizations, we describe relevant categorizations and finally provide a
critical discussion on categorizations.

3.1.1. Historical Note on Requirements Categorizations

In the early days of computer science, research was mostly concerned with handling very
sparse computing and memory resources. The focus was rather on efficiently building
computing machines than on designing programs. At that time, Zuse built the Z1
(in 1938), the first freely programmable computer which used Boolean logic and binary
floating point numbers [Rojas, 1997]. Slowly, but steadily, the focus shifted from hardware
design to also recognizing programming as a great challenge. In the early-1960s, first
assembly languages were invented and subsequently, in the mid-1960, first universal
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Figure 3.1.: Historical sequel of quality models and requirement categorizations considered
in this work. Quality models are marked with (Q).

programming languages, as for example PL/1, ALGOL-W, and Simula 67. Still, the
challenge was to write programs that produced the desired results.

As the computing and memory resources increased, more complex software projects were
possible at the cost of greater programming effort, higher amounts of source code, and an
increasing number of project failures. In these days, Floyd [1967], Hoare [1969], McCarthy
[1961], and Dijkstra [1959], just to name a few, worked on the semantics of programs
and verification, i.e., functional correctness. In the course of the software crisis in the
mid-1960, research started to acknowledge that programming alone is not enough and
that an engineering approach is needed. To put it in the words of Dijkstra:

“The major cause of the software crisis is that the machines have become
several orders of magnitude more powerful! To put it quite bluntly: as long as
there were no machines, programming was no problem at all; when we had a
few weak computers, programming became a mild problem, and now we have
gigantic computers, programming has become an equally gigantic problem.”

— Edsger W. Dijkstra – The Humble Programmer [Dijkstra, 1972]

Consequently, the term software engineering [Bauer et al., 1968] was coined in 1968
in Garmisch-Patenkirchen. The name software engineering was deliberately chosen as
being provocative, in implying the need for software manufacture to be based on the
types of theoretical foundations and practical disciplines, that are traditional in the
established branches of engineering [Bauer et al., 1968]. In this context, Floyd, Hoare,
and Dijkstra introduced structured programming [Dahl et al., 1972], which broadened
the goal of programming from the mere coding of an algorithm to improving the clarity,
quality, and development time of programs. For example, Dijkstra [1968] published in
1968 his famous article “Go to Statement Considered Harmful” with the main argument
that go to statements have a negative impact on program comprehension. Some years
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later, Parnas [1972] published his work “On the criteria to be used in decomposing systems
into modules” in 1972 with the goal to improve the flexibility and comprehensibility of a
system. Today, we would subsume both of these works under the quality maintainability.
The tremendous rise of computing resources led to more and more aspects that had to
be considered for building high quality systems. Finally, Boehm presented in 1976 the
first quality model that tries to capture these aspects.

In summary, when computing resources were sparse, the challenge was to get the func-
tionality of a system right (i.e., implementing functional requirements). The focus shifted
to other aspects of a system (i.e., implementing quality or non-functional requirements)
with the introduction of structured programming and abstraction mechanisms. We argue
that the traditional distinction between functional and quality requirements has its roots
in this development.

3.1.2. Overview of Requirement Categorizations

Figure 3.1 shows a historical sequel of the quality models and requirements categoriza-
tions considered in this work. There are three fundamentally different approaches for
categorizing requirements:

• Categorization based on a Quality Model: These categorizations rely on the
close interconnection between quality and requirements. According to the ISO/IEC
9000-2000 [2000], quality is the “degree to which a set of inherent characteristics
fulfills requirements” and a requirement is a “need or expectation that is stated,
generally implied or obligatory”.

There is much work on quality models in literature. One of the earliest quality
models was provided by Boehm in 1976 [Boehm, 1976]. Several other quality models
were created based on or in parallel with Boehm’s quality model, including McCall’s
quality model [McCall et al., 1977], the ISO/IEC 9126-2001 [2001], Dromey’s
Quality Model [Dromey, 1995], and the ISO/IEC 25010-2011 [2011]. All these
software/system quality models describe quality characteristics or attributes that
categorize aspects of the overall product quality. Then, requirements are categorized
according to the quality characteristics of the quality model.

• Categorization based on Reasoning: In contrast to categorizations based on a
quality model, categorizations based on reasoning are intended to directly categorize
requirements into different classes, like for example into functional requirements
and non-functional requirements.

The first requirements categorization based on reasoning was provided by Som-
merville in 1982 [Sommerville and Sawyer, 1997]. After this, several other re-
quirements categorizations were proposed, including the FURPS and FURPS+
categorization [Grady, 1992], the categorization by Robertson & Robertson [Robert-
son and Robertson, 2012], and the two categorizations by Glinz [Glinz, 2005,
2007].
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• Categorization based on a System Model: These categorizations classify
requirements based on a structured system reference model. So far, the first
categorization based on a system model was introduced by Broy in 2016 [Broy,
2016].

In the following, we will provide a short overview of the quality models and the
categorizations. This description is based on the work of Mager [2015].

Boehm’s Quality Model Boehm’s quality model [Boehm, 1976] divides the overall
product quality into three characteristics: portability, usability (as is utility), and
maintainability. These high-level characteristics answer the main questions of the
person who buys software:

• Can the product be used in a different environment? (Portability)
• How well can the software product be used as-is? (Usability)
• How well can the software product be understood, changed and retested?

(Maintainability) [Al-Qutaish, 2010]
Boehm defines six mid-level characteristics, that represent the expected qualities of
the software system: reliability, efficiency, human engineering, testability, under-
standability and modifiability. These mid-level characteristics further consist of
primitive characteristics that enable the creation of quality metrics, for measuring
the fulfillment of the qualities.

McCall’s Quality Model McCall’s quality model [McCall et al., 1977], was developed
for the US military to improve the understanding between users and developers.
It consists of three different perspectives for defining and identifying the needed
qualities:

• Product revision: Quality characteristics related to maintaining the product
in its current environment.

• Product transition: Quality characteristics related to porting the product
to a new environment.

• Product operations: Quality characteristics related to using the product.
Each of the perspectives contains a set of factors, which are composed of a set of
criteria. For each criterion, McCall proposes one or more metrics for measuring
the fulfillment. Metrics can be used to measure not only quality criteria, but also
quality factors. For example, mean time to failure (MTTF) can be used to measure
reliability. McCall’s model uses a weighting system to calculate the degree to which
a quality factor is present. For this, each quality criterion is assigned a relative
importance regarding to the quality factor.

Sommerville’s Classification Sommerville categorizes requirements into “functional”,
“non-functional”, and “domain”. “Non-functional” requirements are further struc-
tured in three general groups: process, product and external considerations. These
considerations can be mapped to three different requirement types:
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• Organizational requirements: Developed from internal policies and proce-
dures in the organization.

• Product requirements: Define the product behavior like performance,
reliability or portability.

• External requirements: Comprise requirements from external factors like
interoperability, legislative or ethical requirements.

Each of these considerations contain multiple types and sub-types. In total, it
contains 14 NFR types. He requires that that all requirements should be objectively
testable and some example objective measures for speed, size, etc. are given.
Domain requirements can be either functional or non-functional, as they are new
functional requirements, constraint existing requirements or define how specific
calculations are done.

ISO/IEC 9126-2001 [2001] The ISO/IEC 9126-2001 [2001] is a standard for quality
assurance. The standard defines a model with a multilevel hierarchy of different
quality models that contain characteristics and possibly sub-characteristics. Each
sub-characteristic is decomposed into attributes that have to be defined by the
requirements engineer and must be measurable to verify the quality of the software
product.
The standard distinguishes between internal quality, external quality, quality in use
and process quality.

• Internal quality is the quality of the system that can be measured with white
box tests. Internal quality attributes can be measured during any stage of
development using source code, specifications and other available documents.

• External quality is the quality of the system that can be measured with black
box tests. External quality attributes can be measured by testing, operating
and observing the executable software or system.

• Quality in use is the quality of the system for the user. Quality in use can be
measured by the user’s view in specific user-task scenarios.

• Process quality is the quality of the product development process.

As shown in Figure 3.2, the quality model for internal and external quality is
further refined into the sub-categories functionality, reliability, usability, efficiency,
maintainability, portability. Table 3.1 gives a short description of the high-level
quality characteristics.

FURPS and FURPS+ FURPS [Grady, 1992] is a classification model for requirements
and the acronym represents the following factors:

• Functionality: Functions it performs, their generality and security.
• Usability: Aesthetics, consistency, documentation.
• Reliability: Frequency and severity of failure, accuracy of output.
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Figure 3.2.: The quality model as defined in the ISO/IEC 9126-2001 [2001]

Table 3.1.: Descriptions of the high-level quality characteristics according to the ISO/IEC
9126-2001 [2001]

Quality Characteristic Description
Functionality The capability of the software product to provide functions

which meet stated and implied needs when the software is
used under specified conditions.

Reliability The capability of the software product to maintain a
specified level of performance when used under specified
conditions.

Usability The capability of the software product to be understood,
learned, used and attractive to the user, when used under
specified conditions.

Efficiency The capability of the software product to provide appro-
priate performance, relative to the amount of resources
used, under stated conditions.

Maintainability The capability of the software product to be modified.
Modifications may include corrections, improvements or
adaptation of the software to changes in environment, and
in requirements and functional specifications.

Portability The capability of the software product to be transferred
from one environment to another.
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• Performance: Response time, resource consumption.
• Supportability: Can it be extended, adapted, corrected?

The extension of FURPS into FURPS+ includes other quality concerns, which
are not mentioned in the acronym like:

• Design requirements: Restrictions on the system design process e.g. which
technologies to use, time taken to develop, or overall budget.

• Implementation requirements: Required standards, implementation language,
policies for database integrity, resource limits, or operation environments.

• Interface requirements: External systems with which a system must interact,
constraints on formats, timings, or other factors used by such an interaction.

• Physical requirements: Material, shape, size, or weight of the hardware.

Dromey’s Quality Model Dromey [1995] proposes a product-based quality model
in which each software product has specific properties and every property has
corresponding quality attributes. The classification focuses on the relation between
quality attributes and sub-attributes and connects product properties with quality
attributes.

Robertson & Robertson Robertson and Robertson propose a requirements specifica-
tion template called Volere [Robertson and Robertson, 1995] in their book [Robert-
son and Robertson, 2012]. It contains a classification scheme and checklist for
requirements—for functional, non-functional and also other requirements, e.g.,
project drivers, project constraints and project issues.
The authors structure requirements into the five requirement types: project drivers,
project constraints, functional requirements, project issues, and non-functional
requirements. For the classification of NFRs, 8 major groups of NFR types are
used. These groups are not fixed and can be changed based on the needs of the
requirements engineers or the software project.
The authors pay special attention on the measurability of requirements and propose
to use a fit criterion, i.e., how can the requirement be fulfilled, even if the requirement
is fuzzy and imprecise?

Faceted Classification (Glinz) Glinz proposes in 2005 a classification of requirements
according to four facets: kind, representation, satisfaction and role [Glinz, 2005].

Kind The kind describes the concerned matter of a requirement, e.g. function,
data, performance, specific quality or constraint.

Representation The representation describes how a requirement is represented
and goes hand in hand with the way how it can be verified. He lists the
following forms of representation together with types of verification (list
adapted from Glinz [2005]):

49



3. Related Work

Form Definition Type of verification
Operational Specification of

operations or
data

Review, test, or formal verification.

Quantitative Specification of
measurable
properties

Measurement (at least on an ordinal
scale).

Qualitative Specification of
goals

No direct verification. Either by sub-
jective stakeholder judgement, by proto-
types, or indirectly by goal refinement
or derived metrics.

Declarative Description of a
required feature

Review

Satisfaction The satisfaction of requirements is either hard, that is, it is fulfilled
or not, or soft, i.e., the degree of satisfaction is measured on a scale which is
at least ordinal.

Role The role reflects the intended use of the requirement. If it is used for
properties of the system, the requirement is prescriptive. If it is used for
facts or rules in the environment, it is normative. For example, specific tax
formulas are normative requirements. These are also sometimes called business
requirements. If it is used to describe interactions between the actors and the
systems, it is assumptive. It is assumptive, as the real actions and interactions
taken by users can only be assumed and not directly predicted.

Glinz argues that, in contrast to the traditional fuzzy notion of non-functional
requirements, his classification clearly separates the concerns which allows to
characterize a requirement more precisely.

Concern-based Classification (Glinz) In 2007, Glinz [Glinz, 2007] discusses three
problems with the notion of NFRs and revises his facets-based classification. He
argues, that, although his previous classification solves these problems, there is
a need in practice for a differentiation between functional and non-functional
requirements. Moreover, he states that NFRs must be able to be sub-classified “in
a clear and comprehensible way”.

He presents a new classification that is based on so-called concerns. A concern is
defined as “a matter of interest in a system. A concern is a functional or behavioral
concern if its matter of interest is primarily the expected behavior of a system or
system component in terms of its reaction to given input stimuli and the functions
and data required for processing the stimuli and producing the reaction. A concern
is a performance concern if its matter of interest is timing, speed, volume, or
throughput. A concern is a quality concern if its matter of interest is a quality of
the kind enumerated in ISO/IEC 9126” [Glinz, 2007].
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Figure 3.3.: Concern-based: Hierarchy (adapted from Glinz [2007])

Table 3.2.: Classification Rules (adapted from Glinz [2007])
# Question Result

Was this requirement stated because we need to specify...
1 ... some of the system’s behavior, data, input, or reaction to

input stimuli - regardless of the way how this is done?
Functional

2 ... restrictions about timing, processing or reaction speed, data
volume, or throughput?

Performance

3 ... a specific quality that the system or a component shall have? Specific quality
4 ... any other restriction about what the system shall do, how it

shall do it, or any prescribed solution or solution element?
Constraint

As shown in Figure 3.3, Glinz classifies requirements into project, system, and process
requirements. System requirements are further classified into functional require-
ments, attribute, and constraint. Finally, attributes are classified into performance
requirements and specific quality requirements.

Glinz further defines a functional requirement as a requirement that pertains to a
functional concern, a performance requirement as a requirement that pertains to a
performance concern, a specific quality requirement as a requirement that pertains
to a quality concern other than the quality of meeting the functional requirements,
a constraint as a requirement that constraints the solution space beyond what
is necessary for meeting the given functional, performance, and specific quality
requirements, and finally, an attribute as a performance requirement or a specific
quality requirement.

He further provides classification rules that allow to classify a given requirement in
the taxonomy shown in Figure 3.3. Table 3.2 shows these rules.

51



3. Related Work

Functional 
Suitability

Performance 
efficiency Compatibility Usability Reliability Security Maintainability Portability

System/Software
Product Quality

Functional 
completeness
Functional 
correctness
Functional 

appropriateness

Time behavior
Resource 
utilization
Capacity

Co-existence
Interoperability

Appropriateness
Recognizability

Learnability
Operability
User error 
protection

User interface 
aesthetics

Accessibility

Maturity
Availability

Fault tolerance
Recoverability

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Modularity
Reusability

Analyzability
Modifiability
Testability

Adaptability
Installability
Replaceability

Figure 3.4.: Product quality model (adapted from the ISO/IEC 25010-2011 [2011])

ISO/IEC 25010-2011 [2011] The ISO/IEC 25010-2011 [2011] standard is a major
revision of ISO/IEC 9126-2001 [2001]. Instead of three different quality models, the
revised standard combines them to two: system/software product quality (replacing
internal and external quality) and quality in use.

Each of the quality models has characteristics, sub-characteristics and a set of
quality properties. Figure 3.4 shows the product quality model. The quality
properties have to be associated with quality measures to assure that a specific
sub-characteristic is covered and measurable. The standard states that the hierarchy
of sub-characteristic only reflects typical quality concerns but is not exhaustive.

IREB Glossary The International Requirements Engineering Board (IREB e.V.) was
founded in 2007 and is composed of independent requirements engineering experts.
These experts have created a curriculum for the domain of requirements engineering
and, based on the curriculum, developed a certificate, the Certified Professional
for Requirements Engineering (CPRE). The curriculum contains a glossary of
requirements engineering terminology [Glinz, 2014] which provides definitions for
128 central terms of requirements engineering.

The IREB Glossary basically uses the classification introduced by Glinz in 2007.

Broy Broy [2016] provides a systematic requirements categorization according to three
fundamental views:

• Black-box Interface View: In this view, the functionality of the system
is specified by means of the interface and interface behavior in terms of the
interaction over the system boundaries.

• (Logical) Sub-system Structuring View: This view contains logical and
probabilistic properties at the level of architecture—including state views of
state spaces and state transitions. This view is captured by architecture and
architectural behavior or by state and state-transition behavior.
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• Representation View: This view includes technical, physical, syntactical
representation, structuring, and implementation details.

For behavior, he further distinguishes between logical behavior in terms of sets
of patterns of interaction and probabilistic behavior in terms of the probabilities
for the patterns of interaction. In Section 2.3, a comprehensive discussion on the
categorization is provided.

3.1.3. Discussion on Requirements Categorizations

In this section, we will report on the influential work of Glinz with respect to the
notion of NFRs. Glinz [2007] performs in his work “On non-functional requirement” a
comprehensive review on existing definitions of QRs and analyzes problems with these.
He highlights three different problems with the current definitions:

Definition Problem The definition problem pinpoints the terminological and concep-
tual discrepancies in the various definitions. Basically, all the definitions build
on the following terms property or characteristic, attribute, quality, constraint and
performance. However, the terms themselves are equally fuzzy and there is no
consensus about the concepts that these terms denote. Even more severe, there are
also cases where the meaning of the terms is not clear as they are used without a
definition or clarifying example.

Classification Problem The classification problem pinpoints the differences in the
concepts for sub-classifying QRs. According to Glinz, more classification problems
arise due to mixing three concepts that should better be separated: the concept of
kind (should a given requirement be regarded as a function, a quality, a constraint,
etc.), of representation (see below), and of satisfaction (hard vs. soft requirements).

Representation Problem The representation problem pinpoints that the notion of an
QR is representation dependent. Glinz further provides examples of requirements
that can be classified differently depending on the representation. A second repre-
sentational problem is the lack of consensus where to document QRs. Some of the
authors recommend to document the QRs separated from functional requirements,
some recommend to document them together.

3.2. Types of Quality Requirements

Mairiza et al. [2010] perform a literature review on QRs, investigating the notion of
QRs in the software engineering literature to increase the understanding of this complex
and multifaceted phenomenon. They analyzed the three dimensions (i) definition and
terminology, (ii) types, and (iii) QRs in various types of systems and application domains.
Amongst others, they found about 114 different types of QRs, listed in Table 3.3. They
further analyzed whether these types of QRs (i) have a definition and attributes, (ii)
just have a definition, or (iii) neither have a definition nor attributes. According to their
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analysis, they found that 53.51% of the types of QRs are without a definition and without
attributes, 26.32% just have a definition and only 20.18% are defined with attributes. As
a result of a frequency analysis, they found that the five most frequently mentioned types
of QRs in literature are performance, reliability, usability, security, and maintainability
(in that order).

This comprehensive list shows that there are many types of QRs that are discussed in
literature. However, as with the requirements categorizations discussed above, there is a
definition problem of the individual types of QRs: Their analysis shows that more than
half of the types are presented in literature without a proper definition or attributes.
This further strengthens our confidence that we need a structured approach for defining
quality attributes based on literature.

3.3. Requirement Categorizations in Practice

In this section, we report on related work on requirements categorizations and their
implications in practice.

One of the first studies that analyzed how to systematically deal with QRs in software
development was conducted by Chung and Nixon [1995]. They argue that QRs are
often retrofitted in the development process or pursued in parallel with, but separately
from, functional design and that an ad-hoc development process often makes it hard
to detect defects early. They perform three experimental studies on how well a given
framework [Mylopoulos et al., 1992] can be used to systematically deal with QRs. They
conclude that from their perspective as framework developers and users, the framework
was helpful to represent and use a large number of QR specific concepts. Using the
representations, they were able to consider design alternatives and their tradeoffs with
respect to conflicts and synergy among the QRs, to determine the effect of each design
decision, and to justify the decision with the needed design rationale.
Svensson et al. [2009] perform an interview study on how QRs are used in practice.

Based on their interviews, they found that there is no QR-specific elicitation, documen-
tation, and analysis, that QRs are often not quantified and, thus, difficult to test, and
that there is only an implicit management of QRs with little or no consequence analysis.
Furthermore, they found that at the project level, QRs are not taken into consideration
during product planning (and are thereby not included as hard requirements in the
projects) and they conclude that the realization of QRs is a reactive rather than proactive
effort.
Borg et al. [2003] analyze via interviews how QRs are handled in practice by the

example of two Swedish software development organizations. They found that QRs are
difficult to elicit because of a focus on functional requirements, they are often described
vaguely, are often not sufficiently considered and prioritized, and they are sometimes even
ignored. Furthermore, they state that most types of QRs are difficult to test properly due
to their nature, and when expressed in non-measurable terms, testing is time-consuming
or even impossible.
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Table 3.3.: Comprehensive list of types of QRs adapted from Mairiza et al. [2010], in
alphabetic order.

Accessibility,
Access Control

Controllability Learnability Scalability

Accountability Correctness Legibility Security, Control and
Security

Accuracy Customizability Likeability Self-Descriptiveness
Adaptability Debuggability Localizability Simplicity
Additivity Decomposability Maintainability Stability
Adjustability Defensibility Manageability Standardizability,

Standardization,
Standard

Affordability Demonstrability Maturity Structuredness
Agility Dependability Measurability Suitability
Analyzability Distributivity Mobility Supportability
Anonymity Durability Modifiability Survivability
Atomicity Effectiveness Nomadicity Susceptibility
Attractiveness Efficiency,

Device Efficiency
Observability Sustainability

Auditability Enhanceability Operability Tailorability
Augmentability Evolvability Performance,

Efficiency, Time
or Space Bounds

Testability

Availability Expandability Portability Traceability
Certainty Expressiveness Predictability Trainability
Changeability Extendability Privacy Transferability
Communicativenes Extensibility Provability Trustability
Compatibility Fault, Failure Toler-

ance
Quality of Service Understandability

Completeness Feasibility Readability Uniformity
Complexity, Interact-
ing Complexity

Flexibility Reconfigurability Usability

Composability Formality Recoverability Variability
Comprehensibility Functionality Reliability Verifiability
Comprehensiveness Generality Repeatability Versatility
Conciseness Immunity Replaceability Viability
Confidentiality Installability Replicability Visibility
Configurability Integratability Reusability Wrappability
Conformance Integrity Robustness
Consistency Interoperability Safety
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Ameller et al. [2012] perform an empirical study based on interviews around the
question How do software architects deal with QRs in practice? They found that QRs
were not often documented, and even when documented, the documentation was not
always precise and usually became desynchronized. Furthermore, they state that QRs
were claimed to be mostly satisfied at the end of the project although just a few classes
were validated. With respect to model-driven development, Ameller et al. [2010] show that
most model-driven development (MDD) approaches focus only on functional requirements
and do not integrate QRs into the MDD process. They further identify challenges to
overcome in order to integrate QRs in the MDD process effectively. Their challenges
include modeling of QRs at the PIM-level, which includes the question which types of
QRs are most relevant to the MDD process? According to Ameller et al. [2010], the few
MDD approaches that support the modeling of QRs can be classified into approaches
that use UML extensions [Fatwanto and Boughton, 2008; Wada et al., 2010; Zhu and
Liu, 2009] or a specific metamodel [Gönczy et al., 2009; Kugele et al., 2008; Molina and
Toval, 2009] to model QRs.

In all of the approaches, functional requirements and QRs are modeled separately.
Damm et al. [2005] suggest to overcome this separation and propose a so-called rich
component model based on UML that integrates functional and quality requirements
in a common model. Similar approaches exist for specific classes of QRs (e.g., for
availability [Junker and Neubeck, 2012]).

All these studies highlight, so far, that QRs are not integrated in the software develop-
ment process and furthermore that several problems are evident with QRs.

3.4. Relation to this Dissertation

We base the motivation of this dissertation on the substantial discussion in literature on
how to categorize requirements. Therefore, we initially provided a historical sequel of
requirements categorizations and discussed the differences of current categorizations.
In Chapter 4, we investigate how practitioners handle requirements. We found many

reasons why practitioners distinguish between quality and functional requirements that
are based predominantly on some conventional wisdom on QRs, which might be based
on the long-lasting discussion about QRs in literature. Furthermore, in Chapter 5,
we analyze the adequacy of Broy’s requirements categorization [Broy, 2016]. We use
the ISO/IEC 9126-2001 [2001] to classify requirements found in practice and discuss
the adequacy of Broy’s classification. Finally, in Chapter 7 we provide an approach for
defining, specifying, and integrating quality requirements based on a system model and
apply it to the quality attributes performance and availability.
In general, there is a confusion and disagreement about QRs in literature. Thus, we

discussed empirical studies that try to draw a picture of the current state of the practice
in the last section. All these studies highlight, that QRs are not integrated in the software
development process and furthermore that several problems are evident with QRs. We
use this as a basis for the motivation for the dissertation and summarize and critically
discuss the implications of requirements categorizations in practice and sketch how to
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overcome deficiencies associated with QR in practice in Chapter 6. Furthermore, in
Chapter 4 we performed an empirical study on how practitioners handle requirements and
in Chapter 5, we perform a document analysis of requirement specifications in practice.
We were able to identify similar problems and found that many reasons are grounded
in conventional wisdom about QRs. This strengthens our confidence that we need to
further investigate this topic.
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“True, how could they see anything but the shadows if they were
never allowed to move their heads?”

— Plato – The Allegory of the Cave
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An Investigation of How Practitioners
Handle Requirements

Parts of this chapter have been previously published in the following publications:

• Eckhardt, J., Vogelsang, A., and Mendéz Fernández, D. (2016d). On the Distinc-
tion of Functional and Quality Requirements in Practice. In Proceedings of the
17th International Conference on Product-Focused Software Process Improvement
(PROFES), pages 31–47 (full paper, research track, 16 pages)

We still have little knowledge about to which extent the distinction between FRs
and QRs makes sense from a practical perspective and what are the reasons
for and the consequences of this distinction. To this end, we report in this

chapter on a survey we conducted with 109 practitioners to explore whether and, if so,
why they handle requirements labeled as FRs differently from those labeled as QRs. We
additionally asked for consequences of this distinction w.r.t. the development process.

Our results indicate that the development process for requirements of the two classes
strongly differs (e.g., in testing). We identified a number of reasons why practitioners do
(or do not) distinguish between QRs and FRs in their documentation and we analyzed
both problems and benefits that arise from that. We found, for instance, that many
reasons are based on expectations rather than on evidence. Those expectations are, in
fact, not reflected in specific negative or positive consequences per se. It therefore seems
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more important that the decision whether to make an explicit distinction or not should
be made consciously such that people are also aware of the risks that this distinction
bears so that they may take appropriate countermeasures.

4.1. Context: Requirements Categorizations in Practice

In literature (e.g., [ISO/IEC/IEEE 29148-2011, 2011; Pohl, 2010; Robertson and Robert-
son, 2012; Sommerville and Kotonya, 1998; Van Lamsweerde, 2001]), requirements are
often categorized in functional requirements (FRs), quality requirements (QRs), and
constraints. FRs are characterized as “things the product must do” contrasting QRs as
“qualities the product must have” and constraints as “organizational or technological
requirements”. Although this categorization is common sense to some degree, there are
still debates about the precision of the categories (e.g., [Glinz, 2007]). There are other
academic groups that suggest to rather distinguish between behavior (e.g., response times)
and representation (e.g., programming languages) [Broy, 2016].

In a previously conducted study [Eckhardt et al., 2016c], we analyzed 11 requirements
specifications from industrial environments with a particular focus on requirements labeled
as “quality”. We found out that (i) there is a distinction between QRs and FRs in the
documentations, and that (ii) many requirements labeled as QR actually describe system
behavior and, thus, could also be labeled as FR. However, our previous investigation
focused on analyzing artifacts after the fact and we still have little knowledge about what
difference it makes in a development process if a requirement is labeled as FR or as QR
and what the resulting consequences are.

In response to this question, we report in this chapter on a survey we conducted with
109 practitioners to explore whether and, if so, why they consider requirements labeled
as FRs differently from those labeled as QRs (or NFRs) as well as to disclose resulting
consequences for the development process. In particular, we contribute:

1. a quantification of company practices regarding the style of documenting functional
and quality requirements,

2. a list of reasons why practitioner do or do not document FRs and QRs separately,

3. a list of consequences for the two styles of documentation that helps engineers to
make conscious decisions.

The remainder of the chapter is structured as follows: In Section 4.2, we state our
research questions and present our questionnaire in Section 4.3. Then, in Section 4.4, we
present the results before we discuss the implications of our results in Section 4.5. In
Section 4.6, we discuss the limitations and threats of our study. Finally, in Section 4.7,
we report on related work, before concluding our study in Section 4.8.
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4.2. Research Objective
The goal of this study is to understand whether practitioners consider product-related
requirements labeled as FR differently from those labeled as QR. We are further interested
in the reasons for this distinction and the resulting consequences for the development
process. We derive the following research questions:

RQ1 Do practitioners handle FRs and QRs differently? In this RQ, we want to
analyze whether QRs are documented in practice, whether there is a distinction
in the documentation, and whether this distinction makes a difference in the
development process. To this end, we formulate the following sub-RQs:

RQ1.1 Do practitioners differentiate between QRs and FRs in the doc-
umentation? We want to know whether the accepted categorization of
product-related requirements as FRs or QRs is reflected in the style of docu-
mentation as used in practice.

RQ1.2 To what extent do development activities for QRs differ from activ-
ities for FRs? A possible consequence of a requirement categorization is that
different categories of requirements are handle differently in the development
process. We want to investigate whether this is the case in practice and how
this is influenced by the style of documentation.

RQ2 What are reasons for distinguishing or not distinguishing between QRs
and FRs in the documentation? While categorizations only provide definitions,
we are interested in the underlying reasons that lead practitioners to distinguish
or not distinguish between QRs and FRs in the documentation.

RQ3 What are positive and negative consequences of distinguishing or not
distinguishing QRs and FRs in the documentation? A decision for or
against a separate documentation may have positive or negative consequences that
practitioners should be aware of.

4.3. Research Methodology
In the following, we introduce the methodology applied in our study. Our goal was to
reach out to a broad spectrum of practitioners and capture their perceptions of their
own project environments. To this end, we used (online) survey research as our main
vehicle. We intentionally designed the survey such that respondents required as little
effort as possible to complete it; we kept the number of questions at a minimum, the
instrument was self-contained and it included all relevant information. We further limited
the response types to numerical, Likert-scale, and short free form answers as suggested
by Kitchenham and Pfleeger [2008]. As a validation of our instrument and its alignment
with the audience, we piloted the survey with three practitioners, who completed the
survey and afterwards participated in an interview, where questions and answers where
checked for misunderstandings.
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In the following, we describe the particularities of our subject selection, before discussing
the data collection and instrument, and the data analysis.

4.3.1. Subject Selection

We deliberately targeted practitioners who work with requirements. This includes prac-
titioners who write requirements (e.g., requirements engineers) but also practitioners
whose work is based on requirements (e.g., developers or testers), and also practitioners
who manage projects or requirements. Our survey was further conducted anonymously.
Since we were not able to exactly control who is answering the survey, it was especially
important to follow the advice of Kitchenham and Pfleeger [2008] on the need to un-
derstand whether the respondents had enough knowledge to answer the questions in
an appropriate manner. For this, we excluded data from respondents who answered
that they do not use requirements specifications at all, or respondents who stated that
they did not know how requirements are handled in their company. We finally offered
respondents the chance to leave an email address if they were interested in the results of
the survey.

4.3.2. Data Collection and Instrument

We started our data collection on February 4th, 2016 and closed the survey on February
22nd, 2016. For inviting practitioners to participate, we did not select a specific closed
group of practitioners but, instead, contacted as many practitioners as possible via the
authors’ personal contacts from previous collaborations, via public mailing lists such as
RE-online, and via social networks. In the following, we introduce the main elements of
our instrument used. The full instrument can be taken from our online material7.

Demographics

We collected a set of demographic data from the respondents to interpret and triangulate
the data with respect to different contexts of the respondents. The demographic data
included the role of the participant, the experience, the company’s size, the typical
project size, the geographical distribution of project members, the paradigm of their
applied development process (on a scale from agile to plan-driven), the industrial sector,
the type of developed systems, and the role of the requirements specification within
the company. To better understand the participant’s focus and project context, we
additionally asked respondents for the importance of different types of QRs in their
projects. The respondents were asked to assess the importance of quality factors8 taken
from ISO/IEC 25010-2011 [2011] for their typical projects on a 5-point Likert scale.

7http://www4.in.tum.de/~eckharjo/SurveyResults.zip
8These were functional suitability, performance/efficiency, compatibility, usability, reliability, security,
maintainability, and portability.
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All

Not documenting
QRsDocumenting QRs

No distinction
a

Distinction btw.
QRs and FRs

Figure 4.1.: Categorization of respondents by their style of documenting QRs.

Practices of Handling QRs

As a first step towards comparing different practices for handling QRs, we asked the
respondents how strongly development activities differ between QRs and FRs in the
phases requirements engineering, architecture/design, implementation, and testing. As a
follow up, we provided a free form text field and asked the respondents to explain the
differences in detail.
We were especially interested in the question whether it makes a difference for the

development process if project participants distinguish between QRs and FRs and how
this distinction is documented. Therefore, we asked the respondents two conditional
questions. First, we asked whether QRs are explicitly documented in their projects. If
this was the case, we asked whether the respondents explicitly distinguish between QRs
and FRs in the documentation, i.e. whether they are labeled differently (e.g., some
requirements are labeled as performance or maintainability) or documented in different
sections (e.g., special sections for performance or maintainability). The answers to these
questions categorize the responses into three groups (see also Figure 4.1).

Problems/Benefits of Current Practices:

Given the categorization into the three groups, we asked our respondents for specific
reasons why they do or do not distinguish between QRs and FRs. Additionally, we
asked for benefits and problems that arise from the way they consider QRs (i.e., not
documenting QRs, mixing QRs and FRs in the documentation, or distinguishing between
QRs and FRs in the documentation). For these questions, we provided free form text
fields to be filled out by the respondents.

4.3.3. Data Analysis
Our data analysis constitutes a mix of descriptive statistics and qualitative text analysis.
To answer RQ1, we analyzed in particular the answers that the respondents provided for
the following survey questions: (i) Are QRs documented in your typical projects, (ii) In
the documentation (e.g., in a requirements specification), do you distinguish between QRs
and FRs, (iii) Considering the following phases, how much do the activities for handling
QRs differ from those for FRs, and (iv) Considering your work, for what activities does it
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Figure 4.2.: How important do you consider the following types of QRs for your typical
projects?

make a difference if you consider an QRs vs. an FR. For RQ1.1 and RQ1.2 we analyzed
the results of the first, second, and third question, respectively. As the answers for the
fourth question are open, we analyzed the answers in detail to provide more insights in
the activities and the differences.
To answer RQ2 and RQ3, we analyzed the data our respondents provided for the

following survey questions: (i) Are there specific reasons why you do (or do not) distinguish
between QRs and FRs in the documentation, (ii) Do you experience negative consequences
in your current work that result from distinguishing (not distinguishing) between QRs
and FRs in the documentation, and (iii) Do you experience positive consequences in your
current work that result from distinguishing (not distinguishing) between QRs and FRs in
the documentation. The answers to the questions are free text answers. To analyze the
results, we coded the provided answers in pairs of researchers to assemble a conceptual
model of reasons and consequences for distinguishing between QRs and FRs in practice.
The qualitative coding technique was chosen as recommended by (Straussian) Grounded
Theory [Stol et al., 2016], but differs in that the central categories were previously defined
following our research questions. To visualize our results from the text analysis, we used
cause-effect diagrams (also known as Ishikawa diagrams).

4.4. Study Results

4.4.1. Sample Characterization

In total, 283 people clicked on the link to our survey, 172 started the survey (61%), and
109 completed it (39%). From these 109 respondents, we excluded 6 as they matched
our exclusion criteria. The respondents seem quite experienced as 93% stated that
they have more than 3 years of experience with requirements, 5% one to three years,
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Figure 4.3.: Relation between process paradigm and the style of documenting QRs

and only 2% with less than a year. Furthermore, a majority of the respondents work
in large companies: 57% work in companies with more than 2000 employees, 25% in
companies with 250–2000 employees, and 17% in companies with less than 250 employees.
However, typical projects of the respondents showed a variety of small to large projects:
24% stated that in a usual project in their company up to 10 people are involved, 46%
that 11–50 people are involved, 24% that more than 50 people are involved, and 6%
did not know. Most of the respondents (59%) answered that their team is distributed
over multiple locations in more than one country, 23% that the team is distributed
over multiple locations but in one country, and 17% that all team members are in one
location. The employed process paradigm is balanced between agile and plan-driven:
41% of the respondents answered that their development process is rather agile, 21%
that it is rather plan-driven, 37% that it is mixed, and 1% did not know. The type of
systems the respondents develop is quite balanced (except for consumer software): 24%
develop embedded systems, 37% business information systems, 5% consumer software,
and 34% hybrid systems. Most of the respondents use requirements specifications for
in-house development (57%), 23% create them and an external company is responsible
for the development, and 19% are subcontractors using requirements specifications (e.g.,
as basis for development or testing). Figure 4.2 shows how our respondents ranked the
importance of different quality factors w.r.t. their daily work on a five point Likert scale.

4.4.2. RQ1: Handling of QRs in Practice

RQ1.1: Do practitioners differentiate between QRs and FRs in the
documentation?

88% of the respondents answered that they document QRs in their projects, while 12%
answered that they do not document QRs at all. We contextualized this distribution
w.r.t. the process paradigm the respondents use in their projects. Figure 4.3a shows that
all respondents with a plan-driven process document QRs, while in agile processes only
77% document QRs.
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Figure 4.4.: Relation btw. importance of quality attributes and style of documentation

From the respondents who document QRs (91 in total), 85% answered that they
distinguish between QRs and FRs in the documentation and 15% answered that they do
not. We also contextualized this distribution w.r.t. the process paradigm. Figure 4.3b
shows that a higher percentage of the respondents in agile processes distinguish between
QRs and FRs compared with respondents in plan-driven processes. As a second contextu-
alization, we analyzed the importance of quality factors w.r.t. the style of documentation.
Figure 4.4 shows how the respondents ranked the importance of different quality factors
for their daily work on a five point Likert scale. Reliability and Performance/Efficiency,
for example, stand out as they are considered more important by participants who do
not distinguish between QRs and FRs.

RQ1.2: To what extent do development activities for QRs differ from
activities for FRs?

Figure 4.5 shows how the respondents ranked the difference in the phases requirements
engineering, architecture/design, implementation, and testing on a three point Likert scale.
As a contextualization, we analyzed whether there is a difference in how respondents rank
the difference in the development phases w.r.t. whether they do or do not distinguish
between QRs and FRs (Figure 4.6). The figure shows that the phase architecture/design
was reported to differ stronger by respondents who distinguish between QRs and FRs.

To further detail this response, Table 4.1 shows exemplary statements that respondents
gave explaining the differences in the development activities. According to the answers,
there is a different maturity of the processes for treating FRs vs. QRs (see Statement A).
Furthermore, when it comes to project planning, FRs are planned in detail but QRs are
considered in an unplanned way and only documented on a high-level (see Statement B).
In testing, there are approaches for deriving test cases from FRs but none for deriving
them from QRs (see Statement C). Moreover, different stakeholders are involved in testing
QRs vs. FRs (see Statement D). In architecture and design, QRs need to be considered
early in the project as they have a high impact on the architecture. In contrast to this,
it is sufficient to consider FRs at an abstract level in early stages (see Statement E).
In the implementation, QRs need to be monitored continuously, whereas FRs can be
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Figure 4.5.: Considering the following phases, how much do development activities for
QRs differ from activities for FRs?

RE

Arch/Design
Impl

Testing

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Differs strongly Differs slightly Does not differ at all Don't Know

52% 31%12%
48% 31% 8%13%

27% 43% 13% 17%
23% 47% 26%

57% 21%21%
21% 43% 21% 14%

36% 43% 14%7%
14% 36% 43% 7%

Distinction between QRs and FRs No distinction between QRs and FRs

Figure 4.6.: Relation between process differences and style of documentation

Table 4.1.: Exemplary answers about differences in the development process
# Phase Answer
A. General “[QRs] are usually treated less transparent: not clearly documented, not explicitly

tested, but somehow considered in RE, design and coding as common sense background,
e.g., in terms of [QRs] considering IT security, performance or reliability.”

B. General “FRs are documented and planned in high detail [...] Working on [QRs] are often
unplanned activities and only high level documented.”

C. Test “Test cases for FR[s] can quite easily [be] derived from functional models or textual
requirements [... but there is no] method for deriving test cases from [QRs].”

D. Test “Test planning, preparation and execution for [QRs] are handled by different stake-
holders ([QRs] are [. . . ] strongly architecture related) and personnel (performance and
load tests are performed by specialists usually not part of the project team).”

E. Arch. “[QRs] are often architectural drivers and therefore have to be evaluated and considered
very early in the project when defining the architecture. Whereas in an early stage of
the project a more abstract view on the functional requirements is sufficient.”

F. Impl. “[QRs] require continuous monitoring, as achievements (e.g., performance) may
degrade during implementation.”

G. RE “[In contrast to FRs,] [QRs] can be negotiated, if they are technically not reachable.”
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implemented successively (see Statement F). In requirements engineering, FRs are more
fixed than QRs as QRs can be negotiated with the customer while FRs usually cannot
(see Statement G).

RQ1: Summary of Results
Most (88%) of the respondents document QRs in their projects and from these, 85%
distinguish between QRs and FRs in the documentation. Furthermore, testing is the
activity where handling QRs vs. FRs differs most.

4.4.3. RQ2: Reasons for Distinguishing QRs and FRs

Figure 4.7 and 4.8 show the cause-effect diagrams for the reasons for and consequences
of (not) distinguishing between QRs and FRs in practice. On the left-hand side of the
diagrams, the mentioned reasons for distinguishing (Figure 4.7) or not distinguishing
(Figure 4.8) between QRs and FRs are indicated. On the right-hand side of the diagrams,
the mentioned consequences of the decision are shown. The upper part contains the
positive consequences while the lower part contains the negative consequences. The
different entries of the diagrams (e.g., QRs have different nature in Figure 4.7) correspond
to codes that we identified in the data and their number of occurrences. Furthermore,
we structured the codes in categories that are represented by the arcs in the diagram.

Reasons for Distinguishing QRs and FRs

The left-hand side of Figure 4.7 shows the resulting reasons for distinguishing between
QRs and FRs. In total, 49 out of the 77 respondents (64%) that distinguish between
QRs and FRs provided an answer to this open question. We identified 24 codes in
the answers for this question. For clarity, we only show codes that occurred at least
twice in Figure 4.7. Reasons that we coded as QRs have different nature, Company
Practice, and QRs are cross-functional occur frequently in the category General & Project
Organization. Furthermore, in the category Design & Implementation the reason Influence
the architecture and in the category Validation & Verification the reason QRs require
different verification methods also occur often.

Reasons for Not Distinguishing QRs and FRs

The left-hand side of Figure 4.8 shows the mentioned reasons for not distinguishing
between QRs and FRs. In total, 7 out of the 14 respondents (50%) who do not distinguish
between QRs and FRs provided an answer to this open question. We identified 8 codes
in the answers for this question. Figure 4.7 shows all identified codes, which all occurred
only once in the data (except for There is no difference).
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4.4. Study Results

RQ2: Summary of Results
Distinction: The most frequently coded reason for distinguishing between QRs
and FRs is that QRs have a different nature compared with FRs (10) and company
practice (10).
No distinction: The most frequently coded reason for not distinguishing between
QRs and FRs is that there is no difference between QRs and FRs (2).

4.4.4. RQ3: Benefits and Problems

Benefits and Problems of Distinguishing QRs and FRs

The right-hand side of Figure 4.7 shows the consequences of distinguishing between QRs
and FRs. The upper part shows the positive consequences while the lower part shows
negative consequences. In total, 45 out of the 77 respondents (58%) that distinguish
between QRs and FRs provided answers to the open question about positive consequences.
Regarding negative consequences, 16 out of the 77 respondents (21%) provided answers.
We identified 35 codes in the answers for positive consequences and 13 in the answers for
negative consequences. As shown in the diagram, the code that we identified most in the
mentioned benefits is Find information in one place in the category General & Project
Organization. In this category, there are also other benefits that occurred frequently (e.g.,
structuredness of the process, completeness of the requirements, separation of concerns,
and increasing the awareness of QRs). We coded the benefit Increased awareness of QRs
also three times in the category implementation. For validation and verification, the most
frequent benefits are Focused Tests and Explicit QRs Tests. The code that we identified
most in the mentioned problems is Traceability becomes expensive. Further problems that
were mentioned are that QRs are neglected or forgotten, that the distinction between QRs
and FRs is unclear and that the distinction results in a weak user acceptance. Moreover,
in the category Validation & Verification, the problem Missing testability was mentioned.

Benefits and Problems of Not Distinguishing QRs and FRs

The right-hand side of Figure 4.8 shows the consequences of not distinguishing between
QRs and FRs. The upper part shows the positive consequences while the lower part
shows negative consequences. In total, 9 out of the 14 respondents (64%) that distinguish
between QRs and FRs provided answers to the open question about positive consequences.
Regarding negative consequences, 5 out of the 14 respondents (36%) provided answers.
We identified 7 codes in the answers for positive consequences and 6 in the answers for
negative consequences.

71



4. An Investigation of How Practitioners Handle Requirements

RQ3: Summary of Results
Distinction: The most frequently coded benefit for distinguishing between QRs
and FRs is to find information on one place (5). The most frequently coded problem
is that traceability becomes expensive (4).
No distinction: The most frequently coded benefit for not distinguishing between
QRs and FRs is an increased awareness of QRs (2).

4.5. Discussion
Based on the results, we identified a set of insights that we discuss in the following
paragraphs.

4.5.1. Different Handling of QRs and FRs

Based on our previous study [Eckhardt et al., 2016c], we expected that the majority of
QRs are documented in practice and that practitioners make a distinction between QRs
and FRs. The results of RQ1.1 support these expectations. Interestingly, as shown in
Figure 4.3a, the only respondents who do not document QRs follow agile processes, while
in a more plan-driven process, all respondents state to document QRs. This could be
explained by the trend to a light-weight documentation in agile processes. In contrast to
this, as shown in Figure 4.3b, in a plan-driven process, less people tend to distinguish
between QRs and FRs than in a mixed or an agile process. We currently do not have an
explanation for this.

Moreover, as shown in Figure 4.4, our results indicate that the importance assigned to
the QR classes is dependent on whether QRs and FRs are distinguished. Especially the
two QR classes reliability and performance stand out. One possible explanation for this is
that reliability and performance requirements mainly describe external interface behavior
of a system and, thus, are very similar to FRs [Eckhardt et al., 2016c]. Therefore, we
speculate that for these classes a distinction is not necessary.

Furthermore, the results of RQ1.2 indicate that, for testing, the activities for handling
QRs are very different from the activities for handling FRs. This is tune with the
argument that QRs require different verification methods (see also the results of RQ2 and
RQ3). Interestingly, it makes a substantial difference if we compare the differences in the
phase Architecture/Design of respondents who make a distinction with respondents who
do not make a distinction (see Figure 4.6). Since we currently do not have an explanation
for this, we believe that this finding needs to be investigated further in the future.

4.5.2. Reasons for and Consequences of a Distinction

From the results presented in the previous section, we conclude that practitioners are split
into two groups; one advocating a distinction between QRs and FRs and one advising
against it. Interestingly, the respondents stated contrary reasons as arguments for or
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4.5. Discussion

against a distinction (e.g., “Both are requirements” vs. “We distinguish them because
they are different”). Similarly, we found the same benefits stated by respondents of
both parties: “If you distinguish, then QRs are considered better” vs. “As soon as QRs
are treated equally to FRs it is a clear win-win situation such that QRs get the same
attention.” Additionally, our results indicate that it is not clear to practitioners what
the difference between both classes of requirements actually is, even though they stated
reasons, benefits, and problems of a distinction: “Most people have problems to distinguish
between them, so they mix” or “[Not distinguishing] avoids unnecessary confusion at
the requirements authors’ side. Adding the distinction QR/FR would require additional
training, QS, etc. without adding value to the projects”. Some respondents see this as a
reasons why they do not distinguish between them: “[. . . ]There is just no real guideline
how to do it”.

The most prevalent reasons for distinguishing between QRs and FRs are in line with
those that are often found in literature (e.g., QRs have a different nature and are cross-
functional, influence on architecture, require different verification methods). However, we
cannot underpin any of those reasons with negative consequences in the cases where QRs
and FRs were not distinguished. Therefore, we conclude that there seems to be confusion
about this topic in practice and handling QRs seems to be driven by expectations rather
than by evidence.

In the following, we will detail and discuss some conflicting or even contradictory
statements. We believe that these are topics that need to be investigated further in the
future, or, in case of a clear scientific position about a topic, we need to invest more into
the dissemination of the results into practice.

QR Testing – A Double-edged Sword

One of the top reasons mentioned for distinguishing QRs and FRs was the need for
different verification methods (especially w.r.t. testing). Fig. 4.6 also shows that testing
is the activity that differs most for QRs and FRs. When considering consequences of
distinguishing between QRs and FRs in testing, we found both positive and negative.
While some respondents said that a distinction leads to more focused and specialized tests
for specific QRs, some also stated that a distinction leads to the fact that some QRs are not
tested at all. For example, “Performance tests are recognized as [a] key success factor by
project managers” vs. “Main issue is how to handle the [QR] tests before product release”.
On the other hand, respondents who do not distinguish between QRs and FRs also
reported positive and negative consequences regarding testing: “[. . . ]the mapping [of FRs
to QRs] should ensure that this testing also covers [QRs]” vs. “[When not distinguishing,]
corresponding V&V suffers”. We conclude from this that distinguishing QRs and FRs
supports the awareness for specialized tests of important QRs but, simultaneously, bears
the risk of neglecting tests for less important QRs.
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4. An Investigation of How Practitioners Handle Requirements

Company Practice – Never Change a Running Game

Another commonly stated reason for distinguishing between QRs and FRs is that this is
common practice in the company or that this is required by customers. However, these
reasons were almost never questioned or justified. For example, “[. . . ] Our specification
template prescribes a structuring w.r.t. [QRs] and FRs” or “[we distinguish] as requested
by the customer”. Additionally, the respondents did not mention any positive or negative
consequences that result from complying with customer constraints. We consider this as
a sign of inadvertent handling of this topic. It would be interesting to ask customers to
explicitly state reasons why they request a distinction of QRs and FRs.

QRs – Drivers for the Architecture

Several respondents stated that the architecture of a system is specifically influenced
by QRs. For example, “[QRs] are often architectural drivers and therefore have to be
evaluated and considered very early in the project when defining the architecture”. This
was often used as an argument to distinguish between QRs and FRs: “The separation
allows architects to get a quick (and in-depth) understanding of the QRs without needing
to know all the functional requirements”. FRs, on the contrary, were considered to be
more local and do not need to be fixed at the beginning of the project: “[It is] easier to
find[. . . ]special FRs for developing a single use case” or “[. . . ]in an early stage of the
project a more abstract view on the functional requirements is sufficient”. Surprisingly,
some respondents stated that it has a positive impact for the implementation when
QRs and FRs are not strictly distinguished: “[QRs] and FRs are handled as features.
They are not separated, which avoids the redesigns e.g., due to performance problems”
and “[When not distinguishing,] we have much more freedom during the implementation
iterations[. . . ]to find solutions that fit the customers’ expectations and the possibilities
that come with the architecture and technology we use”.

Awareness Matters

It seems that an increased awareness for QRs was considered as one of the most promi-
nent benefits. Both parties claimed this as a benefit of distinguishing respectively not
distinguishing between QRs and FRs: “[Distinction] ensures that [QRs] are also in the
focus” vs. “[Not distinguishing] helps keeping the team aware that the device does not
only need to have certain features, but that these features also need to work e.g., at a high
temperature”. It seems that awareness can be increased with both strategies. The crucial
point seems to be that there is a clear and explicit relation between FRs and QRs, which
leads to the following observation.

Tracing – The Good, the Bad, and the Ugly

One trade-off that we found in the data is an inherent challenge that does not seem
to be resolved in practice. Some respondents stated that a distinction between QRs
and FRs is beneficial because it keeps associated information in one place and, thus,
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supports different viewpoints on the requirements: “People who are particularly concerned
with QRs, such as architects and performance testers, find relevant information in one
place” and “As most [QRs] apply across components, they are more easily retrieved in
a separate specification”. However, this benefit also comes with clear disadvantages
considering tracing and the risk of forgetting requirements: “Consistent documentation
of relationships between FRs and [QRs] is difficult” and “The development team needs
to be fully aware about all sources for requirements. Ostrich strategy causes a high yield
of trouble”. Respondents who do not distinguish reported on benefits regarding the
cohesiveness of their specifications: “Some documents benefit from this, as they turn more
cohesive” or “[. . . ] the feature is really ready if installed and not only 80%”.

4.6. Limitations and Threats to Validity
We now discuss the threats to validity and mitigation measures we applied.

Participant Selection One limitation in the study is the missing lack of control over
the respondents given that we distributed the survey invitation over various net-
works. Apart from an unknown response rate, this means that we cannot control
how representative the responses are. We removed those respondents from the
population that stated that they do not deal with requirements. Also, although
the introductory texts explicitly stated that the survey is aimed at addressing
practitioners’ perspective, we cannot guarantee that all the views taken really result
from practitioners.

Survey Research Further threats to the validity result from the nature of survey
research. We cannot control on which basis the respondents provide their answers,
the respondents might be biased, and there exists the possibility that they have
misinterpreted some of the questions. We reduced the first threat by asking
questions to characterize the context of the respondents. We cannot mitigate the
second threat, but reduced it by conducting the survey anonymously. We minimized
the third threat by conducting a pilot phase in which we tested the instrument
used and the data analysis techniques applied.

Subjectivity of Coding A further major threat to validity, however, arises from the
data analysis, i.e., the coding process, because coding is a creative task. Subjective
views of the coders, such as experiences and expectations, might have influenced
the way we coded the free text statements. A threat arises from the fact that we
cannot validate our results with the respondents given the anonymous nature of
our survey. We minimized this threat by coding in pairs (researcher triangulation).

Representativeness of the Codes Finally, one limitation stems from the result set
itself and its expressiveness. Our focus was to collect and code practitioners’
experiences on how they consider QRs. We quantified the results to get an overview
of whether certain codes dominate others. However, a potentially high frequency
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4. An Investigation of How Practitioners Handle Requirements

of codes does still not allow for conclusions on the criticality of those codes. In
particular, the fact that we got more answers about reason for and consequences of
a distinction between QRs and FR than for no distinction might have distorted our
interpretation of the results.

4.7. Related Work

The literature on requirements categorizations is very extensive. Major contributions
address categorizing non-functional requirements (e.g., [Chung and do Prado Leite, 2009;
Glinz, 2007; Pohl, 2010]), of which most rely on quality (definition) models. Pohl [2010],
for instance, discusses the misleading use of the term “non-functional” and argues to use
“quality requirements” for product-related NFRs that are not constraints. Glinz [2007]
performs a comprehensive review on the existing definitions of NFRs, analyzes problems
with these definitions, and proposes a definition on his own. Mairiza et al. [2010] perform
a literature review on QRs, investigating the notion of QRs in the software engineering
literature to increase the understanding of this complex and multifaceted phenomenon.
They found 114 different QR classes. Contributions such as those have fostered valuable
discussions on the fuzzy terminology used and the concepts applied, but they did not
focus on the implications of these categorizations on development processes in practice.
A broader investigation on the status quo in RE, problems in RE and root causes is

taken by the Naming the Pain in Requirements Engineering (NaPiRE) initiative. This
initiative relies, same as we do, on survey research [Méndez Fernández and Wagner, 2014]
and investigates, for instance, how practitioners elicit requirements, which problems they
encounter (such as unclear or not measurable non-functional requirements), and what
implications this has (such as an increased effort in testing). Although survey research
on RE, such as this one, investigates RE from a practical perspective, it does not take a
specific view on how practitioners consider NFRs.
Chung and Nixon [1995] investigate how practitioners handle QRs. They argue that

QRs are often retrofitted in the development process or pursued in parallel with, but
separately from, functional design and that an ad hoc development process often makes
it hard to detect defects early. They perform three experimental studies on how well a
given framework [Mylopoulos et al., 1992] can be used to systematically deal with QRs.
Svensson et al. [2009] perform an interview study on how QRs are used in practice. Based
on their interviews, they found that there is no QR-specific elicitation, documentation,
and analysis, that QRs are often not quantified and, thus, difficult to test, and that
there is only an implicit management of QRs with little or no consequence analysis.
Furthermore, they found that at the project level, QRs are not taken into consideration
during product planning (and are thereby not included as hard requirements in the
projects) and they conclude that the realization of QRs is a reactive rather than proactive
effort.

Borg et al. [2003] analyze via interviews how QRs are handled in two Swedish software
development organizations. They found that QRs are difficult to elicit because of a
focus on FRs, they are often described vaguely, are often not sufficiently considered and
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prioritized, and they are sometimes even ignored. Furthermore, they state that most
types of QRs are difficult to test properly due to their nature, and when expressed in
non-measurable terms, testing is time-consuming or even impossible. Ameller et al. [2012]
perform an empirical study based on interviews around the question How do software
architects deal with QRs in practice? They found that QRs were often not documented,
and even when documented, the documentation was not always precise and usually
became desynchronized.

In all of the investigations, FRs and QRs are treated separately, and the investigations
take an observational perspective on how practitioners deal with QRs in that context.
The goal of our study is to analyze whether practitioners handle FRs and QRs differently,
which reasons motivate the way they consider QRs, and what consequences—positive
and negative ones—this has on the development process.

4.8. Conclusions

The goal of this chapter was to reach our first objective. In particular, our goal was to
understand if practitioners distinguish “quality” and “functional” requirements, and if so,
why they consider requirements labeled as “functional” differently from those labeled as
“quality” as well as to disclose resulting consequences for the development process. To
this end, we reported in this chapter on a survey we conducted with 109 practitioners.
Our results indicate that practitioners document QRs and most of them do make an

explicit distinction between QRs and FRs in the documentation. Furthermore, our data
suggests that the development process strongly differs depending on a distinction between
QRs and FRs, especially in interconnected activities such as testing. The rationale of
practitioners is that QRs are different to FRs, i.e. they are of different nature, are
cross-functional, strongly influence the architecture, and require different verification
methods. Furthermore, making a distinction or not does not have negative or positive
consequences per se. It therefore seems more important that the decision whether to
make an explicit distinction or not should be made consciously such that people are
also aware of the risks that this distinction bears so that they may take appropriate
countermeasures. A distinction might, for example, be justified by specialized testing
teams for specific quality attributes or by requirements that are reused between a number
of projects. A direct consequence of this conscious decision is that people are also aware of
the potential risks that this distinction bears (e.g., the importance of trace links between
FRs and QRs to assure that QRs are not neglected).
From the results of this study, we conclude that there are several issues with require-

ments categorizations in practice. This is in line with existing evidence; Up until now there
does not exist a commonly accepted approach for the QR-specific elicitation, documenta-
tion, and analysis [Borg et al., 2003; Svensson et al., 2009]; QRs are usually described
vaguely [Ameller et al., 2012; Borg et al., 2003], remain often not quantified [Svensson
et al., 2009], and as a result remain difficult to analyze and test [Ameller et al., 2012;
Borg et al., 2003; Svensson et al., 2009]. Furthermore, QRs are often retrofitted in
the development process or pursued in parallel with, but separately from, functional
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requirements [Chung and Nixon, 1995] and, thus, are implicitly managed with little or
no consequence analysis [Svensson et al., 2009]. This limited focus on QRs can result in
the long run in high maintenance costs [Svensson et al., 2009].
In summary, we conclude that QRs are not (sufficiently) integrated in the software

development process and furthermore that several problems are evident with QRs. In
the next chapter, we empirically investigate whether a requirements categorization that
is based on a system model is adequate for industrial requirements.
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Model with Respect to Requirements
found in Practice

Parts of this chapter have been previously published in the following publications:

• Eckhardt, J., Méndez Fernández, D., and Vogelsang, A. (2015). How to specify
Non-functional Requirements to support seamless modeling? A Study Design
and Preliminary Results. In Proceedings of the 9th International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 164–167 (short
paper, research track, 4 pages)

• Eckhardt, J., Vogelsang, A., and Méndez Fernández, D. (2016c). Are Non-functional
Requirements Really Non-functional? An Investigation of Non-functional Require-
ments in Practice. In Proceedings of the 38th International Conference on Software
Engineering (ICSE), pages 832–842 (full paper, research track, 10 pages)

The goal of this chapter is to analyze whether a requirements categorization based
on a system model is adequate1 for requirements found in practice. In particular,
we analyze 11 requirements specifications from 5 different companies for different
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application domains and of different sizes with in total 530 requirements that are labeled
as “non-functional”, “quality”, or any specific quality attribute. Our results show that
75% of the requirements labeled as “quality” in the considered industrial specifications
describe system behavior and 25% describe the representation of the system. As behavior
has many facets, we further categorize behavioral QRs according to the system view they
address (interface, architecture, or state), and the behavior theory used to express them
(syntactic, logical, probabilistic, or timed) [Broy, 2015, 2016]. Based on this fine-grained
categorization that is based on a system model, we discuss the implications we see on
handling QRs in the software development phases, e.g., testing or design.
Based on the results of our study, we conclude that most requirements labeled as

“quality” requirements are misleadingly declared as such, as they describe behavior of
the system. This in turn means that many so-called QRs can be handled similarly to
functional requirements. This contribution supports (the first part of) our hypothesis, i.e.,
a categorization based on a system model is applicable and adequate1 for requirements
found in practice.
The remainder of this chapter is structured as follows: In Section 5.1, we discuss

issues with requirements categorizations in practice and derive the problems that we
are tackling in this chapter. Then, in Section 5.2, we discuss background and related
work, and, subsequently, we present our study design in Section 5.3. We report on the
results in Section 5.4 and discuss the threats to validity and our mitigation strategies
in Section 5.5. In Section 5.6, we provide a discussion of the overall results and their
impact on theory and practice, before concluding this chapter in Section 5.7.

5.1. Context: Requirements Categorizations and their
Implications in Practice

One conventional distinction between QRs and FRs is made by differentiating how
the system shall do something in contrast to what the system shall do [Robertson and
Robertson, 2012; Sommerville and Sawyer, 1997]. This distinction is not only prevalent in
research, but it also influences how requirements are elicited, documented, and validated
in practice [Ameller et al., 2012; Borg et al., 2003; Chung and Nixon, 1995; Svensson
et al., 2009]. As a matter of fact, up until now there does not exist a commonly accepted
approach for the QR-specific elicitation, documentation, and analysis [Borg et al., 2003;
Svensson et al., 2009]; QRs are usually described vaguely [Ameller et al., 2012; Borg
et al., 2003], remain often not quantified [Svensson et al., 2009], and as a result remain
difficult to analyze and test [Ameller et al., 2012; Borg et al., 2003; Svensson et al., 2009].
Furthermore, QRs are often retrofitted in the development process or pursued in parallel
with, but separately from, functional requirements [Chung and Nixon, 1995] and, thus,
are implicitly managed with little or no consequence analysis [Svensson et al., 2009]. This
limited focus on QRs can result in the long run in high maintenance costs [Svensson
et al., 2009].
Although the importance of QRs for software and systems development is widely

accepted, the discourse about how to handle QRs is still dominated by how to differentiate
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them exactly from FRs [Broy, 2016; Glinz, 2007]. One point of view is that the distinction
is an artificial one and we should rather differentiate between behavior (e.g., response
times) and representation (e.g., programming languages). The underlying argument is
that most QRs actually describe behavioral properties [Glinz, 2007] and should be treated
the same way as FRs in the software development process [Broy, 2015]. Behavioral
properties subsume traditional FRs, such as “the user must be able to remove articles
from the shopping basket” as well as QRs which describe behavior such as “the system
must react on every input within 10ms”. Representational properties include QRs that
determine how a system shall be syntactically or technically represented, such as “the
software must be implemented in the programming language Java” [Broy, 2015, 2016].

In this chapter, we empirically investigate this point of view and aim to increase our
understanding on the nature of QRs addressing system properties. To this end, we classify
530 QRs extracted from 11 industrial requirements specifications with respect to their
kind. Our results show that 75% of the requirements labeled as “quality requirement” in
the considered industrial specifications describe system behavior and only 25% describe
the representation of the system. As behavior has many facets, we further classify
behavioral QRs according to the system view they address (interface, architecture, or
state), and the behavior theory used to express them (syntactic, logical, probabilistic,
or timed) [Broy, 2015, 2016]. Based on this fine-grained classification, we discuss the
implications we see on handling QRs in the software engineering disciplines, e.g., testing
or design.
Based on the results of our study, we conclude that most “quality requirements” are

misleadingly declared as such because they actually describe behavior of the system.
This in turn means that many QRs can be handled similarly to functional requirements.

Note. Please note that the focus of this chapter is not to criticize the term “quality
requirement” but to expose the artificial separation of functional and quality requirements
in practice.

5.2. Background & Related Work

In this section, we provide background and related work on requirements categorizations
and on the implications of QRs on software development.

5.2.1. Previously Published Material

In our previously published paper [Eckhardt et al., 2015], we presented a research proposal
with the goal of analyzing natural language QRs taken from industrial requirements
specifications to better understand their nature. Our study reported here, relies on and
extends our previous study design. We present the results in full detail, and provide a
comprehensive discussion on the implications on software engineering disciplines.
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5.2.2. Requirements Categorizations
There are many classification schemes for QRs in literature (e.g., [Chung and do Prado Leite,
2009; Glinz, 2007; ISO/IEC 9126-2001, 2001; Pohl, 2010; Sommerville and Sawyer, 1997;
Wagner et al., 2012]). One example for such a classification, which is based on a quality
model, is the ISO/IEC 9126-2001 [2001]. It defines external and internal quality of a
software system and derives several quality characteristics (e.g., Functionality–Security or
Portability–Installability). Sommerville and Sawyer [1997] further provide a classification
scheme based on a distinction between process requirements, product requirements, and
external requirements. We base our distinction of QR classes on the ISO/IEC 9126-2001
[2001] classification. Furthermore, we exclude process requirements from our study, as
they do not describe properties of the system itself.
Pohl [2010] discusses the misleading use of the term “non-functional” and argues to

use “quality requirements” for product-related QR that are not constraints. Glinz [2007]
performs a comprehensive review on the existing definitions of QRs, analyzes problems
with these definitions, and proposes a definition on his own. He highlights three different
problems with the current definitions: a definition problem, i.e., QR definitions have
discrepancies in the used terminology and concepts, a classification problem, i.e., the
definitions provide very different sub-classifications of QRs, and finally a representation
problem, i.e., the notion of QRs is representation-dependent. In our study, we faced all
of the three problems: we motivate our study based on the definition and classification
problem and during the execution of our study, we faced the representation problem
(see also our discussion on threats to validity in Section 5.5). Although we agree on the
critique about the obsolete and misleading notion of the term “quality requirement”, it
still dominates the way requirements are handled in practice, as reflected in our data.
Mairiza et al. [2010] perform a literature review on QRs, investigating the notion of

QRs in the software engineering literature to increase the understanding of this complex
and multifaceted phenomenon. Amongst others, they found about 114 different QR
classes. As a result of a frequency analysis, they found that the five most frequently
mentioned QR classes in literature are performance, reliability, usability, security, and
maintainability (in that order). In our study, we got similar results: we found that the five
most frequently used QR classes in our industrial specifications are security, reliability,
usability, efficiency, and portability (in that order).9 While Mairiza et al. [2010] performed
their analysis on available literature, our study analyzes QRs documented in industrial
projects.

5.2.3. QRs and their Implications on Software Development
One of the first studies that analyzed how to systematically deal with QRs in software
development was conducted by Chung and Nixon [1995]. They argue that QRs are
often retrofitted in the development process or pursued in parallel with, but separately
from, functional design and that an ad-hoc development process often makes it hard
to detect defects early. They perform three experimental studies on how well a given

9We excluded functionality from this list, as it is not a traditional QR class.
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framework [Mylopoulos et al., 1992] can be used to systematically deal with QRs. Svensson
et al. [2009] perform an interview study on how QRs are used in practice. Based on
their interviews, they found that there is no QR-specific elicitation, documentation,
and analysis, that QRs are often not quantified and, thus, difficult to test, and that
there is only an implicit management of QRs with little or no consequence analysis.
Furthermore, they found that at the project level, QRs are not taken into consideration
during product planning (and are thereby not included as hard requirements in the
projects) and they conclude that the realization of QRs is a reactive rather than proactive
effort. Borg et al. [2003] analyze via interviews how QRs are handled in practice by
the example of two Swedish software development organizations. They found that QRs
are difficult to elicit because of a focus on FRs, they are often described vaguely, are
often not sufficiently considered and prioritized, and they are sometimes even ignored.
Furthermore, they state that most QR classes are difficult to test properly due to their
nature, and when expressed in non-measurable terms, testing is time-consuming or even
impossible. Ameller et al. [2012] perform an empirical study based on interviews around
the question How do software architects deal with QRs in practice? They found that
QRs were not often documented, and even when documented, the documentation was
not always precise and usually became desynchronized. Furthermore, they state that
QRs were claimed to be mostly satisfied at the end of the project although just a few
classes were validated. With respect to model-driven development, Ameller et al. [2010]
show that most model-driven development (MDD) approaches focus only on functional
requirements and do not integrate QRs into the MDD process. They further identify
challenges to overcome in order to integrate QRs in the MDD process effectively. Their
challenges include modeling of QRs at the PIM-level, which includes the question which
QR classes are most relevant to the MDD process? According to Ameller et al. [2010], the
few MDD approaches that support the modeling of QRs can be classified into approaches
that use UML extensions [Fatwanto and Boughton, 2008; Wada et al., 2010; Zhu and
Liu, 2009] or a specific metamodel [Gönczy et al., 2009; Kugele et al., 2008; Molina and
Toval, 2009] to model QRs. In all of the approaches, functional requirements and QRs
are modeled separately. Damm et al. [2005] suggest to overcome this separation and
propose a so-called rich component model based on UML that integrates functional and
QRs in a common model. Similar approaches exist for specific classes of QRs (e.g., for
availability [Junker and Neubeck, 2012]). The results of our study provide empirical
support for the claim that QRs and FRs are not very different with respect to behavior
characteristics and, therefore, can be integrated in a common system model.

All these studies highlight, so far, that QRs are not integrated in the software devel-
opment process and furthermore that several problems are evident with QRs. In this
chapter, we use these problems as motivation and analyze what QR classes can be found
in practice and discuss how they can be integrated in the software development process.
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5.3. Study Design

In this section, we describe our overall goal, our research questions, and the design of our
study.

5.3.1. Goal and Research Questions

The goal of this study is to increase our understanding on the nature of QRs addressing
system properties10. In particular, we are interested in understanding to which extent
these QRs and their respective classes (e.g., security or reliability) describe system
behavior and what kind of behavior they address. This allows us to discuss the implications
on handling QRs in the software engineering disciplines (e.g., testing or design).
To achieve our goal, we formulate the following research questions (RQs), which we

cluster in two categories:

Distribution of QR classes in practice

We examine the distribution of QR classes in practice via two research questions:

RQ1: What QR classes are documented in practice? With this RQ, we want to
get an overview of the QR classes that are documented in practice.

RQ2: What QR classes are documented in different application domains?
Under this RQ, we analyze whether there is an observable difference between the
application domains w.r.t. the documented QR classes.

Nature of the QR classes

We analyze the QR classes with respect to their nature (behavioral or representational)
and their kind of behavior via three research questions:

RQ3: How many QRs describe system behavior? With this RQ, we want to
better understand how many QRs describe system behavior and how many describe
the representation of a system (behavioral vs. representational) and whether this
varies for different QR classes.

RQ4: Which system views do behavioral QRs address? With this RQ, we want
to better understand the relation between QR classes and the system (modeling)
views that the QRs address, e.g., interface, architecture, or state behavior.

RQ5: In which type of behavior theory are behavioral QRs expressed? With
this RQ, we want to better understand the relation between QR classes and behavior
theories used to express the QRs, e.g., logical, timed, or probabilistic description.

10In our study, we exclude those QRs going beyond system properties, e.g., process requirements.
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5.3.2. Study Object

The study objects used to answer our research questions constitute 11 industrial specifi-
cations from 5 different companies for different application domains and of different sizes
with 346 QRs11 in total. We collected all those requirements that were explicitly labeled
as “non-functional”, “quality”, or any specific quality attribute. The specifications further
differ in the level of abstraction, detail, and completeness. We cannot give detailed
information about the individual QRs or the projects. Yet, in Table 5.1, we summarize
our study objects, their application domain, and show exemplary (anonymized) QRs as
far as possible within the limits of existing non-disclosure agreements.

5.3.3. Data Collection and Analysis Procedures

To answer our research questions, we prepared the QRs from our study object and then
performed a classification and analysis. The procedure was performed by two researchers
in a pair. Both have over three years of experience in requirements engineering research
and model-based development research.

Data Preparation

The QRs from our study objects differ in their level of abstraction, detail, and completeness.
Therefore, we went through the set of QRs and processed each of them in either one of
the following ways:

• Full interpretation: We considered the QR as it is.

• Sub interpretation: We considered only a part of the QR that we clearly identified
as desired system property and disregarded the rest of the QR (e.g., due to
unnecessary/misleading information).

• Split requirement: We split the QR into a set of singular QRs because the
original QR addressed more than one desired property of a system.

• Exclude from study: We excluded the QR if it was not in the scope of our study
(e.g., process requirements), or if we were not able to understand the QR due to
missing or vague information.

In total, we excluded 56 requirements (≈ 16%) from the study and considered 76
requirements (≈ 22%) only partially. We split 97 requirements (≈ 28%) into an overall
of 337 requirements. Together with the 117 requirements (≈ 34%) that we considered as
they are, we ended up with a set of 530 requirements that we used for our classification.

11In the data preparation phase, we split non-singular QRs into singular QRs. Thus, the final number of
analyzed QRs is 530.
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Data Classification

We classified each of the 530 QRs according to the following classification schemes:

Type of QR:We used the quality model for external and internal quality of the ISO/IEC
9126-2001 [2001] to assign a quality characteristic to each QR (Functionality–
Suitability, Reliability–Maturity, . . . ; see ISO/IEC 9126-2001 [2001] for details). In
our study, the ISO/IEC 9126-2001 [2001] quality characteristics represent the QR
class we consider.

System view: We based our classification Broy’s requirements categorization [Broy,
2015, 2016] to assign a system view to each QR. As illustrated in Figure 5.1, struc-
tured views partition QRs into representational QRs that refer to the way a system
is syntactically or technically represented, described, structured, implemented, or
executed (e.g., QR of S4, Table 5.1), and behavioral QRs that describe behavioral
properties of a system. Behavioral QRs are further partitioned into QRs that
describe black-box behavior at the interface of a system (e.g., QR of S10, Table 5.1)
and QRs that address a glass-box view onto a system describing its architecture
(e.g., QR of S8, Table 5.1), or its state behavior (e.g., QR of S5, Table 5.1).

Behavior theory: Each behavioral QR uses a certain behavior theory to express the
desired properties of the system. We differentiate between the following classes of
behavior theories for our classification:

Syntactic The QR is expressed by a syntactic structure on which behavior can
be described (e.g., QR of S2, Table 5.1).

Logical The QR is expressed by a set of interaction patterns (e.g., QR of S8,
Table 5.1).

Timed The QR is expressed by a set of interaction patterns with relation to time
(e.g., QR of S6, Table 5.1).

Probabilistic The QR is expressed by probabilities for a set of interaction patterns
(e.g., QR of S1, Table 5.1).

Timed and probabilistic The QR is expressed by probabilities for a set of in-
teraction patterns with relation to time (e.g., QR of S9, Table 5.1).

To assess the feasibility and clarity of this classification scheme, we performed a pre-
study on a subset of the QRs (reported in our previously published material [Eckhardt
et al., 2015]). One result of this pre-study was a decision tree for the classification of
QRs. We created this tree to improve the reproducibility of our classification (Figure 5.1
shows a simplified version of the taxonomy on which the decision tree is based)12.
12The decision tree can be found under:

http://www4.in.tum.de/~eckharjo/DecisionTree.pdf or in Appendix A, Figure A.1.
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Requirement

RepresentationalBehavioral

Glass-box

StateArchitecture

Black-box
interface

Figure 5.1.: Classification of Requirements by means of the addressed system view.

During the pre-study, we also recognized multiple occurrences of QRs following a
common pattern. For example, many specifications contained an QR following the
pattern: “The system shall run/be installed on platform X”. We identified a list of 13 of
such patterns and assigned a common classification that we applied to all QR instances
following that pattern.13

Data Analysis Procedures

To answer RQ1, we analyzed the distribution of QRs with respect to the ISO/IEC
9126-2001 [2001] quality characteristics. We provide two views onto this distribution.
One detailed view that shows the distribution of QRs with respect to all 27 quality
characteristics contained in the standard and one coarse-grained view that shows the
distribution of QRs with respect to only 7 aggregated quality characteristics. In the
aggregated quality characteristics, we subsumed low-level quality characteristics (such
as Functionality–Suitability and Functionality–Accuracy) to their corresponding high-
level quality class (Functionality in this case). We made one exception: we created for
Functionality–Security an own class, as most other QR classifications handle security
separately. This results in the following aggregated list of quality characteristics: Func-
tionality, Usability, Reliability, Security, Efficiency, Maintainability, and Portability (in
the following we will refer to this list as ISOa quality characteristics).

To answer RQ2, we analyzed the distribution of QRs in the ISOa quality characteristics
with respect to the application domain of the corresponding system.

To answer RQ3, we contrast the number of representational QRs with the number of
behavioral QRs. To answer RQ4, we analyze the distribution of the behavioral QRs with
respect to interface, architecture, and state behavior. To answer RQ5, we analyze the
distribution of the behavioral QRs with respect to the behavior theory used to express
them. For each RQ, we present the results for the set of all requirements and structured
according to the ISOa quality characteristics.
13The complete list of patterns and the corresponding classification can be found under:

http://www4.in.tum.de/~eckharjo/PatternList.pdf or in Appendix A, Figure A.2.

88

http://www4.in.tum.de/~eckharjo/PatternList.pdf


5.4. Study Results

Table 5.2.: Distribution of QRs with respect to the ISO/IEC 9126-2001 [2001] quality
characteristics

Quality characteristic count %
Functionality - Suitability 117 22.1%
Functionality - Security 104 19.6%
Reliability - Maturity 40 7.5%
Usability - Operability 40 7.5%
Efficiency - Time Behaviour 37 7.0%
Reliability - Reliability Compliance 29 5.5%
Efficiency - Resource Utilization 21 4.0%
Portability - Adaptability 21 4.0%
Portability - Installability 18 3.4%
Maintainability - Changeability 12 2.3%
Reliability - Recoverability 11 2.1%
Functionality - Functionality Compliance 10 1.9%
Usability - Learnability 10 1.9%
Functionality - Accuracy 9 1.7%
Usability - Usability Compliance 9 1.7%
Functionality -Interoperability 8 1.5%
Usability - Understandability 8 1.5%
Maintainability - Analyzability 7 1.3%
Reliability - Fault Tolerance 6 1.1%
Maintainability - Stability 4 0.8%
Portability - Replaceability 4 0.8%
Portability - Co-Existence 3 0.6%
Maintainability - Maintainability Compliance 1 0.2%
Usability - Attractiveness 1 0.2%

5.4. Study Results

In the following, we report on the result for our research questions structured according
to the research questions introduced in Section 5.3.

5.4.1. Distribution of QR Classes in Practice

RQ1: Types of QRs

Table 5.2 shows the number (count) and percentage of QRs (relative to the total number
of QRs) for each quality characteristic. Table 5.3 further shows the distribution with
respect to the ISOa quality characteristics. As shown in Table 5.2, the two classes
Functionality–Suitability and Functionality–Security stand out with in total 221 QRs
(≈41.7%). Functionality–Suitability is defined as “the capability of the software product to
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Table 5.3.: Distribution of QRs with respect to the ISOa quality characteristics.
Quality characteristic count %
Functionality 144 27.2%
Security 104 19.6%
Reliability 86 16.2%
Usability 68 12.8%
Efficiency 58 10.9%
Portability 46 8.7%
Maintainability 24 4.5%

provide an appropriate set of functions for specified tasks and user objectives” [ISO/IEC
9126-2001, 2001]. This essentially corresponds to a traditional understanding of a
functional requirement. Furthermore, we classified up to 40 QRs (≈7.5%) as Reliability–
Maturity, Usability–Operability, or as Efficiency–Time Behaviour.

In the aggregated results shown in Table 5.3, one can see that the most common
classification of QRs is Functionality with around 27%. Furthermore, around 20% of all
QRs concern Security, 16% concern Reliability, and 13% concern Usability. Efficiency (≈
11%), Portability (≈ 9%), and Maintainability (≈ 5%) occur only to a small extent in
our data.

RQ2: Relation to Application Domain

The results for RQ2 are given in Figure 5.2 showing the distribution of QR quality
characteristics with respect to the application domain of the corresponding system
(Business Information System (BIS), Hybrid (ES/BIS), or Embedded System (ES)).

One can see a clear difference in the distribution of quality characteristics among the
application domains. For example, for business information systems, we classified most
QRs as Security or Functionality, while for embedded systems, most QRs are classified
as Reliability. In hybrid systems, the distribution among the quality characteristics is
more balanced compared with the other application domains.

Although we expected to see different distributions of QR classes between application
domains, we were surprised by the extent of this difference. We see these results as a
strong argument for domain-specific handling of QRs. In Section 5.6, we will discuss this
in more detail.

5.4.2. Nature of Types of QRs

RQ3: Amount of QRs Describing System Behavior

The results for RQ3 are shown in Figure 5.3. The table shows the distribution of behavioral
and representational QRs for all QRs from our data set while the bar chart shows the
distribution with respect to the ISOa quality characteristics. More precisely, the bar
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Figure 5.2.: Relative distribution of QRs over the ISOa quality characteristics w.r.t. the
application domain.
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Behavioral vs. Representational count %
Behavioral 396 74.7%

– Black-box 273 51.5%
– Glass-box 123 23.2%

Representational 134 25.3%

Portability

Maintainability

Efficiency

Security

Reliability

Usability

Functionality

0.00 0.25 0.50 0.75 1.00

Blackbox
Glassbox
Representational

Figure 5.3.: Distribution of behavioral and representational QRs: black-box (black), glass-
box (dark gray), and representational (light gray).

chart shows the percentage of QRs that we classified as black-box (black), glass-box (dark
gray), or representational (light gray) within each ISOa class.

Quantitative results of RQ3:
74.7% of all QRs describe behavior of the system (black-box or glass-box) while
25.3% describe representational aspects.

More than half of each of the QRs in the Functionality, Usability, Reliability, and Efficiency
classes describe black-box behavior defined over the interface of the system. For example,
most efficiency requirements describe desired or expected time intervals between events
that are observable at the system interface. Reliability requirements often describe the
observable reaction of the system at the interface if an error occurs within the system,
such as “The [system] must have a mean time between failures greater than [x] h”.
The only class where the largest share of QRs is classified as glass-box behavior is

Maintainability. That means, maintainability requirements, if they consider system
properties, often describe the desired internal structure or behavior within this structure
(glass-box), as for example the requirement “The configuration [of the system] shall be
independent from the system software and application software”. However, a substantial
amount of glass-box behavior can also be found in the Functionality, Reliability, Security,
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Efficiency, and Portability classes. Thus, QRs within these classes also describe internal
behavior, as for example the Portability requirement “The server software shall have
the capability to run together with other applications on the same hardware whenever
possible”.
Considering the amount of representational QRs, one can see that the QR classes

Usability, Portability, and Security stand out. For usability and portability, this is as
we expected. Usability requirements often describe representational aspects of the user
interface with the goal to support the user in understanding and controlling a system, as
for example the requirement “[The] GUI shall provide a common look and feel whenever
possible”. Portability requirements demand the system to be represented in a way
that it fits a specified environment, as for example the requirement “The system shall
run on platform X”. However, for security, we did not expect such a high portion of
representational QRs. Therefore, we analyzed these in detail and found that many
representational QRs in the Security class contain a reference to a standard. For example,
we found a high number of QRs stating, “The security class of the interface to system
X with respect to data confidentiality is high”. Excluding those QRs that reference
standards from the results, around 54% of security QRs describe black-box behavior,
39% describe glass-box behavior, and only 7% describe representational aspects. This
shows that some aspects of security are visible at the interface, as for example user
authentication, and some aspects are internal to the system, as for example an encrypted
communication within sub-systems.

Another point interesting to us was that none of the QR classes is exclusively black-box,
glass-box, or representational. For example, in the class Functionality, most QRs describe
black-box behavior. However, around 31% of the QRs describe glass-box behavior and 17%
describe representational aspects. This is because the class Functionality does not only
include behavior over the interface, but also internal behavior like “A system component
shall save a user’s edits whenever possible”, and also representational aspects like “The
backup data must be stored according to [the company’s] policies”.

RQ4: Distribution of Behavioral QRs w.r.t. System Views

The results for RQ4 are shown in Figure 5.4. The table shows the distribution of QRs
with respect to the system view they address while the bar chart shows this distribution
with respect to the ISOa quality characteristics. More precisely, the bar chart shows
the percentage of QRs that we classified as interface (black), architecture (dark gray),
or state (light gray). For RQ4, we considered only behavioral QRs and neglected QRs
classified as representational, as they do not describe behavior.

Quantitative results of RQ4:
68.9% of all behavioral QRs describe behavior over the interface of the system,
21.5% describe architectural behavior, and 9.6% describe behavior related to
states of the system.
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System view count %
Interface 273 68.9%
Architecture 85 21.5%
State 38 9.6%

Portability

Maintainability

Efficiency

Security

Reliability

Usability

Functionality

0.00 0.25 0.50 0.75 1.00

System view
Interface
Architecture 
State

Figure 5.4.: Distribution of behavioral QRs with respect to the system view they address:
interface (black), architecture (dark gray), and state (light gray).

We can see that in the Functionality, Usability, Reliability, Security, and Efficiency
classes most behavioral QRs are classified as interface. For the Maintainability and
Portability classes, the most common classification is architecture. Usability is the only
QR class without any QR classified as architecture. We can further see that all QR
classes but Efficiency contain QRs that describe state-related aspects, as for example
the Functionality requirement “[The system] must ensure that submitted offers can
neither be modified nor deleted”. This shows that behavioral QRs describe externally
visible behavior but also behavior concerning the architecture (see structuring the
functionality by functions [Broy, 2010b]) or state-related behavior (see operational states
of a system [Vogelsang et al., 2015]). For example, in the Security class, there are QRs that
describe behavior over the interface like “There has to be an authentication mechanism”,
some QRs describe architectural behavior like “[The system] must provide intrusion
detection mechanisms”, and some describe state-related aspects like “The password shall
be valid for at most 30 days”.

RQ5: Distribution of Behavioral QRs w.r.t. Behavior Theories

The results for RQ5 are shown in Figure 5.5. The table shows the distribution of QRs
with respect to the behavior theory they use and the bar chart shows this distribution with
respect to the ISOa quality characteristics. More precisely, the figure shows the percentage
of QRs that we classified as syntactic, logical, timed, probabilistic, or probabilistic and
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Behavior theory count %
Syntactic 47 11.9%
Logical 277 69.9%
Timed 54 13.6%
Probabilistic 7 1.8%
Probabilistic & Timed 11 2.8%

Portability
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Security
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Usability
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0.00 0.25 0.50 0.75 1.00

Behavior theory
Syntactic
Logical
Timed
Probabilistic
Prob. and Timed

Figure 5.5.: Relative distribution of behavioral QRs with respect to their behavior theory:
syntactic, logical, timed, probabilistic, and probabilistic and timed (from black
to white).

timed (from black to white). For RQ5, we considered only behavioral QRs and neglected
QRs classified as representational as they do not describe behavior.

Quantitative results of RQ5:
Most behavioral QRs are logical (69.9%), 18.2% are timed and/or probabilistic,
and only 11.9% are syntactic.

Over all QR classes, most QRs are logical (around 69.9%), while 13.6% are timed,
11.9% are syntactic, 2.8% are probabilistic and timed, and 1.8% are probabilistic. Most
timed and also probabilistic and timed QRs belong to the class Efficiency. Moreover, the
class Reliability stands out, as it also contains many timed, probabilistic, and timed and
probabilistic QRs.

5.4.3. Summary of Results
Figure 5.6 provides a consolidated quantified view on our overall results.

It shows the distribution of QRs among the QR classes with respect to the addressed
system view and the used behavior theory. The figure shows a table with one diagram per
cell; the rows display the QR classes and the columns display the addressed system view
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Figure 5.6.: Relative distribution of QRs within the QR classes w.r.t. the addressed
system view and the used behavior theory.
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and an additional column for the representational QRs. Within each cell, the relative
distribution per behavior theory is shown (relative per QR class, i.e., the values in all
cells of each row sum up to 100%).
In conclusion, most QRs address interface behavior, mostly expressed by logical or

timed assertions. The QR classes Usability, Security, and Portability include, in contrast
to the other classes, a high portion of representational QRs. Furthermore, all classes
but Usability contain architectural aspects (see column Architecture), while the highest
percentage of those QRs are in the Maintainability class.

5.5. Threats to Validity
In the following, we discuss the threats to validity and mitigation measures we took. We
discuss them along the different problems as they arose during our study.

5.5.1. Representativeness of the Data
Inherent to the nature of our study is the data representativeness on which we built
our analysis. The concerns range from the representativeness of the way the QRs are
specified to the completeness of the data as it currently covers only the particularities
of selected industrial contexts. We cannot mitigate this threat but consider our data
set large enough to allow us to draw first conclusions on the state of the practice. The
relation to existing evidence (see Section 5.7.1) additionally strengthens our conclusions.

5.5.2. QR Selection Problem
We collected only those requirements explicitly labeled as “non-functional” or “quality”.
With this selection procedure, some relevant QRs might have been missed or irrelevant
ones might have been included. To address this problem, we plan to perform the
classification on the whole data set as future work, including functional and quality
requirements.

5.5.3. Preparation Problem
In our data preparation phase, we excluded QR from the study if they were not in scope
of our study (e.g., process requirements) or if we were not able to understand them
(due to missing or vague information). This exclusion process could threaten the overall
conclusion validity, but as we excluded only about 16%, we do not consider this as a
major threat.

5.5.4. Classification Problem
Prior to our study, we performed a pre-study with several independent classification
rounds [Eckhardt et al., 2015]. The inter-rater agreement between the independent
raters was, however, so low that we had to conclude that the classification dimensions
are not clear enough. To resolve this issue, we performed several refinements of the
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classification and created a decision tree and a pattern catalogue that supports the
classification process [Eckhardt et al., 2015]. In the end, we did the classification in a
pair of researchers and individually discussed each QR.

5.5.5. Representation Problem

Although classifying in a pair of researchers, we still faced the representation problem
discussed by Glinz [2007], which threatens the internal validity. If an QR stated “The
system shall authenticate the user”, we classified it as black-box interface, and logical as it
describes a black-box behavior over the interface. However, if an QR stated “The system
shall contain an authentication component”, we classified it as glass-box architecture and
logical as it requires an internal component for authentication.

5.5.6. Contextualization Problem

We consider the reliability of our conclusions to be very much dependent on the possibility
to reproduce the results, which in turn is dependent on the clearness of the context
information. The latter, however, is strongly limited by NDAs that too often prevent
providing full disclosure of the contexts and even the project characteristics. To mitigate
this threat, we anonymized the data as much as possible and disclosed all information
possible within the limits of our non-disclosure agreements.

5.6. Discussion

Based on the results, we identified a set of insights which we discuss in the following
paragraphs.

5.6.1. QRs are Not Non-functional

It is commonly acknowledged that functional requirements describe logical behavior over
the interface of the system. From a broader view, one could even say that functional
requirements describe any kind of behavior over the interface of the system, including
timing and/or probabilistic behavior. From this perspective, we conclude that many of
those QRs that address system properties describe the same type of behavior as functional
requirements do (see column Interface in Figure 5.6). This is true for almost all QR classes
we analyzed; even for QR classes which are sometimes called internal quality attributes
(e.g., portability or maintainability) [McConnell, 2004]. Hence, we argue that—at least
based on our data—most “quality” requirements describe functional aspects of a system
and are, thus, basically not non-functional. From a practical point of view, this means
that most QRs can be elicited, specified, and analyzed like functional requirements. For
example, QRs classified as black-box interface requirements, are candidates for system
tests. In our data set, system test cases could have been specified for almost 51.5% of
the QRs.
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5.6.2. Functional Requirements are often Labeled as QRs

Moreover, functional requirements in the traditional understanding were often labeled as
QRs in our examined specifications. We classified 22.1% of our overall QR population as
Functionality–Suitability, which is a quality characteristic that addresses the functionality
of a system (“The capability of the software product to provide an appropriate set of
functions for specified tasks and user objectives” [ISO/IEC 9126-2001, 2001]). Given that
QRs are usually not tested and analyzed as thoroughly as functional requirements [Ameller
et al., 2012; Borg et al., 2003; Svensson et al., 2009], this means that, one out of five QRs
in our data set elude a thorough analysis process just because they are labeled as QRs.

5.6.3. QRs are often Specified by Reference to Standards

As already indicated within our results for RQ3, we realized that several examined QRs
describe requirements by pointing to a standard (e.g., company style guides or safety
standards). More specifically, 68 of 530 QRs (≈ 13%) contained references to standards.
We classified these as representational since we were not able to access these standards
due to availability and time constraints. However, these standard-referencing QRs might
be interesting to explore in future investigations. On the one hand, they allow a concise
specification; on the other hand, they introduce much implicitly necessary knowledge
and assume that the reader of the specification has knowledge about and access to those
standards.

5.6.4. Only few QRs Deal with Architectural Aspects

While in literature the relation of QRs to architecture and architectural constraints of a
system is often emphasized [Chung et al., 2012; Pohl, 2010; Zhu and Gorton, 2007], the
QRs of our sample dealt with architecture only to a small degree (see column Architecture
in Figure 5.6). Only for Efficiency, Maintainability, and Portability, roughly one quarter
of the QRs considered architectural aspects of a system. Following this, we argue that—at
least based on our data—only few QRs actually describe architectural aspects of a system.
It is an interesting point for future research to mirror our findings with the notion
of architecturally significant requirements (ASRs) [Chen et al., 2013]. ASRs are those
requirements which have a measurable impact on a software system’s architecture. They
are often difficult to define and articulate, tend to be expressed vaguely, are often initially
neglected, tend to be hidden within other requirements, and are subjective, variable, and
situational [Chen et al., 2013]. Certainly, all QRs that we classified as addressing the
system view architecture can be considered as QRs. However, also QRs that we classified
as addressing the system view interface or state may have an impact on the architecture,
as for example the requirement “the system should provide five nines (99.999 percent)
availability”. The difference is that QRs addressing the system view architecture make
the impact on the architecture explicit. For other QRs, an architect needs to decide
whether they are ASRs or not.
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5.6.5. No QR Class is Uniquely Affiliated with only one Behavior
Characteristic

Our analysis shows that none of the considered QR classes is characterized by only
one specific system view or behavior theory. Accordingly, most QR classes contain
representational and behavioral QRs which address all system views and using all behavior
theories. While a classification of QRs according to quality characteristics may be helpful
to express the intent of an QR, the quality characteristic should not determine how an
QR is specified, implemented, or tested. This decision should rather be made based on
the addressed system view and the behavior theory used to express the QR.

5.6.6. The Application Domain Influences QRs

As our results indicate, the application domain of the corresponding system influences the
relevancy of QR classes. We therefore conclude that specification and analysis procedures
should be customized for different application domains. For example, in the embedded
systems domain, the need for probabilistic analysis techniques is stronger compared with
the business information systems domain due to the larger amount of reliability QRs
that are often described in a probabilistic manner. On the other hand, for business
information systems, we should support specification techniques that integrate functional
requirements and behavioral QRs, since around 70% of the QRs from BISs were classified
as functionality or security (excluding the QRs referencing standards from the class
security, most QRs in the class security concern the interface), which describe logical
interface behavior to a large extent.

5.6.7. QRs are Specified at Different Levels of Abstraction

In our data set, we found QRs at different levels of abstraction varying in their degree
of detail and completeness. QRs ranged from high-level goal descriptions like “The
availability shall not be less than [x]%” to very concrete and detailed descriptions of
behavior like “The delay between passing a [message] and decoding the first loop message
shall be ≤ [x] seconds”. This is in tune with the view of Pohl [2010]; He states that “non-
functional” requirements are underspecified functional requirements. In a development
process, high-level QRs need to be refined to detailed functional requirements. To make
this refinement explicit, we need an approach for relating high-level QRs to low-level
functional requirements. A first approach in this direction is proposed by Broy in his
recent work [Broy, 2016].

5.6.8. Structuring the Specification of QRs

There are different ways of structuring functional requirements in requirements specifica-
tions, inter alia, structuring the requirements according to functions of the system [Broy,
2010b] or structuring requirements according to components of the system. However, with
respect to quality requirements, the question how to structure them in a requirements
specification is still open. For example, given the performance requirement “[The function
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X] must have an average processing time of less than 10ms”. This requirement can be
structurally added as a child to the requirements of “function X”. But the security
requirement “[The system] must ensure that submitted offers can neither be modified nor
deleted” rather belongs to the system as a whole or to a specific component.

Our results of RQ3 and RQ4 show that 74.7% of all requirements describe behavior
of the system (black-box or glass-box) and 25.3% describe representational aspects of a
system. From the behavioral requirement, 68.9% describe behavior over the interface of
the system, 21.5% describe architectural behavior, and 9.6% describe behavior related to
states of the system.
If we interpret these results with respect to how to structure QRs in a requirements

specification, we could structure all those requirements that are categorized as black-box
interface requirements into a hierarchy of features and describe each feature by specifi-
cations of functions (functional requirement as well as so-called QRs). The remaining
requirements, i.e., those that are categorized as glass-box architecture and glass-box state,
can be structured into a hierarchy of sub-systems forming its components.

5.7. Conclusions

The goal of this chapter was to reach our second objective. In particular, our goal
was to assess if a categorization based on a system model is adequate for requirements
found in practice and whether it effectively supports subsequent development activities.
In this dissertation, with adequacy of a requirements categorization, we mean that
the categorization is applicable for industrial requirements and, furthermore, supports
subsequent development activities. To this end, we conducted a study where we analyzed
and classified 530 QRs extracted from 11 industrial requirements specifications with
respect to Broy’s requirements categorization that is based on a system model. According
to the categorization, 75% of the requirements labeled as “quality” in the considered
industrial specifications describe system behavior and 25% describe the representation of
the system. From the QRs that describe system behavior, 69% describe behavior over
the interface of the system, 21% describe architectural behavior and 10% describe state
behavior. We furthermore discussed the implications we see on handling QRs in the
software development phases, e.g., testing or design.
Based on these results, we argue that functional requirements describe any kind of

behavior over the interface of the system, including timing and/or probabilistic behavior.
From this perspective, we conclude that many of those QRs that address system properties
describe the same type of behavior as functional requirements do (see column Interface in
Figure 5.6). This is true for almost all QR classes we analyzed; even for QR classes which
are sometimes called internal quality attributes (e.g., portability or maintainability) [Mc-
Connell, 2004]. Hence, we argue that Broy’s requirements categorization—that is based
on a system model—is adequate for requirements found in practice, as the categories can
be linked to system development activities. From a practical point of view, this means
that most QRs can be elicited, specified, and analyzed like functional requirements. For
example, QRs classified as black-box interface requirements, are candidates for system
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tests. In our data set, system test cases could have been specified for almost 51.5% of the
QRs. This contribution supports (the first part of) our hypothesis, i.e., a categorization
based on a system model is adequate for requirements found in practice.

In the next chapter, we summarize and critically discuss the implications of requirements
categorizations in practice and sketch how to overcome deficiencies associated with QR
in practice.

5.7.1. Relation to Existing Evidence

Our results show various relations to existing evidence. For instance, during our clas-
sification, we faced all three problems described by Glinz [2007]. We also experienced
same or similar terminological confusions on QRs as reported by Ameller et al. [2012].
In particular, we found that categories such as availability were often misinterpreted
in the documents and used in different ways, e.g., as performance. Furthermore, they
found that the four QR classes most important to software architects were performance,
usability, security, and availability (in that order). We could support their results via
quantitative results: Their four QR classes are in our list of the top four QR classes (in a
different order). Finally, our results also resemble the results of Mairiza et al. [2010] with
respect to the five most frequently mentioned QR classes in literature.

Apart from supporting existing evidence, we provide first empirical evidence on what
quality requirements are in their nature by analyzing and classifying them with respect
to various facets. Summarizing our findings, we conclude that most so-called “quality” re-
quirements in our sample describe functional aspects of a system and are, thus, essentially
not non-functional.

5.7.2. Impact/Implications

Our results strengthen our confidence that many requirements that are currently classified
as QRs in practice can be handled equally to functional requirements, which has both a
strong theoretical and practical impact. Existing literature (e.g., [Ameller et al., 2012;
Borg et al., 2003; Chung and Nixon, 1995; Svensson et al., 2009]) indicates that the
development process for a requirement differs depending on whether it is classified as
“quality” or “functional”. In contrast to functional requirements, requirements classified
as QR are often neglected and properties like testability are not supported. In industrial
collaborations, we have also seen that QRs and FRs were documented in separate
documents, which has led to failing acceptance tests performed by an external company.
Our results suggest that this separation is artificial to a large extent. We argue that
treating QRs the same as FRs would have major consequences for the software engineering
process. However, there are currently no empirical studies that investigate this argument
in detail.
A long-term vision that emerges from our results is that we might be able to better

integrate QRs into a holistic software development process in the future. Such an
integration would yield, for instance, seamless modeling of all properties associated with
a system—no matter if they are functional or quality. The benefits of such an integration
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include that QRs would not be neglected during development activities, as it is too often
current state of practice; from an improvement in the traceability of requirements over
an improvement of possibilities for progress control to an improvement of validation and
verification.

5.7.3. Future Work
Our analysis is based on an inherently incomplete set of requirements specifications
gathered from practical environments. Hence, our study can be considered as a first
attempt to improve the understanding on the nature of QRs from a practical perspective.
This has certain implications on the validity of our results (see Section 5.5). However,
they still provide a suitable basis to draw first conclusions, which need to be strengthened
via additional studies; for instance, by increasing the sample size, by taking into account
further application domains, but also by including functional requirements into the
analysis. So far, our results are suitable to trigger critical, yet important discussions
within the community.

We are planning three concrete next steps based on our data set: First, we will include
the remaining 1495 functional requirements (the ones not labeled as “non-functional” or
quality attribute) in our study. Second, we are planning to advance the integration of QRs
into software development by providing specification blueprints (based on an integrated
model) for practitioners. Third, as discussed in Section 5.7.2, we will investigate the
consequences of labeling a requirement as “QR” for the development process. We expect
to find consequences for how requirements labeled as QR are tested or when they are
considered in the development process.
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“The most important property of a program is whether it accom-
plishes the intention of its user.”

— Sir Charles Antony Richard Hoare
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An Analysis of Requirements
Categorizations and their
Consequences in Practice

We gave an overview of requirements categorizations in Chapter 3, analyzed in
Chapter 4 how practitioners handle requirements and requirements categoriza-
tions, and analyzed the adequacy1 of a categorization based on a system model

with respect to requirements found in practice in Chapter 5. The goal of this chapter
is to analyze the results from these chapters and to derive problems with requirements
categorizations in practice.

6.1. Deficiencies of Requirements Categorizations in
Practice

The results of our study with 109 practitioners described in Chapter 4 indicates that
there are several issues with requirements categorizations in practice. Table 6.1 lists
the issues (results of a qualitative coding as recommended by (Straussian) Grounded
Theory [Stol et al., 2016]) and the number of occurrences of the issues. The table shows
the coded answers of the participants that make a distinction between FRs and QRs, i.e.,
of participants that use a requirements categorization.
If we analyze these issues in detail, we see that there are deficiencies associated

with the handling of QRs in all requirements engineering activities. For example, in
the documentation activity, handling the traceability and the consistency of QRs may
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Table 6.1.: Issues and number of occurrence of the code.
Category Issue #
General Traceability becomes expensive 4
General QRs are neglected 2
General Distinction between QR and FR unclear 2
General QRs are forgotten 2
General QR defect may lead to weak user acceptance 2
General Focus too much on FR 2
General Maintaining consistency becomes expensive 1
General QRs are handled differently 1
General QRs remain high-level 1
General QRs overlap 1
RE QRs are collected in a rush 1
Design & Impl. Late architectural changes 2
V&V Unclear testing process for QRs 2

become expensive and, furthermore, QRs may remain high-level and may overlap. In the
elicitation activity, QRs may be neglected or forgotten and the focus may be too much
on FR. In the negotiation activity, QR defects may lead to weak user acceptance and
in the validation and management activity, QRs may overlap and the traceability may
become expensive.
Furthermore, there are several studies in literature that analyze deficiencies that are

associated with QRs in a system and software development process. For example, Chung
and Nixon [1995] argue that QRs are often retrofitted in the development process or
pursued in parallel with, but separately from, functional design and that an ad-hoc
development process often makes it hard to detect defects early. Svensson et al. [2009]
perform an interview study on how QRs are used in practice and found that there is no
QR-specific elicitation, documentation, and analysis, that QRs are often not quantified
and, thus, difficult to test, and that there is only an implicit management of QRs with
little or no consequence analysis. Furthermore, they found that at the project level,
QRs are not taken into consideration during product planning (and are thereby not
included as hard requirements in the projects) and they conclude that the realization
of QRs is a reactive rather than proactive effort. Borg et al. [2003] found that QRs
are difficult to elicit because of a focus on FRs, they are often described vaguely, are
often not sufficiently considered and prioritized, and they are sometimes even ignored.
Furthermore, they state that most QR classes are difficult to test properly due to their
nature, and when expressed in non-measurable terms, testing is time-consuming or
even impossible. Ameller et al. [2012] found that QRs were not often documented, and
even when documented, the documentation was not always precise and usually became
desynchronized. Furthermore, they state that QRs were claimed to be mostly satisfied at
the end of the project although just a few classes were validated. Ameller et al. [2010]
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show that most model-driven development (MDD) approaches focus only on functional
requirements and do not integrate QRs into the MDD process.
In summary, our results and these studies highlight, so far, that requirements cat-

egorizations are not (sufficiently) integrated in the software development process and
furthermore that several problems are evident with them. We argue that there are two
main problems of requirements categorizations with respect to an integration in system
development process, i.e., with respect to its operationalization:

1. The definitions of the individual categories of the categorizations are not defined in
a way that is easily understandable and clearly applicable for a given context.

2. The categorizations only provide minor means to support subsequent develop-
ment activities.

Those two problems essentially concern the purpose of a categorization (in general).
In our understanding, the purpose of a categorization (in general) is to clearly and
unambiguously categorize elements in categories according to clearly defined arguments.
Furthermore, and even more important, a categorization should have a clearly defined
purpose. For requirements categorizations, this means that on the one hand—from an
academic perspective—a categorization should clearly and unambiguously categorize
requirements. On the other hand—from a practical perspective—a categorization should
categorize requirements in a way such that the activities that are performed with the
requirements can be aligned according to the categories.

Note. In the following, we will discuss the ISO/IEC 25010-2011 [2011] as a repre-
sentative for a categorization based on quality attributes. In particular, we discuss the
system/software product quality model as shown in Figure 3.4.

6.1.1. Understandability and Separability
The quality model of the ISO/IEC 25010-2011 [2011] consists of in total seven character-
istics with 31 sub-characteristics. For each of the characteristics and sub-characteristics a
short definition is prose is provided. If we consider the individual definitions in detail, we
argue that the definitions are not really helpful to clearly understand the definition and
apply them in a given context. For example, the ISO/IEC 25010-2011 [2011] provides
the following definition for the quality characteristic “Performance/efficiency”:

“Performance/efficiency is the performance relative to the amount of resources
used under stated conditions. Note: Resources can include other software
products, the software and hardware configuration of the system, and materials
(e.g. print paper, storage media).”

— ISO/IEC 25010-2011 [2011]

In the definition, performance/efficiency is defined by using the term performance.
First, the term performance is ambiguous as it has many different definitions depending
on the context and the ISO/IEC 25010-2011 [2011] does not clarify what meaning they
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use for their definitions. In this case, we understand the term performance as the degree
to which the system fulfills its purpose. Still, the definition does not provide a precise
notion of the concept under definition. The same holds for the sub-characteristics. For
example, the ISO/IEC 25010-2011 [2011] defines the sub-characteristic “Time-behavior”
as

“The degree to which the response and processing times and throughput rates
of a product or system, when performing its functions, meet requirements.”

— ISO/IEC 25010-2011 [2011]

The definition contains the concepts response time, processing time, and throughput
rates but does not detail or define their actual meaning. Furthermore, the quality sub-
characteristic is defined as “the degree to meet the requirements”. This in itself is a
questionable definition.

In summary, we argue that these definitions lack a precise and explicit definition of the
used terms and thus hamper understandability and applicability for a given context. This
lack of a precise and explicit definition may have the following consequences in practice:

Requirements may be categorized in a wrong category. An imprecise definition
of the categories of a categorization may lead to a wrong categorization of a require-
ment. If we assume that the development process differs for different categories, as
for example, for safety requirements, the ISO/IEC 26262-2011 [2011] standard pro-
vides a specific development process and further processual requirements. However,
if we wrongly categorize a requirement as safety requirement, we may conduct a
labor-intensive development process that may not be necessary. If we categorize a
safety requirement in another category, we do not conduct the specific development
process and thus do not comply with the standard.

Thus, we argue that an imprecise definition of the categories of a categorization
may lead to wrong categorization of requirements, and this, in turn, may have
negative consequences if the development process differs for requirements of different
categories.

Important information regarding a requirement may be missed. An imprecise
definition of the categories of a categorization may lead to incomplete specifications
of requirements (incomplete in the sense of (in)completeness a single requirement,
i.e., the degree to which a requirement contains all necessary information [Glinz,
2014]). For example, if we consider the definition of “Time-behavior” in the ISO/IEC
25010-2011 [2011], i.e., “The degree to which the response and processing times
and throughput rates of a product or system, when performing its functions, meet
requirements”. This definition does not explicitly state what information is required
in the specification of a requirement. Thus, it is unclear to the requirements engineer
what information to document, and thus, important information may be missing in
the specification of that requirement.
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Thus, we argue that an imprecise definition of the categories of a categorization
may lead to incomplete requirements, and this, in turn, is named as the most
frequent cause for project failure in a survey with 58 requirements engineers
by Méndez Fernández and Wagner [2013].

6.1.2. Support for Development Activities

Furthermore, the ISO/IEC 25010-2011 [2011] claims that their models are useful for the
activities specifying requirements, establishing measures and performing quality evaluations.
The authors argue that the defined quality characteristics can be used as a checklist
for ensuring a comprehensive treatment of quality requirements, thus providing a basis
for estimating the consequent effort and activities that will be needed during system
development. However, they do not provide further details for how to accomplish these
tasks.
For example, they provide a simple set of questions for four different stakeholders

for the activity specifying requirements. For “Performance/efficiency” they provide the
following questions:

Stakeholder Question
Primary User How efficient does the user need to be when using the system to

perform their task?
Content provider How efficient does the content provider need to be when updating

the system?
Maintainer How efficient does the person maintaining or porting the system

need to be?
Indirect User How efficient does the person using the output from the system

need to be?

These questions can be used as checklist to support the elicitation of requirements.
However, they are overly simplistic as they do not provide a means for specifying the
requirements. Furthermore, they remain on a high level and thus do not challenge
the requirements engineer to think about specific concepts of efficiency (as for example
response times or throughput rates). Furthermore, as the ISO/IEC 25010-2011 [2011] does
not provide a means for the specification of requirements, it does not provide support for
subsequent development activities like architectural design.

For establishing measures and performing quality evaluations, the ISO/IEC 25010-2011
[2011] provides a reference model for measuring software product quality. Figure 6.1
shows the reference model. Quality properties are measured by applying a measurement
method. A measurement method is a logical sequence of operations used to quantify
properties with respect to a specified scale. The result of applying a measurement method
is called a quality measure element. The quality characteristics and sub-characteristics
can be quantified by applying measurement functions. A measurement function is
an algorithm used to combine quality measure elements. The result of applying a
measurement function is called a software quality measure. In this way software quality
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ISO/IEC 25010:2011(E) 
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Figure 6.1.: Software product quality measurement reference model (adapted from
the ISO/IEC 25010-2011 [2011])

measures become quantifications of the quality characteristics and sub-characteristics.
More than one software quality measure may be used to measure a quality characteristic
or sub-characteristic.
However, the ISO/IEC 25010-2011 [2011] again remains on a high level and does not

provide means to actually implement the measurement reference model in a development
process. Moreover, the authors do not consider a specific context in their definition of
product quality. In summary, we argue that the ISO/IEC 25010-2011 [2011] provides a
comprehensive quality model but remains on a high-level and does not provide guidance
for practitioners.
In summary, we argue that a missing means to support for subsequent development

activities may have the following consequences in practice:

Ad-hoc handling of requirements Missing means to support and guide subsequent
development activities may lead to an ad-hoc handling of requirements of the specific
categories. As argued by Chung and Nixon [1995], QRs are often retrofitted in the
development process or pursued in parallel with, but separately from, functional
design and an ad-hoc development process often makes it hard to detect defects
early. For example, in case of missing support for requirements elicitation, the
requirements analyst is not guided in asking the right questions. This may lead to
incomplete requirements specifications.

Missing acceptance of the Stakeholders Missing means to support and guide subse-
quent development activities may lead to a missing acceptance of the categorization
by stakeholders. As argued before, the purpose of a categorization is to catego-
rize requirements in a way such that the activities that are performed with the
requirements can be aligned according to the categories. If this support and guide
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is missing, the stakeholders of a categorization, e.g., the requirements engineer may
tend to not accept the categorization and thus not use it.

6.1.3. Summary: Deficiencies of Requirements Categorizations in
Practice

We consider the ISO/IEC 25010-2011 [2011] a representative for requirements catego-
rizations: As described in Chapter 3.1.2, other requirements categorizations also provide
a comprehensive quality model but remain on a high level, as they do not precisely
define the individual categories and do not provide support for subsequent development
activities. Thus, we follow that current requirements categorizations lack a precise and
explicit definition of the individual categories and furthermore do not provide enough
guidance for a practitioner to operationalize the categorization for subsequent activities.

6.2. Overcoming the Deficiencies of Requirement
Categorizations in Practice

To overcome these two major problems, we propose in the next chapter an approach that
clearly and precisely defines the individual quality attributes and, furthermore, provides
guidance for practitioners to operationalize the categorization. Given a quality attribute,
the core of our approach is two-fold:

1. Clear definition: We base the clear and precise definition on the content ele-
ments that requirements of a specific quality attribute may consist of, i.e., different
types of information characterizing the quality attribute (e.g., the desired latency
of a system for performance requirements). Making the content elements that
requirements concerning the quality attribute consist of explicit provides us with a
clear vocabulary. For example, instead of defining Performance/efficiency–Time-
behavior as “The degree to which the response and processing times and throughput
rates of a product or system, when performing its functions, meet requirements”,
our approach focusses on the content elements that requirements concerning this
quality attribute may consist of. Thus, we provide a content model containing all
those content elements the requirement may consist of. This further enables us
to provide a definition of the content elements in form of a glossary or mapping
to a system model. This reduces the risk of misinterpretations and furthermore
facilitates the seamless transition into architectural design.

2. Sentence patterns: We base the operationalization on a set of sentence pat-
terns for requirements concerning the quality attribute. Sentence patterns provide
a way to embody comprehensive and structured knowledge about requirements con-
cerning a specific quality attribute [Withall, 2007]. They support the requirements
activities in many ways. For instance, they help the requirements analyst to ask
the right questions and to document relevant information on the appropriate level
of detail. Moreover, they provide guidance as people tend to learn from examples
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and sentence patterns are abstract examples for the specification of requirements
of a specific quality attribute. Furthermore, they give an overview of information
that may be documented regarding a specific quality attribute and thus support
the elicitation of requirements and—when looking at the sentence patterns as a
whole—they support the completeness of the requirements specification as a whole
(for a specific quality attribute). In summary, they help to answer the questions
“Where do I start?”, “How do I know when I am done?”, “How detailed should my
requirements be?”, “Have I missed any requirements?”, and “Have I forgotten any
critical information in the requirements I have written?” [Withall, 2007].

In summary, given a quality attribute, we base our approach on the clear and precise
definition of content elements that requirements of a specific quality attribute may consist
of and on a set of sentence patterns for the specification of requirements. Furthermore, we
propose to use the idea of activity-based quality models [Deissenboeck et al., 2007; Femmer
et al., 2015] for the customization of these content elements to a given organizational
context and sentence patterns for guidance and support for their application in practice.
Our approach is conducted in advance for a given set of quality attributes. Each
application of our approach results in a precise and explicit definition and customized
sentence patterns for requirements concerning this quality attribute. The resulting
definitions and sentence patterns can then be integrated in the overall RE process of
a company to support the elicitation, documentation, validation, and management of
requirements in the given organizational context. The results can then be (re)used, for
example, as a company standard to specify and elicit quality requirements in future
projects.
In the next chapter, we give a detailed description of the approach for defining,

specifying, and integrating quality requirements. Furthermore, we apply our approach to
two quality attributes: performance and availability.
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“A language must have an interpretation for it to serve as a
tool for communication. Those who neglect this and those who
dogmatically insist that the study of a language independently of
its meaning is the only rigorous procedure, are wrong.”

— Paul Rosenbloom, 1950
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An Approach for Defining,
Specifying, and Integrating Quality

Requirements based on a System
Model

Parts of this chapter have been previously published in the following publications:

• Eckhardt, J., Vogelsang, A., and Femmer, H. (2016a). An Approach for Creating
Sentence Patterns for Quality Requirements. In Proceedings of the 6th International
Workshop on Requirements Patterns (RePa), pages 308–315 (full paper, workshop,
8 pages)

• Eckhardt, J., Vogelsang, A., Femmer, H., and Mager, P. (2016b). Challenging
Incompleteness of Performance Requirements by Sentence Patterns. In Proceedings
of the 24th International Requirements Engineering Conference (RE), pages 46–55
(full paper, research track, 10 pages)

In Chapter 4, we analyzed how practitioners handle requirements; We concluded that
requirements categorizations should be based on methodological reasons. Moreover,
in Chapter 5, we saw that the categorization of Broy [2015, 2016] is suitable for
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requirements found in practice. However, it is still an open question how such a catego-
rization can be integrated in an RE process. In this chapter, we provide an approach for
defining, specifying, and integrating quality requirements based on a system model and
exemplarily instantiate this approach for performance and availability requirements.

7.1. Context

Although the importance of QRs for software and systems development is widely accepted,
up until now, there is no commonly accepted approach for the QR-specific elicitation,
documentation, and analysis [Borg et al., 2003; Chung and Nixon, 1995; Svensson et al.,
2009]. This lack can result in high maintenance costs in the long run [Svensson et al.,
2009]. As already argued in the previous chapters, besides Glinz’s definition, classification,
and representation problem [Glinz, 2007], there are two further problems with current
definitions of quality requirements:

1. the definitions are not overly precise and thus not easily understandable and
applicable, and

2. the definitions do not provide guidance or support for their application in a given
organizational context.

To tackle these two problems, we propose an approach that—given a quality attribute
(e.g., performance or availability) as input—provides a means to precisely specify require-
ments regarding this quality attribute. Our approach is based on the identification of
content elements, i.e., different types of information characterizing the quality attribute
(e.g., the desired latency of a system for performance requirements). In particular, given
a quality attribute, our approach provides

1. a means to precisely and explicitly define content elements that are needed to
specify requirements concerning the quality attribute, and

2. a set of sentence patterns for practitioners to specify requirements concerning the
quality attribute for a given organizational context.

We achieve the precise and explicit definition by a structured identification of relevant
content elements that requirements of a specific quality attribute may consist of. Further-
more, we use the idea of activity-based quality models [Deissenboeck et al., 2007; Femmer
et al., 2015] for the customization of these content elements to a given organizational
context and sentence patterns for guidance and support for their application in practice.

In this chapter, we contribute a detailed presentation and description of our approach,
a discussion of our lessons learnt while instantiating it for performance and availability
requirements, and provide guidance for how to apply our approach for further quality
attributes.
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Figure 7.1.: Overview of the approach and integration in a simplified RE process (accord-
ing to Pohl [2010]). Arrows depict directed relationships.

7.2. Approach & Integration in a RE methodology
Fig. 7.1 shows an overview of our approach and its integration in a RE methodology. On
the left-hand side, our approach is shown while on the right-hand side, a simplified RE
process (according to Pohl [2010]) is shown. Our approach is conducted in advance for a
given set of quality attributes. Each application of our approach takes a specific quality
attribute as input and identifies the relevant content elements that requirements of the
quality attribute consist of. Based on this, we create a precise and explicit definition
and customized sentence patterns for requirements concerning this quality attribute14.
The resulting definitions and sentence patterns can then be integrated in the overall
RE process to support the elicitation, documentation, validation, and management of
requirements in the given organizational context. The results can then be (re)used as,
for example, a company standard to specify and elicit quality requirements.

7.2.1. Goals of the Approach
Before we describe the approach in detail, we first discuss the goals of the approach.
Given a quality attribute we try to achieve the following four goals:

1. Identification of relevant content elements: In literature there exists a large
amount of publications concerning individual quality attributes. The challenge is
to collect this large amount of qualitative data and extract the relevant content ele-
ments in a structured and reproducible way that guarantees that all relevant content
elements are considered. The quality of the overall results of our approach depends
on the content elements that are identified to be needed to specify requirements
concerning the quality attribute.

2. Precise definition of relevant content elements: Given a set of relevant
content elements, a further challenge is how to define these precisely such that

14The approach provides a means to identify relevant content elements and furthermore to precisely and
explicitly define them. However, it is still up to the person conducting the individual steps and thus
the quality of the results depends on this.

115



7. An Approach for Defining, Specifying, and Integrating Quality Requirements based
on a System Model

RE Community
RE Community

RE Community Literature on 
the quality attribute

Content Model for QRs 
concerning the  quality 

attribute

Context-independent Definition1

Context-dependent Customization
RE Community

Activity-based 
Quality Model

Customized Content Model 
for QRs concerning the 

quality attribute

2

Precise Definition

3

Precise Definition

Sentence Patterns for 
QRs concerning the 

quality attribute

4 Operationalization

Approach for defining Quality Attributes

4

RE Community
RE Community

RE Community Literature on 
the NFR class

Complete Content 
Model for the NFR 

class

Context-independent CompletenessRE Community

Definition via a 
System Model

⎨
⎧
⎧

C
le

ar
, p

re
ci

se
, a

nd
 

ex
pl

ic
it 

de
fin

iti
on

Operationalization

Sentence Patterns 
for the NFR class

Context-dependent JustificationRE Community

Activity-based 
Quality Model

Justified Content 
Model for the NFR 

class

⎨
⎧
⎧Adequa

cy
 a

nd
 

O
pe

ra
tio

na
liz

at
io

n
Approach for defining Quality Attributes

4

RE Community
RE Community

RE Community Literature on 
the NFR class

Complete Content 
Model for the NFR 

class

Context-independent CompletenessRE Community

Definition via a 
System Model

⎨
⎧
⎧

C
le

ar
, p

re
ci

se
, a

nd
 

ex
pl

ic
it 

de
fin

iti
on

Operationalization

Sentence Patterns 
for the NFR class

Context-dependent JustificationRE Community

Activity-based 
Quality Model

Justified Content 
Model for the NFR 

class

⎨
⎧
⎧Adequa

cy
 a

nd
 

O
pe

ra
tio

na
liz

at
io

n
Pr

ec
ise

 a
nd

ex
pl

ici
t d

efi
ni

tio
n

Cu
st

om
iza

tio
n 

an
d 

op
er

at
io

na
liz

at
io

n

Figure 7.2.: Overview of the approach

all stakeholders have the same understanding. This is a challenging yet creative
activity. For example, we may define each content element by means of a glossary
entry or give a formal definition by a mapping to a system model. The challenge
is to find a way to define the content elements such that they are adequately
represented. This activity depends on the context (e.g., involved stakeholders).

3. Customization to a given organizational context: Another challenge is to
assess whether the content elements are actually relevant for a given organizational
context. The simple answer here is to provide a one-size-fits-all solution. However,
we argue that such a one-size-fits-all solution does not work for requirements
engineering because the organizational contexts vary heavily. These variations
include not only the information and level of detail in which projects document
requirements but also how projects use requirements documents in their context.
Thus, the challenge is to provide an approach that can be customized for a given
organizational context.

4. Provide a means to specify requirements for practitioners: Based on the
relevant content elements, we aim to create a means that supports the structured
elicitation, documentation, and management of requirements concerning this quality
attribute.

7.2.2. The Approach
Fig. 7.2 shows an overview of our approach. Given a quality attribute, the core of our
approach is the structured identification of relevant content elements that requirements of
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Figure 7.3.: Part 1: Structured identification of relevant content elements.

a specific quality attribute may consist of (Part 1 ). Based on the resulting content model,
our approach provides a precise definition of the content elements (Part 2 ), a context-
dependent customization of the content elements (Part 3 ), and an operationalization by
means of sentence patterns (Part 4 ). Together, Part 1 and 2 create a precise and
explicit definition of the quality attribute while Part 3 and 4 customize the definition
to a specific organizational context and provide a means for practitioners to specify
requirements concerning this type. The parts need not necessarily be conducted in that
order but Part 1 needs to be conducted first, as Part 2 - 4 are based on it.

1. Context-independent Definition

The result of this part is a comprehensive content model that covers all content elements
and relationships that are needed to specify requirements concerning the quality attribute.
Fig. 7.3 shows how we propose to structurally identify relevant content elements: To get
a complete list of content elements, we propose to use qualitative literature analysis (e.g.,
a structured literature review or expert interviews) with the goal to identify concepts
related to the specification of requirements concerning the quality attribute. Then, in
a next step, we identify the models that are used for the specification of requirements;
These models can be in textual, semi-formal, or formal form (indicated by different
icons in the figure). Then, based on these models, we identify content elements and
create a consolidated content model that contains and relates all content elements. This
qualitative analysis is a creative and subjective approach. We suggest to use researcher
triangulation to reduce this threat to the overall validity.
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Precise Definition2

Consolidated Model SemanticsSyntax

Figure 7.4.: Part 2: Precise definition of the content elements.

2. Precise Definition

Given the content model from the Part 1 , the result of this part is a precise definition
of the individual content elements of the content model. Fig. 7.4 shows how we propose
to reach this precise definition: For each content element of the content model, we define
both, its syntax as well as its semantics. Depending on the stakeholders, we may give a
definition on different levels of detail ranging from an informal glossary entry to a formal
definition. For example, if we chose to use a glossary, we may define the syntax of the
content element scope (of a requirement), as “The scope of a requirement may be one of
system, function, component” and its semantics as “If the scope of a requirement is the
system, the property described by the requirement must hold for the whole system, if
it is a function, it must hold for the function, and if it is a component, it must hold for
the component”. If we want to define the content element more formally, we suggest to
describe its meaning in terms of a system model (e.g., the system model of the Focus
theory [Broy and Stølen, 2001]). For example, if we aim to define the semantics of a
requirement, we can map it to a logical predicate, which relates input streams to output
streams. As with Part 1 , this part is creative and depending on the context.

3. Context-dependent Customization

The result of this part a customization of the context-independent content model for a
given organizational context. To achieve this, we propose to use the idea of activity-based
quality models [Deissenboeck et al., 2007; Femmer et al., 2015] and use the context-
independent content model as input for the creation of the activity-based quality model
for the given context. Fig. 7.5 shows how we propose to conduct this customization. In
particular, we use a model of stakeholders and their development activities that take
requirements of the quality attribute as input (e.g., design a test based on a performance
requirement). Based on this model of activities, we successively analyze the content
elements that a stakeholder needs in a requirement to complete the activity efficiently
and effectively. For example, to perform the activity designing a test, it is necessary to
know the scope of the requirement. Therefore, we classify content elements as mandatory
or optional for an activity. The result of this part is a content model for the quality
attribute that is adapted to a specific set of activities and where each content element is
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Context-dependent Customization3

Model of the Activities Consolidated Model Customized Model

Figure 7.5.: Part 3: Context-dependent customization.

Operationalization4

Customized Model Sentence Fragments Sentence Pattern

Figure 7.6.: Part: Derivation of sentence patterns.

justified by at least one of these activities. By this, we achieve a customization of the
content model to a given organizational context.

4. Operationalization

The result of this part is an operationalization for practitioners, i.e., a means to specify
requirements concerning the quality attribute. To achieve this, we propose to derive a
set of sentence patterns from the context-dependent content model. Sentence patterns
have the advantage that they are easy to use for the documentation of requirements and
support the structured elicitation and management of requirements. Fig. 7.6 shows how
we propose to derive sentence patterns from a content model. In particular, for each of
the content elements in the content model, we derive a sentence fragment. The sentence
fragment is intended to represent the meaning of the content element as close as possible.
For example, let us assume that the content element scope of a requirement may be the
system, a specific function X, or a specific component C. In this case, we can create the
sentence fragments system for system, function <X> for function, and component <C>
for component. Furthermore, sentence fragments may also contain variables that have to
be replaced by values when the pattern is instantiate. For example, if we aim to represent
an optional content element which describes a specific start event, we can represent it
by the sentence fragment [start event <A>]. The angle brackets indicate the variable
while the square brackets indicate that this sentence fragment is optional. Finally, we
merge these fragments into sentences. The result of this part is a set of sentence patterns
for the specification of requirements concerning the quality attribute.
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Summary

In summary, given a quality attribute, the approach derives a context-independent content
model based on qualitative literature analysis, provides a clear and explicit definition
of the individual content elements, performs a customization for a given organizational
context, and provides a means for practitioners to specify requirements concerning the
quality attribute for a given organizational context.

7.3. Syntactic Analyses: Challenging Incompleteness

One benefit of our approach is that it creates a context-dependent content model for a
given quality attribute. The model is context-dependent in the sense that for a given
context, the content model contains all necessary information to complete subsequent
activities efficiently and effectively. We can now leverage this fact to support syntactic
analyses and introduce a notion of (syntactic) completeness for requirements of this type.

In particular, we define the completeness of requirements for a given quality attribute
with respect to the presence of all mandatory content elements in the context-dependent
content model. We call a requirement complete if all mandatory content elements are
present in the textual representation of the requirement. To give an example, let us
assume that a performance requirement has a quantifier that describes whether the
requirement specifies an exact value (e.g., “the latency shall be 10ms”), a mean or median
(e.g., “the latency shall be on average 10ms”), or a minimum or maximum value (e.g.,
“the latency shall be at maximum 10ms”). Now we can distinguish three cases for the
presence of mandatory content in the textual representation of a requirement:

• The requirement does not contain the content. For example, in case of a perfor-
mance requirement stating “The delay between [event A] and [event B] shall be
short”, the content regarding the quantifier is not contained.

• The requirement implicitly contains the content. With implicit, we mean that the
content is contained in the requirement, but we need to interpret the requirement
to derive the content. For example, in case of a performance requirement stating
“The delay between [event A] and [event B] shall typically be 10ms”. In this case,
regarding the quantifier, we can interpret “typically” as “median”.

• The requirement explicitly contains the content. With explicit, we mean that the
content is contained without interpretation. For example, in case of a performance
requirement stating “The delay between [event A] and [event B] shall have a median
value of 10ms”. In this case, regarding the quantifier, the content is explicitly
contained.

We can now derive the following definitions for incompleteness and for weak and strong
completeness of requirements of a given quality attribute:
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Definition (Incompleteness). A requirement of a given quality attribute is incomplete,
if at least one mandatory content elements (w.r.t the context-dependent content model of
the attribute) is missing in its textual representation.

Definition (Weak Completeness). A requirement of a given quality attribute is weakly
complete, if all mandatory content elements (w.r.t the context-dependent content model
of the attribute) are explicitly or implicitly contained in its textual representation.

Definition (Strong Completeness). A requirement of a given quality attribute is strongly
complete, if all mandatory content elements (w.r.t the context-dependent content model
of the attribute) are explicitly contained in its textual representation.

We argue that this definition of completeness for requirements of a given quality
attribute can be used to detect incompleteness and thus to pinpoint to requirements
that are hard to comprehend, implement, and test. For example, requirements of class
incomplete are not testable at all, requirements in class weakly complete need to be inter-
preted by the developer and tester and therefore bear the risk of misinterpretations, and
requirements in class strongly complete contain all content necessary to be implemented
and tested. Thus, we argue that our approach further provides a helpful and actionable
definition of completeness for quality requirements. This definition of completeness can
then be used to support analytic as well as constructive quality control.

7.4. Application to Performance Requirements
In this section, we give guidance on how the individual parts can be conducted. In
particular, we apply our approach to the quality attribute performance, or performance/
efficiency requirements as they are called in the ISO/IEC 25010-2011 [2011].

Note. In the following, we explicitly focus on externally visible performance and exclude
internal performance (sometimes also called efficiency), which describes the capability of
a product to provide performance in relation to the use of internal resources.

7.4.1. Context-independent Definition
The result of this part is a comprehensive content model that covers all content elements
and relationships that we need to specify requirements concerning the quality attribute.
In the last section, we proposed to use qualitative literature analysis for this purpose.

We reduced the set of relevant literature to classifications and categorizations of non-
functional and quality requirements (and software and systems quality models) [Behkamal
et al., 2009; Boehm et al., 1976; Botella et al., 2004; Dromey, 1995; Glinz, 2005, 2007;
Grady, 1992; ISO/IEC 25010-2011, 2011; ISO/IEC 9126-2001, 2001; McCall et al., 1977;
Robertson and Robertson, 2012; Sommerville, 2007]. Fig. 7.7 gives a high-level overview of
the results of the literature review for performance requirements. In particular, literature
differentiates three types of performance requirements: Time behavior requirements,
Throughput requirements, and Capacity requirements. Time behavior requirements
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Time Behavior Throughput Capacity Aux. Conditions
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Figure 7.7.: Overview of performance.

specify fixed time constraints like “The operation Y must have an average response time
of less than x seconds”, throughput requirements specify relative time constraints like “The
system must have a transaction rate of x transactions/second”, and capacity requirements
specify limits of the system like “The system must support at least x concurrent users”.
Furthermore, literature defines further aspects related to performance requirements that
apply for all three types of performance requirements. We call these aspects auxiliary
conditions (e.g., the location of a measurement). We give a precise definition for these
types in Section 7.4.2.

We coded the results of the literature review as suggested by Grounded Theory [Adolph
et al., 2011] to assemble a conceptual model of the quality attribute in form of a content
model. The resulting content model contains content elements of the quality attribute
and relations between them. Furthermore, we added content elements that apply to
requirements in general (e.g., the scope of a requirement). The result of this part is a
content model for performance that is a superset of all performance aspects mentioned
in literature. The resulting content model is shown in Figure 7.8. The model consists
of three parts (Part 1 - 3 in the figure). In the following, we describe the individual
parts of the content model.

1 Content Elements of Performance Requirements: A Performance Require-
ment is a Requirement. A Performance Requirement possibly has a Selection, e.g.,
is it valid for all functions or only for a subset of all functions. A Performance
Requirement has a Scope. The Scope can be either the System, a Function, or a
Component. Finally, a Performance Requirement has a Quantifier. The Quantifier
describes whether the requirement specifies an Exact Value (e.g., “the latency shall
be 10ms”), a Mean or Median (e.g., “the latency shall be on average 10ms”), or a
Minimum or Maximum value (e.g., “the latency shall be at maximum 10ms”).

2 Content Elements Related of the Specific Performance Requirements
Types: A Performance Requirement can be a Time Behavior Requirement, a
Throughput Requirement, or a Capacity Requirement.
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Time Behavior Requirements A Time Behavior Requirement describes a Time
Property. A Time Property can be Response Time, Processing Time, or Latency.
Furthermore, a Time Property may have a Frame specifying a start and an end
Event (e.g., “the processing time between event A and event B shall be less
than 10ms”). Finally, a time behavior requirement has a time quantification,
which quantifies a time value with a specific unit (e.g., “less than 10 ms”).

Throughput Requirements A Throughput Requirement describes a Throughput
Property. A Throughput Property can be Transaction Rate, Throughput, Reac-
tion Speed, Processing Speed, or Operating Speed. Finally, a Throughput Require-
ment has a Throughput Quantification, which quantifies a Change Value which
specifies a Change Object per Time Value (e.g., “less than 10 users per ms”).

Capacity Requirements A Capacity Requirement describes a Capacity Property.
A Capacity Property can be Support, Store, Receive, Process, or Sustain. Fi-
nally, a Capacity Requirement has a Capacity Quantification, which quantifies a
Capacity Object with respect to a Change Value (e.g., “less than 10 concurrent
users per 1s”).

3 Content Elements of Auxiliary Conditions: A Performance Requirement may
contain (possibly many) auxiliary conditions. An Auxiliary Condition may be a
specific Load (e.g., “at maximal load”), a specific Measurement Location (e.g., “in
London”), a specific Measurement Period (e.g., “between 12/20 and 12/24”), a
specific Platform (e.g., “on ARMv8”), a specific Scope of Measurement specifying the
Includes and Excludes (e.g., “included is the browser render time, but the network
time is excluded”), and Measurement Assumptions specifying further assumptions
for the measurement (e.g., “a specific signal is assumed to be present”).

7.4.2. Precise Definition

In this section, we (informally) define the individual types of performance requirements
(as shown in Figure 7.7) and discuss how we can express them based on the Focus
system model.

Running Example We first introduce our running example. It is a simple request-
reply system where each message is associated with the user that sent this message. After
having received a request by a particular user, the system ignores any further request by
this user, before it replies to the request. Thus, for every user, our system satisfies the
following two properties:

1. The liveness property, that every request is answered by a response at a later point
in time.

2. The safety property, that a response is only sent if (one or more) requests have
been received and they have not yet been answered.
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To formally specify our system, we assume a set of user identifiers U and two special
messages req, rep. To associate the messages with users, we create the sets I = {(req, u) |
u ∈ U} and O = {(rep, u) | u ∈ U}, respectively. Then, the syntactic interface of our
system S is ({i} I {o}), with input channel i, output channel o, and type(i) = I and
type(o) = O.

First, we give some examples of valid and invalid behavior of our system. Let us
assume an input stream which contains two requests from user u1, one at time 0 and one
at time 2. Formally, we can represent this stream as follows:

〈(req, u1),
√
,
√
, (req, u1)〉∧〈

√
〉∞

Given this input stream, we may have for instance the following two valid output streams:

o1 = 〈
√
, (rep, u1),

√
,
√
,
√
,
√
, (rep, u1)〉∧〈

√
〉∞

o2 = 〈
√
,
√
,
√
,
√
,
√
,
√
, (rep, u1)〉∧〈

√
〉∞

In o1, each request is answered individually, i.e., at time 1 a reply is sent to user u1 and
at time 5 the second request is answered. In o2, both requests are answered with only
one reply at time 6. Thus, these output streams fulfill our liveness property, i.e., every
request is answered by a response at a later point in time and the safety property, i.e., a
response is only sent if (one or more) requests have been received and they have not yet
been answered.

Given our input stream, we may have the following two invalid output streams:

o3 = 〈
√
〉∞

o4 = 〈
√
, (rep, u1),

√
, (rep, u1),

√
,
√
,
√
, (rep, u1)〉∧〈

√
〉∞

In o3, no request is answered while in o4, we have three replies: one at time 1, one at time
2, and one at time 5. Both output streams violate our properties: o3 does not answer
any request, thus, the liveness property is violated and o4 violates the safety property, as
the response at time 2 does not answer any open request.

Now we specify our two properties with the predicate g : I ×O → B.

g(i, o)⇔ ∀u ∈ U :

(∗)
(
∀n ∈ N : i.n = (req, u)⇒ ∃n′ ∈ N : time(o, n′) > time(i, n) ∧ o.n′ = (rep, u)

)
∧

(∗∗)
(
∀n ∈ N : o.n = (rep, u)⇒ ∃n′ ∈ N : time(i, n′) < time(o, n) ∧ i.n′ = (req, u)∧

(
∀n′′ < n : time(o, n′′) > time(i, n′)⇒ o.n′′ 6= (rep, u)

))
In this predicate, equation (∗) specifies the liveness property, i.e., every request is

answered by a response at a later point in time, and equation (∗∗) specifies the safety
property, i.e., a response is only sent if (one or more) requests have been received and
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they have not yet been answered. Note that for every i ∈ I, it is possible to construct
at least one o ∈ O satisfying the two properties. Thus, the predicate induces a total
behavior. Now, we can specify the semantic interface of our example system with the
following timed Focus specification:

in i : I
out o : O

g(i, o)

Request-Reply timed

Event To define the different types of performance requirements, we first introduce the
notion of an event of a system. An event of a system happens at a specific point in time.
With respect to the Focus system model, we can define three types of events: (i) an
external interface event is visible at the external interface of the system, (ii) an internal
architectural event is visible at the (internal) architecture of a system, and (iii) an internal
state event is visible at the state view of a system.

An example of an external interface event is the receiving of an input to a specific
function at time t1 (e.g., in our running example, receiving the (req, u) message) and an
example of an internal state event is changing the internal state of the system at t2. We
now use the notion of an event to define time behavior and throughput requirements.

Time Behavior Requirements Time behavior requirements are requirements that
restrict the time between specific events of the system.

Relation to the Focus system model: Time behavior requirements restrict the
time between specific events of the system. Thus, for specifying these requirements,
we need to make the events explicit. For example, the (external interface) event
that input is sent to a function or the (external interface) event that output is
received from a function. The Focus theory provides means to specify all kinds of
events; external interface events can be specified as predicates over the input and
output of a system, internal architectural events can be specified as predicates over
the architecture of a system, and internal state events as predicates over the states
and state transitions of the system. Thus, the challenging part for time behavior
requirements is to identify, specify, and relate these events.
Example (Time behavior requirement in our running example). An example for
a time behavior requirement is the response time of a specific function, i.e., the
time between sending the input to the function and receiving the output from the
function. For example, w.r.t. our running example, the time behavior requirement
“the time between sending a request and receiving the reply shall be less than 100
ticks”. It can be formally specified as follows:
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in i : I
out o : O

g(i, o) ∧
∀u ∈ U, t ∈ N : (∃n ∈ N : i.n = (req, u) ∧ time(i, n) = t)⇒
∃n′ ∈ N, t′ ∈ ]t, t+ 100[ : o.n′ = (rep, u) ∧ time(o, n′) = t′

Request-Reply Time behavior timed

Throughput Requirements Throughput requirements are requirements that restrict
the rate of specific events of the system. In contrast to time behavior requirements,
which restrict the time between specific events, throughput requirements restrict
the rate, i.e., the number of specific events per time frame.
Note (Difference between throughput and time behavior requirements). Note that
it makes a difference if we restrict the rate of specific events vs. the time between
the resulting events. For example, consider the throughput requirement “The rate
of transaction X shall be more or equal than 10 per second” and the time behavior
requirement “The time between transaction X started and ended shall be less or
equal than 0.1 seconds”. A system fulfilling the time behavior requirement also
fulfills the throughput requirement, but a system fulfilling the throughput requirement
does not necessarily fulfill the time behavior requirement.

Relation to the Focus system model: Similar to time behavior requirements,
throughput requirements describe a timed relation of events of the system. However,
throughput requirements describe the rate, i.e., the number of these events in a given
period of time. Thus, following our argumentation for time behavior requirements,
the challenging part for throughput requirements is to identify, specify, and relate
the events.
Example (Throughput requirement in our running example). An example for
a throughput requirement is the transaction rate of a specific function, i.e., the
number of transactions per time frame. For example, w.r.t. our running example,
the throughput requirement “The system shall answer at least 10 open requests
within 1000 ticks”.

To formally specify this requirement, we first introduce the auxiliary function

open : I ×O × N→ N
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Given an input stream i, an output stream o, and a point in time t, it returns the
number of users that are waiting for a response at time t, i.e., the number of open
requests at time t. Formally, it is specified as follows:

open(i, o, t) = |{u | ∃n ∈ N : i.n = (req, u) ∧ time(i, n) ≤ t ∧(
¬∃n′ ∈ N : o.n′ = (rep, u) ∧ time(i, n) < time(o, n′) ≤ t

)
}|

Now we can formally specify the requirement:

in i : I
out o : O

g(i, o) ∧ ∀t ∈ N :
|{(u, n) | ∃n ∈ N : o.n = (rep, u) ∧ t < time(o, n) ≤ t+ 1000}|︸ ︷︷ ︸

The number of replies within ]t, t + 1000]

≥

min(10, open(i, o, t))

Request-Reply Throughput timed

Note (Design Decisions in our Formalization of Throughput Requirements). In
this example, we require that for all times t, the number of replies within ]t, t+1000]
is greater or equal to the minimum of the number of open requests, and 10. Note
that we count each response of each user individually (see (u, n) in the set). Thus,
we guarantee that at least 10 replies are sent, given that there are at least 10 open
requests. Otherwise, we guarantee that the system responds to at least the number
of open requests at time t.

Moreover, we only count the number of replies and do not identify the individual
request-reply pairs. Consequently, we may count different users in time frame
]t, t+ 1000] who receive a response in contrast to users who have an unanswered
request up to time t. However, this fits our understanding of throughput as the
rate of successful message delivery over a communication channel [Jansen and
Prasad, 1994; Peterson and Davie, 2011; Rappaport, 2002]. Note that, if we want
to restrict the duration for a request-reply pair, we can specify this with a time
behavior requirement. Throughput requirements mainly consider the output of the
system.

Moreover, given that less than 10 users are requesting, we only guarantee that the
system sends this number of responses. Thus, we do not require that the system
answers all requesting users as soon as possible but the system can delay answering
the requests to fulfill the throughput requirement. For example, given that only
one user sends a request, the system may wait until the end of the time frame to
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answer the request. This still fulfills the throughput requirement. However, with this
strategy, we do not require the system to answer the requests as soon as possible
and as fast as possible. Still, this fits our understanding of throughput requirements,
as we only consider the output rate of the system. We could specify this requirement
by combining a throughput requirement with a time behavior requirement.

Capacity Requirements Capacity requirements are requirements that restrict the
quantity of a particular entity at specific points in time. An example of a particular
entity are concurrent users. It is important to note that capacity requirements
restrict behavior at specific points in time, which can be either time intervals or
the whole runtime of the system.

Relation to the Focus system model: In comparison to time behavior or
throughput requirements, which restrict a timed relation between events of the
system, capacity requirements restrict the quantity of a specific entity. Thus, we
first need to make explicit which entity we want to restrict and how we want
to measure the quantity. For example, we may want to restrict the number of
concurrent users the system shall support. Thus, in this case, we need to find a
way to express the number of concurrent users. For concurrent users, there is no
explicit notion in the Focus system model. However, we still can express users by,
for example, tagging each message with an identifier of the user. Thus, for each
entity we want to restrict, we have to either find a way to express it based on the
Focus system model or extend the system model to include such a notion.
Example (Capacity requirement in our running example). With respect to our
running example, an exemplary throughput requirement would be “The system shall
guarantee to support up to 1000 concurrent users”. Under “support”, we understand
that the system answers the requests (without restricting the time).

To formally specify the requirement, we first introduce the auxiliary function
violations. Given an input stream i and c ∈ N, it returns the set of time units in
which more than c users send a request in the time frame [t, t+ 100[. Thus, in our
example, violations(i, 1000) returns all violations of the precondition of the capacity
requirement. The function violations : I × N→ ℘(N) is specified as follows:

violations(i, c) = { t ∈ N |
|{u | ∃n ∈ N : i.n = (req, u) ∧ t < time(i, n) ≤ t+ 100}| > c

}

Thus, given an input stream i ∈ I, violations(i, 1000) = ∅ means that the precondi-
tion of the capacity requirement is not violated at any time and violations(i, 1000) 6=
∅ means that there is (at least) one point in time in which the precondition is violated.

Based on this distinction, we can specify the requirement as follows:
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in i : I
out o : O

(violations(i, 1000) = ∅ ⇒ g(i, o)) ∧
(violations(i, 1000) 6= ∅ ⇒ ∃i′ ∈ I, o′ ∈ O : i′ ↓n= i ↓n ∧o′ ↓n= o ↓n ∧g(i′, o′))

where n = index(i,min(violations(i, 1000))) and the index function returns for
a given input stream i and time t the least index n such that time(i, n) = t.

Request-Reply Capacity timed

Note. We made a distinction based on the precondition violations(i, 1000) of the
capacity requirement. If there are no violations, i.e., violations(i, 1000) = ∅, we
guarantee that the requests are answered as specified in the relation g. If there are
violations, i.e., violations(i, 1000) 6= ∅, we only guarantee up to the first violation
that requests are answered as specified in g. After that, we do not guarantee
anything. Thus, in this case, everything can happen. This fits our understanding
of capacity requirements [Jansen and Prasad, 1994]. If the system is for example
under a distributed denial of service (DDoS) attack, i.e., a large amount of users
are requesting, the system may crash or drop messages.

Auxiliary Conditions Auxiliary conditions contain further aspects of performance
requirements.

Load Load for performance requirements describe profiles of how many users are
using the system and how they are using the system.

Example: For example, high load represents a specific number of users that
perform a specific number of requests per second. An exemplary requirement
is “the system shall have a transaction rate of x per second while under high
load.”.

Relation to the Focus system model: Load profiles can be expressed
based on the Focus system model. As already discussed above, we can
include a notion of users in the system model. For specifying the load profiles,
the A/C specification style (see e.g. [Broy, 1998]) suits well, as user behavior
can be modeled as interaction patterns with the system.

Measurement location The measurement location for performance requirements
describes the (physical) location of parts of the system and, furthermore,
communication latencies between these.

Example: For example, consider a system that consist of three sub-systems:
A, B, C. A may run in Frankfurt, B in Munich, and C in Berlin. The
communication latencies may then be 40 ms between Frankfurt and Berlin, 50
ms between Berlin and Munich, and 30ms between Munich and Frankfurt.

130



7.4. Application to Performance Requirements

Relation to the Focus system model: The measurement location of
performance requirements can be expressed in the Focus system model.
In particular, a notion of a deployment of components (and also functions)
to physical locations and of communication latencies between these can be
expressed based on the Focus system model.

Measurement period The measurement period for performance requirement
describes the actual time the requirement is valid. It furthermore contains
specific load profiles, i.e., at what time is how much load on the system.
Example: For example, the load profile may be given as follows: [0− 8[ low
load, [8− 17[ high load, [17− 24[ medium load. An exemplary requirement is
“the system shall have a transaction rate of x per second between 8 o’clock and
17 o’clock”.
Relation to the Focus system model: Similar to the load of a performance
requirement, the measurement period of performance requirements can be
expressed based on the Focus system model.

Platform The platform of the measurement specifies a specific platform (together
with an operational model) for the system.
Example: An exemplary requirement is “the system shall have a transaction
rate of x per second while running on an ARMv7 processor”.
Relation to the Focus system model: For expressing the platform of the
measurement, we need an operational model. An operational model is not
contained in the Focus system model. Thus, to include the platform, we need
to extend the system model.

Scope of Measurement The scope of the measurement specifies what sub-systems
are included in the scope of the requirement and what sub-systems are ex-
cluded.
Relation to the Focus system model: The scope of the measurement can
be expressed based on the Focus system model, by including an excluding
specific components.

Summary

Time behavior requirements and throughput requirements restrict the time for or the rate
of specific events of the system. For both, the challenging part is to identify, specify, and
relate these events. External interface events can be specified as predicates over the input
and output of a system, internal architectural events can be specified as predicates over
the architecture of a system, and internal state events as predicates over the states and
state transitions of the system. In contrast to time behavior and throughput requirements,
capacity requirements restrict the quantity of a specific entity. Thus, we first need to
define which entity we want to restrict and how we want to observe it. Finally, for the
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Test Designer
Plan Test Design Test Implement Test Evaluate Test

Execute Integration 
Test

Execute System 
Test

Execute 
Performance Test

Design Classes 
and Packages

Implement Comp. & 
Subsystems

Integration Tester

System Tester

Performance Tester

Designer

Implementer

Figure 7.9.: The activities for testing from the rational unified process [Jacobson et al.,
1999].

auxiliary conditions, we can express all but the platform of the measurement based on the
Focus system model. For specifying performance requirements, the A/C specification
style (see e.g. [Broy, 1998]) suits well, as these types of requirements often describe an
interaction pattern between an user and the system, which can be expressed easily based
on A/C.

7.4.3. Context-dependent Customization

The result of this part is a customization of the content model for a given operational
context (see Part 3 in Fig. 7.2). To achieve this, we follow the idea of activity-based
quality models [Deissenboeck et al., 2007; Femmer et al., 2015] and use the context-
independent content model as input for the creation of the activity-based quality model for
the given context. Here, we first consider all stakeholders and analyze their development
activities that take requirements of the quality attribute as input, such as design test of
the test designer in case of performance requirement. We identify necessary and important
content elements that these requirements must contain to complete the development
activities efficiently and effectively. We accordingly classify content elements, marking
crucial content elements as mandatory and the contributing content elements as optional.
The result of this part is a content model that is customized for a given operational
context and each content element is justified by at least one development activity.

For performance requirements, we used testing activities as described in the (rational)
unified process (RUP) [Jacobson et al., 1999]. Figure 7.9 shows the activities and
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Table 7.1.: Necessary content elements to complete development activities efficiently and
effectively.

Stakeholder RUP activities Necessary content element
Test designer Plan Test Scope

Design Test Scope, Time Property, Throughput Prop-
erty, Capacity Property

Implement Test Scope, Quantifier, Time Property,
Throughput Property, Capacity Prop-
erty, Time Quantification, Time Value,
Unit, Throughput Quantification,
Change Value, Change Object, Capacity
Quantification, Capacity Value, Capacity
Object

Evaluate Test Scope, Quantifier, Time Property,
Throughput Property, Capacity Prop-
erty, Time Quantification, Time Value,
Unit, Throughput Quantification,
Change Value, Change Object, Capacity
Quantification, Capacity Value, Capacity
Object

System tester Execute System Test Scope, Quantifier
Performance tester Execute Performance

Test
Scope, Quantifier

Designer Design Classes and
Packages

Scope, Time Property, Throughput Prop-
erty, Capacity Property

Implementer Implement Compo-
nents and Subsys-
tems

Scope, Time Property, Throughput Prop-
erty, Capacity Property, Time Quantifi-
cation, Time Value, Unit, Throughput
Quantification, Change Value, Change
Object, Capacity Quantification, Capac-
ity Value, Capacity Object
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the associated stakeholders. For each of the stakeholders’ activities, we identified the
corresponding necessary content elements from the content model to complete the activity
efficiently and effectively. As the description of the activities in the RUP is rather high-
level and does not provide detailed insights about the required artifacts for an activity,
we performed an in-depth analysis of the description of the respective activities. Then,
in a pair of researchers, we discussed the activities and identified the necessary content
elements of a requirement for that activity: We marked a content element as necessary
when we agreed that its absence would require a stakeholder to invest additional effort
for completing the activity or would even make the activity impossible. Table 7.1 shows
the resulting mapping between the necessary content elements and the activities. For
example, for the activity design test by the test engineer, the time/throughput/capacity
property of the requirement is necessary as its absence would make it impossible to set
up an adequate test environment. Furthermore, the scope of the requirement is necessary
for the activity plan test, as the test engineer needs this information for assigning the
test to a person/team responsible. Figure 7.10 shows the final context-dependent content
model. We marked a content element as necessary if it is necessary for at least one
development activity (marked as gray in the figure). The resulting content model provides
a justification for each of the individual content elements of the context-independent
content model.

7.4.4. Operationalization
In this section, we provide an operationalization for practitioners based on sentence
patterns. In particular, we provide a set of sentence patterns for performance require-
ments. These sentence patterns are based on the context-dependent contend model for
performance requirements (see Figure 7.10) and can be used to specify performance
requirements that follow a specific pattern. Given a clear definition of the individual
content items, we can now specify performance requirements which are built based on
the content model and which can be understood based on the definition.

The result of this part is an operationalization for practitioners, i.e., a means to specify
requirement concerning the quality attribute. To achieve this, we propose to derive
a set of sentence patterns from the context-dependent content model (see Part 4 in
Fig. 7.2). In particular, for each of the content elements in the content model, we derive
a sentence fragment. The sentence fragment is intended to represent the meaning of the
content element as closely as possible. Finally, we merge these fragments into sentences.
The result of this part is a set of sentence patterns for the specification of requirements
concerning the quality attribute.

We iterated through the set of content items in a pair of researchers and discussed how
to adequately represent this content element in terms of a sentence fragment. Figure 7.11
shows the resulting patterns. In order to build a sentence, a requirements engineer must
first select the performance requirement type, i.e., one of Time Behavior, Throughput, or
Capacity. Then, sentences can be specified from left to right, while selecting one of the
sentence fragments and replacing the variables in angle brackets. Sentence fragments
in square brackets (e.g., [between event 〈A〉 and event 〈B〉] in Figure 7.11a) are op-
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tional. Then, auxiliary conditions can be added by applying the sentence patterns in
Figure 7.11d. Exemplary sentences are

The system must have a processing time of < 10 ms between event
“receiving a request” and event “answering a request”, when under
a maximal load. Measurement takes place on production hardware.
Included is browser render time.

or
The system must be able to process a maximum of 10.000 requests
per s. Measurement takes place in Munich, Bavaria. Excluded are
external services.

7.5. Application to Availability Requirements
In this section, we apply our approach to the quality attribute availability. The results
of this section are based on the work of Junker [2016]. In his work, Junker [2016]
provides an artifact model and a modeling method for the specification and analysis
of availability for software-intensive systems. In this section, we apply our approach
to availability and rely on the formalization and artifact model provided in the work
of Junker [2016]. In particular, we extend the artifact model by a content model for
availability (see Section 7.5.1) and provide sentence patterns for the specification of
availability requirements (see Section 7.5.2). The precise definition of the individual
elements of the content model can be found in the work of Junker [2016].

7.5.1. Context-independent Definition
The result of this part is a comprehensive content model that covers all content elements
and relationships that we need to specify availability requirements. For the context-
independent definition, we base our analysis on the Availability Artifact Model of Junker
[2016]. Figure 7.12 shows the model; Blue artifacts are based on a generic artifact model
whereas green artifacts are the extensions introduced by Junker for availability. In the
following, we will focus on the green artifacts:

Availability Requirements Specification The availability requirements specification
contains the requirements of the system regarding availability. It captures the
demands of the different stakeholders of the system that relate to availability.
Availability requirements are captured informally with so-called textual availability
descriptions, i.e., statements about availability formulated in natural language.
Availability requirements may refer to functional requirements and to elements
of the functional architecture. These informal descriptions are formalized in a
so-called availability constraints model.

Availability Specification The availability specification contains the necessary defi-
nitions of failure and of availability metrics. It essentially provides definitions of
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Figure 7.12.: Overview over the Availability Artifact Model from Junker [2016]. Boxes
with a black border denote the model types used in these artifacts. Arrows
describe the relationship between models and artifacts.

what availability should mean for the given system. In particular, it provides a
definition of what failure means and defines how to calculate availability metrics.
The failure mode list describes informally the failure modes considered relevant to
describe the availability of the system. The failure definition model formalizes the
failure mode list, and, in particular, relates deviations from the specified behavior
of the system to the failure modes. The failure aggregation model is an optional
model that aggregates and simplifies failure modes to facilitate the definition of
availability metrics. Finally, the availability metrics model defines how to calculate
metrics.

Extended Logical Architecture The extended logical architecture is an extension of
the original logical architecture to include the behavior in case of faults. The fault-
injection model includes, potentially for every component in the logical architecture,
a description of how this component is affected by faults and how these faults lead
to a change in behavior.

Environment Specification The environment specification describes the behavior and
structure of external systems and users. The environment component model de-
scribes the structure and behavior of the environment.

To create the content model, we iterated through all artifacts of the artifact model
in a pair of researchers and extracted the content elements that are needed for the
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specification of availability requirements. The resulting content model contains content
elements of the quality attribute and relations between them. Furthermore, we added
content elements that apply to requirements in general (e.g., the scope of a requirement).
The resulting content model is shown in Figure 7.13. The central content elements are
the definition of failures, the definition of metrics, and requirements constraining metrics
w.r.t. specific failures.

As with performance requirements, a Requirement has a Modality, i.e., is it an Enhance-
ment, an Obligation, or an Exclusion. An enhancement indicates that the requirement
may be implemented by the system, an obligation that the system has to implement
the requirement, and an exclusion that the system must not implement the requirement.
Next, a Requirement has a Scope. The Scope can be either the System, a Function, or a
Component.

An Availability Requirement is a Requirement. It has a Constraint, one or more Metric
Definition(s), and one or more Failure Definition(s). A constraint contains the actual
quantification of the availability requirement, as for example “> 99.9999%”.

A metric definition defines a specific metric and refers to a Failure Mode. We further-
more included a list of predefined metric definitions according to Junker [2016]:

• Point Availability is the probability of a system to be operational at a specific point
in time,

• Uptime is the expected number of discrete time-units in an interval in which the
system operates failure-free,

• Downtime is the expected number of time-slots in an interval where the system
exhibits failure, and

• Interval Availability is the expected ratio of uptime in some observation period.

• The content elements Time-Slice Availability, Time-Slice Uptime, Time-Slice Down-
time, and Time-Slice Interval Availability are analogous to Point Availability,
Uptime, Downtime, Interval Availability, respectively, but based on time slices.
Time slices are used to model the evaluation of these metrics for a certain time
interval (see Junker [2016]).

Finally, a Failure Definition defines a Failure Mode on a set of Channels. A failure
mode indicates a Failure Type. According to Junker [2016], we added four predefined
failure types:

• Omission, i.e., the omission of a specific message,

• Delay, i.e., a specific message is delayed,

• Insertion, i.e., a specific message is inserted, and

• Modification, i.e., a specific message is replaced by another message.
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Failure Mode <name> occurs when on output channels <o1, …, on>

message <x> is omitted

message <x> is delayed

message <x> is inserted

message <x> is replaced by  
message <y>

Figure 7.14.: Application to Availability Requirements: Sentence Patterns for the defini-
tion of availability failure modes.

7.5.2. Operationalization

The result of this part is an operationalization for practitioners, i.e., a means to specify
availability requirements. To achieve this, we propose to derive a set of sentence patterns
from the context-dependent content model (see Part 4 in Fig. 7.2). In particular, for
each of the content elements in the content model, we derive a sentence fragment. The
sentence fragment is intended to represent the meaning of the content element as closely
as possible. Finally, we merge these fragments into sentences. The result of this part is
a set of sentence patterns for the specification of requirements concerning the quality
attribute.

For availability requirements, we iterated through the set of content items in a pair of
researchers and discussed how to adequately represent this content element in terms of a
sentence fragment. We derived two different types of sentence patterns:

1. Sentence patterns for the specification of availability failure modes (see Figure 7.14).

2. Sentence patterns for the specification of availability requirements (see Figure 7.15).

To create an availability requirement, we first need to define the respective failure
modes. Then, we can create availability requirements. Sentences can be specified
from left to right, while selecting one of the sentence fragments and replacing the vari-
ables in angle brackets. Exemplary sentences for the specification of availability modes are

Failure Mode m1 occurs when message m is omitted on output chan
nel o1.
Failure Mode m2 occurs when message m′ is delayed on output chan
nel o2.

and for the specification of availability requirements
The system must have a Point availability at time point 100 of >
99.99% with respect to failure modes m1 and m2.

7.6. Discussion

In this section, we discuss limitations and threats and direct implications of our approach.
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must/shall

could/may

must not

have a/an

of

of <

of <=

of >

of >=

<x>

The system

The <operation>

The <component>

Point availability at time point <t>

Expected uptime in interval 0..<t>

Expected downtime in interval 0..<t>

Expected uptime in interval <t0>..<t1>

Time-Slice point availability at time point <t>

Time-Slice Expected uptime in interval 0..<t>

Time-Slice Expected downtime in interval 0..<t>

Time-Slice Expected uptime in interval <t0>..<t1>

with slice size <S>

with respect to failure 
modes <m1,…, mn>

Figure 7.15.: Application to Availability Requirements: Sentence Patterns Availability
Requirements.

7.6.1. Limitations and Threats
The quality of the results of our approach depends on how the individual parts are
performed. Furthermore, all parts require a high amount of creative and qualitative
work and thus may be error-prone. To mitigate this threat, we provided guidance in this
chapter that shows how to perform the individual parts on the example of performance
and availability requirements. We described how we performed the individual parts and
the respective results in detail and provided hints how to ensure quality.

Context-dependent Definition

In the first part of our approach, there are some threats that affect the generalizability and
applicability of the results. The initial collection of literature may miss some important
work, the extraction of models may miss models or include unimportant models, and
finally the coding and consolidation of the models may lead to inconsistent or inadequate
models. We try to mitigate these threats by using a structured and reproducible approach
(e.g., a structured literature review) and by performing the extraction and coding steps in
a pair of researchers (researcher triangulation). Furthermore, we suggest to validate the
resulting models with quality requirements from practice or perform validating interviews
with practitioners.

Precise Definition

The goal of the second part is to create a precise definition such that we reduce misun-
derstandings. We propose to use either a glossary or a formal definition by means of a
system modeling theory. However, in both cases, it is a challenging and creative activity
and the individual content elements can be contradictory or inadequate. To mitigate
this, we propose to perform a validation in form of interviews with researchers as well as
with practitioners.

Context-dependent Customization

The result of this part is dependent on how the customization is performed. We propose
to use activity-based quality models that try to make the relation between activities,
artifacts, and quality attributes explicit. However, the quality of the results still depends
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on the level of detail and adequacy of the activity-based quality model. For performance
requirements, we build our customization based on the activities for testing as described
in the RUP. However, the description of these activities was on a very high level of detail,
and thus, we discussed each activity in a pair of researchers. In summary, to mitigate
this threat, we propose to either use a detailed activity-based quality model or perform a
cross validation or researcher triangulation.

Operationalization

The creation of sentence patterns is straight-forward. However, the quality of the
overall approach depends on how well practitioners can apply the sentence patterns to
requirements and are how much they are willing to use the patterns. To mitigate this,
we propose to validate the resulting patterns with quality requirements in practice and
furthermore conduct interviews with practitioners concerning their willingness to use the
patterns.

7.6.2. Analyses of the Content of Quality Requirements
Besides the assessment of completeness, one can further leverage our approach to analyze
the content of quality requirements in practice. Our approach results in a context-
independent content model for a given quality attribute and in a context-dependent
content model for that attribute. The context-independent content model provides
a general definition of the content elements of the quality attribute and the context-
dependent model provides a justification for each content model.
We can now analyze textual quality requirements and map the content elements

found in the requirements to the content model. If we have a sufficiently large data
set, we can now analyze observations and draw conclusions about the content elements
of quality requirements in general. For example, a common point of view of quality
requirements is that they are cross-functional and consider the system as a whole. When
analyzing performance and also availability requirements, we also included the scope
of a requirement in the content model. This allows us to quantitatively analyze the
distribution of the scope of performance requirements found in practice.

7.6.3. Implications for Industry
Our approach is a step towards increasing the completeness of quality requirements.
Not only the operationalization via sentence patterns could be easily implemented in a
requirements authoring or management tool. Such a tool may provide instant feedback
to the requirements engineer about missing or optional content elements, similar to
requirements smells [Femmer et al., 2014a,b, 2016; Vogelsang et al., 2016]. Furthermore,
the tool might check the terms used in a requirement with respect to an underlying domain
model. The tool could then uncover terms that are neither part of the consolidated
terminology nor defined through the pattern semantics.
An additional benefit of our approach is that it makes content in natural language

requirements explicit and traceable through content elements. This allows connecting
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Activity 1.1 …
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Activity 3.1
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…
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Activity 1.1 …
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Figure 7.16.: Ideal relationship between categories of a requirements categorization and
activities and roles of a process.

specific content elements of requirements with specific content elements in related artifacts
such as test cases or components within the implementation. Updates within requirements
may then be propagated directly to corresponding test cases for example, this makes
maintenance activities more efficient and effective.

7.6.4. Usage of Requirements Categorizations in the Development
Process

In this section, we discuss the relationship between categories of a categorization and
activities and roles of a development process. A categorization (in general) shall clearly and
unambiguously categorize elements in categories according to clearly defined arguments.
Furthermore, and even more important, a categorization should have a clearly defined
purpose. For requirements categorizations, this means—from a practical perspective—a
categorization should categorize requirements in a way such that the activities that
are performed with the requirements can be aligned according to the categories. Thus,
ideally, for each of the categories, there exists a corresponding set of activities and
roles for that category. As a consequence, individuals that perform an activity in a
specific role can focus on the requirements from those categories that are related to the
activity. This means, for example, that the performance analyst can focus on performance
requirements. Figure 7.16 shows this relationship: on the left-hand side, a (software)
requirements specification (SRS) is categorized in three categories and on the right-hand
side, exemplary roles and activities are shown.

To better understand the relationship between categories, activities, and roles, we dis-
cuss the relationship of (exemplary) functional requirements and (exemplary) performance
requirements with respect to the so called Technical Processes of the ISO/IEC 15288-2008
[2008]. Figure 7.17 shows these processes. We discuss this relationship along the ISO/IEC
15288-2008 [2008], as it establishes a common process framework for describing the life
cycle of (software) systems. It defines a set of processes and associated terminology for
the full life cycle of the system.
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Figure 7.17.: Process groups and processes of the ISO/IEC 15288-2008 [2008].

In our investigation of how practitioners handle requirements in Chapter 4, we found
that in the two phases testing and architecture/design the development activities for QRs
differ most from the activities for FRs. Thus, we focus in the following discussion on the
corresponding two processes, i.e., the Architectural Design Process and the Verification
Process.

Architectural Design Process The purpose of the Architectural Design Process is
to synthesize a solution that satisfies system requirements. It consists of the following
three activities:

1. Define the architecture In this activity, appropriate logical architectural
designs are defined, system functions are partitioned and allocated to elements of the
system architecture, derived requirements for the allocations are generated, and interfaces
between system elements and interfaces at the system boundary with external systems
are defined and documented [ISO/IEC 15288-2008, 2008].

2. Analyze and evaluate the architecture In this activity, the resulting ar-
chitectural design is analyzed to establish design criteria for each element. Moreover,
it is determined, which system requirements are allocated to operators and whether
hardware and software elements that satisfy the design and interface criteria are available
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off-the-shelf. Finally, alternative design solutions are evaluated [ISO/IEC 15288-2008,
2008].

3. Document and maintain the architecture In this activity, the selected
physical design solution is specified as an architectural design baseline in terms of its
functions, performance, behavior, interfaces and unavoidable implementation constraints,
the architectural design information are recorded, and mutual traceability between
specified design and system requirements is maintained [ISO/IEC 15288-2008, 2008].

Discussion In these activities, there is a substantial difference, if we consider a
functional requirement, as for example the requirement “the user shall be able to delete
an item from the shopping basket”, or a performance requirement, as for example the
requirement “the system must have an average processing time of < 10 ms between event
receiving a delete request and event answering a delete request, when under an average
load”.

For the functional requirement, the logical architectural design could be extended with
a component at the system border which takes care of managing, and, in particular,
deleting users. Analyzing and evaluating this requirement is straight forward. However,
in case of the performance requirement, it is not obvious how to define an appropriate
architecture that fulfills the requirement, as it may influence the architecture as a whole.
Thus, we could define several candidate architectures and then perform a performance
analysis (see for example [Balsamo et al., 2004; Bianchi, 2000; Broy et al., 2011; Jain,
1990; Wandeler et al., 2006]). A performance analysis is usually conducted in the early
stages of the architecture/design and analyzes whether or not a particular distribution of
functionality over a proposed system decomposition (the so-called system architecture)
will meet the performance requirements. This is a difficult problem because, in this stage
of the software life cycle, there are still many unknowns that might have great impact on
the system performance [Wandeler et al., 2006]. Still, performance analysis is required
as early as possible in the software life cycle [Wandeler et al., 2006], as performance
problems often result from early design choices [Balsamo et al., 2004]. Furthermore, since
performance is a runtime attribute of a software system, performance analysis requires
suitable descriptions of the software runtime behavior. For example, finite state automata
and message sequence charts are largely used description techniques [Balsamo et al.,
2004].

Verification Process The purpose of the Verification Process is to confirm that the
specified design requirements are fulfilled by the system. It consists of the following two
activities:

1. Plan verification In this activity, the strategy for verifying the system entities
throughout the life cycle is defined, the verification plan based on system requirements
is defined, and potential constraints on design decisions are identified and communi-
cated [ISO/IEC 15288-2008, 2008].
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2. Perform verification In this activity, it is ensured that the enabling system for
verification is available and associated facilities, equipment and operators are prepared to
conduct the verification, the verification is conducted to demonstrate compliance to the
specified design requirements, the verification data on the system is made available, and
the verification, discrepancies and corrective action information is analyzed, recorded
and reported [ISO/IEC 15288-2008, 2008].

Discussion Again, in these activities, there is a substantial difference, if we consider
a functional requirement or a performance requirement. For a functional requirement
like “the user shall be able to delete an item from the shopping basket”, the verification
plan and the actual verification is straight forward, i.e., the system needs to be set up,
items need to be added to the basket and then an item needs to be deleted. However,
with a performance requirement like “the system must have an average processing time
of < 10 ms between event receiving a delete request and event answering a delete request,
when under an average load” both activities are more complicated. In this case, we need
to set up a suitable hardware against which to test the processing time, as the actual
processing time depends on the hardware of the system. Furthermore, as the requirement
specifies an average load, we need to consider how to simulate a suitably heavy load in
the test environment. For throughput requirements, this is even more complicated: We
need an automated way to generate a high volume of requests, as manually generating
these would be logistically impossible (in most cases). For performing the measurement,
we need to set up a measurement that accurately measures the processing time.

Conclusion & Outlook In this section, we argued that a requirements categorization
should categorize requirements in a way such that the activities that are performed with
the requirements can be aligned according to the categories. We exemplarily discussed
the difference in the activities of the Architectural Design Process and the Verification
Process between functional and performance requirements. We argued that there are
substantial differences between functional and performance requirements in performing
these activities. Traditional software development methods focus on functional correctness
and introduce performance requirements later in the process. However, as performance
problems may have a severe impact on the overall project success, there has been a
growing interest and several approaches to, e.g., early software performance predictive
analysis, have been proposed. Balsamo et al. [2004] present a comprehensive review of
recent research in the field of model-based performance prediction at software development
time. They argue from their results, that the software performance predictive process
is based on the availability of software artifacts, as for example requirements, software
architectures, and specification, that describe suitable abstraction of the final software
system. Moreover, they argue that performance analysis requires suitable descriptions of
the software runtime behavior as performance is a runtime attribute of a software system.
For the evaluation of performance models, analytical methods and simulation techniques
can be used to get performance indices, as for example throughput, utilization, response
time.
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Thus, we argue that we can drastically reduce the amount of requirements that need
to be processed, i.e., read, understand, and analyzed, for performing an activity, if we
make the relation between requirements categories, activities, and roles explicit. An
explicit relation allows individuals performing an activity in a specific role to focus on
the requirements from the respective category. Thus, the sheer amount of requirements
that need to be processed for performing the activity is reduced to the requirements of
the corresponding category.

However, up until now, the concrete relationships between specific requirements cate-
gorizations and the development activities and their roles is still an open question. To
derive concrete relationships, we propose an approach with the following steps:

Detailed Analysis of Development Activities As a first step, we propose to analyze
the activities of common process frameworks, as for example the ISO/IEC 15288-
2008 [2008] or the RUP [Jacobson et al., 1999]. The goal of this step is to create an
explicit mapping of requirements categories and activities that are performed with
them. To reach this goal, we propose to analyze the descriptions of the individual
steps of the activities and then to discuss whether the steps are performed in
different ways for different categories. If there are different tasks performed with
different categories, we propose to make this difference explicit. The result of this
step is a refined model of the activities, where each activity is explicitly mapped to
the categories of a categorization. However, we found that the descriptions of both,
the ISO/IEC 15288-2008 [2008] as well as the RUP, are rather high level, and thus
the results of this step bear the threat of being subjective and incomplete.

Interview Studies with Participants from Industry To mitigate the subjectivity
and incompleteness threat of the first step and to further detail the relationship
between development activities and requirements categories, we propose to further
conduct a series of interview studies. In each study, we propose to select a participant
that takes a role (for a given activity) in their daily work. Then, we propose to
present requirements of different categories to the participant and ask how the
participant usually performs the tasks for the requirement. The result of this step
is an activity model where the relationship between activities and categories is
further refined and backed by evidence from practice.

The result of this approach is an activity model in which the relationship between
activities and categories is made explicit. In order to be useful for the process, we then
require that

1. all categories are mapped to at least one activity, and

2. activities are not linked to a high number or all categories.

In the first case, i.e., the resulting model contains categories that are not linked to any
activity, which means that requirements of that category are not used in any development
activity, we may argue that we should think about changing the categorization or about
changing the process. The same holds for the second case, i.e., there are activities that
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are linked to all categories. In this case, either the activity in deed needs requirements
from all categories or the categorization may be not useful for selecting requirements for
that activity. Again, in this case, we should think about changing the categorization or
about changing the process.

However, we only discussed the relationship and presented a possible approach to make
these relationship concrete. We leave it as subject to future research (see Chapter 10)
to instantiate and evaluate our approach. A long-term vision that follows from this is
that we might be able to better integrate requirements categorizations into a holistic
software and system development process in the future. Such an integration would yield,
for instance, seamless modeling of all properties associated with a system. The benefits
of such an integration include that specific categories would not be neglected during
development activities, as it is too often current state of practice; from an improvement
in the traceability [Eder et al., 2014] of requirements over an improvement of possibilities
for progress control to an improvement of validation and verification.

7.7. Related Work

There is a variety of work on requirement patterns in RE. Franch et al. [2010] present a
metamodel for software requirement patterns. Their approach focuses on requirement
patterns as a means for reuse in different application domains and is based on the original
idea of patterns by Alexander [1979], i.e., each pattern describes the core of a solution of
a problem that occurs over and over again. In particular, the PABRE framework contains
a catalogue of 29 QR patterns [Renault et al., 2009], 37 non-technical patterns [Palomares
et al., 2012], and a method for guiding the use of the catalogue in RE [Franch et al.,
2013]. Their approach for creating the patterns catalogue is similar to ours, as it is also
based on requirements literature and a content analysis. However, they provide solutions
for recurring problems while our sentence patterns provide a means for the specification
of customized requirements.
Supakkul et al. [2010] present four kinds of NFR patterns for capturing and reusing

knowledge of NFRs and apply these patterns in a case study. Their patterns and, in
particular, the objective pattern can be used to identify important NFRs for a context or
capture a specific definition of an NFR from the viewpoint of a stakeholder. Thus, their
patterns define important content elements of a quality attribute in terms of soft goals,
which is similar to our context-dependent content model [Chung et al., 2012; Mylopoulos
et al., 1992]. Our approach provides a structured way to define and customize these
content elements and also provides sentence patterns to specify requirements. However,
their patterns can be used to define the specific quality attribute but furthermore provide
solutions and alternatives and thus go one step further into the architecture or design
of a system. Our approach focuses on definition, customization, and concretization of
requirements concerning a specific quality attribute.

Withall [2007] presents a comprehensive pattern catalogue for natural language require-
ments in his book. The pattern catalogue contains a large number of patterns for different
types of requirements. In contrast to their work, in our approach, we derive patterns from
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literature and customize them to a specific application context. De Almeida Ferreira and
Rodrigues da Silva [2013] introduce RSL-PL, a language for the definition of requirements
sentence patterns. Their pattern definition language can be used to represent our sentence
patterns.

Kopczyńska and Nawrocki [2014] present a method for eliciting non-functional require-
ments, which is composed of a series of brainstorming sessions driven by the ISO/IEC
25010-2011 [2011] quality sub-characteristics. Elicitation is supported by Non-functional
Requirements Templates (NoRTs), which are statements that require some completion to
become a well-formulated NFR. Similar to our sentence patterns, the authors differentiate
between core parts, parameters, and optional parts within the templates. The sentence
patterns derived by our approach are additionally adapted to specific classes of quality
requirements.

Mylopoulos et al. [1992] propose a comprehensive framework for representing and using
QRs in the development process. Similar to our approach, they propose a means to
integrate QRs in the development process, however, they do not provide a structured
approach for explicitly stating the content elements for specifying requirements concerning
quality attributes and do not provide a means for specifying QRs.

7.8. Conclusions
The goal of this chapter was to reach our third objective. In particular, our goal was
to develop an approach for defining, specifying, and integrating quality requirements
based on a system model and to assess whether it is applicable in practice. To this
end, we provided an approach that—given a quality attribute as input—provides a
means to precisely and explicitly define the content elements that are needed to specify
requirements concerning this quality attribute, and provides a means for practitioners to
specify these requirements for a given organizational context based on sentence patterns.
The approach consists of four parts:

1. Context-independent Definition: Relevant content elements are identified by
means of qualitative literature analysis and coding.

2. Precise Definition: The resulting content elements are precisely defined by e.g.,
a glossary or formalization by means of a mapping to a system model.

3. Context-dependent Customization: The content elements are customized to
a given organizational context by using the idea of activity-based quality models.

4. Operationalization Sentence patterns are used as a means for practitioners to
specify requirements concerning the quality attribute.

As our main goal was to provide guidance for the application of our approach, we
furthermore discussed threats to validity and lessons learnt while instantiating it for
performance and availability requirements. Finally, we argue that our approach is
applicable for performance and availability requirements and besides its constructive
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nature, provides a means for various static analyses, as for example completeness analyses.
This contribution supports (the second part of) our hypothesis, i.e., a categorization
based on a system model is operationalizable for subsequent development activities.

In the next chapter, we perform an empirical evaluation of our approach with respect
to its applicability and ability to uncover incompleteness.
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Parts of this chapter have been previously published in the following publications:

• Eckhardt, J., Vogelsang, A., Femmer, H., and Mager, P. (2016b). Challenging
Incompleteness of Performance Requirements by Sentence Patterns. In Proceedings
of the 24th International Requirements Engineering Conference (RE), pages 46–55
(full paper, research track, 10 pages)

Performance requirements play an important role in software development. They
describe system behavior that directly impacts the user experience. Specifying
performance requirements in a way that all necessary content is contained, i.e.,

the completeness of the individual requirements, is challenging, yet project critical.
Furthermore, it is still an open question, what content is necessary to make a performance
requirement complete. In this chapter, we instantiate our approach for performance
requirements and conduct an empirical evaluation with respect to its applicability and
ability to uncover incompleteness.
The results of the application of our approach to the quality attribute performance

are already described in Chapter 7: The context-independent content model is shown
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in Figure 7.8, the context-dependent content model in Figure 7.10, and finally, the
operationalization by means of sentence patterns in Figure 7.11. In this chapter, we derive
a notion of completeness based on the context-dependent content model and evaluate
both the applicability of the approach as well as its ability uncover incompleteness with
performance requirements taken from 11 industrial specifications.

In our study, we were able to specify 86% of the examined performance requirements
by means of the sentence patterns for performance requirements. Furthermore, we show
that 68% of the specified performance requirements are incomplete with respect to our
notion of completeness. We argue that our approach provides an actionable definition of
completeness for performance requirements that can be used to pinpoint to requirements
that are hard to comprehend, implement, and test.

8.1. Context: Completeness of Performance Requirements

One of the most important problems in requirements engineering (RE) is incompleteness.
In a survey with 58 requirements engineers from industry, Méndez and Wagner revealed
that incomplete requirements are not only named as the most frequent problem in RE but
also the most frequent cause for project failure [Méndez Fernández and Wagner, 2013].
Incompleteness can be considered on two levels: incomplete requirements specifications
as a whole or incomplete requirements, i.e., lack of details for single requirements. In
the following, we focus on the latter problem. The problem of incompleteness concerns
both functional and quality requirements, such as performance requirements15. But what
makes a performance requirement complete? Although classifications and definitions
exist, it still remains unclear which content a performance requirement should contain.
To address this lack, we applied our approach to performance requirements, result-

ing in a context-independent and context-dependent content model for performance
requirements, a clear and precise definition of the individual content elements, and
an operationalization through sentence patterns. Furthermore, we derive a notion of
completeness of performance requirements based on the context-dependent content model.

To evaluate our approach, we applied the sentence patterns to 58 performance require-
ments taken from 11 industrial specifications and analyzed (i) the applicability and (ii) the
ability to uncover incompleteness. We were able to rephrase 86% of the performance
requirements by means of the sentence patterns. Moreover, we found that our approach
can be used to detect incompleteness in performance requirements, revealing that 68% of
the analyzed performance requirements were incomplete.

In summary, we contribute: (i) a notion of completeness for performance requirements
and (ii) an empirical evaluation of our approach with respect to its applicability and
ability to detect incompleteness in requirements.
The remainder of this chapter is structured as follows: In Sect. 8.2, we present our

notion of completeness for performance requirements. Then, we present the study design
15In the remainder of this chapter, quality requirements (QRs), we refer to product-related QRs, i.e.,

requirements that address quality characteristics of the product or system and exclude process
requirements or constraints.
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and results of our evaluation in Sect. 8.3 and discuss the implications in Sect. 8.4. Finally,
in Sect. 8.5, we report on related work before we conclude our work and discuss future
research in Sect. 8.6.

8.2. Notion of Completeness for Performance
Requirements

Following the idea of an activity-based definition of quality attributes (see [Deissenboeck
et al., 2007; Femmer et al., 2015]), we created the context-dependent content model in
Section 7.4.3 based on development activities that stakeholders conduct with performance
requirements. We identified necessary content elements that a performance requirement
must contain to complete these development activities efficiently and effectively. For
example, the scope of a requirement is necessary for the activity defining a performance
test. In Figure 7.10, we marked the crucial content elements with a white background
and mandatory content elements with a gray background. This results in 15 mandatory
content items.

Given a performance requirement, we define the completeness of the requirements with
respect to the presence of all mandatory content elements, i.e., we call a requirement
complete if all mandatory content elements are present in the textual representation of
the requirement. There are three cases for the presence of mandatory content elements
in the textual representation of a requirement:

Case 1: The requirement does not contain the content element. For example, in case of
a requirement stating “The delay between [event A] and [event B] shall be short”,
the content element regarding the quantifier is not contained.

Case 2: The requirement implicitly contains the content element. With implicit, we
mean that the content element is contained in the requirement, but we need to
interpret the requirement to derive the content element. For example, in case of
a requirement stating “The delay between [event A] and [event B] shall typically
be 10ms”. In this case, regarding the quantifier, we can interpret “typically” as
“median”.

Case 3: The requirement explicitly contains the content element. With explicit, we
mean that the content element is contained without interpretation. For example,
in case of a requirement stating “The delay between [event A] and [event B] shall
have a median value of 10ms”. In this case, regarding the quantifier, the content
element is explicitly contained.

We derive the following definitions for strong and weak completeness and for incomplete-
ness of performance requirements:

Definition (Strong Completeness of Performance Requirements). A performance re-
quirement is strongly complete, if all mandatory content elements (w.r.t the content
model) are explicitly contained in its textual representation.
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Case Study

RE Community
RE Community

RE Community
Requirements 
Specifications

Performance R1
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Performance 
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Performance 
Requirements

Sentence Patterns 
for Performance 
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Performance 
Requirements 

Applied Sentence 
Patterns

1 2 3 4

8765

Figure 8.1.: Overview of our Research Methodology.

Definition (Weak Completeness of Performance Requirements). A performance require-
ment is weakly complete, if all mandatory content elements (w.r.t. the content model)
are explicitly or implicitly contained in its textual representation.

Definition (Incompleteness of Performance Requirements). A performance requirement
is incomplete, if at least one mandatory content elements (w.r.t. the content model) is
missing in its textual representation.

This definition of completeness for performance requirements can be used to detect
incompleteness and thus to pinpoint to requirements that are hard to comprehend,
implement, and test. For example, requirements of class incomplete are not testable at
all, requirements in class weakly complete need to be interpreted by the developer and/or
tester and therefore bear the risk of misinterpretations, and requirements in class strongly
complete contain all content necessary to be implemented and tested.

8.3. Case Study

In order to evaluate our sentence patterns for performance requirements, we conducted a
case study with industrial performance requirements. Figure 8.1 shows an overview of
our research methodology: First, we applied our approach to performance requirements
(Step 1 – 4 ) and then, we collected performance requirements and applied the sentence
patterns (Step 5 – 8 ). In the following, we first describe the design of the study and
then report on the results.
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8.3.1. Study Design

The goal of our study is to understand the applicability and ability to detect incomplete-
ness of our sentence patterns in the context of natural language performance requirements
from industrial specifications.

Research Questions

To reach our goal, we formulate the following research questions (RQs). In RQ1 and RQ2,
we analyze how well our sentence patterns match performance requirements in industry.

RQ1: To what degree can industrial performance requirements be specified by means of
our sentence patterns?

RQ2: Can our sentence patterns be used to detect incompleteness in industrial perfor-
mance requirements?

In RQ3 and RQ4, we analyze how well performance requirements in industry match with
the context-dependent content model.

RQ3: What type of performance requirements are used in practice?

RQ4: What content is used in performance requirements in practice?

Study Object

In a previous study [Eckhardt et al., 2016c], we analyzed 530 requirements that were
labeled as “non-functional”, “quality requirement”, or a specific quality attribute in 11
industrial specifications from 5 different companies for different application domains and
of different sizes. In particular, we classified each requirement according to its ISO/IEC
9126-2001 [2001] quality characteristic (e.g., Efficiency–Time Behaviour).

The study objects used to answer the research questions constitute of these 11 industrial
specifications. We collected all those requirements that are classified as Efficiency–Time
Behaviour or Efficiency–Resource Utilization. This results in 58 performance requirements
in total. We cannot give detailed information about the individual performance require-
ments or the projects. Yet, in Table 8.1, we show exemplary (anonymized) performance
requirements as far as possible within the limits of existing non-disclosure agreements.

Data Collection

To answer our research questions, we applied the sentence patterns to each performance
requirement of our study object. If we were not able to apply the patterns due to missing
or too vague information, we marked the requirement accordingly (e.g., the requirement
“[...] No significant decrease in performance is permitted”).

When applying a specific sentence fragment of a pattern, for example, the quantifier
(a | a mean | a median | a maximal | a minimal), there are three cases:
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Table 8.1.: Exemplary performance requirements
Spec. Requirement Domain
S2 The delay between [event 1] and [event 2] shall be less than 1s. ES (Railway)
S3 The [system] must ensure the following average response times

for specific use cases under target load:

UC1 < 1min

UC2 < 2 min

...

Note: The timing has to be considered a net time with respect to
all the back-office interfaces.

BIS (Automotive)

S6 The delay between receiving of [message] and the update of [signal] ES (Railway)
Start Event: [event]
Stop Event: [event]
Value < 1.5 sec
Notes It is assumed that the [signal] is required by the message
received. The value indicated in this case includes additional
delay for the display of the information.

• The requirement explicitly contains the content element. In this case, we mark
the resulting value as explicit. For example, in case of a requirement stating “The
delay between [event A] and [event B] shall have a median value of 10ms”, we set
the quantifier to explicit Median.

• The requirement implicitly contains the content element. In this case, we mark
the resulting value as implicit. For example, in case of a requirement stating “The
delay between [event A] and [event B] shall typically be 10ms”, we set the quantifier
to implicit Median.

• The requirement does not contain the content element. In this case, we mark
this sentence fragment as missing. For example, in case of a requirement stating
“The delay between [event A] and [event B] shall be short”, we set the quantifier to
missing.

The procedure was performed by the first two researchers in pair. Both have over three
years of experience in requirements engineering research and model-based development
research. Table 8.2 shows examples of the resulting requirements; Explicit content is
marked by subscript “e”, implicit content is marked by subscript “i” and missing content
by subscript “m”.

Data Analysis Procedures

To answer RQ1, we analyzed whether the sentence patterns can be applied for the given
performance requirements. To answer RQ2, we analyzed to what degree the requirements
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are strongly complete, weakly complete, or incomplete with respect to our notion of
completeness. To answer RQ3, we analyzed the distribution of the requirements with
respect to their performance requirement type. To answer RQ4, we analyzed the mapping
between the original requirements and the content elements in our context-dependent
content model. We perform this analysis for content elements that are applicable for all
performance requirements (like Scope) and also for each of the individual performance
requirement types.

8.3.2. Study Results

RQ1: Applicability of our Sentence Patterns

In total, we could apply the patterns to 50 of the 58 performance requirements. We could
not apply the patterns to 8 requirements, because of missing or too vague information
(see for example, requirement R4 in Table 8.2). Thus, in total, 86% of the requirements
can be expressed by means of our sentence patterns for performance requirements.

The remaining 14% of the requirements are either internal performance requirements
(e.g. “System shall support and leverage 64-bit Hardware and Operating Systems for
scaling up”), non-specific requirements, or just high-level goal descriptions. We explicitly
excluded internal performance requirements from our content model and could not apply
our sentence patterns to the others, as they leave to much room for interpretation.

Quantitative results of RQ1:
86% of the performance requirements can be expressed by means of our sentence
patterns.

RQ2: Benefits of our Approach

In total, 18% of the 50 requirements are strongly complete, 32% are weakly complete and
68% are incomplete.
Analyzing the distribution in more detail, the application of the sentence patterns

for the 50 sentences resulted in 396 sentence fragments. Figure 8.2, shows a partially
aggregated view on the results for the mandatory content elements: Value aggregates Time
Value, Change Value, and Capacity Value. Property aggregates Time Property, Throughput
Property, and Capacity Property. As shown in the figure, most requirements (93%) specify
the value explicitly. This is as one would expect for performance requirements, as the
value specifies the specific time or resource bound for the requirement. In contrast to
this, the scope of only 48% of the requirements is explicitly stated in the requirement,
but can be interpreted for 48% and is missing for 4% of the requirements. This might be
no problem for most requirements, but not explicitly stating the scope leaves room for
interpretation and bears the risk of misunderstanding for which functions of a system a
performance requirement holds.
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48% 48%
58% 42%
59% 22% 18%
59% 16% 24%

62% 31% 6%
93%

Scope

Modality

Quantifier

Property

Quantification

Value

0% 25% 50% 75% 100%

explicit implicit missing

Figure 8.2.: RQ2: Completeness of the original requirements w.r.t. the mandatory content
elements. Value aggregates Time Value, Change Value, and Capacity Value.
Property aggregates Time Property, Throughput Property, and Capacity
Property.

Quantitative results of RQ2:
18% of the 50 requirements are strongly complete and 32% are weakly complete.
The remaining 68% are incomplete with respect to our notion of completeness.

RQ3: Performance Requirement Type

In total, 35 out of the 50 performance requirements are of type Time Behavior (70%), 13
of type Capacity (26%) and 2 of type Throughput (4%).

Quantitative results of RQ3:
70% of the performance requirements concern Time Behavior, 26% Capacity,
and only 4% Throughput.

RQ4: Performance Content

Figure 8.3 shows the results of RQ4. In particular, Figure 8.3a shows the distribution
among the concepts of all requirements, Figure 8.3b shows the distribution among
time behavior requirements, and Figure 8.3c shows the distribution among capacity
requirements. Note that we do not detail the results for throughput requirements, since
only 4% of the requirements were of this type.
In contrast to the prevailing opinion that QRs are cross-functional, the scope of only

58% is the whole system, for 34% it is a function and for 8% a component. For time
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behavior requirements, the percentage of requirements having a function as scope (49%)
even rules out the percentage of requirements having the system as scope (46%). In
contrast to this, for capacity requirements, 85% of the requirements specify the system
as scope and only 15% a component as scope. Therefore, one could argue that while
capacity performance requirements are mostly cross-functional, this is not necessary the
case for behavioral performance requirements.
Furthermore, it stands out that most requirements (98%) are an obligation and only

2% an exclusion.

8.4. Discussion
From the presented results, we conclude that our proposed sentence patterns for perfor-
mance requirements are applicable to performance requirements documented in practice.
Furthermore, we argue that our approach provides a helpful and actionable definition of
completeness for performance requirements that can be used to detect incompleteness
and thus to pinpoint to requirements that are hard to comprehend, implement, and test.

We draw these conclusions by connecting the major results of our evaluating case study:
We were able to apply our sentence patterns to 86% of the requirements in a large set of
natural language performance requirements from practice. Our definition of completeness
is derived from 15 mandatory content elements. Neglecting or implicitly stating one
of these content elements has a negative impact on subsequent development activities
(e.g., implementation or testing). With respect to our notion of completeness, from the
investigated requirements, only 18% were complete (strongly complete), 32% contained
mandatory content elements only implicitly (weakly complete), and 68% neglected at least
one mandatory content element (incomplete). We argue that requirements of class incom-
plete are not testable at all, requirements in class weakly complete need to be interpreted
by the developer and/or tester and therefore bear the risk of misinterpretations, and
requirements in class strongly complete contain all content necessary to be implemented
and tested.
Besides the assessment of completeness, we made some unexpected observations that

question some common views onto performance requirements and QRs in general. A
common point of view for QRs is, for example, that QRs are cross-functional and consider
the system as a whole. We were surprised to see that in our study the scope of 42%
of the requirements that we examined was “component” or “function” (see Figure 8.3).
This means that, at least in the analyzed specifications, several requirements are actually
framed by functions or specific components and not always with respect to the whole
system. Especially for time behavior requirements, a majority of the requirements were
associated with a function. However, for testing or verification, it might still be necessary
to consider the system as a whole.

8.4.1. Implications for Academia
We consider the (re)definition of individual quality attributes based on their impact to
development activities as beneficial for operationalizations. Activity-based quality models
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(e.g., [Deissenboeck et al., 2007; Femmer et al., 2015]) provide frameworks to define and
operationalize quality attributes such as completeness. In our approach, we derived a
context-dependent content model for performance requirements based on the question
which content is necessary to perform specific activities. This approach leads to quality
assessments that can directly be related to activities. It would be interesting to apply a
similar approach to assess the completeness of other quality attributes.

Our approach captures the content of a requirement as a model. Building such models
for industrial requirements allows reasoning about several statements that are presumed
to be common knowledge about QRs. For example, the assertion that QRs are cross-
functional and affect the whole system is challenged by the fact that a reasonable share
of examined requirements regarded the scope “function” or “component” instead of
“system”.

8.4.2. Implications for Industry
Our results suggest that natural language performance requirements in practice are, to a
large extent, incomplete with respect to our notion of completeness or at least need to
be interpreted to be implemented and tested. Our approach is a step towards increasing
the completeness of performance requirements. The operationalization via requirement
patterns could be easily implemented in a requirements authoring or management tool.
Such a tool may provide instant feedback to the requirements engineer about missing
or optional content elements. Furthermore, the tool might check the terms used in a
requirement with respect to an underlying domain model to uncover terms, the reader
must interpret because the term is not part of the consolidated terminology.
An additional benefit of our approach is that it makes content in natural language

requirements explicit and traceable through content elements. This allows connecting
specific content elements of requirements with specific content elements in related artifacts
such as test cases or components within the implementation. Updates within requirements
may then be propagated directly to corresponding test cases for example, making
maintenance activities more efficient and effective.

8.4.3. Limitations of our Sentence Patterns for Performance
Requirements

In total we were able to apply our sentence patterns to 86% of the 58 natural language
performance requirements from practice. That means that we were not able to apply our
sentence patterns to 8 requirements (14%). Table 8.3 shows the list of the requirements
to which the sentence patterns were not applicable. It furthermore shows reasons why the
sentence patterns were not applicable. When we take a closer look at the requirements
and the reasons, we have three major reasons why we were not able to apply the sentence
patterns:

1. The requirement is not a software/performance requirement (c.f., R4, R8 and
partially R1 and R5 in Table 8.3). R4 restricts the maximal (physical) size of a
component, R8 specifies the warranty period and replacement period, and R1 and
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R5 describe the utilization of specific hardware. Our sentence patterns are intended
to capture the contents that are needed to specify performance requirements and,
thus, we were not able to apply the patterns.

2. The requirement is rather a goal than a concrete and testable requirement (c.f. R1
and R5 in Table 8.3). R1 as well as R5 describe that the system shall support and
leverage a specific hardware for scaling up. These two requirements are rather a
high level goal, i.e., The system shall scale up, and do not describe a concrete and
testable requirement. Our sentence patterns are intended to be used to specify
performance requirements with a focus on testing the requirement. Therefore, we
were not able to apply the patterns in these cases.

3. The requirement is too vague and/or contains references (c.f., R2, R3, R6, R7 in
Table 8.3). R2 specifies that no significant decrease in performance is permitted
while R3, R6, R7 permit a x-fold decrease in performance in specific cases. When
reading the singular requirement, the reader cannot clearly understand what signif-
icant means and furthermore, without any reference to the “normal” performance
of the system, the reader cannot understand the meaning of an x-fold decrease.
Moreover, the requirements contain the word performance. This is a very broad
term and without a clear definition, the reader cannot understand what this means.
In summary, in these cases, the requirements cannot be understood as a singular
requirement, as they are either too vague or contain references to definitions and
values. Thus, we were not able to apply our patterns as we require this information
to be present.

In summary, the first and second reason why we could not apply our sentence patterns
concern the type of the requirement: Either it is not a software requirement or it is a
high level goal. The third reason why we could not apply them is that the requirements
are too vague or contain references to definitions and values and cannot be understood
as singular requirements. The latter reason is a problem of sentence patterns in general,
as sentence patterns require requirements to be singular. Thus, they are not allowed
to reference other information in the requirements specification. This can, however, be
overcome with an explicit glossary where each term, as for example significant decrease,
is precisely defined.

8.4.4. Threats to Validity
We assess the completeness of performance requirements by mapping natural language
requirements to a content model that we derived from literature. An assessment whether
a requirement is complete or incomplete is therefore always relative to the notion of
completeness used. If the content model that we used for this study itself is incomplete or
too strict, the results about the completeness of examined requirements in practice would
be misleading. A less strict content model, that defines less mandatory content elements,
would result in more requirements that are considered complete. From our point of view,
a “good” definition of the content model should be derived from the activities that need
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Table 8.3.: List of requirements for which we were unable to apply the sentence patterns
to.

Id Requirement Reason
R1 [The] system shall support and leverage 64-

bit Hardware and Operating Systems for
scaling up.

Patterns not applicable, because the re-
quirement is rather a goal than a concrete
and testable requirement. Furthermore, the
requirement talks about utilization of spe-
cific hardware.

R2 No significant decrease in performance is
permitted in this case [case: applications
connected via broadband]

Patterns not applicable, because too vague.
E.g., what does significant decrease mean?

R3 Remote clients running general applications
connected via an ISDN phone line greater
than 64 kbps. A 3-fold decrease in the
connected client performance is permitted.

Patterns not applicable, because too vague
(performance) and 3-fold decrease is a refer-
ence without making the referenced value
explicit.

R4 The size of [component X] must not exceed
the values of 620mm x 1250mm x 450mm.

Patterns not applicable, because not a soft-
ware requirement.

R5 [The] system shall support and leverage
multi-core CPUs for scaling up.

Patterns not applicable, because this is
rather a goal than a concrete and testable
requirement. Furthermore, the requirement
talks about utilization of specific hardware.

R6 Baud rates (e.g. GSM) less than 10 kbps. A
8-fold decrease in performance permitted.

Patterns not applicable, because too vague
and 8-fold decrease is a reference without
making the referenced value explicit.

R7 Remote clients running with basic applica-
tions for system operation and visualization
connected via analog leased or PSTN lines
greater than 33 kbps. A 5-fold decrease in
performance is permitted.

Patterns not applicable, because too vague
and 5-fold decrease is a reference without
making the referenced value explicit.

R8 Typical warranty period being, for example,
of two years. Typical replacement period is
5 years.

Patterns not applicable, because not a soft-
ware requirement.
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to be performed based on the requirements (see [Femmer et al., 2015]). We tried to
justify all mandatory content elements in our content model by considering development
activities that are not or hardly possible without this content.
Furthermore, (strongly complete) sentences created by our patterns still may be

ambiguous and thus subject to interpretations. This may be the case as some sentence
fragments, such as the time property processing time, may have a different meaning
depending on the context. To mitigate this threat, we suggest to assign a context specific
meaning for those sentence fragments and make this meaning explicit by means of for
example a glossary. The same holds for domain objects like concurrent users.

A major threat to the internal validity is that our results and conclusions strongly rely
on the classification and translation of requirements into patterns, which was performed
by the authors of this study. To mitigate biased classifications and pattern translations,
we performed the classification in a pair of researchers. A third researcher afterwards
reviewed the resulting patterns and challenged the reliability of the classification. This
lead to two rounds of refinement of classification and patterns.
Another threat that might influence the results of our case study is that we exam-

ined only requirements that we identified as performance requirements in a former
study [Eckhardt et al., 2016c]. With this selection procedure, some relevant performance
requirements might have been missed or irrelevant ones might have been included.

We base our evaluation on a set of 58 performance requirements that we extracted from
11 industrial specifications from 5 different companies for different application domains
and of different sizes with a total of 530 requirements. That means that performance
requirements were only one part of the specification and accounted only for 11% of all
requirements. It is possible that there exist additional documents specifically made for per-
formance requirements, which may refine the examined requirements for specific purposes
such as testing. Additionally, it might also be possible that companies have special teams
or departments for implementing or testing performance requirements. It is possible that
these teams just take the general performance requirements from the examined specifica-
tions as an input and translate them to requirements that are more complete w.r.t. our no-
tion of completeness. We are not aware of such additional documents or teams in our cases.
There are few threats that affect the generalizability of our results and conclusions:

We have based our context-independent content model on 12 existing classifications that
we identified during our literature review, however, there may exist classifications with
aspects of performance that we have not yet considered. The set of 58 performance
requirements that we used to evaluate our approach may not be large enough to draw
general conclusions about the applicability.

8.5. Related Work
Incompleteness is one of the most important problems in RE leading to failed projects.
In an early study, Lutz [1993] reports incompleteness as a cause of computer-related
accidents and system failures. Furthermore, in a more recent study, Méndez Fernández
and Wagner [2013]; Méndez Fernández and Wagner [2014] revealed in a survey with
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58 industry requirements engineers, that incomplete requirements are not only named
as the most frequent problem in RE, but also considered the most frequent cause for
project failure. Also, Ott [2012] investigates defects in natural language requirements
specifications. Their results confirm quantitatively that the most critical and important
quality criteria in the investigated specifications are consistency, completeness, and
correctness.
Menzel et al. [2010] report on a similar approach to ours; They propose an objective,

model-based approach for measuring the completeness of functional requirements spec-
ifications. Their approach contains an information model, which formalizes the term
completeness for a certain domain, a set of assignment rules, which defines how textual
requirement fragments can be mapped to the information model, and a guideline, which
defines how to analyze a requirements specification based on the information model. We
use a similar approach, yet for the domain of performance requirements: we define a
content model of performance requirements (similar to the information model) based on
literature, define requirement patterns and apply the patterns to textual requirements
(similar to the assignment rules and the guideline).

There is plenty of work on requirement patterns in RE. Franch et al. [2010] present a
metamodel for software requirement patterns. Their approach focusses on requirement
patterns as a means for reuse in different application domains and is based on the original
idea of patterns by Alexander et al. [1977]. In contrast to this, the idea of our approach
is to use sentence patterns for the definition of content of performance requirements in
general, for the specification of performance requirements, and to define and improve the
completeness of performance requirements.
Withall [2007] presents a comprehensive pattern catalogue for natural language re-

quirements including patterns for performance requirements in his book. The pattern
catalogue contains a large number of patterns for different types of requirements. In
contrast to their work, our approach focusses on performance requirements and is derived
step-by-step from literature. Moreover, we provide a notion of completeness for perfor-
mance requirements and explicitly include the context (by means of auxiliary conditions)
of performance requirements.

Filipovikj et al. [2014] conduct a case study on the applicability of requirement patterns
in the automotive domain. They conclude that the concept of patterns is likely to be
generally applicable for the automotive domain. In contrast to our approach, they use
patterns that are intended for the real-time domain. They use Real Time Specification
Pattern System as defined by Konrad and Cheng [2005] (based on the work of Dwyer et al.
[1999]). These patterns use structured English grammar and support the specification of
real-time properties.
Stalhane and Wien [2014] report on a case study where requirement analysts use

requirement patterns to describe requirements in a structured way. Their results show
that the resulting requirements are readable for humans and analyzable for their tool.
Moreover, their tool improved the quality of requirements by reducing ambiguities and
inconsistent use of terminology, removing redundant requirements, and improving partial
and unclear requirements. In contrast to their work, we specifically focus on performance

168



8.6. Conclusions

requirements, provide a notion of completeness, and provide more detailed (and also
literature-based) sentence pattern.
Wohlrab et al. [2014] present their experiences in combining existing requirements

elicitation and specification methods for performance requirements. They successfully
applied the so-called PROPRE method to a large industrial project and report on the
lessons learnt. The PROPRE method is a comprehensive method containing various
models from feature modeling to requirements templates. The method further contains
requirement patterns, but on a rather abstract level. These patterns can be used for
structuring information in requirements. In contrast to this, we present a step-by-step
derivation and application of sentence patterns for performance requirements.

8.6. Conclusions
The goal of this chapter was to reach our third objective. In particular, our goal was to
assess whether our approach is applicable in practice. To this end, we applied our approach
to performance requirements and proposed a notion of completeness for performance
requirements. To evaluate our approach, we conducted an empirical evaluation with
respect to its applicability and ability to detect incompleteness. From the results of the
study, we conclude that the proposed sentence patterns are applicable to performance
requirements documented in practice. Furthermore, we argue that our approach provides
a helpful and actionable definition of completeness for performance requirements that
can be used to detect incompleteness and thus to pinpoint to requirements that are hard
to comprehend, implement, and test. We plan to apply this approach to other quality
attributes. In particular, we plan to derive a content model and a notion of completeness
for other quality attributes based on literature and on the question which content is
necessary to perform specific activities. This would result in activity-based definitions of
quality factors, which are actionable and applicable by practitioners.

So far, our approach provides an assessment of performance requirements with respect
to our notion of completeness. Considering the constructive nature of sentence patterns,
if requirements are specified based on these sentence patterns, they are complete by
construction. We plan to reflect this notion of completeness with the subjective assessment
of practitioners and discuss whether our notion provides useful feedback. Furthermore,
as requirements by means of our sentence patterns explicitly state respective functions,
events, and domain objects, it would be interesting to analyze the transition to subsequent
development artifacts (e.g., the architecture).
In summary, this contribution supports (the second part of) our hypothesis, i.e., a

categorization based on a system model is operationalizable for subsequent development
activities. In the next chapter, we summarize the contributions of this dissertation and
provide an outlook on future research directions.
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“Simple can be harder than complex; you have to work hard to
get your thinking clean to make it simple.”

— Steve Jobs

9 C
ha

pt
er

Reflection on the Expressiveness of
our Approach

We have proposed an approach which provides a basis for defining specific types of
requirements based on a formal system model in Chapter 7 and 8. Our approach
uses the system model provided by the Focus theory [Broy and Stølen, 2001]

and defines the individual content elements based on the system model. Furthermore, we
have instantiated the approach for performance and availability requirements and have
evaluated the resulting sentence patterns.
However, there are some cases, in which the system model is not sufficient to model

specific types of requirements. For example, for usability requirements; How can we
define the semantics for concepts like perceived user satisfaction?

The purpose of this chapter is to discuss the limitations of our approach, i.e., to what
degree can types of requirements be expressed based on a system model and in what
cases do we need to extend the system model. Finally, we also want to discuss the
considerations that justify the decision to extend—or not to extend—the system model.

9.1. Requirements, Modeling Theory, and System Model
To start our discussion, we first need to make our terminology clear. In the following, we
want to make an explicit distinction between the elements of a modeling theory; We want
to distinguish what we call a behavior theory, such as a notion of time or probabilities
in the modeling theory, and the underlying system model, i.e., the building blocks of a
system. Figure 9.1 illustrates the relationship between requirements, a modeling theory,
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Figure 9.1.: Relationship between requirements, a modeling theory, and a system model.

and a system model. In particular, a modeling theory contains behavior theories and a
system model. A behavior theory may include, for example, a notion of probability or
time. A system model is composed of system model elements. Those elements define the
building blocks of a system. For example, a component with a collection of input and
output ports may be such a building block. A requirement is a predicate over system
model elements which is formalized by a behavior theory.

The Focus theory [Broy and Stølen, 2001] contains a notion of probabilities [Neubeck,
2012] and a notion of time (behavior theories). Furthermore, the system model of the
Focus theory consists of, inter alia, syntactic and semantic interfaces over typed input
and output channels16. A requirement in the Focus theory is then a logical, probabilistic,
timed, or timed and probabilistic predicate over the elements of the system model. Thus,
in our understanding, the Focus theory is a modeling theory.

In the following, we discuss the relationship between types of requirements (i.e., specific
subsets of requirements) and a modeling theory and its system model.

9.2. Discussion on the Relationship of Types of
Requirements and Modeling Theory

In this dissertation, we have discussed two orthogonal views on requirements: (i) the
view of traditional types of requirements and (ii) the view of requirements that are
expressible as predicates over a system model. Figure 9.2 illustrates these two views. In
the view of traditional types (left side of Figure 9.2), types of requirements are usually
defined up front in a requirements categorizations, as for example the ISO/IEC 9126-2001
[2001]. They are either based on a quality model or based on a direct categorization
of requirements into different classes. However, as discussed in Chapter 6, there are
several problems evident with those categorizations, including a vague definition of
16For a detailed discussion of the system model of the Focus theory, we refer to Chapter 2.2 or to Broy

and Stølen [2001]
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All Requirements

Requirements expressible as predicates 
over a system model

Functional Requirements

Performance RequirementsAvailability Requirements

All Requirements

Figure 9.2.: Different views on the set of all requirements (gray). On the left: traditional
types of requirements (functional, availability, and performance). On the
right: requirements expressible as predicates over a system model.

the classes and missing integration in subsequent development activities. The other—
orthogonal—view, we discussed in this dissertation, is to categorize requirements in all
those requirements that are expressible over a system model and those that are not (right
side of Figure 9.2). In contrast to the traditional view, requirements expressed based on
a system model are explicitly and precisely defined and, due to the formal nature, can be
integrated in subsequent development activities. For example, in requirements analysis,
the requirements can be specified more precisely and in testing & validation, techniques
like model checking and theorem proving (e.g. [Kurshan and Lamport, 1993; Rajan et al.,
1995]) can be used. It is important to note that these requirements are restricted to
behavior of a system, as we consider requirements as predicates over a system model.
According to our understanding (see Chapter 2), a functional requirement (in the

traditional view) of a system expresses that (i) a system shall offer a particular functional
feature such that the system can be used for a specific purpose, or (ii) a function of a
system having a particular property—that may be a logical property or a probabilistic
one—modeling part of the interface behavior of the system, specified by the interaction
between the system and its operational context [Broy, 2015, 2016].
Thus, a functional requirement (in the traditional view) is a requirement that is

expressible as a logical or probabilistic predicate over a system model (in our case over
the Focus system model). Hence, functional requirements in the traditional view are
contained in the set of requirements that are expressible based on the system model.
Moreover, in Chapter 7, we have argued that performance requirements (in the traditional
view) can be expressed as a combination of logical, timed, or probabilistic predicates
over the Focus system model. Furthermore, as argued in Chapter 7 (based on the work
of Junker [2016]), we can also express availability requirements (in the traditional view)
as a combination of logical, timed, and probabilistic properties over the Focus system
model. Hence, all these three types of requirements in the traditional view are contained
in the set of requirements that are expressible based on the system model.
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All Requirements

Requirements expressible as predicates 
over a system model

Figure 9.3.: Containment relation of all requirements and requirements that are express-
ible as predicated over a system model.

The main argumentation in this dissertation is that we need a modeling theory together
with a system model that is expressible enough to model the types of requirements from
the traditional view, i.e., requirements are expressible as predicates over the system
model. Figure 9.3 illustrates the set of all requirements which is separated in the set of
requirements that are expressible as predicates over a system model and the complement
of this set. On the right side, a type of requirements is shown that is only partially
expressible over the system model. Thus, our main question is how to choose the modeling
theory and the system model such that they are expressible enough to model all relevant
types of requirements? It is the goal of this chapter to discuss this question.

Note. This question (about expressiveness of the modeling theory and the system model)
is also reflected in the traditional distinction between functional and non-functional
requirements. In early days of computer science (see Chapter 3.1.1 for a historical sequel
of the traditional distinction), there was only a notion of logical predicates over (simple)
system models, and, thus, a distinction was made between functional requirements, i.e.,
all those requirements that are expressible by logical predicates over a system model, and
non-functional requirements, i.e., all the rest.

Thus, the traditional distinction between functional and non-functional requirements
is based on the expressiveness of a modeling theory. If the modeling theory is extended
(e.g. by introducing a notion of time), we end up in a situation where a requirement that
was categorized as non-functional is now categorized as functional, without changing the
requirement. This situation is, in our understanding, one of the causes of the confusion
around non-functional requirements.

We base the following discussion on the choice of the behavior theories and the
system model on the results of Chapter 5. In particular, in Chapter 5, we analyzed
530 requirements from 11 requirements specifications from 5 different companies. We
classified each of the 530 requirements in behavioral requirements, i.e., those requirements
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Figure 9.4.: Relative distribution of behavioral requirements with respect to their behavior
theory: syntactic, logical, timed, probabilistic, and probabilistic and timed
(from black to white).

that are expressible over the Focus system model, and representational requirements,
i.e., those requirements that are not expressible.

9.2.1. The Choice of the Behavior Theories

We argue that it is sufficient to have logical, timed, and probabilistic predicates over
a system model to describe behavioral requirements. In our document analysis in
Chapter 5, we classified 74.7% of all requirements (397/530) as requirements that are
expressible over the Focus system model. We classified these requirements according
to the behavior theory that would be needed to formally specify the behavior that is
expressed in the requirement. Figure 9.4 shows the results. These results show that
we need a modeling theory with which we can express logical, timed, probabilistic,
and probabilistic and timed requirements. The Focus theory [Broy and Stølen, 2001]
together with its probabilistic extension [Neubeck, 2012] is a modeling theory that
fulfills these requirements. Requirements can be expresses as a combination of logical,
timed, and probabilistic predicates. Furthermore, the work of Broy [2015, 2016] also
corroborates our hypothesis. In his work, he distinguishes between behavioral properties
and representational properties. Behavioral properties are all those properties that are
expressible as predicates over a system model. From the remaining 25.3% that are not
expressible over the Focus system model, 68 are references to standards. Standard
references are—in general—difficult to assess, as most standards do not provide a formal
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notion of the contents of the standard. To include those requirements, we would need to
model the respective standard based on the system model. Thus, we exclude references
to standards in our discussion. The rest, i.e., 66 requirements, are requirements that
describe the representation of the system. They cannot be expressed based on the Focus
system model. We analyzed those requirements in detail and found that they can be
formalized in a logical, timed, and probabilistic manner (based on an extended system
model).

Note. There are some cases where logical, timed, and probabilistic predicates are not
enough to express behavioral requirements. For example, if we want to consider uncer-
tainty, impreciseness, and vagueness in a qualitative fashion. For the remainder of this
dissertation, we exclude those requirements. However, there is work by Koutsoumpas
[2015] which integrates fuzzy concepts in the Focus theory. If we consider this extension,
those requirements could also be integrated.

9.2.2. The Choice of the System Model

The choice of the system model depends on the types of requirements we want to model,
as the system model defines the basic building blocks of the system and, thus, for
requirements. Hence, we can describe all those requirements that are expressible as
predicates over elements of a system model. For performance requirements and availability
requirements, we have already argued that the system model of the Focus theory is
sufficient. These two types of requirements mostly describe externally observable behavior
of parts of the system. However, there are some types of requirements that can not fully
be modeled as predicates over the system model.

Let us consider, for example, requirements that describe the physical interaction of the
system with its environment. In particular, consider an ECU that heats up the more
it processes. Then, we may have a requirement like “the system shall not heat up its
environment to more than 60 ◦C”. This requirement follows physical laws and, thus, the
system model needs to contain a notion of temperature, energy, etc. In this case, we may
extend the system model with a notion of temperature and temperature laws. Having
this extension, we can express requirements that are formerly not expressible based on the
extended system model. Note that, if we consider the traditional distinction in functional
and non-functional requirements, a requirement that was perviously classified as NFR is
now classified as FR, without having changed the requirement.
Another example are mechatronic systems with spatial requirements. Mechatronic

systems do not only interface with other software systems or the user, but integrate
electric and mechanic devices to form complex systems operating in the real world. For
these systems, spatial requirements, e.g. requirements that constrain, measure, or affect
the spatial relationship of physical objects, play an important role. However, the system
model of the Focus theory only partially supports those requirements, as it, for example,
does not support spatial information. For these types of systems, Hummel [2011] has
extended the Focus system model such that positions of objects are captured over time
and basic concepts required for modeling realistic systems (such as the collision between
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Figure 9.5.: Distribution of behavioral and representational requirements.

solid objects, the detection of objects in certain locations, material flow, and kinematic
relationships between objects of the model) are supported. Again, based on this extended
system model, the set of requirements that can be expressed based on the system model
is enlarged.

Moreover, let us consider requirements that describe external properties in relation to
the usage of the system, e.g., the usability requirement “the time-based zoom function
must be comfortable to use”. This requirement describes an external property of the
system in relation to its usage. It has a strong impact on the user interface and the
interactions of the user with the software. Now we face the question how can we model
the comfortability of usage in a system model? An extension of the system may be
possible by integrating a notion of the user and comfortability in the system model.
To sum it up, for each type of requirement, we need to assess whether the system

model is sufficient to model the kind of behavior that is described by requirements of
this type. Furthermore, we need to assess—if there is a possible extension of the system
model—whether it is beneficial to extend the system model.

9.2.3. Assessment of Types of Requirements w.r.t. the Focus System
Model

In this section, we perform an assessment of the main quality characteristics of the ISO/IEC
9126-2001 [2001]. We base our assessment on the results of our document analysis in
Chapter 5 (the results are shown in Figure 9.5). In particular, for each type of requirement,
we assess for the Focus theory, if the behavior theories and system model is sufficient
to express requirements of this type. Moreover, we base the assessment on the work
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of Ameller et al. [2010] and Yang et al. [2014]. They conducted a literature review to
find out whether current Model-Driven Development (MDD) approaches integrate QRs.
They found that most current MDD approaches only focus on FRs (and thus excluding
QRs). However, for our assessment we focus on those approaches that do integrate QRs
into MDD according to their results. We use their results as an additional argument that
specific types of requirements can be—in general—expressed based on a system model.
The system models of the individual MDD approaches may be different from the system
model of the Focus theory, however, it serves us as an indication of the feasibility.

Note. Note that our assessment is based on the results of Chapter 5 and on reasoning.
Thus, it constitutes a first step towards an unified understanding of the relationship and
needs further refinement in future.

Functionality According to ISO/IEC 9126-2001 [2001], functionality is the capability
of the software product to provide functions which meet stated and implied needs
when the software is used under specified conditions.
Assessment: As shown in Figure 9.5, we categorized 92% of the functionality
requirements as requirements that are expressible over the system model. From
the remaining 12 requirements, six are references to standards, like “the back up
data must be stored accordingly to [...] policies” and six concern the syntactical
or technical representation of the system. Standard references are—in general—
difficult to assess, as most standards do not provide a formal notion of the contents
of the standard. To include those requirements, we would need to model the
respective standard based on the system model. Thus, we exclude references to
standards in our discussion. Moreover, according to Ameller et al. [2010], most
MDD approaches focus on functional requirements. Thus, we argue that many
functional requirements from practice can be expressed as predicates over the
Focus system model. Note that the traditional definition of functional (in contrast
to non-functional) requirements is based on a simple system model. Thus, from
this perspective, functional requirements should be—per definition—expressible
based on a system model.

Usability According to ISO/IEC 9126-2001 [2001], usability is the capability of the
software product to be understood, learned, used and attractive to the user, when
used under specified conditions.
Assessment: In our document analysis study, we categorized 57% of all usability
requirements as requirements that are expressible over the system model (as shown
in Figure 9.5). We furthermore analyzed the remaining 26 requirements (excluding
the three references to standards) in detail and categorized them according to the
following four groups:

(i) internationalization requirements, e.g, “[the system] must provide an English,
German and French language configuration which can show 100% of [the
system’s] functionality”,
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(ii) accessibility requirements, e.g. “the accessibility of the software shall be
considered as far as possible”,

(iii) common look and feel requirements, e.g. “Graphical User Interfaces shall
present a common look and feel whenever possible.”, and

(iv) UI structuring requirements, e.g., “the description of the user rights shall be
grouped according to the functionality”.

To include those requirements, we would need to include a notion of the language
of the user interface and a notion of accessibility. Furthermore, we would need to
formally detail what we mean with common look and feel in the Focus theory.
Moreover, usability requirements often constrain properties perceived by the user.
To formally capture this, we would need formally specify what perceived means in
the respective context.

Reliability According to ISO/IEC 9126-2001 [2001], reliability is the capability of the
software product to maintain a specified level of performance when used under
specified conditions.
Assessment: As shown in Figure 9.5, we categorized 98% of the reliability
requirements as requirements that are expressible over the system model. From
the remaining two requirements, one is a reference to a standard and the other one
states that “backup copies shall not be stored in the same fire area as the technical
systems”. The latter requirement can be modeled as a requirement over the extended
system model by Hummel [2011], which captures positions of objects over time
and basic concepts required for modeling realistic systems (such as the collision
between solid objects, the detection of objects in certain locations, material flow,
and kinematic relationships between objects of the model). Thus, we argue that
almost all reliability requirements can be expressed as predicates over the Focus
system model. Furthermore, as shown by Junker [2016], availability requirements—
which are a subset of reliability requirements according to the ISO/IEC 9126-2001
[2001]—are expressible based on the Focus system model. Moreover, there are
many MDD approaches [Ardagna et al., 2008; Gallotti et al., 2008; Rodrigues et al.,
2005; Wada et al., 2010] that integrate reliability requirements. This further yields
an argument, that a large portion of the reliability requirements can be expressed
based on a system model.

Security According to ISO/IEC 9126-2001 [2001], security is the capability of the software
product to protect information and data so that unauthorized persons or systems
cannot read or modify them and authorized persons or systems are not denied access
to them.
Assessment: In our document analysis study, we categorized 41% of all security
requirements as requirements that are expressible over the system model (as shown
in Figure 9.5). However, many of the security requirements we analyzed were
references to standards. If we exclude those from our analysis, 93% are expressible
as predicates over the system model. The remaining 3 requirements constraint
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the syntactical representation of the system. Furthermore, there are some MDD
approaches [Wada et al., 2010] that integrate security requirements based on, e.g,
an UML profile. Thus, we argue that many security requirements from practice
can be expressed as predicates over the Focus system model. However, we would
need a more detailed analysis for security requirements.

Efficiency According to ISO/IEC 9126-2001 [2001], efficiency is the capability of the
software product to provide appropriate performance, relative to the amount of
resources used, under stated conditions.
Assessment: As shown in Figure 9.5, we categorized 97% of the efficiency require-
ments as requirements that are expressible over the system model. This is in tune
with our results in Chapter 7 and 8. The remaining two requirements are require-
ments that concern the usage of specific hardware, e.g., “the system shall support
and leverage 64-bit hardware and operating systems for scaling up”. To include
these types of requirements in the Focus theory, we would need a notion of the
executing hardware. Furthermore, there are some MDD approaches [Ardagna et al.,
2008; Gallotti et al., 2008; Gönczy et al., 2009; Kugele et al., 2008] that integrate
efficiency requirements. Thus, we argue that almost all efficiency requirements can
be expressed as predicates over the Focus system model.

Maintainability According to ISO/IEC 9126-2001 [2001], maintainability is the capa-
bility of the software product to be modified. Modifications may include corrections,
improvements or adaptation of the software to changes in environment, and in
requirements and functional specifications.
Assessment: As shown in Figure 9.5, we categorized 79% of the maintainability
requirements as requirements that are expressible over the system model. We
categorized the remaining requirements in the following two groups:

(i) requirements that concern the artifact documentation, e.g. “the system shall
be sufficiently documented. This concerns the inline comments in the source
code” and

(ii) technology requirements, e.g., “the used technologies for hardware and software
shall not lead to a vendor lock in”.

To formally specify requirements that concern the artifact documentation, we would
need to extend the system model with a notion of artifacts. Similarly for technology
requirements; These would need a notion of used technologies for software and
hardware. Furthermore, the literature review of Ameller et al. [2010] did not yield
any results concerning MDD approaches that integrate maintainability requirements.
Still, we argue that a large portion of maintainability requirements can be expressed
as predicates over the Focus system model. For the remaining requirements, we
would need to extend the system model.

Portability According to ISO/IEC 9126-2001 [2001], portability is the capability of the
software product to be transferred from one environment to another.
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Assessment: Finally, as shown in Figure 9.5, we categorized 50% of the portability
requirements as requirements that are expressible over the system model. If we
analyze the remaining 23 requirements in detail, we can categorize them in
(i) hardware requirements like “the system platform for the [system] shall be

[platform]”,
(ii) infrastructure/environment requirements like “the system shall support deploy-

ment in a virtualized environment such as [environment]”, and
(iii) client profile requirements like “[the system] must support retailers who sell

several brands (both of them)”.
To include those requirements, we would need to extend the Focus theory to
include a notion of specific details of hardware, infrastructure, and environment
and about client profiles. Furthermore, the literature review of Ameller et al. [2010]
did not yield any results concerning MDD approaches that integrate portability
requirements. Still, a large portion of portability requirements can be expressed as
predicates over the system model.

The question when to extend the system model can be broken down to the question
how beneficial would it be to have formal analyses for a given type of requirements.
For example, in requirements analysis, the requirements can be specified more precisely
based on the system model and in testing, techniques like model checking and theorem
proving (e.g. [Kurshan and Lamport, 1993; Rajan et al., 1995]) can be used to show that
requirements are fulfilled by the system. Thus, if we need to conduct formal analyses
of our requirements, as for example required by the ISO/IEC 26262-2011 [2011] for all
requirements that are relevant for safety, an extension of the system model is beneficial.

9.3. Conclusion & Future Work
In this chapter, we have discussed the limitations of our approach. In particular, we have
discussed the influence of the choice of the behavioral theories and system model towards
categorizations of requirements. Moreover, we discussed further types of requirements
with respect to their expressiveness in the Focus theory.

We argue that the choice of the modeling theory and, in particular, the system model
strongly influences what types of requirements we can modeled. Requirements that are
formally modeled can subsequently be formally analyzed. We argue that it is sufficient to
include a notion of time and probability in a modeling theory. Furthermore, we discussed
that the system model of the Focus theory is expressive enough to model a large amount
of requirements. In particular, functional, reliability, security, and efficiency requirements
can be expressed to a large amount based on the Focus system model. For usability,
maintainability, portability requirements, the system model needs to be extended.
In future, we propose to further refine the assessment of types of requirements. In

particular, we propose to further analyze what subset of requirements can be expressed
based on a system model and to what degree is it justified to extend the system model.
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Thus, for the Focus theory, the question is where are the limits of its expressiveness
(w.r.t. requirements) and to what degree is it justified to extend its system model.
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“No book can ever be finished. While working on it we learn just
enough to find it immature the moment we turn away from it.”

— Karl Popper

10 C
ha

pt
er

Conclusions & Outlook

The goal of this final chapter is to summarize the main contributions of this
dissertation, conclude the dissertation, and discuss possible directions for future
research.

10.1. Summary of Conclusions

This dissertation is built on the hypothesis that a requirements categorization based on a
system model is adequate for requirements found in practice and is operationalizable for
subsequent development activities. In this dissertation, with adequacy of a requirements
categorization, we mean that the categorization is applicable for industrial requirements
and, furthermore, supports subsequent development activities. We argued that such a
categorization provides us with a clear notion and concept of a system. Based on the
categorization, we can precisely specify requirements in terms of properties of systems,
where properties are represented by logical predicates. This allows us to precisely and
explicitly specify the structuring principles of the categorization. Given a requirements
categorization that is based on a system model, the seamless transition to architectural
design (operationalization) is facilitated, as requirements are built on clearly defined and
explicitly stated logical properties over a set of systems.
We claimed that this dissertation provides supporting evidence and solutions for the

stated hypothesis. In the following, we conclude that these claims are supported by the
contributions provided in this thesis.
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Adequacy of a Requirements Categorization based on a System Model

In Chapter 5, we analyzed whether a requirements categorization based on a system
model is adequate for requirements found in practice. In particular, we analyzed 11
requirements specifications from 5 different companies working in different application
domains and of different sizes. We collected all those requirements that are labeled as
“non-functional”, “quality”, or any specific quality attribute, resulting in 530 requirements
in total.

The results of this study show that 75% of the requirements labeled as “quality” in
the considered industrial specifications describe system behavior and 25% describe the
representation of the system. From the QRs that describe system behavior, 69% describe
behavior over the interface of the system, 21% describe architectural behavior and 10%
describe state behavior. We furthermore discussed the implications we see on handling
QRs in the software development phases, e.g., testing or design.

Based on these results, we argue that functional requirements describe any kind of
behavior over the interface of the system, including timing and/or probabilistic behavior.
From this perspective, we conclude that many of those QRs that address system properties
describe the same type of behavior as functional requirements do (see column Interface in
Figure 5.6). This is true for almost all QR classes we analyzed; even for QR classes which
are sometimes called internal quality attributes (e.g., portability or maintainability) [Mc-
Connell, 2004]. Hence, we argue that Broy’s requirements categorization—that is based
on a system model—is adequate for requirements found in practice, as the categories can
be linked to system development activities. From a practical point of view, this means
that most QRs can be elicited, specified, and analyzed like functional requirements. For
example, QRs classified as black-box interface requirements, are candidates for system
tests. In our data set, system test cases could have been specified for almost 51.5% of
the QRs.

Moreover, in Chapter 9, we discussed the limitations of modeling requirements based
on a system model. We conclude that it is sufficient to include a notion of time and
probability in a modeling theory. Furthermore, we discussed that the system model of
the Focus theory is expressive enough for relevant types of requirements. In particular,
functional, performance, reliability, safety, and security requirements can be expressed
based on the Focus system model. For usability, maintainability, reusability, releasability,
and supportability requirements, the system model is not sufficient. However, we believe
that an extension of the system model is—in general—not justified, as those types of
requirements are usually not formally specified/documented and there are usually no
formal analyses conduced with those requirements in subsequent development activities.

This contribution supports (the first part of) our hypothesis, i.e., a categorization
based on a system model is adequate for requirements found in practice.
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Operationalization of a Requirements Categorization based on a
System Model

In Chapter 7, we presented an approach for defining, specifying, and integrating QRs
based on a system model. In particular, the approach takes a specific quality attribute
as input and creates a precise and explicit definition and customized sentence patterns
for requirements concerning this quality attribute. The resulting definitions and sentence
patterns can then be integrated in the overall RE process to support the documentation,
elicitation, management, and validation of requirements in the given organizational con-
text. We furthermore instantiated our approach for the quality attributes performance
and availability and provided a discussion of our lessons learnt while instantiating it. In
particular, we presented a context-independent and context-dependent content model
for performance requirements, an (informal) definition of the content elements and a
discussion on how to express them based on the Focus system model, and an opera-
tionalization through sentence patterns for the specification of performance requirement.
Furthermore, we derived a notion of completeness for performance requirements based
on the context-dependent content model.

Furthermore, in Chapter 8, we conducted an evaluation of our approach for performance
requirements. In particular, we applied the resulting sentence patterns for performance
requirements to 58 performance requirements taken from 11 industrial specifications and
analyzed (i) the applicability and (ii) the ability to uncover incompleteness of performance
requirements.
We were able to rephrase 86% of the performance requirements. Moreover, we found

that the resulting sentence patterns can be used to detect incompleteness in perfor-
mance requirements, revealing that 68% of the analyzed performance requirements were
incomplete.
In summary, we conclude that our approach is applicable for performance and avail-

ability requirements and its results can be used to support the documentation, elicitation,
management, and validation of requirements in the given organizational context. Thus,
we argue that our approach provides an operationalization for subsequent development
activities of a requirements categorization based on a system model.

10.2. Overall Conclusion & Implications

In this dissertation, we have analyzed the state of the practice of how practitioners handle
requirements. Based on this, we analyzed the adequacy of a requirements categoriza-
tion based on a system model with 530 requirements from industrial specifications and
concluded that the categorization is adequate. With adequacy of a requirements catego-
rization, we mean that the categorization is applicable for industrial requirements and,
furthermore, supports subsequent development activities. Furthermore, we presented
an approach for defining, specifying, and integrating QRs based on a system model
and conducted an evaluation with respect to its applicability and ability to uncover
incompleteness.
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In summary, we conclude that a requirements categorization based on a system model
is adequate for industrial requirements and, furthermore, that it can be operationalized
for subsequent development activities. Thus, we conclude that we can support our
hypothesis.
Personally, we are convinced that the purpose of a categorization (in general) is to

clearly and unambiguously categorize elements in categories according to clearly defined
arguments. Furthermore, and even more important, a categorization should have a clearly
defined purpose. For requirements categorizations, this means that on the one hand—from
an academic perspective—a categorization should clearly and unambiguously categorize
requirements. On the other hand—from a practical perspective—a categorization should
categorize requirements in a way such that the activities that are performed with the
requirements can be aligned according to the categories.
Following these goals, we argue that we should reconsider categorizing requirements

simply into functional and non-functional requirements. This simple categorization
neither unambiguously categorizes requirements (see for example the discussion of Glinz
[2007] or Broy [2016]) nor sufficiently supports subsequent development activities. This
is in line with the established opinion in the field, e.g. with Pohl [2010] and Glinz [2007].
With respect to requirements categorizations that go beyond a categorization in

functional and non-functional, we found in our initial literature review that they more or
less clearly and unambiguously categorize elements according to clearly defined arguments.
One example is the concern-based classification of Glinz [2007] and Broy’s categorization
that is based on a system model. However, concerning the applicability in practice, we
found in the first part of this dissertation that there are several problems evident with
current categorizations, as for example that traceability becomes expensive or that QRs
are even forgotten (see Chapter 4). Furthermore, existing literature (e.g., [Ameller et al.,
2012; Borg et al., 2003; Chung and Nixon, 1995; Svensson et al., 2009]) indicates that QRs
are not sufficiently integrated in the overall development process. This is where the second
part of this dissertation steps in. Our approach (see Chapter 7) is an extension of a given
categorization, which clearly defines the individual categories and thus reduces ambiguity.
For example, we provided a content model for performance requirements including a clear
definition of the individual content elements in Section 7.4. Furthermore, we provide
a means, i.e., sentence patterns, for the specification of requirements concerning the
individual categories and thus support subsequent development activities.

From a researchers’ perspective, the results of this dissertation strengthen our confidence
that current requirements categorizations need to be extended to meet these two goals.
Our approach is a step towards a clear understanding of the categories and the application
of requirements categorizations.

From a practitioners’ perspective, not only the operationalization via sentence patterns
could be easily implemented in a requirements authoring or management tool. Such a
tool may provide instant feedback to the requirements engineer about missing or optional
content elements, similar to requirements smells [Femmer et al., 2014a,b, 2016; Vogelsang
et al., 2016]. Furthermore, the tool might check the terms used in a requirement with
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respect to an underlying domain model and then uncover terms that are neither part of
the consolidated terminology nor defined through the pattern semantics.
A long-term vision that emerges from our results is that we might be able to better

integrate requirements categorizations into a holistic software and system development
process in the future. Such an integration would yield, for instance, seamless modeling
of all properties associated with a system. The benefits of such an integration include
that specific categories would not be neglected during development activities, as it is too
often current state of practice; from an improvement in the traceability of requirements
over an improvement of possibilities for progress control to an improvement of validation
and verification.

10.3. Outlook

In this section, we describe possible future research directions.

10.3.1. Application of the Approach to further Quality Attributes

In this dissertation, we proposed an approach for defining, specifying, and integrating
QRs. We instantiated our approach for two specific quality attributes (performance and
availability) and conducted an empirical evaluation with respect to its applicability. The
results indicate that the approach is applicable and besides the constructive nature of
our approach, further supports analytical quality assessment with syntactic analyses.
For example, the question how can we assess that all information necessary for the
subsequent development activities are documented in a given textual requirement (i.e.,
the completeness of the individual requirement)?

Our approach captures the content of a requirement as a model. Building such models
for industrial requirements allows reasoning about several statements that are presumed
to be common knowledge about QRs. For example, the assertion that QRs are cross-
functional and affect the whole system is challenged by the fact that a reasonable share
of examined requirements regarded the scope “function” or “component” instead of
“system”.

We consider the (re)definition of individual quality attributes, as we did with perfor-
mance and availability in this paper, based on their impact to development activities as
beneficial for the definition of quality attributes. Thus, our approach could be applied
to other quality attributes, resulting in a content model and a notion of completeness
for other quality attributes based on literature and on the question which content is
necessary to perform specific activities. This would result in activity-based definitions of
quality factors, which are actionable and applicable by practitioners.

As a long term vision, the resulting content models could be analyzed with respect to
their commonalities and eventually unified in one content model for quality requirements
(for all quality attributes). This would result in a model of all content elements that
characterize the specification of quality requirements. Based on this, we could give a
precise and explicit definition of quality requirements and, furthermore, an integration in
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the development process by means of the respective sentence patterns. Given this unified
content model, further questions arise like its applicability, usefulness, and adequacy.

10.3.2. Integration in Analytical Quality Assessments
The results of the instantiation of our approach to performance requirements suggest that
natural language performance requirements in practice are, to a large extent, incomplete
with respect to our notion of completeness or at least need to be interpreted to be
implemented and tested. Our approach is a step towards increasing the completeness
of quality requirements in general. The operationalization via sentence patterns could
be easily implemented in a requirements authoring or management tool. Such a tool
may provide instant feedback to the requirements engineer about missing or optional
content elements. Furthermore, the tool might check the terms used in a requirement
with respect to an underlying domain model to uncover terms, the reader must interpret
because the term is not part of the consolidated terminology. Furthermore, it would be
interesting to integrate the notion of completeness that is associated with our approach
with requirements smells [Femmer et al., 2014a,b, 2016; Vogelsang et al., 2016], i.e., we
could automatically analyze requirements documents and provide an indication for a
quality defect if requirements are incomplete with respect to our notion.
An additional benefit of our approach is that it makes content in natural language

requirements explicit and traceable through content elements. This allows connecting
specific content elements of requirements with specific content elements in related artifacts
such as test cases or components within the implementation. Updates within requirements
may then be propagated directly to corresponding test cases for example, making
maintenance activities more efficient and effective.

10.3.3. Evaluation of the Cost and Benefits of our Approach
So far, our approach provides a means for practitioners to specify requirements concerning
a specific quality attribute. Furthermore, it provides an assessment of quality requirements
with respect to our notion of completeness. Considering the constructive nature of
sentence patterns, if requirements are specified based on these sentence patterns, they
are complete by construction. However, conducting our approach for a quality attribute
is labor intensive. Thus, the question is about the cost benefit ratio; Building a cost
model for our approach and connecting this cost model with the associated benefits is a
challenging task. The results will help to better understand when to apply the approach
and when not to apply it.

10.3.4. Integration of our Approach in a Specification Methodology
for Requirements

In Chapter 8, we have seen that in contrast to the prevailing opinion that QRs are
cross-functional, the scope of only 58% is the whole system, for 34% it is a function and
for 8% a component. For time behavior requirements, the percentage of requirements
having a function as scope (49%) even rules out the percentage of requirements having
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the system as scope (46%). In contrast to this, for capacity requirements, 85% of the
requirements specify the system as scope and only 15% a component as scope.

These results lead to an interesting question: How can we integrate our approach in a
requirements specification methodology. For example, if we consider the requirements
that have a function as scope. Can we integrate them with a use case-based methodology,
i.e. to structure the functionality and also the QRs of a system by functions [Broy, 2010b;
Vogelsang, 2015; Vogelsang et al., 2015]?

10.3.5. Application Beyond Quality Requirements
So far, we have set the scope to product-related requirements and traditional quality
requirements according to the ISO/IEC 25010-2011 [2011]. Thus, we explicitly excluded
process-related requirements and also requirements that concern physical aspects of a
system, like spatial requirement, i.e., requirements that describe properties about the
spatial relationship of a system with physical objects. As an interesting open question, we
propose to apply our approach also to these types of requirements, resulting in a precise
definition and an operationalization by means of sentence patterns. For example, if we
apply our approach to process-related requirements, it would result in a model of content
elements that are relevant to specify these kind of requirements. In contrast to this work,
a process model could then be used to precisely define the content elements. It would be
interesting to analyze the relationships between these requirements and functional/quality
requirements by leveraging the connection between system models and process models.
If we are able to unify these models, we would enable a requirements engineer to specify
quality requirements, physical requirements, and functional requirements based on one
unified method.
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